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Abstract

The purpose of the thesis is to conceptualize an application method of ground-based reconfig-
urable FPGA (Field Programmable Gate Array) technologies for space systems and to apply
the method to the on-board computer of the small satellite Flying Laptop for the on-orbit
demonstration. The Flying Laptop satellite is the first small satellite within the “Stuttgart
small satellite program” in which several small satellites are developed by the Institute of Space
Systems at the Universität Stuttgart. The main mission of the Flying Laptop is to demon-
strate the space use of reconfigurable FPGAs for the “reconfigurable computing” on an central
on-board computer aboard a spacecraft. Due to their radiation vulnerabilities reconfigurable
FPGAs have not yet been employed in practical space applications with high reliability re-
quirements. The Flying Laptop project aims to achieve the world’s first orbit demonstration of
a purely FPGA-based central on-board computer.

Within this research firstly, application methods of reconfigurable FPGAs for space systems
were investigated, which are not limited to small satellites but for general space systems. The
investigation is based on thorough experimental data survey and analysis of radiation effects
on existing FPGA devices. Main radiation effects of single event effects and total ionizing
dose effects were extensively investigated. Based on the data obtained, a combinational use
of SRAM-FPGAs (multi-chip redundant) and Flash-FPGAs (voting element) for mitigating
radiation effects was conceptualized. A mathematical system reliability analysis of repairable
multi-redundant systems has been conducted and reliability models of“2-out-of-m”systems were
established. The analysis illustrates that a multi-redundant system based on SRAM-FPGAs
together with a Flash-FPGA based voter provides a sufficiently high reliability for Low Earth
Orbit (LEO) missions against radiation effects.

After the conceptualization of application methods of reconfigurable FPGAs for the space
environment, it is applied to the on-board computer of the small satellite Flying Lap-
top. Flying Laptop is a cubic, 3-axis stabilized satellite with the edge lengths of about
600 mm× 700 mm× 800 mm and a mass of about 120 kg, which shall be launched into sun-
synchronous LEO in an altitude of around 600 km. A system architecture with four SRAM-
FPGA based central processing nodes and one Flash-FPGA based voter was applied for the
on-board computer of the Flying Laptop. This on-board computer is the central computing sys-
tem aboard the satellite and shall be capable of controlling all satellite peripheral electronics.
First of all, the system design of the whole satellite has been conducted within the scope of the
thesis in order to allow the design of the on-board computer. Based on the established system
requirements, the on-board computer of the Flying Laptop was designed and the breadboard
model and partly the engineering model of its components are developed.

The hardware logic (control algorithm) which shall be implemented into FPGAs can be designed
by means of hardware description languages. However, it is no longer software engineering but
hardware engineering for generating real hardware logics inside FPGAs which are executed
in parallel in real-time. The implementation of the complete satellite control algorithms into
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Abstract Abstract

FPGAs is the world’s first achievement. By means of the breadboard model assembly, the
control algorithm of the Flying Laptop is developed in such a way that the computational
capability of FPGAs can be maximized by utilizing their internal massive parallelism. The
satellite main functions are designed, developed, and implemented in FPGAs by means of the
hardware description languages Handel-C and VHDL. The thesis provides development methods
of the control algorithms. In addition to this, a control algorithm development facility has been
established for the further design activities.

Finally, the developed control algorithms are verified in a simulation and verification envi-
ronment in order to prove the validities of the above described developments. First of all, an
FPGA hardware-in-the-loop real-time simulation environment has been established based on
the Model-based Development and Verification Environment (MDVE). MDVE was established
at the Institute of Space Systems supported by EADS Astrium. The communication interface
between the MDVE and FPGAs are developed, including the required hardware components
and the serialization algorithms of communication lines inside an FPGA. Using this simula-
tion and verification environment, extensive simulations have been conducted and the design
of the on-board computer, as well as the system design of the whole satellite are validated. At
the end, an extended investigation has been conducted on formal verification methods of the
hardware-logic in order to provide the way of strict design verifications. The formal semantics
of Handel-C are extended to enable simultaneous communications between multiple hardware
logic elements. This investigation cultivates the possibility of the formal verification of parallel
running hardware logic elements, which will be able to realize secure implementation of reliable
hardware logic into FPGAs for future space applications.

This thesis establishes the basis of principle application methods of reconfigurable FPGA tech-
nologies for “reconfigurable computing” on space systems which provides innovative solutions
for high computational demands of future space applications.
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Zusammenfassung

Das Ziel dieser Dissertation ist der Entwurf eines Verfahrens zum Einsatz von herkömmlichen
FPGA (Field Programmable Gate Array) Technologien für die Raumfahrt und die Demonstra-
tion dieses Verfahrens als Bordrechner des Kleinsatelliten Flying Laptop. Der Flying Laptop
ist der erste von mehreren Kleinsatelliten, der im Rahmen des “Stuttgarter Kleinsatellitenpro-
grammes,” am Institut für Raumfahrtsysteme der Universität Stuttgart entwickelt wird. Der
Haupteinsatz des Flying Laptop ist die Demonstration von rekonfigurierbaren FPGAs im Welt-
raum zum “Reconfigurable Computing” auf einem zentralen Bordrechner eines Raumfahrzeugs.
Dies wurde wegen der Strahlungsanfälligkeit dieser Bauteile bisher nicht in Raumfahrtsystemen
mit hoher Zuverlässigkeitsanforderung verwendet. Der Flying Laptop wird als weltweit erstes
Raumfahrzeug einen reinen FPGA-basierten Bordrechner verwenden.

Im Rahmen dieser Arbeit wurden zuerst die Anwendungsverfahren der rekonfigurierbaren
FPGAs für Raumfahrtsysteme erforscht, die nicht nur für Kleinsatelliten, sondern auch für
allgemeine Raumfahrtsysteme gelten. Die Forschung basiert auf einer vollständigen Recher-
che über experimentelle Daten und Analysen der Strahlungsanfälligkeit vorhandener FPGA-
Bauteile. Die Hauptauswirkungen von “Single Event Effects” und “Total Ionizing Dose” wur-
den ausführlich untersucht. Ausgehend von den erhaltenen Daten wurde ein kombinierter Ein-
satz der SRAM-FPGAs (multi-chip redundant) und Flash-FPGAs (voting element) entworfen,
um die Strahlungsanfälligkeit zu reduzieren. Eine mathematische Systemzuverlässigkeitsanaly-
se der wiederherstellbaren Multi-Redundantsystemen wurde durchgeführt und das Zuverlässig-
keitsmodell von “2-out-of-m” Systemen wurde aufgestellt. Diese Analysen stellen dar, dass ein
Multi-Redundantsystem mit SRAM-FPGAs zusammen mit einem Flash-FPGA basierten Voter
trotz Strahlungsanfälligkeit in einer niedrigen Erdumlaufbahn eine hinreichende Zuverlässigkeit
gewährleistet.

Dieses Implementierungsverfahren der rekonfigurierbaren FPGAs für die Weltraumumgebung
wurde nach dem Entwurf für den Bordrechner des Kleinsatelliten Flying Laptop angewendet.
Der Flying Laptop ist ein würfelförmiger dreiachsenstabilisierter Satellit mit den Kantenlängen
von etwa 600 mm× 700 mm× 800 mm und einer Masse von etwa 120 kg, der in einer sonnen-
synchronen niedrigen Erdumlaufbahn mit einer Höhe von etwa 600 km eingesetzt werden soll.
Eine Systemarchitektur mit vier SRAM-FPGA basierten“Central Processing Nodes”und einem
Flash-FPGA basierten Voter wurde für den Bordrechner des Flying Laptop festgelegt. Dieser
Bordrechner ist das zentrale Rechensystem auf dem Satelliten, das alle Satellitenkomponenten
steuern soll. Als Erstes wurde im Rahmen der Dissertation das Systemdesign des ganzen Satel-
litensystems durchgeführt, um das Design des Bordrechners zu ermöglichen. Basierend auf den
festgestellten Systemanforderungen wurde der Bordrechner des Flying Laptop ausgelegt. Au-
ßerdem wurden ein Breadboard-Modell des Bordrechners und teilweise die Engineering-Modelle
seiner Komponenten entwickelt.

