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UNIVERSITÄT POTSDAM
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Kurzzusammenfassung

Die Separation natürlicher und anthropogen verursachter Klimaänderungen ist eine bedeutende
Aufgabe der heutigen Klimaforschung. Hierzu ist eine detaillierte Kenntnis der natürlichen Kli-
mavariabilität während Warmzeiten unerlässlich. Neben Modellsimulationen und historischen
Aufzeichnungen spielt hierfür die Analyse von sogenannten Klima-Stellvertreterdaten eine
besondere Rolle, die anhand von Archiven wie Baumringen oder Sediment- und Eisbohrkernen
erhoben werden. Um solche Quellen paläoklimatischer Informationen vernünftig interpretieren
zu können, werden geeignete statistische Modellierungsansätze sowie Methoden der Zeitreihen-
analyse benötigt, die insbesondere auf kurze, verrauschte und instationäre uni- und multivariate
Datensätze anwendbar sind.

Korrelationen zwischen verschiedenen Stellvertreterdaten eines oder mehrerer klimatologischer
Archive enthalten wesentliche Informationen ber den Klimawandel auf großen Zeitskalen. Auf
der Basis einer geeigneten Zerlegung solcher multivariater Zeitreihen lassen sich Dimensionen
schätzen als die Zahl der signifikanten, linear unabhängigen Komponenten des Datensatzes.
Ein entsprechender Ansatz wird in der vorliegenden Arbeit vorgestellt, kritisch diskutiert und
im Hinblick auf die Analyse von paläoklimatischen Zeitreihen weiterentwickelt. Zeitliche Vari-
ationen der entsprechenden Maße erlauben Rückschlüsse auf klimatische Veränderungen. Am
Beispiel von Elementhäufigkeiten und Korngrößenverteilungen des Cape-Roberts-Gebietes in
der Ostantarktis wird gezeigt, dass die Variabilität der Dimension der untersuchten Datensätze
klar mit dem Übergang vom Oligozän zum Miozän vor etwa 24 Millionen Jahren sowie
regionalen Abschmelzereignissen korreliert.

Korngrößenverteilungen in Sedimenten erlauben Rückschlüsse auf die Dominanz verschiedener
Transport- und Ablagerungsmechanismen. Mit Hilfe von Finite-Mixture-Modellen lassen sich
gemessene Verteilungsfunktionen geeignet approximieren. Um die statistische Unsicherheit der
Parameterschätzung in solchen Modellen umfassend zu beschreiben, wird das Konzept der
asymptotischen Unsicherheitsverteilungen eingeführt. Der Zusammenhang mit dem Überlapp
der einzelnen Komponenten sowie der aufgrund des Abschneidens und Binnens der gemesse-
nen Daten verloren gehenden Informationen wird anhand eines geologischen Beispiels diskutiert.

Die Analyse einer Sequenz von Korngrößenverteilungen aus dem Baikalsee zeigt, dass bei der An-
wendung von Finite-Mixture-Modellen bestimmte Probleme auftreten, die eine umfassende kli-
matische Interpretation der Ergebnisse verhindern. Statt dessen wird eine lineare Hauptkompo-
nentenanalyse verwendet, um den Datensatz in geeignete Fraktionen zu zerlegen, deren zeitliche
Variabilität stark mit den Schwankungen der mittleren Sonneneinstrahlung auf der Zeitskala
von Jahrtausenden bis Jahrzehntausenden korreliert. Die Häufigkeit von grobkörnigem Material
hängt offenbar mit der jährlichen Schneebedeckung zusammen, während feinkörniges Material
möglicherweise zu einem bestimmten Anteil durch Frühjahrsstürme aus der Taklamakan-Wüste
herantransportiert wird.





Abstract

The separation of natural and anthropogenically caused climatic changes is an important task of
contemporary climate research. For this purpose, a detailed knowledge of the natural variability
of the climate during warm stages is a necessary prerequisite. Beside model simulations and
historical documents, this knowledge is mostly derived from analyses of so-called climatic proxy
data like tree rings or sediment as well as ice cores. In order to be able to appropriately
interpret such sources of palaeoclimatic information, suitable approaches of statistical modelling
as well as methods of time series analysis are necessary, which are applicable to short, noisy,
and non-stationary uni- and multivariate data sets.

Correlations between different climatic proxy data within one or more climatological archives
contain significant information about the climatic change on longer time scales. Based on an
appropriate statistical decomposition of such multivariate time series, one may estimate dimen-
sions in terms of the number of significant, linear independent components of the considered
data set. In the presented work, a corresponding approach is introduced, critically discussed,
and extended with respect to the analysis of palaeoclimatic time series. Temporal variations of
the resulting measures allow to derive information about climatic changes. For an example of
trace element abundances and grain-size distributions obtained near the Cape Roberts (Eastern
Antarctica), it is shown that the variability of the dimensions of the investigated data sets
clearly correlates with the Oligocene/Miocene transition about 24 million years before present
as well as regional deglaciation events.

Grain-size distributions in sediments give information about the predominance of different
transportation as well as deposition mechanisms. Finite mixture models may be used to
approximate the corresponding distribution functions appropriately. In order to give a complete
description of the statistical uncertainty of the parameter estimates in such models, the concept
of asymptotic uncertainty distributions is introduced. The relationship with the mutual
component overlap as well as with the information missing due to grouping and truncation of
the measured data is discussed for a particular geological example.

An analysis of a sequence of grain-size distributions obtained in Lake Baikal reveals that there
are certain problems accompanying the application of finite mixture models, which cause an
extended climatological interpretation of the results to fail. As an appropriate alternative, a
linear principal component analysis is used to decompose the data set into suitable fractions
whose temporal variability correlates well with the variations of the average solar insolation on
millenial to multi-millenial time scales. The abundance of coarse-grained material is obviously
related to the annual snow cover, whereas a significant fraction of fine-grained sediments is likely
transported from the Taklamakan desert via dust storms in the spring season.





Contents

Introduction 1

1 Time Series Analysis in Palaeoclimatology 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Linear Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Nonlinear Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Typical Problems in Palaeoclimatic Data Analysis . . . . . . . . . . . . . . . . . 8
1.5 Wavelet Analysis in Palaeoclimatology: A Univariate Example . . . . . . . . . . 10
1.6 Correlations in and between Palaeoclimate Records . . . . . . . . . . . . . . . . . 13
1.7 Climate Records: Correlation or Synchronisation ? . . . . . . . . . . . . . . . . . 17

2 Statistical Modelling of Finite Mixture Distributions 21
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The Expectation-Maximisation (EM) Algorithm . . . . . . . . . . . . . . . . . . 22

2.2.1 Likelihood Functions and Maximum Likelihood Principle . . . . . . . . . 23
2.2.2 Expectation-Maximisation Algorithm: The Basic Idea . . . . . . . . . . . 24
2.2.3 Parameter Estimation in Finite Mixture Models . . . . . . . . . . . . . . 24

2.3 Parameter Estimation for Grouped and Truncated Data . . . . . . . . . . . . . . 26
2.3.1 The Problem of Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Likelihood Functions for Grouped Non-Truncated Data . . . . . . . . . . 28
2.3.3 Likelihood Functions for Grouped Truncated Data . . . . . . . . . . . . . 30
2.3.4 The EM Algorithm for Grouped Truncated Data . . . . . . . . . . . . . . 32
2.3.5 Parameter Estimation in Finite Mixture Models . . . . . . . . . . . . . . 33
2.3.6 Related and Concurring Approaches . . . . . . . . . . . . . . . . . . . . . 35

2.4 Estimation of Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Information-based Standard Errors . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Resampling-based Standard Errors . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.4 Uncertainty Distributions and their Asymptotic Behaviour . . . . . . . . 40
2.4.5 Application: Grain-Size Distributions from Lake Baikal Sediments . . . . 43

2.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.1 Uniqueness and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.3 Maximisation Step for Non-Gaussian Components . . . . . . . . . . . . . 50

i



ii CONTENTS

3 Dimension Estimates of Multivariate Time Series 51
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 KLD-Based Dimension Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Statistical Decomposition of Multivariate Data Sets . . . . . . . . . . . . 52
3.2.2 KLD Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 LVD Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Application to Stochastic Component Time Series . . . . . . . . . . . . . . . . . 57
3.3.1 Independent Standardised Gaussian Components . . . . . . . . . . . . . . 57
3.3.2 Independent Non-Standard Gaussian Components . . . . . . . . . . . . . 58
3.3.3 Behaviour of Variances in the Presence of Additive Noise . . . . . . . . . 58
3.3.4 Non-Gaussian Components . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Application to Subsets of Large-Scale Systems . . . . . . . . . . . . . . . . . . . . 62
3.5 Sedimentology of the Cape Roberts Project . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Cenozoic Climate Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.2 Location and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.3 Analysis of Trace Element Abundances . . . . . . . . . . . . . . . . . . . 70
3.5.4 Analysis of Grain-Size Distributions . . . . . . . . . . . . . . . . . . . . . 75

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Analysis of Grain-Size Distributions from Lake Baikal 79
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Measurement of Grain-Size Distributions . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Statistical Approaches to Grain-Size Analysis . . . . . . . . . . . . . . . . . . . . 80
4.4 Mechanisms of Detrital Input into Lake Baikal . . . . . . . . . . . . . . . . . . . 82
4.5 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Statistical Analysis of the Lake Baikal Record . . . . . . . . . . . . . . . . . . . . 84

4.6.1 Global Statistical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6.2 Statistical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Summary 97

Danksagung 99

List of Publications 101

Bibliography 103

A EM Algorithm for Gaussian Mixture Models 133
A.1 Maximisation Step for Gaussian Components using Explicit Observations . . . . 133
A.2 Maximisation Step for Grouped Normal Data . . . . . . . . . . . . . . . . . . . . 134
A.3 Finite Normal Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.4 Numerical Approximation of the Error Function . . . . . . . . . . . . . . . . . . 141
A.5 Recent Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



CONTENTS iii

B Standard Errors Based on the Information Matrix 143
B.1 The Score Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.2 Conditional Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.3 Unconditional Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.4 Score Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.5 Empirical Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.6 Covariance Matrices for Grouped and Truncated Data . . . . . . . . . . . . . . . 148
B.7 Information-based Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.8 Grouped Truncated Data from Gaussian Mixtures . . . . . . . . . . . . . . . . . 151

C Real-World Examples of Grouped Data 153
C.1 Mixtures of Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.2 Lognormal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.3 Mixtures of Lognormal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 156



iv CONTENTS



Introduction

The present global climate change has severe effects on the entire biosphere of the Earth. In
addition to the successive environmental pollution due to the increasing human population and
industrial activity, the climatic conditions controlling the growth of vegetation are changing.
For example, in several areas of the world, the desertification has become significantly more
intensive during the last centuries, which leads to a decrease of the area suitable for agriculture.
In addition, a changing vegetation has an influence on the climate because the surface albedo is
closely related to the global energy balance. Together with limited natural resources, the climate
change is believed to be the most severe problem mankind is confronted with in the near future.
Predictions based on intensive model studies suggest that under an industrial business-as-usual
scenario, the global average temperature will increase by several degrees until the end of this
century, which is underlined by recent studies coordinated by the intergovernmental panel of
climate change (IPCC). This rise of temperatures (which will be nonhomogeneously distributed
over the Earth) is likely to lead to a successive melting of polar ice caps followed by a dramatic
change of the oceanic sea level, to shifts of atmospheric oscillation patterns, to a higher number
and intensity of extreme weather events, and to a variety of other possible phenomena.

The question which contribution to this climate change is actually ”man-made” (i.e., of an-
thropogenic origin) has been an intensive matter of debate during the last years. The knowledge
of the corresponding answer is important in order to develop strategies for coping with the
changing environmental conditions: whereas the anthropogenic part might be modified by sus-
tainable environmental policies, the natural variability of environmental conditions can hardly
be controlled. Hence, estimates of the ratio between anthropogenic and natural climate change
are urgently required, which means that both contributions have to be separated in recent
climate records as well as models. For this purpose, a detailed knowledge about the natural
variability of the climate is necessary. Besides the simulation with suitable climate models,
the study of palaeoclimatic proxy data from other historical periods with similar environmental
conditions, but without anthropogenic influence may contribute essential information. Hence,
there is particular interest in studying the climate variability in the early Holocene (the time
period following the last glacial) and previous warm stages like the Eemian (about 120,000 years
before present).

The Earth’s climate varies on very different temporal scales related to different driving forces:
The annual cycle is caused by the variations of the solar net radiation. Cycles on decadal scales as
the El Niño/Southern Oscillation (ENSO) or the North-Atlantic Oscillation (NAO) are related to
the internal variability of the athmosphere-ocean system. Solar cycles on the decadal scale (as the
with a period around 11 years or the Gleisberg cycle with an average period length of 88 years)
are known to drive climate variations. Centennial scale oscillations of the solar output have an
effect on the ocean circulation. The orbital dynamics of the Sun/Earth system is responsible for
climate variations on millenial scales and in particular for glaciation/deglaciation cycles. Plate
tectonics and elevation of the continents and changes in their positions have a direct influence
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2 INTRODUCTION

on the atmospheric and oceanic circulation on very long time scales.
Palaeoclimatic proxy data representing variations of environmental conditions can be ob-

tained on, e.g., sediments, ice cores, or rock deposits from locations distributed over the entire
Earth. Therefore, the study of palaeoclimatic proxy data obtained from multiple sites is a major
foundation of our present-day knowledge about the climate system and its natural and anthro-
pogenically undisturbed behaviour on long time scales. To achieve an overall picture of the
information included in a particular geological source under investigation, complementary mea-
surements and analyses are thus performed. These analyses involve measurements of physical,
chemical, and (in the case of sedimentary sequences) biological or sedimentological parameters
as the corresponding observables are influenced by different climatic variables in different ways.
Furthermore, age models (that quantify the age-depth relationship of a sediment or ice core)
incorporating information of their uncertainties must be developed.

The intention of geological studies based on the observation of multiple palaeoclimatic proxy
data is to identify and analyse signatures of climate change and attribute them to the variability
of climatologically meaningful quantities. A direct interpretation of the individually measured
time series in terms of meteorological parameters is often not possible. Therefore, it is a standard
approach to derive variability patterns from multivariate geological time series which can be
assigned to changes of meaningful climatic observables like temperature, moisture conditions
(i.e., seasonal precipitation, snow volumes), vegetation cover, or the strength and location of
different atmospheric oscillatory patterns. For this purpose, one frequently makes use of transfer
functions. However, as such transfer functions are usually derived based on heuristic arguments
and uncertain or incomplete data, this approach may be a potential matter of criticism (for
examples, see, e.g., [Telford et al. 2004b, Telford and Birks 2005]).

This thesis contributes some new methodological ideas to the field of multivariate palaeocli-
matic data analysis. As it is further discussed in the next chapter, there are many well-developed
approaches of linear and non-linear time series analysis, which however can hardly be applied to
palaeoclimatic data. This is due to the fact that time series obtained from geological sequences
are characterised by features like an uneven sampling in the time domain, an uncertain chronol-
ogy, a small number of observations with rather high noise levels, and instationarity including
the potential presence of transitions between different states of the local climate system (e.g.,
glacial/interglacial variability).

The scientific achievements presented in this thesis are organised as follows: In Sect. 1, recent
developments and remaining challenges in palaeoclimatic time series analysis are summarised.
As a particular approach relevant for the statistical modelling of grain-size distributions (a
palaeoclimatic proxy of increasing importance), finite mixture models are introduced in Sect. 2.
New results about the statistical assessment of uncertainty in such models and open problems
still to be solved on the way towards a standardised application of this approach to particle-size
analysis in geology are discussed. In Sect. 3, dimension estimates based on the Karhunen-
Loéve decomposition (KLD) of a record are introduced as a novel concept for quantifying the
temporally variable content of information in general multivariate data sets. The potential
power of this approach is presented by applying it to generic model systems and real-world
palaeoclimatic data sets from Cape Roberts (East Antarctic). Possible directions of further
research on this topic are outlined. An extensive discussion of the applicability of both, finite
mixtures and KLD-based analysis, to a well-resolved sequence of grain-size distributions from
Lake Baikal is presented in Sect. 4.



Chapter 1

Time Series Analysis in
Palaeoclimatology

1.1 Motivation

The basic idea of time series analysis is to consider observational records as a realisation of
a certain stochastic process. The features of this process can be described by suitable sta-
tistical characteristics, like probability distribution functions, correlations, Fourier spectra or
other appropriate measures, which can be estimated from the measured time series. As most of
these characteristics have originally been developed to describe the features of certain idealised
stochastic models, their traditional estimators assume also ideal conditions, which are rarely
present in case of real-world systems.

The special features of palaeoclimatic time series require some very specific modifications of
these standard approaches of data analysis (which are discussed in the next sections). Typical
difficulties include rapid transitions between states with different environmental conditions, a
small number of observations, and a rather high degree of uncertainty of the respective mea-
surements. In addition, standard estimators of measures in time series analysis use data with
a constant sampling rate, i.e., measurements are carried out in constant time intervals. In
palaeoclimatology, time series of proxy data are gained from geological sequences like sediments,
ice cores, or rocks. Here, the accumulation rate of the deposits under investigation is a priori
unknown and may significantly vary with time. Hence, even measurements of proxies with a
constant sampling interval along the sequence do usually not guarantee that there is a constant
sampling in the time domain as well. In general, this is clearly not the case, as in many situa-
tions, older material at the bottom of the sequence is more compressed than younger one at the
top due to physical (higher pressure due to the mass of the upper layers) or (especially in the
case of ice cores) chemical processes.

Fig. 1.1 shows three typical examples of palaeoclimatic records:

• The Deuterium record of an Antarctic ice core record near the Vostok station
[Petit et al. 1999] covers the last about 420,000 years of climate history (see Sec. 1.5).
δD describes the relative deviation of the deuterium content with respect to an interna-
tional standard, SMOW (standard mean ocean sea water), and can be used as a proxy for
palaeotemperature.

• The magnetic susceptibility record from a lacustrine sediment obtained in Lake Baikal,
Eastern Siberia, covers the last about 20,000 years. Although this proxy is a parameter
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4 CHAPTER 1. TIME SERIES ANALYSIS IN PALAEOCLIMATOLOGY

strongly influenced by the palaeomagnetism, it is also very sensitive to palaeoclimatic
conditions.

• The width of treen rings (averages over a suitably large ensemble of samples) and other
records allow to reconstruct temperature fluctuations over the last centuries to millenia.
As an example, an annual reconstruction of [Moberg et al. 2005] of northern hemisphere
mean temperatures is shown.

In particular, the first example clearly illustrates the problem of uneven sampling, as there
are only very few data in the older part of the sequence, although the measurement of the
palaeotemperature proxy has been performed in regular intervals of 1 m along the ice core.

Figure 1.1: Three examples of palaeoclimate records. Upper left figure: Deuterium content from
the Vostok ice core (Antarctica) as a measure of palaeotemperature over the last glacial cycles.
Upper right figure: Magnetic susceptibility of a sediment record from Lake Baikal. Lower figure:
Reconstruction of northern hemisphere annuan average temperatures during the last centuries
(difference with respect to the mean value of the reference interval 1961-1990).

In this chapter, typical features of palaeoclimatic proxy data and the resulting challenges
for time series analysis are summarised. The power and possible problems of wavelet analysis
of geological records are studied as an example applicable to univariate data. Finally, potential
approaches to the study of interrelationships of climatological time series and the corresponding
relevant questions are briefly discussed.
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1.2 Linear Time Series Analysis

The probably most traditional methods for the analysis of an univariate time series X(t) with
length T are Pearson’s autocorrelation function

CX(τ) =
〈(X(t)− 〈X(t)〉) (X(t+ τ)− 〈X(t)〉)〉〈

(X(t)− 〈X(t)〉)2
〉 (1.1)

(where 〈·〉 denotes the average value of the observable X, which is usually approximated by the
sample mean taken from the time series of observations), and the power spectrum

SX(k) =

∣∣∣∣∣ 1√
T

T∑
t=1

X(t)e2πikt/T

∣∣∣∣∣
2

. (1.2)

Both characteristics are closely related via the Wiener-Khinchin theorem, stating that the
Fourier transform of CX(τ) equals the power spectrum. One can easily formulate appropriate
generalisations to the case of bivariate data (i.e., two time series X(t) and Y (t)) [Priestley 1981],
leading to the cross-correlation function

CXY (τ) =
〈(X(t)− 〈X(t)〉) (Y (t+ τ)− 〈Y (t)〉)〉√〈

(X(t)− 〈X(t)〉)2
〉〈

(Y (t)− 〈Y (t)〉)2
〉 (1.3)

and the cross-spectral density function

SXY (k) = F {CXY (τ)} (1.4)

where F(·) denotes the Fourier transform operator. In a similar way, one can also find gener-
alisations to multivariate time series consisting of N > 2 simultanaeosly recorded observables,
however, in this case, correlations and spectral densities become (N ×N) matrix-valued for any
τ and k, resp.

Together with the probability density function, correlation functions and power spectra are
referred to as methods of linear data analysis. This is due to the fact that their application
bases on the assumption that the underlying statistical processes are linear-stochastic. The
appropriateness of this assumption has to be validated by testing the corresponding null hy-
pothesis using a suitable test statistics. The most conventional approach uses surrogate data
with the same linear features like the original time series, which can be constructed by shuf-
fling the phases of the Fourier-transformed time series or substituting them by random numbers
[Theiler et al. 1992, Prichard and Theiler 1994]. In a similar way, one may also fit an auto-
regressive model of appropriate order to the data and consider a number of realisations of this
model. From ensembles of such surrogate time series, one can compute suitable characteris-
tics quantifying the deviation from a linear-stochastic process, e.g., the so-called Q-statistics
measuring the skewness of a time series [Theiler et al. 1992]

Q(τ) =

〈
(X(t+ τ)−X(t))3

〉
〈
(X(t+ τ)−X(t))2

〉 . (1.5)

If the value of Q computed from the original time series is outside of a certain quantile of the
distribution of the values from the surrogate data sets, the null hypothesis has to be rejected
with the corresponding probability.
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In addition to a linear-stochastic nature of the underlying process, the Gaussianity and sta-
tionarity of the time series are typical prerequisites for a success- and meaningful application
of linear time series analysis. Here, Gaussanity means that the observed data are distributed
according to a normal distribution, i.e., the statistical features of the time series are completely
described by the first and second moments as all higher-order moments vanish. This condition is
often implicitly assumed before applying linear methods in time series analysis. For example, it
is convenient to standardise time series by substracting means and dividing by the standard devi-
ations before calculating correlation functions. The above mentioned approach of Fourier surro-
gates for testing the hypothesis of a linear-stochastic process has usually to be improved in a sim-
ilar way by an appropriate adjustment of the data to Gaussian distributions, leading to the (iter-
ative) ampltude adjusted Fourier transform ((I)AAFT) surrogates [Schreiber and Schmitz 1996,
Paluš and Novotna 1999, Schreiber and Schmitz 2000, Venema et al. accepted].

In comparison to the stationarity of a time serie, the Gaussianity condition is relatively mild.
In particular, there are non-parametric statistical analoga of Pearson’s correlation function for
non-Gaussian time series based on a rank-ordering of the observed values. Examples from this
class of rank-order correlation functions are Spearman’s Rho (which converges to the Pearson
correlation if T →∞) or Kendall’s Tau [Lehmann 1975, Conover1980].

In contrast to a non-Gaussianity of a time series, instationarity may easily cause any linear
method of data analysis to fail. Stationarity means that all statistical features of a time series
(in particular, moments and correlations) are constant over the entire record. Depending on how
the term ”all statistical features” is interpreted, one may distinguish between different levels,
from strong stationarity (all moments of arbitrary order are constant) to weak stationarity (the
first and second moments are constant), where the latter one is again related to an implicit
assumption of a Gaussian process. In general, a sophisticated proof of the stationarity of an
observed process requires an appropriate statistical test [Witt et al. 1998, Rieke et al. 2002,
Rieke et al. 2004]. However, even if a time-series is found to be non-stationary (which is the
typical case for observational records, e.g., in geosciences), there are still possible generalisations
of the above mentioned linear methods, for example, time-dependent (evolutionary) spectra
[Priestley 1988] and probability density functions, or methods of time-frequency analysis like
wavelets [Holschneider 1995].

1.3 Nonlinear Time Series Analysis

In real-world systems, completely linear processes are rather exceptional. Therefore, it has
been necessary to develop appropriate concepts for the analysis of time series originated from
nonlinear processes. In the following, the basic requirements of linearity and Gaussianity are
skipped, however, stationarity of the time series is still assumed.

For time series from nonlinear stationary processes, there is a large variety of methods for
quantifying the underlying dynamics [Abarbanel 1996, Kantz and Schreiber 1997]. These con-
cepts include measures of predictability, complexity, instability, or fractality, which characterise
the attractor properties (note that a basic assumption of time series analysis is that the observed
system is in some equilibrium state, which is reflected by the stationarity of the record). Many of
these approaches use an appropriate coarse-graining of the data, which loses information about
the explicitly observed values, but preserves the topological features of the trajectory in phase
space. Among the latter ones, fractal dimenensions, entropies, and measures derived from are
some of the most prominent nonlinear methods of time series analysis.

For characterising the dimension of a dynamical system, there are different approaches, in-
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cluding the Hausdorff, box counting, and several other dimensions [Falconer 1990]. However,
these mathematically well-defined concepts can hardly be applied to real-world time series.
Grassberger and Procaccia [Grassberger and Procaccia 1983] presented the concept of correla-
tion dimension as a practically applicable alternative. For calculating this measure, one has to
consider the correlation sum

C(ε) =
2

N(N − 1)

T∑
t=1

T∑
s=t+1

Θ(ε− ||X(t)−X(s)||) (1.6)

where Θ(·) denotes the Heaviside step function. Grassberger and Procaccia could show that
this correlation sum has in the limit T →∞ and ε→ 0 a characteristic scaling law, C(ε) ∝ εD2 ,
such that the correlation dimension can be defined according to

D2 = lim
ε→0

lim
T→∞

∂ lnC(ε, T )
∂ ln ε

. (1.7)

To approximate the corresponding limit in an appropriate way, Grassberger and Procaccia pro-
posed an algorithm using an m-dimensional embedding of the time series (i.e., considering the
time series Y (t) = (X(t), X(t+ 1), . . . , X(t+m− 1)) instead of X(t) itself) which estimates D2

by the value of D2(m) where (as a function of m) a plateau is approached.
Apart from the Grassberger-Procaccia algorithm, there is a variety of other approaches for

estimating the fractal dimension of a time series. The most traditional methods use the specific
scaling behaviour of auto-correlation function and power spectrum of self-similar processes,
however, they work well only in rather exceptional cases. Other approaches consider the curve
length of the embedded time series in dependence of the choice of the sampling interval used for
embedding [Burlaga and Klein 1986, Higuchi 1988]. I has been demonstrated that this concept
works rather well for geoscientific and other ”irregular” time series. A similar concept is the
so-called fluctuation analysis, where the scaling of rms displacements

F (τ) =
√〈

(X(t+ τ)−X(t))2
〉
− 〈X(t+ τ)−X(t)〉2 (1.8)

with varying τ is considered. Peng and co-workers [Peng et al. 1994] proposed to improve this
method by considering pieces of the time series which have been locally detrended, i.e., the
original time series is replaced by its residual with respect to a low-order polynomial obtained by
a least-square fitting of the observations in the considered time interval. The resulting detrended
fluctuation analysis has found many applications in the geosciences, however, the resulting
scaling behaviour is often interpreted as a long-range memory of the generating process which
may be misleading in certain situations [Maraun et al. 2004].

In climatology, the concept of fractal dimensions has been used to find a character-
isation of a supposed ”climate attractor” in terms of fractal theory. In particular, the
Grassberger-Procaccia algorithm has been applied to different univariate time series from mete-
orology [Sahay and Sreenivasan 1996] and palaeoclimatology [Maasch 1989, Schulz et al. 1994,
Mudelsee and Stattegger 1994a, Mudelsee and Stattegger 1994b, Mudelsee 1995]. The latter ar-
ticles clearly demonstrated that this approach has severe methodological problems when be-
ing applied to palaeoclimatic data, which is mainly related to the limited amount of data
and the instationarity of the record, including certain transitions of the climate system
[Mudelsee and Stattegger 1997].

A further obstacle might be even more fundamental: as the concept of fractal dimensions is
based on the assumption of a self-similar process, the corresponding measures may be misleading
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if this particular condition is not fulfilled. In turbulence, but also in a wide range of other
complex systems, the underlying system has been found to violate the self-similarity condition,
leading to more sophisticated concepts like extended self-similarity or multifractal analysis. For
example, in geosciences, observables characterising the hydrological cycle (like precipitation or
river runoff records) are rather frequently found to have a multifractal character. In this case,
the record cannot be described by a single fractal dimension, but requires a complete spectrum
of such dimensions. Hence, if an observational record is not self-similar, the estimation of D2 or
similar measures may not be appropriate for characterising the generating physical system.

The methods of nonlinear time series analysis discussed above have been originally introduced
for applications to univariate time series. However, several of the measures can be appropriately
extended to the multivariate case, including the Lyapunov spectrum [Bünner and Hegger 1999],
the scaling of fractal dimensions [Politi and Witt 1999], or dimension densities based on a nor-
malised Grassberger-Procaccia algorithm [Bauer et al. 1993]. As shown by [Olbrich et al. 1998],
the dimensions calculated from data sets depend crucially on the resolution of the observa-
tions. To overcome the corresponding difficulties in practical applications, Raab and co-workers
[Raab and Kurths 2001, Raab et al. 2005] have proposed a normalisation for approaching large-
scale correlation dimension densities (LASDID). Although this method has been designed for
applications to relatively short multivariate time series, it remains hardly possible to use mea-
sures based on the ”traditional” correlation dimension for characterising palaeoclimatic data
sets. Some of the reasons for this will be discussed in the next section.

1.4 Typical Problems in Palaeoclimatic Data Analysis

In the previous sections, some of the problems frequently occurring in the analysis of palaeo-
climatic data have already been briefly mentioned. For example, measurements of a particular
observable carried out on a part of a sediment or ice core reflect always information aggregated
over some part of the climate history, whereas it is treated as if corresponding to one particular
point in time. Hence, the sampling rate leads in general to a filtering of the data. Related prob-
lems are the uncertainty of measurement, possible perturbations of the deposited material (e.g.,
bioturbation, chemical reactions, diffusion etc.), and the sensitivity of palaeoclimatic proxy data
to other influences not directly related to climate. In summary, all these effects cause geological
time series to have (apart from their typical irregular pattern) a rather high noise level.

Another problem is that most methods of time series analysis are designed for the treatment
of stationary data, i.e., the generating system is supposed to be in one particular equilibrium
state or can at least be considered to be in a quasi-equilibrium where changes occur on time-
scales which are sufficiently large compared to the time interval under consideration. In contrast
to this assumption, it is hardly possible to consider the climate system to be in an equilibrium,
as it is subjected to variable external forcings (solar irradiation, variations of the Earth’s orbital
parameters, changes in the geomagnetic field, volcanic activity, etc.). As the components of
the climate system interact with each other in a highly complicated way and obey a variety of
complex internal feedback mechanisms, these variable forcings necessarily drive the system out
of possible equilibrium states and may even generate dynamic transitions between states charac-
terised by different climatic conditions and dynamic behaviour of the corresponding observables
(e.g., a predominance of different atmospheric circulation patterns).

A very prominent example for externally induced transitions between states with different
climatic conditions is the sequence of glacials (popularly called ”ice ages”) and interglacials.
For the last about 1.8 million years (i.e., the Pleistocene and Holocene epochs), it is known
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that intervals of cold and warm periods (corresponding to a significant glaciation and deglacia-
tion of the high latitudes of both hemispheres) have been alternating in a more or less regular
way, firstly with a period of about 41,000 years, later about 100,000 years. The dynamics
of the corresponding mid-Pleistocene transition has been a subject of intensive research dur-
ing the last decades [Mudelsee and Schulz 1997]. Following ideas already developed by Joseph
Adhémar in 1842 and James Croll in the 1860s, Milutin Milankovich founded an astronom-
ical theory to explain this switching behaviour in terms of variations of the Earth’s orbital
parameters and corresponding changes in the solar insolation acting as a pacemaker of the
climate system [Paillard 2001, Berger and Loutre 2004, Bard 2004]. However, the so-called Mi-
lankovich theory is still subjected to intensive debates, as there are features which cannot be
completely explained only by the varying irradiation [Raymo 1997, Rial and Anaclerio 2000,
Elkibbi and Rial 2001, Wunsch 2003, Huybers and Wunsch 2003]. The observational fact of al-
ternating glacial/interglacial variability motivated the development of the theory of stochastic
resonance, stating the possibility of an amplification of a weak periodic forcing in a complex
system due to the presence of noise [Benzi et al. 1982, Benzi et al. 1983].

Another example for alternations of the climate system on shorter time scales are the so-
called Dansgaard-Oeschger cycles originally observed in ice-core records from Greenland cov-
ering the last glacial period [Dansgaard et al. 1993]. Surprisingly, the occurrence of the un-
derlying characteristic pattern seems to follow a well-defined cycle with a priod of 1470 years
[Bond et al. 1997, Mayewski et al. 1997, Grootes and Stuiver 1997]. Similar quasi-regular os-
cillatory patterns have also been observed in palaeoclimatic proxies from well-resolved marine
sediments and southern-hemispheric ice cores, where the latter ones allow insights into the dy-
namics during earlier glacial periods. However, the southern-hemispheric millenial-scale oscilla-
tion seems to be out-of-phase with respect to the northern hemispheric one [Hinnov et al. 2002].
The appropriate determination of the corresponding leads or lags (being in the order of mag-
nitude of the uncertainty of the age models assigned to the respective time series) is another
intensively discussed problem which resembles the classical chicken-or-egg question. In addi-
tion, signatures of the 1470-year climatic cycle have also been found during the Holocene (i.e.,
the current warm stage) [Bianchi and McCave 1999, Bond et al. 2001]. During the last years,
there has been an intensive debate whether the observed periodic signals are actually significant
[Wunsch 2000, Schulz 2002a, Rahmstorf 2003, Witt and Schumann 2005].

Whereas the occurrence of Dansgaard-Oeschger events during glacial epochs is commonly be-
lieved to be related to abrupt freshwater discharges in the North Atlantic (leading to a change in
the mode of the thermo-haline circulation), the actual mechanism leading to the pronounced pe-
riodicity is still unclear as there is no orbital counterpart acting on the corresponding timescale.
A variety of possible explainations has been proposed, including internal instabilities of the ice
shield [Schulz et al. 1999, Schulz 2002b] or ocean dynamics, tidal action, noise excitation, or an
external forcing of unknown origin (see [Timmermann et al. 2003] for a review). The latter idea
motivated a stochastic resonance approach [Alley et al. 2001], which may be triggered by suit-
able internal dynamics of the northern-hemispheric ice cover. Recently, the general possibility of
such a mechanism has been demonstrated in climate models [Ganopolski and Rahmstorf 2002].

The two examples (glacial/interglacial and Dansgaard-Oeschger variability) illustrate that
in the climate system, there are several possible states between whose transitions occur rather
frequently. Hence, the climate system cannot be considered to be in an equilibrium state. As a
consequence of the strong variability, palaeoclimatic records are usually far from being stationary,
which causes problems for the statistically appropriate time series analysis. In addition to the
dynamically meaningful transitions, there may be also strong outliers in the data caused by local
(e.g., landslides, floods,...) or larger-scale (e.g., earthquakes) extreme climatic or non-climatic
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events which increase the problems for data analysis. Concerning the high noise level, there are
(in principle) techniques allowing to separate stochastic and deterministic contributions to the
dynamics contained in a time series. However, as palaeoclimatic data are often characterised
by a low amount of data (or, equivalently, a low sampling rate) due to the extreme costs for
collecting and measuring samples, the number of available data is usually by far too low to apply
such methods successfully.

Apart from these rather general features of palaeoclimatic time series, the major problem
of data analysis in this field of research is related to the uneven sampling of the data in the
time domain, which calls for highly specified methods of time series analysis to derive mean-
ingful information about the dynamics of the underlying dynamics. In particular, the above
mentioned periodicities of climatic variations cannot be studied using simple power spectra due
to the instationarity of data, but require the application of time-dependent spectral estimators
or time-frequency techniques. For stationary data, appropriate techniques have been developed
to estimate the power spectrum [Schulz and Stattegger 1997, Heslop and Dekkers 2002], persis-
tence [Mudelsee 2002], or correspondung red-noise spectrum [Schulz and Mudelsee 2002] of a
unevenly sampled time series.

In the case of instationary data, one may use wavelets instead of the stan-
dard Fourier analysis. For transferring this time-frequency method to unevenly sam-
pled data, different approaches have been proposed, including the weighted wavelet Z-
transform [Foster 1996c, Andronov 1997, Andronov 1998, Andronov 1999, Schumann 2004,
Witt and Schumann 2005, Brauer et al. accepted, Witt and Oberhänsli 2006] based on a pro-
jection method in Fourier space [Foster 1996a, Foster 1996b], application of gapped wavelets
[Frick et al. 1997, Frick et al. 1998], or a generalised multiresolution analysis approach
[Otazu et al. 2002, Otazu et al. 2004]. However, although these methods are available,
there is a number of articles describing the direct application of standard wavelet anal-
ysis to geological time series using a certain interpolation to equal sampling intervals,
which (beside the age uncertainty always present in palaeoclimatic studies) necessarily leads
to additional errors [Bolton et al. 1995, Guyodo et al. 2000, Hargreaves and Abe-Ouchi 2003,
Glushkov et al. 2005]. This particular issue will be discussed in some detail in the next section.
To completely overcome the problem of uncertain age models [Telford et al. 2004a], research
efforts are currently made to combine the particular analysis method with an appropriate sta-
tistical approach, e.g., using Monte Carlo age models or probability density distributions for the
uncertain ages in a Bayesian framework.

