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Summary

Chemical exposure assessment has gained increasing attention in recent years.
Its methodologies have enabled scientists and policy-makers to understand ex-
posure paths and to identify environmental compartments of concern. Math-
ematical models are used for the prediction of a chemical’s concentration in
a certain compartment and in some cases also for predicting the duration or
time of highest load. With the Geo-referenced Regional Exposure Assessment
Tool for European Rivers (GREAT-ER) spatial aspects of regional exposure as-
sessment are addressed for the ”down-the-drain” path of consumer chemicals
such as detergents.

On the basis of a carefully developed simulation model (Boeije, 1999), this
thesis describes the concept and realization of the developed software tool
GREAT-ER. With data composition and processing on the one hand and appli-
cation and analysis on the other hand, two crucial aspects in spatial exposure
assessment are identified and discussed.

Geo-referenced real-world data are not readily available in a usable form. An
intermediate format is defined to separate the tasks of an initial preparation of
raw data from the final aggregation leading to a directly usable data set. It is
shown that the latter step can be fully automated and thus efficiently supports
an iterative procedure of data quality improvement.

The application of GREAT-ER to the substances LAS (readily degradable) and
boron (inert) in four Yorkshire catchments demonstrates the ability to predict
mean final effluent and in-stream concentrations with an average error of less
than a factor of 2. Furthermore, regional summaries and risk characterization
add useful information to judging a regional response to the (potential) release
of a substance.

In conclusion, the development and application of GREAT-ER has proven that
geo-referenced exposure assessment is possible with regard to both quality
and practicability. Future activities should focus on gaining further experi-
ences in performing simulations, improving the tool itself and extending its
abilities. Finally the integration of further models should be evaluated.
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Chapter 1

Problem description

1.1 Introduction

In recent decades industrial societies have started to make the protection of
the environment and human health an integral part of their policies, economy
and science.

At the beginning, ad-hoc plans and actions to deal with pollution that posed
an immediate and direct threat dominated. Popular examples are types of
pollution that can easily be seen or smelt such as air pollution in the German
Ruhrarea (early 1960s, law implementation in 1964) or the eutrophication of
German lakes by phosphate from detergent products (1970s, law implementa-
tions in 1975 and 1980).

Besides these, other chemicals, which were detectable only using high-tech
devices or after the harmful effects on humans and environment had become
apparent, were identified (partly by chance) as posing a high and unacceptable
risk (e.g. dioxins).

Awareness to avoid future problems increased and lead to the demand for
a variety of prediction tools. These were initially used to improve under-
standing of the dynamics of chemicals and their effects on the environment,
and were later used on a regulatory level (e.g. for the evaluation of new sub-
stances).

With the current EU chemical legislation only the local assessment of ecotoxic
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10 CHAPTER 1. PROBLEM DESCRIPTION

and human-toxic risks is considered based on one generic environmental re-
lease. Additional background concentrations are calculated by a regional mul-
timedia box model without spatially explicit information.

The applied generic-based methodologies have proven sufficient for some
types of initial screening (i.e. problem identification), but have also revealed
a number of disadvantages (e.g. problematic validation, can not be validated
for explicit sites) and missing features (e.g. not viable for the managment of
identified problems).

These drawbacks are addressed by introducing spatially explicit methods.
These are based on comprehensive (spatially explicit) data and a powerful
software tool with regard to usability and performance (response time).

The tremendously rapid development of information technologies rendered
the use of chemical fate models as software tools widely usable and well ac-
cepted. Theoretical concepts became applicable with the given information
technology. One example is comprehensive uncertainty and variability analy-
sis by methods with high computational efforts (e.g. Monte-Carlo approach).
The present thesis approaches a further level of complexity: the spatial refine-
ment of environmental simulation models and its feasibility.

1.2 Environmental Risk Assessment

Legislation required a measurable, quantitive method for balancing the need
of chemical products and the hazard they posed to human health and the en-
vironment. The EU directive 93/67/EEC on Environmental Risk Assessment
(ERA) describes a methodology which is mandatory for new substances on the
European market.

A risk posed by a chemical to the environment is characterized by its toxi-
cological effect on organisms and the concentration of the substance within
environmental compartments. The substance is considered to pose a risk if the
environmental concentration exceeds the no-effect concentration on organisms
(figure 1.1).

For new substances both concentrations (effect and exposure) need to be esti-
mated (EU, 1996): The predicted no-effect concentration (PNEC) is usually de-
termined on the basis of results from monospecies laboratory toxicity tests or,
in a few cases, established from concentrations determined from model ecosys-
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tem tests, taking into account adequate safety factors. The PNEC is regarded as
a concentration below which an unacceptable effect will most likely not occur.
The predicted environmental concentration (PEC) is derived from monitoring
data or estimated by applying simulation models. In the first stage of expo-
sure assessment where exposure models are used, generic exposure scenarios
are applied. It is assumed that substances are emitted into non-existing envi-
ronments with predefined agreed environmental characteristics. These char-
acteristics can be average values or reasonable worst-case values depending
on the parameter in question.

PEC

PNEC

PNEC
PEC

>= 1  : Chemical is potentially not safe

PEC

PNEC

PEC = Predicted Environmental Concentration
PNEC = Predicted No-Effect Concentration

PNEC
PEC

< 1  : Chemical is safe

Figure 1.1: Environmental Risk Assessment: PEC/PNEC ratio

The ERA process involves a number of uncertainties, safety factors and stochas-
tics. The primary rule is to not classify an unsafe substance as safe. Chemicals
that do not pass the first screening phase are not necessarily unsafe. Refine-
ment with reliable data on chemical release/emission (place, mass, duration)
and physico-chemical properties (degradation, sorption, etc.) forms the sec-
ond tier of the ERA process. The present thesis focuses on refinements of the
ERA exposure part. The effect part is not directly linked to questions of envi-
ronmental exposure assessment and should be regarded as a separate task.

1.3 Chemical Exposure Assessment

Exposure assessment estimates the dose or the quantity of risk agents (e.g.
toxic chemicals) received by individuals or the environment (Louvar & Lou-
var, 1998). It is used
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� to identify agents that are potentially hazardous to individuals or the
environment,

� to identify specific populations at risk

� to identify paths of exposure, and

� to quantify the exposure.

Exposure assessment can be performed by analogies, monitoring and model-
ing. Applying modeling to chemical exposure assessment, a further objective
can be added to the list (Trapp & Matthies, 1998):

� to determine present and future concentrations in abiotic and biotic en-
vironmental segments.

With including natural variability in time (e.g. flow duration curves), mathe-
matical modeling with its ability to formulate complex processes and the op-
portunity to implement these as computer programs, gets a valuable method
of exposure assessment.

Figure 1.2: Multi-compartment approach
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Processes such as advection, degradation, partitioning, diffusion and disper-
sion form the mathematical basis of models for chemical exposure assessment.
No matter how detailed such models are, they always remain simplified views
of the real environment.

A commonly used approach is the multimedia model (figure 1.2) in which the
environment is divided into a number of compartments reflecting a reasonable
real-world ratio of water, soil, air, sediment etc. (Mackay, 1991). Models of
different complexity estimate chemical fate and behaviour in this simplified
world (Mackay, 1979):

� Level 1: Equilibrium, no reactions, closed system

� Level 2: Equilibrium, open system, reactions, steady state

� Level 3: Non-equilibrium, open system, reactions, steady state

� Level 4: Non-equilibrium, open system, reactions, non-steady state

The EU Technical Guidance Documents (TGDs) have adopted the multimedia
approach and describe a generic EU region for the evaluation of substances
(EU, 1996).

While this methodology is suitable for the screening tier, averaging for the
generic region implies unrealistic scenarios for many chemical release and ex-
posure patterns.

One example of this is the ”down-the-drain” path (figure 1.3) of consumer
products like detergents (Feijtel et al., 1997): The generic EU region assumes
70% of all waste water discharges as treated and 30% as untreated. This causes
two problems: Actual regions such as Germany treat over 95% of their waste
water and hence the in-stream concentration of substances would be over-
estimated. On the other hand, for regions with a low level of treatment (e.g.
Italy: less than 40%) the in-stream concentration is under-estimated.

Problems similar to the above-described scenario can be dealt with within the
given TGD methodology and its associated software European Union System
for the Evaluation of Substances (EUSES), by repeated use with different re-
fined data. Applying the same model formulations, downscaling from a one-
box generic EU region to a 25x25 km grid with local data for each cell, com-
parison with the calculated maximum values lead to values differing by factor
of 10 (air compartment) to 100-1000 for water and soil comparment (Klepper
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& den Hollander, 1999). It has been shown that this simple box model may
not be able to provide good local predictions, but is able to provide spatial
distributions of the concentration.

Figure 1.3: ”Down-the-drain” path of consumer products

However, the ultimate goal to have better support for the management of such
situations is only reached with a level of refinement being equal to a spatial ex-
plicit representation of geographic objects of the region under consideration.
This basically means that the environment of a region is split into its geograph-
ical elements such as rivers, agricultural soil, etc. The chemical fate is then
simulated with explicit models for each element type of mutually exchang-
ing mass flow. Interconnection is defined by the actual geographic position
and/or extent. For this refinement, there is no pre-defined separation into ele-
ments (such as a squared grid). The separation must be chosen with regard to
the given task.

Concerning the ”down-the-drain” example, only such spatially explicit mod-
els offer the potential to identify the presence of single sites at high risk (”hot
spots”). Naturally, also the location of the sites is identified and hence this
modeling approach provides good support for decision-making.
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1.4 Generic vs. spatially explicit simulation

In the present situation, tools for risk analysis have the potential to evolve into
tools for the powerful management of risk and related issues. The EU directive
for establishing a framework for Community actions in the field of water pol-
icy (EU, 1999) implies a strong need to make use of the potential and to create
an integrated complex management tool. The development of such a man-
agement tool would lead to numerous single tasks that were previously sepa-
rate being joined together. A practical management tool relies on site-specific
rather than averaged information. In consequence, a migration from generic
to spatially explicit data appears to be a fundamental requirement. The ben-
efits and disadvantages of both simulation approaches need to be considered
in order to ensure reasonable migration.

”Generic” data usually describe a situation that was intended to be non-exist-
ing. In many cases, averaged data are applied with the intention to gain most
adequate data, but (where this is done) they are often not declared as generic.
The term ”generic” refers to data only. Model formulations are not intended
to reflect a non-existent situation (though they naturally do due to the gen-
eral limitation of modeling the real world) and hence there are no ”generic
models”. Nonetheless this term is often used because the term ”model” can
represent a complete entity covering model formulations and (generic) data.

In this context generic data are usually applied with two types of models, re-
gional and local ones (EU, 1996 and ECETOC, 1994). Generically driven re-
gional box models estimate large-scale spatial averages, maximums and distri-
butions. Generically driven local models are based on average site properties
and result in site-typical averages, maximums and distributions. In general,
generically driven models can be applied where

1. generic results of simulations are sufficient (e.g. identification of com-
partments of concern, comparison of substances),

2. reality reveals no extreme variation in parameters that are averaged,

3. insufficient detailed information is available or

4. information might be available, but cannot be adequately aggregated.

A spatially explicit simulation depends on highly detailed and adequately ag-
gregated information. The need for highly refined geographical data is in-
creasingly satisfied by the current development of digitally mirroring the real
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world. Spatially explicit exposure assessment is already usable in practice for
regions where several interests have jointly resulted in comprehensive data
collections (e.g. surface- and groundwater data to support water management
in dense population areas). Future plans will extend the data collection to a
harmonized country level and ultimately cover the entire globe within a few
years. In general, spatially explicit simulations can be applied where

1. validation via monitoring for explicit sites is desired,

2. precise management support is required (e.g. what-if scenarios: adding
a sewage treatment plant at a certain site),

3. vulnerable regions rather than vulnerable compartments need to be iden-
tified or

4. a low number of point emissions needs to be simulated adequately.

1.5 GREAT-ER

The GREAT-ER project (Geography-referenced Regional Exposure Assessment
for European Rivers) was aimed at developing a refined method for exposure
assessment of ”down-the-drain” chemicals. On the basis of a river network
topology, rivers are divided into a number of segments. The processes of
emission (via sewage treatment plants), dilution, advection and several elim-
inations are considered for each segment. The core of the system consists of
a steady-state, deterministic model which computes the simulated concentra-
tions (Csim) for each segment. For this a hybrid approach with a stochastic
simulation on top of the deterministic model is applied (figure 1.4).

Real-world data with their spatial and temporal variability, as well as their
uncertainty are used. By multiple applications of the model with randomly
varied input data (Monte-Carlo simulation), geo-referenced distributions of
the chemical concentrations in the environment are obtained.
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Figure 1.4: Stochastic simulation on top of deterministic models (Boeije, 1999)

The pilot study areas in the United Kingdom (Yorkshire, sub-catchments of the
River Ouse) and in Italy (Milan, Upper River Lambro) are digitally processed
and comprehensive monitoring campaigns for the detergent substances LAS
and boron are performed. The monitoring data are used for calibrating and
analysing the model system.

Additionally, a methodology is developed to aggregate local Csim results to
Predicted Environmental Concentrations (PECs) characterizing the investi-
gated regional scenario (Boeije et al., 2000): PECinitial (unweighted aggre-
gation of concentrations just downstream from waste-water emissions) and
PECcatchment (weighted aggregation of all average stretch concentrations).

The GREAT-ER project is conducted by the following partners:

� Institute of Environmental Systems Research, University of Osnabrück,
Germany: Geographical data methodology (GIS data processing), devel-
opment of the software ”GREAT-ER 1.0”, incorporation of other partners
modules.

� University of Ghent, Belgium: Chemical fate modeling.

� Institute of Hydrology, Wallingford, United Kingdom: Hydrological mod-
eling, hydrological data collation.

� University of Milan, Italy: data collation and monitoring for the Lambro
catchment.

� UK Environment Agency: Monitoring for Yorkshire catchments.

� European Center for Toxicology and Ecotoxicology of Chemicals
(ECETOC), Brussels, Belgium: Project management, support for moni-
toring.
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1.6 Aims of this thesis

The present thesis complements the joint work undertaken in the GREAT-ER
project. With the topic of chemical fate prediction for use in geo-referenced envi-
ronmental exposure assessment (Boeije, 1999) the actual simulation methodology
is developed. The present study covers the software prototype design, the
composition and processing of geographic and associated data and, most es-
sentially, application and analysis with the developed tool. The forthcoming
thesis of Frank Koormann will focus on selected problems of this type of geo-
referenced exposure assessment and discuss add-on developments.

The approach of a geographically refined chemical exposure assessment in
support of the ERA scheme is firstly undertaken with the GREAT-ER project.
Besides the model adequacy itself, the huge data demands and data outputs
require both a sound data preparation routine and a sound results analysis
methodology.

A number of questions arise in respect to the development of a tool that con-
siders the spatial aspects of chemical exposure assessment for river networks:

1. How can a usable tool be constructed for the aspired purpose?

2. How can input data of a certain quality be prepared?

3. Which questions can be answered with this tool?

4. Which questions will remain unanswered?

5. How can simulation results be interpreted?

6. How can the quality of simulation results be improved?

Chapters 2 and 3 of this thesis deal with the first question. Chapters 4 and 5 de-
scribe the data incorporated in GREAT-ER 1.0 and discuss the pre-processing
of geographic and corresponding attribute data, providing an answer to the
second question. The sixth chapter deals with a full application of the tool and
an analysis of the simulation results, thus answering questions 3 to 6.



Chapter 2

Concepts of and requirements for
GREAT-ER

The objective of the development of the GREAT-ER prototype was to combine
a scientific research tool with an applicable decision support system for use in
the refinement tier within environmental risk assessment.

This chapter provides an overview of the concept and requirements of the
GREAT-ER software, based on the intention to construct an open system that
can be further developed as a research tool. At the same time this software tool
is a specification for a later professional software product proving its scientfic
soundness, reliability and applicability.

2.1 Introduction

The handling of all aspects of exposure assessment on a spatial scale requires a
tool that is powerful and complex enough to adequately cover the given task,
but which is also simple to use. Whether such a tool is deemed applicable de-
pends on the type of application. A regulatory or commercial decision support
system does not need extensive options to substitute modules of the system or
perform in-depth data changes. On the other hand, a research tool does not
necessitate a standardized, fixed and visually perfect user interface.

The design and development of GREAT-ER aims at considering both types
of application. Obviously, this can not be accomplished entirely. Instead, a
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prototype needs to be developed which is open to further research needs and
at the same time forms a basis to derive a professional tool. The intention of
this hybrid approach is to enable the tool to support gaining of new scientific
knowledge and understanding. Concurrently it is intended to have it provide
stable and scientifically sound results for political discussion and decisions.

There are numerous tasks that a spatially explicit exposure assessment tool
should cover in general:

� a user interface for specification of non-georeferenced data

� a user interface for visualizing and exploring geographic information
and all data associated with geographic objects

� options to manipulate any of the geo-referenced data

� analysis tools to support further processing of results

� provide transparency in terms of usability and comprehensive results

� an open approach for later incorporation of further models.

In GREAT-ER an overall modular approach separates the principle tasks and
specifies the scope of the end-user tool (figure 2.1): It mainly provides a desk-
top GIS and the simulation models. The preparation of huge and static (not
user-editable) data is kept external.

The end-user system consists of three major components: a desktop GIS (in-
cluding the user interface), model and data. An appropriate interconnection
of all modules and sub-modules needs to be enabled in order for GREAT-ER
to fulfil all tasks listed above.
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Figure 2.1: GREAT-ER project: modular approach (Feijtel et al., 1997)

2.2 Other geo-referenced simulation tools

Other approaches to combine GIS and environmental models have primar-
ily addressed hydrology and water quality issues: BASINS (Better Assess-
ment Science Integrating Point and Nonpoint Sources by the U.S. Environ-
mental Protection Agency), ATV-Gewässergütemodell (Abwassertechnische
Vereinigung, German Association for Water Environment), NOPOLU (Beture-
Cerec, France), MONERIS (IGB Berlin, Germany) and GESREAU (GEStion des
Ressources en EAU, Switzerland). BASINS appears to be the most advanced
of these systems. It has incorporated a simple chemical fate model for river
networks, TOXIROUTE.

A set of policy and decision support systems with spatial aspects (Geonamica,
WadBOS, RamCo and MODULUS) has been developed by RIKS (the Nether-
lands). The systems share the same basic software modules.

The applications of both groups have their roots in addressing problems dif-
ferent to those addressed by the GREAT-ER project. In principle, several of
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these tools have the potential to cover the tasks requested for GREAT-ER. The
reasons why GREAT-ER is not based on one of these systems are:

� At the time GREAT-ER was designed and launched, most other tools
were not available or not sufficiently advanced.

� GREAT-ER is meant to be a lean prototype, open for further development
as a scientific tool as well as a policy product. Implication of further inter-
ests which were focused on more remote questions might have reduced
the flexibility of the development.

� GREAT-ER is meant to be open in terms of transparency and code avail-
ability. This could not be fully attained as part of a proprietary product.

Review of the GREAT-ER concepts is performed by direct communication with
project representatives of BASINS and NOPOLU. With an accomplished
GREAT-ER prototype a tool focusing on exposure assessment is available. It
should then be evaluated whether to directly couple GREAT-ER with other
software tools that have proven their suitability for specific tasks (e.g. water
quality, hydrology).

2.3 GIS-model coupling

The coupling of a GIS and simulation models is one of the most challenging
parts of the software engineering phase.

In the literature several categorisations of coupling methods for GIS and envi-
ronmental models can be found (Wagner, 1996). In principle they differ only
in how precisely the categories are chosen. Most approaches have set up three
main categories for the coupling intensity:

The coupling intensity is divided into three levels: ad hoc integration, partial
integration and complete integration (Tim et al., 1994). In the first level, GIS and
the model are independently developed and the data transfer is realised as a
simple exchange of files. At the second level, both components use (at least
partly) a common database which belongs to one of the components. This
includes the need to internally adapt one component. The third level is an
integrated system in which both components can fully access the commonly
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used database. In (Wagner, 1996), level 2 is applied to couple a simple water
model for chemical exposure with the GIS ArcInfo.

Another categorisation approach distinguishes between shallow coupling, deep
coupling and embedded GIS (Fedra, 1996). This graduation is rather based on the
user view, cf. the user interface. At an initial level, the GIS and the model are
partly independent of each other. Both offer their own user interface but use
the same database. At the next level one user interface integrates the two com-
ponents for the user view and internally direct communication between the
components is established. For the highest level the model is a further devel-
oped method of the GIS. The definition of the coupling intensity levels is not
very detailed and leaves any solution across the categorization conceivable. In
several cases level 3 is realised (Fedra, 1996).

Resulting from a review of the literature, a list of five main types of coupling
were identified (Wagner, 1996, figure 2.2):

(a) Model realized in GIS built-in language

(b) Coupling interface as a program of its own

(c) Interface between GIS built-in language and model (direct coupling)

(d) Interface between model and database

(e) Embedding

A component approach is recently being favorized for many information tech-
nology projects. Software components are modules wrapped up with a stan-
dard internal interface for flexible use without need to access the source codes
of the applied modules. It can be described as a further abstraction level in-
troducing interfacing technology of its own. Examples are COM (Component
Object Model) and CORBA (Common Object Request Broker Architecture).
This technology can be applied to types (b)-(e) in order to gain further flexibil-
ity.

(a) Model realized in GIS built-in language

The model is reimplemented in the language given by the selected GIS. The
connection to the GIS data is established directly.
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This means a dependency on the GIS used. In principle a reimplementation
does have the potential for error, especially in the mathematical part and hence
it must be rechecked carefully. The built-in language is believed to be sufficient
for simple models, but complex models may be less efficient or implementa-
tion may not be possible at all.

(a)

(b)

(e)
(d)

(c)

DBSUser Interface/GIS

(re)implemented Model

DBSUser Interface/GIS

Model Filesystem

DBS

User Interface/GIS

Filesystem

modified or
(re)implemented Model

DBS

User Interface/GIS

Filesystem Model

Converter Converter

Model-GISGIS-Model

DBS

User Interface/GIS

modified
Model

Data Stream Control Stream

Figure 2.2: GIS-Model coupling (Wagner, 1996): (a) Model realized in
GIS built-in language, (b) Coupling interface as program
of its own, (c) Interface between GIS built-in language and
model (direct coupling), (d) Interface between model and
database, (e) Embedding

(b) Coupling interface as a program of its own

Two conversion tools prepare the GIS data for the model and vice versa. This
concept offers several opportunities for adaptations and has often been real-
ized (Han et al., 1995).

The model implementation is not changed, but any change to the model inter-
face must follow an adaptation of the corresponding conversion tool.
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(c) Interface between GIS built-in language and model (direct coupling)

All routines for exporting model input data and for reading model results are
implemented in the GIS built-in language. The conversion components are
part of the GIS.

The model implementation is not changed. The built-in language must be
powerful enough to handle the model’s input and output.

(d) Interface between model and data base

The model is extended by routines to access a database which is shared with
the GIS. The conversion components are part of the model.

The model implementation is changed and hence the source codes are re-
quired. The type of software development tools used for the model may reveal
problems in establishing data base access.

(e) Embedding

The functionality of the model is directly linked to the GIS (e.g. as a library
file). Embedding can be loose (only one funcion call) or very tight (model split
up into several small routines (i.e. sub-models, processes).

Depending on the intensity of embedding the alteration of the model may vary
from marginal to almost entirely. In the latter case the model would become
an integral part of the GIS.

Coupling method for GREAT-ER

For the implementation of the GREAT-ER prototype, direct coupling (type (c))
was choosen for its simplicity to exchange input/output data between GIS and
model component. This solution supports independent development of both
components. Furthermore, implementing a prototype with limited ressources
should not involve too much development of flexible technolgies, but concen-
trate on the prove of concept.
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2.4 Simulation models

2.4.1 Overview

The simulation models which are integrated into GREAT-ER are each associ-
ated with geographical objects and in sequence describe the wastewater path-
way from household emission to the end of a river network (figure 2.3).

Figure 2.3: Sequence of simulation models

All submodels (except emission) share a simple mode in which a lumped first-
order elimination or percentage removal efficiency is applied. Higher levels
of complexity are available to refine the physico-chemical processes within the
modeled compartments.

In general, with each additionally considered process, data requirement in-
creases. Data gathering is usually time- and cost-intensive and should be post-
poned until a simple approach does not suffice for the required quality. All
models/sub-processes are linear approaches with widely known and applied
equations (e.g. Trapp & Matthies, 1998). GREAT-ER combines present model-
ing approaches rather than introducing entirely new model formulations.