Die Hardwarelogik (Steuerungsalgorithmen), die in den FPGAs implementiert werden sollen,
können mit Hardwarebeschreibungssprachen entwickelt werden. Es handelt sich hierbei also
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nicht mehr um Softwareentwicklung, sondern um Hardwareentwicklung. Dabei wird die ech-
te Hardwarelogik in den FPGAs produziert, die parallel in Echtzeit abgearbeitet wird. Die
Implementierung der kompletten Steuerungsalgorithmen eines Satelliten in FPGAs ist weltweit
einzigartig. Mittels des Breadboard-Modells wurden die Steuerungsalgorithmen des Flying Lap-
top so entwickelt, dass die Rechenleistungen der FPGAs unter Ausnutzung massiver Parallelität
maximiert werden. Die Hauptfunktionen des Satelliten wurden mit den Hardwarebeschreibungs-
sprachen Handel-C und VHDL ausgelegt, entwickelt, und in die FPGAs implementiert. Die
Dissertation stellt die Entwicklungsstrategie für die Steuerungsalgorithmen bereit. Zusätzlich
wurde die Infrastruktur für weitere Designaktivitäten aufgebaut.

Schließlich wurden die Steuerungsalgorithmen in einer Simulations- und Verifikationsumgebung
geprüft. Dafür wurde zunächst eine “Hardware-in-the-Loop”-Simulationsumgebung aufgebaut,
die auf einer Modell-basierten Entwicklungs- und Verifikationsumgebung (Model-based Deve-
lopment and Verifikation Environment (MDVE)) basiert. Die MDVE wurde mit Unterstützung
von EADS Astrium am Institut für Raumfahrtsysteme zur Verfügung gestellt. Die Kommuni-
kationsschnittstelle zwischen MDVE und FPGAs wurde entwickelt, einschließlich der benötig-
ten Hardwarekomponenten und des Algorithmus, welcher die Kommunikationskanäle innerhalb
einem FPGA in serielle Reihenfolge bringt. Mittels dieser Simulations- und Verifikationsumge-
bung wurden ausführliche Simulationen durchgeführt. Daraus resultierend wurde die Gültigkeit
des Bordrechnerdesigns sowie das Systemdesigns für den gesamten Satelliten validiert. Schlus-
sendlich wurde eine erweiterte Untersuchung über formale Verifikationsverfahren der Steue-
rungsalgorithmen durchgeführt, um eine strikte Designverifikation zu ermöglichen. Die formale
Semantik von Handel-C wurde erweitert, um die gleichzeitige Kommunikation zwischen meh-
reren Hardwarelogikelementen zu ermöglichen. Diese Untersuchung stellt eine formale Verifika-
tion der parallel laufenden Hardwarelogikelemente in Aussicht. Dadurch würde die verlässliche
Implementierung von betriebssicherer Hardwarelogik in die FPGAs für zukünftige Raumfahrt-
anwendungen ermöglicht.

Diese Dissertation legt die Basis für ein Anwendungsverfahren von rekonfigurierbaren FPGA-
Technologien auf Raumfahrzeugen. Dieses Verfahren stellt eine innovative Lösung für erhöhte
Rechenanforderungen von zukünftigen Raumfahrtanwendungen dar.
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0. Introduction

0.1. Purpose of research

The purpose of the thesis is to investigate and conceptualize application methods of recon-
figurable FPGA technologies for space systems, and to apply them to the actual On-board
Computer (OBC) of the demonstration small satellite Flying Laptop, the first satellite within
the Stuttgart small satellite program, in which several small satellites are developed by the
Institute of Space Systems (Institut für Raumfahrtsysteme: IRS) of the Universität Stuttgart.
Recently, applying ground-based reconfigurable FPGA technologies for space systems is of great
interest, which promises an innovative leap of the capability of their computing systems. To-
gether with the capability of reconfigurable computing, the extremely high throughputs and
flexibilities of FPGAs due to their internal parallel processing mechanisms are the ideal so-
lutions for future space applications, e.g., for space robotics and/or intelligent space systems.
The purpose of the thesis can be observed from the following two aspects:

• Application of ground-based reconfigurable FPGAs for space systems.

• Demonstration of an FPGA-based OBC with the small satellite Flying Laptop, which is
the central and the only OBC aboard the spacecraft.

On the one hand, the small satellite Flying Laptop provides the best platform for a quick and
low-cost demonstration, on the other hand, it will unveil the attractive features of reconfigurable
FPGAs for small satellite applications. Indeed, reconfigurable FPGAs have revealed various
attractive features for small satellites compared to traditional microprocessors, namely in terms
of their higher computational capability, dense interface implementation capability, less power
consumption, low cost, and small hardware size. This will give an answer to the recent high
demands on computational capability of small satellites.

The first challenge to be solved is the radiation susceptibility of reconfigurable FPGAs. Due
to their susceptibility against radiation, the above concept has never been demonstrated in the
world before. In this sense, the thesis is the first literature on this topic. The main hurdles to
the accomplishment of the purpose of the thesis are:

• Establishment of radiation mitigation methods for reconfigurable FPGAs based on a
comprehensive research and analysis on radiation effects.

• Integrated system design of the small satellite Flying Laptop in order to allow implemen-
tation of the FPGA-based central OBC.

• Design of the hardware logic inside the FPGAs, which shall replace the software functions
of traditional satellites and shall conduct the whole control functions of the Flying Laptop.

• Verification of the functionality of the developed hardware logic, which ensures a valid
implementation of algorithms and the satellite system design.
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The thesis aims to apply a combinational use of different types of reconfigurable FPGA tech-
nologies (SRAM-based and Flash-based FPGAs) for the radiation mitigation with a sufficient
redundancy concept. It is also the world’s first trial to implement whole satellite control func-
tions into FPGAs. According to the requirement of the Flying Laptop satellite, the Low Earth
Orbits (LEO) are selected for the target orbit of the demonstration.

0.2. State of the art

0.2.1. FPGA and reconfigurable computing

FPGA stands for Field Programmable Gate Array. FPGAs are programmable semiconductor
logic devices. Users can realize desired logical functions by designing the logic in programming
languages. This can be done even after the manufacturing process for several types of FPGAs
such as SRAM-based FPGA (hereinafter denoted as SRAM-FPGA). This outstanding feature
triggered the initiation of Reconfigurable Computing (RC). The main application fields are
Digital Signal Processing (DSP) and Digital Image Processing (DIP). The practical history of
RC, the use of programmable logic to accelerate computation, started in the late 1980s with
the widespread commercial availability of FPGAs [1]. RC is an emerging field, in which many
different hardware algorithms could execute, in turn, on a single device, just as many different
software algorithms can run on a conventional processor. Due to the rapid increase in density of
FPGAs following the improvement of semiconductor memory devices which continues to track
Moore’s Law, reconfigurable computers advance technologically at a faster rate than micropro-
cessors [1]. According to this background, space qualification of reconfigurable computers will
lead to great enhancements of space systems’ performance, and therefore, is recently of great
interest.

The speed advantage of FPGAs derives from the fact that the programmable hardware is
customized to a particular algorithm. It is estimated routinely 10-100 times the equivalent
software algorithm on microprocessors [1]. In addition to this, due to the substantially lower
clock frequencies than microprocessors, software to FPGA migration also results in a reduction
of power consumption. Furthermore, compared with Application-Specific Integrated Circuits
(ASICs) and Mask-Programmable Gate Arrays (MPGAs), FPGAs have several advantages for
their users, including: quick time to market; commercial availability; no non-recurring engi-
neering costs for fabrication; pre-tested silicon for use by the designer; and reprogrammability
by users, allowing designers to upgrade or change logic through in-system programming.