1.5 Wavelet Analysis in Palaeoclimatology: A Univariate Ex-
ample

Wavelet analysis is a suitable tool for investigating periodic components, which occur temporar-
ily or with non-constant amplitudes. In particular, when studying the dynamics of the Earth’s
climate on large time scales, wavelet analysis of palaeoclimatic proxy data provides age intervals
that are dominated by certain periodicities. In general, one has to distinguish between con-
tinuous and discrete wavelet transforms, which again may have different versions (for example,
the non-decimated wavelet transform (NWT) utilised by [Glushkov et al. 2005] is a particular
version of discrete wavelet transform (DWT)).

As already discussed in the previous section, the uncertainty of age models of palaeoclimatic
records (see, e.g., [Telford et al. 2004b]) is the major source of problems and errors in spectral
analysis. Moreover, this uncertainty is not constant along a geological sequence: With increasing
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depth, there are usually less points of observation within a given time interval, such that the
uncertainty of the corresponding age estimates in this part of the record is larger than for younger
sediments. In addition, the uncertainty of every separate value increases with increasing age due
to limits of the corresponding methods (like radiocarbon / AMS 14C, luminescence dating, etc.).

Since observational evidence of Milankovitch theory has been found, records are frequently
tuned to the variability curve of solar irradiation. This means that between isolated points
with directly measured (but usually uncertain) age values, timescales are obtained by graphical
adjustment of large-scale variability patterns in the data with respect to their apparent repre-
sentations in the reference. It is questionable if such records can be used to study variations
on Milankovitch scales because they are implicitly used to generate these records. Variations
on Milankovitch scales of a record can be analysed if the corresponding age model is based
on a suitably large amount (or equivalently, a small spacing) of directly measured age values,
and (realistic) confidence intervals of all estimated ages that are significantly smaller than the
considered period.

In the following, two exemplary time series originally studied by [Glushkov et al. 2005] are
again investigated: the isotope record from a well-studied Antarctic ice core obtained at the
Vostok station, and a composite record containing observations from three tropical sediment
cores.

For the Vostok ice core, various age models based on different approaches have been pub-
lished (see, e.g., [Ruddiman and Raymo 2003]). As [Glushkov et al. 2005] have examined the
deuterium-based relative temperature data, it is likely that the GT4 timescale (also known as
the extended glaciological timescale EGT 20) according to [Petit et al. 1999] has been applied.
GT4 gives estimates for the age of the ice which is appropriate for analyzing the Deuterium sig-
nal. However, the estimated uncertainty of the corresponding age values ranges between 5 and
15 kyr where at least the latter value (for the older part of the record) leads to severe problems
for reconstructing variability signals on the 20 kyr band. Alternatively, there are more recent
age models that adjust the atmospheric δ18O to a synthetic orbital signal ([Shackleton 2000]) or
use CH4 measurements ([Ruddiman and Raymo 2003]). Both models are based on the chemical
characteristics of the gas that is confined in bubbles of the ice cores and, therefore, the gas age
may differ from the ice age significantly.

Following a proposal of [Shackleton 1995], the records of the marine cores V19-30 (replac-
ing the originally used SPECMAP stack for the upper 620 kyr of the composite sequence),
ODP 677 and ODP 846 have been combined to one marine sequence (sometimes referred to
as the S95 composite ([Lisiecki and Raymo 2005])) covering the last approx. 6 Myr of climate
history. The corresponding timescale has been obtained by combining the age models of the
respective components. Recently, several groups have considered benthic δ18O records from var-
ious marine cores to construct more sophisticated composites with improved age models (e.g.,
[Karner et al. 2002]). Correlating data sets with certain age measurements yields more reliable
timescales due to the larger amount of references. The resulting age models are based on dif-
ferent approaches. Very promising for this type of data analysis is the depth-derived, minimally
tuned HW04 timescale of [Huybers and Wunsch 2004] spanning the last 780 kyr. In contrast,
the (most recent) LR04 age model by [Lisiecki and Raymo 2005] is essentially aligned to the or-
bital forcing. By choosing either one or the other timescale, significant differences in the spectral
domain may be expected. A fair analysis should involve different age models and discuss their
effects on the spectral properties of the records.

A typical (but nonetheless problematic) approach to cope with unevenly sampled data is
an appropriate interpolation of the observed time series to a given, uniformly spaced grid. For
example, [Glushkov et al. 2005] have presented a variant of this method by interpolating with
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cubic Hermite polynomials. However, as spline interpolation has been found to fail in their
application, the appropriate choice of the local polynomials seems to play a crucial role for the
data sets considered.

Observational records do not provide information about the behaviour on time scales shorter
than the temporal resolution. The interpolation approach implicitely assumes that the observ-
able is well-behaved in time. This assumption is problematic for palaeoclimatic proxy data
which frequently show large differences (e.g., of temperatures) within small time windows. If
a signal consisting of temporary averages of a particular parameter (being the typical case in
palaeoclimatology) is interpolated again, the corresponding reconstruction of the variability may
remarkably differ from the actual one which influences the results of the wavelet analysis. Even
if the a particular wavelet approach performs well for analysing data with regular sampling, its
outcome must be treated with special care in the discussed application.

There are several approaches to overcome the problem of being dependent on information
distributed on a regular grid. The simplest idea is based on an application of the Haar wavelet,
a piecewise continuous function ([Scargle 1997]). A more realistic decomposition is provided by
using differentiable functions as mother wavelets (e.g., the Morlet wavelet). [Frick et al. 1998]
proposed appropriate corrections of the wavelet transform for gapped data records (GWM).
[Foster 1996c] introduced the weighted wavelet Z-transform (WWZ), a projection method re-
orthogonalizing the three basic functions (real and imaginary part of the Morlet wavelet and a
constant) by rotating the matrix of their scalar products. He furthermore introduces appropriate
statistical tests to distinguish between periodic components and a noisy background signal for
unevenly sampled data. [Andronov 1998] suggested a further improvement of WWZ by intro-
ducing additional weighting factors. Recently, WWZ was successfully applied to palaeoclimatic
records by [Witt and Schumann 2005]. Because GWN and WWZ consider only the information
directly measured along the cores, they are not affected by additional uncertainties caused by
interpolation. From this point of view, the corresponding approaches are more suitable for the
analysis of unevenly sampled data.

Apart from problems with interpolating data, wavelet analysis cannot be applied as a black-
box method because different choices for the mother wavelets, i.e., their shapes and spectral
representations are possible. Moreover, in case of a continuous wavelet transform, the scale
parameter that represents the spectral bandwidth must be fixed. It has to be statistically
tested if the wavelet coefficients indicate a signal that is significantly different from a white or
red noise climatic background. Only if such a test fails and the variability beyond the noisy
background signal is related to Milankovitch cycles, the reconstruction of the original signal as
a superposition of wavelet filtered components on Milankovitch scales is justified.

To illustrate the dependence on the wavelet basis, a continuous wavelet analysis (as in
[Witt and Schumann 2005]) has been performed for the Vostok deuterium record (this data
set is analysed rather than the temperature reconstruction for a better consistency to the ma-
rine δ18O records studied by [Glushkov et al. 2005]). Considering the wavelet amplitude map
shown in Fig. 1.2, it is found that this record has a rather complex variation structure. It is a
very rough approximation to model the variations of the Vostok deuterium record by a super-
position of variations on the three Milankovitch scales of about 20, 42, and 100 kyr, and a red
noise background (see Fig. 1.3). In particular, an additional period of about 60 kys (eventually
caused by a superposition of higher frequencies) occurs for the last 150 kys and has to be taken
into consideration.

Even if the above mentioned problems are ignored for reconstructing the variations on
Milankovitch scales, these reconstructions are far from being identical to those found by
[Glushkov et al. 2005]. Remarkable differences are especially found in the signal correspond-
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Figure 1.2: Original time series of the Vostok deuterium record (upper panel) and the corre-
sponding wavelet amplitudes (lower panel) depending on the localization (age) and the period
length. For calculations, the WWZ method and an abbreviated Morlet wavelet have been used.
Cross hatched regions indicate the cone of influence, where the wavelet analysis is affected by
edge effects. Contour lines mark periodic shares (red colors indicating the strongest period-
icities) that are significantly different from a red noise background assuming an error of 5%
(see [Witt and Schumann 2005] for details). The periods of the major Milankovitch cycles are
displayed by dashed lines. The bottom panel displays the color codes.

ing to eccentricity. This difference is caused on the one hand by the broader spectral bandwidth
of the Daubechies wavelet compared to the abbreviated Morlet wavelet. On the other hand, the
discrete wavelet transform reconstructs the entire signal, whilst the continuous wavelet trans-
form only its variability. This finding (which shall not claim if either of the reconstructions is
correct) illustrates that the choices of the wavelet basis and the wavelet scale parameters matter
and have to be discussed in detail.

1.6 Correlations in and between Palaeoclimate Records

In the previous sections, two particular questions have already been addressed related to the
question of adjustment and causality of palaeoclimatological records: On the one hand, one
frequently combines different observational data sets to one geological composite record. Simi-
larly, age models are often artificially transferred from well-studied sequences to cores where no
proper age estimates are available. In particular, dominating variability patterns are adjusted to
variations of orbital parameters (astronomical tuning), e.g., by using the so-called SPECMAP
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Figure 1.3: Reconstruction of wavelet amplitudes at the major Milankovitch scales of 100 (ec-
centricity), 42 (obliquity), and 20 kyr (precession), and the composition of these scales compared
to the long-term variability of the original time series (from bottom to top).

curve. To validate all these approaches, one has to assure that the physical mechanisms and
processes behind all considered data sets are actually comparable, which must not necessarily
be the case. If this assumption cannot be proven, the entire approach may be misleading. On
the other hand, the evaluation of leads and lags between climatic transitions on both hemi-
spheres is an intensively discussed problem, which is essentially related to a proper mechanistic
understanding of the underlying processes. The observation-based study of the corresponding
causality requires very accurate age estimates, which are usually missing.

The first question has already been under investigation for several decades. The traditional
approach in geology is the so-called sequence slotting (see [Thompson and Clark 1989] and ref-
erences therein) which aims on identifying prominent ”events” in different observational records
with each other and (usually linearly) interploating the relative age model between these points.
Beside a manual adjustment, application of dynamic programming techniques allows a wide-
ranging automatisation of the process [Lisiecki and Lisiecki 2002].
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A more sophisticated approach for deriving such relative age-depth models from the inter-
comparison of different (univariate) data sets may use non-parametric regression, for example,
the method of maximum correlation and optimum transformations which can be estimated using
the ACE algorithm [Breiman and Friedman 1985, Voss and Kurths 1997]. Witt and Oberhänsli
have proposed to transfer the (unknown) relative age model T (t) into a three-dimensional phase
space spanned by the sediment depth t, the age model T (t), and its derivative dT/dt, and com-
pute a path in this phase space which has minimum length under an appropriate smoothness
constraint [Witt and Oberhänsli 2003].

Finally, a third approach for synchronising the time scales of two geological records uses the
so-called line of synchronisation in a cross-recurrence plot [Marwan et al. 2002a]. The concept
of recurrence plots [Eckmann et al. 1987] has originally been designed as a tool to visualise the
correlation pattern within a single time series by comparing the observed value at any given
time ti with the values at any other times tj . A simple graphical representation is obtained by
comparing the difference to a prescribed threshold value ε and encoding this difference in depen-
dence on both times ti and tj according to the order relation with respect to ε. Mathematically,
the corresponding recurrence matrix of a time series X(t) is formulated using the Heavyside
function as

RX(ti, tj) = Θ (ε− ||X(ti)−X(tj)||) (1.9)

(note that this matrix depends on the particular choice of ε) and may be used for defin-
ing a bunch of nonlinear characteristics, based on statistics of either the diagonal or the
horizontal structures in terms of the so-called recurrence quantification analysis (RQA)
[Zbilut and Webber 1992, Webber and Zbilut 1994, Marwan et al. 2002b]. The simplest idea
is to consider the recurrence rate (i.e., the relative frequency of occurrence of the value
RX(ti, tj) = 1 on a diagonal defined by a fixed value of τ = tj − ti) as a generalised correla-
tion function sensitive also to nonlinear dependences. Moreover, the consideration of recurrence
plots allows to estimate several dynamic invariants, including the second-order Renyi entropy K2

(characterising the predictability of the system), the correlation dimension D2, and the mutual
information (see below) [Thiel et al. 2004, Asghari et al. 2004, von Bloh et al. 2005].

In a complex system, the question of a co-evolution of the dynamics of different observables
may be of particular relevance. The recurrence plot approach can consequently be extended
to an intercomparison between two time series X(t) and Y (t) by (i) substituting X(tj) by
Y (tj) in the definition of the recurrence matrix in terms of cross recurrence plots RXY (ti, tj)
[Zbilut et al. 1998], or (ii) point-wise multiplication of the component recurrence plots yielding
joint recurrence plots [Romano et al. 2004].

Whereas in a standard recurrence matrix, the main diagonal only contains the value ”1” by
definition, this is not necessarily the case in a cross-recurrence plot. However, if both time series
are strongly correlated, the value ”1” will still have a very high probability. If now the time scale
of one time series is transformed with respect to the second one, the predominant pattern of the
value ”1” will remain, but is shifted from the main diagonal. This pattern is called the line of
synchronisation and may be used for adjusting the time scales of different geological records (at
least if both reflect the same observable and/or have been obtained at neighboring locations.
Reversing this argument, if the time scales of two records would be exactly known, a shift of the
line of synchronisation would allow to estimate an eventual lead or lag between the palaeoclimate
dynamics recorded in the considered sequences, giving some important information about the
causality of the associated climate change. Unfortunately, as long as the uncertainties of the
age estimates are in the order of the typically expected leads and lags, this issue remains to be
a problem of mainly academic nature.



16 CHAPTER 1. TIME SERIES ANALYSIS IN PALAEOCLIMATOLOGY

Apart from the consideration of correlations between different palaeoclimatic records as
discussed above, the concept of correlation functions introduced in Sect. 1.2 can in general be
adapted in a framework of nonlinear data analysis. One possibility is the generalised auto-
correlation function derived from a recurrence plot (see above) which can be generalised to the
bi- and multivariate case by considering cross- or joint-recurrence plots instead. Beside this
approach, there is a variety of other nonlinear measures quantifying the statistical dependence
between two time series. The probably best known of these measures is the (cross-)mutual
information [Fraser and Swinney 1986]. To estimate this quantity, one traditionally considers
an appropriate discretisation of the time series X(t) and Y (t) into symbols {xi} and {yj}, resp.
The probability of these symbols, pi and pj , as well as the joint probability pij(τ) that xi and yj

occur simultaneously if the time series Y is lagged by τ time steps are empirically approximated
by their frequencies of occurrence in the observational records. These probabilities are used to
compute the corresponding Shannon entropies

H
(1)
X = −

∑
i

p
(X)
i log p(X)

i (1.10)

H
(1)
Y = −

∑
j

p
(Y )
j log p(Y )

j (1.11)

H
(1)
XY (τ) = −

∑
ij

pij(τ) log pij(τ). (1.12)

Finally, these Shannon entropies are combined yielding the following definition of the (cross-)
mutual information function:

IXY (τ) = H
(1)
X +H

(1)
X −H

(1)
XY (τ) =

∑
ij

pij(τ) log
pij(τ)
pipj

. (1.13)

IXY (τ) is by definition restricted to non-negative values, but not normalised. To approach a
corresponding standardisation to values in the unit interval, different proposals have been made
(for an overview, see [Kojadinovic 2005]). One particular approach adapts the procedure used
for the linear covariance function, i.e.,

JXY (τ) =
IXY (τ)√

IX(0)
√
IY (0)

. (1.14)

Here IX and IY are the univariate mutual information of the time series X(t) and Y (t), resp.
The concept of mutual information may also be further generalised by substituting the Shannon
entropies H(1) by Rényi entropies of order q,

H
(q)
X =

1
1− q

log
∑

i

[
p
(X)
i

]q
(1.15)

etc. The resulting generalised (cross-) mutual information functions may be useful for studying
the dynamics of suitable model systems in some detail [Pompe 1993], however, their applicability
to noisy and nonstationary (palaeo-)climatological data sets with a small amount of observations
is rather doubtful. In addition, the generalised mutual information functions are not necessarily
bounded from below by zero, which makes their interpretation more difficult. The concept of
(generalised) mutual information can also be transferred to the analysis of multivariate data sets
in terms of the so-called redundancies which can be applied to detect and test for nonlinearity
in multivariate observational records [Paluš et al. 1993, Paluš and Novotna 1994, Paluš 1995,
Paluš 1996].
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1.7 Climate Records: Correlation or Synchronisation ?

In order to be able to interprete the results of palaeoclimatic data analysis in an appropriate way,
it is necessary to have a good knowledge about present-day climatology. The climate system
is a high-dimensional complex system which is subjected to different global and local forcings
and the nonlinear action of internal feedback mechanisms. Therefore, its behaviour is highly
chaotic and characterised by an extreme sensitivity which may lead to sudden changes in the
dynamics of the entire system. Time series of variables recording the corresponding variability
are therefore typically very irregular and have rather high noise levels. This holds in particular
for the case of hydro-meteorological data obtained from direct measurements since the start of
the instrumental period, reconstructions of earlier time intervals, and modelling studies. More-
over, the variability of meteorological parameters like temperature and precipitation in both,
observations and climate models, is characterised by properties like non-Gaussian probability
distribution functions, multifractality and long-term persistence.

Atmospheric patterns are characterised by spatio-temporal scales on which meteorological
observables like temperature, air pressure or humidity vary only weakly. Measuring the temporal
evolution of such parameters at different locations influenced by the same pattern, it is thus
likely that the corresponding time series are more or less strongly correlated, with a maximum
correlation occuring at a time lag which corresponds to the spatial distance between the sites
and the typical drift velocity of the pattern. Due to the dynamic evolution of the observed
patterns during their spatial motion, the correlations between meteorological and hydrological
records decay with an increasing distance between the considered locations. This statement
holds in general for very different spatial and temporal scales.

For complex systems consisting of several sub-systems, a suitable coupling of the components
may lead to synchronisation, a very special kind of statistical dependence between the dynamics
of the sub-systems [Pikovsky et al. 2001]. The concept of synchronisation originally describes a
coupling-induced correlation between well-defined oscillatory dynamics in two systems, but may
be generalised to systems in which a certain specific behaviour is observed from time to time (e.g.,
the so-called event synchronisation important in neurophysiology [Quian Quiroga et al. 2002]).
In general, there are different types of synchronisation, including complete synchronisation,
phase synchronisation, generalised synchronisation, or lag synchronisation. To test for syn-
chronisation in real-world observational records, a sophisticated definition of a phase is re-
quired which is hardly possible for ver noisy, non-stationary or non-coherent data. Recently,
[Romano et al. 2005] suggested to define synchronisation indices based on bivariate recurrence
plots which are applicable to a broad class of data where standard methods of synchronisation
analysis fail.

Although there are major conceptual differences between correlations and synchronisation
(i.e., the presence of correlations does not necessarily mean synchronisation), both features are
frequently identified with each other. In the case of time series from climatology, this identifi-
cation is clearly wrong as observational records of different observables or at different stations
reflect different aspects of the same spatially extended system, while it is misleading to under-
stand the climate system to be composed of different well-defined and separated subsystems
interacting which each other in a complex way. Nonetheless, [Rybski et al. 2003] proposed that
for long-term daily temperature and precipitation records from different European stations, mea-
sures of phase synchronisation yield more significant results than the classical linear correlation
function.

On a world-wide scale, the interrelationships between sea-level pressure records obtained from
reanalysis data have been utilised to derive a network-like structure [Tsonis and Roebber 2004].



18 CHAPTER 1. TIME SERIES ANALYSIS IN PALAEOCLIMATOLOGY

Similar features are likely to be found in simulations of climate models as well, however, the
behaviour of such models is known to differ from reanalysis data not only in terms of absolute
variabilities and correlations, but also with respect to their non-linear features like the local
predictability [von Bloh et al. 2005]. On continental scales (i.e., several hundreds to thousands
of kilometers), simple linear cross-correlation functions may (depending on the particular geo-
graphic situation) not necessarily be an optimal measure for describing the interrelationships
and exactly detecting the delay corresponding to a maximum correlation between meteorological
time series.

In order to test the results of [Rybski et al. 2003] for generality, the dynamics of daily min-
imum and maximum temperature data has been studied for records from the meteorological
observatories at Armagh (Northern Ireland) [Butler et al. 2005] and Potsdam (Germany)1 cov-
ering the time interval between 1900 and 1999. Some isolated missing data in the Armagh time
series have been substituted by spline interpolates. The mean annual cycles over the considered
time interval have been removed from both time series, which have been standardised to zero
mean and unit variance afterwards to approach approximately stationary signals and allow a
further comparison of the records.

Figure 1.4: Linear cross-correlation (left), recurrence-based generalised cross-correlation (mid-
dle), and cross-mutual information (left) for 100-year records of daily maximum (circles) and
minimum (asterisks) temperatures at Armagh and Potsdam.

Fig. 1.4 shows the results of correlation analysis with different methods described in the
previous sections. In particular, linear cross-correlations, recurrence-based generalised cross-
correlations and cross-mutual information give very clear evidence of existing correlations. There
are, however, two interesting features that may be worth to be discussed further. Firstly, one
observes that the maximum correlations occur at a time lag of two days in the case of daily
maximum temperatures, whereas for the corresponding minimum values, a delay of only one
day is found. This finding indicates a true time lag between one and two days, which how-
ever is hardly to be exactly detected even in records with a higher temporal resolution as the
temperature fluctuations during one day are typically much larger than the differences between
successive days. In addition, the different lags may have been supported by different observa-
tional strategies. As a second feature, one observes a double-peak structure of all considered
functions indicating that there are significant correlations with an additional lag of four more
days which possibly indicates a very pronounced time scale of atmospheric oscillations.

In order to test the applicability of phase synchronisation analysis to this kind of data, a
phase variable has to be defined firstly for both time series considered. For a system with a well-

1These stations have been chosen because of the free availability of the corresponding time series from the
websites of the Armagh meteorological observatory and the German Weather Service DWD, resp. In addition,
both locations have a similar distance like Oxford and Vienna studied by [Rybski et al. 2003].
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defined oscillatory dynamics, one may reconstruct an analytic signal [Rosenblum et al. 1996] by
setting

SX(t) = X(t) + iX̃(t) = AX(t)eiφX(t) (1.16)

where X̃(t) is the Hilbert transform of the original time series defined as

X̃(t) =
1
π
P.V.

∫ ∞

−∞

X(τ)
t− τ

dτ. (1.17)

Hence, φX(t) = arctan(X̃(t)/X(t)) defines a proper phase for an oscillating system. However,
as real-world data are rarely phase-coherent, an equivalent phase definition may be used based
on time derivative of SX(t) instead [Osipov et al. 2003, Maraun and Kurths 2005].

Indices for phase synchronisation are based on the distribution of phase differences of the two
time series lagged by a time shift τ , ∆φ(t, τ) = |φY (t+ τ)− φX(t)| (in the case of t > 0), which
are normalised to the interval [0, 2π]. If one considers a partition of this interval into M bins
with pk(t) being the relative frequency of phase differences in the k-th bin, [Tass et al. 1998] to
use the Shannon entropy computed from these probabilities,

S(τ) = −
∑

k

= 1Mpk(τ) log pk(τ), (1.18)

to define a synchronisation index as

ρ(τ) =
logM − S(τ)

logM
. (1.19)

Alternative approaches consider the standard deviation of the normalised phase differences,
σδφ(τ), or the mean resultant length,

λ(τ) =
1
N

∣∣∣∣∣∣
N−|τ |∑
t=1

ei∆φ(t,τ)

∣∣∣∣∣∣ . (1.20)

[Paluš 1997] suggested to consider the mutual information between the two phases as a measure
of statistical dependence indicating phase synchronisation in noisy systems. However, that
all these approaches depend crucially on the existence of well-defined phase variables which is
problematic in systems where a coherent oscillatory component is missing.

The results of the corresponding analysis for the temperature time series are shown in Fig.
1.5. One observes that for the standard phase definition of [Rosenblum et al. 1996], only the
entropy-based index gives a very weak indication of phase coherence at a time lag of 1 to 2 days,
whereas the remaining measures completely fail. However, the positive result is successively lost
when a finer partition is applied to the normalised phase differences. Following the suggestions
in [Pikovsky et al. 2001], the applied phase definition is only useful in the case of phase-coherent
data with a narrow frequency spectrum which is not present for noisy meteorological data. Us-
ing the more generally applicable curvature method of [Osipov et al. 2003] instead, all three
indices yield no evidence at all for phase synchronisation. These results do not mean that there
is no synchronisation at all as the applied method is only sensitive to phase synchronisation as
one particular kind of synchronisation. In contrast, there may still be intermittent epochs of
enhanced phase coherence or even phase synchronisation which might be found by a separate
analysis of different time intervals. For example, [Maraun and Kurths 2005] have recently re-
ported evidence of such epochs in the relationship between the All-Indian Rainfall (AIR) and the
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Figure 1.5: Phase synchronisation indices ρ(τ) (left, computed with M = 20 bins), σ (middle)
and λ (right) for the daily maximum (circles) and minimum (asterisks) temperature time series
from Armagh and Potsdam. All phases have been computed with the standard analytic signal
approach of [Rosenblum et al. 1996].

NINO3 indices which manifest the known dependences between variations of the Indian mon-
soon system and the El Niño phenomenon [Webster and Yang 1992, Torrence and Webster 1999,
Krishna Kumar et al. 1999, Sarkar et al. 2004].

Summarising, the application of phase synchronisation analysis is not appropriate in the
case of noisy, non-coherent data which are typical in climatology. Whereas there is no evidence
for long-term phase synchronisation in the considered temperature records, strong linear and
nonlinear correlations occur with a time lag between one and two days. The strength and lag of
correlations is explained by the fact that both locations are essentially influenced by the same
major atmospheric circulation patterns (for example, both stations are situated in the preferred
direction of North Atlantic storm tracks). In particular, the correlations are much stronger than
between Oxford and Vienna (the examples studied by [Rybski et al. 2003]) because the latter
station is additionally influenced by continental and mediterranean oscillation patterns.



Chapter 2

Statistical Modelling of Finite
Mixture Distributions

2.1 Motivation

An important characteristic of a data set is its probability distribution function (PDF). This
function can be estimated from the frequencies of possible values in a sufficiently long series of
independent measurements of the associated observable. Hence, estimating the PDF of a given
data set is a frequent task in data analysis which can be approached either nonparametrically
[Silverman 1986] or parametrically, i.e., by estimating the parameters of a statistical model
prescribed in terms of an appropriate distribution function.

In general, an exact determination of the distribution function from data requires an infinite
amount of data and is practically not possible. On the one hand, data sets of observations
typically contain a (possibly rather low) finite number of measurement points or observations
due to restricted observation time and data storage capacity and thus yield only imperfect
information. On the other hand, for a huge number of observations or individual measurements
with very uncertain values, it is a typical approach to group the data into different classes and
consider the resulting histogram of group frequencies for the PDF estimation as methods based
on the explicit data become very inefficient.

In many situations, data from natural or industrial processes show a multimodal structure
as components with different statistical properties contribute to the observed sample and are
represented by subpopulations displayed as such more or less distinct modes in the PDF. A
particular example which is extensively discussed in this thesis are object-size distributions which
are frequently studied in many areas of research (some important applications are summarised
in Sect. A.5). To assign the different modes in the PDF to the different subpopulations or
subprocesses, it is an important problem to statistically decompose these components from
observations in an appropriate way. In particular, one is interested in the statistical weights of
the components as well as the shapes of the components themselves. For the latter purpose,
different parametric as well as non-parametric modelling approaches can be performed.

In the case of parametric models, one has to simultaneously estimate the parameters and sta-
tistical weights of the probability distributions of the respective components if their total number
and type is given. This approach has the advantage that the parameters may be closely related
to certain physical models describing the generating process. In the following, a K-finite mix-
ture model is defined by its PDF according to [Everitt and Hand 1981, Titterington et al. 1985,

21
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McLachlan and Peel 2000] as

f(x;~π,Θ) =
K∑

i=1

πifi(x;Θ). (2.1)

Here, x ∈ X is the independent variable while Θ is the vector of parameters of all subpopulations
fi, i = 1, . . . ,K. This vector is usually assumed to be unmixed, i.e., model parameters always
influence the shape of only one particular component i auch that fi(x;Θ) = fi(x;Θi) and
Θ = (Θ1, . . . ,ΘK). The respective types of subpopulations (i.e., the general forms of the
functions fi(x;Θ)) are assumed to be known. For convenience, the statistical weights πi with∑K

i=1 πi = 1 are combined in a statistical weight vector ~π = (π1, . . . , πK) such that all unknown
parameters of the total distribution can be written as Ψ = (~π,Θ). f and fi are probability
functions provided that∫

X
f(x;Ψ)dx =

∫
X
fi(x;Ψ)dx = 1, i = 1, . . . ,K. (2.2)

As it is intensively discussed in Sect. 4.3, K-finite mixture models are important candidates
for describing the multimodal shape of grain-size distributions (see, e.g., [Sun et al. 2002]),
which motivates to study parameter estimation for such models in some more detail. A sec-
ond important geoscientific application for this kind of statistical model is the analysis of
isothermal remanent magnetisation (IRM) acquisition curves, which are studied to extract
palaeomagnetic information from sedimentary sequences, but also yields secondary informa-
tion about climatic influences on the magnetic properties of the deposits (in particular, dif-
ferent minerals have different magnetic properties and different grain-sizes, which sometimes
relates both quantities [Potter et al. 2004]). IRM acquisition curves, describing the IRM in
dependence on the amplitude of an applied external magnetic field, are structurally related to
cumulative distribution functions, and their derivatives (being the equivalents of the PDFs) fre-
quently show multimodality. To quantify and explain this multimodality in a sophisticated
way, it has been proposed to model the curves by a finite mixture of lognormal distribu-
tions, which has been demonstrated to give a reasonable approximation of the observed data
[Robertson and France 1994, Stockhausen 1998, Kruiver et al. 2001, Heslop et al. 2002].

The special importance of this type of statistical models in the analysis of geoscientific data
motivates a more detailed study of finite mixtures in the following. For practical reasons and due
to its special importance for the mentioned applications, only the case of (log-)normal compo-
nents will be discussed, although many results are likely to be generalised to more complicated
distribution functions. As for the case of grain-size distributions being a specific subject of
palaeoclimatic studies, data are given in terms of group frequencies, a statistical framework is
required which allows parameter estimation from grouped and possibly truncated data. Such
a framework is described in the following in terms of the expectation-maximisation (EM) algo-
rithm. In particular, the goodness-of-fit, the uncertainties of the estimated models, and possible
problems relevant for applications in geoscientific research are intensively discussed.

2.2 The Expectation-Maximisation (EM) Algorithm

The expectation-maximisation algorithm [Dempster et al. 1977, McLachlan and Krishnan 1997]
is a robust and relatively efficient method for parameter estimation of distribution functions (in-
cluding the statistical separation of components in finite-mixture distributions) which provides
an iterative computation of a maximum likelihood estimate of the considered statistical model.
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In this chapter, the key features of this algorithm and its mechanism for explicit as well as
grouped and truncated data are summarised. As a particular example, the case of Gaussian
components is discussed in App. A.

2.2.1 Likelihood Functions and Maximum Likelihood Principle

Consider an ensemble of measured data ~x = (x1, . . . , xJ) given as single values xj ∈ X with J
being the total number of observations in a given sample. Under the assumption of statistical
independence of the respective observations, the joint probability of the given sample with
respect to a prescribed parameter vector Ψ is given as

p(~x;Ψ) =
J∏

j=1

f(xj ,Ψ). (2.3)

In the following, the symbol p(·; ~Ψ) is used for the joint probability of an ensemble of observa-
tions, whereas f(·; ~Ψ) refers to the underlying probability density function which may have been
evaluated at certain discrete values of the respective observable.

It is possible to consider this quantity from a different point of view. Consider the param-
eter vector Ψ as the independent quantity. Then, the probability of any Ψ with respect to a
given random vector ~x of observations can be established in terms of the likelihood function
L(Ψ) = L(Ψ; ~x) with respect to the given data sample. In general, a likelihood function is a
function of Ψ calculated with respect to ~x that is (up to a constant factor independent of Ψ
depending on the respective convention) equivalent to the joint probability of the single data
xj . In contrast to the latter one, L(Ψ) is a function of the parameters for a fixed data sample
(while for a probability density function, the parameters are considered fixed) and is therefore
a random quantity like ~x. Typically, equality of likelihood and probability function is assumed.
Given statistical independence of the {xj}, this joint probability factorises to the product of the
respective single-data probabilities, i.e.,

L(Ψ) = p(~x;Ψ) =
J∏

j=1

f(xj ,Ψ), (2.4)

or, equivalently, its logarithm

logL =
J∑

j=1

log f(xj ,Ψ) =
J∑

j=1

log
K∑

i=1

πifi(xj ,Θ) (2.5)

in the case of a mixture distribution.
For the principle of ML estimation, constant prefactors are not important. The idea is to find

the parameters which maximise L. This can be established by calculating the partial derivatives
of logL with respect to all parameters and setting them to zero as

∂ logL(Ψ)
∂Ψ

= 0. (2.6)

This formula is usually referred to as the likelihood equation. Its solution corresponds to the
maximum likelihood estimate which is consistent, efficient and normal for J →∞ [Cramer 1946].
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2.2.2 Expectation-Maximisation Algorithm: The Basic Idea

The EM algorithm allows an iterative computation of conditional probabilities leading to a
maximum likelihood (ML) estimate of Ψ. The basic procedure is best explained by considering
samples of measured data. As such samples are incomplete, additional independent measure-
ments of x would allow to improve the knowledge about the data distribution and therefore more
reasonable estimates of the PDF. An EM algorithm implicitly considers these unknown data by
formally defining complete data vectors ~y = (~x, ~x′) where ~x′ contains the (in total, J ′) unknown
data, referred to as the unobserved or missing data (in the following, primes will always indicate
unobserved quantities).

The first step of the EM algorithm requires the estimation of some reasonable initial estimates
for both parameters Θ(0) and statistical weights ~π(0) from the given sample. Depending on the
respective types of subpopulations, there is no general procedure for approaching this first rough
estimation. The idea of the EM algorithm is then to iteratively calculate maximum likelihood
estimates of the unknown parameters Ψ. For this purpose, the complete-data likelihood function
Lc(~y,Ψ) is considered.

In the expectation (E) step, the expectation value of logLc with respect to the initial
parameter vector Ψ(0) is calculated given the observed data ~x reading (for a continuous random
variable x ∈ X) as follows:

Q(Ψ;Ψ(0)) = EΨ(0) {logLc(Ψ)|~x} =
(∫

X
dx f(x;Ψ(0)) logLc(Ψ)

∣∣∣∣ ~x)
=

J∑
j=1

∫
X
dx f(x,Ψ(0)) log f(xj ;Ψ) =

J∑
j=1

log f(xj ;Ψ)
∫

X
dx f(x,Ψ(0))

=
J∑

j=1

log f(xj ;Ψ) = logL(Ψ).

(2.7)

In the following maximisation (M) step, this expectation value is maximised with respect
to the parameter vector Ψ which means chosing Ψ(1) such that Q(Ψ(1),Ψ(0)) ≥ Q(Ψ,Ψ(0)).
The procedure of successive E- and M-steps is iteratively repeated (where the above superscripts
(0) and (1) are replaced by (l) and (l+1), resp.) until the difference L(Ψ(l+1)) − L(Ψ(l)) changes
only by values which are smaller than a certain predefined threshold value (which means a
convergence of the likelihood function to its maximum). Under rather general conditions, it can
be shown that for the observed data vector ~x, the likelihood does not decrease after an EM
iteration, i.e., L(Ψ(l+1)) ≥ L(Ψ(l)) [Wu 1983].

2.2.3 Parameter Estimation in Finite Mixture Models

To practically implement the EM algorithm, one needs an explicit formulation of the respective
E- and M-steps considering the initial information. A simple way of writing the respective
iteration steps is the following one [Arcidiacono and Jones 2003]:

E-step: Given initial parameter values Ψ(l), one computes the total probability of any observa-
tion xj as

f(xj ;Ψ(l)) =
K∑

i=1

π
(l)
i fi(xj ;Θ(l)). (2.8)
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and the conditional probability of any observation xj to belong to the subpopulation k as

tk(xj ;Ψ(l)) = Pr(k|xj ;Ψ(l)) =
π

(l)
k fk(xj ;Θ(l))
f(xj ;Ψ(l))

=
π

(l)
k fk(xj ;Θ(l))∑K

i=1 π
(l)
i fi(xj ;Θ(l))

. (2.9)

Note that, in this formulation, neither the complete-data likelihood, Lc(Ψ), nor the observed-
data likelihood, L(Ψ), have to be computed explicitly.