For the simulation of the Sewage Treatment Plants (STPs), two models are
available: one for trickling filter and one for activated sludge plants. Both
plant types are typical for the European situation, although activated sludge
plants are more efficient. Some discharges in Europe even remain untreated.

On top of these deterministic models a stochastic module allows to perform
Monte-Carlo simulations (figure 1.4). Some of the input parameters are usu-
ally given as distributions (e.g. average annual river flows). In GREAT-ER al-
most all input parameters can be assigned to a distribution. Consequently, the
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computed results are also given as distributions of concentration (over time)
for each geographical object. It is assumed that these concentrations are dis-
tributed log-normally and the models return mean and standard deviation for
each object.

The model implementation has a command-line/text file interface that allows
either manual or batch execution. The formats of the input/output text files
are fixed. Commands and options are partly specified as command-line pa-
rameters and partly specified in an initialization file.

The models, their stochastic part and the model implementations are described
in detail in (Boeije, 1999).

2.4.2 Substance data

The substance data set contains all substance-specific parameters. The link to
a chemical has the highest priority in grouping parameter sets. This essen-
tially means that also any model-specific referring to a chemical property also
belongs to the substance data rather than to the model parameters. In con-
sequence, the substance data set is a comprehensive collection of properties
that partly overlap in their meaning but which refer to different models under
specific assumptions.

For the current GREAT-ER submodel set, the substance data are divided into
seven sections: substance identification, physico-chemical properties, parti-
tioning, degradation, sewage treatment removal, in-stream removal and use
pattern/market Information.

2.4.3 Emission model

The emission model is a straight-forward calculation of the total chemical mass
entering the sewer systems. Three types of chemical release are considered:
Regional consumption based on per-capita use and population served by treat-
ment plants, site-specific consumption (replacing regional consumption) and
additional input as mass flow (e.g. industrial emission).
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2.4.4 Sewer model

Complexity mode 1 assumes no removal in the sewer system. Modes 2 and 3
apply an overall removal percentage.

No sewer properties are used (e.g. travel times, combined or separate sewer
system) and hence in cases where site-specific in-sewer removal is required,
elimination needs to be incorporated into an overall site-specific STP removal.

Applying the site-specific actual daily flow of the treatment plant, the sewer
end-point concentration is provided, which at the same time is the influent
concentration for the STP models (Csim;influent).

2.4.5 STP models

In complexity mode 1 both, trickling filter and activated sludge models apply
an overall removal percentage.

For trickling filter plants no refined model is available. Modes 2 and 3 are
identical to mode 1.

For activated sludge plants a modified version derived from SimpleTreat (Stru-
ijs, 1996) is used for modes 2 and 3 (Boeije et al, 1998). It is a mechanistic,
steady-state model including a primary and secondary settler. Modification
to SimpleTreat includes the consideration of single-sludge biological nutrient
removal.

Besides the actual STP model, a fraction of direct emission can be specified for
any site. The corresponding fraction is added to the output of the treatment
plant (Csim;effluent).

2.4.6 River model

A first-order in-stream removal with fixed rate coefficient is used for complex-
ity mode 1.

In mode 2, chemical sorption is considered. The steady-state sorption / dis-
solved fraction is used to specifically calculate the effects of the subprocesses
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volatilization, degradation and sedimentation. All subprocesses are dealt with
by fixed (pseudo) first-order rate coefficients.

With mode 3 individual mechanistic models can be selected for different pro-
cesses (biodegradation, hydrolysis, photo-degradation, sedimentation and
volatilization). A selection can be made in order to model a specific substance
adequately (e.g. volatilization only for highly volatile substances).

The river model outputs are the concentrations for the beginning of each river
segment (Csim;start), the end of each segment (Csim;end) and an average concen-
tration for the entire segment (Csim;internal).

2.4.7 Stochastic Monte-Carlo module

Most parameters of the GREAT-ER simulation models can be given as distri-
butions. The river flow statistics can be regarded as one of the most essential
distributions. Discrete samples are taken from the distribution curve for each
simulation. For the river flows one sample is taken as a percentile to simulate
the entire river network to ensure consistency of flows (e.g. the 37th flow per-
centile is applied throughout the whole catchment). Applying numerous dis-
crete samples results in distributions for the simulated concentrations (Csim;x).
This number of Monte-Carlo samples is an overall parameter applied to all
submodels.

A set of correlation factors as part of the catchment properties supports the
stochastic module. Correlations can be defined for temperature $ flow, wind-
speed $ flow, suspended solids $ flow, dissolved oxygen $ flow, biological
oxygen-demand $ flow and suspended solids sedimentation $ flow.

2.5 User interface

2.5.1 Analysis and visualization requirements

The enormous amount of data required and produced by GREAT-ER sets forth
needs for adequate methods to analyze and to visualize these data. Some user
requirements are also incorporated into the following list:
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� visual analysis via interactive browsing through 2-dimensional maps of
the area of interest (e.g. zooming, visibility selection of geographic lay-
ers, shape/color selection for geographic objects),

� opportunities to visualize temporal variability of data (river flows, chem-
ical concentrations),

� standard plots and diagrams (e.g. scattered plot, line plot),

� standard table operations,

� downstream profiles (e.g. concentration, flow, flow velocity),

� aggregation of results to express regional summaries,

� detailed review of any simulated site/geographic object and related in-
formation/attributes.

2.5.2 Selection of software components

Operating System

The potential user group of GREAT-ER (authorities, chemical industry,
academia) should easily be able to apply the system without needing to change
their primarily used operating system. Academia is usually the most flexible
group using a variety of systems. The other two groups have less opportu-
nities and at the start of the project these groups used primarily Microsoft
Windows-operating systems (versions 3.1 and 95). With a 3-year project dura-
tion it was believed that Windows NT 4.0 (or compatible systems) would be
the standard. Hence Windows NT 4.0 was selected as the prime requirement
for an operating system.

GIS

GIS capabilites within the GREAT-ER project are required in two different
ways. On the one hand, geographic data have to be prepared for use. This pro-
cessing stage is more complex for raw data than for initially processed data.
In most cases further processing is needed and requires comprehensive GIS
capabilities. On the other hand, a desktop GIS primarily offering a map-based
visualization takes over parts of the user interface.
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As for the complex GIS software, most of the commonly available products
are sufficient. The system can be chosen regardless of the aspired end-user op-
erating system because only transferable data and not programs are created.
ARC/INFO was selected as a readily available system. The Free Software
product Geographic Resource Analysis Support System (GRASS) is currently
an adequate alternative but in 1996 it was undergoing a process of reorganisa-
tion.

In 1996 the availability of powerful desktop GIS systems for Windows NT 4.0
was quite limited. In absense of comparable alternatives, the ArcView soft-
ware by ESRI was felt to be the most suitable solution. ArcView is broadly used
in educational institutions, governmental organizations and industry. It is as-
sumed that ESRI will guarantee support and further development of ArcView
in the future.

ArcView offers a number of data interfaces, of which the most important are
text files (read-only tables), dBase files (read/write tables) and an SQL inter-
face. The text file interface lacks flexibility some-what, e.g. in the selection of
column delimiters. Furthermore, ArcView has a command line interface via
its built-in language Avenue. Both synchronous and asynchronous execution
of external programs are possible.
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Chapter 3

Realization of GREAT-ER

The intention of this chapter is to give a detailed insight into the tool’s technical
functionality. However, it should not be viewed as a user’s manual.

The realization of GREAT-ER considers principles of good modeling practice
(Trapp & Matthies, 1998) to support quality assurance in terms of transparent
and comprehensive simulations.

All source codes are available on request. The contents are summarized in a
number of project progress reports to ECETOC and to some extent published
in ECETOC Special Report No. 16 (ECETOC, 1999).

3.1 Technical Overview

3.1.1 Software requirements

The end-user prototype version of GREAT-ER requires a Windows NT 4.0 plat-
form and the corresponding version of ArcView 3.0 (or 3.1). All other pro-
grams used within the prototype are installed together with the GREAT-ER
system.

For the GREAT-ER development a number of tools are required or are at least
helpful: A number of small standard Unix command-line tools (e.g. make,
awk, sed, join) are used within the process of data generation (see also Chap-
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ter 5). The initial data processing, which is performed on a Unix platform for
the GREAT-ER prototype, might also require a full GIS (ArcInfo is used for the
prototype data sets). A dynamic link library (DLL) including all special di-
alogs is created with Microsoft Visual C++. Some additional and more specific
tools (txt2dbf and the simulation software itself) were developed in the pro-
gramming language ’C’. Any standard compiler should be able to re-compile
the sources. For GREAT-ER, the GNU C Compiler (gcc) is used.

3.1.2 The desktop GIS and its built-in language

The core of GREAT-ER is a number of Avenue scripts which are executed
within ArcView. They are not incorporated into the GREAT-ER ArcView
project file. This project file only has the ability to load a startup Avenue script
(a text file) from the filesystem which will then direct any further initialisa-
tion. All other scripts are loaded within this process and the user interface is
customized for GREAT-ER.

A special run-time element is established by a script (’sendEvents.ave’) which
regularly executes itself and each time executes the update scripts which are
attached to views. Views are windows representing a scenario and displaying
the catchment. Update-routines will mainly check for results from tools out-
side the ArcView system, e.g. whether a simulation has finished. This technol-
ogy supports the user by concurrently running simulations and automatically
updating views.

Several global variables are used to share entry points to run-time information.
All these variables are initialized in one script (initialize.ave).

Avenue is described as an object-oriented language but does not allow the cre-
ation of new classes. Only pre-defined classes can be used. One of these is
intensively used to build up the GREAT-ER data structures: the dictionary
class. Dictionaries allow to collect data of any type associated with a key.
Strings are used as keys. For example, a collection of model parameters is
a dictionary which the key is the name of the parameter. Associated with each
key is another dictionary with some pre-defined entries to be used. These are
’value’, ’DistriTyp’ and ’Comment’ among others. Associated with ’value’ is
a string which is to be interpreted as a number if it is not equal to the text
’unknown’. ’DistriTyp’ identifies the type of distribution which is coded as an
integer. ’Comment’ is associated with a text object.
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3.2 GIS-model coupling

For the prototype development of GREAT-ER, direct coupling appeared to be
the most adequate methodology:

� It allows concurrent and (almost) independent development of the GIS
and the model part.

� Scientific development takes advantage of the ability to perform rapid
tests of modifications.

� Independent performance optimization of the model is possible.

� GIS and model implementation remain exchangable.

� Compared to the expected usual simulation effort (Monte-Carlo
approach) the performance loss by converting input and output data is
surmounted.

� It is feasible with the given selection of GIS and the operating system.

Direct coupling simply means that the GIS ’knows’ the data requirements and
structures of the model and also ’knows’ how to execute it. This knowledge
has been coded in Avenue scripts. However, improvement towards a decision
support system would benefit from a tighter coupling in a more compact tool.

For the execution of a simulation, GREAT-ER performs the following steps:

1. Check completeness of the data. The user is given a hint if any parameter
has not yet been specified.

2. Check if this scenario is already running as a background process. Two
processes working on the same scenario data set would interfere with
one another.

3. All required data are written onto the file system. The corresponding
Avenue routine creates almost all model input files in the correct format.
However, for a better performance large data tables are first created ap-
plying a quick internal procedure of ArcView. Then awk is executed for
the final reformatting.

4. A lock is set for this scenario to avoid double execution.
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5. Results of previous simulations are removed.

6. A batch file is executed as a background process which first starts the
simulation software, waits until it is finished, checks for errors that may
have occurred and, if such were not found, a reformatting routine pre-
pares the results for ArcView (awk, txt2dbf).

7. The lock is removed.

All running scenarios are checked regularly to see if the computation has fin-
ished. When a simulation finishes, the results are loaded into the system for
manual and automatic access.

Any change to the input/output structure of the simulation software requires
an adaption of the Avenue routines.

3.3 User interface development

3.3.1 Review of ArcView

For confirmation purposes the adequacy of the selected GIS tool for the
planned purpose is tested in detail. The results of the review also facilitate
an improved estimate on several aspects of the user interface design and de-
velopment, ultimately uncovering semantic limitations or opportunities.

� ArcView offers a graphical user interface with many built-in features for
the visualization and analysis of maps, geographic data and correspond-
ing attributes.

� A built-in macro language (Avenue) supports the customizing and ex-
tension of the desktop GIS’s user interface. Furthermore, access to most
elements of the GIS is offered.

� Basic relational database management features are offered.

� Connectivity within a Windows NT environment is offerd via several
communication modules (e.g. DLL, DDE, SQL, ODB, etc.).
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� It is not possible to define submenus. This increases the number of main
menus and menu items if a lot of functions and commands are to be
accessible via the menu. This disadvantage was considered in planning
the GREAT-ER menu structure.

� It is not possible to create complex custom dialogs. The macro language
Avenue offers the class ’MsgBox’ which contains some basic methods
such as ’OK’ and ’Yes/No’ dialogs. Combinations of i.e. text entries and
so-called radio buttons are possible with the ESRI Dialog Designer Exten-
sion for ArcView, but this extension has also limitations. This is a major
disadvantage, because the parameter sets of the model or the substance
properties necessitate user-friendly and more complex dialogs. Alterna-
tive dialog techniques had to be investigated.

� Some parts of GREAT-ER can not be implemented based upon Avenue
(e.g. the model, some tools and complex dialogs). Two connectivity tech-
nologies were chosen, Dynamic Link Libraries (DLLs) and direct com-
mand execution. The latter reveals some problems, one of which is the
missing return value (success/failure indicator).

� The design of Avenue reveals a major weakness concerning compatibility
to other versions of ArcView: Though the version number can be tested
in Avenue and conditional command blocks can be followed in order to
always use the correct class methods, the concept of enumeration types
already inhibits the compilation of scripts.

3.3.2 User interface modes

Since the desktop GIS ArcView forms the basis of GREAT-ER, numerous GIS
and data management functions are provided. To make the GREAT-ER part
transparent and straightforward to use without losing the powerful functions
mentioned above, it was decided to offer two user interface modes: the expert
mode and the easy-to-use mode.

’Expert’ in this context means that users are familiar with GIS in general and
with ArcView in detail. The expert mode gives access to all ArcView opera-
tions and commands. This includes the possibility of undocumented changes
or to delete basic GREAT-ER data sets. Obviously, this feature contains ad-
ditional functions but its use can also be harmful. Users should decide care-
fully whether to perform operations in the expert mode or not. An expert user
should be able to decide which kind of operations are not able to harm the
whole system and its data sets.
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’Easy-to-use’ basically means that it is impossible for users to harm the system
and/or the underlying GREAT-ER data sets. If users are only interested in
performing simulations and viewing results, this mode is perfectly sufficient.

3.3.3 Scenarios

An adequate concept is developed for the management of GREAT-ER data. A
’scenario’ is defined as the collection of all data needed to perform a simula-
tion.

Scenarios can be stored and loaded and thus offer the quick retrieval of a cer-
tain situation. A unique title for each scenario assists the search of a specific
one in a long list.

Additionally, scenarios form the basis for the exchange of complete simulation
data sets (export/import).

The most important information on a scenario is summarized in the title bar
of the corresponding view window. This makes the title, catchment ID, sub-
stance ID, modification state of scenario/substance and the simulation state
permanently visible and thus prevents users from becoming confused when
concurrently managing several open scenarios.

The results of a simulation are also actively part of a scenario. This means
they are stored and retrieved when saving and loading scenario data sets. The
results of simulations that take a long time to perform can be stored and loaded
quickly.

All data related to a scenario are stored in one directory of the file system (as
a subdirectory of the global scenario directory specified by the environment
variable ’GSCENARIOS’).

3.3.4 Substance data

Substance properties are a central data set of GREAT-ER. The physico-chemical
properties of a substance determine its behaviour and fate in the environment.
Many of the model’s processes require these substance parameters.
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GREAT-ER offers a complete substance database management. Each database
is stored in one file and it is possible to change the database via a menu com-
mand. The substance data of a database can be managed with standard func-
tions (Save, Delete, Open, etc.). The default substance database delivered with
GREAT-ER is write-protected.

It is not possible to decide which substance properties should be included in
the data set, taking into account the flexibility of having a sufficient data set
even for other (as yet unknown) models that might be integrated into GREAT-
ER. It was decided to include only the parameters that are requested by the
current version of the simulation software. The Object Data Base (ODB) for-
mat for substance data management is used in a flexible way: All value entries
are objects which, besides a numerical value, have an ID and further infor-
mation (e.g. comment). It is possible to add further properties to any value
(e.g. unit) and to add further substance properties (e.g. certain partition coeffi-
cients). This can be done for just one entry in the database without injuring the
database consistency or losing compatibility with older database management
routines (i.e. dialogs). However, it is of course necessary to perform source
code changes in order to add any new structure item that is to be considered
by GREAT-ER itself.

Connectivity to other exposure assessment tools and databases (i.e. EUSES,
IUCLID) can be added. IUCLID offers access via an SQL server, and ArcView
also offers SQL connectivity. This ensures adequate interconnection of both
products in principle.

3.3.5 Alternative dialogs

Two main possibilities to integrate special dialogs were identified. The first
method is to implement the dialogs with a high programming language and
to create a Windows Dynamic Link Library (DLL) to be started from Avenue
scripts. All usual software development systems offer an easy method to cre-
ate dialogs but internal actions (e.g. range-check functions) have to be pro-
grammed as well as the data transfer from ArcView to the DLL and back. This
data exchange is based on a datapool within the DLL which is loaded and
read by Avenue routines. Structures for the datapool parameters are analo-
gous to the dictionaries used in the Avenue scripts. The chosen method is
a Windows-only solution. DLL connection is performed with the integrated
software development system ’Microsoft Visual C++’.
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3.3.6 Map projections

The displayed maps must have different projections depending on the size of
the displayed areas. Small regions can be projected assuming a ’flat earth’ (tan-
gential approach). For bigger regions this will produce increasing distortion
the larger the displayed map is. Universal Transverse Mercator (UTM) is one
of the optimal projection methods for small areas. Europe is divided into nu-
merous UTM zones of 6 degrees range in longitude. Areas covering more than
6 degrees in longitude are better displayed using, e.g. Lambert-Azimuthal
projection to consider the global shape of the earth. However, ArcView offers
many projection methods but for conversion of a projection it is necessary to
have the data in geographic coordinates. This means that for both visualiza-
tions it is necessary to transform the conversion to either UTM or Lambert-
Azimuthal projection. This is a time-consuming process for ArcView ranging
from seconds to a minute, and can be irritating when zooming in and out and
shifting the map in any direction. The only acceleration can be obtained by
making the corresponding (background) coverages invisible by default and
switching them on for a print-out, demo, etc.

Figure 3.1: River Calder: Geographic projection
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Figure 3.2: River Calder: UTM Zone 30 projection

3.3.7 Market data

Market data are related to areas (only catchments, not political or other areas)
or points (discharge sites). These data describe consumption (mass per capita
and time) for points or areas, and input (mass per time) for point discharges
only.

Market information is substance-specific and therefore is stored as a substance
property. This is carried out in two lists, one containing the catchment-related
market information, and the other containing discharge-specific consumption/
input.

The data for discharge sites are tupels: first the consumption, which will over-
ride the value taken from the catchment default for the specific discharge, and
second the input, which is additional to the consumption. The user can specify
either none, one or both values.

This is realised by simply clicking on a discharge and editing the values in
the dialog. The expert mode also offers methods to edit the underlying tables
directly.
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3.3.8 Menu structure

The menu structure of the GREAT-ER user interface is designed in view of a
typical simulation session based on the scenario concept: The first step in a
session should be to create a new scenario or select an existing one. The first
object under investigation is the substance which can be modelled within sev-
eral catchments. After selecting and editing a catchment and its substance the
model has to be set up with different parameters and finally started. The sim-
ulation results can be analyzed with some analysis tools (e.g. PEC calculations)
and visualized with several display options (e.g. additional background data).
Finally, the user interface provides access to the help system.

3.4 Incorporation of expert knowledge

Software tools are used for the prediction of environmental concentrations
applying mathematical models which ultimately may support ecological and
economic decisions. Besides a sound scientific base for the model itself, imple-
mentation of the user interface must offer the highest quality assurance ade-
quate for the corresponding task.

The importance of this quality aspects lies in the fact that decision support
tools are no longer applied by the model developers themselves nor by other
experts. Hence users do not have the expert knowledge that is important for
correct application of the tool. In the following, some features of quality assur-
ance as realised in GREAT-ER are described. First approaches towards quality
assurance were discussed and realised for the tool CemoS (Baumgarten et al.,
1998 and Trapp & Matthies, 1998).

3.4.1 Error and warning ranges

All entered values are compared against two ranges: a warning range and an
error range. The warning range specifies the usual range of a parameter. If
an entry exceeds the parameter warning range, a dialog will point out this
possible mistake. Nevertheless, it is possible to run a simulation with such
settings. In contrast, the error range defines the physical range of a parameter.
Values outside this range are impossible and will lead to errors. If an entry
exceeds the error range it is not possible to leave the dialog until a value within
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the warning range has been entered. A dialog will give an error message and
hints on the logical range of the parameter.

3.4.2 Default values

The warning range gives non-expert users a hint to avoid senseless values.
Initially, a user might not be able to insert a reasonable value. In this case he
can use the default value defined by the model developers.

3.4.3 Parameter requirement indicator

The underlying simulation model offers several switches for the selection of
complexity modes. Higher modes consider additional processes which re-
quire the input of further parameters. All parameter dialogs offer an interface
for editing values of all modes. This may lead to a large number of entries
which may confuse a non-expert user trying to perform a simulation in the
simplest mode. The model documentation provides information on the actu-
ally required parameters. However, this information can also be incorporated
into the user interface, as is the case with GREAT-ER:

In any dialog, parameters color-coded in green are definitely not used by the
current model selection. Nevertheless, it is possible to edit these parameters.

Black parameters might be used within the current model selection. Parameters
definitly not required can not all be identified for the underlying simulation
system of GREAT-ER, because it offers to specify different model complexities
for each geographic object (i.e. river reach). An exact prediction for all pa-
rameters would necessitate scanning all corresponding datafiles, which might
exceed acceptable feed-back time for users.

3.4.4 Parameter commenting

Simulation results can only be trusted for official purposes if the performed
activities are completely transparent. For assessing environmental exposure,
several parameters occur which can not be measured in laboratory conditions
or which reveal an unclear definition.
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Almost any parameter in GREAT-ER can be provided with a user comment.
This comment should mention the data source and might contain additional
information on laboratory practices, etc.

3.5 Visualization of results

A new level of complexity is reached by the interconnection of geographic
reference and stochastic simulation. This creates the need for comprehensive
visualization methods to make simulation results interpretable and compara-
ble.

Three basic methods are realised for GREAT-ER. These form an entry platform
for screening and in-depth analysis.

3.5.1 2-D percentiles

The spatial aspects of the results are based on the corresponding maps. The
visual impression of single geographic objects can be extended to display cer-
tain information. For river networks, geographic objects are lines representing
river reaches. The concentrations can be displayed as text next to each object,
but this is feasible for only a few geographic objects displayed at the same
time. Besides showing the actual value as text, barplots may also indicate the
concentration visually compared to a specific value or to the highest occurring
concentration.

However, the simulation results for single geographic objects are distributions
based on the natural variation in time. Displaying the entire distribution curve
will most likely overload the map with information. The criteria of the curves
need to be selected to display only one value per object. The mean value is
used as a default. The user may then select any percentile of the distribution.

3.5.2 2-D classification

A very usable integration of information associated with geographic objects
is the modification of the object’s appearance itself. In GREAT-ER, each river
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reach is color-coded with a concentration selected from the distribution curve.
Color-coding only makes sense with a small number of different colors which
leads to the need of (spatial) classification.

The applied classification is based on the frequency of concentration occur-
ing in geographic objects (river reaches). Since the reaches are not equally
long, the accumulated length of the color-coded classification does not reflect
the spatial fraction of concentrations based on the total river network length:
Consider a river with two reaches, one with a length 1 km (class: low concen-
tration, colored in green) and 99 km (class: high concentration, colored in red),
respectively. Though the two classes are of equal size (each has one element),
the visual impression is a ratio of 1:100.

A free selection of the classes is offered where the classification, which is a
percentile value of the distribution curve, can also be chosen. The resulting
spatio-temporal color-coded classification allows simple identification of sites
exceeding certain criteria, cf. hot-spots.

3.5.3 1-D stream profiles

A more classical visualization method is the downstream profile for concen-
trations. Several percentiles can be plotted together in one graph. This type of
result visualization is the most adequate one for comparing simulation results
and monitoring data, because the latter are usually only available for a small
number of sites rendering 2-D representation unfeasible.