0.2.2. Reconfigurable FPGAs in space applications

The involvement of FPGAs in space applications has been, however, very limited to radiation
tolerant Antifuse-FPGA’s, which can be configured only once. In later years, the SRAM-
FPGA was used in some applications in noncritical peripheral components such as experimental
instruments. For example, the Adaptive Instrument Module (AIM) of the Australian small
satellite Fedsat has been developed to evaluate radiation effects on SRAM-FPGAs in orbit [2].
Several technical reports describe conceptual designs and implementations of the AIM ([3], [4],
and [5]), however, there is no final report about AIM’s flight experience available. Generally,
even if military experiments on SRAM-FPGAs exist, no detailed report is publicly available.
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0.3. FPGA technology for small satellites

To the knowledge of author, so far no satellite main on-board computing system has been
launched, which is purely based on reconfigurable FPGAs. In this sense, it is a great interest
to realize RC for space applications, which is the ultimate goal of this thesis as the world’s first
attempt. The detailed implementation concept and radiation effect mitigation methods based
on a combinational use of different types of FPGAs are described in Part I.

0.2.3. Evolution of small satellites

After the dawn of the space development initiated by the satellite Sputnik, the size of satellites in
early ages became gradually bigger according to the increase of mission complexities. After the
birth of satellites with microcontroller, the trend of mass of recent space systems has spread
out into two opposite ways: large satellites and small satellites. Within the course of this
history, small satellites are recently of increasing interest all over the world for their attractive
applications [6]. An advantage of small satellites is the fast and cost-effective development
possibility, which makes them a suitable platform for rapid new technology evaluations and
demonstrations. Indeed, the capability of payload instruments is becoming dramatically better
and the attitude and orbit control systems are becoming complexer based on growing complex
mission requirements of small satellites. Based on this background, against the limitation of
available size, mass and power aboard small satellites, scientists are encountering demands on
high computational capabilities on small satellites. This is the driving force of developing an
innovative solution of on-board computing systems.

On the contrary to the above mentioned main stream of space development, due to the initiation
of Cube Sat projects, small satellites are developed at many academic institutions even for
educational purposes [7], [8], and [9]. Most of them are very simple which downlink their
housekeeping data, sensor data, and sometimes image data [10]. Some researchers are even
investigating the development of Femto-satellites as a goal of miniaturization [6].

0.3. FPGA technology for small satellites

Small satellites have cultivated their markets and are nowadays playing very important roles
in the fields of Earth observation, such as disaster monitoring, and technology demonstrations,
which makes the satellites very complex and highly integrated [11]. Also, the amount of gen-
erated data by latest sensors is enormous due to their high spectral, spatial, temporal, and
radiometric resolutions. The future need of OBCs for small satellites is to process the high res-
olution payload data besides the complex attitude and orbit control algorithms. Given limited
resources of small satellites, a smart solution for this is to use a single highly integrated OBC
as a central on-board computing system. Recent FPGA technologies are the ideal candidate
with the potential to fulfill these requirements. The unification of different computing func-
tions aboard satellites onto a single computer system results in a clear-cut system architecture
and provides a high degree of fault tolerance with minimal resources. In this way, the design of
satellites becomes simpler resulting in a higher reliability, a higher agility, and a higher integrity,
which makes the integration and verification easy to a considerable extent. According to this
background, there is a great interest on demonstrating the application of FPGA technologies
for innovative small satellite on-board computing systems.
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0.4. Scope of research

The thesis is arranged in following parts:

• Part I: General application methods of reconfigurable FPGA technologies for space sys-
tems with a radiation mitigation method based on a combinational use of different types
of reconfigurable FPGAs (Chapters 1, 2)

• Part II: Application of the developed method in Part I to the small satellite Flying Laptop,
and development of the OBC and hardware logics inside FPGAs (Chapters 3–6)

• Part III: Development of a simulation and verification environment and the verification re-
sults of the developed OBC hardware logic, as well as investigations on formal verification
methods of hardware logic algorithms (Chapters 7–9)

• Part IV: Conclusions and Appendices

Chapter 1 starts from the historical background of FPGA technologies, then summarizes the
radiation effects on different types of FPGA devices based on experimental data. Chapter 2
describes the investigation on application methods of reconfigurable FPGAs for space environ-
ment and conceptualizes a combinational use of different types of FPGAs. Chapter 3 provides
an introduction to the Flying Laptop project, including its scientific instruments and attitude
determination and control components. In Chapter 4 the system design of the Flying Lap-
top is summarized reflecting the aspects of applying FPGAs as the central computing system.
Chapters 5 and 6 describe the development of hardware components and control logic of the
OBC, respectively. Following the project phases of the Flying Laptop, the breadboard model
of the OBC and engineering models of some components are developed within the scope of
this thesis. Chapter 6 provides information on how to implement whole satellite control func-
tions into a single FPGA chip in a sufficient depth. Chapter 7 describes the development of
an FPGA hardware-in-the-loop simulation and verification environment. Chapter 8 illustrates
the simulation and verification results. Finally, Chapter 9 summarizes investigation on formal
verification possibilities of the designed control algorithm. At the end, Chapter 10 provides
conclusions and an outlook for future works. The calculated failure frequencies of the selected
FPGA devices by the radiation model CREME96 are summarized in Appendix A. Appendix B
provides theory and basic background for basic probability calculus. Appendix C summarizes
additional information on system design of the Flying Laptop satellite. Information on attitude
control algorithms is provided in Appendix D. Details of hardware logic design by the hardware
description language Handel-C is summarized in Appendix E. Finally, Appendix F provides
notation references for formal verification of the Handel-C programs.
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Part I.

Reconfigurable FPGA technologies for
space applications

In this part, general application methods of terrestrial reconfigurable FPGA technologies for
space environment are described. In Chapter 1, mechanisms of different types of state-of-the-art
FPGA technologies and radiation effects on them are summarized. Experimentally obtained
characteristics against radiation effects are surveyed for SRAM- and Flash-based FPGA devices.
Based on the information, failure frequencies of FPGA devices are calculated by means of the
radiation effect model CREME96. In Chapter 2, the developed radiation mitigation method
based on a combinational use of different types of reconfigurable FPGAs is described. Relia-
bility modeling of the conceptualized repairable “2-out-of-m” redundant systems with a voting
mechanism has been conducted and their reliabilities and operational concept are analyzed.
Investigations on radiation effects provided in Chapter 1 and the extensive system reliability
analysis in Chapter 2 prove the validity of proposed application methods of FPGAs for space
systems.
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1. Field Programmable Gate Array

An FPGA is a programmable semiconductor logic device. The user can realize desired logical
functions by designing the logic in programming languages. This can be done even after the
manufacturing process. Furthermore, non-antifuse type FPGA can be even reconfigured many
times. In this chapter, the history of FPGA technologies and their mechanisms and radiation
effects are summarized. This chapter will provide a sufficient technical background for further
discussions on application of FPGA technologies for space systems.

1.1. Types of Field Programmable Gate Arrays

There are mainly three different types of FPGAs: SRAM, Flash, and Antifuse-based FPGAs
(hereafter denoted just as SRAM-FPGA, Flash-FPGA, and Antifuse-FPGA). The first FPGA
ever was based on the SRAM technology by Xilinx [12]. It has characteristics similar to a gate
array (only programmable by the manufacturer) and has a higher freedom of design compared to
traditional Programmable Logic Devices (PLDs), therefore it was named as Field Programmable
Gate Array. SRAM-FPGAs are field programmable and reconfigurable. The logic and wiring
information can be loaded into SRAM-based memory elements within the chip by the user. This
FPGA technology is volatile and the program shall be stored in external nonvolatile memory
storage. The program shall be loaded at the beginning of use.

The contact points in the circuit of Antifuse-FPGAs are, on the contrary, made of antifuses and
the desired logic circuit can be realized by burning them off. This type of FPGA is one-time
programmable (OTP), and once it is programmed, the device can be driven with lower circuit
resistance. This is non-volatile. The circuit resistance and area size of Antifuse-FPGA can be
minimized compared to the SRAM-FPGA.

Flash-FPGAs are reconfigurable and nonvolatile. However, because of their complexity in
manufacturing, it was difficult to make them highly integrated and cheep. They were not used
so much in fields which need large amount of logic and high-speed operation. In Figure 1.1 the
relation between these logic devices are illustrated.