M-step: The problem of calculating the maximum likelihood estimates of the statistical weights,
~π, under the additional condition

∑K
i=1 πi = 1 can be solved by applying the standard solution

method for constrained extrema. For this purpose, one constructs a first-order Lagrange-type
function

L = logL(Ψ(l)) + λ

(
1−

K∑
i=1

π
(l)
i

)
(2.10)

where λ is a Lagrangian multiplier combining the constraint with the log-likelihood function
to be maximised. To approach the constrained maximum, the derivatives of L with respect to
both πk and λ have to be considered while the latter one is identical with the constraint. The
derivative with respect to a particular πk then reads:

0 =
∂L
∂πk

∝ ∂

∂πk

J∑
j=1

log
K∑

i=1

π
(l)
i fi(xj ,Θ(l))− λ =

J∑
j=1

∑K
i=1

∂π
(l)
i

∂πk
fi(xj ,Θ(l))∑K

i=1 π
(l)
i fi(xj ;Θ(l))

− λ

=
J∑

j=1

fk(xj ;Θ(l))
f(xj ,Ψ(l))

− λ =
1
πk

J∑
j=1

tk(xj ;Ψ(l))− λ.

(2.11)

or
J∑

j=1

tk(xj ;Ψ(l)) = λπ
(l+1)
k . (2.12)

Taking the sum over all k = 1, . . . ,K in (2.12) and considering that for every xj , the sum
over all tk(xj ;Ψ) must be one due to the probability character of ti(xj ;Ψ), it follows that∑K

i=1

∑J
j=1 ti(xj ;Ψ) = λ = J . Finally, one ends up with

π
(l+1)
k =

1
J

J∑
j=1

tk(xj ;Ψ(l)). (2.13)

Inserting this result into the derivative of logL with respect to θk, one finds the following
condition for the maximum likelihood estimates:

0 =
∂ logL
∂θk

∝
J∑

j=1

∂

∂θk
log

K∑
i=1

(
π

(l)
i fi(xj ;Θ(l))

)
=

J∑
j=1

∑K
i=1 π

(l)
i

∂
∂θk

fi(xj ,Θ(l))∑K
i=1 π

(l)
i fi(xj ,Θ(l))

=
J∑

j=1

K∑
i=1

π
(l)
i fi(xj ;Θ(l))
f(xj ;Ψ(l))

∂

∂θk
log fi(xj ;Θ(l)) =

J∑
j=1

K∑
i=1

ti(xj ;Ψ(l))
∂ log fi(xj ;Θ(l))

∂θk
.

(2.14)

Hence, one can express the ML solution for the next iteration as
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Θ(l+1) = arg max
Θ

J∑
j=1

K∑
i=1

ti(xj ;Ψ(l)) log fi(xj ,Θ(l)). (2.15)

By iteratively solving of the set of equations (2.8,2.9,2.13,2.15), optimum ML estimates for
the statistical weights and distribution parameters of the different mixture components can be
calculated. Note that Q(Ψ,Ψ(l)) has not to be evaluated explicitly in this formulation. Here, the
E-step corresponds to the calculation of the conditional probabilities while the M-step includes
(as usual) the recalculations of all parameters. The explicit form of the maximisation step in
the case of Gaussian components is derived in App. A.1.

2.3 Parameter Estimation for Grouped and Truncated Data

The EM algorithm can be applied to a large variety of missing-data problems. In particular,
it is not limited to data given in explicit form. For example, due to the particular strategy
of measurement, the uncertainty of single measurements, or a large number of observations,
data are often given in grouped form, i.e., in terms of histograms giving frequencies of observa-
tions falling into certain mutually exclusive classes (for an example, see Fig. 2.1). Already in
[Dempster et al. 1977], the possibility of using the EM framework for parameter estimation in
such situations has been intensively discussed. The details of the corresponding algorithm have
been explicitly worked out by [McLachlan and Jones 1988, McLachlan and Krishnan 1997].

Figure 2.1: An example for a set of grouped and truncated data from a superposition of three
Gaussian component distributions. Left: Original data (horizontal lines indicate the trunca-
tion values). Right: Data subjected to grouping and additional truncation of the lower- and
uppermost values.

To consider grouped data, let the range of possible observations X (i.e., X = suppf(x;Ψ))
contain M mutually excluding subsets Xm. The available information about the system is
restricted to counts (absolute or relative frequencies) ~n = (n1, . . . , nM ) of events xj ∈ X, j =
1, . . . , J , where nm is the number of counts with xj ∈ Xm. The total number of observed
counts is n =

∑M
m=1 nm. For the derivation of the general expressions, one may first restrict

to a single-component distribution function. The extension to finite mixtures is discussed later.
For simplicity, one may assume a univariate distribution and intervals Xm = [am, bm] with
bm = am+1.
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2.3.1 The Problem of Truncation

In practical applications, one is often confronted with the problem of truncated data. For exam-
ple, values exceeding a certain threshold may not be detected by measurement devices, or the
corresponding results are extremely uncertain or are influenced by problems during the measure-
ment process such that the respective observations have to be removed. Simply neglecting these
data in the estimation of the PDF may lead to serious falsifications of the expected parameters.

As an example, in the following the bias of the corresponding parameter values is explicitly
discussed for the case of explicit observations following a Gaussian distribution. For N →∞, the
empirical parameters µ and σ2 calculated from the discrete data converge towards the integral
expression of the corresponding expectation values of x and (x− µ)2, resp., as

µ̂ =
∫ ∞

−∞
dx x f(x;Ψ) = µ

∫ ∞

−∞
dx f(x;Ψ)− σ2

∫ ∞

−∞
dx

df

dx
(x;Ψ) (2.16)

σ̂2 =
∫ ∞

−∞
dx (x− µ)2 f(x;Ψ) = σ4

∫ ∞

−∞
dx

d2f

dx2
(x;Ψ) + σ2

∫ ∞

−∞
dx f(x;Ψ) (2.17)

where µ̂ and σ̂2 correspond to the parameters estimated from the data while µ and σ2 reflect
the exact parameters of the underlying distribution f(x;Ψ). In the case of truncation, the
integration ranges are restricted to the respective intervals. It is convenient to express the
corresponding remaining integrals in the grouped-data formulation to approach the following
equations:

µ̂ = µ

M∑
m=1

∫ bm

am

dx f(x;Ψ)− σ2
M∑

m=1

∫ bm

am

dx
df

dx
(x;Ψ) (2.18)

σ̂2 =
M∑

m=1

∫ bm

am

dx f(x;Ψ) + σ4
M∑

m=1

∫ bm

am

dx
d2f

dx2
(x;Ψ). (2.19)

For explicitly expressing the occuring integrals, one may again use the respective identities for
the normal distributions as

M∑
m=1

∫ bm

am

dx f(x;Ψ) =
M∑

m=1

Pm(Ψ) = P (Ψ) = 1− Ptr(Ψ) (2.20)

M∑
m=1

∫ bm

am

dx
df

dx
(x;Ψ) =

M∑
m=1

∆mf (2.21)

M∑
m=1

∫ bm

am

dx
d2f

dx2
(x;Ψ) =

M∑
m=1

df

dx

∣∣∣∣bm

am

= −
M∑

m=1

x− µ

σ2
f

∣∣∣∣bm

am

=
µ

σ2

M∑
m=1

∆mf −
1
σ2

M∑
m=1

∆mφ (2.22)

with

∆mf
(l) = f(bm;Ψ(l))− f(am;Ψ(l)) (2.23)

∆mφ
(l) = bmf(bm;Ψ(l))− amf(am;Ψ(l)) (2.24)
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to finally end up with the following estimates:

µ̂ = µ
(
1− Ptr(µ, σ2)

)
− σ2

M∑
m=1

∆mf(µ, σ2) (2.25)

σ̂2 = σ2
(
1− Ptr(µ, σ2)

)
+ σ2µ

M∑
m=1

∆mf(µ, σ2)− σ2
M∑

m=1

∆mφ(µ, σ2). (2.26)

In the special case of a symmetrically double-side truncated standard N (0, 1) distribution,
these equations simplify to

µ̂ = 0 (2.27)
σ̂2 = 1− Ptr − 2xcf(xc). (2.28)

For such a distribution, the behaviour of the estimated variance, σ̂2, in dependence on the
truncated probability, Ptr, or, equivalently, the point of truncation, xc, is shown in Fig. 2.2. In
this example, the N (0, 1) was realised by a sample of only n = 1000 explicit data which explains
the significant deviations from the derived expression for large truncations as the uncertainty of
the estimated parameters increases with 1/

√
n (see Sect. 2.4). Moreover, in the limit of a small

number of observations, n, the discrete summation for the calculation of σ2 may not be replaced
by an integration any more. In general, the parameters estimated from a short realisation may
not sufficiently resolve the actual distribution in the presence of large truncations.

Figure 2.2: Values of the expected variance σ2 estimated from a symmetrically truncated N (0, 1)
distribution by the explicit approximate equation (2.26) (dashed line) and direct calculation from
the explicit data (solid line). The variance is shown depending on the truncation cutoff xc (left
panel) and the corresponding truncated probability Ptr (right panel).

2.3.2 Likelihood Functions for Grouped Non-Truncated Data

To formulate the EM algorithm for grouped and truncated data, the appropriate formulation
of the corresponding likelihood function has to be considered firstly. For this purpose, it is
convenient to start with the non-truncated case before discussing the modifications due to the
presence of truncation.
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Probability and Likelihood of the Observed Data. Under the assumption that the single
events xj are statistically independent, one may consider the observed group frequencies ~n to be
taken from a multinomial distribution gained from n draws out of M categories. The relative
probability of any category Xm is given by

Pm(Ψ) =
∫

Xm

dx f(x;Ψ). (2.29)

For a multinomial distribution with the above relative frequencies, the joint probability of the
observed data ~n is given by

p(~n;Ψ) =

(
n!∏M

m=1 nm!

)
M∏

m=1

[Pm(Ψ)]nm . (2.30)

This function actually defines a probability because
∑M

m=1 Pm(Ψ) = 1. Identifying this proba-
bility with the observed-data likelihood function yields [Hartley 1971]

logL =
M∑

m=1

nm logPm(Ψ) + log
n!∏M

m=1 nm!
. (2.31)

Probability and Likelihood of the Complete Data. Unlike the grouped data combined
in the observed-data vector ~n, the explicit values of observations are unknown. To formulate the
estimation problem based on grouped data within the EM framework, these data are considered
as a vector ~x′m = (x′m1, . . . , x

′
mnm

) for m = 1, . . . ,M . Here, each ~x′m contains nm independent
observations of x ∈ Xm with the probability density

pm(x;Ψ) =

{
f(x;Ψ)
Pm(Ψ) , x ∈ Xm

0, else.
(2.32)

Explicitly including the unknown values {xmj} of single observations, the complete-data vector
has the form ~y = (~nT , ~n

′T , ~x
′T
1 , . . . , ~x

′T
M ). It follows that the corresponding complete-data log-

likelihood has the form

logLc(Ψ) ∝
M∑

m=1

nm∑
j=1

log f(x′mj ;Ψ). (2.33)

In addition, one has to consider the total probability of the explicit data p({x′mj};Ψ) as
being conditional with respect to ~n such that

p(~y;Ψ) = p(~n, ~x′1, . . . , ~x
′
M ;Ψ) = p(

{
x′mj

}
|~n;Ψ) · p(~n;Ψ). (2.34)

Given the respective measurements {xmj} being statistically independent, the first factor can
be further evaluated such that

p(
{
x′mj

}
|~n;Ψ) =

M∏
m=1

nm∏
j=1

pm(x′mj ;Ψ) =
M∏

m=1

nm∏
j=1

f(x′mj ;Ψ)
Pm(Ψ)

(2.35)

which implies

Lc(Ψ) = p(~y;Ψ) =
M∏

m=1

nm∏
j=1

f(x′mj ;Ψ)
Pm(Ψ)

· p(~n;Ψ). (2.36)
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2.3.3 Likelihood Functions for Grouped Truncated Data

Probability and Likelihood of the Observed Data. For the observed data, one may
proceed similar to the non-truncated case. However, as P (Ψ) :=

∑M
m=1 Pm(Ψ) < 1, one has to

substitute Pm(Ψ) by Pm(Ψ)/P (Ψ) in all corresponding considerations (in particular, in Eqs.
(2.30) and (2.33)) to approach a proper probability distribution function. This leads to the
following expression:

logL(Ψ) = p(~n;Ψ) =
M∑

m=1

nm log
Pm(Ψ)
P (Ψ)

+ log
n!∏M

m=1 nm!

=
M∑

m=1

nm logPm(Ψ)− n logP (Ψ) + log
n!∏M

m=1 nm!
.

(2.37)

To illustrate the correctness of this approach, Fig. 2.3 shows the values of the log-likelihood
function for a N (0, 1) distribution in dependence on the two parameters µ and σ for grouped,
non-truncated data according to Eq. (2.33), and for grouped truncated data according to Eq.
(2.37). One clearly observes that both functions take their maximum values at the desired point
in the parameter space. However, as it can be inferred from the figure, it is rather likely to
overestimate the variance σ in the case of truncated distributions.

Figure 2.3: Color-coded representation of the observed-data log-likelihood function from com-
pletely grouped (left panel) and grouped truncated data (right panel) from a N (0, 1) distribution
using n = 1000 observations. The data have been truncated at xc = ±2.0 and grouped into 20
equally sized bins within this interval and the tail intervals. The + corresponds to the sample
mean and standard deviation estimated from the explicit data.

Probability and Likelihood of the Complete Data. As the neglection of missing groups
leads to a systematic and significant misestimation of the distribution parameters for both
direct and EM estimates, it is possible to explicitly consider these unknown groups included
in the complete-data set within the EM framework. For this purpose, one may consider the
possible range of observations X to be completely covered by M +M ′ mutually exclusive sub-
sets where M is again the number of subsets with observed group frequencies while M ′ is the
number of intervals with unknown counts. The corresponding additional group frequencies
~n′ = (nM+1, . . . , nM+M ′) sum up to a total number of n′ =

∑M+M ′

m=M+1 nm events which are not
observed. In an expectation-maximisation algorithm, the complete-data vector contains the ex-
act values belonging to all observed as well as truncated counts explicitly included in data vectors
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~x′m = (x′m1, . . . , x
′
mnm

) for m = 1, . . . ,M +M ′ where ~x′m contains nm independent observations
of x ∈ Xm with a probability density according to Eq. (2.32) such that the complete data read
~y = (~nT , ~n

′T , ~x
′T
1 , . . . , ~x

′T
M+M ′). It follows that the corresponding complete-data log-likelihood

has the form

logLc(Ψ) =
M+M ′∑
m=1

nm∑
j=1

log f(x′mj ;Ψ). (2.38)

Considering again the total probability of the formal single-data observations p({x′mj};Ψ)
as being conditional with respect to ~n and ~n′ yields

p(~y;Ψ) = p(~n, ~n′, ~x′1, . . . , ~x
′
M+M ′ ;Ψ) = p(

{
x′mj

}
|~n, ~n′;Ψ) · p(~n′|~n;Ψ) · p(~n;Ψ). (2.39)

Under the usual assumption of statistical independence of the {xmj}, the first factor becomes

p(
{
x′mj

}
|~n, ~n′;Ψ) =

M+M ′∏
m=1

nm∏
j=1

pm(x′mj ;Ψ) =
M+M ′∏
m=1

nm∏
j=1

f(x′mj ;Ψ)
Pm(Ψ)

(2.40)

such that

Lc(Ψ) = p(~y;Ψ) =
M+M ′∏
m=1

nm∏
j=1

f(x′mj ;Ψ)
Pm(Ψ)

· p(~n′|~n;Ψ) · p(~n;Ψ). (2.41)

Up to here, the conditional probability p(~n′|~n;Ψ) is still unknown but crucial for the explicit
formulation of the EM algorithm. To further evaluate this conditional probability, one may
consider

logLc(Ψ) = log p(~n;Ψ) + log p(~n′|~n;Ψ) +
M+M ′∑
m=1

nm∑
j=1

log
f(x′mj ;Ψ)
Pm(Ψ)

=
M∑

m=1

nm log
Pm(Ψ)
P (Ψ)

+ log
n!∏M

m=1 nm!

+
M+M ′∑
m=1

nm∑
j=1

log
f(x′mj ;Ψ)
Pm(Ψ)

+ log p(~n′|~n;Ψ)

=
M+M ′∑
m=1

nm∑
j=1

log f(x′mj ;Ψ) + log p(~n′|~n;Ψ) + log
n!∏M

m=1 nm!

+
M∑

m=1

nm logPm(Ψ)−
M∑

m=1

nm logP (Ψ)

−
M∑

m=1

nm logPm(Ψ)−
M+M ′∑

m=M+1

nm logPm(Ψ).

(2.42)

Comparing this expression with Eq. (2.38), it follows that

p(~n′|~n;Ψ) ∝
∏M

m=1 nm!
n!

[P (Ψ)]n
M+M ′∏

m=M+1

[Pm(Ψ)]nm (2.43)
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To approach a proper probability distribution function, that this expression has to be renor-
malised as follows [McLachlan and Krishnan 1997]:

p(~n′|~n;Ψ) =
(n′ + n− 1)!

(n− 1)!
[P (Ψ)]n

M+M ′∏
m=M+1

[Pm(Ψ)]nm

nm!
. (2.44)

Comparing this result with Eq. (4.2.3) in [Dempster et al. 1977] (where all truncated intervals
have been summarised in one group), this functional form may be identified as the result of a
negative multinomial density.

2.3.4 The EM Algorithm for Grouped Truncated Data

In general, one has to firstly consider the expectation of the complete-data log-likelihood function
which is given for grouped data by

Q(Ψ;Ψ(l)) = EΨ(l) {logLc(Ψ)|~n} = EΨ(l)


M+M ′∑
m=1

nm∑
j=1

log f(x′mj ;Ψ)

∣∣∣∣∣∣~n


=
M+M ′∑
m=1

EΨ(l) {nm(Ψ)|~n}EΨ(l) { log f(x;Ψ)|x ∈ Xm} .

(2.45)

If the observations are truncated, the expectation step splits up into separate calculations of the
expectations of the unknown group frequencies and of the log-likelihood function itself.

Expected Group Frequencies. In the case of non-truncated data, the expected probability
in any group is given by Pm = nm/n, i.e., nm = nPm. Transferring this idea to the case of
truncated data, it follows that the expected unknown group frequencies (given a parameter
vector Ψ and observations ~n) must have the corresponding form where Pm has to be replaced
by Pm(Ψ)/P (Ψ):

nm(Ψ(l)) = EΨ(l) {nm(Ψ)|~n} =

{
nm , m = 1, . . . ,M

nPm(Ψ(l))

P (Ψ(l))
, m = M + 1, . . . ,M +M ′ . (2.46)

Expected Complete Data Log-Likelihood. Eq. (2.45) is additive with respect to the dif-
ferent groups and may therefore be written as

Q(Ψ;Ψ(l)) =
M+M ′∑
m=1

nm(Ψ(l)) Qm(Ψ;Ψ(l)) (2.47)

with
Qm(Ψ;Ψ(l)) = EΨ(l) {log f(x;Ψ)|x ∈ Xm} . (2.48)

The expectation values of any function g(x) of the random variable x with respect to a given
parameter estimate Ψ(l) for a given interval Xm can be calculated as follows:

EΨ(l) {g(x)|x ∈ Xm} =
∫

Xm

dx pm(x;Ψ(l)) g(x) =
1

Pm(Ψ(l))

∫
Xm

dx f(x;Ψ(l)) g(x)

=

∫
Xm

dx f(x;Ψ(l)) g(x)∫
Xm

dx f(x;Ψ(l))
.

(2.49)
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This yields the following explicit expression for the expectation step:

Q(Ψ;Ψ(l)) =
M+M ′∑
m=1

nm(Ψ(l))

∫
Xm

dx f(x;Ψ(l)) log f(x;Ψ)∫
Xm

dx f(x;Ψ(l))
. (2.50)

Maximisation Step. With the above results, for the (l + 1)th iteration, the solution Ψ(l+1)

is obtained by computing the solution of

0 =
∂Q(Ψ;Ψ(l))

∂Ψ
=

M∑
m=1

nm(Ψ(l))
∂Qm(Ψ;Ψ(l))

∂Ψ
=

M∑
m=1

nm(Ψ(l))

∫
Xm

dx f(x;Ψ(l)) ∂
∂Ψ log f(x;Ψ)∫

Xm
dx f(x;Ψ(l))

.

(2.51)
This expression has to be evaluated separately for each type of distribution. In App. A.2, the
explicit equations for E- and M-step of a Gaussian distribution are derived analytically. Note
that, for general distribution function, no analytical expression for the parameter estimates exist
such that numerical iteration procedures have to be used in applications.

2.3.5 Parameter Estimation in Finite Mixture Models

As in the standard EM algorithm for explicitly given data, the theoretical framework of the
calculus for grouped data can be extended to the case of finite mixture distributions. This offers
a broad range of applications from clustering to parameter estimation in models based on binned
data.

Expectation Step. The implementation of the EM algorithm for grouped data from fi-
nite mixture distributions requires again the calculation of conditional probabilities for any
(unknown) observation x′mj to belong to the subpopulation i. Because these relative proba-
bilities cannot be calculated explicitly, one introduces zero-one component indicator variables
~z′mj = (z′1mj , . . . , z

′
Kmj) with m = 1, . . . ,M and j = 1, . . . , nm with the properties

z′imj =
{

1 if x′mj belongs to fi

0 else
(2.52)

and
∑K

i=1 z
′
imj = 1 ∀m, j [McLachlan and Jones 1988, McLachlan and Peel 2000]. Given the

x′mj , the ~z′mj are conditionally independent with conditional probabilities

ti(x′mj ;Ψ) = Pr(z′imj = 1|x′mj) =
πifi(x′mj ;Θ)
f(x′mj ,Ψ)

. (2.53)

In this case, it follows that the log-likelihood of the complete data can be reformulated as

logLc(Ψ) =
M+M ′∑
m=1

nm∑
j=1

log f(x′mj ;Ψ) =
M+M ′∑
m=1

nm∑
j=1

log
K∑

i=1

z′imjπifi(x′mj ;Θ)

=
K∑

i=1

M+M ′∑
m=1

nm∑
j=1

z′imj

[
log πi + log fi(x′mj ;Θ)

]
,

(2.54)

where the last step follows due to the zero-one character of the z′imj . Including the indicator
variables into the equation for the expectation values, the expression for the Qm(Ψ;Ψ(l)) reads
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as follows:

Qm(Ψ;Ψ(l)) =
K∑

i=1

EΨ(l)

{
ti(
{
x′mj

}
,Ψ(l))

(
log fi(

{
x′mj

}
;Θ) + log πi

)∣∣∣x′mj ∈ Xm

}
. (2.55)

Maximisation Step. In the case of a mixture distribution, the particular M-step for the
iterative estimation of the statistical weights is independent of the actual type of subpopulations.
Again, there is a constraint that the sum of all weights must be equal to one. Considering this
fact, one has to evaluate the derivative of the complete log-likelihood function’s expectational
value extended by the constraint

L = Q(Ψ,Ψ(l)) + λ

(
1−

K∑
i=1

πi

)
(2.56)

with respect to the different πk as follows:

∂L
∂πk

=
∂

∂πk

K∑
i=1

M+M ′∑
m=1

nm(Ψ(l))E(l)
m

{
ti({x′mj};Ψ(l))

[
log fi({x′mj};Θ) + log πi

]}

+
∂

∂πk

[
λ

(
1−

K∑
i=1

πi

)]
=

M+M ′∑
m=1

nm(Ψ(l))E(l)
m

{
tk({x′mj};Ψ(l))

1
πk

}
− λ = 0

(2.57)

with E(l)
m {·} = EΨ(l) {·|x ∈ Xm} such that

λπ
(l+1)
i =

M+M ′∑
m=1

nm(Ψ(l))E(l)
m

{
ti({x′mj};Ψ(l))

}
. (2.58)

Summing up over all i = 1, . . . ,K gives

λ = λ

K∑
i=1

π
(l+1)
i =

M+M ′∑
m=1

nm(Ψ(l))E(l)
m

{
K∑

i=1

ti({x′mj};Ψ(l))

}
=

M+M ′∑
m=1

nm(Ψ(l)) = n+ n′(Ψ(l)).

(2.59)
Hence, the next-step ML estimate for the statistical weights of the mixture is given by

π
(l+1)
i =

1
n

M+M ′∑
m=1

nm(Ψ(l))E(l)
m

{
ti({x′mj};Ψ(l))

}
. (2.60)

Note that this particular result is actually valid independent of the type of mixture components.
In contrast to this finding, the M-step for the parameter estimates must obviously depend on
the subpopulation structure in terms of an explicit solution of

0 =
∂Q(Ψ;Ψ(l))

∂Θ
=

K∑
i=1

M+M ′∑
m=1

nm(Ψ(l))EΨ(l)

{
ti({x′mj};Ψ(l))

∂

∂Θ
log fi({x′mj};Θ)|x′mj ∈ Xm

}
(2.61)

Eqs. (2.59) and (2.61) may be combined in the following general equation for the maximisation
step:

0 =
∂Q(Ψ;Ψ(0))

∂Ψk
=

M+M ′∑
m=1

nm(Ψ(l))
∫

Xm

dx f(x;Ψ(l)) tk(x;Ψ(l))
∂

∂Ψk
log f(x;Ψ) (2.62)

In App. A.3, the explicit solution of this equation is derived for Gaussian mixture models.
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2.3.6 Related and Concurring Approaches

While the standard EM algorithm offers a robust method to simultaneously cluster given data
and estimate the parameters of the corresponding probability density distributions, its relatively
slow convergence triggered research to derive alternative approaches for both particular prob-
lems. While there is a large number of results concerning the problem with explicitly given data,
the estimation based on grouped data has attracted attention very recently. As examples, some
particular approaches concurring to the standard EM-based method may be mentioned:

[Wu and Perloff 2003] consider the application of a maximum entropy method to successively
estimate the moments of an unspecified distribution function based on grouped data resulting in
a nonlinear least squares estimator. However, by construction this approach is not necessarily
appropriate for simultaneous clustering of data. Consequently, [Wu and Perloff 2003] used the
method for estimating single-component densities only, in particular, for income distributions
[Wu 2003]. The combination with a separate clustering algorithm might allow the estimating
of finite mixture distributions as well but probably requires larger computational efforts than
in the EM case. As an advantage with respect to the EM algorithm, [Wu and Perloff 2003]
show that due to its intrinsically non-parametric nature, the maximum entropy method may be
applied as well to the case of grouped data with unknown interval limits when combining it with
a sequential EM-type algorithm [Arcidiacono and Jones 2003].

[Lam and Ip 2003] used standard and residual maximum-likelihood approaches to clustering
and parameter estimation in logistic and grouped proportional regression models based on binned
survival time data.

[Samé and Govaert 2002, Samé et al. 2003] extended the framework of the EM algorithm
applied to grouped data by combining it with a classification EM (CEM) algorithm for cluster-
ing of data. The power of the resulting EM-CEM algorithm has been demonstrated for some
numerical examples of mixtures of two bi-dimensional Gaussian distributions.

2.4 Estimation of Parameter Uncertainty

If the distribution function of observations is described by means of a parametric model, the
knowledge of not only of the parameters themselves, but also of their corresponding statistical
uncertainties and their relationship to model validity is of particular interest. Usually, the
uncertainty is quantified in terms of so-called standard errors which can be estimated either
by methods based on the information matrix of the estimator or by application of resampling
techniques. In the following, the realisation of both approaches and their possible disadvantages
are discussed for the EM algorithm.

2.4.1 Information-based Standard Errors

To calculate standard errors for the estimated parameters, a wide spread approach is ap-
proximating the corresponding covariance matrix by the inverse of either the observed or the
expected information matrix which may be additionally used to improve the convergence of
the algorithm [Louis 1982, Meilijson 1989, Meng and Rubin 1991, Jones and McLachlan 1992,
Lange 1995, Jamshidian and Jennrich 1997]. The appropriate choice and the approx-
imation or estimation of these information matrices have been intensively studied
[Berndt et al. 1974, Efron and Hinkley 1978, Redner and Walker 1984, Griffiths et al. 1987,
Dolan and Molenaar 1991, Baker 1992, Oakes 1999, Jamshidian and Jennrich 2000].
In particular, applications to grouped data have been discussed [Hartley 1971,
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Jones and McLachlan 1992]. The information matrix method has been applied to dif-
ferent estimation problems, e.g., for quantifying the uncertainty of component means
[Behboodian 1972, Basford et al. 1997] and weights [Hill 1963] in Gaussian mixture models.

Following [McLachlan and Krishnan 1997], one defines the score vector ~s(Ψ) as the gradient,
and the information matrix I(Ψ) as the negative Hessian of the log-likelihood function

~s(Ψ) =
∂ logL(Ψ)

∂Ψ
(2.63)

I(Ψ) = −∂
2 logL(Ψ)
∂Ψ∂ΨT

. (2.64)

When evaluated at the maximum likelihood solution (which is approximated - in case of its
existence - by the parameter set Ψ̂ asymptotically approached by the EM algorithm iterations),
I(Ψ̂) is the Fisher information matrix. The information-based approach to parameter uncer-
tainty quantification in this framework is then given by

SE(Ψ̂i) =
[
(I−1(Ψ̂))ii

]1/2
. (2.65)

Computing the observed and expected information matrices involves the explicit calculation of
the Hessian which is often not possible analytically. For suitably approximating the observed
information matrix, numerical differentiation of the Fisher score vector as well as of the EM max-
imization operator have been proposed [Meng and Rubin 1991, Jamshidian and Jennrich 2000].
Alternatively, the expectation of the complete-data information matrix can be estimated
consistently and bias-free by the observed-data score covariance matrix [Behboodian 1972,
Berndt et al. 1974, Redner and Walker 1984, Griffiths et al. 1987], or, alternatively, by the cor-
responding empirical covariance matrix [Meilijson 1989] which allows an analytic approach to
the calculation of I(Ψ).

In the case of explicitly given data, the score vector and the corresponding score and empirical
covariance matrices read:

~s(Ψ) =
J∑

j=1

∂ log f(xj ;Ψ)
∂Ψ

=
J∑

j=1

~sj(Ψ) (2.66)

Is(Ψ) =
J∑

j=1

~sj(Ψ)~sT
j (Ψ) (2.67)

Ie(Ψ) = Is(Ψ)− 1
J

 J∑
j=1

~sj(Ψ)

 J∑
j=1

~sj(Ψ)

 (2.68)

For transferring these expressions to grouped and truncated data, one may introduce the abbre-
viations

~hm(Ψ) =
∂ logPm(Ψ)

∂Ψ
(2.69)

~̄h(Ψ) =
M∑

m=1

Pm(Ψ)
P (Ψ)

~hm(Ψ) =
∂ logP (Ψ)

∂Ψ
(2.70)

~̃h(Ψ) =
M∑

m=1

nm

n
~hm(Ψ) (2.71)
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(with ~̄h(Ψ) = ~̃h(Ψ) at the maximum likelihood solution) to achieve [Jones and McLachlan 1992]:

~s(Ψ) =
M∑

m=1

nm
~hm(Ψ)− n~̄h(Ψ) (2.72)

Is(Ψ) =
M∑

m=1

nm
~hm(Ψ)~hT

m(Ψ)− n~̄h(Ψ)~̄h(Ψ) (2.73)

Ie(Ψ) =
M∑

m=1

nm
~hm(Ψ)~hT

m(Ψ)− n~̃h(Ψ)~̃h(Ψ). (2.74)

Consider now the parameter vector Ψ = (π1, . . . , πK ,Θ1, . . . ,ΘK) for a K-component mix-
ture. As any πi (i = 1, ...,K) may be expressed by the remaining πk (k 6= i), the information
matrix with respect to this complete parameter vector has the rank dim(I)−1 which means that
I is non-invertable. To overcome this problem, one may consider a reduced parameter vector
Ψ[i] equaling Ψ with the πi component left out. In this case, one has to explicitly express this
component by all πj with j 6= i, leading to additional terms when evaluating the corresponding
score vector contributions ~hm(Ψ) (see App. B.8). The resulting estimates of the information
matrix I(Ψ) have full rank and may therefore be inverted without further problems.

2.4.2 Resampling-based Standard Errors

An alternative approach for calculating standard errors is the application of resampling (also
known as bootstrapping) techniques [Efron and Tibshirani 1993] to generate artificial samples
with a distribution corresponding either to the original data or to the estimated distribution
functions. For EM parameter estimates of normal component means, it has been demonstrated
that although large sample sizes may be necessary, bootstrap estimates of standard errors (i.e.,
the standard deviations of the resampled parameters) are favourable as the information-based
standard errors do not always provide realistic and stable results [Basford et al. 1997]. Hence,
resampling-based standard errors are often well-suited to provide uncertainty estimates for all
parameters in a mixture.

The practical realisation of the resampling may be as follows:
(i) Generate an artificial set of data {x∗j} = (x1, . . . , xNd

) consistent with either the observed
data themselves or the distribution function f(x; Ψ̂) estimated thereof.
(ii) Recalculate the parameters Ψ∗ of this model with respect to the bootstrap sample {x∗j}.
(iii) Repeat step (i) and (ii) a sufficient number of times Ns.
(iv) Calculate the bootstrap covariance matrix

cov(Ψ∗) = E
{

[Ψ∗ − E {Ψ∗}] [Ψ∗ − E {Ψ∗}]T
}

(2.75)

with the empirical approximations

E {Ψ∗
i } ≈ Ψ̄∗

i =
1
Ns

Ns∑
ν=1

Ψ∗
i,ν (2.76)

cov(Ψ∗)ij ≈ 1
Ns − 1

Ns∑
ν=1

(
Ψi,ν − Ψ̄i

) (
Ψj,ν − Ψ̄∗

j

)
. (2.77)

(v) Define bootstrap standard errors as SE(Ψ∗
i ) = [cov(Ψ∗)ii]

1/2.
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The simplest and most general idea for generating the bootstrap sample (step (i)) is to apply
the inverse transform method (see [Ross 2002]). In this case, the only prerequisite is a proper
representation of the cumulative distribution function F (x) of the observed data. Depending
on this representation, the resampling approach may be performed both nonparametrically and
parametrically.

In the nonparametric version, the observations themselves are taken as the fundamental
reference for resampling by considering the cumulative distribution F0(x) =

∫ x
xmin

f0(ξ)dξ derived
from their empirical distribution function f0(x). Typically, in mathematical statistics F0(x) is
defined as a function that is piecewise constant between any observed value. For applying the
inverse transform method, this point of view is not helpful. In the contrary, it is appropriate to
approximate F0(x) for any type of data by a suitable continuous function.

In the case of data consisting of J explicit observations {xj}, one may decompose the interval
[0, 1] (the range of F0(x)) into J + 1 subintervals of equal size. If the observed values are
increasingly ordered, one may define F0(xj) = j/(J + 1). For grouped data, the unit interval
may be decomposed similarly according to the respective group frequencies leading to F0(a1) = 0,
F0(bm′) =

∑m′

m=1 nm/n. Between these prescribed points, one can interpolate F0(x) piecewise
linearly or by any monotonously increasing function. To overcome numerical problems due to
very large classes with Pm → 0, it is recommended to introduce a suitable (artifical) trunction
even if the original data themselves are non-truncated.

For a parametric bootstrap, the cumulative distribution function provided by the estimated
model F (x; Ψ̂) =

∫ x
xmin

f(ξ; Ψ̂)dξ is used instead of F0(x). Thus, this approach allows to use
non-truncated bootstrap samples even in the case of truncated observations which is in general
not the case for the nonparametric resampling.

Applying the inverse transform method, the generation of the bootstrap samples may then
be performed by first simulating an ensemble of data sj (j = 1, . . . , Nd) with uniform distri-
bution in (0, 1) and then using the inverse cumulative distribution function (which uniquely
exists in any subset of X where f0(x) (or f(x; Ψ̂), resp.) is non-zero) to calculate the surrogates
xj with F0(xj) = sj (F (xj ; Ψ̂) = sj). If in the case of a nonparametric bootstrap, F0(x) is
approximated by a simple analytic (e.g., a piecewise linear) function, the generation of nonpara-
metric surrogates typically requires significantly less computational power than the parametric
approach.

2.4.3 A Numerical Example

To illustrate the performance of standard error estimates, the following rather simple example
is considered: Let a sample of N =10,000 data points be constructed by simulating 4,000 points
with a N(−1.5, 0.81) distribution, 2,000 points with a N(0, 0.16) distribution, and 4,000 points
with a N(2.25, 0.25) distribution (where N(µ, σ2) corresponds to a normal distribution with
mean µ and variance σ2). These data are then grouped into bins of size 0.2 covering the interval
[−3.0, 3.0] (see Fig. 2.1 for a graphical representation). The resulting group frequencies are then
used to run the EM algorithm for a 3-component normal mixture model yielding the results

π̂1 = 0.375 (0.4) π̂2 = 0.226 (0.2) π̂3 = 0.399 (0.4)
µ̂1 = −1.563 (−1.5) µ̂2 = −0.014 (0.0) µ̂3 = 2.250 (2.25)
σ̂1 = 0.850 (0.9) σ̂2 = 0.445 (0.4) σ̂3 = 0.498 (0.5)

(the values given in brackets correspond to the parameters expected by construction of the data
set).
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Apparently, the estimates for the first two components do not match the prescribed values
very well. In contrast, the parameters of the third component are much closer to the expected
ones. The observed bias thus cannot be caused by the finite number of data, grouping coarseness,
or even an insufficiency of the random number generator used for creating the data sample. A
more reasonable explanation is that the first two components are not as well separated from
each other as any of both from the third one.

The outcome of the EM algorithm is used to calculate the standard errors

SE(π̂1) = 0.021 SE(π̂2) = 0.020 SE(π̂3) = 0.006
SE(µ̂1) = 0.050 SE(µ̂2) = 0.025 SE(µ̂3) = 0.011
SE(σ̂1) = 0.086 SE(σ̂2) = 0.018 SE(σ̂3) = 0.010

of all parameters from the information matrix I(Ψ) with respect to all three possible reduced
parameter vectors. The results are independent of the choice of the left-out component πi

in the reduced parameter vector. Concerning the effect of separation between the respective
components, it is found that the parameters of the third component have actually considerably
lower standard errors than for the first and second ones which underlines the relationship between
the component overlap on the one hand and the parameter uncertainty and bias of the estimated
mixture model on the other hand.