In GREAT-ER any river reach can be selected for a profile plot. The river at-
tributes for the graph need to be specified and are then collected by an algo-
rithm travelling downstream.
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Chapter 4

Data incorporated in GREAT-ER

All data described in this chapter are incorporated in the GREAT-ER 1.0.1 dis-
tribution (ECETOC, 1999).

4.1 Substances

GREAT-ER is delivered with two substances in the chemical data bank, boron
as an inert and LAS as a readily bio-degradable chemical. Both are used as
detergents and hence have a widely dispersive use pattern. Boron is addition-
ally used in the photo-chemical, glass/ceramics, metal and paper industry as
well as in agriculture. It also appears at a geological background level, but
the amount used for detergents is assumed to surmount all other types of ex-
posure. LAS is almost exclusively used as a household chemical (about 90%).
Table 4.1 summarizes the properties of boron and LAS required for model com-
plexity mode 1.

4.2 River networks

The GREAT-ER system contains several catchments of which the largest and
at the same time most detailed catchments are located in the Yorkshire area
of the United Kingdom. This area was also selected for numerous third-party
environmental pilot studies from which comprehensive additional data are
available. Expert knowledge is offered by local authorities.

47
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Table 4.1: Properties of boron and LAS
Property Boron LAS Unit
Consumption� 0.8 (0.219) 1.2 (3.29) kg=cap=a (g=cap=d)
Removal in sewers�� 0% 0% % of total mass
Removal in primary
settler��

0% 0% % of total mass

Removal in trickling
filter plants

0% 94-98���% % of total mass

Removal in activated
sludge plants

0% 98-99.5���% % of total mass

In-stream removal 0.0 0.06 1=h
� This corresponds to the Yorkshire area
�� Removal aggregated in plant type-specific (therefore overall) removal
��� Uniform distribution

Four Yorkshire catchments are incorporated in GREAT-ER: the River Aire and
its subcatchment River Calder, River Don and River Went (figure 4.1).

Figure 4.1: UK catchments Aire, Calder, Don and Went

The digital river network and associated flow statistics are taken from the
database of MicroLowFlows (Gustard et al., 1992). The river networks are split
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into stretches with coordinates at a resolution of 1:50,000. The lengths of the
stretches which are important for travel times are provided on the basis of a
1:20,000 resolution and in the actual GREAT-ER data set range from about 10
m to 4 km with an average of about 780 m.

The flow statistics are provided as log-normal distributions with mean and 5th
percentile (=95th percentile low flow) for all stretches (estimated for the un-
gauged sites) and also consider artificial influences (e.g. abstractions), which
is a recent feature of MicroLowFlows to better fit the requirements of GREAT-
ER.

The flow estimation in MicroLowFlows is based on dry weather conditions
and for sewage treatment works considers the consented/design dry weather
flow.

4.2.1 Calder

The River Calder rises in the Pennine Moors and is a predominantly urban
catchment of 955 km2. A population of 798,000 is served by 21 sewage treat-
ment works. The main stream has a length of about 86 km and confluences
with the River Aire. The mean flow directly above the confluence is 17.8 m3=s.
The river network is split into 1,545 stretches.

4.2.2 Aire

The headwaters of the Aire rise on carboniferous limestone moorlands. Up to
its confluence with the Ouse the main stream has a length of about 148 km of
which about 115 km are covered by the present Aire catchment with a final
mean flow of 34.74 m3=s. The catchment includes the River Calder watershed
and drains a total area of 1940 km2 (985 km2 without Calder). 34 (13) treatment
plants serve a population of about 1,927,000 (1,125,000). Above the Calder
confluence almost all of the treatment plants are of the trickling filter type.
The total digital river network consists of 3,022 stretches.
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4.2.3 Don/Rother

The Don catchment includes the River Rother and contains a large city,
Sheffield, in its center. The present catchment contains the upper part of River
Don beginning upstream from Doncaster. The catchment has an area of 877
km2. A population of 815,000 is served by 9 treatment plants, one of which
serves Sheffield with 422,000 inhabitants. All other plants are connected to the
River Rother which lies to the east of the catchment flowing north. The River
Rother confluences with the River Don after about 53 km of the main stream.
Above the confluence with the River Don, the Rother carries a mean flow of
4.44 m3=s. The catchment ends with a mean flow of 11.12 m3=s. The total dig-
ital river network consists of 1,011 stretches. Although River Don is the major
stream in this catchment, the focus in this thesis will always be on the River
Rother.

4.2.4 Went

The Went is a small, predominantly rural catchment draining about 195 km2.
Parts of the catchment consist of steep valley woodland and limestone grass-
land. 7 treatment plants serve 27,000 people. The main stream has a length of
about 28 km and then confluences with the River Don. The mean flow above
the confluence is 1.24 m3=s. The digital river network consists of 127 stretches.

4.3 Discharge sites

Generally all discharges in the UK are treated. In Yorkshire about 2/3 of the
treatment plants are trickling filter (TF) and 1/3 are activated sludge (AS)
plants.

For the release computation the per capita consumption and the population
numbers connected to the treatment works are of big importance. The given
population equivalents are based on planning/construction purposes for treat-
ment works and reflect water consumption and/or water quality. They do not
necessarily present equivalents in correlation to the consumption of any sub-
stances. Population equivalents can indicate the degree of industrial influence
but the type of industry can not be identified. In order to serve as an indus-
try indicator, they are included in tables 4.2 to 4.5, although real population
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figures are more suitable and are used for studies within this thesis.

Some plants are described as combined AS/TF. In these cases, parallel treat-
ment is assumed for the simulations and they are regarded as trickling filters.
This choice is based on the fact that the less efficient discharge unit dominates
the more efficient ones concerning the final effluent concentration. Nonethe-
less, the knowledge about variations of the technical concepts of treatment
plants is taken into account for the comparison of simulation and monitoring.
The risk assessment point of view remains on the conservative side, and hence
must also assume TF plants.

All data (including coordinates) were obtained from the Yorkshire Environ-
ment Agency and other local authorities.

4.3.1 Calder

Figure 4.2 and table 4.2 give an overview on the discharge sites of the Calder
catchment.
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Figure 4.2: STPs in the Calder Catchment

A plausibility problem is identified with the STP Osset SPA. The receiving trib-
utary has a mean flow which is almost the same as the treatment plants’ final
effluent. Consequently, this will result in the unlikely situation that in-stream
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concentrations are as high as in the final effluent. Two explanations are con-
ceivable: Either the tributary is actually a carrier canal to the main stream or
the STP effluent flow was not considered as an artificial influence for the flow
estimation routines. Regardless of this, simulation results for this tributary
(consisting of stretches with the IDs 25711, 126815 and 25712) should not be
considered for standard analysis procedures, because the unusually high val-
ues might suggest a situation that is not comparable with the rest of the data.

Table 4.2: Sewage treatment works in the Calder catchment
Type Population Population ADF

Equivalents m3=d

Eastwood STW TF 14244 21367 14919
Redacre STW TF 7953 10396 4759
Highroyd STW TF 10346 11000 5825
Ripponden STW TF 4700 4847 1699
Sowerby Bridge STW AS 12419 16148 4775
Halifax STW AS 99213 226221 52367
Shibden Head STW TF 9408 9408 3478
Brighouse STW TF 49892 71157 24424
Meltham STW TF 7902 7967 4274
Neiley STW TF 18043 36924 8560
Huddersfield STW AS/TF 169946 671304 101810
North Bierley STW TF 39440 86698 18160
Spenborough STW TF 37357 64045 14055
Dewsbury STW AS/TF 127050 309012 59600
Horbury STW TF 14837 15000 4605
Ossett SPA STW TF 17153 33752 6052
Crofton AS 8926 9276 1834
Caldervale STW AS 93726 132208 44095
Stanley STW AS 17636 17729 4762
Mill Lane STW TF 37617 41231 12818
Pinder Green STW TF 650 650 385
TF = Trickling Filter, AS = Activated Sludge, AS/TF = Combined plant of both types
ADF = Actual Daily Flow
Gray rows: STP final effluent is covered by the monitoring campaign
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4.3.2 Aire

Figure 4.3 and table 4.3 give an overview on the discharge sites of the Aire
catchment.

Figure 4.3: STPs in the Aire Catchment

Table 4.3: Sewage treatment works in the Aire catchment
Type Population Population ADF

Equivalents m3=d

Rawdon STW TF 6642 6681 1979
Denholme STW - Doe Park TF 2885 2885 716
Knostrop - High Level STW TF 323519 410443 129219
Knostrop - Low Level STW AS/TF 218714 439712 143520
Lemonroyd STW TF 27260 27260 8840
Wheldale TF 23539 61810 9074
Owlwood TF 36572 40810 7805
Sutton TF 45116 56377 12372
Gargrave TF 1588 2297 523
Skipton (Snaygill) STW TF 17278 19414 6829
Marley STW - High Level TF 79077 120351 35161
Dowley Gap STW (Bingley) TF 33717 50460 13621
Esholt STW TF 312826 736884 133444
TF = Trickling Filter, AS = Activated Sludge, AS/TF = Combined plant of both types
ADF = Actual Daily Flow
Gray rows: STP final effluent is covered by the monitoring campaign
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4.3.3 Don

Figure 4.4 and table 4.4 give an overview on the discharge sites of the Don
catchment.

Figure 4.4: STPs in the Don Catchment

Table 4.4: Sewage treatment works in the Don catchment
Type Population Population ADF

Equivalents m3=d

Old Whittington STW AS 96856 149627 34060
Holbrook STW TF 26500 25668 6030
Woodhouse Mill STW AS 96764 114469 26260
Long Lane STW TF 22842 23130 5343
Staveley AS 26378 22224 7046
Blackburn Meadows/Sheffield AS 422677 497020 180000
Danesmoor STW TF 6020 6300 1479
Aldwarke STW AS 107203 139388 32410
Tupton STW TF 10105 10105 2995
TF = Trickling Filter, AS = Activated Sludge
ADF = Actual Daily Flow
Gray rows: STP final effluent is covered by the monitoring campaign
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4.3.4 Went

Figure 4.5 and table 4.5 give an overview on the discharge sites of the Went
catchment.

Figure 4.5: STPs in the Went Catchment

Table 4.5: Sewage treatment works in the Went catchment
Type Population Population ADF

Equivalents m3=d

Fitzwilliam TF 845 845 364
Ackworth AS 7737 7803 2591
Carleton TF 6619 6619 1368
Norton STW TF 10334 10334 3553
Stapleton Park STW TF 1333 1788 498
Cridling Stubbs STW TF 185 185 32
Kirk Smeaton TF 664 664 90
TF = Trickling Filter, AS = Activated Sludge
ADF = Actual Daily Flow
Gray rows: STP final effluent is covered by the monitoring campaign



56 CHAPTER 4. DATA INCORPORATED IN GREAT-ER



Chapter 5

Data: Composition and processing

Besides the environmental model itself, the availability and quality of environ-
mental data mainly determine the validity of simulation results. This chapter
introduces general aspects and problems of spatial data for environmental ex-
posure assessment. A proposed procedure is described for how to deal with
the collection, processing and quality assessment of data considering also the
origin and purpose of readily available data. The technical aspects will be
focused on but it must also be stressed that obtaining spatial data in the EU
reveals serious coordination and authorization problems.

In this chapter an example of the proposed procedure is given in which the dig-
ital river network is the backbone of the spatial data set for ”down-the-drain”
exposure assessment. A prototype realization proves that quite simple data
formats are sufficient for automatically generating input data for simulation
and visualization. The example is given for GREAT-ER but the methodology
is equally applicable for similar systems.

All source codes are available from the author on request. These represent the
most precise description of formats and algorithms.

5.1 Introduction

The data required for the regional geo-referenced exposure assessment is char-
acterized by its complexity and inhomogeneity. This is partly due to the fact
that there are large amounts of single data. But another fact plays an impor-
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tant role: the composition of such data is not readily available. It is typically
scattered among several competent authorities and other data owners. In the
past those different parties had seldom experienced the necessity to harmonize
their data and hence it is to be expected that all obtainable data are in several
digital formats and/or geographical resolutions. Inconsistent ID reference sys-
tems are likely to be faced as well. The approach to regional geo-referenced ex-
posure assessment has created a need for the coordination and composition of
base data which are, though collected and applied for various topics, nothing
more than raw data in respect to the new task.

The reason for this lies also in the way in which most geographic data are used:
for mapping purposes where structural integrity is much less important than
visual appearance.

The data composition for exposure assessment in river networks reveals many
problem-specific aspects. When one would set up a very special recipe for
certain data sources or data origins, this task would lack re-use capabilities
and also would not be considered adequate for other comparable tasks. In
the framework of a simulation system for a growing number of catchments,
re-use capabilities require special attention to ensure the efficient creation of
many digital river network data sets. The solution for data composition must
be simple and open enough to offer quick understanding, general applicability
and also to enable technical solutions to be adapted.

The usual steps of data composition and processing as a GIS task are typi-
cally single manual steps of applying geographic methods and routines. The
required quality and structure of the final geographic data (i.e. maps) is ap-
proached in a straight-forward manner. The data sources and intermediate
stages are often eliminated as soon as the latest version passes a quality con-
trol. It is unusual for GIS users to automate the processing steps because each
new job reveals other aspects of processing which can not all be foreseen. To
make the results transparent and to avoid later wrong use, all processing steps
must be documented very carefully. This is especially important when results
are not only used for reporting purposes but also for further processing and
comparison with other data sets processed in a similiar way.

A well defined intermediate stage of the data is a general approach to separate
the specific problems of raw data from the actual data preparation. Setting
up this intermediate state on text-based formats increases transparency. A set
of pre-defined files requests data at an adequate level of simplicity while at
the same time being able to grant some aspects of quality and completeness.
Furthermore, a high degree of automation can be created starting from pre-
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defined text files.

As an alternative intermediate state a pre-defined database management sys-
tem (DBMS) can also serve the task of separation. Such an approach creates
further needs in software requirements and skills to handle them. Depend-
ing on the frequency of usage, the DBMS solution, once set up and tested,
can be more efficient than the solution based on simple text files. The advan-
tages arise from the DBMS environment which offers support for distributed
systems (including Internet applications) and high performance in handling
large data sets. With its higher level of sophistication such a solution loses
self-explaining transparency which needs to be compensated by comprehen-
sive usage documentation and/or by dedicating a human operator. Proving
its principle operability with the text files as an intermediate stage is a recom-
mended step before setting up a DBMS solution. The two-step approach is
therefore choosen for the GREAT-ER data processing.

Conversion of data formats

(manual/semi-automatic)

Geo-referencing, database operations

and format conversions

(100% automatic)
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Figure 5.1: Two steps of data processing

Inventing an intermediate stage for data consequently results in two steps of
data processing. In a first step, collected raw data are transformed into the
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pre-defined intermediate form. A second and independent step then creates
final ready-to-use data from the intermediate stage.

The intial data processing is very much determined by the gap between de-
manded data quality and formats and the present state of the raw data. The
required files have to be produced manually from the original raw data or with
special routines which probably have to be developed anew.

The final data processing is a well defined task, provided that all required
data are collected and fit the demands of pre-defined formats. Of course, the
final environment of the geo-referenced exposure assessment tool must also
be defined precisely to make the data processing fully automatable. In this
context, the simulation method determines the structural shape and order of
the data while the user interface and data management modules determine the
actual formats of files.

The two steps of data processing are illustrated in figure 5.1. An example is
given for an exposure assessment tool for river networks. Three main states
of the five data groups are shown. These data groups cover any information
that is related to space in one way or another. For example, physico-chemical
data of a substance are excluded but the substance’s market data are included
as regionally resolved information.

Another view of the finally produced data sets is shown in figure 5.2. The data
groups form layers which build the visual interface available to the user.

Figure 5.2: Layered view of data groups
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5.2 Data requirements and composition

5.2.1 Digital river network

General overview

The digital river network describes the structure of the river network in ques-
tion. At the very bottom it consists of lines (also referred to as ’polylines’ or
’arcs’), each of which represents a river segment. Furthermore, it consists of
nodes which represent the point of connection of two segments. Lines are ex-
pressed as a sequence of at least two coordinate pairs, nodes are expressed as
exactly one coordinate pair (figure 5.3b).

Lines have to be considered as vectors; the first point of the sequence is the
starting point and the last is the end point. The vector direction is used to
represent the flow direction (figure 5.3c). The length of a segment can be com-
puted from the coordinates.

Each transition from one segment to a subsequent one (sequence, confluence
or bifurcation) is defined by a node which contains the information ’from’ and
’to’. The ID’s of the upstream (’from’) and the downstream (’to’) segments
are stored. The geographic position of a node is uniquely defined with the
last point of the upstream and the first point of the downstream segment. If
these two points are not identical, the two stretches are not connected and no
corresponding node exists.

Besides the persistent Arc-Node geometry model, a second, flexible segmen-
tation can be set on top of it. The two-dimensional geometry model lacks the
ability to precisely locate sites along the lines between two given coordinates.
This can be solved by introducing a one-dimensional measuring system with
only starting and ending information.

These one-dimensional geometric objects are called ’routes’ . For digital river
networks, each river is a ’route’; the whole network constitutes a ’route sys-
tem’. Any site along the rivers in a route system can be referenced by the route
name and the distance from the route start (e.g. River Rhine at kilometer 744
which is at Düsseldorf, Germany). The start and end of routes are a matter of
definition. In Germany, the distance reference of rivers that lead into the ocean
begin at the source. The distance reference of tributaries begins at the point
of confluence in reverse flow direction. Standard GI Systems offer methods to
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create route systems from an arc-node model. This must be a two-step rou-
tine where a raw route system is first created based only on the information
contained in the arc-node representation (figure 5.3d). The raw route system
requires two further adjustments. First, the digitized rivers do not necessarily
start at the actual source and hence the starting points of the routes must be
set to the correct value for later consistent referencing. Second, the length com-
puted from the digitized lines depends on the resolution and hence is always
lower than the actual river length. A remeasurement routine that is provided
with the actual length of a route, is to be performed to gain revised coordi-
nates for any event along the stream. The route system approach for exposure
assessment was applied for intermediates in the River Rhine catchment (Koor-
mann, 1997 and Koorman et al. 1998) and for a small tributary of the Rhine,
the Itter catchment (Schulze, 1998 and Schulze et al., 1999).

Fundamental to the creation of a digital river network are maps of the corre-
sponding area. Traditional printed maps can be used as a basis but usually
such maps now exist in digital format.
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Figure 5.3: Steps of creating a digital river network: (a) Reality (i.e.
aerial photo or comparable basis). (b) Digitized network
(crosses and dots = coordinates, dots = nodes, numbers =
IDs of lines). (c) Direction of lines (vectors). (d) Represen-
tation as route system.

Digital maps can be created in two ways, either by collecting coordinates di-
rectly with a Global Positioning System (GPS) or from aerial photographs.
While GPS data are naturally already geographic objects in vector format, pic-
tures taken from planes or satellites offer information in a raster format. I.e.,
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surface waters consist of single points (squares) and hence do not contain in-
formation about e.g. flow direction, but on the other hand may offer infor-
mation about areal aspects (e.g. width of rivers, shape and size of lakes) and
possibly further properties (temperature, depth). The raster information must
be converted to vector data to gain a digital river network as described above.
This conversion can partially be automated but manual reworking by human
experts is unavoidable for quality assurance.

Solution for GREAT-ER

As a requirement for data, the arc-node model is preferred rather than the
route model. This is because, especially for more detailed river networks,
an assignement of river names and remeasurement become problematic and
time-consuming.

In summary, the following demands for a digital river network have been de-
fined:

� Only the coordinate sequences for the river segments are to be given. No
extra node specification is required.

� Should two segments be connected, it is necessary that the end point
of the upstream and the starting point of the downstream segment are
identical. This also means that for confluences or bifurcations the upper
segment(s) always end at that point and one (or two) new segments start
from the same point.

� All river segments must be directed downstream.

� All segments must have a unique ID.

Only confluences and bifurcations enforce the beginning of new stretches. Se-
quences like segments 1 and 2 in figure 5.3 have no topological meaning for
the network. Splitting up segments into a sequence of two or more stretches
becomes important for the semantic purposes the digital river network has to
serve. Simulation models using digital river networks may need to simplify
river segments by assuming stretches to be homogeneous in a hydrological
sense. In this case flow data would be attributed to river stretches and hence
long segments need to be split up according to the required resolution or avail-
able knowledge about hydrological changes. Additionally, for visualization
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purposes the level of segmentation also determines the capabilities to graph-
ically display stretch-specific information. Hence, when setting up the digital
river network the later purpose of these data should already be considered at
this point and segmentation should be performed. This task can also be under-
taken automatically provided that the single coordinates of the lines are more
or less equidistant.

5.2.2 River network attributes

Depending on the needs of an applied exposure simulation model, informa-
tion about certain properties of the river network are required. Usually these
are floating point numbers (e.g. flow in [m3=s] or flow velocity in [m=s]). Fur-
ther attributes such as boolean (shipable [yesjno]) and others are conceivable.
Most of the traditionally measured data are expressed as statistics due to nat-
ural fluctuations and seasonal variation. For example, flow data are usually
expressed as log-normal distributions characterised by the mean and standard
deviation (or mean and low, e.g. 5th, percentile).

However, all discrete attributes (in space) have in common that they corre-
spond with a certain river segment. A set of discrete parameters for a river
network can hence be given in tabular style. Continuous parameters (in space)
are more difficult to attach to digital river networks, and applications using
such data also reach a level of complexity which is seldom acceptable for ac-
tual environmental simulations. Usually distribution curves are derived from
temporal data series which are then applied for a specific task.

Depending on the purpose for which the river attributes are needed, in some
cases the variation of each river segment is of importance and for other pa-
rameters variations are only of interest for entire rivers or river networks. Fur-
thermore, decisions regarding the stretch-wise resolution of parameters are
influenced by data availability. Consequently, a task-specific separation of pa-
rameters is helpful and can be solved by defining river classes and associating
each river segment to a river class.

Parameters that are semantically important and presumably different for each
segment are directly associated to river segments. For many parameters the
reasons for actual availability at high resolution represents the opportunity not
only to measure but also to interpolate between measurements or to estimate
them from other attributes. Hence, again depending on the semantic context,
not all parameters are obligatory. A flexible (interpolating, estimating) system
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of optional parameter specification is possible.

The methods of chemical exposure assessment are organized in a tiered ap-
proach in terms of physico-chemical processes. Lumped transport and elimi-
nation processes will be applied first and if it is not capable of explaining mon-
itored behavior, refined substance-specific processes will be added (e.g. pho-
todegradation). Any refinement increases data demands, uncertainties and,
on a very practical side, expense and time.

The counterpart of the lumped parameters for chemicals (transport and elim-
ination) are hydraulics and geometry of rivers. These basically determine the
dilution and dispersion of chemical loads. Accompanied by length and name,
these were chosen as direct attributes. All other parameters are assembled in
river classes. This choice reflects the data requirement of the simulation soft-
ware incorporated in GREAT-ER (Boeije, 1999). The concept of the intermedi-
ate data stage still allows us to consider data requirements of any comparable
simulation model by providing corresponding automatic data processing rou-
tines for the second step (figure 5.1).

Flow, Velocity, Depth and Width

Overview of interrelation For a sufficient period of time, the flow passing
the full extent of a river segment can be assumed as constant in space and
time. In this case the continuity equation 5.1 is true.

Q = vA (5.1)

where Q = flow, v = velocity and A = cross-sectional area.

Rivers have no rectangular cross-section and henceA can not simply be substi-
tuted by the product of depth and width. Depth and width have a correlation
with the flow within certain ranges. A set of power equations 5.2 can express
the interrelation of velocity (v), width (w), depth (d) and flow (Leopold & Mad-
dock, 1953).

v = aQ� ; d = bQ� ; w = cQ
 (5.2)

where both � + � + 
 and a � b � c must be equal to 1.
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Compared to velocity and depth, width is generally less variable (in space)
for most rivers (Chapra, 1997). Especially when dealing with one-dimensional
models, width is of less semantic importance. In contrast, depth is impor-
tant, i.e. for chemical volatilization processes. In this approach width is hence
dropped from the list of required river properties. It should of course be taken
note of when considering transversal dispersion (two-dimensional river mod-
els).

Site-specific measurements and site-specific regression functions are optimal
to gain most adequate information on river properties. In the absense of such
data, and this is true for most sites, literature or new field studies need to be
undertaken.

Numerous studies were conducted to obtain values for parameters a; b; c and
�; �; 
 which vary with different climatic location and degree of artificial influ-
ences on the river networks.