In spite of the capability of FPGAs in making development of logic device dramatically faster
compared to ASICs, it was still difficult to realize efficient design because of the lower degree
of integration and lower capability of design tools in early years. However, as time goes by,
the degree of integration has increased thanks to the state-of-the-art semiconductor processing
technology and efficient design became possible thanks to the advancement of design tools. At
the same time, the prices of FPGA devices have become reasonable so that general developers
can afford them. Semiconductor memory is an essential part of modern information processors,
and like all silicon technology it has been more or less growing in density and performance in
accordance with Moore’s law [13]. In this sense, FPGAs hold enormous potential to become
future central logic devices, which can offer attractive design solutions to space applications.
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1.2. FPGA technologies

Figure 1.1.: Relation between FPGA devices and ASIC

1.1.1. State of the art FPGA product

The state-of-the-art FPGA products are listed in Table 1.1 [14]. Xilinx Inc. [12] is the world’s
largest SRAM-FPGA supplier followed by Altera Corporation [15] (hereafter denoted just as
Xilinx and Altera). Both of them have been providing different types and size of SRAM-FPGA
devices as listed in the table. Actel Corporation [16] is the world’s leading manufacturer in
the fields of Flash and Antifuse-FPGAs, offering different types of devices listed in the table.
Because of the flexibility, high integrity, and larger logic size of SRAM-FPGAs, they are the
most attractive candidates to implement reconfigurable complex large scale satellite control
algorithms. Also the new radiation tolerant version of the ProASIC family (RTProASIC) offers
attractive performances for space applications [17], [18].

Table 1.1.: FPGA product families from leading manufacturers ([12], [15], and [16])

FPGA Xilinx Altera Actel

SRAM-FPGA · Virtex · Stratix N/A
· Spartan · Arria GX

· Cyclone
Flash-FPGA N/A N/A · IGLOO

· ProASIC
· RTProASIC

Antifuse-FPGA N/A N/A · Axcelerator
· SX-A, eX, MX
· RTAX, RTSX

1.2. FPGA technologies

1.2.1. Mechanism of programmable elements

An FPGA device consists of electrically programmable interconnections and logic modules.
The programmability is accomplished by turning a switch on/off to control the connection of
two lines [19]. The logic is actually implemented in the programmable logic components and
interconnects. Programmable logic components can realize not only basic logic gates such as
AND, OR, XOR, NOT, but also complex combinational logic functions. Reprogramming of
SRAM- and Flash-FPGAs, as well as programming of Antifuse-FPGAs can be done by the
user. Detailed mechanisms of the three different FPGAs are summarized below.
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1. Field Programmable Gate Array

SRAM-FPGA

An SRAM is a semiconductor memory, which does not need to be periodically refreshed, unlike
DRAM. SRAM uses bistable latching circuitry, or flip-flop to store each bit information. SRAM
can store bit information while the power is supplied but it is still volatile in the conventional
sense that data is eventually lost when the power is turned off. Each bit information in an
SRAM is stored on four transistors that form two cross-coupled inverters as illustrated in
Figure 1.2. This cell has two stable states which are used to denote 0 and 1. SRAM-FPGAs
can be highly integrated into large scale logic and is the most flexible. The bit information in
the cross-coupled inverters may be converted by radiation effects occurring inside the circuitry.
SRAM-FPGAs are the most radiation vulnerable among the three [20], [21].

Figure 1.2.: CMOS SRAM cell

Flash-FPGA

Flash-FPGA combines two major traits of the SRAM and the Antifuse-FPGA: reconfigura-
bility and being nonvolatile. Flash-FPGAs are based on Flash memory technologies based on
EEPROM technologies. Hence, it is possible to erase the entire chip or a subarray within the
chip at one time. Flash memory makes use of a charge stored on a floating-gate to accomplish
nonvolatile data storage. Figure 1.3 provides a cross-section sketch of a floating-gate transistor
and its circuit symbol representation. The floating-gate electrode usually consists of a polysili-
con layer formed within the gate insulator of a field-effect transistor between the normal gate
electrode (the control gate) and the channel. The amount of charge on the floating gate will
determine whether the transistor will conduct or not.

Figure 1.3.: Elements of a Flash memory cell
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1.2. FPGA technologies

As shown in Figure 1.4, the switch element consists of two floating gate NMOS-transistors:
A switch transistor turns on or off the data path, and a program/sense transistor programs
the floating gate voltage and senses the current during threshold voltage measurement. These
two transistors share the same control gate and the same floating-gate. The floating switch is
“programmed” to a low threshold state to turn the switch on, and “erased” to high threshold
state to turn it off [22].

Figure 1.4.: Floating gate structure in Flash-FPGA

The fact that the floating gate is completely surrounded by insulators allows it to retain charge
for a long period of time independent of whether the circuit power supply voltage is present.
Furthermore, the act of reading the data can be performed without loss of the information [13].
The amount of electrical charge in the floating gate can be affected by radiation effects, which
can lead to conversion of the information stored.

Antifuse-FPGA

A fuse is a type of electrical over-current protection device. In case of over-current, it breaks
the circuit permanently and protects other components on the same circuit from damage. An
antifuse is an electrical device that performs the opposite function to a fuse. An antifuse has a
high resistance at the beginning and is designed to create an electrically conductive circuit path
permanently, typically at an excessive voltage. An antifuse can be realized using a thin barrier
of non-conducting amorphous silicon between two metal conductors. When a sufficiently high
voltage is applied across the amorphous silicon, it is turned into a polycrystalline silicon-metal
alloy with a low resistance.

In Figure 1.5 the structure of the HiRel SX-A family of Actel is illustrated, which consists of
metal interconnect layers with antifuse routing interconnect resources between them [23]. Ra-
diation tolerant versions of Actel’s Antifuse-FPGAs are equipped with triple module redundant
flip-flops in order to mitigate single event upsets (see Section 1.3) caused by radiation effects.
Furthermore, a mitigation method of single event transient has been also established [24].

Figure 1.5.: Interconnect elements of Antifuse-FPGA (Actel SX-A) [23]
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1.2.2. Application fields of FPGAs

FPGAs are nowadays the densest and most advanced programmable logic devices. It enables
designers to implement large digital designs in a device at any time at any location. The
advantages of FPGAs are their high density, high computational performance, fast turnaround
and low cost per design implementation. Application fields of FPGAs include ASIC prototyping,
DIP, DSP such as FFT, cryptography, computer vision, and so forth. FPGA’s can be especially
applied for any area that makes use of its massive parallelism. In the fields of terrestrial
applications, FPGAs are currently widely used in almost all semiconductor application fields,
while space application of reconfigurable FPGAs is still not yet common due to radiation effects.

1.2.3. FPGA technologies in space applications

Due to the extremely attractive features of FPGA technology for aerospace applications, the
space community has actively evaluated radiation effects for every new FPGA coming out of
the production line [19]. NASA’s Office of Logic Design is the leading organization of this
activities. It provides radiation test data for FPGA products by leading manufactures such as
Xilinx, Actel, Altera, etc.

The involvement of FPGAs in space applications have been, however, very limited to radiation
tolerant Antifuse-FPGAs, which can be configured only once, due to the radiation vulnerability
of other reconfigurable FPGAs. In the history, the Antifuse-FPGA started to be accepted by
aerospace designers after the JPL (Jet Propulsion Laboratory) published a report recommend-
ing the use of several Antifuse-based FPGAs for space applications in 1992 [25]. In later years,
the use of SRAM-FPGAs in space was investigated by, e.g., AIM of the Australian small satel-
lite Fedsat ([3], [4], and [5]), and possibly on military satellites, after their single event latch-up
problems were solved. However, to the knowledge of author, there is no information available
in public. In the last few years, the Flash-FPGA joined the action after its introduction and
subsequent elimination of its single event latch-up susceptibility. The first radiation tolerant
Flash-FPGA by Actel came to the world in a fairly recent past, but their space qualification
has not yet done. Based on this background, because of its tolerance against radiation effects,
Antifuse technology is the dominant one for applying FPGAs in harsh radiation environment.