Using the considered example, one may demonstrate the consistency of the resampled pa-
rameters with the original estimates, as well as of the standard errors obtained with the different
bootstrap approaches and the information matrix method. For the first purpose, the bias and
mean squared error of the bootstrap parameter estimates are considered which are defined as
(see [Nityasuddhi and Böhning 2003])

BIAS(Ψ∗
i ) =

1
Ns

Ns∑
ν=1

Ψ∗
i,ν − Ψ̂i = Ψ̄i − Ψ̂i (2.78)

MSE(Ψ∗
i ) =

1
Ns

Ns∑
ν=1

(
Ψ∗

i,ν − Ψ̂i

)2
. (2.79)

Note that for a vanishing bias, the mean squared error corresponds to the squared value of the
corresponding bootstrap standard error.

The results are shown in Tab. 2.1-2.3 and Fig. 2.4. For a better comparability, the same
grouping (and eventual truncation) has been applied to both, the original and the resampled data
(of course, one may also perform the EM algorithm directly with the explicit surrogate data).
Moreover, the size of the bootstrap samples was restricted to Nd = N =10,000 points, i.e., the
size of the prescribed (non-truncated) original data set. Three different types of resampled data
have been generated: truncated nonparametric and parametric as well as non-truncated para-
metric bootstrap surrogates (by definition, nonparametric surrogates obey the same truncation
as the original data).

From the calculated parameters, it may be inferred that there is actually a high degree of con-
sistency between the results of all three approaches. Note, however, that as the nonparametric
bootstrap is closer to the original data, this approach may be more reliable than the parametric
resampling (which involves a priori unknown information about the truncated part of the sam-
pling space and assumes a zero residual between the orginal data and the model distribution
estimated thereof) but on the cost of larger bias and dispersion of the calculated parameters due
to grouping coarseness. Moreover, in the example considered here, the standard errors given
by the information matrix method and the different resampling approaches yield similar values.
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The bias of the resampled parameters is sufficiently small such that
∣∣SE(Ψ∗

i )−
√
MSE(Ψ∗

i )
∣∣ is

of the order of 10−4 to 10−6. Of course, bootstrapping requires significantly more computational
efforts than the information matrix method. Nonetheless, as it will be demonstrated next, the
resampling approach to parameter uncertainty has serious advantages as it yields more detailed
information about the distribution of uncertainty than the standard errors themselves.

Ψi Ψ̄∗
i SE(Ψ∗

i ) BIAS(Ψ∗
i ) MSE(Ψ∗

i )
π1 0.3765 0.0219 0.0013 0.0005
π2 0.2252 0.0209 −0.0010 0.0004
π3 0.3983 0.0057 −0.0002 < 0.0001
µ1 −1.5598 0.0595 0.0033 0.0035
µ2 −0.0143 0.0253 −0.0005 0.0006
µ3 2.2505 0.0109 0.0004 0.0001
σ1 0.8519 0.0531 0.0021 0.0028
σ2 0.4430 0.0218 −0.0017 0.0005
σ3 0.4970 0.0105 −0.0005 0.0001

Table 2.1: Estimated parameters and results of the parametric bootstrap resampling without
truncation with 10,000 surrogate data sets: expected parameter values, standard errors, bias,
and mean squared errors.

Ψi Ψ̄∗
i SE(Ψ∗

i ) BIAS(Ψ∗
i ) MSE(Ψ∗

i )
π1 0.3767 0.0218 0.0014 0.0005
π2 0.2251 0.0209 −0.0011 0.0004
π3 0.3982 0.0056 −0.0003 < 0.0001
µ1 −1.5597 0.0590 0.0034 0.0035
µ2 −0.0145 0.0253 −0.0007 0.0006
µ3 2.2505 0.0110 0.0003 0.0001
σ1 0.8524 0.0530 0.0026 0.0028
σ2 0.4433 0.0219 −0.0014 0.0005
σ3 0.4970 0.0106 −0.0005 0.0001

Table 2.2: Estimated parameters and results of the parametric bootstrap resampling with trun-
cation with 10,000 surrogate data sets: expected parameter values, standard errors, bias, and
mean squared errors.

2.4.4 Uncertainty Distributions and their Asymptotic Behaviour

Although the concept is frequently applied, the description of parameter uncertainty by standard
errors is intrinsically faced with problems.

On the one hand, if certain parameters are subjected to constraints (like variances which
are bounded from below by zero, or component weights in a mixture satisfying

∑K
i=1 πi = 1),

the likelihood is forced to be asymmetrically distributed around the estimated values. In such
cases, the description of the resulting asymmetric parameter uncertainty by a (per definition)
symmetric measure like the standard error may be not sufficient.
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Ψi Ψ̄∗
i SE(Ψ∗

i ) BIAS(Ψ∗
i ) MSE(Ψ∗

i )
π1 0.3783 0.0245 0.0030 0.0006
π2 0.2236 0.0227 −0.0027 0.0005
π3 0.3982 0.0058 −0.0003 < 0.0001
µ1 −1.5559 0.0648 0.0072 0.0043
µ2 −0.0143 0.0227 −0.0005 0.0005
µ3 2.2506 0.0105 0.0004 0.0001
σ1 0.8566 0.0609 0.0068 0.0038
σ2 0.4415 0.0234 −0.0032 0.0006
σ3 0.4970 0.0108 −0.0006 0.0001

Table 2.3: Estimated parameters and results of the nonparametric bootstrap resampling with
10,000 surrogate data sets: expected parameter values, standard errors, bias, and mean squared
errors.

On the other hand, for both information- and resampling-based methods, the approach of
standard errors as estimates of parameter uncertainty implies that the distribution of uncertainty
for any parameter is completely described by its first and second moments, i.e., by Gaussian
distributions. In the case of bootstrap samples, this assumption can be easily checked by calcu-
lating higher-order characteristics of the distributions of resampled parameters. For the example
from the previous section, the evolution of the standard deviation V ar1/2, the skewness γ1, and
the kurtosis γ2 of these distributions are displayed in Fig. 2.5. As γ1 = γ2 = 0 for normal
distributions, the latter two measures are well suited to quantify deviations from a Gaussian.

For the bootstrap parameter distributions, it is clearly observed that the calculated values
of γ1 and γ2 are more or less clearly separated from zero such that a normal distribution is not a
valid assumption for the resampled parameters. This is already underlined by a detailed inspec-
tion of Fig. 2.4 where a remarkable asymmetry of the resampling-based parameter distributions
is visible for almost all model parameters. In particular, for component weights πi and standard
deviations σi whose values are bounded from below (for the πi additionally from above), this
asymmetry is a natural consequence of the respective constraint and causes a non-Gaussianity
of the distribution of parameter ”uncertainties” around the expected values. Moreover, one
observes that for the third component, the absolute values of both skewness and kurtosis are
remarkably smaller than those of the first and second ones (this is particularly true for π3 and
σ3 compared to π1, π2 and σ1, σ2, resp.). This result indicates that in a mixture, the deviation
of the bootstrap parameter distributions from a Gaussian is closely linked to the component
overlap.

As an additional outcome, it is found that in the case of grouped truncated data, more boot-
strap samples are necessary for stable standard errors than for explicit observations where about
50−100 samples are typically found to be sufficient in earlier studies [Efron and Tibshirani 1993].
Depending on the respective parameters, in the considered example, typical values for the num-
ber of samples range up to several 1000 (see Fig. 2.5), depending on the considered parameter
and the demands on accuracy.

As the distribution of parameters calculated from the bootstrap sample is non-Gaussian even
for our Gaussian mixture example, one may consider the additional information for uncertainty
assessment. While the dependence of the uncertainties on the number of bootstrap samples Ns

has been described above, the natural question of the corresponding dependence on the size
of the surrogate data sets Nd does still remain. In the case of the information-based standard
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Figure 2.4: Frequency distributions of estimated parameters for the resampled data sets (Nd =
10, 000, Ns = 100, 000) with the nonparametric (truncated) bootstrap, and the parametric
bootstrap without and with truncation (lines from top to bottom). For the latter one, the
graph corresponds to the normalised density obtained from the set, whereas the other lines are
vertically shifted for better identifiability. Vertical lines indicate the original estimates and the
confidence levels of ±SE(Ψi) obtained with the information matrix method.

errors, it can be easily inferred that SE(Ψ̂i) ∼ 1/
√
n. As the standard errors obtained by the

resampling approach are consistent with those of the information matrix method, they have the
same scaling behaviour. Following this idea, the bootstrap uncertainty distributions ρ(Ψ∗

i (Nd))
rescaled by a factor of

√
Nd should approach asymptotic parameter distributions which may be

defined as
ρ̄(Ψ∗

i ) = lim
Nd→∞

ρ
(√

Nd

(
Ψ∗

i (Nd)− Ψ̄∗
i (Nd)

))
(2.80)

(alternatively, one may use Ψ̂i instead of Ψ∗
i to approach an appropriate normalised uncertainty

function). For the Gaussian mixture example, the correctness of this consideration is demon-
strated in Fig. 2.6. This allows to calculate measures of parameter uncertainties even for the
case of data given in terms of relative group frequencies only where the appropriate choice of
Nd is not clear as n itself is unknown. Moreover, this result allows to calculate uncertainty
distributions with larger bootstrap samples and to rescale them afterwards to the appropriate
number of observations according to

ρ(Ψ∗
i (n)) ≈ ρ

(√
Nd/n

(
Ψ∗

i (Nd)− Ψ̄∗
i (Nd)

)
+ Ψ̄∗

i (Nd)
)
. (2.81)
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Figure 2.5: Standard deviations (first row), skewness γ1(Ψi) (second row), and kurtosis γ2(Ψi)
(third row) of the bootstrap parameter distributions for the component weights (first column),
mean values (second column), and standard deviations (third column) of the first (dark lines),
second and third (bright lines) mixture component. The results have been obtained with non-
parametric bootstrap samples containingNd = 10, 000 data points each for the firstNs respective
parameter estimates from one continuous sequence of bootstrap realisations.

For Nd →∞, this measure yields all relevant information about the parameter uncertainty due
to grouping and truncation of the data and a potential insufficiency of the model considered.
Note that the asymptotic approach to parameter distributions is useful only if both original
and resampled data are of the same type (i.e., either both are explicit (n = N) or grouped
and truncated in the same way (possibly N 6= n)) as otherwise, a sufficient comparability of
measurement and bootstrap samples may be missing.

2.4.5 Application: Grain-Size Distributions from Lake Baikal Sediments

The estimation of model parameters and the statistical assessment of their corresponding uncer-
tianties has yet been discussed only for artificial data. In real-world examples, the grouped data
may be much more problematic, involving for example more significant component overlap or
a remaining uncertainty concerning the model itself (i.e., the number and shape of component
functions).

The corresponding potential problems may be underlined by one short example: Consider
the present-day aeolian dust grain-size record from Lake Baikal shown in Fig. 2.7. Fitting a
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Figure 2.6: Asymptotic parameter distributions ρ̄(Ψ∗
i ) estimated from Ns = 100, 000 nonpara-

metric bootstrap samples for the 3-component Gaussian mixture model. The size of the boot-
strap samples ranges from Nd = 10, 000 (= n) (lowermost line) in steps of 10, 000 up to 100, 000
(uppermost line). For Nd = 10, 000, the graph corresponds to the normalised density obtained
from the set, whereas the other lines are vertically shifted for better identifiability. For a better
comparability, we have used the alternative definition for ρ̄(Ψ∗

i ) involving the original EM esti-
mates Ψ̂i instead of the sample means Ψ̄∗

i (Nd) which may slightly differ between the respective
simulations.

finite mixture of lognormally distributed components to this data set requires three components
to capture the essential shape of the observed distribution (see Fig. 2.7). To see this, one has
to switch from the bar-chart representation (bar heights correspond to abundances) usually
used in geosciences to a histogram representation (bar areas correspond to abundances). The
minor ”dusty” peak below 2µm appears not significant in the bar chart, but is a clearly evident
indicator of a minor component (about 5% of the entire sediment) whereas the bulk distribution
is composed by two strongly overlapping major components.

From Fig. 2.7, one may infer problems with the reliability and significance of the considered
mixture models. Although obviously, three components are necessary to describe the data set
sufficiently, the penalised-likelihood criteria AIC, BIC, and HIC favour less complex models with
up to two components only (BIC even suggests that a single lognormal distribution would be
the optimum choice, however, this suggestion may be a particular result of the bin dimension
[Biernacki 2004c]. In the special case considered here, this problem may be related to the loga-
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Figure 2.7: Upper panels: Bar chart (left) and histogram (right) representation of the present-
day aeolian dust record from Lake Baikal. In the histogram, the (rescaled) probability distribu-
tion functions corresponding to finite mixture models with one (solid), two (dotted), and three
(dashed) lognormal components. Lower left panel: The associated non-rescaled probability dis-
tribution functions associated to the finite mixture models. Lower right panel: Behaviour of the
penalised-likelihood criteria AIC (solid), BIC (dotted), and HIC (dashed) in dependence on the
number of component functions.

rithmic spacing of the size intervals, which is underlined by the fact that also the improvement
of the likelihood or the associated χ2 statistics of the estimated model distributions is only very
weak when comparing two- and three-component mixtures.

The example underlines typical problems of the finite mixture approach for modelling real-
world data sets. Although a particular model appears promising for deriving informations about
sedimentation and transport mechanisms, a generally applicable test for an optimum model type
and order is missing as standard criteria like AIC fail, hence, there is no unified approach for
model validation. In addition, there is the potential problem of overfitting: On the one hand,
with increasing model complexity, the undertainty of the estimated model parameters increases
as well. On the other hand, there are distributions which cannot be appropriately described by
a model involving only few components.

To investigate how these problems involve the uncerteinty assessment, the three-component
lognormal mixture model is further analysed. In particular, the standard errors of all model
parameters have been computed with both, the information matrix method and via resampling
with (truncated) non-parametric as well as parametric bootstrap surrogates. The results dis-
played in Tab. 2.4 show that the standard errors derived from information matrix estimates and
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different bootstrapping approaches are (in contrast to the numerical example studied in Sect.
2.4.3 and 2.4.4) not anymore consistent with respect to each other and are of the typical order
of (in some cases even larger than) the estimated parameter values themselves. This result is
obviously related to the fact that the two major components have a very strong overlap. As a
consequence, whereas parametric bootstrapping allows to approximately recover the originally
estimated parameter values, nonparametric resampling may lead to completely different results
which underlines that in the example considered, the original outcome of the EM algorithm for
the corresponding model can hardly be used for qualitative and quantitative interpretations of
the record as the location of the computed maximum likelihood solution in parameter space
changes crucially if the data are only slightly modified.

Ψi Ψ̂i SE(Ψ̂i) Ψ̄∗
i,np SE(Ψ∗

i,np) Ψ̄∗
i,p SE(Ψ∗

i,p)
π1 0.0499 0.0936 0.1492 0.1490 0.0504 0.0613
π2 0.4646 4.3073 0.4845 0.7862 0.4555 2.0173
π3 0.4855 4.2261 0.3663 0.8388 0.4940 1.9783
µ1 −0.2968 0.6139 0.4038 0.9361 −0.2933 0.4710
µ2 1.7426 6.4788 1.7560 1.0415 1.7240 3.1052
µ3 2.6685 1.5995 2.5662 0.6706 2.6620 0.9144
σ1 0.3794 0.2995 1.0639 0.2806 0.3811 0.3169
σ2 0.7441 3.9626 0.6446 0.3299 0.7337 1.3216
σ3 0.5651 0.8171 0.5251 0.2149 0.5647 0.3918

Table 2.4: Estimated parameters Ψ̂i, information-matrix based standard errors SE(Ψ̂i), and
mean parameters Ψ̄∗

i and standard errors SE(Ψ∗
i )(rescaled by a factor of

√
Nd/n with n = 100)

from the non-parametric (subscript np) and parametric (subscript p) resampling with Ns =
100, 000 surrogate data sets with Nd = 100, 000 data each. The grain-size values (in µm) have
been logarithmised to approach normal components whose weights πi, means µi, and standard
deviations σi are given.

Although the resulting distributions of resampled parameters show again significant devi-
ations from a Gaussian and a particularly large asymmetry, the qualitative behaviour of the
standard errors is reproduced by the asymptotic bootstrap parameter distributions displayed
in Figs. 2.8 and 2.9. In particular, the distributions associated to the minor component are
still rather symmetric, whereas those for the strongly overlapping major components are much
more asymetric (for example, the parameters of the second component show a clear preference
of smaller values). Comparing the results of non-parametric and parametric bootstrap, it is
found that the non-parametric uncertainty distributions are wider than the parametric ones
for the minor component, but larger for the major components. This behaviour indicates that
the parametric approach is unusually sensitive with respect to the minor component, i.e., this
component is better resolved than the original data would actually allow. In contrast, for the
major components, the parametric approach seems to lose information.

2.5 Open Problems

Although the EM algorithm is a robust and efficient tool for parameter estimation and is thus
frequently applied, there are several properties of the algorithm which are problematic for certain
practical applications. In the following, the most prominent of these problems will be described.
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Figure 2.8: Cumulative asymptotic parameter distributions ρ̄c(Ψ∗
i ) =

∫ Ψ∗
i

−∞ ρ̄(ψ) dψ for all model
parameters obtained with the non-parametric bootstrap. The vertical lines correspond to the
sample median (solid) and the 1σ, 2σ, and 3σ probability levels of a Gaussian distribution
(dotted).

Recent solution approaches are given, however, there is still almost no general concept which
helps to avoid the discussed difficulties for any particular example. Therefore, it is appropriate
to refer to the following points to as open or at least not yet completely solved problems.

2.5.1 Uniqueness and Convergence

The question of general convergence of the EM algorithms was firstly addressed by [Wu 1983]
who particularly proved that an unimodal likelihood function with a certain differentiability
condition is a sufficient criterion for the convergence of an EM algorithm and the uniqueness
of its solution. However, these prerequisites are rarely fulfilled (in particular, for the case of
mixture models discussed in this chapter) which may lead to a multiplicity of local maxima of
the likelihood function which are approached by the EM algorithm depending on the choice of
starting values [McLachlan 1988]. As a consequence, the appropriate choice of initial parame-
ter values may be an important problem in practical realisations of the EM algorithm (for an
overview about some possible strategies and a corresponding comparison of their performance,
see [Seidel et al. 2000b, Karlis and Xekalaki 2003]). [Biernacki et al. 2003] pointed out that in-
stead of considering a random initialisation which is frequently applied, the strategy of initiating
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Figure 2.9: Cumulative asymptotic parameter distributions ρ̄c(Ψ∗
i ) for all model parameters

obtained with the parametric bootstrap. The vertical lines correspond to the sample median
(solid) and the 1σ, 2σ, and 3σ probability levels of a Gaussian distribution (dotted).

the EM algorithm based on short runs of the EM is recommended. [Seidel and Sevcikova 2004]
have demonstrated that in two-component mixtures of exponential distributions, different strate-
gies for starting the likelihood maximisation algorithm converge to different types of maxima,
hence, there is a need for criteria and strategies which may identify the statistically meaningful
maxima, e.g., based on sophisticated resampling approaches [Seidel et al. 2003]. Further im-
provement of the corresponding behaviour of the EM algorithm may be achieved by gradient
function updates [Böhning 2002, Seidel and Sevcikova 2002a].

Beside its dependence on the initial values, the EM algorithm usually converges
rather slowly. Thus, methods for improving its convergence have been extensively dis-
cussed in the literature [McLachlan 1996, Karlis and Xekalaki 1999], including quasi-Newton
acceleration steps [Lange 1995, Jamshidian and Jennrich 1997], alternations of EM itera-
tions with Gauss-Newton iterations [Aitkin and Aitkin 1996], conjugate-gradient methods
[Jamshidian and Jennrich 1993], or the so-called ECME algorithm [Liu and Rubin 1994].
A number of these approaches involves appropriate estimates of the information
matrix of the considered estimator [Louis 1982, Meilijson 1989, Meng and Rubin 1991,
Jones and McLachlan 1992, Lange 1995, Jamshidian and Jennrich 1997].

A third problem is the detection of convergence being a crucial point in practical im-
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plementations. Standard stopping rules are based on the relative change of parameters
and/or the log-likelihood function (e.g., [Agha and Ibrahim 1984]), the so-called gradient func-
tion or directional derivative [Lindsey 1983, Böhning et al. 1992, Pilla and Lindsay 2001], or
the Aitken acceleration [Böhning et al. 1994]. Although the first approach is mostly ap-
plied, the corresponding criteria indicate a lack of progress rather than actual convergence
[Lindstrom and Bates 1988, Seidel et al. 2000a, Karlis 2001]. However, also the concurring
approaches have some serious disadvantages in practical applications as pointed out by
[Karlis 2001].

Unlike for example quasi-Newton type algorithms, the EM algorithm converges to a (local)
maximum likelihood solution under rather general conditions [Davenport et al. 1988]. However,
in Gaussian mixtures, in the case of explicit data, the likelihood function is unbounded for any
parameters [Kiefer and Wolfowitz 1956, Day 1969] which can be seen by placing a Dirac at any
observed sample point [Biernacki and Chrétien 2003]. In the case of grouped data, the global
maximum of the likelihood function is approached in a similar way when placing a Dirac in any
non-empty interval [Biernacki 2004b]. Around such degenerate solutions, the EM algorithm iter-
ates move very slowly [Biernacki and Chrétien 2003, Biernacki 2004b] which may falsely indicate
convergence of the algorithm when applying the function-based stopping criteria as described
above. Moreover, there is a domain of attraction around degeneracy where convergence to the
degenerate solution occurs very fast [Biernacki and Chrétien 2003, Biernacki 2004b]. To avoid
such degenerate solutions, [Biernacki 2004a] theoretically derived an asymptotic upper bound
for the likelihood function of Gaussian mixtures and demonstrated its performance for both,
artificial and real-world data.

2.5.2 Model Validation

In most practical applications of finite mixture models, the number and shape of component
functions is a priori unknown. Thus, the assessment of model validity is a crucial point, in
particular, for comparing a particularly chosen model structure with a possible alternative. The
simplest idea is considering the appropriately quantified goodness-of-fit of the respective models
with respect to the observed data, e.g., in terms of the χ2 statistics in the case of grouped data.
However, this approach may be problematic regarding an unknown number of components to
be tested for: for real-world data sets, the consideration of additional components usually leads
to a further improvement of the value of the test statistics, whereas this does not necessarily
hold for the associated probability of rejecting the null hypothesis of the simpler model (i.e., the
model with a smaller number of unknown components).

As a promising alternative, penalised-likelihood criteria are often used. Instead of consid-
ering the computed maximum value of the log-likelihood function itself as a criterion for the
goodness-of-fit, this value is here penalised by an additional additive factor including the num-
ber of unknown parameters. For deriving these penalty terms, the expected log-likelihood must
be appropriately approximated based on sophisticated assumptions on the underlying likeli-
hood ratio (LR) test statistics (for a summary of some appropriate validity functionals, see
[Miloslavsky and van der Laan 2003]). As an alternative, the likelihood ratio between the mod-
els corresponding to the alternative and null hypothesis may be directly considered for model
validation itself.

Practical realisations of both, penalised-likelihood criteria and the likelihood ratio statis-
tic, are often problematic as the distribution of the LR statistics is itself unknown. To
give appropriate probability estimates for rejecting a given null hypothesis, this distribution
has to be approximated itself which is frequently done in terms of resampling approaches
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[McLachlan 1987, McLachlan et al. 1995, McLachlan and Peel 1997, McLachlan and Peel 2000,
Schlattmann 2005] as the availability of explicit expressions is an exception rather than
the general case (see, e.g., [Böhning et al. 1994, Seidel et al. 1997, Liu and Shao 2004,
Hall and Stewart 2005]). In some cases, the likelihood ratio statistics can be efficiently de-
scribed by its asymptotic distribution [Ruck 2001, Ruck 2002, Azais et al. 2004]. As this
distribution may be very complex and difficult to use in practice, [Chen et al. 2001] pro-
posed a modified LR test with a χ2-type null distribution. Independent of the par-
ticular approximation, the appropriate maximisation of the likelihood function (see Sec.
2.5.1) remains a fundamental prerequisite for any model validation [Seidel et al. 2000a,
Seidel et al. 2000b, Seidel and Sevcikova 2002b, Seidel et al. 2003, Seidel and Sevcikova 2003a,
Seidel and Sevcikova 2003b, Seidel and Sevcikova 2004].

For a more detailed overview on the different approaches for assessing the number of com-
ponents in mixture models, one may refer to Chapt. 6 of [McLachlan and Peel 2000] where the
above mentioned methods are discussed and illustrated by some insightful examples.

2.5.3 Maximisation Step for Non-Gaussian Components

In the case of explicit data, the maximisation step of the EM algorithm can usually be explicitly
solved for the unknown model parameters Ψ. However, this is not the case any more for grouped
and possibly truncated data where the summation over the different observations is replaced by
integrations. For homogeneous Gaussian models and mixture models with Gaussian component
functions, the corresponding derivations are discussed in App. A. Further examples where the
maximisation step can be performed without further secondary iterations include negative bino-
mial distributions [Schader and Schmid 1985, Adamidis 1999] and Poisson mixtures in binomial
proportions [Adamidis and Loukas 1993].

As in practical applications, other components functions may be of interest (see, e.g., Sec.
4.3), it is an important question to avoid or at least improve the computational efficiency of
secondary iterations in the maximsation step of the algorithm. This problem is rather model-
specific and shall not be further discussed here.



Chapter 3

Dimension Estimates of Multivariate
Time Series

3.1 Motivation

As it was already discussed in the introductory chapter of this thesis, palaeoclimatic time series
usually contain simultaneous measurements of a variety of different parameters which can serve
as climatic proxies. Although both, the campaigns for recovering samples from a geological
source (e.g., ice or sediment cores) and the subsequent measurement processes are not only
very time-consuming, but also rather expensive with respect to the required manpower and
technique, there is typically no discussion about which complementary information can actually
be extracted from such multivariate records.

In this chapter, this natural and important question is addressed quantitatively. For this
purpose, appropriate measures are developed and discussed that allow to quantify the amount
of information about the variability of the underlying system contained in general observed
multivariate time series. This quantification is performed in terms of the number of statisti-
cally meaningful components that can be derived from the multivariate record, which may be
considered as a measure for the strength of ensemble correlations or, more general, mutual in-
terdependences. In addition, a time-dependent calculation of these measures (i.e., a separate
computation for different parts of the climate history) allows to consider the variability of the
appropriately quantified information content as a novel measure for long-term climate change
at the location under investigation.

In univariate time series analysis, a number of nonlinear measures is widely applied
[Abarbanel 1996, Kantz and Schreiber 1997] for characterising the complexity of the data (see
Sec. 1.3). Several of them can be appropriately extended to the multivariate case, however,
in the case of geological records, the length and resolution of the corresponding time series is
highly restricted such that none of these methods may provide sufficient results any longer. To
quantify the content of information about the variability of the underlying system contained in
even extremely small data sets, one may consider the complexity of interrelationships between
the respective component time series in terms of the number of variability patterns that can
be derived from such data and show statistically meaningful amplitudes. The corresponding
method is thus based on an appropriate estimation of this number after a suitable statistical
decomposition of the data and will be discussed in this chapter.

It is worth to be mentioned that the statistical techniques developed in the following are of a
broad interest in various fields of research dealing with multivariate data analysis. In particular,
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in geosciences, there are possible applications in terms of spatio-temporal observational records
obtained, for example, in seismology or (hydro-) meteorology, with variations of the complexity
of linear (or, more general, nonlinear) correlations yielding indicators of an underlying change
of the system’s dynamics, which may be a predecessor of an extreme event (e.g., an earthquake,
flooding, or heat wave). Similar examples may be taken from other areas of science where
multivariate time series play an important role. As a corresponding potential field of application,
the analysis of the dynamics in neuro-physiological, social, economical, or biological networks
should be mentioned.

3.2 KLD-Based Dimension Estimates

3.2.1 Statistical Decomposition of Multivariate Data Sets

The characterisation of ensemble correlations by a single statistical parameter requires an
appropriate statistical decomposition of the corresponding multivariate time series. In prin-
ciple, this decomposition can be performed by a variety of different approaches, including
purely linear methods like Karhunen-Loéve decomposition (KLD) (which is often referred
to as principal component analysis (PCA) or empirical orthogonal function (EOF) method)
[Joliffe 1986, Preisendorfer 1988], multi-dimensional scaling (MDS) [Cox and Cox 2000], or, re-
ferring to a separate consideration of patterns in the frequency domain, multi-channel singular
spectrum (or system) analysis (MSSA) [Plaut and Vautard 1994], a combination of the ”stan-
dard” singular spectrum analysis (SSA) [Broomhead and King 1986] with PCA. All these meth-
ods have the common concept that some matrix which is suitably constructed from the observa-
tional data is subjected to a singular value decomposition (SVD), i.e., it is decomposed into its
eigenvalues and the corresponding eigenvectors. In the case of KLD, one makes use of the cor-
relation (or scatter) matrix S = ATA of the observed data set A (whose components have to be
transformed to zero means). For MDS, a transformed matrix of the squared linear inter-point
distances is used, whereas MSSA is based on a Toeplitz-type lag-covariance matrix obtained
from every univariate components time series.

Whereas the SVD step of all these methods may be easily and computationally efficiently
performed, there are also different nonlinear generalisations. One possible way to obtain such
generalisations is replacing the Euclidean metric by one defined by the local neighborhood, e.g.,
in terms of isometric feature mapping (ISOMAP) [Tenenbaum et al. 2000] or locally linear em-
bedding (LLE) [Roweis and Saul 2000]. An alternative is realising the decomposition in terms
of neural networks, including methods like nonlinear principal component analysis (NLPCA)
[Kramer 1991] or independent component analysis (ICA) [Hyvärinen et al. 2001]. However,
these nonlinear variants require a much larger amount of data for computation, while the linear
methods can be applied to rather short time series as well. In addition, the methods based
on neural networks do not lead to well-defined component variances such that the approach
described in the following is not applicable in such cases.

For a temporally localised characterisation of the components of multivariate data sets, it
is thus recommended to focus on the linear methods only. For simplicity, Karhunen-Loéve
decomposition is considered as a particular example, as the components derived by this method
have probably the most intuitive interpretation. As its principal idea has been introduced
about 100 years ago (see, e.g., [Preisendorfer 1988] for some historical remarks), KLD is today
frequently applied as a standard method for compressing spatiotemporal data by finding the
largest linear subspace that contains substantial statistical variations of the data. In the case
of observations with N simultaneously measured variables and M points in time, the M × N -
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dimensional data matrix A (rescaled to zero means for any component time series) is used to
define a N ×N -dimensional symmetric and positive semidefinite scatter matrix S = ATA. The
matrix S can be completely described by its non-negative eigenvalues σ2

i (i = 1, . . . , N) and
their corresponding eigenvectors (which are in geosciences usually referred to as the empirical
orthogonal functions (EOF)). Without loss of generalisation, one may consider the σ2

i of S
in decreasing order σ2

1 ≥ · · · ≥ σ2
N ≥ 0 in the following. Moreover, the eigenvalues will be

normalised to unit sum
∑N

i=1 σ
2
i = 1 wherever appropriate.

In order to examine the dynamic features of the data, it is common to additionally study
the time-dependence of the amplitudes corresponding to the respective EOF (if thus considered
dynamically, KLD is usually referred to as principal component analysis (PCA)). However,
this approach still reflects only the linear properties of the observations, but does not allow a
nonlinear characterisation of the record in terms of quantitative measures.

3.2.2 KLD Dimension

The idea of using Karhunen-Loève decomposition for estimating the number of degrees of
freedom in spatially extended systems is already presented in [Ciliberto and Nicolaenko 1991].
As in the case of weakly turbulent systems, the same quantity may be represented with
methods based on the fractal dimension [Pomeau 1985] or Lyapunov exponents [Kaneko 1989,
Mayer-Kress and Kaneko 1989], it is convenient to refer to this number to as ”the” dimension of
the considered system. Following this line of argumentation, one may extend the application of
Karhunen-Loève decomposition with respect to the purely linear point of view described above.

To determine the number of degrees of freedom in spatially extended systems,
[Zoldi and Greenside 1997] introduced the concept of KLD dimension for a quantitative charac-
terisation of spatio-temporal chaos [Zoldi et al. 1998, Meixner et al. 2000, Varela et al. 2005].
The KLD dimension may be defined as the number of eigenvalues required to capture some
specified fraction 0 ≤ f ≤ 1 of the total variance

∑N
i=1 σ

2
i of the data, i.e.,

DKLD(f) = min

{
p :

p∑
i=1

σ2
i

/
N∑

i=1

σ2
i ≥ f

}
(3.1)

with the limiting cases DKLD(0) = 0 and DKLD(1) = N . It should be noted that this def-
inition is modified with respect to the original one introduced by [Zoldi and Greenside 1997]
and [Meixner et al. 2000] who considered DKLD(f) being the maximum number of eigenmodes
describing less than a fraction of f of the total variance. This modification is motivated by the
fact that for applications in data analysis, for a given f the minimum number of modes that
explains a given amount of total variance is usually the quantity of interest. Moreover, this
redefinition leads to a more natural behaviour of the KLD dimension at the limiting cases f = 0
and f = 1 as described above.

In the case of simulations of spatio-temporally chaotic systems, Zoldi and coworkers observed
(for any f) a linear scaling of DKLD with the system size N . Whereas the KLD dimension is
otherwise restricted to integer values, this finding suggested to study a normalised version, the
KLD dimension density δKLD = DKLD/N [Meixner et al. 2000], whose values are bounded to
the unit interval.

The KLD dimension has mainly been used to characterise the dynamics of spatially
extended model systems in the extensive chaotic state [Zoldi and Greenside 1997], spiral-
defect chaos [Zoldi et al. 1998], and reaction-diffusion systems [Meixner et al. 2000]. Recently,
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[Varela et al. 2005] applied DKLD for an investigation of spatiotemporal data from electrochem-
ical oscillator experiments (with M ≥ 6000 and N = 50). It has been demonstrated that this
measure is well suited for quantifying differences between regular and turbulent states.

To adapt the concept of KLD dimension within a more general framework of multivariate
data analysis (in particular for geoscientific applications), one may in addition explicitly consider
the temporal variability of the observations for a temporally localised characterisation of the
dynamics. While the consideration of S for the complete data set loses any temporal information
about the variations in the complexity of interrelationships between the different components
(which may be significant especially if M � N), a separate computation of the KLD dimension
for sliding windows in time [Meixner et al. 2000] allows the resolution of the varying complexity
down to the scale of N points in time or even below.

3.2.3 LVD Dimension

Whereas the KLD dimension density can be widely applied to characterise large data sets from
spatio-temporally chaotic systems, its direct use for the characterisation of an observational
record is problematic in the case of small data sets (i.e., small N) or time windows (small M)
due to different reasons:

Firstly, δKLD has a possible range of only N + 1 different, equally spaces values. Thus,
the number of possible values becomes very small for the considered data. As a consequence,
small changes of the structure of interrelationships between the component time series are not
detected by this measure, whereas it changes discontinuously (with a step size of 1/N) when
these modifications of the data increase over a certain threshold. Thus, if N is rather small,
only rather strong changes within the data are detected by a dramatic change of δKLD.

Secondly, there is no natural choice of the cutoff parameter f which has to be specified
separately for each application. Thus, it is not appropriate to consider δKLD as an absolute,
but rather as an relative dimension density. However, for applications where only a qualitative
detection and description of changes of the complexity of interrelationships within multivariate
data is requested, this subtile difference is no major problem.

Thirdly, due to the small amount of observational data in time, certain finite-size effects have
to be expected which may cause any quantitative interpretation of δKLD to fail.

These arguments call for a definition of more general estimates for relative dimension
densities which can be applied also to small multivariate data. As a possibility, one may
consider the scaling of δKLD with the cutoff parameter f and fitting a suitable paramet-
ric function to the respective curve. For this purpose, one firstly observes that for a given
value of δKLD(f) = p/N (p = 0, . . . , N), 1 − f plays the role of the remaining variances
defined as Vr(p/N) = 1 −

∑p
i=1 σ

2
i for p = 1, . . . , N (Vr(0) = 1.0), where p/N is the rela-

tive number of components considered. For the component variances (i.e., the eigenvalues of
the equal-time covariance matrix), the scaling behaviour has been investigated in some detail
for random matrices [Farmer 1971, Probert-Jones 1973] as well as real-world geoscientific data
[Craddock and Flood 1969] in terms of the logarithmic eigenvalue (LEV) curves (for an overview,
see [Preisendorfer 1988]). The LEV curve is usually used as a simple possibility to graphically
check whether the component variances decay sufficiently smooth which is an important prereq-
uisite for a meaningful interpretation of KLD-based dimension estimates.