It has also been shown that the hydraulic geometry can alternatively be ob-
tained from the corresponding watershed size: Based on a strong correlation
of bankfull flow and watershed area, a geometric relationship was shown and
extrapolated for all river segments (Miller et al., 1997). Another method is
based on the hortonian stream order for river networks. This ordering method
attaches the order of 1 to all source stretches. The order of any other stretch
is the maximum order of the directly connected upstream stretches plus 1.
A good correlation of the hortonian order and the river geometry has been
proved for a watershed in Arizona, U.S.A. (Miller et al., 1996).

Besides the statisticial approaches described above, mechanistic techniques
can be applied. The best known method is the Manning equation (5.3) (Chapra,
1997).

v =
R2=3S1=2

n
(5.3)

where n = Manning’s roughness coefficient [-]
R = hydraulic radius (equal to A=P ) [m]
P = wetted perimeter [m]
S = energy slope (here equal to geological slope) [-]

Substitution into the continuity equation results in the approach of Manning-
Strickler (equation 5.4) (Dyck & Peschke, 1989).
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Q =
AR2=3S1=2

n
(5.4)

Besides flow and velocity, the depth can also be obtained based on the Man-
ning equation. The depth is the root of equation 5.5 (Chapra, 1997).

f(y) =
1

n

[(w0 + sy)y]5=3

(w0 + 2y
p
s2 + 1)2=3

S1=2 �Q (5.5)

where s = side slope and w0 = bottom width.

For the GREAT-ER project a new study has been undertaken to estimate the
velocity of any river reach in the UK (Round et al., 1998). A statistical approach
was chosen based on hydrological databases for the UK. The quality of the
velocity estimation model (equation 5.6) was not significantly reduced in terms
of performance by excluding the hydraulic radius. The error analysis showed
that with 68% confidence the true velocity lies within a factor of 1.59.

v = 10�0:583Q0:283
mean

 
Q

Qmean

!0:495

(5.6)

To obtain average depth values, variations in three dimensions have to be
made. First, depth can vary in transversal and longitudinal extent of the river
bed and next, it changes in time due to flow variation. For unknown geometry
and known flow an application of the Regime Theory provides equations 5.7
and 5.8 (Simons & Albertson, 1960).

w = 6:175
q
Q+ 0:305 (5.7)

d =

(
0:610 + 0:93r : r > 2:13
1:21r : r <= 2:13

(5.8)

where r = 0:57Q0:36.
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Selection of values and methods Literature review has shown examples of
the ability to estimate the interrelated river properties flow, velocity, depth and
width from each other in several ways. Also area and mathematical topology
can be included for estimations. The latter can even be applied when no stretch
specific properties are known.

In general, higher efforts are required to measure the geometry of river seg-
ments while flows are easier to obtain: In most European countries a system of
gauging stations is in operation, delivering flow statistics for some sites. Usu-
ally interpolation equations can easily be set up or are even readily available
for ungauged sites between two gauging stations. Ungauged headwaters are
more complicated to establish flow estimation. The flows can be computed
from geo-morphology and other information, i.e. MicroLowFlows addition-
ally applies soil type and precipitation information for this task (Gustard et
al., 1992).

For the methodology introduced in this chapter, flow data are chosen as oblig-
atory, and velocity and depth are optional parameters. Optional parameters
will be estimated during the data processing. Consistency checks based on the
literature can be integrated in the final processing.

Most estimation equations derived from statistical studies are associated with
several limitations concerning the environmental framework of the investi-
gated river network (natural/regulated, arid/humid, lowland/highland, etc.).
If estimation equations are available which were set up for the same or a sim-
ilar type of river these should be preferred and the resulting values should be
used. Automatic selection of estimation routines can not decide adequately
compared to human judgement. This is due to the fact that much general in-
formation on a river network is required and this information can not easily
be formalized.

One important property of the discussed parameters is variation in time, which
means that these parameters usually consist of three subparameters describing
their statistical distribution (i.e. distribution type, mean, standard deviation).
This must be kept in mind when dealing with corresponding data collection
and estimation.

Length

In conjunction with velocity, the length basically determines the transport of a
(chemical) load. The process of transport in terms of chemical exposure mod-
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eling is a relatively fast process and hence the travel distance should be given
as accurately (feasibly) as possible.

Obtaining the actual length of rivers should in general not pose a serious prob-
lem because it is relatively easy to measure. For some countries, canoeing
guides offer this information in great detail, i.e. for Germany (Deutscher Kanu-
Verband, 1985).

In theory, there are of course no problems in calculating the length of each
segment based on coordinates. These values are naturally (sometimes much)
lower than the real length of the river segments. These differences become
obvious when taking into account that even detailed digitizing (e.g. one point
every 300m) can not reflect the actual shape of a very curvy river. Additionally,
the digitizing itself reveals uncertainties.

Name

Names for each river segment are not meant to identify stretches in terms of
database operations. Obviously one river can be split up in very high numbers
of stretches and therefore unique name specification does not make sense. The
names are required rather for identification and orientation purposes in the
final simulation tool. Names of rivers can hence be associated with other site
names or any information that is felt to be helpful to users.

River Classes

The composition of the river class parameters is to be selected dependent on
the semantic purpose of the simulation models. This way, the number of prop-
erties can be reduced to a minimum to retain low complexity and an easy
overview.

The methodology presented in this chapter takes the river class composition
as used for the simulation software in GREAT-ER (Boeije, 1999). Included are
typical water quality parameters, i.e. suspended solids, dissolved oxygen, bi-
ological oxygen demand and pH. All these parameters are only used in higher
model complexity modes, i.e. not applying lumped degradation rates. Among
the biochemical properties, the type of segment is also described (river or lake).
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5.2.3 Catchment boundary

The catchment of a river network is defined by the most downstream point, i.e.
the most downstream segment. The catchment boundary represents the natu-
ral drainage area. Any point in that area will drain to that most downstream
segment. The catchment boundary must always be a closed polygon.

The introduced data composition additionally enables several separated river
networks to be joined. This helps users to deal with e.g. flat coastal regions,
entire islands or even whole countries. In such cases the catchment boundary
should be the union of all single subcatchments.

Information about the actual border of a catchment serves two purposes. First,
it supports geographic methods, e.g. spatial selection routines. Second, within
the final tool the user is given further support for orientation and interpreta-
tion.

In regions where water management has a long tradition, watershed bound-
aries should be readily available. Any new or re-calculation applying a GIS
will require digital elevation data. This computation is often performed and
several technologies are available, partly already built into a GIS.

5.2.4 Discharge data

The discharge data, in this context, are a set of points through which sub-
stances are released into the river networks, e.g. sewage treatment plants. The
discharge information will not be able to express diffuse input (unless it is
made discrete as a series of point inputs). Diffuse input is not focused in the
presented methods because a different class of simulation models would be
required.

Discharge points with geographical reference define an area where any re-
lease will pass this point travelling ”down-the-drain”. Such areas are scale-
independent geographical units interconnected by a network topology (figure
5.3). This scale independency allows us to flexibly refine or aggregate (parts of)
the geographic data where required. Refinement on the one hand offers dy-
namic, problem-oriented geographical resolution to avoid unnecessary data
collection and helps to deal adequately with data gaps and to zoom into ar-
eas of special interest. Aggregation on the other hand enables us to reduce
complexity, to compare regions by abstracting data and to calibrate actually
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needed scales of data.

Figure 5.4: Geographic units (GU): scale independent

Coordinates The coordinates of a discharge site are obligatory. In the case
of treatment works they describe the position of the actual plant and not the
point at which the emission enters the river. The connection to the river will be
established by explicit specification of the corresponding river segment. This
enables provision of location information to the user who is supported in in-
terpretation by offering the distance of the plant to the river and whether the
emission takes place on the left or right bank.

Population For simulations of chemical ingredients in consumer products,
the per capita consumption is usually available in mass per time. To properly
estimate the release, the actual real population connected to a discharge is re-
quired. These numbers should be readily available from responsible environ-
mental protection authorities, water authorities or water supply companies.
For purely industrial discharges the population is zero.

It is not feasible to use population equivalents, because these numbers in-
clude industrial emissions based on a special selection and weighting of water
quality parameters. For example, in Germany a per capita emission of 200
liters of waste water with an equivalent load of 60 g of biological oxygen de-
mand (BOD) is assumed. Based on this, several population equivalent types
are defined (DIN 4045 (12/1985); Römpp, 1997): Equivalents based on BOD
(EGWB60), based on waster water emission (EGWW200), resulting sludge vol-
ume (EGWS2,0) and resulting dry sludge (EGWTS80). Across Europe several
national standards are to be expected; for some countries variations between
water authorities are even possible (e.g. in the U.K.). For most consumer sub-
stances no correlation with the standard water quality properties exists and
hence population equivalents may reveal helpful background information, but
are not required for chemical exposure assessment.
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Flows Flows within the waste water and associated paths are measured and
defined in several ways across Europe. For the data requirement definition a
most common and practical selection is presented here. Above all the most
important value is the flow leaving the plant and entering the river network.
The actual daily flow (ADF) will mean the average (measured) emission of a
plant in m3=d.

In many cases consented maximum emissions are available. Such values are
only variable with the consenting interval and do not necessarily represent the
real emissions. For those sites for which no ADF is available the consented
daily flow (CDF) is the best approximation, since the operators of waste water
treatment facilities usually try to fill the consented flow.

The inflow of a treatment plant consists of three components: Runoff, non-
domestic and domestic flow.

Discharge Type The type of a discharge is considered in the simulation with
specific models to estimate removal efficiency. Usually the technological type
of the corresponding waste water treatment plant is required (i.e. trickling
filter plant, activated sludge plant), but the discharge type can be ”direct dis-
charge” (no chemical removal) as well.

Some sewage treatment plants are actually a combination of different tech-
nologies. A specific modeling of such situations is not feasible. A conservative
simplification choosing the less efficient type is recommended, but for trans-
parency the situation should be noted (see the Name below).

River connection Discharges are connected to the first point of the given seg-
ment which is to be specified with its ID. For an optimal representation of the
actual river entry point, the river network digitizing or segementation should
already consider these points.

In principle, GIS routines (distance measures) can be applied to find out the
most reasonable stretches. These methods are automatic but always require
human plausibility control.

Name The only purpose of the names is to support user orientation and in-
terpretation as well as reporting. The names need not to be unique and should
contain further information or hints when necessary.
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5.2.5 Background maps

Though not used in the simulation models, background information is impor-
tant for the final end user system. They allow visual orientation and plausi-
bility control as well as aiding interpretation of simulation results, which is
carried out by the user.

Different types of background information can be provided: raster landcover
maps, vectorized information (geographic objects) on e.g. soil types and land
use. Additionally, semantically related (temporal) information can be pre-
pared such as monitoring sites with attached measured time series.

5.2.6 Pre-defined file formats

In this section the file formats for the data of a digital river network as used for
GREAT-ER are described. This is done at a technical level to provide precise
transparency.

All files are text based and use the character set ISO 8859-1 (ISO Latin 1). The
format is line-oriented; each line starts with a ’#’ (comment line) and all empty
lines have no meaning for the processing and can be inserted anywhere.

All coordinates are given in the same projection: ”geographic projection” with
unit ”dd” (decimal degrees). A point, rather than a comma, is used as decimal
point. Numbers are not allowed to contain any other delimiters. Exponential
representation uses the letter ’E’ or ’e’.

Digital River Network (.drn)

Each river segment is introduced with its ID StretchID. All following line-
wise comma-separated coordinates define this segment until a new ID ap-
pears. The first coordinate pair is the start, the last coordinate pair is the end
of the segment. While the order of the segments does not matter, the order of
the coordinates is, of course, of great importance.
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River Network Attributes (.rna)

The river network attributes are stored in a simple tabular structure. Columns
are separated by commas. The following example illustrates the order of the
columns:

# Aire/Calder Catchment, Yorkshire
# StretchID,Qmean(mˆ3/s),Q5(mˆ3/s),vmean(m/s),v5(m/s),
# ... RealLength(m),depthmean(m),depth5(m),Name
26954,34.751000,12.280656,,,2491.655000,,,Unnamed
22954,0.009000,0.002359,,,1648.222000,,,Unnamed
7333,34.739000,12.276415,,,1629.885000,,,Unnamed
22932,0.005000,0.001088,,,540.190000,,,Unnamed
26950,34.731000,12.274977,,,2336.740000,,,Unnamed
22923,0.017000,0.002167,,,2447.520000,,,Unnamed
...

In this example no information is available for flow velocity and depth and
hence the corresponding columns are left empty.

Discharge Sites Data (.dsd)

Each line defines one discharge. The first column is its unique ID, followed by
the coordinate pair and the attributes. The order of the columns is shown in
this example:

# ID,X,Y,Pop,DWF(mˆ3/d),Flow(mˆ3/d),Type,StretchID,Name
41,-1.390494,53.422081,422677,130000,180000,AS,26842,Blackburn STW
42,-1.349155,53.369724,95750,21800,24506,AS,26843,Woodhouse Mill STW
43,-1.326922,53.445114,107203,31250,32410,AS,26841,Aldwarke STW

Catchment Boundary Polygon (.cbp)

The polygon is described linewise by single coordinate pairs (x,y). The follow-
ing example illustrates the format:



5.2. DATA REQUIREMENTS AND COMPOSITION 75

-2.052912,53.683811
-2.060483,53.683807
-2.060477,53.679314
-2.068047,53.679310
...
-2.045346,53.688309
-2.045342,53.683804
-2.052912,53.683811

This example also shows that the polygon must be closed, cf. the last and the
first point must be identical.

Background data (.bgd)

To support the user with a quick and easy access to geographic background
information, a list of background data sets can be defined for each catchment.

In the ”.bgd” file names of additional background data that are to be loaded
by the menu entry ”Display/Add Background Data” are specified. The data
can be given in two ways. In a simple case, a background data set is only a
geographic data set that ArcView can load as a theme, i.e. an ArcInfo Cover-
age, an image, a grid or a shapefile. This case is indicated by the value ”yes” in
the field ”ctch flg” (see below). In the more complex case a background data
set consists of a set of geographic data, indicated by the value ’no’ in the field
’ctch flg’. In this case, instead of the name of the data set an ID for a script that
knows how to load the geo-data sets is specified.

Name This is the name for the corresponding background data. It is used for
user selections in the GREAT-ER system.

Mapname In the case of a simple background data set, this is the file name
of the coverage, image or shapefile that contains the data. Otherwise this field
contains the script which can load the background data sets.

Type In the case of a simple background data set, this is its feature type. Valid
entries are ”point”, ”line”, ”polygon”, ”shape”, ”image” and ”grid”. Other-
wise the field is left empty.
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Legendfile In the case of a simple background data set, this is the name of
an optional ArcView legend file. Otherwise this field can contain (optional)
parameters for the script specified in the field ”Mapname”.

ctch flg This is a boolean field that contains either ”yes” or ”no”. ”yes” in-
dicates that this background data set consists of one theme that does not need
a special script to load into the active view of GREAT-ER. ”no” means that
a special Avenue script has been developed by the user which runs within
GREAT-ER and loads the backgroud data set into the active view.

There is one special case: The DCW data (Digital Chart of the World) are in-
corporated in the GREAT-ER project for the whole of Europe. For this incor-
poration specific scripts loading the DCW data in dependence of the viewed
country are developed. If the DCW data are to be a background data set for a
catchment, the following line needs to be inserted into the file:

DCW data,,,,

If a user installs the DCW data for countries that have not yet been included,
e.g. France, Spain or Denmark, these data need to be installed analogous to
the included countries.

Example ”.bgd” file This example file describes background information for
the River Itter (Germany):

#River Itter background data
#Name,Mapname,Type,Legendfile,ctch_fl
Cities,itter\cities,polygon,itter\cities.avl,yes
Tk25,itter\tk25tiffz.tif,image,,yes
Rhein,itter\rhein,polygon,itter\rhein.avl,yes
DCW data,,,,no

5.3 Final automatic data processing

The final data processing requires syntactically and semantically correct source
files of the files ”.drn”, ”.rna”, ”.dsd”, ”.cbp” and ”.bgd” as described above.
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The whole processing with its subsequent steps is managed by a makefile.

This part of the data processing is, in principle, not dependent on the required
simulation system, though it does simplify the simulation system and user en-
vironment developed within the framework of GREAT-ER. The simple tabular
structures allow the easy extension of the data files for adaptation to any other
comparable simulation system.

The data to be generated can be divided into two groups: geographic data
and the corresponding attribute data. The geographic data form the basis for
visualization and geo-referenced data processing. These elements (cf. points,
lines and polygons) are associated with attribute data via unique ID’s. Their
interconnection is based on the same ID reference.

Processing of the background data (”.bgd” file) is not related with the main
processing due to its special task to support the user. It is not discussed further
in this document.

5.3.1 Geographic data

The establishment of geographic data consists of two processing steps (figure
5.5). First, the geographic elements (their ID’s and coordinates) are extracted
from the files in the pre-defined formats and converted into another format
that can be handled directly by a GIS, in this case aimed at ArcView which
comfortably handles the Shapefile format.

Text
Files

gawk Text
Files

gen2shp Shapefiles

.drn

.cbp

catchments.txt

drn_dsd2gen.awk gen2shp lines

.dsd

gen2shp polygons

gen2shp lines

gen2shp pointsdischarges.gen

rivernet.gen

boundname.dat.tmp

cbp2gen.awk

drn2gen.awk

dsd2gen.awk

disch_river.gen

catchbound.gen

discharges.shp

disch_river.shp

rivernet.shp

catchbound.shp

Figure 5.5: Command sequence for automatic processing of geographic data
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A straightforward conversion is executed for the two digital maps: discharge
sites (”discharges.shp”) and river network (”rivernet.shp”). For the boundary
of the catchment (”catchbound.shp”) a further attribute is appended from the
datafile ”catchments.txt”: the full name of the catchment.

The connection lines between discharges and corresponding river segments
are computed using information from the ”.dsd” and ”.drn” files. A special
shapefile is created (”disch river.shp”), which provides visual information on
where the discharge is connected to the river network.

5.3.2 Attribute data

While the attribute data are being processed (figure 5.6), the three main data
files (”.dsd”, ”.rna” and ”.drn”) are first joined and then create the primary
attribute files for river segments (”river.att”) and discharges (”disch.att”) as
well as the secondary attribute files for treatment plant types (”wwtp.att”) and
river classes (”rivclass.att”). The two secondary files are (currently) static and
basically describe generic treatment plants and rivers.

Text
Files

Text
Files

gawk
DBase

Filestxt2dbf

wwtp.att txt2dbf wwtp.dbf

disch.att disch.dbftxt2dbf

river.att river.dbftxt2dbf

generateAttTables.awk rivclass.att txt2dbf rivclass.dbf.dsd
.rna

.drn
topology.awk, ...

Figure 5.6: Command sequence for automatic preparation of attribute data

In the final processing step, text based tables are converted into DBase format.
The purpose of this is to optimize data management within the visualization
tool ArcView.
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5.3.3 Core algorithms

Several data processing steps consist of simple routines (e.g. format conver-
sions). They are not explicitly explained here. In this section the core problems
of data processing are discussed.

Creation of River Stretch Sequence

The information about the logic sequence of single river segments plays an es-
sential role for simulation models. A simulation model must be able to walk
down from any source to the final mouth. Hence, each stretch must offer in-
formation (the ID) about its successor. This purpose is served by a simple
two-column table fromStretchID,toStretchID.

The ”.drn” files, if semantically and syntactically created as described above,
contain the topology information, but coded in the given coordinates. The arc-
node model is used to convert the topology to the coding based on StretchIDs.
Building the arc-node model from a ”.drn” file associates all segments with
IDs of the corresponding ”from-node” and ”to-node” to describe their direc-
tion. Consequently, the two-column tables fnode,StretchID and tnode,
StretchID can be extracted directly from the arc-node model
(”topology.awk”). Joining these two tables by the node ID and then omitting
the node ID results in the two-column table fromStretchID,toStretchID.
In both columns IDs may now occur multiple times due to confluences and bi-
furcations. To create a table where the fromStretchID is a unique identifier,
the toStretchIDs are joined up into a (space character divided) list. The re-
sulting two-column table fromStretchID,toStretchIDlist is a straight-
forward representation of the downstream topology. Analogously, an up-
stream topology table toStretchID,fromStretchIDlist can be created
starting with the fromStretchID,toStretchID table and exchanging the
position of the two columns.

Creation of Binary River Network Topology

Fast and straightforward access for any algorithm walking up or down the
river network is realized using simple data tables. The minimum number of
columns to describe any river network topology is four. Demanding one col-
umn being a unique segment ID and also allowing only exactly one ID in any
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field, virtual segments need to be added to grant topologic consistency (e.g.
confluence of three streams at one point). An additional column finally de-
scribes the segment type (listed in table 3.1). This is needed to correctly in-
terpret the content of the other columns. Extending the network by virtual
segments will not increase but decrease the total table size because a further
column would rarely be filled for natural networks where a confluence of two
streams is usually the maximum. For artificial networks (e.g. sewer systems)
the situation can be different.

Table 5.1 Segment Types
Number of segments

Type Upstream Downstream Description
0 0 0,1,2 Source
1 1 1,2 Normal segment
2 2 0,1 Confluence
-2 1� 0,1,2 Bifurcation
� which must be of type 1 with 2 downstream segments

Algorithms for walking on binary trees from the leaves to the root (cf. down-
stream) are typically implemented recursively starting with the root (cf.
mouth). For exposure assessment in river networks the binary recursion has
to be ”post-order” which means performing an action for a segment after all
upstream segments have already undertaken this action. Hence, the upstream
direction is required for the two-column topology table.

The above-described tables for the river stretch sequence are the basis for
building the binary topology. During the data loading routine, the highest
segment ID is looked up. This is important to invent further ID’s for virtual
segments.

When all data are loaded, first bifurcation situations are searched for. The
corresponding segments (type ”-2”) are associated with their neighboring seg-
ments. This is important in order to reduce the final topology processing to
a one-pass computation (a single linear processing step). Next, the segment
table is processed straightforwardly. Depending on the number of upstream
and downstream segments, the type is then decided. Several special cases
need further treatment i.e. insertion of virtual segments:

(I) Confluence of three segments at one point When exactly three segments
are directed to the same point, a new (virtual) segment is inserted as shown in
figure 5.7.
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Figure 5.7: Resolving confluence of three segments (a) into binary rep-
resentation (b). Numbers are stretch IDs. The table of bi-
nary network topology of (b) is (c).

The virtual segment obtains a length of 0. The ID does not appear in the ge-
ographic data of the river network and is neutral for the database operation
”join”. The simulation software must of course know how to treat segments
with a length of 0: The results (e.g. chemical loads) must be transferred one-
to-one to the next downstream segment.
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Figure 5.8: Resolving multiple end segments (multiple catchments) (a)
into one catchment (b). Numbers are stretch IDs. Table of
binary network topology of (b) is (c).



82 CHAPTER 5. DATA: COMPOSITION AND PROCESSING

(II) Several end segments If several catchments are joined (e.g. to cover
an entire island) the problem of multiple start segments (mouths) occurs and
needs to be incorporated into the topology.

The solution is a linear interconnection with virtual segments. By definition
all ”ocean segments” are attached with negative ID’s.

In the example shown in figure 5.8, the lowest ID is -3 and it is the new starting
segment for the resulting catchment. The ocean segments influence neither
visualization nor simulation.

(III) Bifurcation For bifurcation situations both neighbours are of the type
”Bifurcation” (figure 5.9). Field up1 will contain the ID of the upstream seg-
ment and field up2 will contain the ID of the neighboring segment.

ID
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type

0

-2

-2

up1
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3

2

(b)(a) 1

2 3

Figure 5.9: Handling of bifurcations (a) in the binary presentation (b).

(IV) Unconsidered situations Some situations may occur in the digitial river
network, but are unlikely to happen in reality for natural catchments. In prac-
tice it is more likely that wrong digitizing or another error may cause the situa-
tion. Such situations are not considered in the presented methodology though
it is possible to resolve them with further virtual segments or additional defi-
nitions.

(IV.a) Multiple confluence More than three segments are directed to the same
point (figure 5.10a). This situation could be managed similar to the confluence
of three segments using virtual segments, but from a hydrologic point of view
this situation is most unlikely and the chance of using wrong base data is much
more probable.
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(c) (d)(a) (b)

Figure 5.10: Unconsidered situations: Multiple confluence (a), crossing
(b), circle (c) and multiple bifurcation (d).

(IV.b) Crossing streams Both, a confluence and a bifurcation take place at
one point (figure 5.10c). Such a crossing is unlikely. Furthermore, a chemical
fate model would need additional information to adequately deal with such
a situation (what fraction of which upstream segment goes into which down-
stream segment?).