On the contrary, there has been a tremendous interest on reconfigurable FPGAs for the potential
realization of a “reconfigurable satellite” in the future [26]. Even through, these Antifuse-
FPGA’s are playing significant roles it is also a fact, in the present situation, that they just
replace the function of previous ASICs and are not contributing to realizing reconfigurable
systems in space. The FPGA technology to be used for those satellite’s on-board computing
systems shall be reconfigurable even after the satellite was launched into orbit. To allow flexible
implementation and the capability of reconfiguration for space systems, innovative technology
has to be established for employing reconfigurable FPGAs for space applications. The attractive
fields in space applications are especially image processing and digital signal processing which
can be used for, for example, computer vision for payload camera data processing and decision
making aboard a spacecraft, which are very attractive to future intelligent space explorations.
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1.3. Radiation effects on FPGAs

In this section, radiation effects on FPGA devices in terms of Total Ionizing Dose (TID) ef-
fects and Single Event Effects (SEEs) are summarized at first. Because antifuse switches are
nonvolatile and tolerant against single event and total ionizing dose effects [26], detailed inves-
tigation for SRAM- and Flash-FPGAs are conducted in separate sections.

1.3.1. Radiation environment in space

The use of commercial off-the-shelf (COTS) semiconductors of all kinds has become normal on
Earth, mostly with no respect to radiation at all. Radiation becomes a problem when going into
the space environment. The radiation effects on semiconductors are not to be underestimated
and have to be considered a high risk when designing on-board computing elements of space
systems.

The radiation in space consists of different particles, mainly electrons, protons, helium nuclei,
and heavy ions originating from solar particle events, novas, and supernovas also known as
cosmic rays. As electrons and protons come closer to Earth they are influenced by the Earth’s
magnetic field, resulting in different zones of charged particles around the planet, which are
called Van Allen radiation belts. Radiation effects can be roughly divided into two groups: TID
effects and SEEs.

1.3.2. Total ionizing dose effect

TID defines the total sum of radiation hitting the target component during in-flight mission
time and is one main criteria for designing electric circuits with MOS parts. Heavy ions origi-
nating mostly from the cosmic rays and partly from solar events, as well as secondary X-Rays
or Bremsstrahlung generated by charged particles penetrating the skin of a spacecraft are con-
tributing a significant part to the TID. The unit “rad” specifies the radiation dose or deposited
energy. Rad is defined as 100 rad= 1 Gray (Gy), whereas Gy is the SI unit defined by the
amount of 1 Joule of energy deposited per kilogram. Particles entering the semiconductor cre-
ate electron-hole pairs in the silicon dioxide layer. Even though some self-healing processes take
place, the effect is essentially permanent. This leads to an performance degradation and finally
into the failing of MOS devices.

1.3.3. Single event effects

Another criteria for designing MOS circuits is the amount of Linear Energy Transfer (LET),
defined as energy deposited per traversing length per material specific density (MeV·cm2/mg).
The higher the energy of one charged particle traversing through a MOS part is, the more
energy the particle deposits in it. Depending on the amount of deposited energy, different
effects occur, which are generally named as Single Event Effects (SEEs). The most important
effects for FPGA devices are the Single Event Transient (SET), the Single Event Upset (SEU),
and the Single Event Latch-up (SEL). Each of these events will be explained in detail below.
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Single event transients

The Single Event Transients are general effects, called soft error, which happen when a charged
particle hits a conductive part in an electrical device and induces voltage. The charged particle’s
transfered energy can be routed through the device and result in a state change of, e.g., a flip-
flop and thereby result in a SEU. This error affects mainly SRAM devices due to their proneness
to SEU. Another effect of a SET is the interaction with the internal clock signal of computer
systems, by widening the pulse signal by falling on the trailing edge and narrowing it down by
falling on the front edge of the signal. In this way SETs influence the processing speed of the
clock signal dependent system [26]. Furthermore, it is well known, that errors originating from
SETs are strongly dependent on the internal clock frequencies [27]. As charged particles can
hit the electronic system anytime and anywhere no countermeasures except for full radiation
shielding is possible. A SET can be critical when complex computer systems with independent
but synchronized calculating nodes are used. The synchronizing clock signal routed through the
system can be altered all the way between the sending node and the receiving nodes resulting
in possible difficulties for the exact synchronization.

Single event upset

Another soft error is the SEU, which shall be considered as normal phenomena on SRAM
devices when exposed to radiation. The energy transferred by charged particles results in state
changes of flip-flops (1 changes to 0 and vice versa). Mitigation methods like Triple Module
Redundancy (TMR) and partial re-construction offer a high protection, minimizing the risk of
further data damage. However some single SEUs can be classified as Single Event Functional
Interrupts (SEFIs), which trigger unusual far reaching consequences that disable large portions
of the device function and can lead to device malfunction.

As Flash devices are not based on flip-flop technology but on EEPROM technology the config-
uration elements of them are immune to SEU. Nevertheless, Flash based FPGAs still contain
SRAM parts and these are vulnerable against SEUs. For the application of Flash-FPGAs in
space environment, radiation mitigation methods shall be established. Chapter 6 describes the
detail of these mitigation methods.

Single event latch-up

Far more dangerous than soft errors are hard errors like a Single Event Latch-up, originating
from a sufficient energy from a charged particle induced in a parasitic thyristor of a n-p-n-p
device. This leads to an excessive supply power and consequently to a permanent loss of device
functionality. If the power is not controlled by an external source the device burns out making
the SEL one of the most concerned SEEs for CMOS devices. In other words, SEL can be
prevented from by monitoring power consumption of the chip and separating from the power
line quickly enough in case a SEL occurred. SELs can happen to SRAM devices as well as Flash
devices and are mainly dependent on the specific hardware architecture of the device. SEL for
all types of FPGAs can be nowadays mitigated by design at manufacturing and devices with
the mitigation design are classified as radiation tolerant devices. For Flash-FPGAs, probability
of occurrence of a SEL is estimated to be high during the reprogramming phase due to the high
voltage needed for the process.
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1.4. Radiation effects analysis on SRAM- and Flash-FPGAs

In this section, the results of information survey of TID effects and SEEs on SRAM- and Flash-
FPGAs are summarized. The data obtained here makes the basis of discussion in Chapter 2. In
the following chapters, due to the limitation on available reliable information, SRAM-FPGAs
of Xilinx and Flash-FPGAs of Actel are selected for further analysis and discussion.

1.4.1. TID effects on SRAM-FPGAs

TID effects on Virtex SRAM-FPGA families of Xilinx have been experimentally measured and
actively tracked by the interested community for about a decade every time a new product
came to the market [21], [28], and [29]. A summary of the experimentally measured data by
Fabula and George are summarized in Table 1.2. As illustrated in this table, the TID tolerance
of Xilinx Virtex family is becoming gradually better recently achieving more than 300 krad.
Though some investigations on TID mitigation method can be seen in [30], the state-of-the-art
SRAM-FPGAs are immune enough against TID effects for, e.g., LEO missions.

Table 1.2.: TID effects on SRAM-FPGA [31], [32]

Product Process Technoogy Metal layers TID [krad]

Virtex 220 nm CMOS 6 100
Virtex-II 150 nm CMOS 7 200
Virtex-II Pro 130 nm CMOS 8 250 - 300
Virtex-4 90 nm CMOS 10 300
Virtex-5 65 nm CMOS 11 < 500

1.4.2. TID effects on Flash-FPGAs

The most attractive Flash-FPGA for space application today is the RTProASIC family of
Actel, which is the brand-new radiation tolerant Flash-FPGAs today [17]. In this section,
RTProASIC and ProASIC3 families of Actel are analyzed [33]. Investigation on radiation
response of floating-gate of EEPROM memory itself has been done since 1980’s [34]. The
recent report on this topic can be seen in [22]. The test results for ProASIC3 can be seen in
[35] and that of RTProASIC in [27]. These data are summarized in Table 1.3. In the table,
the amount of TID for safe programming and erase, as well as that for normal operation are
summarized. The former value is smaller than the latter. It can be seen that compared to TID
performance of SRAM-FPGAs above, Flash-FPGAs are remarkably vulnerable against TID.