In contrast to the component variances, there are no studies analysing the scaling of the
remaining variances in some detail. However, a rough inspection of the corresponding values for
both, random matrices as well as observational data, shows that the decay corresponding to the
major components (i.e., the consideration of the components with the highest variances) is in
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general more or less well described by an exponential decay law (see Fig. 3.1). As a consequence,
one can make the following ansatz:

Vr(p/N) = e−
p
N

/δ for p ≤ pmax < N. (3.2)

The corresponding value for δ may be computed by a simple linear least square approach.
However, if N is rather small, there are only few points to interpolate the respective model
function. Moreover, there are again only N possible choices of the threshold pmax for fitting this
function (as Vr(N) = 0.0 by definition, an exponential decay law must be subjected to a certain
cutoff at pmax < N). To overcome this difficulty and define the model function with respect to a
continuously distributed cutoff parameter f , one can make use of the relationship between Vr(p)
and 1− f which is illustrated in Figs. 3.1 and 3.2: reversing the axes in Fig. 3.2 and multiplying
δKLD by N(=32), one approaches a continuously defined equivalent of the right panel in Fig.
3.1 (where the illustrated function is defined only for integer values of p). A scaling law of the
KLD dimension density corresponding to that of the remaining variances then looks as follows:

δKLD(φ) = −δ(f) ln(1− φ) for φ ∈ [0, f ]. (3.3)
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Figure 3.1: Scaling of the component variances σ2
p (left panel) and the corresponding remaining

variances Vr(p) (right panel) for the normalised trace element abundance data (M = 60 and
N = 32, black lines) discussed in Sect. 3.5. For comparing the results with those of finite-size
random matrices, we additionally computed Vr(p) for ensembles of 1000 multivariate (N = 32)
surrogate data sets consisting of normally distributed data (with prescribed component variances
equal to those of the original data) with length M = 60 (gray) and M = 1000 (black) points
in time. The displayed error bars correspond to the standard deviations of the values from the
respective surrogates. The deviation between the black and the gray curve is mainly explained
by the small size and non-Gaussian distribution of the observed time series values.

Instead of using the natural logarithm ln(·), in the following, the decadal logarithm log10(·)
will be applied for convenience. The resulting decay scale δLV D is modified with respect to δ by
a constant factor of (log10 e)−1 (due to the remaining dependence on pmax or f , resp., one is still
interested in a relative measure only such that the corresponding modification is not critical).
The particular choice of the decadal logarithm, i.e., an explained fraction of 90% of the total
variance of the data, is motivated by the fact that this threshold gives a reasonable number for
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Figure 3.2: Left panel: Scaling of the KLD dimension density δKLD(f) with log(1 − f) (black
line) for the trace element abundance data discussed in Sect. 3.5. Vertical gray lines indicate
the cutoff values of f = 0.5 (solid), 0.9 (dotted), 0.95 (dashed), and 0.99 (dash-dotted), whereas
the slope of the associated gray diagonal lines correspond to the respective values of δLV D(f).
Right panel: Scaling of the corresponding LVD dimension density δLV D(f) with log(1−f) (black
line). Vertical gray lines indicate the total variances

∑p
i=1 σ

2
i corresponding to a fixed number

of components p = 1, . . . , N (from right to left). Asterisks indicate the estimates of δLV D(p/N)
using the discrete least-square approach.

the effective degree of freedom in spatially extended systems, cf. [Ciliberto and Nicolaenko 1991]
(93%), [Zoldi and Greenside 1997] (between 81% and 95%), or [Bayly et al. 1998] (90%). In
particular, the values of δLV D ·N are more closely related to the degrees of freedom than those
of δ ·N .

As it quantifies the decay of remaining variances of the linear principal components of a
multivariate data set, δLV D(f) is called the linear variance decay (LVD) dimension density of
the respective data. As δKLD(f) is well-defined for f ∈ [0, 1], this expression allows to calculate
δLV D(f) for any f ∈ (0, 1). For this purpose, it is recommended to apply a continuous least-
square approach by minimising the functional

Fα(f) =
∫ 0

log(1−f)
(δKLD(x) + αx)2exdx (3.4)

with respect to α (here, the transformation x = ln(1− φ) has been used). One easily convinces
oneself that Fα(f) has (for any value of f) a unique global minimum at

αmin(f) = −

∫ 0
log(1−f) δKLD(x)xexdx∫ 0

log(1−f) x
2exdx

(3.5)

which is easily computed by separately evaluating the integrals over all ranges in x where
δKLD(x) has a constant value. This minimum, αmin(f), is then a reasonable estimate of the
exponential decay scale δ such that δLV D = αmin/ log10 e.

Alternatively to this continuous least-square approach, δLV D may also be estimated using
the discrete values of the remaining variances only (with a corresponding uncertainty), giving
rise to a pointwise defined measure in dependence on f = p/N . Using an approach equivalent
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to the one described above minimising

Gβ(pmax) =
pmax∑
i=1

(
log10 Vr(i/N) +

i

Nβ

)2

, (3.6)

one finds that

βmin(pmax) = − 1
N

∑pmax

i=1 i2∑pmax

i=1 i log10 Vr(i/N)
(3.7)

which may be identified with δLV D(pmax/N). However, when considering δLV D dynamically, the
advantage of the continuous least-square estimate is obvious as a fixation of the explained fraction
of variance f yields more comparable results than the restriction to a particular pmax where the
assigned number of leading eigenmodes may cover a very different amount of information.

By considering its above definition, it is immediately clear that the LVD dimension density
still depends on the cutoff parameter f , i.e., gives only a relative dimension density estimate
again. In contrast, the appealing alternative of obtaining a parameter-free measure by, e.g.,
taking the minimum or maximum of δLV D over all values of f has severe disadvantages. In
particular, as it is visualised in Fig. 3.2, there is only a local minimum and maximum of δLV D(f)
for f within the open interval (0, 1) as log(1−f) → 0 for f → 0 (δLV D → +∞) and log(1−f) →
−∞ for f → 1 (δLV D → 0). Moreover, the local minimum of δLV D taken over all f ∈ (0, fmax)
occurs always at f = 1−Vr(p) for a suitable p ∈ {1, . . . , N−1}. Thus, a dynamic characterisation
of the record by this local minimum LVD dimension density is not suitable as it may occur at
completely different values of f (possibly even changing discontinuously if the associated value
of p changes with time).

As a consequence of the features discussed above, one should consider δLV D always as a rel-
ative dimension estimate corresponding to a particularly chosen, fixed value of f ∈ (0, 1), which
is clearly bounded from 1 (otherwise, the exponential decay model for the remaining variances
would immediately lose its meaning). However, although it still shares this disadvantage with
the KLD dimension density, δLV D is much more sensitive with respect to minor changes in the
correlations of the component time series and simultaneously applicable to very small data sets.
In the following, the corresponding features and limits of this approach are demonstrated in
some detail.

3.3 Application to Stochastic Component Time Series

To study the performance of the KLD-based dimension estimates, the KLD and LVD dimension
densities are firstly applied to different artificial data sets. In particular, the behaviour of both
measures is studied in the limit of small data sets (i.e., either N or M is comparable to typical
geological time series).

3.3.1 Independent Standardised Gaussian Components

The behaviour of the eigenvalues of random covariance matrices in the Gaussian case with a
limited amount of data has yet been extensively studied both analytically and numerically (for
an overview and further references, see chapter 5 of [Preisendorfer 1988]). In particular, there
are analytic expressions for the probability of eigenvalues of such matrices. The resulting log-
arithmic eigenvector curves show a quasi-exponential decay of values steepening towards the
major components as well as towards the components with the smallest variances. This fact is
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Figure 3.3: Scaling of the component variances σ2
p (left panel) (LEV curve) and the corresponding

remaining variances Vr(p) (right panel) for standardised Gaussian random data with N = 32
and M = 60 (gray lines) as well as M = 1000 (black lines) points in time, resp. The displayed
error bars correspond to the standard deviations of the values from 100 realisations.

represented by numerical calculations on random matrices with standardised Gaussian compo-
nents (i.e., components with unit variances) displayed in Fig. 3.3 which resemble the results of
[Preisendorfer 1988], p. 240. The corresponding decay curves of the remaining variances Vr(p)
which are additionally shown in the figure start to significantly deviate from an exponential de-
cay law much earlier (i.e., at lower numbers of components considered) than the corresponding
LEV curve. Nonetheless, for the major components, the exponential model appears to be a
reasonable approximation.

3.3.2 Independent Non-Standard Gaussian Components

Generalising the above results about the signatures of finite realisations of Gaussian processes in
the eigenvalues and remaining variances of the associated covariance matrix, one may consider
the more natural case of non-standard components, i.e., components with variances deviat-
ing from unity. Fig. 3.4 shows three different examples which may approximate real-world
scenarios with component variances decaying exponentially (σ2

i = exp(− i
N /δ)), algebraically

(σ2
i = 1/( i

N /δ)), and linearly (σ2
i = (N + 1 − i)/N). In all these cases, it is observed that

the corresponding ”true” component variances are well approximated even in the case of rather
short realisations (M = 60). In addition, it is shown that for the major part of the total variance
(f & 90%), the remaining variances are mainly described by an exponential decay model as sup-
posed in the previous section. In the case of component variances which follow an exponential
distribution, the exponential decay law seems to hold exactly in the limit of large realisations of
the corresponding processes (M →∞).

3.3.3 Behaviour of Variances in the Presence of Additive Noise

Next, the influence of additive Gaussian white noise on the eigenvalues and remaining variances
of the covariance matrices is studied. As an example, the component variances are prescribed
to fixed, exponentially decaying values σ2

p = exp(− p
N /δ). In this case, additive noise domi-

nates the decay of the eigenvalues only on scales where σ2
p is reasonably smaller than the noise
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Figure 3.4: Scaling of the component variances σ2
p (left panels) (LEV curve) and the corre-

sponding remaining variances Vr(p) (right panels) for independent Gaussian random data with
N = 32 and M = 60 (gray lines) as well as M = 1000 (black lines) points in time, resp., with
an exponential (upper panels), algebraic, and linear (lower panels) decay of the component vari-
ances σ2

i . The displayed error bars correspond to the standard deviations of the values from 100
realisations.
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variance σ2 (which is in this example related to the fact that both, signal and noise, are the
same kind of process). In contrast to the eigenvalues themselves, the remaining variances are
much more sensitive to the noise and show remarkable deviations already for (Vr(p)/σ)2 ∼ 1.
For component orders p where the eigenvalues and remaining variances are smaller than these
respective thresholds (whose values are closely related to the specific setting), the noise leads to
a significant change of the slope of the corresponding decay curves shown in Fig. 3.5. Hence,
the decay at these minor components is mainly described by the noise.
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Figure 3.5: Scaling of the component variances σ2
p (left panel) (LEV curve) and the corresponding

remaining variances Vr(p) (right panel) for Gaussian random data with N = 32 and M = 60
with component variances σ2

p = exp( p
N /δ) (δ = 0.2) without noise (black lines) and subjected to

additive Gaussian white noise with σ2 = 0.01 (dark gray lines) and σ2 = 0.1 (light gray lines),
resp. The displayed error bars correspond to the standard deviations of the values from 100
realisations.

The different sensitivity of both, the eigenvalues of the covariance matrix and the corre-
sponding remaining variances, is reflected by a larger sensitivity of the LVD dimension density
against additive noise compared to that of the KLD dimension which is - as a coarse-grained
estimate - much more robust against reasonably small changes of the covariance structure of the
data. In Fig. 3.6, the behaviour of both measures and their respective uncertainties is system-
atically studied as a function of both, the cutoff variance fraction f and the noise amplitude
σ2. In particular, one observes that δKLD in general increases with f , whereas its values are
relatively slowly increasing when increasing the noise with f kept fixed. In contrast to this
behaviour, δLV D changes (for sufficiently large f) only slowly when increasing the cutoff f , but
is still sensitive to changes of the amplitude of the applied noise. Note, however, that in the
case of δLV D, the cutoff fraction f has to be chosen sufficiently high to avoid the strong and
unbounded increase in the values of this measure for f → 0 (cf. Fig. 3.2). Concerning the un-
certainty of both dimension estimates, it is found that these are of similar orders of magnitude
with maximum values at parameters where the corresponding measures have a large gradient.

3.3.4 Non-Gaussian Components

For completing the study of matrices with independent stochastic components, one may ad-
ditionally consider different generalisations of the above settings. In particular, the effect of
instationarities in the data (for example, trends) on the computed dimension densities has to
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Figure 3.6: Upper panels: Color-coded representations of δKLD (left) and δLV D (right) for
Gaussian random data with N = 32 and M = 60 with component variances σ2

p = exp( p
N /δ) (δ =

0.2) as a function of the cutoff level f for different additive noise amplitudes σ2. Lower panels:
The respective uncertainties of both dimension estimates (left: δKLD, right: δLV D), expressed by
the standard deviations of the computed values from 100 realisations of the respective system
for each parameter. White areas correspond to parameters where δLV D either could not be
computed (very large f) or gave artificially high values > 1 (very small f).

be considered. Of course, for real-world data sets as in geosciences, non-stationarity will have
an effect on the number values of the measures introduced above. However, as there are rea-
sonable and simple methods for an appropriate trend removal, it is recommended to use these
methods before computation. In the case of a dynamic characterisation of the data (i.e., a calcu-
lation of dimension estimates for reasonably short windows in time), one may typically assume
stationarity and the dynamics on these small scales being statistically relevant.

In the above considerations, only the case of Gaussian components has been considered.
However, when studying standardised data (i.e., component time series with unit variances),
the actual distribution of the data is less relevant. As a particular example shown in Fig.
3.7, the behaviour of data sets with uniformly distributed components has been studied, which
cannot be statistically distinguished from that of Gaussian components with respect to the error
bars originated from the finite size of the data sets considered.

In real-world data sets, component time series may have different physical dimensions or val-
ues with different magnitudes. In such cases, an application of KLD-based dimension estimates
without an appropriate rescaling has to fail as the components with the largest magnitudes of
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Figure 3.7: Scaling of the component variances σ2
p (left panel) (LEV curve) and the corresponding

remaining variances Vr(p) (right panel) for stochastic data taken from uniform distribution on
[0, 1] with N = 32 and M = 60 (gray lines) as well as M = 1000 (black lines) points in time,
resp. The displayed error bars correspond to the standard deviations of the values from 100
realisations.

the recorded values dominate the covariance structure. Applying a normalisation to unit vari-
ances (the zero means are a general prerequisite of our method) in the case of Gaussian random
matrices with distributed component variances necessarily leads to a shift and deformation of
the decay curves of both eigenvalues and remaining variances, resulting in a slower decay and a
corresponding increase of the computed dimension density estimates. However, if one wishes to
use δKLD and δLV D as relative dimension densities only, this point is not crucial as long as we
are only interested in the qualitative change of their corresponding values when the covariance
structure of the underlying data is modified.

3.4 Application to Subsets of Large-Scale Systems

The case of completely stochastic component time series discussed so far is rather generic,
whereas observational data from geoscientific systems are likely to have some deterministic, but
eventually high-dimensional chaotic components. To demonstrate the power of KLD-based di-
mension estimates for such data sets, one may study their performances for systems modelling
the behaviour of spatio-temporal chaos. A particular (linear) approach to construct such a sys-
tem with a prescribed dimension density d ∈ [0, 1] has been introduced by [Politi and Witt 1999].
For this purpose, the basis {F1, . . . , Fn} of a sufficiently high-dimensional Fourier space (i.e., n
is large, here n = 1000) is considered which may be expressed as

Fkj =


1/
√
n, if k = 1,√

2/n cos
(

2π
n

[
k
2

]
j
)
, if k > 1 and odd,√

2/n sin
(

2π
n

[
k
2

]
j
)
, if k even,

(3.8)

where [·] denotes the integer part. j = 1, . . . , N ≤ n gives the ”spatial” position on a regular one-
dimensional lattice which is associated to each respective component time series of the resulting
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Figure 3.8: Scaling of the component variances σ2
p (left panel) (LEV curve) and the corresponding

remaining variances Vr(p) (right panel) for the model system for spatio-temporal chaos (d = 0.5)
with N = 32 and M = 60 (gray lines) as well as M = 1000 (black lines) points in time, resp. The
displayed error bars correspond to the standard deviations of the values from 100 realisations.

multivariate data set constructed as

xij =
dn∑

k=1

ξikFkj . (3.9)

Here, ξik (with i = 1, . . . ,M corresponding to the position in time) is a set of random numbers
taken from an appropriate distribution. If |ξik| < 1, the set of values xij is contained in a dn-
dimensional hypercube and forms a M ×N -dimensional data matrix. If M is sufficiently large,
the eigenvalues σ2

p of the associated covariance matrix (which has a Toeplitz structure) show
an abrupt decay at the component index dn, corresponding to the dimension of the underlying
hypercube (see Fig. 3.8).

As an example, in the following the ξik are taken from a uniform distribution on [−31/3, 31/3].
This setting corresponds to the system originally studied by [Politi and Witt 1999] both analyt-
ically and numerically. Fig. 3.9 shows the computed values of δKLD and δLV D for realisations
containing M = 100 data. One firstly observes that δKLD fits the true dimension of the system
better than δLV D, whereas the latter one is preferable for detecting small changes within the
system. Moreover, for the considered system, the LVD dimension density shows a different be-
haviour compared to the case of random matrices: Whereas δKLD increases with increasing f
due to its definition, δLV D is found to decrease in this example which is caused by the particular
distribution of eigenvalues in the considered model system.

Concerning the dependence on the length M of the component time series shown in Fig. 3.10,
it is found that for suitably large values of M (M ≤ n = 1000), the KLD dimension density
approaches constant values. However, for short time series, the elements of the correlation
matrix are rather uncertain. Consequently, as δKLD approaches only discrete values, this can
lead to changes of the computed values or their corresponding uncertainties with varying M .
Unlike δKLD, the LVD dimension density δLV D is much more sensitive to even small changes
of the length of the time series and indicates that an increasing size of the record leads to
a gradually increasing dimension estimate, i.e., more components are found to be significant.
Only for very long time series M ≥ n, the computed values slowly saturate. In general, for
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Figure 3.9: δKLD (left panel) and δLV D (right panel) with their corresponding 95% confidence
levels from 50 realisations of the surrogate data with N = 20 and M = 100 in dependence of the
predescribed dimension density d (note that for some parameters, all realisations gave the same
δKLD such that the corresponding error bars are missing). Truncation levels have been chosen
as f = 0.5 (solid), 0.9 (dashed), 0.95 (dotted), and 0.99 (dash-dotted). The red diagonal lines
represent the true values of d.

both dimension estimates it is found that the saturation occurs for shorter time series if f is
increased. Moreover, if f and M are both chosen sufficiently large, both δKLD and δLV D recover
the prescribed dimension density d of the system.

The latter result may have important implications for real-world observational data sets: to
be able to compare the correlation structure of two records by means of KLD-based dimension
estimates, these must contain the same number of components and the same number of obser-
vations is time. This restricts the applicability of our approach to geoscientific data sets as for
example, due to a different sampling in the time domain, for many geological records one cannot
consider fixed windows in time as these may contain different numbers of data. Similar problems
are expected to occur if there are missing data in a record. Thus, it is recommended to consider
always data (sub)sets with an equal number of observations when applying dimension estimates
to characterise temporal variations of the correlation structure of observational records.

When considering variations of the true system dimension d, the ”optimum” truncation level
f to recover d by the respective dimension estimates increases with increasing d in the case of
the KLD dimension density δKLD, whereas for δLV D, the opposite behaviour is found (see Fig.
3.11). Note that the number values of both dimension density estimates depend on the specific
setting, i.e., the choice of M and N .

The discrete values of δKLD lead to oscillations of the optimum truncation level f with
varying d, whereas δLV D (having continuously distributed values) changes with d is a much
smoother way, but yields (for our specific setting and ”typical” values of f) a clearly worse
quantitative estimate of d than δKLD. In general, for fixed f both dimension density estimates
detect changes in the true dimension of the system. As the associated changes of their respective
values are discrete in the case of δKLD, but continuous for δLV D, it is suggested that actually
the latter measure is better suited for qualitatively detecting and describing changes of the
correlation structure in multivariate data sets.

Concerning the respective uncertainties of both measures also shown in Fig. 3.11, a quali-
tatively similar behaviour is observed where the largest uncertainties occur at high values of d
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Figure 3.10: Scaling of the dimension estimates δKLD (left panel) and δLV D (right panel) for the
model system for spatio-temporal chaos (d = 0.5) with N = 32 components as a function of the
length M of the record for f = 0.5 (black), f = 0.9 (dark gray) and f = 0.95 (light gray). The
displayed error bars correspond to the standard deviations of the values from 100 realisations.

and moderate cutoff values f (in our specific setting, f ≤ 0.5 for δLV D and f ≈ 0.9 for δKLD),
whereas they decrease with increasing cutoff level f and decreasing dimension density d of the
system considered. In addition, one finds that the uncertainty of the KLD dimension density
shows small-sized patterns clearly related to the discrete values of this measure, whereas for
the LVD dimension density, the uncertainty behaves again much smoother, but is at least for
moderate values of f significantly higher than that of δKLD caused by sensitivity of δLV D for
small f (see Fig. 3.2).

The equal choice of the distribution of the ξik for the different components i of the model may
appear rather artificial. One may easily modify the model by allowing different distributions
for the Fourier coefficients belonging to any component. Fig. 3.12 shows how the resulting
dimension densities change when the ξik from the standard setting are additionally weighted by
a factor of (dn + 1 − k)/dn, corresponding to linearly decreasing component variances. With
respect to Fig. 3.10 where the corresponding results for the standard setting are displayed, one
observes that the values of both, δKLD and δLV D, are significantly smaller for any choice of
the cutoff variance fraction f , while their values already saturate for shorter realisations of the
system with M � n.

3.5 Sedimentology of the Cape Roberts Project

As a particular example illustrating the power of the KLD-based dimension estimates for the
analysis of multivariate geoscientific data, the corresponding measures have been applied to
multivariate geological records from marine sediments obtained within the framework of the
Cape Roberts project offshore the East Antarctic coast. The main objective of this campaign
(consisting of three scientific drillings at slightly different locations) was a detailed study of
glaciation and deglaciation intervals in the antarctic region in a time interval between about
17 to 34 million years before present. During this time interval, the global mean temperature
was significantly higher than today with long-term temperature fluctuations caused by orbital
cycles (for more details and a list of references, see [Naish et al. 2001]). The superimposed
successive climate change is believed to be essentially controlled by the opening and closure of
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Figure 3.11: Upper panels: Color-coded representations of δKLD (left) and δLV D (right) for data
from the space-time chaos model with N = 32 and M = 60 as a function of the cutoff level
f for different prescribed dimension densities d of the system. Lower panels: The respective
uncertainties of both dimension estimates (left: δKLD, right: δLV D), expressed by the standard
deviations of the computed values from 100 realisations of the respective system for each param-
eter. Black lines correspond to cutoff levels f for which the prescribed dimension density d is
recovered by the respective dimension estimates. White areas correspond to parameters where
δLV D either could not be computed (very large f) or gave artificially high values > 1 (very small
f).
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Figure 3.12: Scaling of the dimension estimates δKLD (left panel) and δLV D (right panel) for the
model system for spatio-temporal chaos (d = 0.5) with N = 32 components as a function of the
length M of the record for f = 0.5 (black), f = 0.9 (dark gray) and f = 0.95 (light gray). The
displayed error bars correspond to the standard deviations of the values from 100 realisations.

ocean passages as a consequence of tectonic activity, which have lead to dramatic changes in the
oceanic circulation.

3.5.1 Cenozoic Climate Evolution

The geologic history of the Earth is devided on different levels into eons, eras, periods, epochs,
and stages. Eons mainly reflect the different parts of the planetary evolution on a long time scale,
hence, the current eon, the Phanerozoic, covers the time interval from about 542 Myr BP (million
years before present) which is characterised by the significant development of ”macroscopic” life
(after the so-called ”Cambrian explosion”). The Phanerozoic is devided into the eras Palaeozoic,
Mesozoic, and Cenozoic, the latter one starting at about 65.5 Myr BP.

Historically, the Cenozoic is devided into the Tertiary and Quaternary, however, these periods
are today mainly referred to as Palaeogene and Neogene, which follows an approach towards a
unified nomenclature for the entire geological time scale. The Cenozoic contains the Palaeogene
epochs of Palaeocene (65.5 - 55.8 Myr BP), Eocene (55.8 - 33.9 Myr BP), and Oligocene (33.9 -
23.03 Myr BP) as well as the Neogene epochs of Miocene (23.03 - 5.33 Myr BP), Pliocene (5.33
- 1.81 Myr BP), Pleistocene (1.81 Myr to 11.4 kyr BP), and Holocene (reaching until present
day)1.

The Cenozoic climate is characterised by a successive transition from rather warm, tropical
conditions towards the colder climate of present day. The corresponding transitions are essen-
tially governed by tectonic activity, i.e., the shifting of the different continental plates relative
to each other and the resulting opening and closing of oceanic gateways. As the oceanic water
masses are a strong heat capacitor, changes in the ocean circulation are today believed to have
major influence on the global heat budget and thus are a major mechanism for controlling the
large-scale climate. In particular, the opening of the Tasmanian gateway and the Drake Passage
between South America and the Antarctic peninsula are closely related to the strong enhance-
ment of glacial activity in the Southern hemisphere, i.e., the occurrence of antarctic glaciations,

1The values given here have been taken from http://en.wikipedia.org/wiki/Geologic time scale and may differ
according to the respective reference considered.



68 CHAPTER 3. DIMENSION ESTIMATES OF MULTIVARIATE TIME SERIES

whereas the closing of the Central American seaway during the Pliocene is believed to be one
important ingredient in the climatic puzzle leading to the glaciation of the high latitudes of the
northern hemisphere.

About 30 years ago, [Kennett 1977] established the hypothesis of a link between the open-
ing of the Drake Passage on the one hand and the initiation of the Antarctic Circumpolar
Current (ACC) and the development of ice sheets on Antarctica on the other hand. During
the Palaeocene, Australia and Antarctica were joined. In the early Eocene (about 55 Myr BP),
Australia started to drift northward, while a circum-antarctic flow was still blocked by the conti-
nental South Tasman Rise and Tasmania. During the Eocene, the southern ocean was relatively
warm and the Antarctic continent largely nonglaciated. During the late Eocene (about 39 Myr
BP), a shallow water connection developed between the southern Indian and Pacific over the
South Tasman Rise.

Although the first significant continental glaciations and eventually sea ice formations date
to the late Eocene and early Oligocene, the successive development of a substantial ice cap
required the thermic isolation of the continent due to the development of the ACC after an
opening of deep-water passages though both, the Tasmanian gateway and the Drake Passage.
The timing of the opening of Drake Passage to deep water flow as the last contribution to
the ACC formation has been a long-standing debate with estimates ranging from around the
Oligocene/Miocene boundary [Barker and Burrell 1977, Barker and Burrell 1982, Barker 2001]
to the early Oligocene [Lawver and Gahagan 1998, Lawver and Gahagan 2003]. Numerous at-
tempts have been made to constrain the opening by dating the onset of the ACC with different
palaeoceanographic proxies (see [Barker and Thomas 2004] and references therein), the debate
has endured [Scher and Martin 2004].

The changes in large-scale oceanic circulation patterns are believed to be the major reason
for the long-term gradual cooling of the Earth since the beginning of the Cenozoic. Apart from
this, different other influences have been discussed, like biogeochemical feedback mechanisms, the
contribution of volcanic forcing to the atmospheric greenhouse gas contents, long-term variations
of the solar insolation as well as the variability of the orbital parameters on shorter time scales.
The latter ones are known as the most promising candidates for triggering climate variability on
glacial and sub-glacial time scales such that it is a reasonable hypothesis to link them also to shifts
of the climate regime during, for example, the Eocene, Oligocene, and Miocene. Indeed, there are
numerous studies which report observations from high-resolution geologic sequences showing the
dominant variability with comparable frequencies (e.g., [Flower et al. 1997a, Zachos et al. 1997,
Paul et al. 2000, Naish et al. 2001, Zachos et al. 2001, Mallinson et al. 2003]) and discuss the
corresponding potential mechanisms for orbit-climate feedbacks.

3.5.2 Location and Objectives

In the sediment core CRP-2/2A (see Fig. 3.13), the probably most remarkable climatic
transition in the considered time interval, the Oligocene-Miocene transition (OMT), is well
resolved within a long sequence due to high sedimentation rates. The origin and mechanism
of the climate change associated to this transition will be discussed later. However, although
there is much sediment available for analysis, the data of major palaeoclimatic proxies like trace
element abundances or grain-size distributions have only been obtained for very few distinct time
slices. Thus, the actual mechanism of the transition is not well resolved in the corresponding
component time series. In this contribution, we aim to improve the resolution on the basis of
the existing short, but multivariate records in order to get a better understanding about the
transitional behaviour. In particular, we focus on the question whether the different climatic
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Figure 3.13: Map of the antarctic continent including the locations of the Cape Roberts
project drill sites and the preceeding MSSTS-1 and CIROS-1 drillings. In addition, the lo-
cation of the probably best studied marine core offshore the Antarctic coast (ODP site 1165)
[Williams and Handwerger 2005] is displayed.

conditions in the older and the younger part of these records [Naish et al. 2001] are reflected
by a varying strength and pattern of interrelationships between the different palaeoclimatic
observables.

As a first example, a record of trace element abundances from the CRP-2A core
[Krissek and Kyle 2000, Krissek 2004] is studied. The analysed data set consists of 46 parame-
ters measured within 104 slices of the sedimentary core. Due to gaps in the measurement series,
the presented analysis is restricted to a homogeneous subset of records of 32 trace elements from
60 time slices. The trace elements abundances were measured by X-ray fluorescence (XRF, 19
elements) and instrumental neutron activation analysis (INAA, 13 elements)2. As the absolute
abundances of these elements (given in parts per million (ppm)) cover several orders of magni-
tude, all component time series are firstly standardised to unit variance before subjecting the
data set to further analysis. Moreover, when applying the KLD or calculating the corresponding
dimension estimates for a subset of measurements, the respective data are similarly standardised
to zero means and unit variances of all component time series. In the following, this procedure
is always applied when considering observational data.

To get complimentary information, an independent second palaeoclimatic proxy is consid-
ered. During the last decades, the statistical analysis of grain-size distributions has become
an important tool in palaeoclimatic studies (see Chapt. 4). In particular, the use of KLD (in
particular, the amplitude of the dominating components) for describing the information content
of the data has been proposed rather early [Davis 1970, Chambers and Upchurch 1979]. Grain-
size distributions can be obtained by sieving (mass-frequency distributions) or more advanced
optical measurement techniques applied to the suspended material (number-frequency distribu-
tions). For the CRP-2/2A core, the corresponding data have been obtained by a SEDIGRAPH
5100 which measures the absorption of x-rays during the sedimentation of the material. The

2Among the 32 parameters, the abundances of Arsenic, Thorium and Uranium have been measured twice with
both methods.
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data [Barrett and Anderson 2000, Barrett and Anderson 2003] consist of relative frequencies of
particles in 23 different size classes, which are equally spaced on a logarithmic scale (phi-scale).
In total, measurements have been performed on 119 different time slices.

Explicit tables of data sets and an introductory discussion of their palaeoclimatic relevance
are given in the references cited above. In addition, the data are freely available from the
PANGAEA database.

3.5.3 Analysis of Trace Element Abundances

As a first example, the trace element record of the CRP-2/2A sediment core is investigated. The
standardised version of the record is displayed in Fig. 3.14. Considering the eigenvalues of the
covariance matrix S of the complete data set shown in Fig. 3.1, one observes a relatively smooth
decay resembling that of random matrices with a larger scale at the major components and a
more moderate decay at higher-order modes [Preisendorfer 1988]. However, as it is shown in Fig.
3.1, the decay of the remaining variances cannot be related to a superposition of Gaussian white
noise processes with the corresponding variances. This behaviour is mainly caused by trends
visible even in the original data, and a non-Gaussian probability distribution of the component
time series. The behaviour of the associated dimension estimates with varying explained variance
fraction f was already shown in Fig. 3.2.

Considering the abundances of the respective trace elements only separately, an exact deter-
mination of the starting and end points of transitions recorded in the record (corresponding to
different colors in Fig. 3.14) is problematic as different parameters yield a slightly different vari-
ability pattern, i.e., have different sensitivity with respect to changing environmental conditions.
In the case of trace element abundances, the source region of the sediment is encoded in the
entire record where some elements vary only slightly between different sources whereas others
show dramatic changes. In Fig. 3.14, the example of Niobium is shown where a remarkable con-
centration peak is observed at about 130 mbsf probably corresponding to volcanic detritus from
the McMurdo Volcanic Group [Krissek and Kyle 2000]. The height of this peak also dominates
the associated variability amplitude derived from subsamples of data. Both, mean values and
variances show a remarkable trend for the corresponding element abundance corresponding to
a (successive) change in sediment provenance between about 400 and 130 mbsf.

A similar behaviour may be observed when considering other particular elements. However,
there are elements not showing the corresponding variability. Therefore, one may be interested
in whether the variability of all measured element concentrations still gives rise to an aggregated
variability pattern which is described by the local values of the KLD-based dimension estimates.
Hence, the entire multivariate record is considered in terms of its temporary dimension estimates
to infer a hopefully better signal of long-term climate change (an approach which is somehow
counter-intuitive as the corresponding procedure applies a further strong coarse-graining to
the data). In Fig. 3.14, the eigenvalues of the covariance matrix for subsets containing 45 (of
60) successive time slices are shown, giving rise to a decrease of the variances of the major
components when considering the younger part of the sediment similar to the trends in the
observed abundance of different elements.

Fig. 3.15 shows that the KLD dimension density is not sufficiently sensitive to reflect changes
in the strength of interrelationships between the variations of the different chemical components
in an appropriate way, whereas δLV D shows a much more pronounced variability whose signifi-
cance will be proven next. For this purpose, the LVD dimension density has been computed for
different age intervals, showing whether or not varying climate conditions are actually reflected
in variations of the number of relevant components. The corresponding results shown in Fig.
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Figure 3.14: Upper panels: Color-coded representation of the normalised abundances of the 32
trace elements (left) and absolute abundance (in parts per million ([ppm])) of Niobium (Nb,
element number 15) as a function of depth below seafloor. Lower panels: Left: Explained
variances with increasing maximum component number (gray lines) for subsets of M = 45
observed samples as a function of the associated minimum depth in the sedimentary sequence.
Horizontal black lines correspond explained variances of f = 0.5 (solid), f = 0.9 (dotted),
f = 0.95 (dashed), and f = 0.99 (dash-dotted). Right: Local variability (standard deviation) of
the absolute Nb abundance within time slices of M = 20 (black), 30 (dark gray), and 40 (light
gray) points.
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3.16 underline that the general variability pattern is displayed independent on the particular
choice on the width of the considered time windows, M , which indicates significance of the
corresponding results.
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Figure 3.15: δKLD (left) and δLV D (right) for subsets of 45 observed samples from the CRP-2A
trace element record as a function of the associated minimum depth in the sedimentary sequence
for f = 0.5 (solid), f = 0.9 (dotted), f = 0.95 (dashed), and f = 0.99 (dash-dotted).

Significant changes of δLV D occur when sediment from below 400 mbsf (meters beyond
sea floor) or above 130 mbsf (see Fig. 3.16) is considered for the analysis, which can be seen
in the graphical representation of this measure as a function of the maximum and minimum
depth associated to the considered data window, resp. The interval between these two hori-
zons covers a relatively small time window between 24.3 and 23.8 Myr BP (depending on
the age estimates based on different measurements), which includes the Oligocene-Miocene
transition (OMT). It has to be noted there are rather different age estimates for the OMT,
depending on either the alignment to certain reference time scales based on geomagnetic
polarity [Cande and Kent 1992, Cande and Kent 1995], orbital tuning [Shackleton et al. 1999,
Shackleton et al. 2000] to astronomical cycles [Laskar et al. 1993, Pälike and Shackleton 2000,
Laskar et al. 2004], or a combination of both [Billups et al. 2004], or the establishment of a local
chronology basing on measurement of appropriate quantities on a substantial amount of sam-
ples [Wilson et al. 2002, Roberts et al. 2003, Pfuhl and McCave 2003], see [Flower et al. 1997a,
Flower et al. 1997b, Zachos et al. 1997, Paul et al. 2000, Zachos et al. 2001, Naish et al. 2001,
Williams and Handwerger 2005].

Following the arguments presented in Sect. 3.5.1, the OMT is characterised by an opening
of the Drake passage between South America and the Antarctic continent, which has led to
an intensification of the Antarctic circumpolar current and a successive thermic isolation of the
continent. These effects caused finally an enhanced glacial variability in the high latitudes of the
Southern hemisphere. The qualitative changes recorded in the trace element data are associated
with a change of the provenance of the material [Krissek and Kyle 2000] and an enhanced vari-
ability of the sedimentation. Both together result in a decrease of the interrelationships between
the variability of different trace elements and, consequently, an increase of the dimension of the
record.

To further prove the significance of the variation of δLV D with the age of the considered sed-
iment, the uncertainty of this measure may be estimated. For this purpose, δLV D was computed
for ensembles of slightly perturbed data constructed from the original data set by substituting
the data of a single, but randomly chosen time slice with a N -dimensional Gaussian random
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Figure 3.16: Sum of the first two eigenvalues σ2
1 + σ2

2 (left panels) and δLV D (right panels) for
the normalised trace element abundances from the CRP-2A core as a function of the minimum
(upper panels) and maximum (lower panels) depth (mbsf) of the sediment layer associated to
the respective data subsets for sliding window of M = 20 (black), M = 30 (dark gray) and
M = 40 (light gray) points in time. Vertical dotted lines indicate the major transitions recorded
in the data.

variable. To study the influence of such distortions to δLV D systematically, a suitably large
ensemble of these perturbed data have to be analysed. Fig. 3.17 presents the result for windows
containing only 20 time slices: While the expectation of δLV D is shifted towards higher values
with respect to the original data (i.e., the surrogate data are more stochastic), the qualita-
tive behavior remains unchanged. The corresponding confidence levels indicate clearly that the
variations in the dimension are significant even for such small numbers of data points, which
demonstrates the qualitative robustness of the considered approach.