(IV.c) Circular flow The segment sequence forms a ring (figure 5.10b). Build-
ing a ring, a river network is in topological terms not a directed graph. The
applied simulation system is not capable of dealing with this situation. Such
circles may occur, for example, in estuaries where the flow direction changes
over time following a certain probability distribution.

(IV.d) Multiple bifurcation Flow separation of one segment into more than
two segments (figure 5.10d). This situation is again unlikely from a hydrolog-
ical point of view. An error in the base data is to be supposed.

5.4 Raw data processing: Examples

It is not possible to develop a routine for the raw data processing because the
starting point is not defined. This section gives examples of the initial data
preparation illustrating typical cases.

The preparation of the pre-defined data files including fulfilment of the de-
mands on internal logic can mean strenuous work when performed manually.
In many cases the processing of raw data consists of text-based command se-
quences or of graphical interaction that can usually be substituted by regular
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command sequences. Automatic (or semi-automatic) routines are much eas-
ier to repeat for the same raw data and if implemented flexibly can be ap-
plied to other data of the same raw format. Furthermore, processing steps are
most precisely described by the actual command sequences; in descriptions of
graphical interaction there remains potential for misinterpretation. This also
means that automatic routines would also be easier to perform for a third per-
son without direct support by the original developer and hence should be pre-
ferred whenever possible.

Any geographic data are more or less stored in comparable structures and for-
mats. Translation into the required formats consists basically of syntax and
unit conversions. In the following, two examples are introduced. The main
difference compared to the aspired structure lies in the representation of the
river network. In the first example raw data are available in an arc-node model
and in the second example in a route system (see also page 61).

While the data sets for river networks represent a complete, enclosed unit,
discharge data can be pre-processed to obtain different emission scenarios for
comparison, e.g. aggregated discharges vs. real emission situation. Several
areal selections from one long list of discharge sites is another example.

Raw Data from MicroLowFlows

General information about MicroLowFlows MicroLowFlows is a software
for computing flow statistics at ungauged sites. For this, data from gaug-
ing stations, precipitation, information about soil types, elevation data for
catchment size estimation and artificial influences (abstractions, discharges)
are considered. From this geo-referenced water balance the flow statistics for
all ungauged river segments are computed.

MicroLowFlows was developed at the Institute of Hydrology (IH) in Walling-
ford, U.K. In the framework of the GREAT-ER project this tool has been ex-
tended by a special consideration of artificial influences.

Except for detailed sewage treatment data, the database of MicroLowFlows
contains all information about the catchment which is required.

The IH has provided small extraction tools for easy retrieval of data. These
tools produce simple text files which then have to be further processed to fit
the demands of the data composition.
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MicroLowFlows export files An extraction process must be given a starting
segment. This uniquely determines the catchment. The extraction tools will
create simple text files which offer the data in tabular structure. Some demands
are already fulfilled in these files, but a reformatting and a mathematical and
geographical rework is still necessary. In the following the four extracted text
files are described.

Coordinates and attributes This file contains the central data set with the
river network. All river segments are included with their coordinates either in
UTM or UK national grid projection. In MicroLowFlows a segment has a max-
imum of 9 coordinates. Only due to this fact of limitation was it possible to
represent the river network as a table. Besides the coordinates, the real length
and the natural flow (mean and 5th percentile) are provided. MicroLowFlows
contains a river network in a lowered resolution. The ”length” information
contains the computed length based on the high-resolution digital river net-
work and hence gives a better value than the length that can be computed
from the coordinates.

Segment names Pairs of stretch IDs and strings describe the river names.
Some names occur frequently in this table.

Artifical influence flows Within the GREAT-ER project, MicroLowFlows has
been extended by a special consideration of artificial influences. Examples of
these artificial influences are abstractions for drinking water, cooling, irriga-
tion and discharge via treatment plants. The corresponding file contains the
improved flow data (mean and 5th percentile) for all segments.

Catchment boundary The computation of the natural flows in
MicroLowFlows is based on digital elevation data in grid format. Each square
of the area is associated with a height. These data lead to the watershed bound-
aries. The borderline is given in the file as a line-wise sequence of coordinate
pairs. During computation the so-called ”figure of 8” problem may occur. This
means that a part of the catchment area is connected to the rest of the catch-
ment via exactly one point (just like the shape of the digit ”8”). In such cases it
is recommended to increase or decrease the catchment size (i.e. pick the stretch
downstream or upstream from the one which invokes a problem).
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Conversion from raw to pre-defined formats Data conversion (see figure
5.11) covers three parts: The relatively simple routines of unit conversion (awk
scripts) and the projection change from UTM (Universal Trans Mercator) to
geographic coordinates (via ArcInfo).

.nam

.aif

.crd crd2gen.awk rivernet.gen.tmp utm2geographic.aml rivernet.ungen.tmp

.bou bou2gen.awk boundary.gen.tmp utm2geographic2.aml boundary.ungen.tmp

stp.tmp

*.exp.stp

stp2gen.awk stp.gen.tmp stp_stretch.tmpselectstp.aml considerExpert.awk .dsd

.rna

.drn

.cbpungen2cbp.awk

ungen2drn.awk

crd2rna.awk

Figure 5.11: Command sequence for MicroLowFlows data

A more complicated part is the connection of sewage treatment plants with
the river network, because in the present case no location information on STP-
river connection is available. For each discharge site the closest river segment
is computed and the connection is drawn from the discharge site to the starting
point of the river segment.

This may reveal two problems: First, the plant may be connected wrongly,
because due to some reason the actual pipeline (or carrier canal) does not fol-
low the shortest distance to the river. Such errors can only be detected and
corrected with local expert knowledge (which is given as a table in the files
*.exp.stp, compare figure 5.11).

Second, the connection of the plant to the starting point of the closest segment
is not usually optimal. A more convenient point on the river would be the one
providing the shortest distance to the discharge site. The required simulation
model only can treat segments as a whole and hence only can assume an emis-
sion into the starting point of a segment. Hence for optimization, segments are
split up.

For this splitting, several (geo)graphical solutions are possible. A method is
chosen that does not produce entirely new points, but which selects the best
of the given points of the closest segment. The segment is split into two subse-
quent stretches; the downstream stretch is then connected with the discharge
site (see figure 5.12).
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drn2pointgen.awk rivpoints.gen.tmp stp_connect_point.aml point_id_stpid.tmp

drn2pointscmp.awk rivpoints.cmp.tmp rivpoints.cmp2.tmp

.drn
computeLengthFactors.awk

createSplitUpNetwork.awk

from_to.attcopy.tmp

.rna
copyStretchAtt.awk

stp_stretch.autom.tmp

stp.tmp

stp_stretch.tmp

considerExpert.awk .dsd.stpconnect

.rna.stpconnect

.drn.stpconnect

Figure 5.12: Command sequence for improved discharge connection

The downstream part is given a new ID. Both segments receive the attributes
of the original stretch except, of course, the real length. For computation of the
new lengths for the two segments it is assumed that the distances between the
single coordinates of the segment is equal. Then factors can be calculated for
the lengths. A more precise method than applying length factors is to compute
distances from the coordinates.

In general, for geographic distance calculations the projection is of high im-
portance. Only tangential projections (e.g. UTM, UKGRID) allow adequate
distance representation within their valid extent.

Raw Data from RhineNet

General information about RhineNet RhineNet is an ArcView-based sim-
ulation system for the transport and elimination of chemical intermediates in
the River Rhine and its tributaries Main, Mosel and Lippe (Koormann, 1997).

The river network in RhineNet is available as a route system (see page 61).
Discharges are ”events” and are associated with certain points on the route
system. Also all other spatial changes in attributes (e.g. hydrological data) are
stored as events of the route system.

Data conversion The coverage containing the river network routes and events
is processed with the ArcInfo command eventarc to produce the desired seg-
ments (arcs). Next, it is necessary to switch the direction of the segments of the
tributaries according to the German system of river measurement (see page
61). The change of direction is done manually in ”ArcEdit”, a sub-module of
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ArcInfo. Finally, the geographic data are exported using the command un-
generate.

The actual coordinates of the discharge sites were computed with the ArcInfo
command eventpoint based on the route system and then also exported
with the command ungenerate. The final format adaptation is done manu-
ally and for several parts facilitated by the abilities of advanced text manipu-
lation tools.

5.5 Data processing and quality check: Example

In this section the full procedure of data processing is described for a number
of catchments located in the Yorkshire area, UK. Special emphasis lies on the
identification and treatment of errors and other problems.

For the first phase of the GREAT-ER project, pilot study areas were chosen to
cover situations along the north-south axis of Europe. The selection considered
areas where comprehensive data and experience are readily available. For the
northern situation, catchments within the Ouse basin in North England were
selected: the River Aire including the River Calder as a large, predominantely
urban area, the River Went as a rural area and the River Rother (part of the
River Don) as a mixed or average situation (compare figure 4.1).

5.5.1 Data parentage

Data availability is quite good for the selected area. The Institute of Hydrology,
Wallingford, has developed and maintains a software tool for the estimation of
hydrological data at ungauged sites: MicroLowFlows (Gustard et al., 1992, see
also previous section). This tool has incorporated a graphical user interface
with visualization of the corresponding river networks. Hence, the internal
database of MicroLowFlows can deliver the flow data as well as the digital
river network. The association of flow attributes to river segments has already
been done. Besides, MicroLowFlows also delivers the coordinate sequence of
the catchment boundary.

Locating and establishing the properties of the sewage treatment plants in the
corresponding area is a complicated task because the existence of such data at
several different authorities leads to a number of data sets which differ from
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each other in both values and extent. As a starting point, data from the UK
Environment Agency (EA) were chosen.

As background data, 1 : 50,000 raster maps of the Ordnance Survey were in-
ternally used for plausibility checks. The actual and final background data
(in vector format) were downloaded from Pennsylvania State University and
are based on data from the U.S. Geological Survey (USGS). Their resolution is
about 1 : 1,000,000.

5.5.2 Data review

Review of the delivered data shows that the MicroLowFlows database does
not offer any information on flow velocity or estimation method to compute
it from other data. Even interpolating methods are not possible because flow
velocity measurements are not available for this area in a similar quality as
flow measurements. An explicit study for velocity estimation for this area was
conducted (Round et al., 1998, equation 3.6).

MicroLowFlows limits the number of river stretch coordinates to 9. The digi-
tial river network in MicroLowFlows (1 : 50,000) is a reduced version of an
original data set at a 1 : 20,000 scale. Information on length is copied from the
higher resolved data sets and hence only the visual representation of the river
network gives an impression of lower resolution.

Discharge information and background data are assumed sufficient from a
technical point of view.

5.5.3 Data processing

Besides format conversions, the main task of the initial processing for the York-
shire catchments is to build an interconnection of sewage treatment plants and
river networks. MicroLowFlows includes those STPs which were relevant for
hydrological modeling. For the purpose of chemical ”down-the-drain” expo-
sure assessment, all plants must be considered.

Since the discharge sites data are available without information on the actual
emission point at the receiving stream, a simple connection method is applied:
Each STP is connected to the nearest point of a river stretch (see page 86). It
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turns out that this interconnection does not harmonize with the flow data from
MicroLowFlows. A cross-check routine based on flows is implemented as part
of the final processing to test the corresponding plausibility.

In this test the total effluent flow of the emission point is compared with the
mean flow in the connected river segment, its upstream segment(s) and its
downstream segment. If the upstream/downstream segment has the same
hydrological properties, the segment farther down-/up-stream is taken for
comparison. Differences in the flow statistics between discharges and streams
usually occur. The reason for this is different time ranges of the underlying
statistics.

In general two classes of errors occur: First, the default connection routine
selects a stretch upstream or downstream from the one selected for the hydro-
logic modeling. For the upstream case and a large effluent this would mean a
low chemical dilution and hence a simulated but incorrect peak concentration.

A second error class is the connection to a wrong stream. For large effluents
and small streams this is easily identified due to a high deviation in the flow
comparison. The opposite case passes the plausibiliy test. As a consequence
missing peak concentrations occur due to high dilution. This underlines the need
for further tests incorporating, e.g. comparison of simulation results with wa-
ter quality data.

5.5.4 Data quality

The final data processing stage can not identify all errors. Initial system appli-
cations are part of the final quality checks. For the Calder catchment a typical
site-specific calibration gives insight into potential problems:

Sewage treatment works are usually improved or extended within a few years.
Especially older plants have evolved to a collection of (parallel or sequential)
units with different removal efficiencies. The updating of plant type informa-
tion at a central point is done at a longer interval leading to potentially out-
of-date information. For initial applications these potential errors need to be
considered and carefully checked.

For the identification of wrong plant types, monitoring data for a readily
degradable substance are required. Monitoring effluent concentrations is cer-
tainly sufficient for identification, but is rather expensive. Significant errors
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can also be identified with in-stream measurements.

This identification method is illustrated for the River Aire where the detergent
chemical LAS takes the role of the readily degradable substance. Simulation
results for the mean and 90th percentile concentration are compared with the
data of a three-year in-stream monitoring study based on monthly measure-
ments (figure 5.13). Simulated and measured concentrations show good accor-
dance for the first 60 kilometers downstream and then start to differ seriously.
At this point a waste water treatment plant is located which is simulated as a
trickling filter plant (TF plant). TF plants are technologies performing less ef-
ficiently than modern ones such as activated sludge plants. As a result a high
emission is computed.

Figure 5.13: Wrong plant type at the River Aire: Simulation used a sim-
ple Trickling Filter plant (TF)

The monitoring results reflect the real situation where the corresponding plant
was recently extended with a tertiary treatment unit providing a higher overall
removal efficiency. On-site monitoring of influent and effluent concentrations
shows a removal efficiency for LAS of 99.8%. Applying this value for the sim-
ulation resolves this site-specific problem and accordance of simulations and
monitoring is gained for the whole river Aire (figure 5.14).
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Figure 5.14: Site-specific calibration

From this example some conclusions can be derived:

1. Site-specific calibration of a catchment may be required before actual ap-
plications can start.

2. Outdated information on plant types results in higher in-stream concen-
trations. These errors can be significant for plant improvements where
chemical upstream load is low. Such information can either be made
more reliable through review by local experts. Another method is an
adequate monitoring for identification of serious deviations.

3. The planning of monitoring campaigns should consider covering the
task of identifying wrong plant types. This regards the location of the
sampling site on the one hand and the selection of chemicals on the other
hand. Sampling sites should be selected downstream of any treatment
plant. The monitoring should include a readily degradable substance
that has a wide dispersive use pattern.



Chapter 6

Application and analysis

The simulation tool GREAT-ER consists of a number of single analytically
solved models (no numerical solution necessary). These single models are
well-known formulations that have been applied to several tasks. Their fre-
quent use has improved the model validity. For GREAT-ER, the models were
again discussed with regard to their adequacy within the new task (Boeije,
1999). These studies include generic tests (hypothetical case studies), but are
not based on real-world data.

When the GREAT-ER project was officially completed in March 1999, an ini-
tial application/calibration study was presented. The intention of this study
was to apply the best real-world data available. The initial application for
the surfactant ingredients LAS and boron showed simulation results that were
well within a factor of 5 compared to the monitoring data. This range was
achieved for all monitoring sites of both types: in-stream and final effluent
concentrations. An initial calibration further improved the simulation for sin-
gle catchments. It was achieved by adapting the overall removal distributions
of the sewage treatment plants. Calibration was made mainly by visual feed-
back to parameter shift. It was accompanied by expert knowledge/requests
concerning site-specific data.

The GREAT-ER system has integrated several well-reviewed aspects and meth-
ods, but a more comprehensive application and analysis study needs to be car-
ried out on it as an entity. The test of the integrated system can be split up into
several aspects, some of which are reflected by these general questions:

� Which are the most sensitive parameters?

93
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� How many Monte-Carlo samples need to be applied?

� What is the spatial uncertainty?

� To what extent is the uncertainty accumulated?

� How can the quality of simulation results be judged?

Most of these questions cannot be answered for the GREAT-ER system in gen-
eral. They must be answered for each simulation task anew. Thus, to support
its practical application and analysis, hints, examples, detailed recipes and es-
pecially sound methods need to be set up. In this chapter a first application
is presented that elaborates general methods and hints on how to approach
a GREAT-ER application. It is intended to tackle several aspects. A complete
sound method that is generally applicable cannot be developed due to the lack
of detailed studies performed to date. More information and experience cov-
ering the wide range of application types is required to identify a common
basis of adequate methodologies. The intention is to initiate and contribute
to a profound basis for further studies that apply the GREAT-ER system or
comparable geo-referenced simulation approaches.

Sequence of steps for application and analysis:

First, an assessment of the uncertainties implicated by the GREAT-ER approach
is required to judge the reliability of the simulation results (first section). The
Monte-Carlo approach involves stochastic uncertainty, which decreases with
increasing numbers of Monte-Carlo samples. A method is developed to iden-
tify the number of Monte-Carlo samples that are sufficient to assure simulation
results within a (tolerable) range are obtained.

To compare the simulation results with measurements with the given com-
plexity, a set of methods for assessing the model exactness is discussed and
selected in the second section. Standard absolute and relative measures are
selected, but with reference to spatial rather than temporal distribution.

A summary on available monitoring data is given in the third section. The data
originate from a monitoring campaign that accompanied the development of
GREAT-ER. The presented data are essential for the review of simulation re-
sults and are used to assess the model’s exactness.

Finally, simulation results are obtained considering the measures for uncer-
tainties, and are then compared with the given monitoring data considering
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the measures for model exactness (fourth section). This section also discusses
the outcome of the simulated results and of the comparison with measured
data. The comparison is carried out spatially explicit (using specific sites) as
well as spatially summarized (catchment performance).

6.1 Measures for stochastic uncertainty

In the application of GREAT-ER, it must be considered that the Monte-Carlo
approach in itself contributes to the overall uncertainty by introducing a
stochastic uncertainty. The lower the number of MC-samples, the higher this
stochastic uncertainty is.

Some basic provisions need to be made to deal with this type of uncertainty:

1. Identification of a criterion x to tolerate stochastic uncertainty.

2. Definition of an appropriate measure for x based on the mathematical
characteristics of distribution curves obtained from simulations with the
same number of MC-samples (e.g. the span of means, as in figure 6.1).

3. Selection of a limiting value of x that may not be exceeded (e.g. an abso-
lute value or relative fraction) based on the above measure.

4. Setting a maximum number of sites (again absolute or relative); limit x
must not be exceeded.

As a result, a number s of Monte-Carlo samples can be estimated as sufficient
to reach the maximum tolerable stochastic uncertainty.

Steps 1 and 2 are of a more general nature, referring to the simulation method
itself, and are treated in this section following the general overview on uncer-
tainties. The latter two steps should be carried out for actual application stud-
ies in which explicit requirements on the reduction of stochastic uncertainty
are known. Thus, these are discussed in the section dealing with simulation
results.
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6.1.1 Overview of uncertainties

Uncertainty in the present context is used as a description of the difference
between observed (O) and simulated (P ) properties, such as single values or
distribution curves. It should be kept in mind that O is nothing other than
an approximation of the real value (usually better than P ). Uncertainties are
based on selected task-oriented measures (e.g. jO�P j for O;P 2 R or j�(O)�
�(P )j where O and P are distributions and �(X) = mean).

It is differentiated between variability and uncertainty. The variability of prop-
erties describes frequencies and ranges of values occuring over time or space
respectively. In the following, variabilities are always expressed as distribu-
tion curves.

Due to its high complexity, the GREAT-ER system implies several different
sources of uncertainty, some of which potentially outnumber others. The con-
tribution of each source of uncertainty has to be assessed independently, if
possible. Thus, different sources can be compared in order to identify sources
of major and minor importance. However, it is not feasible to predict an overall
uncertainty, because no information is available on how the single uncertain-
ties sum up. The overall uncertainty of the model should only be described
when based on comparisons with measurements.

Basic uncertainties can be associated

� with the model itself (”model uncertainty”),

� with input parameters (”parameter uncertainty”),

� with measured data (”monitoring uncertainty”) and

� with the Monte-Carlo method (”stochastic uncertainty”).

Model uncertainty

A model is a hypothesis for a real situation considering known aspects. The
unconsidered aspects contribute to the uncertainty of the model. For example,
consider a simple model for the degradation of a substance: m(t) = m(0)e�kt.
This model predicts accurately unless the aspects under which the degradation
constant k has been obtained are not the same as for the situation to which the
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model is applied. The unconsidered aspect could be that, in reality, degrada-
tion is not constant over time, as assumed by the model. Of course, the model
could be refined to reflect this: m(t) = m(0)e�k(t)t. However, it might fail for
another situation, because it is still a simplified hypothesis for the real process.
This also means that experiments are unavoidable for the detection and reduc-
tion of a model’s uncertainty in a given situation. However, it is impossible to
eliminate this uncertainty entirely.

Parameter uncertainty

Models use one or more input variables which need to be specified for a sim-
ulation. The uncertainty or natural variation of such parameters will have a
definite influence on the uncertainty of the model’s output variables. The ef-
fect depends on the sensitivity of the specific parameter (e.g. a small variation
of an input parameter might cause a large variation in an output parameter or
vice versa). Thus, it is desirable to identify highly sensitive input parameters
and to ensure that their uncertainty is low or at least known. In the exam-
ple given above, two input parameters are used, the initial mass m(0) and the
first-order degradation constant k. The parameter m(0) can be given with high
precision if the mass originates from a single source (e.g. in a laboratory ex-
periment). However, the consideration of multiple sources in the environment
(as in GREAT-ER) might require the estimation of m(0), thus leading to an
increase in the uncertainty of this parameter.

Monitoring uncertainty

Concentration measurements underly technical limitations of the applied meth-
ods (precision, accuracy, detection limit). Furthermore, each measurement re-
flects a specific situation in time and space rather than being generally rep-
resentative. This basically means that both the model output variable and
the corresponding measured value used for comparison have a specific uncer-
tainty. In laboratory experiments, the uncertainty of measured values is quite
low. Complex field measurements are usually less accurate, because the in-
fluence of different environmental parameters can hardly be determined with
the same accuracy as in the laboratory. In the example given above the sim-
ulated time series m(t); t = 0::24h might correspond well with environmental
measurements made on a Tuesday, but due to some reason may not fit for an
observation made on a Friday. In such a case, the measurements would need
to be repeated several times for all weekdays to judge which is an outlier and
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to search for the reason. In the context of GREAT-ER, this could be, e.g. that
Monday is a washing day in a particular area and surfactants pass treatment
plants with one day later. It may also be that the measurements have identified
an unconsidered aspect for the model (e.g. that degradation is variable over
time).

Stochastic uncertainty

Many of the input variables required in the GREAT-ER simulations show a nat-
ural variability over time and space. A Monte-Carlo approach is used to reflect
the temporal variabilities (Boeije, 1999; compare also page 17). The most im-
portant parameter determining the precision of the model results is the num-
ber of (discrete) Monte-Carlo samples applied. In order to obtain a desired
precision of the output distribution curves, a minimum number is required.

Site BSite A

Multiple simulations, higher number of MC-samples:

Site A Site B

Multiple simulations (a,b,c), low number of MC-samples:

(c)(b)(a)

µ(c)µ(b)µ(a)

Figure 6.1: With increasing MC-sample numbers, resulting distribu-
tion curves converge (in other words the uncertainty de-
creases). Vertical lines indicate means �() of the corre-
sponding distribution curves.

Usually a compromise between computational effort and a tolerable uncer-
tainty level is sought, although with current technologies the computational
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effort becomes negligible for many applications. With the complexity of
GREAT-ER, it remains relevant to find a practical number of MC-samples that
suffices for a chosen maximum uncertainty.

Figure 6.1 shows the resulting distribution curves for two sites from multiple
simulations illustrating the uncertainty decrease with increasing numbers of
MC-samples.

A procedure of how to select an adequate number of MC-samples is descibed
in the following section.