Table 1.3.: Limit of TID effects on Flash-FPGA [17]

Product Safe programming and erase [krad] Normal operation [krad]

ProASIC3 - 20
RTProASIC 15 25
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1.4.3. SEEs on SRAM-FPGAs

After the invention of SRAM-FPGA technology, Xilinx has been so far offering different types
of SRAM-FPGAs. In terms of the size of devices and performance, the Virtex family of Xilinx is
very attractive for space applications. The first series of this was Virtex, followed by Virtex-II,
Virtex-II Pro, Virtex-4, and Virtex-5. The Virtex-5 family is the state-of-the-art SRAM-FPGA
today. Xilinx recognized the meaning of space application of SRAM-FPGA and paid great
efforts for developing radiation tolerant ones in terms of SEL. Xilinx started with the Virtex-II
series to offer radiation tolerant versions, which led to recent successful development of the
radiation tolerant Virtex-4. Today, Xilinx is offering four different radiation tolerant SRAM-
FPGA chips. However, they are still vulnerable against other types of SEEs, thus these shall
be mitigated for space applications.

Investigations on SEE started already for the first Virtex family, which were called as XQVR
series. For example, the Los Alamos National Laboratory presented excellent reports on this
topic [36], [37], and [20]. Since that time, the community has been tracking the SEE on Xilinx
Virtex family FPGAs.

Detailed experimental results on SEEs on Virtex-II devices are conducted by the Xilinx SEE
consortium members in 2004 [38]. Koga and George have reported detailed comparison of
Xilinx Virtex-II FPGA SEE Sensitivities to Protons and Heavy Ions [39]. Yui and Swift have
reported SEU susceptibility of the Virtex-II [40]. Investigations on the mitigation method of
SEE and SEU of Virtex-II have been conducted and reported in [41], [42]. Foster and O’Neil
have simulated Proton Upsets in Virtex-II using Monte Carlo simulations [43]. Edmonds and
Irom have conducted investigations on extension of a proton SEU cross section model to include
neutron effects [44].

Compared to the Virtex-II, less radiation effects investigation on Virtex-II Pro have been con-
ducted. Virtex-II Pro is an extended version of the Xilinx-II. Virtex-II Pro is equipped with
microprocessors (PowerPC Core) inside, which enables users to run software-based codes in
FPGA. According to [45], Virtex-II Pro has similar or improved radiation performance, but not
sufficient data is available for Virtex-II Pro. Test results of SEEs on Virtex-II Pro can be seen
in [32]. NASA Goddard Space Flight Center has conducted proton tests on the PowerPC ele-
ments inside the Virtex-II Pro [46]. Xilinx has originally planned to develop radiation tolerant
versions of the Virtex-II Pro family but before being successful, it was decided to develop new
types of radiation tolerant versions for Virtex-4 families.

For Virtex-4 families, even though SEU characterization tests have ever been performed, de-
tailed parameters are not available [47], [48]. Partly because there exist radiation tolerant
versions of Virtex-4, called Virtex-4QV, detailed radiation effect tests have been conducted for
these devices. JPL has provided an extensive report on SEU on Virtex-4QV [49].

Virtex-5 is very new in the market and so far few test results have been reported. Quinn and
Morgan have conducted static proton and heavy ion testing on them [50], and George and
Koga have conducted investigations on neutron soft errors in Virtex-5 together with Virtex-4
[45]. Investigation on Virtex-5 is not yet finished. Xilinx is now developing radiation tolerant
versions of Virtex-5, which will last until 2010. Past studies on mitigation methods of SEE on
SRAM-FPGAs can be seen in [51], [52].

Consequently, based on the above information survey, it is revealed that there are sufficient
information for further discussions only for Virtex-II and Virtex-4QV. However, as mentioned
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above, the Virtex-II Pro family offers additional functionality to the Virtex-II, which is very
attractive to space applications, and also because the radiation performance is comparably
similar to that of Virtex-II, one of the Virtex-II Pro devicee XC2VP50 is selected for the
further investigation (the difference between the two devices are regarded as safety margin.)
together with the comparable device XQR4VFX60 of Vierex-4QV family. In Table 1.4, the
parameters of both selected devices are listed. Though, there are several differences between
the two devices due to generation difference, they are well comparable in size.

Table 1.4.: Parameters of Xilinx SRAM FPGAs [53], [54]

Parameter Virtex-II Pro Virtex-4 QV
(XC2VP50) (XQR4VFX60)

RocketIO Transceiver Blocks 0 or 16 N/A
PowerPC Processor Blocks 2 2
LogicCells 53 136 56 880
Slices 23 616 25 280
Max. Distributed RAM [Kb] 738 395
Digital Signal Processor 232 128

(18x18 Bit Multiplier Blocks) (XtremeDSP Slices)
BRAM max bit 4 176 000 4 276 224
BRAM 18kb Blocks 232 232
DCMs 8 12
Maximum User I/O Pads 852 567
configuration bits 19 021 344 14 500 000

Weibull distribution function

For the radiation characterization of SEE-proneness of FPGAs so-called “cross-section over
LET” models are used. The cross-section can thereby refer to one specific element of the
FPGA, for instance one bit of the configuration memory or it can refer to the whole chip.
For making predictions from obtained measurements the Weibull distribution has become the
most commonly utilized tool, especially for heavy ion radiations. For this distribution several
parameters are used which are described below. The general form of the Weibull-curve is:

F (Lw) = σsat · (1− e−A) with A =

(
(Lw − Lw,0)

Ww

)s

, (1.1)

where:

• σsat: limiting or plateau cross-section, also called “limit”

• Lw,0: LET threshold parameter, also called “onset”

• Lw: functions input value, in this case the effective LET value

• Ww: dimensionless width parameter

• s: dimensionless exponent called as power
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By being provided with these parameters, Weibull distribution function can be uniquely speci-
fied. For the selected components here, the Weibull parameters of Proton and heavy ions effects
are extracted from above mentioned reports as listed in Table 1.5 for the Virtex-II Pro and in
Table 1.6 for the Virtex-4QV. Due to the difference in the structures, different failure modes
have been identified for the two devices. Total failure modes are:

• CFG: A SEU in the configuration memory

• BRAM: A SEU in the Block RAM

• POR: SEFI in the Power-on-Reset circuitry

• SMAP: A SEFI in the SelectMAP circuitry

• JCFG: A SEFI in the JTAG Configuration Access Port circuitry

• F/F: User flip-flops (“ones” means state of 1, and “zeros” means state of 0)

• GSIG: Global Signal

Some of them are only applicable to the latter device. These values in the two tables can be
used for further investigation on total Single Event Effects on both SRAM-FPGAs.

Table 1.5.: Weibull parameter of Virtex-II Pro XC2VP50 [38]

Parameter CFG BRAM POR SMAP JCFG

Proton

Lw,0 [MeV] 3.0 3.0 7.0 6.5 6.0
Ww [-] 12 12 12 12 12
s [-] 0.5 0.6 1.0 0.5 0.5
σsat [cm2/10−12] 0.038 0.041 0.374 0.572 0.286

Heavy Ions

Lw,0 [MeV·cm2/mg] 1 1 1.5 1.5 1.5
Ww [-] 33 17 22 17 17
s [-] 0.8 0.9 1.2 1 1
σsat [cm2/10−6] 0.0437 0.0419 2.50 1.72 2.51E-7

Table 1.6.: Weibull parameter of Virtex-4QV XQR4VFX60 [49]

Parameter CFG BRAM F/F(1) F/F(0) POR SMAP GSIG

Proton

Lw,0 [MeV] 4 1 2.5 5 5.8 6.5 7.9
Ww [-] 80 20 20 20 40 10 55
s [-] 0.586 1.546 1.546 1.546 0.76 0.568 0.545
σsat [cm2/10−12] 0.0473 0.0450 0.150 0.0450 0.2200 0.0170 0.5500

Heavy Ions

Lw,0 [MeV·cm2/mg] 0.5 0.2 0.5 1.5 0.2 0.2 0.2
Ww [-] 400 70 400 400 150 1200 400
s [-] 0.985 0.724 0.923 0.923 1.169 1.169 0.935
σsat [cm2/10−8] 26.3 3.50 75.0 61.0 62.7 55.2 50.3
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Radiation effect model: CREME96

Based on the above knowledge on radiation characteristics of FPGAs one can calculate actual
possible failure rates of given devices, under the assumption that one has a reliable space
radiation environment model and also knows the detailed mechanism of radiation effects inside
the FPGA devices. Indeed, the Naval Research Laboratory of the USA has conducted research
on this topic and has developed a radiation effects model called CREME, which stands for
Cosmic Ray Effects on Micro-Electronics. CREME is a suite of programs for creating numerical
models of the ionizing radiation environment in near-Earth orbits and for evaluating radiation
effects on spacecraft. Since its first release in 1981, CREME has literally become an industry
standard, mandated for DOD systems in MILSTD-1809 and is also a frequent contractual
requirement in both NASA and commercial programs [55]. The newest version CREME96 is
now accessible at [56]. On the other hand, European Space Agency (ESA) is also providing
space environment information system called SPENVIS [57]. However, because SPENVIS uses
so-called “critical charge” option model of CREME86, in which the cross-section is treated as
a simple step function in LET, it does not give accurate results for space applications [56].
According to this background, CREME96 is used for further investigation.