Although a significant number of components is required to explain a certain fraction of
total variance, the temporal variation of the first two leading eigenvalues shows already a pat-
tern similar to the LVD dimension density. For time windows containing M = 20 points, Fig.
3.18 shows these eigenvalues and the corresponding eigenvectors. One observes that the be-
haviour of the first two eigenvalues is completely different. For the older part of the record,
the first eigenmode clearly dominates the record, whereas the second one becomes increasingly
important when considering data resulting from the time interval associated to the OMT. The
corresponding changes in the first eigenvector are mainly reflected by the components associated
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Figure 3.17: Expectation (dotted line) and 95% confidence levels of δLV D for M = 20 points
in time calculated from 1000 random substitutions of one complete time slice each compared to
the values for the original data (solid line).

to the trace elements Scandium (element number 2), Vanadium (3), Strontium (12), and Bar-
ium (18). The latter two ones are also the main recorders of the increase of the first eigenvalue
when younger sediment (≤ 23.8 Myr BP) from above 130 mbsf is considered. The onset of the
increase of the second eigenvalue is reflected by the eigenvector component associated to Sulfur
(element number 1), whereas a number of other components start to change later. These results
apparently indicate that the climate change associated to the OMT is particularly pronounced
by three elements of the record (S, Sr, Ba), which are also the trace elements with the highest
absolut abundances in the record. This result is particularly remarkable as all component time
series have been standardised to unit variance before our analysis.

One should briefly discuss one issue related to the term ”transition”: In geosciences, this
term is maily used to describe an abrupt change of the behaviour of the system. In contrast to
this, the physical meaning would rather be that of a process where a (multistable) dynamical
system leaves a certain (equilibrium) state and relaxes to another stable solution. Apart from
the stochastic components always present in the high-dimensional climate system, the latter
interpretation appears to be more useful in the context of the OMT: The opening of a deep-water
connection through the Drake Passage was likely not an abrupt, but a gradual process. This is
also indicated by the smoothness of the transition recorded in the trace element data and the
resulting dimension estimate, giving rise to the assumption of a successive change of provenance
between 24.3 and 23.8 Myr BP (the corresponding layer is referred to as the upper Oligocene
in [Krissek and Kyle 2000]), i.e., during a time interval of several 100,000 years. Considering
the entire process as the Oligocene-Miocene transition however contradicts the usual point of
view in geosciences where the OMT is assigned to a specific age rather than to an age interval,
leading to a variety of different numbers (e.g., for the CRP-2/2A core, [Krissek and Kyle 2000]
propose the OMT at 130 mbsf whereas [Naish et al. 2001] give a value of 183.7 mbsf).

Apart from the climate change associated to the OMT, the eigenvector analysis seems to
indicate further transitions in the climate system. For example, a qualitative change of the
second eigenvector in the youngest part of the sediment is found which cannot be assigned
to a known climatic transition. To gain a deeper insight into the age interval, one has to
consider data from other sources, e.g., the CRP-1 and CIROS-1 cores or, for the older part
of climate history, the CRP-3 core. For these locations, however, there are no comparable
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Figure 3.18: The first two eigenvalues σ2
i (i = 1, 2) (left panels) and their associated eigenvectors

(color-coded representation in right panels) for the normalised trace element abundances from
the CRP-2A core as a function of the minimum core depth for sliding windows of M = 20 points
in time.

records of trace element abundances available: On the one hand, available measurements of
other sedimentological fractions (XRF analysis, see [Krissek and Kyle 1998]) or on sand and
sandstone (energy dispersive analysis of x-rays (EDAX), see [Armienti et al. 1998]) from the
CRP-1 and CIROS-1 cores include either only very few continuously recorded trace elements or
too few samples in time. On the other hand, additional continuous geochemical data are available
in terms of major element abundances, which do cover only about 10 to 12 different parameters.
The latter ones are given in terms of percentages of the corresponding oxide abundances and
thus form sets of compositional data which require a special statistical treatment. Similar data
are also available for the CRP-2/2A and CRP-3 cores but not considered here.

3.5.4 Analysis of Grain-Size Distributions

Grain-size distributions are another example for compositional data which is used as a comple-
mentary source of information. For an arbitrary multivariate data set, a transformation dividing
the original data by their respective sum at every point in time leads to a set of compositional
data. This situation is present in the case of oxide abundances and grain-size distributions: As
there are no absolute, but relative values, the statistically relevant quantities are no longer the
component data themselves, but appropriate ratios thereof as the latter ones are invariant un-
der the respective transformation. Many geological data (like grain-size distributions and major
element abundances) belong to this class of data constrained to a constant sum in each time
slice.

[Aitchison 1986] has demonstrated that there are three equivalent ways of considering ei-
ther pairwise or centred ratios within a compositional vector. Among these, for a data vector
(x1, . . . , xN ), the N centred ratios are defined as x∗i = xi/g(x1, . . . , xN ), where g(x1, . . . , xN ) is
the geometric mean of the vector. For the analysis of grain-size distributions, it is recommended
to consider these centred ratios as they do not give particular weight to any fixed component of
the original data set. Typically, one uses the corresponding log-ratio transformed data instead
of the centred ratios themselves (i.e., log x∗i ). However, as in the case of grain-size distributions,
there are frequent zero ”counts” occuring in the data, the consideration of logarithms leads to
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numerical instabilities, such that a restriction to the non-logarithmised data is more appropriate.
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Figure 3.19: δLV D computed for grain-size distributions from the CRP-2/2A core without (upper
panel) and with (lower panel) a transformation of the data to centred ratios. The results are
displayed as a function of both, the minimum (left) and maximum (right) depth of the sediment
layer considered for sliding windows of M = 20 (black), M = 30 (dark gray) and M = 40 (light
gray) points in time. Vertical dotted lines correspond to common features of the three settings
representing major climatic transitions recorded in the data.

Considering the results displayed in Fig. 3.19, one firstly observes a much more detailed
variability pattern compared to the trace element data discussed in the previous section, which
is an effect of the higher total number of time slices where observations have been available.
Secondly, the non-transformed data give a more diffuse pattern compared to the transformed
ones which underlines the necessity of a transformation for obtaining statistically meaningful
results on compositional data. Thirdly, the recorded transitions in the climate system associated
to the OMT are consistent with the results trace element record, but are better resolved due
to the larger number of time slices. In particular, one observes that the pattern corresponding
to the Oligocene part of the sediment is reflected by a strong successive decrease of the LVD
dimension, which is followed by an increase when sediment from between 350 and 400 mbsf
is considered, which is probably related to the onset of the OMT. Furthermore, the decrease
of dimension above 130 mbsf is resolved as in the case of the trace elements, which probably
determines the end of the transition with a full development of the antarctic circumpolar current
and a resulting provenance change.
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As an additional feature, the further decrease of the complexity of interrelationships due to a
consideration from sediment from above 50 mbsf is well resolved by the grain-size distributions,
underlining the results from the geochemical data and proving their actual relevance. The age
associated to the corresponding layer is about 20.3 . . . 20.4 Myr BP. In another study from Prydz
Bay (ODP Site 1165) [Williams and Handwerger 2005], this age interval was found correspond
to the probably most pronounced layer of ice-rafted debris during the Early miocene, which
indicates that the transition found in the Cape Roberts data is probably related to a major
deglaciation event on the Antarctic continent.

3.6 Related Work

During the last years, several authors have adapted techniques from random matrix the-
ory (RMT) [Mehta 1990] for analysing the equal-time correlation matrix S of empirically
obtained multivariate data sets, including financial [Laloux et al. 1999, Plerou et al. 1999,
Plerou et al. 2000, Drozdz et al. 2000, Drozdz et al. 2001, Maslov 2001, Plerou et al. 2002,
Kwapien et al. 2003], neurophysiological [Kwapien et al. 2000, Seba 2003], and atmospheric
time series [Santhanam and Patra 2001]. The corresponding approach offers the possibility to
compare the fluctuation properties of the spectrum of S with the analytical results obtained from
random matrix ensembles. It is proposed that the part of the spectrum which can be described
by random matrices corresponds to random correlations or noise and thus does not reflect any
relevant information, while only the eigenvalues which show significant deviations from the RMT
predictions (in particular, the largest eigenvalues) represent the ”true” correlation structure of
the system.

Another approach which is very similar to the one applied in this chapter has recently been
proposed by [Müller et al. 2005] who considered also the temporal evolution of the eigenval-
ues and corresponding eigenvectors of the equal-time covariance matrix S obtained from short
windows from multivariate data sets standardised in the same way like in the above presented
method, i.e., considering component time series with zero means and unit variances in the consid-
ered windows. Instead of considering the decay of remaining variances, the authors of this work
proposed two alternative measures: the participation ratio or number of principal components
of the i-th eigenvector,

Np
i =

1

N
∑N

j=1 |aij |4
(3.10)

(where the aij are the expansion coefficients of the i-th eigenvector of S), and the so-called
symmetry parameter

Si =

∣∣∣∣∣∣
N∑

j=1

sgn(aij)|aij |2
∣∣∣∣∣∣ (3.11)

which measures to which extent an eigenvector is generated by constructive or destructive in-
terference of the basis states.

The considered measures may have a sophsiticated meaning, however, they refer only to one
(typically, the largest) eigenvalue and thus lose information about the additional information
contained in the remaining modes. However, it might be of interest to study the whole spec-
trum of participation ratios and symmetry parameters, resp., for a given data set. Moreover,
[Müller et al. 2005] apply their measures for short time windows, but do not consider the depen-
dence of their behaviour on the particular choice of M , which may be (as it has been shown for
the method used in this work) rather crucial for even a qualitative interpretation of the results.
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3.7 Open Problems

Considering the examples discussed in this chapter, it turns out that in the case of standardised
component time series from model systems without additive noise, the remaining variance is
a convex function of the maximum component order p, i.e., the local slope of Vr(p) shows an
increasing absolute value when increasing p (see Figs. 3.3, 3.7 and 3.8). In contrast to this, if the
data are contaminated by additive stochasticity, this characteristic shape is changed towards a
function steepening at both, small and large values of p. The same type of decay is also found in
the case if standardised measurements in the geological example as displayed in Fig. 3.1. These
observations give rise to two different questions which are not yet answered:

Firstly: Is it possible to give a more sophisticated functional form for the decay of stan-
dardised model data? For the rather specific case of independent standardised Gaussian com-
ponents, an analytic expression for the corresponding component variances has been derived
(see [Preisendorfer 1988] and references therein), such that it might be possible to give a similar
expression also for the remaining variances at least for this specific case. If a corresponding
modified decay law for Vr(p) could be described by only one parameter, this could be used to
define a more sophisticated dimension estimate for the multivariate data set which is (in contrast
to δKLD and δLV D) parameter-free, i.e., independent of the choice of a particular cutoff f or
pmax, resp.

Secondly: In a similar way, one may ask whether the specific signature of additive noise could
be extracted in a similar way at least if these can be independent realisations of a Gaussian
process. In particular, if this would be possible, one might use this approach as a new tool
for noise-level estimation in multivariate time series. Moreover, if the signature of Gaussian
white noise is actually separable in this way, one might modify the potential decay law of the
remaining variances in an appropriate way. Ideally, the resulting function would be described by
two parameters only, one yielding an estimate of the dimension of the unperturbed underlying
system and one describing the noise level. Following the results of Sect. 3.3, it seems likely that
in the case of noisy ”data”, an exponential decay model for the remaining variances fitted only in
an interval [fmin, fmax] would asymptotically yield a constant decay scale (related to the noise)
within a certain range of values of fmin and fmax.

It has to be underlined that the above considerations are currently rather speculative, but
may be used as a possible outline for further methodological research on KLD-based dimension
estimates. Moreover, there are different other questions to be answered, including the signature
of multiplicative stochasticity, auto- or even cross-correlated noise etc. Generalisations of the
KLD-based approach to other appropriate methods of statistical decomposition are to be inves-
tigated as well, in particular for quantifying the dimensionality of sufficiently long, stationary
time series from nonlinear, e.g., spatially extended systems. For such systems, one should also
perform a fair comparison to ”fully nonlinear” dimension estimates of multivariate time series
in terms of both, correctness and computational efficiency.



Chapter 4

Analysis of Grain-Size Distributions
from Lake Baikal

4.1 Motivation

During the last years, grain-size distributions have gained increasing interest as a recorder of
changes of environmental conditions. The typical size of particles in the sediment and, more
general, the distribution of grain sizes depends on the origin of the material and the mechanisms
of transport to the final deposition. Records can be obtained from lacustrine and marine cores,
but also from continental sequences distributed all around the world. As rather different size
classes may be involved, corresponding studies may yield information about the geomorphology
as well as the palaeoclimatic or, more general, palaeoenvironmental conditions, and record both,
long-term changes and short-term extreme ”events”.

Minerogenic dust plays an important role in climate forcing as it affects the radiation bal-
ance in the atmosphere [Harrison et al. 2001, Kohfeld and Harrison 2001, Prospero et al. 2002].
During the past, dust fluxes are known to have changed significantly. From polar ice sheets,
[Thompson et al. 1989] reported that dust accumulation has increased by more than one or-
der of magnitude from interglacial to glacial times. The high accumulation of minerogenic
aerosols during glacial time is (besides changes in atmospheric dynamics) mainly controlled by
increased aridity in mid, non-glaciered latitudes. As result of reduced moisture availability,
forest and prairie vegetations covering and stabilising soils retreated drastically in the North-
ern hemisphere. Hence, dust is an important proxy for tracing atmospheric dynamics and, in
combination with pollen data, to infer on aridity changes in the past. Furthermore, grain size
distributions may be used to highlight changes in the the position of relevant wind trajectories
and to discriminate between local and far distant atmospheric transport.

This chapter presents the results of an analysis of data from a sediment core obtained in
Lake Baikal, Eastern Siberia. These data have been obtained by a laser-assisted grain size
analysis using the detrital fraction > 2µm. Furthermore, the different fractions (like opal, clays,
silts and sand) from the sediment of the CON01-603-2 core (which has been retrieved from the
Continent Ridge in the Northern Basin of Lake Baikal, see Fig. 4.1) are quantified to evaluate
the processes which control the formation of the different detrital particles distribution. Studies
of the detrital input, contrarily to biogenic proxy studies (whose availability is highly dependent
on the temperatures) are able provide continuous paleoclimatic records including cold periods.
Temperature and moisture indices reconstructed from pollen assemblages in the Late Glacial and
the Holocene [Demske et al. 2005, Granoszewski et al. 2005, Tarasov et al. 2005] are therefore
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compared with grain size data to highlight the processes driving the detrital input into Lake
Baikal during the last 150 kyr.

4.2 Measurement of Grain-Size Distributions

Grain-size distributions can be obtained by a variety of different procedures, ranging from the
traditional sieving, microscopic measurements in thin-sections (in modern days usually combined
with some sophisticated pattern recognition algorithm for automatic processing of the micro-
scopic images) to sedimentation methods. A rather new approach realised in many present-day
device is based on the single-particle scattering of a laser beam in a suspension including the
probe material. The raw data are given in terms of relative frequences of occurrence in different
pre-defined size classes. Depending on the goal of the project and the measurement strategy, the
corresponding grouped (compositional) data are given as either weight (mass) or particle num-
ber percentages. For converting one type of distribution to the other, different approaches have
been discussed in the literature [Greenman 1951, Friedman 1958], however, all these approaches
depend on certain assumptions (e.g., about the shape and density of the particles) which are
often violated in reality.

[McBride 1971] lists five typical goals of grain-size analysis:

1. To describe samples in terms of statistical measures.

2. To correlate samples from similar depositional environments or stratigraphic units.

3. To determine the agent (wind, river, turbidity current, etc.) of transportation and depo-
sition.

4. To determine the process (suspension, traction, saltation, etc.) of final deposition.

5. To determine the environment of deposition (channel, plain flow, beach, dune, neritic
marine, etc.).

Performing grain-size analysis for samples of a sedimentary sequence belonging to different
time intervals of deposition thus allows to derive information about the variations of the
(palaeo)environmental conditions.

Traditionally, grain-size distributions are classified using a logarithmic size scale. Today, the
so-called φ scale introduced by [Krumbein 1934, Krumbein 1936, Krumbein 1938] is commonly
used which is defined as d[φ] = − log2 d[mm]. Size classes are thus often defined in equi-distant
units of φ, φ/2, or φ/4, depending on the respective measurement device. The grain-size spec-
trum is roughly devided into clay (< 2µm), silt (2-64µm), and sand (> 64µm), however, when
relating the terms clay and sand to certain mineralogical fractions, slightly different classifica-
tions are possible.

4.3 Statistical Approaches to Grain-Size Analysis

The probably most used approach of extracting climatically relevant information from grain-size
distributions is considering simple statistical parameters of the entire distribution function, for
example, the mean (i.e., the average particle size), mode (the location of the maximum, i.e., the
most probable particle size), or median (the 50% quantile, i.e., the size of the mean ranked obser-
vation) of the entire distribution. This approach may be useful if the observed distributions are
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rather ”smooth”, in particular, unimodal. In addition, higher order moments (ore characteristics
based on these) like the variance or (in the typical case of asymmetric distributions) skewness
and kurtosis may accompany the corresponding analysis. The corresponding parameters have
the advantage that they are automatically computed by many measurement devices or suitable
software packages [Blott and Pye 2001, Poppe et al. 2004] and are thus easy to use for further
analysis.

In many cases, the particle-size distribution is however not unimodal. In this case, the
consideration of simple global statistical parameters is not useful and may yield variability
patterns which cannot be interpreted climatologically. To overcome the corresponding dif-
ficulties, different heuristically defined parameters have been proposed, like the mean/mode
and median/mode ratios [Demory 2004] or the so-called U-ratio, which is defined as the ra-
tio between the relative abundances in the size classes 16 to 44 µm and 5.5 to 16 µm
[Vandenberghe et al. 1993, Vandenberghe et al. 1997, Nugteren et al. 2004]. The U-ratio has
mainly been used to characterise grain-size distributions from Chinese Loess deposits and has
the advantage that it disregards secondary formed minerals in the clay fraction (� 5.5µm)
and sand-sized particles (� 44µm) probably deposited by saltation [Vandenberghe et al. 1997].
However, this advantage comes on the cost of an overemphasis of the coarse fraction in glacials,
since a small increase in coarse material results in a much higher U-ratio.

A possible alternative for the statistical analysis of grain-size distributions is the appropri-
ate decomposition of the entire (multi-layer) data set. The simplest approach for such a de-
composition is principal component analysis (which has been referred to as Karhunen-Loéve
decomposition (KLD) in the previous chapter) [Davis 1970, Chambers and Upchurch 1979],
eventually combined with an appropriate (log-ratio) transformation of the data (see, e.g.,
[Aitchison 1982, Aitchison 1983, Aitchison 1986, Aitchison 2002]). Basing on similar ap-
proaches, a whole theory of nonparametric geostatistical ”unmixing” of such data sets has been
developed, with the so-called endmember modelling as the most prominent and probably most
used technique [Renner 1991, Weltje 1997, Prins and Weltje 1999].

Endmember modelling and related approaches consider the entire time series of grain-size
distributions to infer typical patterns superposed in all time slices in an appropriate way. How-
ever, this approach has also some disadvantages: Adding a new time slice with measurements
will typically change the shape of the inferred endmembers and, consequently, also their sta-
tistical weights. Hence, a sufficient amount of samples is required to give a reasonable low
statistical uncertainty of the derived patterns (for the determination of uncertainty, the appli-
cation of resampling techniques considering ”slightly” perturbed data is outlined). In addition,
the components resulting from endmember modelling may have a complicated (sometimes even
multimodal) shape which can hardly be assigned to a particular physical generation mechanism.

Complimentary to the global characterisation with an endmember modelling approach,
a separate description of the distributions obtained in any time slice may give important
information about the composition of the sample of sediment with different origin and/or
transport history. For this purpose, a successive parametric modelling may be applied for all
time slices. For this prupose, a suitable and meaningful statistical model has to be described
first. Starting already in the 1930’s, there has been a long debate on suitable model func-
tions suggesting either log-normal [Kolmogorov 1941, Inman 1952, Folk and Ward 1957,
Sheridan et al. 1987, Gorokhovski and Saveliev 2003, Gorokhovski 2003] or Weibull
(Rosin-Rammler) [Rosin et al. 1933, Rosin and Rammler 1933, Rosin and Rammler 1934,
Krumbein and Tisdel 1940, Kittleman Jr. 1964, Braun 1975, Zobeck et al. 1999] distributions
as the most promising candidates depending on the mechanisms responsible for generation,
transport and deposition of the particles [Ibbeken 1983, Schleyer 1987, Hartmann 1988,
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Schleyer 1988, Kondolf and Adhikari 2000, Lu et al. 2002]. A possible unification of both
approaches is given in terms of the sequential fragmentation an transport (SFT) theory
[Wohletz et al. 1989, Lirer et al. 1996].

The above mentioned approaches may typically be used to describe homo-
geneous sediments, i.e., grain-size distributions originating from only one well-
distinguished source. For the more general case of distributions with a com-
plicated shape, the use of log-hyperbolic or log-skew Laplace distributions
[Bagnold and Barndorff-Nielsen 1980, Fieller et al. 1984, Wyrwoll and Smyth 1985,
Christiansen and Hartmann 1988, Wyrwoll and Smyth 1988, Hartmann and Christiansen 1992,
Hartmann and Bowman 1993, Sutherland and Lee 1994, Hill and McLaren 2001,
Knight et al. 2002, Hartmann and Flemming 2002, Hill and McLaren 2003, Scalon et al. 2003]
or other model functions [Passe 1997] has been discussed, however, the corresponding results
are usually rather poor. For multi-modal grain-size distributions, it is in contrast an appealing
alternative to interprete the observations as a superposition [Doeglas 1946] of ”standard”
component functions (log-normal, Weibull)1 [Sun et al. 2002] describing contributioons with
different origin (i.e., mineralogical composition), and erosional history (related to the transport
by wind, water, etc.). Hence, finite mixture models (see Chapt. 2) are promising candidates
for a parametric description. The appropriate methodology for the analysis of such models has
been discussed by several authors (e.g., [Clark 1976]). Note, however, that the significance of
the corresponding genetic interpretation may be rather poor [Weltje and Prins accepted].

4.4 Mechanisms of Detrital Input into Lake Baikal

In the region of Lake Baikal, the detrital input originates today from aerosol transport or
from river discharge. The balances between aeolian and fluviatile detrital inputs is seasonally
controlled. During late spring and summer, dust may settle from large-scale dust plumes, which
generate sporadically in the vast plains of the Angara River north of Irkutsk or come from
distant desert regions. Well documented is e.g., a local dust storm occurring during summer
1890, when a 5 mm thick lid of dust settled around Lake Baikal during a single event. Recently
such events can be pined-down with the Total Ozone Mapping Spectrometers (TOMS) (NASA)
from the source area to the location of final deposition. For 19 through 23 May 1989 a regional
storm event loading in the Takla Makan Desert has been documented. Such events may carry as
much as 109 tons of dust. These exceptional strong convective turbulences are due to extreme
heating of the surface during late spring and summer. During dry winters coarser silt and fine
sand particles are carried on the ice cover from the shore by saltation to the centre of the lake
[Karabanov et al. 1998].

Besides the aeolian dust particles, detrital input is also controlled by the regional hydrology.
Today the summer precipitation exceeds winter precipitation by a factor of 10. The lake is
feed by many rivers which spread mostly eastward and south eastward of the lake. With the
3 main tributaries - Selenga, Barguzin and Upper Angara Rivers - they cover covering a huge
large catchment area (as large as 560,000 km3). At present the seasonally varying moisture
distribution, which regulates the precipitation in the catchment area of Lake Baikal, is mostly
driven by the Westerly winds which have its biggest imprint on the western shore of the lake.
South-eastern winds which are deviated at the eastern face of the Sayan mountains contribute
to the water balance of Selenga River, the biggest tributary of Lake Baikal. These moisture

1In addition, [Jones and McLachlan 1989, Fieller et al. 1990] suggest mixtures of log-hyperbolic and log-skew
Laplace components.
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loaded winds occasionally cause strong summer flood events, which significantly increase the
suspension discharge at the Selenga Delta [Heim et al. 2005].

In-situ reworking is a third process, which must be addressed though its quantification is
difficult. As earthquakes are quite frequent and slopes along the rift flanks are steep, turbidites
are common in the centre of basins. Based on high resolution seismic studies, redeposition of
reworked detrital components due to strong currents within the water body and near the lake
bottom according to [Ceramicola et al. 2002, Charlet et al. 2005] can mostly be ruled at water
depths beyong 600 metres.

To date, the reconstruction of climate variability in Lake Baikal sediments is mostly
based on pollen and diatoms assemblage studies [Mackay et al. 1997, Khursevich et al. 2001,
Demske et al. 2002, Demske et al. 2005, Granoszewski et al. 2005, Rioual and Mackay 2005].
Only few paleoclimatic studies from Lake Baikal deal with detrital proxies, like clay miner-
alogy [Yuretich et al. 1999] and grain size analyses, for the first time on turbiditic sediments
using the image analysis technique [Francus 1998, Francus and Karabanov 2000]. A subsequent
study by [Ochiai and Kashiwaya 2003] showed with the laser counter technique, that abundance
of fine particles increased indeed during cold periods. [Fagel et al. 2003] notably confirmed that
cristallinity of clay minerals and their weathering are related to temperature and moisture con-
ditions. From rock magnetic studies [Peck et al. 1994, Demory et al. 2005b], it turned out that
a parameter estimating the abundance of hematite is the best marker of detrital input.

4.5 Description of the Data

Within the framework of the CONTINENT campaign, several lacustrine sediment cores have
been obtained at three different parts of Lake Baikal, Eastern Siberia. For palaeoclimatic stud-
ies, this site is of particular importance because of the relatively continuous sedimentation for up
to several million years [Kashiwaya et al. 1998, Kashiwaya et al. 2001]. The corresponding sed-
iments thus give important information for a more detailed understanding of long-term climate
variability within Central Eurasia as there are rather few comparable sites within this relatively
large area. Lake Baikal is of particular interest as it is influenced by westerlies, the Siberian
High, and particularly by the East Asian monsoon circulation differently for different epochs in
climate history. Thus, detailed multi-proxy studies at this location allow to study changes of
the dynamics of any of these atmospheric patterns.

The grain-size data set studied in the following has been obtained from a sequence build
of the pilot and piston cores CON01-602-2a and CON01-602-2 retrieved in 2001 from the Con-
tinent Ridge (Fig. 4.1). The 11 metres long composite section consists of hemipelagic sedi-
ments deposited on the geomorphological high located at the prolongation of the Academician
Ridge. The sedimentary record of the core is nearly continuous and ranges from the Holocene
to through the interstadial equivalent to the marine isotope stage2 MIS 7 [Demory et al. 2005a].
The cold periods (glacials and stadials) are characterised by clay-rich sedimentation whereas
the warm periods (interglacials and interstadials) are characterised by diatomaceous-rich sed-
iments [Charlet et al. 2005]. The uppermost section was dated using the AMS 14C method

2The marine isotope stages (MIS) have been introduced to classify climatic periods with colder and warmer
conditions, which can be classified according to the isotopic composition of different chemical elements firstly
described for marine sediments. The current interglacial (Holocene) is referred to as MIS 1, the last interglacial
(mainly referred to as the Eemian) corresponds to MIS 5e. In between, the isotope stages 2 (last glacial maximum),
3, and especially 4, 5a, 5b, 5c, and 5d represent alternating time intervals with colder and warmer average
temperatures, the so-called stadials (cold) and interstadials (warm), resp. In general, higher numbers of an
isotopic stage indicate older time periods.
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for the last 15 kyr [Piotrowska et al. 2004]. Beyond 15 kyr, palaeomagnetic data have been
used to construct the age model [Demory et al. 2005a]. The reference curve established by
[Channell 1999] at ODP site 984 was used to date the so-called Kazantsevo (the time equivalent
of the European Eemian), i.e., the duration of the last interglacial in Eastern Siberia. For dating
the time window from 15 to 110 kyr, the palaeomagnetic intensity record of the MD 95-2024
core from the Labrador Sea [Stoner et al. 2000] has been used. The corresponding record cov-
ers only 110 kyr but seems to be better dated than the record from [Channell 1999] since the
former is tuned to the high-resolution chronology of the GISP-2 ice core [Grootes et al. 1993]
while the latter is tuned to the low-resolution chronology of the orbitally tuned SPECMAP
curve [Martinson et al. 1987]. The sequence has yet been subjected to studies of different other
proxies to infer geochemical, palaeolimnological, and sedimentological information (for a recent
summary of these studies, see [Oberhänsli and Mackay 2005]).

From 448 samples (continuously sampled at 2 cm intervals) covering the entire sedimentary
sequence, the organic carbon has firstly been removed by soaking repeatedly 1 g of freeze dried
sediment in a H2O2 solution (5%) until all the organic carbon was dissolved. Then, the clay
fraction was separated by centrifugation (1 min at 1000 rev. min−1). In a next step, the biogenic
silica was dissolved at 90oC, while shaking the sample for 5 hours in a 2M solution of Na2CO3. As
expected from other studies [Olivarez Lyle and Lyle 2002], the opal dissolution was not always
completed after this procedure. For 56 samples, which still contained the most resistant diatoms
and spicules of sponge, the remaining opal was separated using a sodium poly-tungstate solution
with a density of 2.32 g/cm3. The opal content was measured with ICP-OES. For removing
carbonates and authigenic hydroxides, the remaining sediment was soaked in a HCl solution
(1.1N) and treated with ultrasonic for one hour. Despite this procedure, few samples were still
containing aggregates which had partly formed during freeze drying [Rajaram and Erbach 1999].
Some of the aggregates are faecal pellets, which can be abundant in Lake Baikal sediments
[Tani et al. 2002]. Subsequently, the clay fraction as well as the detrital fraction > 2 µm were
dried and weighted.

The grain size distribution of the detrital fraction > 2µm was measured using the Malvern
Mastersizer 2000 equipment at the University of Lille (see Fig. 4.2). Separation of the clay and
silt fractions was difficult to complete. After multiple separation steps an irreducible fraction of
clays still adhered to particles of the size fraction > 2µm. However, the remaining amount of
clay is small (less than 5%) and remains relatively constant. Using tests of reproducibility after
laboratory treatment [Demory 2004], estimated error bars of an order of ±1µm for the mode of
the particle size distribution have been found to be realistic. The error bar for the size-frequency
data reported by the manufacturer (Malvern) of the grain size measurement device is very low
(< 1%) but increases with decreasing size of measured particles and reaches 2% between 900
µm and 5µm and 6% for the finer fractions.

4.6 Statistical Analysis of the Lake Baikal Record

The grain-size record shown in Fig. 4.2 already underlined variations of the particle size distri-
butions which are visible in terms of shifts of the maxima or tails towards large particle sizes.
Fig. 4.3 presents grain-size distributions of the detrital fraction > 2µm for selected periods in-
cluding clay-rich and diatomaceous muds. Fine silts (2-32 µm) generally dominate the grain size
distribution of the detrital fraction > 2µm. The fraction is fine (mode ∼ 9µm) during glacial
and interglacial optimums while the silt fraction coarsens (mode ∼ 10.5µm) during climatic
transitions. In addition, the figure displays the grain-size distribution of dust trapped in fresh
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Figure 4.1: Maps showing the location of Lake Baikal and the coring station for core CON
01-603-2. The middle scale map shows the relief around Lake Baikal (Landsat TM-Mosaic
UTM48, source: Baikal Online-GIS, http://dc108.gfz-potsdam.de/website), and the black line
shows limits of the catchment area of the lake. The focused map shows in addition some
bathymetric lines.
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Figure 4.2: Color-coded representation of the relative abundance (in %) of particles in the
different size intervals as a function of the estimated sediment age.

snow accumulating on Lake Baikal ice cover. This dust, which is of aeolian origin, is dominated
by fine silt particles like the detrital fraction > 2µm extracted from Lake Baikal sediments. The
clay content is low although no treatment (i.e. no grain size separation) was applied to this re-
cent aeolian sediment. In the core, coarse grains > 100µm are restricted to cold and transitional
climate periods.

Clay and opal contents in the sediment mimic the well-known clay-rich/diatom-rich alterna-
tion, which reflects the cold/warm cycles [Demory 2004]. Cold periods are characterised by high
amounts of clay (up to 80 weight percentage) and by an absence of opal (i.e., organic material)
whereas warm periods are characterised by low amounts of clay (as low as 40 wt %) and high
amounts of opal (up to 25 wt %) (except in the marine isotope stage 5b equivalent which seems
to be warmer in Eastern Siberia than one would expect from other records). The cold/warm
pattern is generally well reflected in the quantity of detrital particles > 2µm. The corresponding
percentage is high (∼ 30%) in sediments representing warm periods and low (∼ 15%) during
colder periods, except (i) during the Late Holocene and in the Kazantsevo when silt abundance
is low and (ii) during the late MIS 6 when silt contents are high. As to the mode of this fraction,
Fig. 4.4 shows more detailed variations. The silt fraction has a low mode average of approx.
9-10 µm at the end of MIS 1, 2, 4, 5d, and at the beginning of MIS 5e while the silt fraction
coarsens to a maximum mode average value of 11 up to 14 µm during the end of MIS 6, 5e,
5c-5a, 3, at the beginning of MIS 3 and during most of the Holocene (Fig. 4.4).

4.6.1 Global Statistical Parameters

Beside the mode giving only the position of the maximum, other parameters describing the
”location” of the grain-size distribution on the size axis have been computed (see Fig. 4.4). As
with respect to a linear size scale, the particles sizes are strongly assymetrically distributed,
the consideration of additional parameters may allow to infer additional information about the
shape of the distribution function. Whereas median and mode (and their corresponding ratio)
have been directly computed by the measurement device, the mean value has been estimated
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Figure 4.3: Grain size distribution of the detrital fraction > 2µm for 4 representative samples:
present-day dust sample from the fresh snow cover on the lake (blue), Early Holocene (approx.
10.2 ka BP, red), Last Glacial Maximum (approx. 30.1 ka BP, orange), and Kazantsevo / Eemian
interglacial (approx. 125.1 ka BP, green). The vertical lines indicate the respective grain size
intervals.

using the observed group frequencies nm and the (linear) size interval midpoints x̄m according
to µ̂ =

∑M
m=1 nmxm/

∑M
m=1 nm (with

∑M
m=1 nm = 100 as the relative frequencies of occurrence

have been given in percentages).
The temporal variability of median and mode does not directly correspond to known tem-

perature or precipitation patterns as have been inferred from other proxies. In contrast, the
mean/mode ratio shows rather pronounced minima during the globally warmer periods equiva-
lent to the MIS 1 (Holocene, about 12 kyr BP - present), 5a (about 75-85 kyr BP), 5c (about
95-105 kyr BP), and 5e (Eemian/Kazantsevo, about 120-130 kyr BP) [Demory 2004]. Similar
minima are also found when considering the mean grain size, however, the mean shows an addi-
tional minimum during MIS 2 which cannot be linked to the global temperature signal. Hence,
when relating the statistical properties of the particle size distributions from the detrital fraction
in Lake Baikal to known climatic variability patterns, the median/mode ratio (yielding informa-
tion about the asymmetry of the entire distribution function) gives by far the most convincing
signal. To conclude about the reason for this behaviour, more detailed statistical analyses are
required.

4.6.2 Statistical Modelling

As it was discussed in Sect. 4.3, the statistical modelling of the grain-size distribution functions
in any time slice is an appealing alternative to the simple consideration of global parameters.
In particular, as the asymmetry of the distribution flanks (which can be observed in Fig. 4.3)
suggests the application of finite mixture models with strongly overlapping components, however,
due to the overlap, large undertainties (and eventually some bias) are to be expected.

To determine the applicability of different model functions, all observed distributions have
been firstly analysed using a software package developed by Ken Wohletz in the framework of
the sequential fragmentation and transport (SFT) theory. This software is freely available and
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Figure 4.4: Global statistical parameters describing the ”typical” size of particles in the sediment:
Mean (upper left panel), median (upper right panel), mode (lower left panel), and median/mode
ratio (lower right panel) of the grain-size distributions as a function of the estimated sediment
age. Gray lines give indicate the separate values computed for all 448 time slices, whereas the
black lines correspond to the values computed with a 2,000 year (non-weighted) moving average
filter.

allows to fit finite mixture models with up to four log-normal or SFT-type (Weibull) components
to observed grain-size data. In general, it has been found that models with four lognormal com-
ponents minimise the residuals in most cases, hence, the corresponding model was successively
applied to all samples. The temporal variability of the corresponding model parameters gives,
however, mainly results which cannot be interpreted palaeoclimatically.

The rather irregular behaviour of the estimated model parameters is to some extent related
to the features of the software package used34: Firstly, the starting values have to be prescribed
manuelly. Secondly, the algorithm does not work using a particular statistical estimator like the
EM algorithm described in Chapt. 2, but performs optimisation with respect to an interpolating
spline function. Thirdly, the data (given with respect to size classes predefined by the measure-
ment device) have to be interpolated in advance to half-φ or full-φ units (see Sect. 4.2), which
leads to additional large uncertainties5. The only interpretable and robust pattern is given by

3In addition, the potential variability of the ”optimum” model contributes here as well.
4For comparison, the EM algorithm was applied as well to the complete data set, yielding similar results.
5The corresponding problem has been tested by comparing data locally interpolated by linear and quadratic

polynoms, resp., yielding significantly different results of most parameters.
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the statistical weight of the coarse-grained component, which pretty well follows the variability
of known northern hemispheric temperature signals, however, a corresponding pattern may be
much simpler inferred by considering the abundance of the sand fraction > 64µm shown in Fig.
4.5.