6.1.2 Defining a measure for stochastic uncertainty

The error for a Monte Carlo measurement is inversely proportional to the
square root of the number of test cases. Thus it is sufficient to find out the
uncertainty x(sinitial) for a reasonably high number of MC-samples sinitial and
then to deduce the required number of MC-shots s for the aspired tolerable
uncertainty x:

s =

 
x(sinitial)

x

!2

� sinitial (6.1)

Identification of criterion x

As a criterion for the tolerable stochastic uncertainty x of a simulation with s
Monte-Carlo samples, the maximum deviation from the mean concentration
for m locations is chosen:

�(Oi)� x � Pi;s � �(Oi) + x 8i 2 Lm (6.2)

where

Pi;s = distribution of concentration at site i obtained from s MC-samples
Oi = Pi;1 b= population distribution of concentration at site i
Pi;s = mean of Pi;s, (unbiased) estimator for the population mean �i
Lm = subset of m locations from set of all locations l in L
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Definition of appropriate measures x̂ for x

The tolerated maximum stochastic uncertainty x is a spatial aggregation of
single xi for locations i in Lm. Sensible definitions for the measure x̂ are based
on standard characteristics of the distribution of fcxig, such as minimum, mean
or maximum, here the extremes and average over all sites in Lm:

dxmin = min(cxi) 8i 2 Lm (6.3)cx� = �(cxi) 8i 2 Lm (6.4)dxmax = max(cxi) 8i 2 Lm (6.5)

Hence, it is essential to find a measure cxi for the stochastic uncertainties xi of
locations i to gain measures dxmin; cx� or dxmax.

The distribution of means from a number of distributions of the same type
is normal distributed, independent of the type of underlying distributions
(Moivre-Laplace limit theorem). Thus, a series of n independent simulations
each applying the same number of s MC-samples is performed and the sample
standard deviation �̂ of the distribution of the corresponding means is taken
as a measure for the absolute deviation at location i:

cxi = �̂(Mn;s;i) (6.6)

where Mn;s;i = distribution of f (Pi;s)j : j = 1; ::; ng (normal distributed inde-
pendent of the distribution of Pi;s).

The full definition of the measures dxmin; cx� and dxmax is therefore:

dxmin = min(f�̂(f(Pi;s)j : j = 1; ::; ng) : i 2 Lmg) (6.7)cx� = �(f�̂(f(Pi;s)j : j = 1; ::; ng) : i 2 Lmg) (6.8)dxmax = max(f�̂(f(Pi;s)j : j = 1; ::; ng) : i 2 Lmg) (6.9)

x is a choosen maximum value to tolerate (see also page 113), x with a ”^” is a
measure. All of the three defined values in 6.7, 6.8 amd 6.9 could be used for
comparison against x (to decide whether tolerated value has been exceeded).
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Example for measures x̂ for stochastic uncertainty

In ECETOC (1999) a rule of thumb is given for GREAT-ER simulations propos-
ing that 500 Monte-Carlo samples should be satisfactory to obtain stable means
for simulated concentrations in small/simple catchments, whereas large / com-
plex ones would require 1000 samples. For a stable 90th percentile of the con-
centration, the numbers 2500 and 5000, respectively, are given.

This proposal is an estimate from previous experiences and is not based on
mathematical formulations. Furthermore, it lacks a definition of the term ”sta-
ble means”.

The following example quantifies the stochastic uncertainty for the simple
catchment of the River Went and the more complex catchment of the River
Calder using the number of Monte-Carlo samples as proposed. For the spatial
aggregation all loaded sites are included in Lm.

Table 6.1: Example of stochastic uncertainty (n = 100)
m s dxmin cx� dxmax

[�g=L]

In-stream sites:
Went/LAS 37 500 < 0.001 0.012 0.387
Went/LAS 37 1000 < 0.001 0.008 0.262
Calder/LAS 89 500 < 0.001 0.001 0.013
Calder/LAS 89 1000 < 0.001 < 0.001 0.006
Went/Boron 37 500 < 0.001 0.057 1.324
Went/Boron 37 1000 < 0.001 0.033 0.781
Calder/Boron 89 500 0.025 0.812 2.455
Calder/Boron 89 1000 0.014 0.467 1.409
Final effluents:
Went/LAS 7 500 0.004 0.062 0.178
Went/LAS 7 1000 0.002 0.038 0.108
Calder/LAS 21 500 0.002 0.011 0.026
Calder/LAS 21 1000 0.001 0.006 0.015
m = number of sites
s = number of MC-samples
n = number of simulations
(One simulation is one application of the model
performed with s number of MC-samples)
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Table 6.1 lists the minimum, average and maximum of the spatially aggre-
gated stochastic uncertanties dxmin; cx� and dxmax as defined in equations 6.7, 6.8
and 6.9 respectively. The strongest measure is dxmax, which appears to be most
adequate for the comparison of stochastic uncertainties from different scenar-
ios.

Two observations show that it is not feasible to give a general rule for the
number of Monte-Carlo samples independent of the actual scenarios:

� The variation in dxmax between LAS scenarios for different groups of sites
(in-stream and final effluents) is approximately a factor of 2 for the River
Went and a factor of 0.5 for the River Calder. Thus the absolute stochastic
uncertainty differs by a factor of 4 for two different catchments with the
same substance.

� The scenarios Went/Boron/500 MC-samples and Calder/Boron/1000
MC-samples have almost the same stochastic uncertainty dxmax, which
corresponds to the rule given by (ECETOC, 1999). In contrast, the sce-
narios Went/LAS/500 MC-samples and Calder/LAS/1000 MC-samples
show a variation in dxmax of a factor of around 60. This shows that the
rule does not apply for LAS and thus does not apply in general.

Note that the stochastic uncertainties can be significantly higher if incorrect
data are applied: The inclusion of 3 problematic stretches of the River Calder,
as described on page 51, would lead to a value dxmax = 162.347 for Calder/Boron
using s = 500 MC-samples. Thus, the stochastic uncertainty can also be an in-
dicator for the integrity of the underlying dataset.

6.2 Measures for model exactness

Comparison of simulation results and reliable monitoring data allows the ex-
actness of the applied model to be described. For the Calder catchment, statis-
tically sufficient numbers of measured concentrations have been collected in
a comprehensive monitoring campaign for several sites in the catchment (in-
stream and final effluents). To quantify their exactness, or at least to provide
indicators for their exactness, measures for the statistical discrepancy of model
and monitoring results can be used. As described in Gayler (1998), the general
discrepancy can be expressed as:
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D = DfP (ti); O(ti)g i = 1; :::; n (6.10)

where ti are the points in time for the measurements O(ti) and the model pre-
diction P (ti). Based on measures from the type of equation 6.11, the discrep-
ancy measure can also be expressed as an absolute discrepancy (equation 6.12).

M� =

 
nX

i=1

jxi � yij�
! 1

�

� = 1; :::;1 (6.11)

D =
1

n

 
nX

i=1

jP (ti)� O(ti)j�
! 1

�

� = 1; :::;1 (6.12)

where 1
n

normalizes sample sets of different lengths. The value of � is a weight-
ing for deviation, � = 1 gives all pairs fP (ti); O(ti)g an equal weight while
� = 1 will consider only the one most extreme outlier.

For the GREAT-ER model and for monitoring, the vectors of predicted and
observed values are not given as a sequence for different points over time.
In GREAT-ER, time is already incorporated in the variability mechanism. A
direct comparison of a site in time would require a comparison of the distribu-
tion curves of the predicted concentration and the monitoring results. While
the distribution for the predicted concentration could be obtained at a stable
level (by issuing a sufficiently high number of Monte-Carlo samples), the mon-
itoring data are limited in their extent (for this study between 7 and 38 sam-
ples). Sampling distributions offer higher stability around the mean than for
high/low percentiles. This means that the model exactness for specific situ-
ations over time (normal situation, e.g. average weather conditions) can be
better assessed than others (extreme or rare situations, e.g. storms). The site-
specific temporal model exactness is not further addressed here. Instead of
time, the focus is on spatial aspects. Hence, ti is replaced by si, which de-
scribes samples at different points in space. The medians of the concentration
distribution curves gCsimi

and gCmoni are used as the most stable values for
P (si) and O(si). The discrepancy measure then describes a spatially aggre-
gated model exactness which could be applied to different sets of objects (final
effluents or in-stream sites). It would be conceivable to include any object of
a catchment into a measure, but it will provide fewer options to interpret the
exactness of single sub-models.

Based on (Gayler, 1998), four measures are selected (n is now the number of
locations):
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Parameter Da (equation 6.13) describes the average deviation. This measure
supports the identification of systematic errors. As all points are of equal
weight, only a general over- or underprediction would result in extreme val-
ues of Da. Good agreement would lead to Da approaching 0, but this could
occur with equal fractions of over- and underprediction as well. Hence, if no
extreme outliers are present, this method can verify systematic overprediction
(Da >> 0) or systematic underprediction (Da << 0). Da is accompanied by
Djaj (equation 6.14), which is the absolute average deviation. Djaj describes
the average distance from the ideal situation ( gCsimi

= gCmoni 8i) and if no
extreme outliers are present it will approach 0 the better the agreement is. Of
course this only holds true if the distribution curves for monitoring and simu-
lation are of the same type.

Da =
1

n

nX
i=1

� gCsimi
� gCmoni

�
(6.13)

Djaj =
1

n

nX
i=1

��� gCsimi
� gCmoni

��� (6.14)

Another commonly used absolute measure is the average squared deviation
Drms (equation 6.15, RMS = Root Mean Square) which results from equation
6.12 with � = 2 giving outliers a higher weight than Djaj.

Drms =
1

n

vuut nX
i=1

� gCsimi
� gCmoni

�2
(6.15)

Applying absolute deviations across inhomogenously high, site-specific val-
ues would neglect exactness at sites of lower values. For example, with the
treatment situation in Yorkshire, two types of sewage treatment plants (acti-
vated sludge, trickling filter) result in two different ranges of concentrations
(for both substances, LAS and boron, the typical final effluent concentration
differs between AS and TF-plants by a factor of 5). To deal with this and to
compare different scenarios, a relative measure is required.

Equation 6.16 describes the average relative deviation, equally weighting over-
and underpredictions and equally weighting all sites (� = 1).

Djaj;r =
1

n

nX
i=1

��� gCsimi
� gCmoni

���
min( gCsimi

; gCmoni)
(6.16)
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6.3 Available data from monitoring campaign

Associated with the development of the GREAT-ER system, an extensive mon-
itoring program was performed in four Yorkshire catchments (Rivers Aire,
Calder, Don/Rother and Went) and in the Lambro catchment (Italy).

Monitoring in Yorkshire covered boron and LAS in the final effluent of sewage
treatment plants and at selected in-stream sites. Samples were taken monthly
from 1996 to 1998. All data used in the following discussion can be found
on the official ECETOC GREAT-ER 1.0.1 software distribution. Parts of the
trickling filter monitoring program are published in (Holt et al., 1998).

Similar to the sewage treatment plants, (x,y)-coordinates for the sampling sites
were given and the connection of these sites to the digital river network was
partly done automatically, because for some cases the locations were not di-
rectly at river segments. This implicates potential spatial uncertainty for com-
pared monitored and simulated concentrations.

6.3.1 Calder

In the Calder catchment, final effluent (FE) concentrations from 14 plants were
measured (table 6.2). The measurements for one plant were omitted due to
non-representative data.

Additionally, in-stream samples were taken at 15 sites in the main stream and
at 3 sites in the tributaries Spen, Colne and Red Beck. The chosen downstream
distance from discharges makes the assumption of (almost) full mixing rea-
sonable (see table 6.3 and figure 6.2).

The in-stream monitoring site Allerton Bywater shown in the GREAT-ER soft-
ware does not actually belong to the Calder stream. The samples were taken
from the River Aire close to the confluence with the River Calder. Thus, in this
study Allerton Bywater will only appear for the River Aire.
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Table 6.2: Monitoring results for STP’s in the Calder catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Eastwood 204.0 132.0 35 218.5 72.3 35
Redacre 514.0 374.0 23 276.6 100.3 23
Highroyd 96.0 37.0 7 239.1 95.7 7
Sowerby Bridge1 11.0 12.0 24 262.2 146.4 24
Halifax 69.0 67.0 41 598.8 253.4 40
Shibden Head 488.0 245.0 27 458.9 244.0 27
Brighouse 601.0 443.0 11 416.8 113.1 11
Neiley 344.0 230.0 17 413.5 105.9 17
Huddersfield 108.0 80.0 28 393.1 170.3 28
North Bierley 203.0 146.0 22 484.0 157.0 22
Dewsbury2 539.0 157.0 28 1116.3 375.1 28
Ossett Spa 358.0 314.0 16 691.5 155.9 16
Caldervale 22.0 15.0 17 682.4 231.0 17
N = number of samples
1 called Milner Royd STW in the original monitoring data set
2 called Mitchell Laithes STW in the original monitoring data set

Table 6.3: In-stream monitoring results in the Calder catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Calder Portsmouth 3.0 2.0 25 26.1 5.2 25
Calder Heptonstall 35.0 24.0 23 56.6 30.4 24
Calder Hebden Bridge 21.0 24.0 25 33.7 11.4 25
Calder Brearley Weir 28.0 20.0 25 40.9 19.4 25
Calder Sowerby Bridge 20.0 8.0 21 48.9 19.6 21
Calder Copley Bridge 27.0 20.0 23 54.4 19.9 23
Calder North Dean 35.0 22.0 24 144.1 73.0 24
Red Beck at Brookfoot 17.0 21.0 26 154.1 60.9 27
Calder Rastrick Bridge 23.0 19.0 18 150.8 107.8 18
Calder Cooper Bridge 26.0 18.0 22 128.6 61.2 22
Colne at Colne Bridge 21.0 19.0 25 97.9 135.5 25
Calder Battyeford 64.0 31.0 24 151.9 69.8 24
Spen A644 80.0 42.0 24 416.8 197.1 24
Calder Dewsbury 61.0 37.0 22 168.1 82.9 22
Calder Horbury Bridge 78.0 34.0 22 206.8 109.8 22
Calder Kirkgate 68.0 29.0 23 213.9 108.1 23
Calder Stanley Ferry 59.0 26.0 22 221.3 125.1 22
Calder Methley Bridge 39.0 25.0 23 244.7 109.9 23
N = number of samples
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Figure 6.2: In-stream monitoring sites in the Calder Catchment

6.3.2 Aire

In the Aire catchment, 8 plant effluents were monitored (table 6.4) in addition
to those in the Calder subcatchment. No data exist for 5 plants in the monitor-
ing program.

Table 6.4: Monitoring results for STP’s in the Aire catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Gargrave 223.0 87.0 14 455.1 176.3 14
Skipton (Snaygill) 218.0 93.0 30 450.5 167.4 27
Marley 183.0 64.0 34 504.4 201.6 34
Dowley Gap 504.0 154.0 30 427.0 150.3 30
Esholt 14.0 13.0 36 459.7 148.0 37
Knostrop 354.0 96.0 28 495.4 181.2 29
Wheldale 173.0 88.0 9 592.2 156.8 9
Sutton 361.0 117.0 22 837.1 185.2 22
N = number of samples

All in-stream monitoring sites are located along the main stream (table 6.5 and
figure 6.3) of the River Aire. No data on the chemical load of the tributaries
to the River Aire have been collected, except for the Methley Bridge site on its
major tributary, the River Calder.
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Figure 6.3: In-stream monitoring sites in the Aire Catchment

Table 6.5: In-stream monitoring results in the Aire catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Aire Gargrave n.d. 9 20.0 0.0 9
Aire Carleton n.d. 11 30.8 9.7 11
Aire Crossflatts 22.0 13.0 14 99.1 51.3 14
Aire Cottingley Bridge 17.0 7.0 16 109.6 61.4 16
Aire Salts Weir 25.0 9.0 15 107.7 55.4 15
Aire Buck Bridge 15.0 9.0 16 112.8 56.1 16
Aire above Esholt 13.0 7.0 13 113.2 60.6 13
Aire Apperley Bridge 15.0 7.0 19 177.6 93.6 19
Aire Calverley Bridge 15.0 7.0 14 157.1 89.1 14
Aire Kirkstall Bridge 21.0 18.0 15 164.1 74.6 15
Aire Leeds Bridge 22.0 15.0 17 163.8 70.6 17
Aire US Thwaite Mill 30.0 35.0 23 167.6 78.7 23
Aire Fleet Weir 124.0 47.0 28 246.9 117.5 28
Aire Allerton Bywater 96.0 38.0 38 279.6 98.2 38
Aire Beal Bridge 46.0 25.0 25 259.0 118.0 25
n = Number of samples
n.d. = not detected
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6.3.3 Don/Rother

No data exist for two plants emitting into the River Don and one at the Rother
in the monitoring program. The remaining 6 plants cover 4 TF and 2 AS types
(table 6.6).

In-stream monitoring primarily addressed the Rother and also covers one trib-
utary, the Drone (table 6.7 and figure 6.4).

Table 6.6: Monitoring results for STP’s in the Don/Rother catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Holbrook 218.0 82.0 25 831.8 223.7 26
Woodhouse Mill n.d. 25 987.0 277.1 26
Long Lane 577.0 201.0 26 987.5 222.3 26
Danesmoor 697.0 353.0 26 986.3 329.6 26
Tupton 101.0 138.0 26 1057.1 272.4 26
Old Whittington n.d. 26 704.0 151.4 26
N = number of samples
n.d. = not determined

Figure 6.4: In-stream monitoring sites in the Don/Rother Catchment
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Table 6.7: In-stream monitoring results in the Don/Rother catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Rother US Tupton STW 32.0 27.0 20 308.2 147.9 20
Rother DS Tupton STW 46.0 32.0 20 311.4 159.4 20
Drone DS Dronfield Bypass 86.0 48.0 20 266.9 99.6 20
Rother at Newbridge Lane 25.0 18.0 21 180.8 74.5 21
Rother at Cow Lane 14.0 7.0 19 317.5 141.1 20
Doe Lea at Renishaw 21.0 40.0 19 408.9 155.2 19
Rother at Renishaw 25.0 38.0 21 295.0 133.2 21
Rother at Holbrook 30.0 29.0 20 328.9 182.5 20
Rother at Woodhouse Mill 26.0 20.0 20 299.2 118.5 20
Rother DS Woodhouse Mill STW 59.0 70.0 21 334.1 142.5 21
Rother at Canklow 50.0 54.0 20 353.6 138.4 20
Don at BSC Rotherham Gate 14 15.0 20.0 18 287.6 118.4 18
Don at Rawmarsh Road 21.0 15.0 19 441.8 311.4 19
Rother US Danesmoor STW 3.0 3.0 20 106.0 30.7 21
Rother DS Danesmoor STW 239.0 176.0 21 512.2 259.6 21
N = number of samples
US = upstream, DS = downstream

6.3.4 Went

The final effluent monitoring for the Went catchment has considered all of the
present treatment plants (table 6.8).

In-stream monitoring in the Went catchment covers 6 sites at the main stream
and one tributary, the Little Went (table 6.9 and figure 6.5).

Table 6.8: Monitoring results for sewage treatment works in the Went catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Fitzwilliam 322.0 353.0 18 891.2 372.4 18
Ackworth 6.0 7.0 26 785.4 210.9 26
Carleton 413.0 291.0 19 747.5 193.0 19
Kirk Smeaton 153.0 129.0 20 1092.4 253.7 20
Askern Norton 199.0 156.0 18 720.4 128.8 18
Cridling Stubbs 197.0 296.0 19 1156.5 241.9 19
Stapleton Park 196.0 59.0 19 795.2 146.0 20
N = number of samples
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Table 6.9: In-stream monitoring results in the Went catchment
LAS Boron

Mean St.Dev. N Mean St.Dev. N
�g=l �g=l

Went upstream Hardwick Beck 31.0 71.0 23 179.1 51.1 23
Went at Ackworth 6.0 7.0 22 202.6 65.5 22
Went at Standing Flats Bridge 10.0 21.0 23 315.7 152.5 23
Little Went at Hardwick Road 137.0 74.0 19 530.0 209.8 19
Went at Went Bridge 12.0 18.0 22 311.6 136.8 22
Went at Walden Stubbs 8.0 10.0 22 269.0 95.2 22
Went at Sykehouse 10.0 17.0 24 244.1 81.5 24
N = number of samples

Figure 6.5: In-stream monitoring sites in the Went Catchment
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6.4 Simulation results and discussion

In this section GREAT-ER simulation results are compared with the monitor-
ing data. Both datasets consist of a number of site-specific log-normal concen-
tration distribution curves, given by the mean and standard deviation of the
underlying single values. In general, a comparison can be made based on sev-
eral properties of the distributions: e.g. mean, median, mode and even more
precise methods that consider the actual curves. The selection of appropriate
parameters mainly has to take into account two aspects:

1. The uncertainty of the data:

While for the simulation results the stability of the distribution curve pa-
rameters (i.e. mean) can be increased by increasing the number of Monte-
Carlo samples, the monitoring data are based on a rather limited num-
ber of single values. Usually, the median is the most stable value since it
gives less weight to extreme outliers.

2. The objective of the comparison:

If the focus lies on ’usual’ or ’typical’ concentrations, the mode (the most
frequently occurring value) would be an appropriate value to incorpo-
rate for the meaning of presented results while tolerating a slightly higher
uncertainty. For risk assessment purposes, intervals including a certain
percentage of all values (e.g. 90th percentile) are of interest rather than
the median.

The present analysis is intended to examine the average (=mean) concentra-
tions in order to learn more about the principle adequacy of the applied meth-
ods and to find out systematic or site-specific errors. The monitoring data have
undergone a multiple outlier test (”mot”; Fox, 1998) which eliminated extreme
values. Hence, the mean’s stability is considered acceptable and is therefore
taken as the basis for comparison.

6.4.1 Selection of numbers of Monte-Carlo samples

Depending on the intention for which a GREAT-ER simulation is performed,
the number of required Monte-Carlo samples (MC-samples) ranges from a rel-
atively low number which is sufficient for identification of a rough hot spot
concentration level, to medium numbers used e.g. for the determination of
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whether a PNEC is potentially exceeded, and to high numbers for a direct
comparison with high-quality measurements.

In section 6.1.2 (page 99), a criterion x for stochastic uncertainty is identified
and appropriate measures x̂ for x are defined, of which dxmax (equation 6.9)
was argued to be the most adequate for the present study. Besides this pre-
determination concerning the handling of stochastic uncertainty, two further
selections need to be made:

Selection of the limiting value x for the maximum tolerated stochastic uncer-
tainty and setting the maximum number of sites for which x must not be ex-
ceeded.

Selection of the maximum tolerated stochastic uncertainty

This study compares simulations with measurements and thus quite low tol-
erated x are selected to minimize the stochastic uncertainty:

x(LAS) = 0:05�g=L (6.17)
x(Boron) = 0:25�g=L (6.18)

The value for boron is chosen 5 times higher than the value for LAS because
the observed in-stream concentrations for boron are much (about ten times)
higher than for LAS. Note that in final effluents the stochastic uncertainty is 0
for boron in the absence of elimination processes.

Setting the number of sites to be within the tolerated stochastic uncertainty

For the present analysis a criterion is chosen that refers to the stretch with the
highest stochastic uncertainty. In other words, the number of Monte-Carlo
samples will be determined according to the worst performing site in terms of
stochastic uncertainty. Most sites of the scenario would require far less MC-
samples to achieve the same quality. Thus a possible alternative could be a
percentage of sites considered sufficient (e.g. tolerate 5% of the sites to exceed
tolerated limits).

According to equation 6.9, this means that any loaded site is included in Lm.
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Initial test for stochastic uncertainty

In order to find a sufficient number of MC-samples achieving the chosen tol-
erated stochastic uncertainty, initial test simulations are performed for each
scenario. 2000 MC-samples and 100 simulations are selected as a reasonable
basis.

Table 6.10: dxmax for initial test with sinitial = 2000 and n = 100
Scenario Sites m dxmax

[�g=L]

Went/LAS in-stream 37 0.128
final effluent 7 0.038

Don/LAS in-stream 60 0.073
final effluent 9 0.017

Calder/LAS in-stream 89 0.002
final effluent 21 0.007

Aire/LAS in-stream 201 0.101
final effluent 34 0.013

Went/Boron in-stream 37 0.260
Don/Boron in-stream 60 0.316
Calder/Boron in-stream 89 0.580
Aire/Boron in-stream 201 0.781
m = number of sitesdxmax: see equation 6.9, used for x(sstart) (see below)

The initial test described in table 6.10 shows that for all scenarios, except for
Calder/LAS, in-stream sites dominate final effluents in terms of contribution
to stochastic uncertainty. With the exception of Calder/LAS, all scenarios need
a higher number of Monte-Carlo samples to achieve the aspired quality.