For the calculation, following parameters have been used:

• Orbit: 900 km circular orbit with a inclination of 99.03◦

• evaluating trapped proton fluxes near solar maximum conditions

• stormy magnetic weather conditions

• all elements from an atomic number from 1 to 92 are included

• inside Earth’s magnetosphere

Here, a relatively high orbit in LEO has been chosen due to the higher particle flux which is
proportional with the distance from Earth’s surface for LEO. According to these parameters
and characteristics of FPGAs identified in above tables, calculations for following conditions
can be done by CREME96 based on its internal environment models: Solar ray maximum
(cosmic ray minimum), Solar ray minimum (cosmic ray maximum), Worst week, Worst day,
and peak 5-minute-average fluxes. The calculated results of failure frequencies of both Virtex-II
Pro and Virtex-4QV for input data identified in above tables are summarized in Appendix A
in Table A.1, and Table A.2. In the tables, “PUP” and “HUP” represent proton induced and
heavy ion induced events, respectively.

According to these results, it can be seen that the configuration memories and internal Block
RAMs of each device are the most vulnerable part against radiation compared to other factors
with many orders of magnitude. Furthermore, the failure frequency caused by the heavy ion
induced events are much higher than that by the proton induced events and therefore, the
latter can be negligible. In case of the Virtex-II Pro device (XC2VP50), the dominating failure
frequencies are 7.46 × 10−5 of CFG (HUP) and 2.10 × 10−5 of BRAM (HUP). These failure
modes with higher failure rates need to be mitigated in order to realize space application of
reconfigurable SRAM-FPGAs. The mitigation method, which is proposed by this thesis is
described in detail in Chapter 2.
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1.4.4. SEEs on Flash-FPGAs

Unlike SRAM-FPGAs, Flash memory cells in Flash-FPGAs do not experience SEU, due to their
CMOS-less implementation. The most critical SEE on Flash-FPGAs are instead single event
transients. Investigations have been done on mitigation methods of SET in Flash-FPGAs [58].
Radiation test results show that with consideration to the mitigation techniques for SETs the
RTProASIC family is able to perform a stable operation in space environment. The implemen-
tation of mitigation methods is described in detail in Chapter 6.

1.5. Summary

Firstly, this chapter summarized the historical background of the FPGA technologies and de-
scribed the mechanisms of different types of state-of-the-art FPGA devices. Detailed radiation
effects on the SRAM-, Flash-, and Antifuse-FPGAs are investigated. Especially, single event
effects and total ionizing dose effects on reconfigurable FPGAs (SRAM- and Flash-FPGAs) are
summarized in detail, based on an extensive experimental data survey. The SRAM-FPGAs
Virtex-II Pro and Virtex-4QV of Xilinx and the Flash-FPGA RTProASIC and ProASIC3 of
Actel are selected for further investigations due to their attractive performances and available
data. For the single event effects investigation of SRAM-FPGAs, Weibull parameters are ob-
tained from available technical notes. Based on this information, failure frequencies of FPGA
devices are calculated by means of the industry-standard radiation effect model CREME96 (see
Appendix A). The strong tolerance of SRAM-FPGAs against TID effects allows the assumption
that the radiation effects due to SEEs can be repaired by reconfigurations. On the contrary,
Flash-FPGAs revealed their tolerance against SEEs with adequate mitigation methods, while
they are relatively vulnerable against TID effects compared to SRAM-FPGAs.

As described in this chapter, reconfigurable FPGAs are radiation vulnerable, which is the
challenge for the realization of the space application of reconfigurable FPGAs. The important
point illustrated in this chapter is that the main radiation effects in SRAM- and Flash-FPGAs
are different, i. e., SRAM-FPGAs are vulnerable against SEE but tolerant against TID, while
Flash-FPGAs are tolerant against most of the SEEs but relatively vulnerable against TID
(still sufficiently tolerant enough for LEO as described in Chapter 2). This fact indicates
the possibility of realizing SRAM-FPGA-based OBCs with continuous repairs against SEEs,
together with Flash-FPGAs as the voting element. This idea of using a combination of SRAM-
FPGAs and Flash-FPGAs for radiation mitigation is the underlying motivation of this thesis to
conceptualize an application method of ground-based reconfigurable FPGAs for space systems.
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As described in Chapter 1, reconfigurable FPGAs are not yet widely used in fields of space
applications due to the severe radiation conditions. In order to overcome this challenge, this
study suggests a combinational use of different types of FPGAs together with multi-module
redundancy. The idea is that the most flexible and highly integrated reconfigurable SRAM-
FPGAs can be duplicated to achieve a high reliability against temporal failures caused by SEEs,
while another SEE tolerant FPGA monitors them as the voter. The reliability of proposed
system concept in this chapter against radiation effects is high enough so that the system can
survive in the space environment. Even though, Antifuse-FPGAs are more radiation tolerant,
investigation of utilizing Flash-FPGAs as the voter is of interest, in terms of demonstration of
COTS components in space environment. Indeed, data obtained in Chapter 1 suggests sufficient
TID budgets of Flash-FPGAs for several years of operation. Moreover, the cost of Flash-FPGAs
are lower than that of Antifuse-FPGAs and also their reconfigurability can accelerate flexible
ground development activities. Because the logic size of the available Flash-FPGA devices
are still too small to implement whole satellite control algorithms, the SRAM-FPGAs are
indispensable for the realization of the reconfigurable on-board computers for space systems.

2.1. Combinational use of different types of FPGAs

In Chapter 1 it is extensively described that different types of FPGAs experience different
types of radiation effects with different failure frequency. This fact implies that there is a
possibility that a combinational use of FPGAs can mitigate radiation effects as a single combined
system. Principally, it is possible in engineering technique, that one uses replicated redundant
components for temporally-failable components in order to obtain higher reliability. Because
the failure source of SRAM-FPGAs can be regarded only as SEEs, which has higher failure
frequency but repairable, use of SRAM-FPGAs as repairable replicated redundant system is
meaningful. On the contrary, Flash-FPGAs are tolerant against SEE, and therefore can be
used as the voter of this redundant SRAM-FPGA unit. In this way, use of these two different
types of FPGAs can compensate radiation effects with each other and as a whole, the system
can achieve a higher reliability. This system concept is illustrated in Figure 2.1. The redundant
SRAM-FPGA system is denoted as “Node System”, meaning each unit of SRAM-FPGA as one
of the redundant computing nodes.

In order to achieve a higher reliability, one can use 2-out-of-m systems. In these systems, two
components out of m identical components shall work correctly in order to ensure the system
reliability. If each component can be repairable, then the detected failure can be repaired within
a short time period. With m higher than three, even more than one failures are allowed to
occur at the same time, or second failure can occur while the first failure is being repaired.
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In this chapter, reliability of these systems are modeled starting from triple module redundant
system (m = 3).

Following discussion is based on the assumption that the SRAM-FPGA can be reconfigured by
the voter and failed FPGAs by SEEs are repairable as good as new, which well reflects the real
performance of SRAM-FPGAs. In addition to this, an assumption is made that SET and SEU
in data flip-flops on Flash-FPGAs can be mitigated by internal mitigation methods, which is
discussed in detail in Chapter 6.