Figure 4.5: Relative abundance of sand (> 64µm) in the detrital fraction < 2µm of the Lake
Baikal sediment, and the δ18O palaeotemperature proxy record from the Greenland NRIP ice
core [NGRIP members 2004]. Gray lines give indicate the separate values computed for all
time slices, whereas the black lines correspond to the values computed with a 2,000 year (non-
weighted) moving average filter.

Considering the general applicability of finite mixture models for describing sequences of
grain-size distributions, one has to firstly recall the problems with parameter estimation in the
presence of an unknown model structure, relevant residuals, or a significant component overlap
already discussed in Sect. 2.4.5. In addition, the presented approach implicitly assumes not only
the correctness of the predefined model structure, but also its constancy over the entire sequence,
which is likely a wrong assumption if sediments from periods with very different environmental
conditions are considered. Hence, one has to conclude that for the Lake Baikal grain-size data,
the application of the finite mixture model approach does not lead to appropriate results.

4.6.3 Principal Component Analysis

As it has been demonstrated above that statistical modelling with a fixed, formal model structure
gives only very poor palaeoclimatically interpretable information, there is the question of more
robust statistical methods for the analysis of grain-size distributions. A particular approach
would be the non-parametric endmember modelling [Weltje 1997], which has widely been ap-
plied in a variety of geological studies. However, the components inferred by this approach have
usually a rather complicated shape which can often not be assigned to any particular sedimen-
tological component. In addition, the statistical significance of the results should be discussed,
in particular, in the case of small sample sizes. For this purpose, a resampling approach similar
to that used in the case of the LVD dimension in Chapt. 3 might be useful which could work as
follows:

1. Take the complete grain-size data set as it is.

2. Choose a particular percentage of the measured time slices by chance.
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3. Replace the data within these time slices by random data.

4. Apply the statistical analysis and/or modelling approach, e.g., endmember modelling.

5. Repeat this procedure a sufficient number of times.

6. Calculate a suitable statistics over the results obtained from all randomised realisations
(for example, mean and dispersion give information about bias and uncertainty of the
original approach).

In the following, an approach is used which is even simpler than endmember modelling. The
principal component analysis was already introduced in Chapt. 3 of this thesis as Karhunen-
Loève decomposition (KLD). In the following, the information about the dynamics gained from
this approach is considered: as KLD is based on a transformation of the covariance matrix
to diagonal form, the entire data set can be recovered by an appropriate superposition of the
corresponding eigenvectors. As the latter ones are orthonormal by definition, the corresponding
(time-dependent) expansion coefficients may be easily computed as the scalar product of the
data in a particular time slice with the respective eigenvector.

In Sect. 3.5.4, it has been argued that an appropriate principal component analysis requires a
certain statistical treatment of the data in terms of a (log-)ratio transformation [Aitchison 1983].
Going yet another step back, this recommendation is not considered in the following, hence, the
statistical decomposition is applied with respect to the original (non-transformed) compositional
data set.

Applied this way, principal component analysis gives as a first-hand information components
which are described by (linearly in a certain way optimised) weights associated to each size class.
Fig. 4.6 shows the corresponding shapes of the first major principal components. One recognised
that the first component shows one zero crossing, the second one two, etc. This behaviour has
also been found for grain-size distributions from other locations with rather different shapes,
which indicated that it is intrinsically related to the particular decomposition approach.

Figure 4.6: Shape of the first two major principal components (weights for every size class,
indicated by the height of the displayed bars). Solid lines correspond to the PC 1, dotted ones
to the PC 2.
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While the principal components (i.e., the eigenvectors of the covariance matrix) may be
interpreted in terms of the shape of the grain size distributions, the evolution coefficients repre-
sent the whole information about the temporal variability of this shape, including the complete
information on the variability of environmental conditions from the original data set. PC 1,
explaining 50.8% of the total variability, has a positive (negative) amplitude if more (less) sed-
iment with smaller than with larger grains (compared with an average distribution from the
data set) occurs. The boundary between smaller and larger grains is approximately fixed by the
position of the zero crossing at about 10.5µm. While thus PC 1 mainly quantifies the asymmetry
between both flanks of the total distribution (i.e., has its highest absolute values at about 6 and
25µm, resp.), PC 2 (explaining another 38.5% of variance) represents the asymmetry between
the bulk region (determined by its two zero crossings at about 6 and 30µm) and both flanks
such that a wider distribution with more fine and/or large-grained sediment (and therefore more
pronounced tails) results in more positive coefficients while negative values correspond to a very
narrow distribution with only few sediment with grains outside this size interval.

Figure 4.7: From top to bottom as a function of the sediment age: U-ratio (modified accord-
ing to the size classes prescribed by the measurement device), amplitude of the first principal
component, and modified U-ratio defined as the ratio of sediment abundance above and below
16µm (the position of the zero-crossing of the PC 1).

As a next step, the temporal evolution of the principal component amplitudes is studied.
The corresponding variability describes the most prominent temporal changes in the observed
grain-size distribution and may therefore be used to assess information on the variability of en-
vironmental conditions. Considering the first component, Fig. 4.7 shows that the corresponding
amplitude is closely related to the U-ratio of [Vandenberghe et al. 1993]6. Equivalently, one may
use the ratio of sediment above and below the zero crossing of the first principal component at

6As the size classes have been predefined by the measurement device, the definition of the U-ratio has been
slightly modified according to these classes as the ratio of sedimented material with grain sizes between 16 and
50µm and between 5 and 16µm, resp.
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16µm, which is referred to as the adjusted U-ratio. Obviously, all three parameters show almost
the same variability pattern.

The temporal evolution of the first two principal components shows variations on time scales
related to the well-known alternation of marine isotope stages (see above). Using wavelet anal-
ysis as described in Sect. 1.5, clear evidence is found for significant variations on frequencies
corresponding to the precession and obliquity oscillations of the Earth’s orbit. Fig. 4.8 shows
that the corresponding oscillatory components are relevant over almost the entire record, i.e.,
the complete last glacial/interglacial cycle. Although the temporal resolution is extraordinary
well for a grain-size record, it is still not sufficient to resolve millenial-scale oscillations. Hence,
it is not possible to derive information about climate oscillations on these smaller time scales
which would be an indicator for large-scale northern hemispheric teleconnections, i.e., interrela-
tionships of the atmospheric circulation patterns over large spatial distances.

Figure 4.8: Temporal evolution of the amplitudes (averaged over 2,000 years) of the first two
principal components (upper panels), and the corresponding wavelet amplitude maps including
the estimated 95% significance levels from a test against white noise.

4.7 Interpretation

As an alternative to the information provided by the amplitudes of the major principal com-
ponents, it may be sufficient to consider the abundance of grains within size classes which are
defined by the zero crossings of these components. For the Lake Baikal data set, these roots are
at 16 µm (PC 1), 6 µm and 40 µm (PC 2). Hence, principal component analysis allows to define
four disjoint size classes which are further evaluated. The finest fraction with grain sizes below
6 µm may still be contaminated by some remaining clay and will therefore not be discussed.
The medium silt fraction with grain sizes between 16 and 40 µm gives no climatologically inter-
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pretable information. Hence, it is appropriate to focus on the fractions of fine silts (6 to 16 µm)
and coarse silts and sand (above 40 µm).

The variations of the abundance of coarse material have already been described above. It
is likely that coarse material cannot be transported over large distances, hence, there must be
a local source and transportation mechanism. As the corresponding abundance (compare Fig.
4.5) is clearly increased during colder periods, it is evident that the efficiency of transport is
higher in the case of glacial conditions. A possible explanation is that coarse material is mainly
transported from the nearby shore by saltation on the ice. In this case, the efficiency depends
on the snow cover on both, the ice cap on the lake and the shore, which suggests that the coarse
detrital input might be a proxy for the snow cover. This hypothesis is underlined by a strong
coincidence of variations of the corresponding abundance of this fraction and the late winter
insolation (which has a direct influence on the duration of the annual frost period) illustrated in
Fig. 4.9. In particular, this insolation has been mainly controlled by precession cycles over the
last glacial/interglacial cycle.

Figure 4.9: Variations in the detrital fraction > 40µm and the march insolation at 65o North
according to [Laskar et al. 1993].

The explanation for the variability of the fine silt fraction is slightly more subtile. In contrast
to the coarse material, fine grains may be efficiently transported by winds, i.e., it is likely that
this part of the sediment is of aeolian origin. Fig. 4.10 shows that the corresponding abundance
varies similar to the late spring / early summer insolation over Central Eurasia. A more detailed
analysis suggests that there is also a dependence of the global ice volume on this insolation: a
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minimum summer insolation leads a maximum global ice volume by several 1,000 years over the
last glacial cycle. As a maximum of the global ice volume corresponds to a high continentality
of the climate, the fine silt fraction can be interpreted as a proxy for continentality.

Figure 4.10: Variations in the detrital fraction 6-16µm, the june insolation at 65o North according
to [Laskar et al. 1993], and a surrogate curve of the global ice volume.

A possible source of the fine silt material are dust storms which today occur rather frequently
during last spring. The most likely origin of a large amount of aeolian material is thus located in
the Taklamakan desert in Northeastern China, which is underlined by satellite measurements of
atmospheric aerosols as shown in Fig. 4.11. The typical direction of transport under present-day
climatic conditions support the hypothesis that Lake Baikal may be essentially supplied by this
source.

The presented attempt for interpreting the climatic conditions around Lake Baikal based on
grain-size distributions explains the main features by the varying efficiency of different types
of aeolian material transport. However, for the geological site under investigation, it is likely
that the sediment support is mainly fluvially controlled, i.e., the largest part of the material is
transported by numerous small rivers entering Lake Baikal near the coring site. To defend the
explanations proposed above, it would be necessary to collect additional information about the
grain-size distributions of the fluvial material. In addition, one has to investigate whether the
fluvial input mechanisms are less influenced by changing environmental conditions than aeolian
ones. As a working hypothesis, it seems possible that fine aeolian material as well as coarse-
grained sediments are less abundant in fluvial sediments such that changes of the corresponding
aeolian supply are recorded by smaller ”tails” of the grain-size distributions. At least in the case
of the coarse grains, this explanation is strongly suggested by the results presented above.
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Figure 4.11: Satellite-based measurement of present-day atmospheric aerosols in late spring.
One clearly observes a dust cloud moving from the Taklamakan desert towards the Lake Baikal
region.
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Chapter 5

Summary

1. An important task of modern studies in climatology is the separation of natural and an-
thropogenic contributions to the observed climate change. For this purpose, a detailed
knowledge about the natural variability of the climate system during warm stages is es-
sential. Besides model simulations and the study of historical observations spanning the
last centuries, the corresponding information is mainly taken from the study of palaeocli-
matic proxies. In order to appropriately interpret the corresponding records, sophisticated
statistical modelling approaches and methods of linear and nonlinear time series analysis
are required which must be (in contrast to most conventional methods) applicable to very
short, noisy, and instationary univariate as well as multivariate time series.

2. Correlations of palaeoclimatic proxies observed at different locations or of multiple proxies
from one specific site include important information about climate change. It has been
demonstrated that the diagonalisation of the covariance matrix of a multivariate time
series in terms of Karhunen-Loéve decomposition (KLD) allows to define estimates of the
dimensions, i.e., the number of statistically relevant components of such data sets. To
improve the performance of earlier approaches, the linear variance decay (LVD) dimension
density is introduced. It has been demonstrated that this method is sensitive with respect
to small changes in the correlation structure. Modifications or extensions of the presented
method are possible by substituting the KLD by other statistical decomposition methods.

3. The LVD dimension density has been used to analyse the temporal variations of the infor-
mation content in multivariate palaeoclimatic time series. As an example, trace element
abundances and grain-size distributions from Cape Roberts, East Antarctica, have been
studied. The corresponding investigation has demonstrated a significant change of the
LVD dimension density across the Oligocene/Miocene boundary about 24 Myr BP, which
is related to a rather abrupt change of sediment provenance and an intensification of glacial
activity. In addition, the sensitivity of this measure to outliers in the multivariate data
allows the identification of short-time events caused by certain climatic or non-climatic
extreme events influencing the geological source.

4. The instationarity of palaeoclimatic records is often related to the fact that external influ-
ences forcing the climate system as well as internal oscillations are amplified temporarily.
In order to study the resulting varying influence of different time-periodic contributions
in univariate climate records, wavelet analysis is a promising tool. As palaeoclimatic time
series are characterised by an uneven sampling in the time domain, the traditional ap-
proach has to be modified, for example, in terms of the weighted wavelet Z transform.
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The resulting time-frequency pattern depends crucially on the applied age model and its
uncertainty. To improve the validity of the results of a wavelet analysis in palaeoclima-
tology, a combination with stochastic techniques like Monte Carlo resampling or Bayesian
statistics is outlined.

5. Grain-size distributions are an important palaeoclimate proxy which allows to identify
and quantify different mechanisms of sediment transport and deposition caused by vary-
ing palaeoenvironmental conditions. To extract the corresponding information from the
observed data sets, special techniques of multivariate statistical analysis and modelling
are required. In particular, finite mixture models are a sophisticated approach for the sta-
tistical modelling of grain-size distributions. The number of components corresponds to
different origins of the deposited material, whereas the shape of the components is related
to the dominating transport mechanisms.

6. The EM algorithm is discussed as an efficient method for parameter estimation in such
models basing on grouped and eventually truncated observational data. For Gaussian
mixture models, it has been shown that the performance of this approach is closely related
to the component overlaps and weights, the grouping coarseness, and the truncation of
the observed data. In order to estimate the statistical uncertainty of the resulting pa-
rameter estimates, methods based on approximations of the information matrix as well
as the resampling of either the original grouped data or the estimated probability distri-
bution functions have been compared. Consistency of both approaches is observed only
under rather idealised conditions like an optimal knowledge of the model structure and a
reasonably small component overlap.

7. For real-world observations of grain-size distributions, the optimum number and shape of
the usually strongly overlapping component functions is not a priori known. Consequently,
information- and resampling based methods may yield inconsistent results. An additional
problem of this kind of data is that the absolute uncertainty depends on the number of
observations which is not known in the case of grain-size distributions which are described
in terms of relative frequencies. For the statistical assessment of parameter uncertainty
important for palaeoclimatic interpretations of the results of modelling, asymptotic un-
certainty distributions have been proposed as a new resampling-based concept applicable
in this situation. This concept uses the complete information about the probability of
parameter estimates in appropriately simulated data sets and is (in contrast to traditional
uncertainty estimates) also applicable in the case of relative group frequencies.

8. For grain-size distributions from a sedimentary sequence obtained in Lake Baikal, Eastern
Siberia, it has been shown that the finite mixture approach does not give results that can be
well interpreted palaeoclimatically. As an alternative, linear principal component analysis
(PCA) allows to define different size classes which are closely related to heuristically defined
parameters frequently used in geological studies. The abundance of material > 40µm is
found to be a useful proxy for the snow cover at Lake Baikal, whereas the abundance of fine
silts (6−16µm) is closely related to the strength of late spring / early summer heating over
Central Eurasia and may be related to aeolian dust from the Taklamakan desert. Wavelet
analysis demonstrates that the two major principal components show significant oscillatory
contributions with the typical frequencies of the precession and obliquity variations of the
Earth.
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darüber hinaus auch an vielen anderen spannenden Fragestellungen zum Verhalten komplexer
Systeme in Natur, Wirtschaft und Gesellschaft mitzuarbeiten. In diesem Zusammenhang möchte
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99



100 DANKSAGUNG

arbeiten und sie auch zum Teil in dieser Dissertation zu verwenden. Insbesondere danke ich den
Mitarbeitern des CONTINENT-Projekts am GFZ Potsdam und den anderen beteiligten Einrich-
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Bereitstellung der Korngrößendaten aus dem Baikalsee. Hans von Suchodoletz hat mir darüber
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einmal deutlich überschritten hat. Ohne Eure Hilfe und Unterstützung wäre es sicher nicht
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[Pälike and Shackleton 2000] Pälike, H.; Shackleton, N.J.: Constraints on astronomical param-
eters from the geological record for the last 25 Myr. Earth and Planetary Science Letters
182(1), 1-14 (2000).
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[Paluš 1997] Paluš, M.: Detecting phase synchronization in noisy systems. Physics Letters A
235, 341-351 (1997).



122 BIBLIOGRAPHY
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scaling and nonuniformity of the Karhunen-Loève decomposition for the spiral-defect chaos
state. Physical Review E 58(6), 6903-6906 (1998).



Appendix A

EM Algorithm for Gaussian Mixture
Models

A.1 Maximisation Step for Gaussian Components using Explicit
Observations

As a particular application, the parameter estimation in mixtures of normal distribu-
tions has attracted much interest during the last century (for a historical review, see
[Everitt and Hand 1981]). For a one-component normal distribution

f(x;µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, (A.1)

one has that

Q(Ψ;Ψ(l)) =
J∑

j=1

log f(xj ;Ψ(l)) = −
J∑

j=1

(
log(2π)

2
+

log(σ2)(l)

2
+

(
x− µ(l)

)2
2(σ2)(l)

)
(A.2)

and therefore

0 =
∂Q(Ψ;Ψ(l))

∂µ
=

J∑
j=1

xj − µ

(σ2)(l)
(A.3)

0 =
∂Q(Ψ;Ψ(l))
∂(σ2)(l)

= −
J∑

j=1

(
1

2(σ2)(l)
− (xj − µ)2

2
(
(σ2)(l)

)2
)

(A.4)

such that solving for the respective parameters yields

µ(l+1) =
1
J

J∑
j=1

xj , (A.5)

(σ2)(l+1) =
1
J

J∑
j=1

(
xj − µ(l+1)

)2
. (A.6)

which corresponds to the standard estimates for the first and second moments. As both results
do not depend on the previous-step parameter estimates, the ML solution is ultimately reached
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with only one step corresponding to the empirical mean and variance of the observed data as
expected (note, however, that the variance estimator is biased in this case).

For superpositions of normal distributions, the EM calculus actually leads to algorithmic
estimates as

0 =
∂Q(Ψ;Ψ(l))

∂µk
=

J∑
j=1

πkfk(xj ;Θ(l))∑K
i=1 π

(l)
i fi(xj ;Θ(l))

xj − µk

2σ2
k

(A.7)
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∂(σ2
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(l)
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(l)
i fi(xj ;Θ(l))

(
1

2σ2
k
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2

2
(
σ2

k
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(A.8)

such that

π
(l+1)
k = π

(l)
k

1
J

J∑
j=1

fk(xj ;Θ(l))∑K
i=1 π

(l)
i fi(xj ;Θ(l))

(A.9)

µ
(l+1)
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∑J
j=1 xj

fk(xj ;Θ
(l))∑K

i=1 π
(l)
i fi(xj ;Θ(l))∑J
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(A.10)

(σ2
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(l+1) =
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(l+1)
k

)2 fk(xj ;Θ
(l))∑K

i=1 π
(l)
i fi(xj ;Θ(l))∑J

j=1
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(l)
i fi(xj ;Θ(l))

(A.11)

have to be iterated until convergence is approached.
In [Hasselblad 1966], the estimation of parameters in a normal mixture was considered

using different approximations to the ML solution. [Hasselblad 1969] used the correspond-
ing results as initial estimates for an iterative procedure corresponding to the above EM
algorithm whose power was demonstrated for Poisson, binomial, and exponential mixtures.
[Everitt and Hand 1981] give the explicit equations for the case of normal distributions as shown
above and points the connection to the EM algorithm. In [Everitt 1984], it is shown that the
EM algorithm is one of the most efficient parameter estimation strategies for Gaussian mixtures.

A.2 Maximisation Step for Grouped Normal Data

For grouped and possibly truncated data, there is in general no explicit formulation of the
maximisation step. However, in the case of observations following a Gaussian distribution, i.e.,

log f(x;µ, σ2) = −1
2
[
log(2π) + log σ2

]
− (x− µ)2

2σ2
, (A.12)

the equivalent of equation 2.15 may be explicitly solved for the unknown parameters µ and σ as
discussed in [McLachlan and Krishnan 1997] (the explicit equations for the expectation values to
compute here have already been given in [Hasselblad et al. 1980]). Evaluating the expectation
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value of logLc(Ψ) with respect to the unknown explicit observations {x′mj} yields

Q(Ψ,Ψ(l)) = EΨ(l) {logLc(Ψ)|~n} =
M+M ′∑
m=1

nm(Ψ(l)) EΨ(l)

{
log f(x;µ, σ2)|x ∈ Xm

}
= −1

2
(
log(2π) + log σ2

)M+M ′∑
m=1

nm(Ψ(l))− 1
2σ2

M+M ′∑
m=1

nm(Ψ(l))EΨ(l)

{
(x− µ)2|x ∈ Xm

}
(A.13)

Note that the estimates from the previous iteration step enter only in the calculation of the
expectation values.

In the maximisation step, the maxima of Q(Ψ,Ψ(l)) with respect to the different distribution
parameters are evaluated. For this purpose, one firstly calculates the derivative with respect to
µ as

0 =
∂Q(Ψ,Ψ(l))

∂µ
= − 1

2σ2

M+M ′∑
m=1

nm(Ψ(l))EΨ(l)

{
∂

∂µ
(x− µ)2|x ∈ Xm

}

=
1
σ2

M+M ′∑
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nm(Ψ(l))EΨ(l) {(x− µ)|x ∈ Xm} =
1
σ2
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nm(Ψ(l)) [EΨ(l) {x|x ∈ Xm} − µ] ,

(A.14)

which is solved by

µ(l+1) =
∑M+M ′

m=1 nm(Ψ(l))EΨ(l){x|x ∈ Xm}∑M+M ′

m=1 nm(Ψ(l))
=

1
n+ n′(Ψ(l))
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nm(Ψ(l))

∫
Xm

dx x f(x;Ψ(l))∫
Xm

dx f(x;Ψ(l))
.

(A.15)
For further computations, one may set Xm = (am, bm) with am+1 = bm for m = 1, . . . ,M−1. To
evaluate the integrals, it is useful to consider of the following identity for a normal distribution:

df(x;Ψ(l))
dx

= −x− µ(l)

(σ(l))2
f(x;Ψ(l)) (A.16)

which may be transformed into the form

xf(x;Ψ(l)) = µ(l)f(x;Ψ(l))− (σ2)(l)
df(x;Ψ(l))

dx
(A.17)

Inserting this equation into the integral leads to the final equation for the computation of µ(l+1):

µ(l+1) =
1

n+ n′(Ψ(l))

M+M ′∑
m=1

nm(Ψ(l))

[
µ(l) − (σ2)(l)

f(bm;Ψ(l))− f(am;Ψ(l))
F (bm;Ψ(l))− F (am;Ψ(l))

]
(A.18)

where
F (x;Ψ) =

∫ x

−∞
dy f(y;Ψ) (A.19)

is the corresponding cumulative distribution function, in case of a normal distribution the famous
error function.
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For the computation of (σ2)(l+1), one has to solve

0 =
∂Q(Ψ,Ψ(l))

∂σ2
= − 1

2σ2

M+M ′∑
m=1

nm(Ψ(l))
(

1− 1
σ2
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{
(x− µ)2|x ∈ Xm

})
(A.20)

which leads to the next-step ML estimate for σ2 as

(σ2)(l+1) =
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m=1 nm(Ψ(l))EΨ(l)
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(x− µ)2|x ∈ Xm
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(A.21)

Here, for µ the next-step estimate µ(l+1) has to be inserted. As µ(l+1) itself does not depend
on (σ2)(l+1) itself, one may firstly compute µ and then σ2. Note that, for arbitrary distribution
functions, the parameters may depend on each other in a much more complicated way.

The integral in the denominator consists of three parts:∫ bm

am

dx (x− µ(l+1))2 f(x;Ψ(l)) =
∫ bm

am

dx x2 f(x;Ψ(l))− 2µ(l+1)

∫ bm

am

dx x f(x;Ψ(l))

+ (µ(l+1))2
∫ bm

am

dx f(x;Ψ(l))
(A.22)

While the expressions in the second and third terms have yet been solved above, the first integral
still needs to be computed. For this purpose, one may apply (A.17) twice to obtain

d2f(x;Ψ(l))
dx2

=
d

dx

(
−x− µ(l)

(σ2)(l)
f(x;Ψ(l))
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(A.23)

or

x2f(x;Ψ(l)) = ((σ2)(l))2
d2f(x;Ψ(l))

dx2
+
(
(σ2)(l) − (µ(l))2

)
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(A.24)

The integral over the second derivative of f becomes

∫ bm

am

dx
d2f(x;Ψ(l))

dx2
=
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dx
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− x
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(A.25)
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such that∫ bm

am
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and therefore∫ bm

am

dx (x− µ(l+1))2 f(x;Ψ(l)) =
(
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To finally give a short expression for the M-step parameter estimates for grouped normal
data, it is useful to use a brief notation for expressing the final integrals, e.g.

∆mF
(l) = F (bm;Ψ(l))− F (am;Ψ(l)) = Pm(Ψ(l)) (A.28)

∆mf
(l) = f(bm;Ψ(l))− f(am;Ψ(l)) (A.29)

∆mφ
(l) = bmf(bm;Ψ(l))− amf(am;Ψ(l)) (A.30)

to formulate the following set of equations

µ(l+1) = µ(l) − (σ2)(l)

n+ n′(Ψ(l))

M+M ′∑
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∆mf
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(A.31)

(σ2)(l+1) = (σ2)(l) + (µ(l+1) − µ(l))2 +
(σ2)(l)

n+ n′(Ψ(l))

(
2µ(l+1) − µ(l)
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×

×
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(A.32)

A.3 Finite Normal Mixtures

For grouped data from normal mixtures, there are again certain complications with respect to the
single-component distribution’s parameter estimation problem. In particular, the introduction
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of indicator variables and their corresponding probabilities to belong to the respective mixture
components makes the explicit calculation of the ML estimates for the different parameters
becoming significantly more difficult.

The derivation of the next-step estimate for the statistical weights has yet been described.
For the recalculation of the distribution parameters in terms of the ML estimation, one has
to compute again the corresponding derivatives of the log-likelihood’s expectational value with
respect to the different parameters involved.

First, the recalculation of the means of the different component densities shall be discussed
here. The derivative of Q(Ψ,Ψ(l)) with respect to the µk reads:

0 =
∂

∂µk
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which immediately leads to the expression for µ(l+1)
i as follows:
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Using this result, one computes the derivative with respect to σ2
k
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(A.35)

leading to the following equation for (σ2
i )

(l+1):

(σ2
i )
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m
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} (A.36)

where the µi have been replaced by their new estimates µ(l+1)
i .
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For the required expectation values, one may again use the general expression

EΨ(l) {g(x)|x ∈ Xm} = E(l)
m {g(x)} =

∫ bm

am
dx f(x;Ψ(l)) g(x)∫ bm

am
dx f(x;Ψ(l))

. (A.37)

with g(x) appearing here in any case as a sum over terms of the form ti(x;Ψ(l))xs with s =
0, 1, 2. Because taking the expectation value is a linear operation, one may first compute the
expectations of these particular terms and then evaluate the required expressions.

For s = 0, the expectation value is easily established:

E(l)
m

{
ti(x;Ψ(l))

}
=

∫ bm

am
dx π

(l)
i fi(x,Θ(l))∫ bm

am
dx f(x;Ψ(l))

= π
(l)
i

Fi(bm;Θ(l))− Fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

(A.38)

with

Fi(x;Θ(l)) =
∫ x

−∞
dy fi(y;Θ(l)) (A.39)

F (x;Ψ(l)) =
∫ x

−∞
dy f(y;Ψ(l)) =

K∑
i=1

πiFi(x;Θ(l)) (A.40)

For s > 0, one needs again the identities of the normal distribution (A.17) and (A.24)
for computation applied to any component i of the mixture. Then, the expectation value for
ti(x;Ψ(l))x reads as follows:

E(l)
m

{
ti(x;Ψ(l))x

}
=

∫ bm

am
dx π

(l)
i x fi(x,Θ(l))∫ bm

am
dx f(x;Ψ(l))

= π
(l)
i

∫ bm

am
dx x fi(x,Θ(l))

F (bm;Θ(l))− F (am;Θ(l))

=
π

(l)
i

F (bm;Θ(l))− F (am;Θ(l))

[
µ

(l)
i

∫ bm

am

dx fi(x,Θ(l))− (σ2
i )

(l)

∫ bm

am

dx
dfi(x,Θ(l))

dx

]

= π
(l)
i µ

(l)
i

Fi(bm;Θ(l))− Fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

− π
(l)
i (σ2

i )
(l) fi(bm;Θ(l))− fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

(A.41)

For s = 2, the expectation value is computed analogously to a one-component Gaussian
distribution by replacing f , µ, σ in (A.26) by πifi, µi, σi, resp., yielding

E(l)
m

{
ti(x;Ψ(l))x2

}
=

∫ bm

am
dx π

(l)
i x2 fi(x;Θ(l))∫ bm

am
dx f(x;Ψ(l))

= π
(l)
i

∫ bm

am
dx x2 fi(x;Θ(l))

F (bm;Ψ(l))− F (am;Ψ(l))

= π
(l)
i ((µ(l)

i )2 + (σ2
i )

(l))
Fi(bm;Θ(l))− Fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

− π
(l)
i µ

(l)
i (σ2

i )
(l) fi(bm;Θ(l))− fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

− π
(l)
i (σ2

i )
(l) bmfi(bm;Θ(l))− amfi(am;Θ(l))

F (bm;Θ(l))− F (am;Θ(l))
.

(A.42)

Finally, one may combine the expectation values for s = 0, 1, 2 to approach the corresponding
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value for ti(x;Ψ(l))(x− µ
(l+1)
i )2 as follows:

E(l)
m

{
ti(x;Ψ(l))

(
x− µ

(l+1)
i

)2
}

= E(l)
m

{
ti(x;Ψ(l))x2

}
− 2µ(l+1)

i E(l)
m

{
ti(x;Ψ(l))x

}
+ (µ(l+1)

i )2E(l)
m

{
ti(x;Ψ(l))

}
= π

(l)
i

[(
(σ2

i )
(l) + (µ(l)

i )2 + (µ(l+1)
i )2 − 2µ(l)

i µ
(l+1)
i

) Fi(bm;Θ(l))− Fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

+
(
2µ(l+1)

i (σ2
i )

(l) − µ
(l)
i (σ2

i )
(l)
) fi(bm;Θ(l))− fi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

− (σ2
i )

(l) bmfi(bm;Θ(l))− amfi(am;Θ(l))
F (bm;Θ(l))− F (am;Θ(l))

]
(A.43)

Adapting the abbreviations for the occuring differences from the case of a one-component
normal distribution as

∆mF
(l)
i = Fi(bm;Ψ(l))− Fi(am;Ψ(l)) (A.44)

∆mf
(l)
i = fi(bm;Ψ(l))− fi(am;Ψ(l)) (A.45)

∆mφ
(l)
i = bmfi(bm;Ψ(l))− amfi(am;Ψ(l)) (A.46)

such that

∆mF
(l) =

K∑
i=1

π
(l)
i ∆mF

(l)
i (A.47)

∆mf
(l) =

K∑
i=1

π
(l)
i ∆mf

(l)
i (A.48)

∆mφ
(l) =

K∑
i=1

π
(l)
i ∆mφ

(l)
i (A.49)

allows to explicitly write the equations for the next-step estimates in rather compact form:

π
(l+1)
i = π

(l)
i

1
n+ n′(Ψ(l))

M+M ′∑
m=1

nm(Ψ(l))
∆mF

(l)
i

∆mF (l)
(A.50)

µ
(l+1)
i = µ

(l)
i − (σ2

i )
(l)

∑M+M ′

m=1 nm(Ψ(l)) ∆mf
(l)
i

∆mF (l)∑M+M ′

m=1 nm(Ψ(l))∆mF
(l)
i

∆mF (l)

(A.51)

(σ2
i )

(l+1) = (σ2
i )

(l) + (µ(l+1)
i − µ

(l)
i )2 + (σ2

i )
(l)
(
2µ(l+1)

i − µ
(l)
i

)
×

×
∑M+M ′

m=1 nm(Ψ(l)) ∆mf
(l)
i

∆mF (l)∑M+M ′

m=1 nm(Ψ(l))∆mF
(l)
i

∆mF (l)

− (σ2
i )

(l)

∑M+M ′

m=1 nm(Ψ(l)) ∆mφ
(l)
i

∆mF (l)∑M+M ′

m=1 nm(Ψ(l))∆mF
(l)
i

∆mF (l)

(A.52)
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A.4 Numerical Approximation of the Error Function

In contrast to the case of explicit data where the assumed distribution function is explicitly
given and therefore the corresponding probability of a given value may be computed without any
problem, for grouped data it is necessary to calculate the cumulative distribution function of the
model at the bin boundaries as well. In case of normal distributions, this is the well-known error
function which cannot be expressed analytically and therefore needs numerical approximation.
In this work, three different approaches have been considered using the programs included
in [StatLib] and [Press 1999]. In particular, the final calculations in the examples discussed
in this thesis have been performed using an algorithm based on the approximation as given
by [Hart et al. 1968]. Other approximations, as that of [Adams 1969, Hill 1973], yield similar
results while the implementation of [Press 1999] was found to work less stable.

A.5 Recent Applications

[Hasselblad et al. 1980] was probably the first to use the expectation-maximisation algo-
rithm for fitting one-component lognormal distributions to blood lead data from a large-
scale screening program in the 1970’s in New York city. His method was adapted by
[McLaren et al. 1986a] for modelling doubly-truncated lognormal distributions in the analy-
sis of red blood cell volume distributions relevant for detection of different forms of ane-
mia [McLaren et al. 1986b, McLaren et al. 1987]. Basing on the algorithms proposed in this
work, [McLachlan and Jones 1988] introduced the general theoretical framework to the analy-
sis of finite-mixture distributions with particular respect to normal-type components (see also
[Jones and McLachlan 1990]) which in the following lead to a number of applications in different
fields of science. An efficient algorithm for parameter estimation of grouped normal mixtures
based on the above results was published by [Jones and McLachlan 1990] in terms of a Fortran
77 program and is included in the StatLib library [StatLib].

In further extensions of the haematological studies, [McLaren et al. 1991] fitted two-
component mixtures of lognormal distributions and examined the conditions under which a
superposition may be detected sufficiently. The results were used to distinguish between blood
data from healthy persons and patients with different forms of anemia [McLaren et al. 1991,
McLaren et al. 1993], and for early diagnoses of hemochromatosis by modelling Transferrin sat-
uration distributions [McLaren 1996, McLaren et al. 1998]. To statistically test the hypotheses
of one and two components against each other (particularly relevant for the detection of ane-
mia), [McLachlan et al. 1995] proposed an algorithm basing on a likelihood ratio test used by
[McLaren et al. 2001b] for describing the relationship between Transferrin saturation and iron
storage by testing mixtures of two and three components against each other for samples of male
and female African American and US Caucasian populations.

Further applications of the EM algorithm for grouped data with particular respect to normal-
type mixture models included the analysis of collagen fibril diameter distributions [Jones 1991],
Phenylthiocarbamide (PTC) sensitivity [Jones and McLachlan 1991], and the survival of differ-
ent bacteria after chilling and freezing in liquid environments [Smith 1995].

For the parallel analysis of red blood cell data including respective cell volume and
haemoglobin concentration distributions given in terms of bivariate histograms, the method
was extended to multivariate distributions [McLaren et al. 2001a, Cadez et al. 2002] whose pa-
rameter determination is (combined with different other statistical analysis and modelling ap-
proaches) relevant for hierarchical screenings for iron deficiency anemia [Cadez et al. 1999] and,
more general, for patient-specific analysis of haematological data [McLaren et al. 2000].
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In [Jones and McLachlan 1989], the modelling of mass-size particle data using the EM algo-
rithm based on grouped data was discussed including mixture models consisting of lognormal,
log-hyperbolic and log-skew Laplace components. This analysis is particularly relevant to geol-
ogy as well as materials science.

Similar to the case of grouped data, the occurrence of data subjected to certain kinds of cen-
soring may be relevant in application. [Dempster et al. 1977] pointed out that this problem may
be handled in a very similar way as the grouping and truncating of data. Particular applications
basing on the results for binned data include the detection of components in meteorological data
[Sansom and Thomson 1998] and the assessment of anthropogenic arsenic background in nature
[Portier 2001]. For the case of hyperbolic distributions, an extension of the method applied to
censored multivariate data was recently proposed by [Protassov 2004].



Appendix B

Standard Errors Based on the
Information Matrix

In Sect. 2.4.1, the equations for standard error estimates based on the information matrix of the
EM estimator have been given. In the following, the details of this approach will be presented.
For a proper estimation of the information matrices in applications, the so-called score statistics
of the estimator is of particual importance.