Comparing different sites (and different scenarios) in terms of their required
Monte-Carlo samples is also a useful source of information for general un-
certainty analysis (uncertainty linked to catchment of linked to substance?,
which model or dataset includes higher uncertainty (e.g. in-stream vs. final
effluent)?, what are the relative differences between scenarios, sites in terms of
uncertainty?).
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Estimation of the required number of MC-samples

With the initial MC-samples sstart = 2000 and the maximum tolerated stochas-
tic uncertainty x = 0.05 for LAS and x = 0.25 for boron, respectively, equation
6.1 was used to deduce the required number of MC-samples:

Table 6.11: Estimated number of MC-samples s for all scenarios
Scenario x(sstart) [�g=L] s

Went/LAS 0.128 13,107
Don/LAS 0.073 4,264
Calder/LAS 0.007 39
Aire/LAS 0.101 8,161
Went/Boron 0.260 2,163
Don/Boron 0.316 3,195
Calder/Boron 0.580 10,765
Aire/Boron 0.781 19,518
x(sstart) = max( dxmax(in-stream), dxmax(final effluent)) (table 6.10)

s =
�
x(sstart)

x

�2 � sstart (equation 6.1)

The values of s shown in table 6.11 are more or less another representation of
the measured stochastic uncertainties shown in table 6.10, but they geometri-
cally stress higher values. However, both tables show that great differences
in the stochastic uncertainty occur due to characteristic details of the scenario
rather than the complexity or size of the catchment (e.g. for the small Went
catchment a much larger number of Monte-Carlo samples is required to stay
below the same low stochastic uncertainty for LAS than for the larger Calder
catchment).

All simulations in this study apply sufficiently high numbers of MC-samples
chosen individually for each scenario according to table 6.11.

6.4.2 Final effluent concentrations

Mean simulated and measured concentrations for final effluents are directly
compared in figures 6.6 to 6.13. The two different STP types are distinguished
by different symbols. Those plants not covered by the monitoring program are
indicated with their simulated value to the right of the right vertical axis. For
simulation results in tabular form, see Appendix A.1 (page 152).
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Figure 6.6: LAS in the Calder: Mean FE Concentration
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Figure 6.7: LAS in the Went: Mean FE Concentration
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Figure 6.8: LAS in the Don/Rother: Mean FE Concentration
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Figure 6.9: LAS in the Aire: Mean FE Concentration
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Figure 6.10: Boron in the Calder: Mean FE Concentration

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

S
im

ul
at

ed
 c

on
ce

nt
ra

tio
n 

[µ
g/

l]

Measured concentration [µg/l]

Boron in final effluents of STPs in the Went catchment

Cridling Stubbs

Kirk SmeatonTF plants
AS plants
factor of 2

Figure 6.11: Boron in the Went: Mean FE Concentration
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Figure 6.12: Boron in the Don: Mean FE Concentration
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Figure 6.13: Boron in the Aire: Mean FE Concentration
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Calculated measures for the model exactness based on the simulation results
and available monitoring data are shown in table 6.12. This table summarizes
the absolute measures Da, Djaj and Drms (equations 6.13, 6.14 and 6.15, page
104) and the relative measure Djaj;r (equations 6.16, page 104).

Table 6.12: Assessment of model exactness for median FE concentrations
Da Djaj Drms Djaj;r

Calder/LAS -15.288 114.113 37.152 1.857
Went/LAS 323.269 323.269 157.384 6.384
Don/LAS 151.838 207.539 129.886 2.023
Aire/LAS 28.319 126.777 31.817 2.673
Aire/LAS calibrated 15.625 113.474 28.768 1.367
Calder/Boron -2.241 145.605 59.593 0.423
Went/Boron 48.593 244.208 109.716 0.332
Don/Boron -66.969 120.287 60.901 0.157
Aire/Boron 30.776 124.393 40.098 0.341

Discussion

Most of the monitored sites are simulated with an error that is less than a factor
of 2, and all are within a factor of 10, except for one site in Went where a rather
low measured LAS concentration is overestimated (Ackworth, figure 6.7 and
table A1.2). However, for this case the absolute error is less than for many
other sites, with an error within a factor of 2.

In general, the relative error for boron simulations is lower than for LAS in all
of the catchments (table 6.12). The reason for this is probably that only one
source of uncertainty exists for boron (release estimation), while for LAS two
sources exist: release estimation and treatment removal.

Outliers Besides Ackworth, the most obvious outliers are the sites at Cridling
Stubbs and Kirk Smeaton for LAS in the Went catchment (figure 6.7 and ta-
ble A1.2). Both are simulated as trickling filter plants and overestimate the
effluent concentration. Since these sites do not overestimate the boron concen-
tration (though they are quite high), it is likely that the plants perform better
than average trickling filter plants. One explanation could be that they own
improved treatment facilities. However, these two plants serve less than 1000
people (with a short sewer system and low effluent flows), which might in-
duce special flow and release patterns in terms of special days (washing days),
for which the monitoring was not designed.
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For the overestimation of LAS at Tupton and Holbrook in the Don/Rother
catchment (figure 6.8 and table A1.3), similar circumstances may hold as for
Cridling Stubbs and Kirk Smeaton.

Another outlier for LAS was the Esholt treatment plant in the Aire catchment
(figure 6.9 and tables A1.4, A1.5). It was confirmed by the local authorities that
this plant owns a tertiary treatment facility, so that it actually performs far bet-
ter than usual trickling filter plants. This site was calibrated with a site-specific
LAS elimination of 99.8%, which was derived from an influent/effluent moni-
toring comparison. Here, it is compared against the same effluent monitoring
and hence fits quite well.

At the Dewsbury site in the Calder catchment (figure 6.10 and table A1.6) the
measured mean concentration of boron was more than a factor of 2 higher
than the simulated mean concentration. Dewsbury serves quite a large num-
ber of people, which means that the simulated mass flow for boron is even
more significantly underestimated. LAS at Dewsbury is underestimated by a
factor of almost 2. This points out the possibility of a wrongly estimated con-
sumption for this site. Another explanation could be additional boron releases
from sources other than surfactants. Dewsbury is a highly industrialized city,
where glass or ceramics are manufactured and where other boron-releasing
industries maybe placed.

Dewsbury is a city with high industrial activities where some might be glass
and ceramics manufacturing and other boron releasing industries.

Tendencies A tendency of general over- or underestimation was not identi-
fied for LAS and boron.

Table 6.12 shows that LAS for the Went catchment is an exception, since it was
overestimated (in terms of median concentration) for all sites (Da = Djaj). Also,
the relative deviation is significantly higher than for all other scenarios. Since
the relative deviation for Went/Boron is relatively low, the reason for the bad
LAS modeling might be based on wrong treatment removal efficiencies.

Monitoring The selection of monitored sites did not consider the results of
an initial simulation in order to identify locations of very high or very low
predicted concentrations.

For example, in the Calder/Boron scenario (figure 6.10), the simulation shows
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two sites with over 800 �g=L that have not been included in the monitoring
program. These sites significantly contribute to the main stream load and
should be checked in order to avoid aftereffects for the subsequent in-stream
simulation. For the LAS scenario in the Don/Rother none of the sites below
400 �g=L, which essentially are all activated sludge plants, have been mea-
sured (figure 6.8). Thus, this scenario lacks a basic check for sites with this
type of treatment plant. As a third example, the Aire/Boron scenario (figure
6.13) shows that most monitored sites are from a group of sites with predicted
concentrations of between 400 and 600 �g=L, although the predicted concen-
trations are almost equally distributed from 300 to 1000 �g=L.

These three examples show that initial simulations prior to monitoring cam-
paigns should be used to identify sites that should be monitored.

The substance emission into the river network forms the link to the next model
in sequence. Since the monitoring campaigns delivered only concentrations,
the according mass flux could only be estimated using average effluent flows.
An improved comparison of in-stream simulation with in-stream monitoring
based on measured emission substance flux is not possible. Instead, the errors
of the first models in the chain are carried forward to the next models and
increase the overall uncertainty of the results.

For a separate evaluation of the river model, it is recommended to measure
effluent flows accompanied to effluent concentrations.

In order to cover most of the catchment’s mass flux it is recommended to select
monitoring sites based on expected emission, rather than on release. For the
Yorkshire situation, this basically means that trickling filter plants weigh more
than activated sludge plants.

6.4.3 In-stream concentrations

Mean simulated and measured concentrations for in-stream sites are directly
compared in figures 6.14 to 6.31. While the scattered plots include all mon-
itoring sites, the profiles include only the main stream of the corresponding
catchment. For boron, additional profiles with a constant background level,
taken from a measurement upstream of any emission site (close to the source),
are included. For simulation results in tabular form, see Appendix A.2 (page
157).
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Figure 6.14: LAS in the Calder: Mean in-stream concentration
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Figure 6.15: LAS in the Calder: Mainstream profile
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Figure 6.16: LAS in the Went: Mean in-stream concentration
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Figure 6.17: LAS in the Went: Mainstream profile
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Figure 6.18: LAS in the Don/Rother: Mean in-stream concentration
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Figure 6.19: LAS in the Don/Rother: Mainstream profile of River Rother
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Figure 6.20: LAS in the Aire: Mean in-stream concentration
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Figure 6.21: LAS in the Aire: Mainstream profile
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Figure 6.22: LAS in the Aire (calibrated): Mean in-stream concentration
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Figure 6.23: LAS in the Aire (calibrated): Mainstream profile
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Figure 6.24: Boron in the Calder: Mean in-stream concentration
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Figure 6.25: Boron in the Calder: Mainstream profile
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Figure 6.26: Boron in the Went: Mean in-stream concentration
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Figure 6.27: Boron in the Went: Mainstream profile
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Figure 6.28: Boron in the Don/Rother: Mean in-stream concentration
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Figure 6.29: Boron in the Don/Rother: Mainstream profile of River Rother
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Figure 6.30: Boron in the Aire: Mean in-stream concentration
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Figure 6.31: Boron in the Aire: Mainstream profile
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Calculated measures for the model exactness based on the simulation results
and available monitoring data are shown in table 6.13. This table summarizes
the absolute measures Da, Djaj and Drms (equations 6.13, 6.14 and 6.15, page
104) and the relative measure Djaj;r (equations 6.16, page 104).

Table 6.13: Assessment of model exactness for median in-stream
concentrations

Da Djaj Drms Djaj;r

Calder/LAS -13.726 17.749 4.651 1.163
Went/LAS 2.764 7.401 3.134 0.975
Don/LAS -4.649 18.361 6.855 0.577
Aire/LAS -6.610 18.849 4.278 1.107
Aire/LAS calibrated -12.801 15.890 3.879 0.937
Calder/Boron -56.451 56.451 14.589 0.874
Went/Boron -176.936 176.936 67.369 3.037
Don/Boron -152.471 152.471 43.770 0.791
Aire/Boron -46.727 46.884 9.379 0.704

Discussion

The in-stream concentrations do not cover the peak concentration, due to slow
dilution, since the model assumes immediate full mixing. Hence, the sites for
in-stream monitoring were placed sufficiently remote from points of emission.

The simulation results are within a factor of 2 for most sites and, with the
exception of situations of unconsidered background levels, are always within
the same order of magnitude.

The relative deviation of simulation results from measured values, as shown
in table 6.13 (Djaj;r), is quite similar for all scenarios, even for the two different
substances (in contrast to final effluents, where boron clearly performs better
than LAS, see table 6.12). One exception, however, is the Went/Boron scenario.

For boron, a catchment-dependent background concentration is detected
through measurements upstream from any emission point (figures 6.25, 6.27,
6.29 and 6.31 and corresponding precise numbers in tables 6.3: Calder
Portsmouth, 6.5: Aire Gargrave and Aire Carleton, 6.7: Rother US Danesmore
STW). Concurrent low or almost zero LAS measurements (figures 6.15 and 6.19
and same tables as above) prove that the reason for the presence of boron is not
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unconsidered detergent consumption. A geological background level appears
to be an explanation.

Outliers At the confluence with the River Aire, the River Spen shows sig-
nificantly higher concentrations for both substances, LAS and boron, than any
other monitored in-stream site in the Calder catchment (figures 6.14 and 6.24).
The higher concentration can be explained due to a relatively low dilution in
comparison to a served population of almost 80,000.

A similar situation is present for the tributary Little Went, which carries the
discharges of Carleton (figures 6.16 and 6.26).

Low diluted effluents are also observed for the upper part of the River Rother,
downstream from Danesmoor and downstream from Tupton respectively (fig-
ures 6.19 and 6.29). The latter is overestimated by slightly more than a factor of
2. This is not regarded a serious problem since the high effluent volumes are
almost not diluted when mixing with low in-stream flow volumes and thus
create a higher uncertainty for measurements than for more downstream situ-
ations.

For the Aire/LAS scenario, two sites (Apperley and Calverley, figure 6.20)
show an overestimation. Both sites are located downstream from Esholt STW,
which required a site-specific calibration (figures 6.21 and 6.23). With the cal-
ibrated Esholt plant, Apperley and Calverley are no longer outliers (figure
6.22).

In comparison to all other in-stream sites for the Went/Boron scenario, the
site upstream from Ackworth shows an extreme underestimation (figure 6.26).
This fact is likely to be a consequence of an unconsidered background influ-
ence at an upstream location (absolute deviation da is almost the same as for
Hardwick Beck in table A2.7).

Tendencies Boron is generally underestimated. The median-based assess-
ments of the model’s exactness show an almost prevalent underestimation
(jDaj = Djaj, table 6.13). Also the direct comparison of mean concentrations
shows an underestimation for most sites; only a few are slightly overestimated.

For the Went catchment, the underestimation of boron appears to be caused by
an unusually high background concentration of almost 180 �g=L (figure 6.27
and table 6.13). A possible additional source of boron comes from flooded coal
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mines, which might have increased the natural contribution from the geologi-
cal background (according to personal communication with local authorities).
The high relative discrepancies Djaj;r (table 6.13) are partly due to the Went
being a small catchment highly loaded with additional constant input.

Site calibration The site calibration performed for Esholt STW in the Aire
catchment improved the simulation for the site itself and for some distance
downstream. The effect of the calibration decreases rapidly for readily degrad-
able substances such as LAS. The site calibration considered the removal effi-
ciency and thus has no effect on boron.

While the profile plot improves dramatically in terms of visual impression (fig-
ure 6.21 compared to figure 6.23: simulated concentration profile approaches
monitored values), Djaj and Dr improve only slightly (table 6.13). Da is even
worse than before, which is perhaps due to the more emphasized systematic
error because of a lower influence by site-specific errors.

6.4.4 Regional PECs

The spatially refined and explicit exposure assessment delivers a high number
of site-specific predicted concentrations. In the context of regional comparison
and evaluation, an adequate aggregation into single values is considered help-
ful in many ways. Any approach will stress or neglect certain properties of the
scenario under consideration. The actual focus and tolerable disadvantages of
a method are ultimately a matter of political weighting. However, such meth-
ods must always exclude basic dependencies, such as the scale and resolution
of the geographic data.

Two aggregation methods were developed within the GREAT-ER framework
(Boeije et al., 2000):

� PECinitial: unweighted aggregation of concentrations immediately down-
stream from wastewater emissions.

The predicted concentrations at the start of the receiving river segments
Csim;start are applied with the assumption of instantaneous full mixing.
Hence, they present a kind of a worst-case scenario. It should be kept
in mind that even higher concentrations are possible with incomplete
mixing. No in-stream removal influences this PEC.
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� PECcatchment: weighted aggregation of all stretch concentrations. Weight-
ing by flow increment is applied to eliminate the dependency on the river
network’s geographical detail (the inclusion of a high number of un-
loaded headwater stretches does not influence the PECcatchment) and the
dependency of inhomogeneous stretch lengths (weighting compensates
the fact that the average Csim decreases with increasing stretch length).

The only considered unloaded stretches are those directly upstream of
discharges. These stretches, by their flow increment (identical to their
actual flow), consider all of the unpolluted headwaters for the regional
weighting.

Table 6.14 summarizes PECinitial and PECcatchment for all scenarios including
the uncalibrated Aire/LAS catchment as computed by the GREAT-ER 1.0.1
software following the equations by (Boeije et al., 2000).

Table 6.14: Regional PECs [�g=L]
PECinitial PECcatchment

Calder/LAS 76.797 24.312
Went/LAS 111.162 20.796
Don/LAS 97.818 33.279
Aire/LAS 95.089 30.443
Aire/LAS calibrated 91.549 23.545
Calder/Boron 170.501 102.639
Went/Boron 218.680 115.863
Don/Boron 329.257 261.193
Aire/Boron 225.349 126.368

Discussion The results in table 6.14 show the same order of magnitude across
all four catchments for each combination of regional PEC type and substance.
With the exception of the Don/Boron scenario, all PECcatchment values are
within the very small range of 14 �g=L for LAS and 24 �g=L for boron (Table
6.14). The variations for PECintial are moderately higher. The reason for this
low variance is almost definitely caused by the fact that all four regions are
located close to each other, and therefore experience very similar discharges
and consumption rates, and are affected by the same climatic conditions.

A higher PECinitial does not automatically lead to a higher PECcatchment, as
shown by the Went/LAS scenario.

Only the PECinitial of the Don/Boron scenario exceeds the corresponding sub-
stance PNEC of 300 �g=L.
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6.4.5 Risk characterization

Risk within the EU Environmental Risk assessment scheme is the ratio be-
tween the Predicted Environmental Concentration (PEC) and the Predicted
No-Effect Concentration (PNEC). With given PNEC values and the results of
GREAT-ER simulations, this ratio can be calculated for all river stretches to dis-
tinguish sites potentially at risk from the safe sites. Either a simple true/false
pattern or a scheme considering several fractions or factors of the PEC/PNEC
ratio can be applied. Figures 6.32 to 6.39 show the regional site-specific risk
characterization with three classes, in which the lowest class covers sites with
a ratio of less than one tenth. The second class reaches a factor of one and the
final class covers any sites which are potentially at risk.

For the PNEC of boron the rather low value of 300 �g=L is applied. This value
is clearly below the maximum allowed concentration of 985 �g=L as used for
the award of the Community Eco-label to Laundry Detergents (EU, 1999b). It
is also below the current maximum value of 1000 �g=L defined for the drink-
ing water directive which is discussed to be lowered significantly to 300 �g=L
(Metzner et al., 1999).

For LAS a PNEC of 250 �g=L is applied. This value is derived in A.I.S.E./CESIO
(1995). A slightly higher value of 300 �g=L is used for the award of the
Community Eco-label to Laundry Detergents (EU, 1999b).
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Figure 6.32: Risk characterization for Went/LAS (PNEC=250�g=L)

Figure 6.33: Risk characterization for Went/Boron (PNEC=300�g=L)
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Figure 6.34: Risk characterization for Calder/LAS (PNEC=250�g=L)

Figure 6.35: Risk characterization for Calder/Boron (PNEC=300�g=L)
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Figure 6.36: Risk characterization for
Rother/LAS (PNEC=250�g=L)

Figure 6.37: Risk characterization for
Rother/Boron (PNEC=300�g=L)
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Figure 6.38: Risk characterization for Aire/LAS (PNEC=250�g=L)

Figure 6.39: Risk characterization for Aire/Boron (PNEC=300�g=L)

Discussion The risk characterization with GREAT-ER provides the opportu-
nity to explore site-specific risk estimation within a whole region. Nonetheless,
being a spatially refined and spatially explicit method without aggregation of
risk characterization it is not directly applicable to an official risk assessment
scheme such as for the evaluation of new or existing substances within the EU.

For this purpose, the risk characterization feature needs to be further devel-
oped towards a well discussed and agreed methodology to be incorporated
into the EU Environmental Risk Assessment scheme.



Chapter 7

Conclusions and outlook

7.1 Conclusions

The development and application of GREAT-ER has proven that geo-referenc-
ed exposure assessment is possible in terms of quality and also in terms of
practicability.

Such a system enables the review and understanding of spatial aspects in the
exposure behaviour of substances. Even some less precise input data will en-
able one to learn about the spatial aspects. This spatial view is not yet an
integral part in discussions between industry and authorities, and is not even
widespread in science. Thus a new awareness can be initiated. At a more prac-
tical level, decision support for data collection and screening is also provided.

The approach accommodates a higher level of complexity and uncertainty.
This requires a careful treatment and understanding of combined uncertain-
ties on the one hand. On the other hand, precise and well documented tech-
nologies must be issued to deal with the given complexity and to make the
process transparent for anyone who wants to track down a certain behavior
(provided he or she has sufficient experience in the corresponding topic). If
this transparency is not given, the tool becomes largely useless for any task to
which it was assigned.

141
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7.1.1 Adequacy of the developed tool

Construction of a usable tool

GREAT-ER was developed to be a hybrid in terms of its type of usage. An ap-
proach was chosen to develop a prototype which can easily evolve into a pro-
fessional tool, which at the same time is not limited to any scientific in-depth
analysis. However, this decision only marginally influenced the usability as-
pects of the system (e.g. lack of visually perfect user interface).

The principle usability aspects for the task of combining exposure assessment
and spatial reference have been addressed. The major issue that usability de-
sign has to cope with is the enormous volume of input and output data. This
is done on behalf of issuing the capabilities of a GIS realizing a visual interac-
tivity. The user works with dynamic maps retrieving information and partly
communicating changes via the map representation (e.g. selection of sites for
property editing). This type of interaction does not only provide comfortable
handling of the tool, it also enables the user to better understand complex data
and their interdependence.

GREAT-ER utilizes adequate technologies and demonstrates how the visual
interaction can greatly improve usability. Nevertheless, many further oppor-
tunities of the technologies which would additionally enhance the usability
of GREAT-ER (e.g. areal selection mode: drawing a box, circle or polygon to
select spatial objects) have not been realised.

Another important aspect of usability is the incorporation of expert knowl-
edge. When plugging several expert models together into one framework,
there is a need to support users who do not have the same expertise as the
system’s developers. Good support to prevent wrong application or interpre-
tation must be provided to keep the tool usable. GREAT-ER considered this
by implementing parameter error ranges, parameter warning ranges, default
values, parameter necessity indicators and parameter comments. These fea-
tures support performance of an application and provide transparency and
comprehensibility of scenarios as well. Further transparency could be gained
by making the model itself and the incorporated processes and parameter in-
terconnection visible in terms of dynamic graphical presentation. This has not
been realized in GREAT-ER, but is a desirable feature.
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Preparing input data

The preparation of purpose-adequate input data is one of the most problem-
atic tasks for geo-referenced exposure assessment. The principle dual-step ap-
proach using an intermediate pre-defined state of the required data has pro-
vided good support for the data collation and processing. The first step from
raw data to the intermediate state still requires manual work and control on the
basis of profound topic-related know-how. The automated second step, which
prepares ready-to-use data sets, offers anchorage in any plausibility checks.
Furthermore, this step is repeatable and thus supports interactive quality im-
provement. A final quality control has been proven to be unavoidable. The
raw data provided for GREAT-ER have been further improved with the in-
troduced methodology: several errors the data owner was not aware of have
been detected. However, this methodology still needs further user support in
order to achieve a high quality for large numbers of different catchments.

Questions that can be answered with the tool

GREAT-ER addresses the fate of consumer chemicals along the waste water
pathway. The following items GREAT-ER is able to deliver refer to this type of
application:

� general impression on what is going on

� identification of hot-spots

� quantification and location

� comparison of substances for the same catchment

� comparison of catchments for the same substance

� risk characterization

� usable results even for a small number of point emissions

� selected ”what-if” scenarios

First of all, GREAT-ER provides a good impression of the substances’ fate
within the catchment. Thus, understanding of the spatial aspects is supported
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by answering also the question of what happens to a substance in a certain
catchment.

Next, even with less precise basic data, hot-spots can be identified: the order
of magnitude and also a sufficient spatial reference/extent are supplied for
potential further investigation, e.g. monitoring.

With adequately refined and complete basic data, the tool offers quantification
and location at a level of precision (errors less than a factor of 2 and location
within a few hundred meters) that no other simulation method is able to pro-
vide.

GREAT-ER allows users to compare chemicals (e.g. substance alternatives for
a product) for one catchment, as well as the comparison of a chemical’s fate in
different catchments. Besides the principle comparison of maximum concen-
trations, with the PECinitial and PECcatchment support is given to identify and
judge differences and similarities.

With a given PNEC, a risk characterization for a substance/catchment combi-
nation can be performed. This characterization supports the refinement tier, as
proposed by the corresponding EU Technical Guidance Documents.

Simulations with only a very few discharge sites still offer usable results at the
same level of quality as for many discharge sites.

Finally, GREAT-ER allows to run a number of ”what-if” scenarios: improve-
ment of an STP, increasing/decreasing population, changes in substance con-
sumption.

Questions that can not be answered

Before applying GREAT-ER, one should carefully check whether the aspired
answers can be delivered with the tool in its current state. The following can
not be answered adequately:

� 2- or 3-dimensional analysis, e.g. transversal in-stream gradient

� analysis close to emission points

� chemical metabolites
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� chemical mixtures

� general ”what-if” scenarios

� transferability of results

Many questions will go further - for some GREAT-ER can be adapted, but for
others a different tool might be more appropriate.

The underlying model naturally limits the diversity of questions. The model
is one-dimensional which means that no analysis distinguishing the left from
the right bank can be made. Also, only the water body is considered for the
pathway and hence no explicit results for, e.g. fate in sediments, is offered.
The assumption of immediate full mixing prohibits a detailed analysis close
to emission points. Furthermore, questions regarding mixtures or the fate of
metabolites can not be answered with the presently incorporated model.

Besides these model-dependent items, the current data interface is not ex-
tended to allow ”what-if” scenarios regarding new plants or different flow sce-
narios (summer/winter). Each of these ”what-if” scenarios would just require
a new execution of the pre-processing. Since GREAT-ER does not incorporate
a hydrological flow estimation model, it does not make any sense to allow the
insertion of new STPs via the user interface, because flow regimes would be
affected and inconsistent situations would be created. No problems arise for
explicit flow scenarios.

Above all, it must be kept in mind that the tool can identify situations of high
substance concentration, but these are potentially not the only hot-spots in the
given catchment (due to incomplete basic data).

Finally, the transferability of the results from one scenario to other areas /
catchments is very problematic, because too many catchment-specific param-
eters are used.

Interpreting simulation results

The quality of the underlying data primarily determines the opportunities and
limititations of interpretation. No quantifying methods are available for the
actual determination; interpretation needs to be done on the basis of sound
scientific argumentation considering all information available. The consulta-
tion of background information, such as water quality maps, is quite helpful.
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Besides, any interpretation must bear in mind that GREAT-ER computes sta-
tistical results, which means that probabilities are given, rather than an explicit
prediction for a point in time.

Improving the quality of simulation results

Increasing the number of Monte-Carlo samples is a very limited way to im-
prove the quality of the results. It should only be used as a method to decrease
the uncertainty contributed by the stochastic approach below the level of other
uncertainties. This also means that there is no need to replace the Monte-Carlo
method by an alternative since other factors dominate the uncertainty and the
computational effort is negligable anyway.

A dominant role for the quality of simulation results is played by the adequacy
of the applied consumption and removal scenario. Compared to this, a further
refinement of spatial data has a less efficient cost-use benefit for the overall
quality (provided the level of refinement is sufficient for an adequate output
precision).

Thus a better review of the basic data in terms of additional plausibility checks
and consideration of local experts will contribute to the quality of simulation
results, at least by increasing trust in them.

Another option to gain a higher quality is adjustment at certain keypoints (e.g.
a discharge’s removal efficiency) based on monitoring results.

7.1.2 Further opportunities for the tool

Though it was not explicitly designed for this purpose, GREAT-ER has shown
the potential to become a vital support tool for planning monitoring studies.
Initial scenario simulations imply where situations need to be verified (or fal-
sified) via measurements. Also broad monitoring campaigns with a limited
budget can cover a regional situation on the basis of initial GREAT-ER simula-
tions more efficiently.
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7.2 Outlook

GREAT-ER is a fully developed and usable tool for analysing the ”down-the-
drain” path of consumer chemicals. It is a prototype for dealing with spatial
aspects in exposure modeling in general.

Some aspects need to be refined and some new ideas are generated which need
to be evaluated for possible integration.

7.2.1 Internet feasibility

For computer programs and data a central point of maintenance with web ac-
cess enables users to work with most current software releases and data. On
the technical level, two ways to take advantage of this opportunity exist: On
the one hand, users can download a computer program for local installation.
On the other hand, the Internet allows interaction with a central point (which
even includes a remote use of software). The first option is mostly feasible
for small- and medium-sized software packages with a large user group. The
second option is becoming more important for very large packages and a rela-
tively low number of users, and is also typical for many databases.

Bringing a complex GIS-based application with a voluminous database onto
the Web would, though with a limited user interface and user interaction,
complement the full GREAT-ER system that requires local installation. The
advantages are:

1. The applications are readily available without complicated installation
routines. The local system remains unchanged and no software conflicts,
disk capacity excess (large databases!), etc. have to be dealt with. Since
the local installation of a GIS is not required, no time is wasted, no main-
tenance skills are required and, of course, no costs for the software pack-
age are incurred.

2. Users do not depend on the operating system and/or the hardware plat-
form on which the actual GIS and database are running. It is sufficient to
use a browser providing the chosen data access and communication.

3. The centralized architecture means that maintenance of the system is
only needed at one point to keep users up-to-date. Besides the reduc-
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tion of redundance, this also reduces costs, because the server installa-
tion only needs to be developed and maintained for one operating sys-
tem and hardware platform.

4. Hosting at one place by a widely accepted competent authority will also
increase the general acceptance of and trust in the system and provided
data.

5. Many data sets are often owned by third parties. Many geographic data,
especially in vector format (geographic objects plus attributes), are con-
siderably valuable. Distributing these data via the Web will cause serious
licensing and legal problems. On the other hand, the Web also offers a
comfortable method to handle data accessability and unauthorized reuse
of geographic data: the server installation holds the geographic objects
and only sends out images of the requested maps. Data providers will
feel more comfortable with this technology and hence can be more easily
convinced to provide their data.

7.2.2 LCIA

The application of GREAT-ER 1.0 within a Life Cycle (Impact) Assessment,
LC(I)A, can be done in different ways.

The most straight-forward way calculates fate factors for appropriate, i.e. wide-
dispersive used ”down-the-drain”, chemicals based on reference emissions
that have taken place in reference regions, and which reflect at least in which
way wastewater is treated. The mean over all river stretches of normalized
concentration increases and can then be used as both substance- and catchment-
specific fate factors, i.e. the fate factors can be different for different countries
or regions. The key substance parameters are the chemical’s elimination be-
havior in wastewater treatment and in the surface water, while the main im-
portant geographic parameters are the way in which wastewater is treated,
as well as the hydrological data, which determines the dilution ratios in the
different stretches. The flow velocity is less important.

Alternatively, in cases in which the functional unit can be assigned to a time
span, an approach as proposed by (Schulze, 2000) can be followed. There, the
functional unit is defined as the use of a product system per time unit. Trans-
forming this on an annual basis allows for the direct use of the emitted mass as
an annual load. The mean concentration increase or the percentage of stretches
exceeding a defined reference concentration, e.g. a no-effect concentration, are
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possible fate or characterization factors, which are then also functions of the
emitted mass. Schulze (2000) proposes a critical length as the sum across all
river stretches of a catchment and all substances emitted due to the functional
unit of mean concentration increases weighted by the length of the stretch and
divided by a no-effect concentration. This approach deviates from the frame-
work of equation 1 and is therefore clearly located in a later stage of an LCA:
If emissions of ”down-the-drain” chemicals have been recognized as impor-
tant, such an assessment can be done to gain further information that may be
useful to many decisions. The GREAT-ER graphical user interface (GUI) was
extended to allow automated simulations of product ingredients based on the
above-mentioned procedure.
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Appendix A

Simulation results

All tables share the same columns:

� Name: Name of monitored site.

� Cmon: Mean monitored concentration.

� Csim: Mean simulated concentration.

� da: = Csim � Cmon (absolut deviation).

� dr: = jdaj=min(Cmon; Csim) (relative deviation)
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A.1 Final effluents

A.1.1 LAS

Table A1.1: Calder - LAS - Final Effluents
Name Cmon Csim da dr

Ossett Spa 358 373 15 0.042
Huddersfield 108 219 111 1.035
Brighouse 601 268 -332 1.235
North Bierley 203 285 82 0.409
Caldervale 22 87 65 2.973
Shibden Head 488 356 -131 0.370
Halifax 69 77 8 0.129
Neiley 344 277 -66 0.240
Milner Royd 11 106 95 8.722
High Royd 96 233 137 1.436
Redacre 514 220 -293 1.336
Eastwood 204 125 -78 0.623
Mitchell Laithes 539 280 -258 0.920
See also figure 6.6, page 116.

Table A1.2: Went - LAS - Final Effluents
Name Cmon Csim da dr

Fitzwilliam 322 305 -16 0.054
Ackworth 6 122 116 19.462
Carleton 413 636 223 0.542
Kirk Smeaton 153 970 817 5.345
Askern Norton 199 382 183 0.923
Cridling Stubbs 197 760 563 2.862
Stapleton Park 196 352 156 0.797
See also figure 6.7, page 116.
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Table A1.3: Don/Rother - LAS - Final Effluents
Name Cmon Csim da dr

Holbrook 218 578 360 1.653
Woodhouse Mill n.d. 151 - -
Long Lane 577 562 -14 0.026
Danesmoor 697 535 -161 0.302
Tupton 101 443 342 3.396
Old Whittington n.d. 117 - -
See also figure 6.8, page 117.

Table A1.4: Aire - LAS - Final Effluents
Name Cmon Csim da dr

Gargrave 223 400 177 0.794
Snaygill 218 333 115 0.529
Marley 183 296 113 0.619
Dowley Gap 504 326 -177 0.545
Esholt 14 308 294 21.064
Knostrop 354 329 -24 0.073
Wheldale 173 341 168 0.976
Sutton 361 480 119 0.331
Eastwood 204 125 -78 0.622
Redacre 514 220 -293 1.334
High Royd 96 234 138 1.438
Milner Royd 11 106 95 8.682
Halifax 69 77 8 0.124
Shibden Head 488 356 -131 0.369
Brighouse 601 269 -331 1.233
Neiley 344 277 -66 0.239
Huddersfield 108 219 111 1.037
North Bierley 203 286 83 0.410
Mitchell Laithes 539 280 -258 0.919
Ossett Spa 358 373 15 0.043
Caldervale 22 87 65 2.956
See also figure 6.9, page 117.
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Table A1.5: Aire calibrated - LAS - Final Effluents
Name Cmon Csim da dr

Gargrave 223 401 178 0.799
Snaygill 218 334 116 0.533
Marley 183 297 114 0.624
Dowley Gap 504 327 -176 0.541
Esholt 14 15 1 0.101
Knostrop 354 330 -23 0.070
Wheldale 173 342 169 0.981
Sutton 361 481 120 0.334
Eastwood 204 126 -77 0.617
Redacre 514 220 -293 1.328
High Royd 96 234 138 1.444
Milner Royd 11 106 95 8.669
Halifax 69 77 8 0.123
Shibden Head 488 357 -130 0.366
Brighouse 601 269 -331 1.227
Neiley 344 278 -65 0.235
Huddersfield 108 220 112 1.042
North Bierley 203 286 83 0.413
Mitchell Laithes 539 281 -257 0.914
Ossett Spa 358 374 16 0.046
Caldervale 22 86 64 2.951
For Esholt see figure 6.9, page 117.
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A.1.2 Boron

Table A1.6: Calder - Boron - Final Effluents
Name Cmon Csim da dr

Ossett Spa 691 621 -70 0.113
Huddersfield 393 365 -27 0.074
Brighouse 416 447 30 0.074
North Bierley 484 476 -7 0.017
Caldervale 682 465 -216 0.465
Shibden Head 458 592 133 0.292
Halifax 598 415 -183 0.442
Neiley 413 461 48 0.117
Milner Royd 262 570 307 1.174
High Royd 239 389 150 0.628
Redacre 276 366 89 0.324
Eastwood 218 209 -9 0.044
Mitchell Laithes 1116 467 -649 1.389
See also figure 6.10, page 118.

Table A1.7: Went - Boron - Final Effluents
Name Cmon Csim da dr

Fitzwilliam 891 508 -382 0.752
Ackworth 785 654 -130 0.200
Carleton 747 1060 312 0.419
Kirk Smeaton 1092 1617 524 0.480
Askern Norton 720 637 -82 0.130
Cridling Stubbs 1156 1267 110 0.096
Stapleton Park 795 586 -208 0.355
See also figure 6.11, page 118.

Table A1.8: Don/Rother - Boron - Final Effluents
Name Cmon Csim da dr

Holbrook 831 963 131 0.158
Woodhouse Mill 987 807 -179 0.222
Long Lane 987 937 -50 0.054
Danesmoor 986 891 -94 0.106
Tupton 1057 739 -317 0.430
Old Whittington 704 623 -80 0.130
See also figure 6.12, page 119.
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Table A1.9: Aire - Boron - Final Effluents
Name Cmon Csim da dr

Gargrave 455 665 210 0.462
Snaygill 450 554 104 0.231
Marley 504 492 -11 0.023
Dowley Gap 427 542 115 0.271
Esholt 459 513 54 0.118
Knostrop 495 548 53 0.108
Wheldale 592 568 -23 0.042
Sutton 837 799 -37 0.047
Eastwood 218 209 -9 0.044
Redacre 276 366 89 0.324
High Royd 239 389 150 0.628
Milner Royd 262 570 307 1.174
Halifax 598 415 -183 0.442
Shibden Head 458 592 133 0.292
Brighouse 416 447 30 0.074
Neiley 413 461 48 0.117
Huddersfield 393 365 -27 0.074
North Bierley 484 476 -7 0.017
Mitchell Laithes 1116 467 -649 1.389
Ossett Spa 691 621 -70 0.113
Caldervale 682 465 -216 0.465
See also figure 6.13, page 119.
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A.2 In-stream

A.2.1 LAS

Table A2.1: Calder - LAS - In-stream
Name Cmon Csim da dr

Calder Methley Br. 39 20 -18 0.904
Calder Portsmouth 3 0 -3 -
Calder Heptonstall 35 15 -19 1.246
Calder Hebden Br. 21 6 -14 2.034
Calder Brearley Weir 28 9 -18 2.097
Calder Sowerby Br. 20 11 -8 0.779
Calder Copley Br. 27 7 -19 2.441
Calder North Dean 35 15 -19 1.222
Red Beck at Brookfoot 17 26 9 0.571
Calder Rastrick Br. 23 10 -12 1.121
Calder Cooper Br. 26 8 -17 2.003
Colne at Colne Br. 21 6 -14 2.130
Calder Battyeford 64 36 -27 0.747
Spen A644 80 103 23 0.296
Calder Dewsbury 61 31 -29 0.962
Calder Horbury Br. 78 34 -43 1.241
Calder Kirkgate 68 29 -38 1.337
Calder Stanley Ferry 59 23 -35 1.503
Calder Methley Br. 39 20 -18 0.904
See also figures 6.14 and 6.15, page 123.

Table A2.2: Went - LAS - In-stream
Name Cmon Csim da dr

Went US Hardwick Beck 31 0 -31 -
Went at Ackworth 6 6 0 0.011
Went at Standing Flats Br. 10 13 3 0.397
Little Went at Hardwick Road 137 137 0 0.001
Went at Went Br. 12 20 8 0.716
Went at Walden Stubbs 8 13 5 0.626
Went at Sykehouse 10 15 5 0.503
See also figures 6.16 and 6.17, page 124.
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Table A2.3: Don/Rother - LAS - In-stream
Name Cmon Csim da dr

Rother US Tupton 32 44 12 0.383
Rother DS Tupton 46 97 51 1.124
Drone DS Dronfield Bypass 86 0 -86 -
Rother at Newbridge Lane 25 5 -19 3.355
Rother at Cow Lane 14 0 -14 -
Doe Lea at Renishaw 21 37 16 0.796
Rother at Renishaw 25 22 -2 0.106
Rother at Holbrook 30 38 8 0.274
Rother at Woodhouse Mill 26 47 21 0.814
Rother DS Woodhouse Mill 59 31 -27 0.869
Rother at Canklow 50 38 -11 0.298
Don at BSC Rotherham Gate 14 15 0 -15 -
Don at Rawmarsh Road - Rotherham 21 29 8 0.395
Rother US Danesmoor 3 0 -3 -
Rother DS Danesmoor 239 195 -43 0.225
See also figures 6.18 and 6.19, page 125.
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Table A2.4: Aire - LAS - In-stream
Name Cmon Csim da dr

Aire Gargrave -1 0 1 -
Aire Carleton -1 0 1 -
Aire Crossflatts 22 27 5 0.236
Aire Cottingley Br. 17 23 6 0.374
Aire Salts Weir 25 25 0 0.025
Aire Buck Br. 15 17 2 0.183
Aire above Esholt 13 15 2 0.229
Aire Apperley Br. 15 89 74 4.948
Aire Calverley Br. 15 69 54 3.645
Aire Kirkstall Br. 21 51 30 1.442
Aire Leeds Br. 22 36 14 0.672
Aire US Thwaite Mill 30 30 0 0.023
Aire Fleet Weir 124 71 -52 0.738
Aire Allerton Bywater 96 59 -36 0.600
Aire Beal Br. 46 25 -20 0.780
Calder Portsmouth 3 0 -3 -
Calder Heptonstall 35 15 -19 1.256
Calder Hebden Br. 21 6 -14 2.046
Calder Brearley Weir 28 9 -18 2.108
Calder Sowerby Br. 20 11 -8 0.785
Calder Copley Br. 27 7 -19 2.453
Calder North Dean 35 15 -19 1.237
Red Beck at Brookfoot 17 26 9 0.568
Calder Rastrick Br. 23 10 -12 1.133
Calder Cooper Br. 26 8 -17 2.020
Colne at Colne Br. 21 6 -14 2.139
Calder Battyeford 64 36 -27 0.752
Spen A644 80 103 23 0.294
Calder Dewsbury 61 31 -29 0.967
Calder Horbury Br. 78 34 -43 1.246
Calder Kirkgate 68 29 -38 1.342
Calder Stanley Ferry 59 23 -35 1.509
Calder Methley Br. 39 20 -18 0.908
See also figures 6.20 and 6.21, page 126.
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Table A2.5: Aire (calibrated) - LAS - In-stream
Name Cmon Csim da dr

Aire Gargrave -1 0 1 -
Aire Carleton -1 0 1 -
Aire Crossflatts 22 27 5 0.253
Aire Cottingley Br. 17 23 6 0.392
Aire Salts Weir 25 25 0 0.036
Aire Buck Br. 15 17 2 0.192
Aire above Esholt 13 16 3 0.238
Aire Apperley Br. 15 18 3 0.200
Aire Calverley Br. 15 15 0 0.036
Aire Kirkstall Br. 21 11 -9 0.803
Aire Leeds Br. 22 8 -13 1.589
Aire US Thwaite Mill 30 7 -22 3.201
Aire Fleet Weir 124 60 -63 1.057
Aire Allerton Bywater 96 50 -45 0.887
Aire Beal Br. 46 23 -22 0.979
Calder Portsmouth 3 0 -3 -
Calder Heptonstall 35 15 -19 1.226
Calder Hebden Br. 21 6 -14 2.018
Calder Brearley Weir 28 9 -18 2.078
Calder Sowerby Br. 20 11 -8 0.768
Calder Copley Br. 27 7 -19 2.431
Calder North Dean 35 15 -19 1.221
Red Beck at Brookfoot 17 26 9 0.576
Calder Rastrick Br. 23 10 -12 1.123
Calder Cooper Br. 26 8 -17 2.008
Colne at Colne Br. 21 6 -14 2.122
Calder Battyeford 64 36 -27 0.738
Spen A644 80 104 24 0.301
Calder Dewsbury 61 31 -29 0.954
Calder Horbury Br. 78 34 -43 1.233
Calder Kirkgate 68 29 -38 1.330
Calder Stanley Ferry 59 23 -35 1.499
Calder Methley Br. 39 20 -18 0.901
See also figures 6.22 and 6.23, page 127.
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A.2.2 Boron

Table A2.6: Calder - Boron - In-stream
Name Cmon Csim da dr

Calder Methley Br. 244 145 -98 0.679
Calder Portsmouth 26 0 -26 -
Calder Heptonstall 56 33 -22 0.675
Calder Hebden Br. 33 16 -17 1.088
Calder Brearley Weir 40 22 -18 0.840
Calder Sowerby Br. 48 28 -20 0.740
Calder Copley Br. 54 27 -27 1.012
Calder North Dean 144 74 -69 0.922
Red Beck at Brookfoot 154 107 -47 0.439
Calder Rastrick Br. 150 68 -82 1.197
Calder Cooper Br. 128 65 -62 0.951
Colne at Colne Br. 97 34 -63 1.850
Calder Battyeford 151 98 -53 0.545
Spen A644 416 267 -149 0.557
Calder Dewsbury 168 108 -59 0.552
Calder Horbury Br. 206 123 -83 0.679
Calder Kirkgate 213 125 -88 0.706
Calder Stanley Ferry 221 138 -83 0.602
Calder Methley Br. 244 145 -98 0.679
See also figures 6.24 and 6.25, page 128.

Table A2.7: Went - Boron - In-stream
Name Cmon Csim da dr

Went US Hardwick Beck 179 0 -179 -
Went at Ackworth 202 20 -182 8.903
Went at Standing Flats Br. 315 87 -228 2.615
Little Went at Hardwick Road 530 431 -98 0.229
Went at Went Br. 311 123 -188 1.533
Went at Walden Stubbs 269 109 -159 1.449
Went at Sykehouse 244 118 -125 1.058
See also figures 6.26 and 6.27, page 129.
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Table A2.8: Don/Rother - Boron - In-stream
Name Cmon Csim da dr

Rother US Tupton 308 172 -135 0.788
Rother DS Tupton 311 286 -25 0.088
Drone DS Dronfield Bypass 266 0 -266 -
Rother at Newbridge Lane 180 42 -138 3.264
Rother at Cow Lane 317 0 -317 -
Doe Lea at Renishaw 408 218 -190 0.872
Rother at Renishaw 295 252 -42 0.166
Rother at Holbrook 328 261 -67 0.257
Rother at Woodhouse Mill 299 367 68 0.229
Rother DS Woodhouse Mill 334 286 -47 0.167
Rother at Canklow 353 300 -52 0.176
Don at BSC Rotherham Gate 14 287 0 -287 -
Don at Rawmarsh Road - Rotherham 441 216 -225 1.044
Rother US Danesmoor 106 0 -106 -
Rother DS Danesmoor 512 474 -37 0.079
See also figures 6.28 and 6.29, page 130.
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Table A2.9: Aire - Boron - In-stream
Name Cmon Csim da dr

Aire Gargrave 20 0 -20 -
Aire Carleton 30 0 -30 -
Aire Crossflatts 99 68 -30 0.446
Aire Cottingley Br. 109 64 -44 0.695
Aire Salts Weir 107 77 -30 0.397
Aire Buck Br. 112 61 -51 0.840
Aire above Esholt 113 59 -53 0.893
Aire Apperley Br. 177 195 17 0.098
Aire Calverley Br. 157 194 37 0.240
Aire Kirkstall Br. 164 188 24 0.151
Aire Leeds Br. 163 177 13 0.082
Aire US Thwaite Mill 167 182 15 0.091
Aire Fleet Weir 246 217 -29 0.133
Aire Allerton Bywater 279 220 -59 0.269
Aire Beal Br. 259 189 -69 0.365
Calder Portsmouth 26 0 -26 -
Calder Heptonstall 56 33 -22 0.667
Calder Hebden Br. 33 16 -17 1.078
Calder Brearley Weir 40 22 -18 0.831
Calder Sowerby Br. 48 28 -20 0.732
Calder Copley Br. 54 27 -27 1.003
Calder North Dean 144 75 -68 0.914
Red Beck at Brookfoot 154 107 -46 0.433
Calder Rastrick Br. 150 68 -81 1.187
Calder Cooper Br. 128 66 -62 0.942
Colne at Colne Br. 97 34 -63 1.836
Calder Battyeford 151 98 -53 0.539
Spen A644 416 268 -148 0.552
Calder Dewsbury 168 108 -59 0.546
Calder Horbury Br. 206 123 -83 0.672
Calder Kirkgate 213 125 -88 0.699
Calder Stanley Ferry 221 138 -82 0.596
Calder Methley Br. 244 146 -98 0.672
See also figures 6.30 and 6.31, page ??.
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Appendix B

Errors detected in GREAT-ER 1.0.1

During the detailed application and analysis of GREAT-ER 1.0.1, some errors
in the data were identified and corrected for the present analysis:

� Went/FE-Monitoring: Carelton wrongly connected to StretchID 8882 -
should be 25775.

� Went/FE-Monitoring: Criddling Stubbs wrongly connected to StretchID
25804 - should be 7107.

� Went/FE-Monitoring: Kirk Smeaton wrongly connected to StretchID 26709
- should be 26773.

� Don/FE-Monitoring: Long Lane wrongly connected to StretchID 26573 -
should be 8278.

� Don/FE-Monitoring: Holbrook wrongly connected to StretchID 26782 -
should be 126800.
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keine als die angegebenene Quellen und Hilfsmittel verwendet
zu haben.

(I hereby declare that I have written this Doctoral thesis by my-
self, and that Ihave only used the given sources and aids.)

Osnabrück, June 17th, 2001,
(Jan-Oliver Wagner)