B.1 The Score Statistics

If ~x and ~y are the observed and complete data of a given estimation problem, the gradient
vectors of the observed and complete-data log-likelihood function,

~s(~x;Ψ) =
∂ logL(Ψ)

∂Ψ
and ~sc(~y;Ψ) =

∂ logLc(Ψ)
∂Ψ

, (B.1)

are referred to as the (incomplete- and complete-data) score statistics
[McLachlan and Krishnan 1997]. The interrelationship between observed and complete-
data likelihood directly transfers to the score statistics as

~s(~x;Ψ) =
∂ log p(~x;Ψ)

∂Ψ
=

1
p(~x;Ψ)

∂p(~x;Ψ)
∂Ψ

=
1

p(~x;Ψ)

∫
{xj}

d~y
∂pc(~y;Ψ)

∂Ψ
=
∫
{xj}

d~y
∂ log pc(~y;Ψ)

∂Ψ
pc(~y;Ψ)
p(~x;Ψ)

=
∫
{xj}

d~y
∂ logLc(Ψ)

∂Ψ
f(~y|~x;Ψ) = EΨ

{
∂ logLc(Ψ)

∂Ψ

∣∣∣∣ ~x} = EΨ {~sc(~y;Ψ)| ~x}

(B.2)

where pc(~y;Ψ) is the joint probability of the complete data.
In the case of explicit data, the likelihood function factorises such that the incomplete-data

score statistics has the form

~s(~x;Ψ) =
J∑

j=1

∂ log f(xj ;Ψ)
∂Ψ

=
J∑

j=1

~sj(Ψ). (B.3)

Note that the incomplete-data score statistics approaches zero when being evaluated at the
maximum likelihood solution Ψ̂ by definition.
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Consider now the case of grouped and truncated data. The calculation of derivatives of the
log-likelihood function with respect to the different parameters corresponds to an evaluation of
the corresponding derivatives of the expectation values of Q(Ψ,Ψ(l)) at Ψ(l) = Ψ, i.e.,

∂Q(Ψ,Ψ(l))
∂Ψ

∣∣∣∣∣
Ψ(l)=Ψ

=
M+M ′∑
m=1

nm(Ψ(l))EΨ(l)

{
∂ log f(x;Ψ)

∂Ψ

∣∣∣∣x ∈ Xm

}
Ψ(l)=Ψ

=
M+M ′∑
m=1

nm(Ψ(l))
∫

Xm

dx
f(x;Ψ(l))
Pm(Ψ(l))

∂ log f(x;Ψ)
∂Ψ

∣∣∣∣∣
Ψ(l)=Ψ

=
M+M ′∑
m=1

nm(Ψ)
1

Pm(Ψ)
∂

∂Ψ

∫
Xm

dx f(x;Ψ)

=
M+M ′∑
m=1

nm(Ψ)
1

Pm(Ψ)
∂Pm(Ψ)
∂Ψ

=
M+M ′∑
m=1

nm(Ψ)
∂

∂Ψ
logPm(Ψ)

(B.4)

To approach an expression including only the observed group frequencies, one may have a
detailed look onto the part of the sum involving the truncated intervals

M+M ′∑
m=M+1

nm(Ψ)
∂

∂Ψ
logPm(Ψ) =

M+M ′∑
m=M+1

n
Pm(Ψ)
P (Ψ)

1
Pm(Ψ)

∂Pm(Ψ)
∂Ψ

=
n

P (Ψ)
∂

∂Ψ
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Pm(Ψ) =
n

P (Ψ)
∂

∂Ψ
(1− P (Ψ))

= − n

P (Ψ)
∂P (Ψ)
∂Ψ

= −n∂ logP (Ψ)
∂Ψ

(B.5)

such that

~s(~n;Ψ) =
∂Q(Ψ;Ψ(l))

∂Ψ

∣∣∣∣∣
Ψ(l)=Ψ

=
M∑

m=1

nm
∂ logPm(Ψ)

∂Ψ
− n

∂ logP (Ψ)
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≡ ∂ logL(Ψ)
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. (B.6)

Furthermore, one has

n
∂ logP (Ψ)

∂Ψ
=

n

P (Ψ)
∂P (Ψ)
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=
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n
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∂Ψ

=
M∑

m=1

n
Pm(Ψ)
P (Ψ)

∂ logPm(Ψ)
∂Ψ

(B.7)

and therefore

~s(~n;Ψ) =
M∑

m=1

(
nm − n

Pm(Ψ)
P (Ψ)

)
∂ logPm(Ψ)

∂Ψ
. (B.8)

It is useful to reformulate the latter result by rewriting the derivative of the logPm(Ψ) as
follows:

~hm(Ψ) :=
∂ logPm(Ψ)

∂Ψ
=

1
Pm(Ψ)

∂Pm(Ψ)
∂Ψ
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1

Pm(Ψ)

∫
Xm

dx
∂f(x;Ψ)
∂Ψ
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Xm
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∂Ψ

= EΨ

{
∂ log f(x;Ψ)
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∣∣∣∣x ∈ Xm

}
.

(B.9)
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In case of a K-finite mixture distribution, one may evaluate the involved distribution function
explicitly in terms of the component densities by using the linearity of differentiation, integration,
and expectation and taking the conditional probabilities into account yielding

~hm(Ψ) =
1

Pm(Ψ)

K∑
i=1

∫
Xm

dx
∂

∂Ψ
(πifi(x;Ψ))

=
K∑

i=1

∫
Xm

dx
f(x;Ψ)
Pm(Ψ)
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f(x;Ψ)

∂

∂Ψ
log (πifi(x;Ψ))

=
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∫
Xm

dx
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Pm(Ψ)

ti(x;Ψ)
∂

∂Ψ
log (πifi(x;Ψ))

=
K∑

i=1

EΨ

{
ti(x;Ψ)

∂

∂Ψ
log (πifi(x;Ψ))

∣∣∣∣x ∈ Xm

}
(B.10)

As it is shown below, this result is important for the calculation of information-based standard
parameter errors.

B.2 Conditional Information Matrix

The negative Hessian (i.e., the matrix of the second partial derivatives) of the observed-data
log-likelihood function is usually referred to as the observed information matrix. For the general
case, an explicit expression for this matrix has been given by [Louis 1982] derived as follows:
Firstly, one evaluates

I(Ψ; ~x) = −∂
2 logL(Ψ)
∂Ψ∂ΨT

= − ∂

∂Ψ

(
1

p(~x;Ψ)
∂p(~x;Ψ)
∂ΨT

)
= − 1

p(~x;Ψ)
∂2p(~x;Ψ)
∂Ψ∂ΨT

+
1

p(~x;Ψ)
∂p(~x;Ψ)
∂Ψ

· 1
p(~x;Ψ)

∂p(~x;Ψ)
∂ΨT

.

(B.11)

While the second term can be easily expressed in terms of the incomplete-data score statistic as

1
p(~x;Ψ)

∂p(~x;Ψ)
∂Ψ

· 1
p(~x;Ψ)

∂p(~x;Ψ)
∂ΨT

= ~s(~x;Ψ) · ~sT (~x;Ψ), (B.12)

the first contribution needs further reformulation in terms of the complete-data likelihood similar
to the above considerations for the corresponding score statistic as follows:

1
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1
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=
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d~y f(~y|~x;Ψ)
1
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1
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= EΨ
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∂2 logLc(Ψ)
∂Ψ∂ΨT

+
∂ logLc(Ψ)
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· ∂ logLc(Ψ)
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(B.13)

where the last identity follows from

∂2 logLc(Ψ)
∂Ψ∂ΨT

=
∂

∂Ψ
1

Lc(Ψ)
∂Lc(Ψ)
∂ΨT

=
1

Lc(Ψ)
∂2Lc(Ψ)
∂Ψ∂ΨT

− 1
Lc(Ψ)

∂Lc(Ψ)
∂Ψ

· 1
Lc(Ψ)

∂Lc(Ψ)
∂ΨT

. (B.14)
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Again, one identifies the complete-data score statistic and the complete-data information matrix

Ic(Ψ; ~y) = −∂
2 logLc(Ψ)
∂Ψ∂ΨT

. (B.15)

In brief notation, it follows that

I(Ψ; ~x) = EΨ {Ic(Ψ; ~y)| ~x} − EΨ

{
~sc(~y;Ψ) · ~sT

c (~y;Ψ)
∣∣ ~x}+ ~s(~x;Ψ) · ~sT (~x;Ψ). (B.16)

Defining the conditional expected complete-data information matrix,

Ic(Ψ; ~x) = EΨ {Ic(Ψ; ~y)| ~x} , (B.17)

and the expected information matrix for the distribution of ~y conditional on ~x (usually referred
to as the missing information matrix which corresponds to the covariance matrix of the complete-
data score statistics),

Im(Ψ; ~x) = EΨ

{
~sc(~y;Ψ) · ~sT

c (~y;Ψ)
∣∣ ~x}− ~s(~x;Ψ) · ~sT (~x;Ψ)

= EΨ

{
~sc(~y;Ψ) · ~sT

c (~y;Ψ)
∣∣ ~x}− EΨ {~sc(~y;Ψ)| ~x} · EΨ {~sc(~y;Ψ)| ~x}T ,

(B.18)

the expression may be rewritten as

I(Ψ; ~x) = Ic(Ψ; ~x)− Im(Ψ; ~x) (B.19)

yielding the famous missing information principle of [Orchard and Woodbury 1972].

B.3 Unconditional Information Matrix

Until this point, all information matrices considered have been conditional with respect to the
observed-data vector ~x. In practical applications, one is interested in more global expressions not
involving the particular observations. For this purpose, one may define the expected incomplete-
data information matrix

I(Ψ) = EΨ {I(Ψ;x)} (B.20)

and the expected complete-data information matrix

Ic(Ψ) = EΨ {Ic(Ψ; y)} (B.21)

[McLachlan and Basford 1988, McLachlan and Peel 2000]. Note that here, x and y occur as
independent variables and not as particular representations thereof anymore. From

p(~x;Ψ) =
pc(~y;Ψ)
f(~y|~x;Ψ)

, (B.22)

it follows that
logL(Ψ) = logLc(Ψ)− log f(~y|~x;Ψ) (B.23)

and therefore, by computing the second derivatives,

I(Ψ; ~x) = Ic(Ψ; ~y) +
∂2 log f(~y|~x;Ψ)

∂Ψ∂ΨT
. (B.24)
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Taking the conditional expectations with respect to the observed data ~x then yields

I(Ψ; ~x) = Ic(Ψ; ~x)− Im(Ψ; ~x) with Im(Ψ; ~x) = −EΨ

{
∂2 log f(~y|~x;Ψ)

∂Ψ∂ΨT

∣∣∣∣ ~x} (B.25)

Finally, by taking the expectation over the distribution of {x}, one approaches

I(Ψ) = Ic(Ψ)− EΨ {Im(Ψ; ~x)} . (B.26)

Under proper regularity conditions,

EΨ

{
Ic(Ψ; ~x)− EΨ

{
~sc(~y;Ψ) · ~sT

c (~y;Ψ)
∣∣ ~x}} = 0. (B.27)

Hence, EΨ

{
~sc(~y;Ψ) · ~sT

c (~y;Ψ)
∣∣ ~x} is a bias-free estimator for the conditional expected complete-

data information matrix, and

I(Ψ) = EΨ

{
~s(~x;Ψ) · ~sT (~x;Ψ)

}
(B.28)

such that ~s(~x;Ψ) · ~sT (~x;Ψ) is a bias-free estimator of I(Ψ; ~x) as well.

B.4 Score Covariance Matrix

The values of I(Ψ; ~x) and I(Ψ) at the maximum likelihood solution Ψ̂ are usually referred to as
the observed and expected Fisher information matrices [Fisher 1925, Efron and Hinkley 1978].
Evaluating (B.16) at Ψ̂, the term directly involving the incomplete-data score statistics vanishes
such that

I(Ψ̂; ~x) = EΨ

{
Ic(Ψ̂; ~y)

∣∣∣ ~x}− EΨ

{
~sc(~y; Ψ̂) · ~sT

c (~y; Ψ̂)·
∣∣∣ ~x} . (B.29)

Hence, the observed Fisher information matrix may be calculated only in terms of the gradient
and curvature of the complete-data log-likelihood function as

I(Ψ̂; ~x) = −EΨ

{
∂2 logLc(Ψ)
∂Ψ∂ΨT

+
∂ logLc(Ψ)

∂Ψ
∂ logLc(Ψ)

∂ΨT

∣∣∣∣ ~x}∣∣∣∣
Ψ=Ψ̂

. (B.30)

As for pairwise independent explicitly given data, the both score statistics and information
matrices separate with respect to the particular observations, it is a common approximation
to estimate the observed Fisher information by the observed-data score covariance matrix
([McLachlan and Basford 1988])

Is(Ψ̂; ~x) =
J∑

j=1

~sj(Ψ̂)~sT
j (Ψ̂). (B.31)

This approach is additionally motivated by the fact that

I(Ψ; ~x) = −∂
2 logL(Ψ)
∂Ψ∂ΨT

= −
J∑

j=1

∂2 log f(xj ;Ψ)
∂Ψ∂ΨT

=
J∑

j=1

(
∂ log f(xj ;Ψ)

∂Ψ
∂ log f(xj ;Ψ)

∂ΨT
− 1
f(xj ;Ψ)

∂2f(xj ;Ψ)
∂Ψ∂ΨT

) (B.32)
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where the second term has zero expectation such that

I(Ψ) = EΨ


J∑

j=1

∂ log f(xj ;Ψ)
∂Ψ

∂ log f(xj ;Ψ)
∂ΨT

 = EΨ


J∑

j=1

~sj(Ψ) · ~sT
j (Ψ)

 . (B.33)

yields a valid expression of the expected Fisher information matrix (see [Behboodian 1972,
Berndt et al. 1974, Redner and Walker 1984]). From the last identity, it follows that (B.31)
is a bias-free estimator of I(Ψ; ~x).

B.5 Empirical Covariance Matrix

For the case of independent identically distributed data, [Meilijson 1989] pointed out that it
may be preferable to use the empirical covariance matrix of the data for describing the variance
of the estimated parameters rather than the standard Fisher information. In this configuration,
the score statistics are sums over contributions from the different single data, and the expected
information matrix may be written in similar form as

I(Ψ) = Ji(Ψ) (B.34)

where
i(Ψ) = EΨ

{
~s(x;Ψ) · ~sT (x;Ψ)

}
(B.35)

is the covariance matrix of a single observation. As an empirical representation of this covariance
matrix in terms of the observed data (the empirical covariance matrix), one may calculate

ī(Ψ) =
1
J

J∑
j=1

~sj(Ψ) · ~sT
j (Ψ)− ~̄s(Ψ) · ~̄sT (Ψ) (B.36)

with

~̄s(Ψ) =
1
J

J∑
j=1

~sj(Ψ) (B.37)

such that

Ie(Ψ; ~x) = Jī(Ψ) =
J∑

j=1

~sj(Ψ) · ~sT
j (Ψ)− 1

J
~s(~x;Ψ) · ~sT (~x;Ψ). (B.38)

As this consistent estimator of the information matrix is computed rather easily only by cal-
culating sums over the observed-data score statistics, it may be efficiently used in terms of the
EM algorithm. In particular, when being evaluated at the maximum likelihood solution, Ī(Ψ; ~x)
reduces to Î(Ψ̂) as defined in (B.31).

B.6 Covariance Matrices for Grouped and Truncated Data

The formulation of the information matrix in terms of grouped and truncated data has been
explicitly considered by [Jones and McLachlan 1992]. From

logL(Ψ) =
M∑

m=1

nm logPm(Ψ)− n logP (Ψ), (B.39)
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the computation of the second partial derivatives immediately yields

I(Ψ;~n) = −
M∑

m=1

nm
∂2 logPm(Ψ)
∂Ψ∂ΨT

+ n
∂2 logP (Ψ)
∂Ψ∂ΨT

. (B.40)

The explicit evaluation of the derivatives leads to the following expression:

I(Ψ;~n) =−
M∑

m=1

nm
∂

∂Ψ

(
1

Pm(Ψ)
∂Pm(Ψ)
∂ΨT

)
+ n

∂

∂Ψ

(
1

P (Ψ)
∂P (Ψ)
∂ΨT

)

=−
M∑

m=1

nm

(
− 1
P 2

m(Ψ)
∂Pm(Ψ)
∂Ψ

∂Pm(Ψ)
∂ΨT

+
1

Pm(Ψ)
∂2Pm(Ψ)
∂Ψ∂ΨT

)
+ n

(
− 1
P 2(Ψ)

∂P (Ψ)
∂Ψ

∂P (Ψ)
∂ΨT

+
1

P (Ψ)
∂2P (Ψ)
∂Ψ∂ΨT

)
=

(
M∑

m=1

nm

P 2
m(Ψ)

∂Pm(Ψ)
∂Ψ

∂Pm(Ψ)
∂ΨT

− n

P 2(Ψ)
∂P (Ψ)
∂Ψ

∂P (Ψ)
∂ΨT

)

−

(
M∑

m=1

nm

Pm(Ψ)
∂2Pm(Ψ)
∂Ψ∂ΨT

− n

P (Ψ)
∂2P (Ψ)
∂Ψ∂ΨT

)
=Is(Ψ;~n)−R(Ψ;~n)

(B.41)

As the second term has zero expectation, Is(Ψ;~n) is a bias-free estimator for the observed-data
information matrix, and Is(Ψ;~n)/n is also consistent [Jones and McLachlan 1992].
For further calculations, the explicit structure of the information matrix estimator has to be com-
puted. This may be done analogously to the above considerations concerning the corresponding
score statistics as

Is(Ψ;~n) =
M∑

m=1

nm
∂ logPm(Ψ)

∂Ψ
∂ logPm(Ψ)

∂ΨT
− n

∂ logP (Ψ)
∂Ψ

∂ logP (Ψ)
∂ΨT

(B.42)

and

n

P 2(Ψ)
∂P (Ψ)
∂Ψ

∂P (Ψ)
∂ΨT

= n

(
M∑

m=1

1
P (Ψ)

∂Pm(Ψ)
∂Ψ

)(
M∑

m=1

1
P (Ψ)

∂Pm(Ψ)
∂ΨT

)

= n

(
M∑

m=1

Pm(Ψ)
P (Ψ)

∂ logPm(Ψ)
∂Ψ

)(
M∑

m=1

Pm(Ψ)
P (Ψ)

∂ logPm(Ψ)
∂ΨT

)

= n

(
M∑

m=1

Pm(Ψ)
P (Ψ)

~hm(Ψ)

)(
M∑

m=1

Pm(Ψ)
P (Ψ)

~hT
m(Ψ)

)
=: n~̄h(Ψ)~̄hT (Ψ)

(B.43)

such that

Is(Ψ;~n) =
M∑

m=1

nm
~hm(Ψ)~hT

m(Ψ)− n~̄h(Ψ)~̄hT (Ψ). (B.44)

To find an analogue for (B.31) in terms of grouped truncated data, one may use the identity

0 = ~s(~n; Ψ̂) =
M∑

m=1

nm
~hm(Ψ̂)− n~̄h(Ψ̂) (B.45)
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to proove that

Ie(Ψ;~n) =
M∑

m=1

nm

(
~hm(Ψ̂)− ~̄h(Ψ̂)

)(
~hm(Ψ̂)− ~̄h(Ψ̂)

)T

=
M∑

m=1

nm
~hm(Ψ̂)~hT

m(Ψ̂)− n~̄h(Ψ̂)~̄hT (Ψ̂) = K(Ψ;~n)|Ψ=Ψ̂ .

(B.46)

To calculate this quantity without explicitly considering P (Ψ̂), one may make use of

~̄h(Ψ̂) =
M∑

m=1

Pm(Ψ̂)
P (Ψ̂)

~hm(Ψ̂) =
M∑

m=1

nm

n
~hm(Ψ̂) (B.47)

which follows directly from (B.45).
As for grouped data, it is implicitly assumed that the single events are independent and

identically distributed, the formalism of empirical covariance matrix may be adopted to this
case as well. The corresponding expression then reads as follows [Jones and McLachlan 1992]:

Ie(Ψ;~n) =
M∑

m=1

nm
∂ logPm(Ψ)

∂Ψ
∂ logPm(Ψ)

∂ΨT
−n

(
M∑

m=1

nm

n

∂ logPm(Ψ)
∂Ψ

)(
M∑

m=1

nm

n

∂ logPm(Ψ)
∂ΨT

)
(B.48)

This equation is completely equal to (B.44) when evaluated at the maximum likelihood solution
which follows directly from (B.47).

B.7 Information-based Standard Errors

For the analytical computation of information-based standard errors, one should first note
that the squared standard errors (corresponding to the variances of the respective parame-
ters) are computed as diagonal elements of the asymptotic covariance matrix of the param-
eters computed at the ML solution. This matrix is under proper regularity conditions suffi-
ciently approximated by the inverse of the expected Fisher complete-data information matrix.
[Efron and Hinkley 1978] noted however that, at least in the case of one-parameter families of
distributions, it is more useful to approximate the asymptotic covariance matrix by the inverse
of the observed-data Fisher matrix rather than than the expected one. In this case, the standard
error of a single parameter Ψi is given by

SE(Ψ̂i) ≈
√

(I−1(Ψ̂; ~x))ii. (B.49)

From the above considerations, it follows that there are different levels of approximation
to the observed Fisher matrix. The direct evaluation of the matrix by computing the second
derivatives of logL(Ψ) with respect to the parameters gives the exact result, but may be com-
putationally inefficient because it might be hard to give analytical expressions for this purpose.
Problems may arise as well when expanding the Fisher information matrix in terms of gradient
and curvature of the complete-data log-likelihood function as (B.30). In contrast, a very sim-
ple bias-free estimate of the Fisher information is given by the variance of the incomplete-data
score statistics which involves only the likelihood gradient of the observations (B.31) without
significant loss of accuracy ([Griffiths et al. 1987]) and may therefore be efficiently computed.
The latter estimator may be equivalently replaced by the corresponding empirical covariance
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matrix. In App. B.8, the equations for the score covariance matrices for grouped truncated data
from Gaussian mixtures are explicitly derived. The results for some test data briefly discussed
in App. C.

B.8 Grouped Truncated Data from Gaussian Mixtures

In general, the number of unknown model parameters in a K-finite mixture model is

Nm(Ψ;~n) = K +
K∑

i=1

Ni (B.50)

where Ni is the number of unknown parameters of the i-th component function fi(x; θi) (i.e.,
the dimension of θi). The first contribution K occurs due to the unknown statistical weight
of each component. However, remember that the statistical weights are not independent as∑K

i=1 πi = 1. An information matrix involving all Nm parameters has a rank of only Nm − 1,
which would mean non-invertability in this case.

To avoid the corresponding problems, one has to consider a reduced parameter vector Ψ[i]

equaling Ψ with the πi component left out. In this case, this component is expressed by all πj

with j 6= i according to

f(x;Ψ) =
K∑

i=1

πifi(x;Θi)

=
∑
i6=j

πifi(x;Θi) +

1−
∑
i6=j

πi

 fj(x;Θj),

(B.51)

which leads to additional terms in the corresponding score vector

~hπk
m = E~Ψ

{
tk(x; ~Ψ)

1
πk
− tj(x; ~Ψ)

1
πj

∣∣∣∣x ∈ Xm

}
=

1
πk

∫ bm

am
dx πkfk(x; ~θk)∫ bm

am
dx f(x; ~Ψ)

− 1
πj

∫ bm

am
dx πjfj(x; ~θk)∫ bm

am
dx f(x; ~Ψ)

=
∆mFk −∆mFj

∆mF

(B.52)

for k 6= j.
The contributions with respect to the particular component parameters do not explicitly

involve the constraint and are thus computed straightforward as

h(µk)
m = E~Ψ

{
tk(x; ~Ψ)

(x− µk)
σ2

k

∣∣∣∣x ∈ Xm

}
=

1
σ2

k

E~Ψ

{
x tk(x; ~Ψ)

∣∣∣x ∈ Xm

}
− µk

σ2
k

E~Ψ

{
tk(x; ~Ψ)

∣∣∣x ∈ Xm

} (B.53)

and

h
(σ2

k)
m = E~Ψ

{
tk(x; ~Ψ)

(
(x− µk)2

2σ4
k

− 1
2σ2

k

)∣∣∣∣x ∈ Xm

}
=

1
2σ4

k

E~Ψ

{
x2 tk(x; ~Ψ)

∣∣∣x ∈ Xm

}
− µk

σ4
k

E~Ψ

{
x tk(x; ~Ψ)

∣∣∣x ∈ Xm

}
+

1
2σ2

k

(
µ2

k

σ2
k

− 1
)
E~Ψ

{
tk(x; ~Ψ)

∣∣∣x ∈ Xm

}
.

(B.54)
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Using the expressions for the respective expectation values as derived above, after some algebraic
simplifications one ends up with

h(µk)
m = πk

∆mfk

∆mF
(B.55)

h
(σ2

k)
m =

πkµk

2σ2
k

∆mfk

∆mF
− πk

2σ2
k

∆mφk

∆mF
. (B.56)

which allows the computation of Is(~Ψ;~n) by using (B.46).



Appendix C

Real-World Examples of Grouped
Data

Before applying all codes to the geoscientific problem discussed in this thesis, the performance
of the EM algorithm for grouped and truncated data from Gaussian mixture models as de-
scribed above has been tested on different real-world data sets which have been subjected to
corresponding analyses in the statistical literature yet.

C.1 Mixtures of Normal Distributions

As a first example, one may recall the length distribution of trypanosome, a parasitic protozoon.
The corresponding data set (see Tab. C.1) was originally studied by [Pearson 1914] and later
discussed in the text book of [Everitt and Hand 1981] on finite mixture distributions. The results
of the implementation of the EM algorithm used in this thesis are shown in Fig. C.1 and listed
below:

π1 = 0.67± 0.19 (0.65)
π2 = 0.33± 0.10 (0.35)
µ1 = 19.99± 0.25 (19.96)
µ2 = 26.31± 0.67 (26.16)
σ1 = 2.25± 0.72 (2.15)
σ2 = 2.78± 2.08 (2.76)

(the ± values give the standard errors estimated with the information matrix method). In com-
parison to [Everitt and Hand 1981] whose values are given in brackets, the parameter values for
the minor component are slightly shifted which is related to the fact that in the presented imple-
mentation, the improved adaptation of [McLachlan and Jones 1988] to grouped and truncated
data was used resulting in a remarkable lower χ2 value (tails are not taken into account here) of
7.71 (8.96). This improvement is particularly seen at the point where the predominance of the
components changes. Here, the new estimate fits the data histogram clearly better than the old
pdf.

Another typical example are the ash content data (see Table C.2) of [Hald 1952] which
have been analysed by [Hasselblad 1966] using the steepest descent approximation of the max-
imum likelihood solution. In this example, application of the EM algorithm does not lead to
an significant improvement of the fit quality with respect to Hasselbald’s approximation as the
corresponding differences of the χ2 values are within the range of numerical errors (EM: 5.47,

153
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Figure C.1: Left panel: Trypanosome length data (histogram) of [Pearson 1914], the probability
distribution function fitted by [Everitt and Hand 1981] (dotted line), and the PDF obtained with
the new parameter estimates (solid line). Right panel: Ash content data (histogram) [Hald 1952],
and the PDF resulting from the original estimate (dotted line), the steepest descent ML method
(dashed line) [Hasselblad 1966], and the EM algorithm for grouped truncated data (solid line).

lmin lmax Observation EH1981 EM

14.5µm 15.5µm 10 8.77 10.35
15.5µm 16.5µm 21 22.65 24.88
16.5µm 17.5µm 56 47.34 49.27
17.5µm 18.5µm 79 80.14 80.41
18.5µm 19.5µm 114 110.19 108.39
19.5µm 20.5µm 122 123.79 121.34
20.5µm 21.5µm 110 115.49 114.36
21.5µm 22.5µm 85 93.18 93.85
22.5µm 23.5µm 85 71.09 72.20
23.5µm 24.5µm 61 58.27 58.25
24.5µm 25.5µm 47 54.15 52.66
25.5µm 26.5µm 49 52.71 50.60
26.5µm 27.5µm 47 48.68 46.99
27.5µm 28.5µm 44 40.51 39.76
28.5µm 29.5µm 31 29.82 29.94
29.5µm 30.5µm 20 19.32 19.91
30.5µm 31.5µm 11 10.99 11.66
31.5µm 32.5µm 4 5.50 6.01
32.5µm 33.5µm 4 2.41 2.73

Table C.1: Trypanosome length data of [Pearson 1914], group frequencies estimated by
[Everitt and Hand 1981] (EH1981), and the result of the EM algorithm for grouped truncated
data.
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Ash Content [%] Ash Content [%] Observation H1952 H1966 EM

0.0 0.5 1 0.05 0.25 0.23
0.5 1.0 1 0.33 0.95 0.91
1.0 1.5 2 1.60 2.81 2.76
1.5 2.0 5 5.38 6.50 6.48
2.0 2.5 12 12.42 11.83 11.87
2.5 3.0 18 19.81 16.96 17.03
3.0 3.5 20 22.21 19.41 19.41
3.5 4.0 19 18.64 18.45 18.31
4.0 4.5 16 14.46 16.15 16.01
4.5 5.0 14 14.83 15.81 15.84
5.0 5.5 20 20.35 19.35 19.53
5.5 6.0 25 28.77 26.35 26.49
6.0 6.5 35 37.34 34.67 34.58
6.5 7.0 43 43.55 41.60 41.23
7.0 7.5 48 45.51 44.84 44.28
7.5 8.0 45 42.60 43.25 42.74
8.0 8.5 35 35.72 37.32 37.06
8.5 9.0 26 26.83 28.80 28.82
9.0 9.5 17 18.05 19.88 20.18
9.5 10.0 13 10.88 12.27 12.67
10.0 10.5 9 5.87 6.78 7.15
10.5 11.0 4 2.84 3.35 3.62
11.0 11.5 2 1.23 1.48 1.65

Table C.2: Ash content data of [Hald 1952] and group frequencies estimated by [Hald 1952]
(H1952), [Hasselblad 1966] (H1966) and the EM algorithm for grouped truncated data.

estimate of [Hasselblad 1966]: 5.74, rough fit of [Hald 1952]: 25.91). Compared to Hald’s es-
timate, the particular underestimation of the variance of the minor component is significantly
improved. The estimated distribution parameters read as follows:

π1 = 0.2113± 0.0409 (Hasselblad: 0.2162, Hald: 0.20)
π2 = 0.7887± 0.1528 (Hasselblad: 0.7838, Hald: 0.80)
µ1 = 3.1860± 0.2018 (Hasselblad: 3.210, Hald: 3.1)
µ2 = 7.3357± 0.1257 (Hasselblad: 7.339, Hald: 7.2)
σ1 = 0.9842± 0.2299 (Hasselblad: 1.000, Hald: 0.8)
σ2 = 1.5186± 0.3018 (Hasselblad: 1.490, Hald: 1.5)

C.2 Lognormal Distributions

A lognormal distribution can be derived from a normal distribution by replacing the independent
variable x by its logarithm. Hence, the corresponding probability distribution function reads:

f(x;µ, σ2) =
1√

2πσ2x
exp

[
−(log x− µ)2

2σ2

]
. (C.1)
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Figure C.2: Red blood cell volume data (histogram) of [McLaren et al. 1986a] and the corre-
sponding probability distribution function estimated by the original authors (dashed line) and
the EM algorithm for grouped and truncated normal data (solid line) on logarithmic scale.

Because the additional factor 1/x is separated from the parameters µ and σ2 in the logarithmic
representation, it plays no role in the derivatives of the log-likelihood function. Therefore, the
M-step iterations for the parameters of a lognormal distribution can be obtained by taking those
of a normal distribution with the replacement {x′mj} → log{x′mj}. The result corresponds to
the findings of [McLaren et al. 1986a].

As an exercise for the implemented algorithm, the original data set (see Tab. C.3) of
[McLaren et al. 1986a] is re-analysed. The result is shown in Fig. C.2. The corresponding
χ2 value is found to be 24.54 (for the parameters from the original publication 27.51) with the
estimated parameters µ = 4.478± 0.002 (4.48) and σ = 0.128± 0.001 (0.128).

C.3 Mixtures of Lognormal Distributions

As in the case of a one-component Gaussian-type density, the step from normal to lognormal
populations of a finite mixture distribution is rather trivial because of the symmetry between
the respective functions. In [McLaren et al. 1991], the EM procedure for normal data was
adapted to be applied to a two-component mixture of lognormal functions in grouped, doubly-
truncated data of red blood cell volume distributions. Applying the expressions derived for
the case of normal component densities under the substitution x → log x to the special case of
two-component doubly-truncated mixture density data yields the corresponding results.

As a typical example for a mixture of two lognormal distributions, one may consider the red
blood cell volume data sets for cows originally studied by [McLachlan and Jones 1988]. Again,
the explicit data may be found in the corresponding Tab. C.4. Plotting the distributions esti-
mated in the original work, one recognises that the location parameters are clearly shifted, which
may be due to the bin locations not having been considered appropriately in the corresponding
calculations (see Fig. C.3). This is recovered by χ2 values of 260.66 (set 1) and 486.57 (set 2)
which are out of discussion. However, re-analysis lead to more suitable parameters (χ2 of 7.24
and 11.34, resp.) as follows:

π1 = 0.4756± 0.1051 (0.45) and 0.1833± 0.0643 (0.17)
π2 = 0.5244± 0.1159 (0.55) and 0.8167± 0.2865 (0.83)
µ1 = 3.9599± 0.0472 (4.07) and 3.7052± 0.0625 (3.86)
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log (Min. Vol. [fl]) log (Max. Vol. [fl]) Observation M1986 EM

4.20935 4.22866 32 31.2581 31.1667
4.22866 4.24760 45 41.1017 41.1376
4.24760 4.26619 44 52.6178 52.8375
4.26619 4.28445 72 65.6719 66.1315
4.28445 4.30237 97 80.0127 80.7621
4.30237 4.31998 103 95.2782 96.3549
4.31998 4.33729 136 111.013 112.437
4.33729 4.35430 132 126.697 128.463
4.35430 4.37103 142 141.774 143.856
4.37103 4.38748 162 155.695 158.042
4.38748 4.40367 167 167.953 170.492
4.40367 4.41959 188 178.112 180.754
4.41959 4.43527 215 185.838 188.484
4.43527 4.45071 194 190.912 193.459
4.45071 4.46591 204 193.238 195.589
4.46591 4.48088 195 192.841 194.909
4.48088 4.49563 199 189.857 191.571
4.49563 4.51017 204 184.515 185.822
4.51017 4.52450 187 177.116 177.986
4.52450 4.53863 150 168.010 168.435
4.53863 4.55256 169 157.574 157.564
4.55256 4.56630 160 146.189 145.771
4.56630 4.57985 150 134.221 133.439
4.57985 4.59322 131 122.010 120.914
4.59322 4.60642 103 109.853 108.501
4.60642 4.61944 91 98.0032 96.4575
4.61944 4.63230 96 86.6656 84.9848
4.63230 4.64499 79 75.9946 74.2349
4.64499 4.65753 78 66.0992 64.3113
4.65753 4.66990 57 57.0462 55.2740
4.66990 4.68213 45 48.8661 47.1461
4.68213 4.69421 41 41.5592 39.9201
4.69421 4.70615 35 35.1017 33.5646
4.70615 4.71794 37 29.4513 28.0308

Table C.3: Red blood cell volume data of [McLaren et al. 1986a] and group frequencies esti-
mated by [McLaren et al. 1986a] (M1986) and the EM algorithm for grouped truncated data.
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Figure C.3: Two different sets of red blood cell volume data [McLachlan and Jones 1988] for
cows (histogram), the probability distribution functions fitted using the parameters from the
original work (dashed line) and the outcome of the EM algorithm for grouped truncated data
(solid line).

µ2 = 4.6598± 0.0258 (4.72) and 4.3903± 0.0300 (4.46)
σ1 = 0.2885± 0.0154 (0.24) and 0.2050± 0.0136 (0.17)
σ2 = 0.2176± 0.0107 (0.21) and 0.2997± 0.0146 (0.28).

The values refer to both data sets analysed, brackets show the values given in
[McLachlan and Jones 1988]. However, calculations show that while the estimates of the new
implementation match the expected group frequencies given in the cited reference rather well, the
recalculation using the parameters from the reference lead to clearly differing results underlying
the above finding.
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Min. Vol. [fl] Max. Vol. [fl] Observation M1988 EM

21.6000 28.8000 10 0.504597 6.21018
28.8000 36.0000 21 6.48772 26.7743
36.0000 43.2000 51 26.6346 53.5962
43.2000 50.4000 77 53.6482 67.6374
50.4000 57.6000 70 68.0681 64.3377
57.6000 64.8000 50 64.1215 52.8130
64.8000 72.0000 44 51.7141 43.4683
72.0000 79.2000 40 42.2382 41.1096
79.2000 86.4000 46 40.2759 44.5327
86.4000 93.6000 54 43.9898 49.4815
93.6000 100.800 53 48.9454 52.0276
100.800 108.000 54 51.4385 50.4025
108.000 115.200 44 49.9237 44.9861
115.200 122.400 36 44.8060 37.3138
122.400 129.600 29 37.5051 29.0601
129.600 136.800 21 29.5651 21.4562
136.800 144.000 16 22.1460 15.1455
144.000 151.200 13 15.8859 10.2940

Min. Vol. [fl] Max. Vol. [fl] Observation M1988 EM

21.6000 28.8000 9 0.229607 6.97041
28.8000 36.0000 32 6.73479 36.6318
36.0000 43.2000 64 32.9382 60.9851
43.2000 50.4000 69 55.4240 61.8875
50.4000 57.6000 56 57.1506 63.5373
57.6000 64.8000 68 58.8183 72.9124
64.8000 72.0000 88 66.8367 81.3142
72.0000 79.2000 93 73.5178 82.7472
79.2000 86.4000 87 73.9155 76.9760
86.4000 93.6000 67 68.1333 66.5468
93.6000 100.800 44 58.4892 54.3154
100.800 108.000 36 47.4512 42.3855
108.000 115.200 30 36.8089 31.9324
115.200 122.400 24 27.5517 23.4005
122.400 129.600 21 20.0415 16.7778
129.600 136.800 14 14.2477 11.8238
136.800 144.000 8 9.94374 8.22009
144.000 151.200 7 6.83776 5.65408

Table C.4: Red blood cell volume data for cows of [McLachlan and Jones 1988] and group
frequencies estimated using the parameters given in [McLachlan and Jones 1988] (M1988) and
this paper’s implementation of the EM algorithm. Note that [McLachlan and Jones 1988] give
different frequencies which are not consistent with the estimated parameters as published in the
reference.
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