Figure 2.1.: Proposed on-board computer concept

2.2. System reliability analysis

In this section, reliabilities of systems which consist of a“Node System”and a voter unit against
radiation effects are analyzed. Letting “NS” indicate the Node System, and “V” the voter, the
reliability of the system can be generally described as

Rsys = RV ·RNS , (2.1)

where Rsys, RV , and RNS are the reliabilities of the entire system, the voter and the node
system. In this sense, the reliability of the voter and the node system can be analyzed separately.
Furthermore, because the short term SEE effects can be repaired, SEEs and TID effects can be
handled independently. Therefore, Equation (2.1) can be written as:

Rsys = RV,SEE ·RV,TID ·RNS,SEE ·RNS,TID . (2.2)

Based on the data summarized in Chapter 1, the SEEs on configuration memories of Flash-
FPGAs can be negligible. Because the TID effects on both SRAM- and Flash-FPGAs are static
and the reliability against them can be easily calculated (see Section 2.3), the main focus of the
following discussions are on the SEEs on SRAM-FPGAs and its reliability modeling with the
presence of repair (reconfiguration). Therefore, the most important term is the RNS,SEE and
this shall be thoroughly analyzed.
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2.2.1. Basic probability theory

The reliability R(t) at t of a single unit without any maintenance or redundancy can be modeled
simply as a survivor function of the unit’s life time L such as

R(t) = P (L > t) = F̄L(t) ≡ 1− FL(t) = P{X(t) = 0} = 1− E{X(t)} , (2.3)

where X(t) is the Boolean indicator of failure at t and FL(t) is the probability distribution
function of unit’s life time, as one can see, e.g., in [59]. The mean life time can be described as:

E(L) =

∞∫

0

R(t)dt . (2.4)

In the exponential case, which is generally assumed to apply to electronics hardware after
burn-in as described in [59], FL(t) and R(t) can be described as

FL(t) = 1− e−λt , (2.5)

R(t) = e−λt , (2.6)

by introducing the failure rate λ. Therefore, the expected value of the life time can be then
described as

E(L) =

∞∫

0

e−λtdt =
1

λ
. (2.7)

From Equation (B.2),

fL(t) ≡ d

dt
FL(t) =

d

dt
(1− e−λt) = λ · e−λt (2.8)

is the probability density function of life time L.

2.2.2. Reliability modeling of repairable single node

For the reliability modeling of a repairable unit, time-dependent probability of success or failure
is of interest. Considering Figure 2.2, the point availability A(t) of the repairable unit at time
t can be described as a function with recursion [59]:

A(t) =

t∫

0

[fL ⊗ fD(t′)]A(t− t′)dt′ + F̄L(t) , (2.9)

where fD is the probability density function of down time D. The last term covers the case
without a failure prior to t. Here,

fL ⊗ fD(t′) = fL+D(t′) (2.10)

is the probability density function of the time to the first restart point t′. The Equation (2.9) is
a linear integral equation that can be solved via the Laplace transformation; see AppendixB.3.
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Figure 2.2.: Up and down states of a repairable unit [59]

From Equations (B.16) and (B.13), as well as the convolution theorem (Equation (B.10)) and
the integration rule (Equation (B.15)), Laplace transformation for this yields

A∗(s) = f ∗L(s)f ∗D(s)A∗(s) +
1− f ∗L(s)

s
, (2.11)

and the solution in the s-domain is:

A∗(s) =
1− f ∗L(s)

s[1− f ∗L(s)f ∗D(s)]
. (2.12)

Solution for exponential case:

In exponential case, from

fL(t) = λ · e−λt ⇔ f ∗L(s) =
λ

s+ λ
(2.13)

and
fD(t) = µ · e−µt ⇔ f ∗D(s) =

µ

s+ µ
, (2.14)

one finds

A∗(s) =
s+ µ

s(s+ λ+ µ)
=

1

s+ λ+ µ
+

µ

s+ λ+ µ
, (2.15)

where µ is the repair rate. This can be back-transformed to

A(t) = e−(λ+µ)t +
µ

λ+ µ
{1− e−(λ+µ)t}

=
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t . (2.16)

The relation between the availability and unavailability U(t) can be described as:

A(t) + U(t) = 1 . (2.17)

In the case of exponential probability functions, using mean time to failure (MTTF ) and mean
time to repair (MTTR),

λ ≡ 1

MTTF
, (2.18)

and

µ ≡ 1

MTTR
. (2.19)
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Applying this to Equation (2.16) with t→∞ and using mean time between failure (MTBF ),

A(∞) =
1

MTTR
1

MTTF
+ 1

MTTR

=
MTTF

MTTF +MTTR
=
MTTF

MTBF
(2.20)

and

U(∞) ≡ 1− A(∞) =
MTTR

MTTF +MTTR
=
MTTR

MTBF
, (2.21)

where
MTTF +MTTR = MTBF . (2.22)

Using MTBF , one can define the mean failure frequency as

ν ≡ 1

MTBF
. (2.23)

Finally, from above equations one find

ν = Aλ = Uµ . (2.24)

2.2.3. 2-out-of-3 systems modeling

Fault tree of 2-out-of-3 systems

A fault tree is a picture of the Boolean function which describes the way of determining the
binary system state based on the n binary components states. The fault tree of 2 out of 3
system is illustrated in Figure 2.3.

Figure 2.3.: Fault tree of 2-out-of-3 system

The Boolean indicator variables X1, . . . , Xn and Xs of the corresponding Boolean function to
this fault tree

ϕ : Bn → B1 ⇔ Xs = ϕ(X1, · · · , Xn) (2.25)

23



2. Application method of reconfigurable FPGAs for space systems

can be defined as:

Xi =

{
0, if component i, Ci, is good
1, if Ci is bad

(2.26)

and

Xs =

{
0, if the system S is good
1, if S is bad

, (2.27)

where Bn, B1 ≡ {0, 1} is the binary n-space.

Boolean function of 2-out-of-3 systems

Following the discussion in Appendix B.5, the disjunctive normal form of a Boolean function
of 2-out-of-3 systems can be described as:

X2of3 = X1X2∨X1X3∨X2X3

= X1X2X3 +X1X2X̄3 +X1X̄2X3 + X̄1X2X3 . (2.28)

Unavailability of 2-out-of-3 systems

From Equation (2.3), i.e., Ui = E(Xi) Equation (2.28) holds for X replaced by U and X̄ by A.
Hence

U2of3 = U1U2U3 + U1U2A3 + U1A2U3 + A1U2U3 , (2.29)

because A = 1− U , this can be also written as

U2of3 = U1U2U3 + U1U2(1− U3) + U1(1− U2)U3 + (1− U1)U2U3

= U1U2 + U1U3 + U2U3 − 2U1U2U3 . (2.30)

Mean failure frequency of 2-out-of-3 systems

For n ∈ {1, 2, 3}: system mean failure frequency, νnof3, is the weighted sum of the 3 components’
mean failure frequencies ν1, ν2, ν3. The weights are the criticality probability of the components
pi, i.e., the probability that at the time of changes of Xi from 0 to 1 or vice versa, Xnof3 = Xi:

νnof3 =
3∑

i=1

pn,iνi; pn,i ≡ P (Xnof3 = Xi); n = 1, 2, 3 . (2.31)

In case of n = 2, from Equation (2.30)

X2of3 = XiXj +XiXk +XjXk − 2XiXjXk

= Xi(Xj +Xk − 2XjXk) +XjXk , (2.32)

and it can be seen that following events are equivalent:

(X2of3 = Xi) ⇔ (Xj +Xk − 2XjXk = 1) ∧ (XjXk = 0)

⇔ (Xj 6= Xk) . (2.33)
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Hence
p2,i = P (Xj 6= Xk) = E(Xj) + E(Xk)− 2E(XjXk), (2.34)

and specifically, for statistically independent Xj, Xk:

p2,i = Uj + Uk − 2UjUk . (2.35)

Inserting in Equation (2.31) and from Equation (2.24)

ν2of3 = (U2 + U3 − 2U2U3)U1µ1 + (U1 + U3 − 2U1U3)U2µ2

+ (U1 + U2 − 2U1U2)U3µ3

= U1U2(µ1 + µ2) + U1U3(µ1 + µ3) + U2U3(µ2 + µ3)

− 2U1U2U3(µ1 + µ2 + µ3) . (2.36)

For identical components, Equation (2.30) yields

U2of3 = 3U2 − 2U3 , (2.37)

and Equation (2.36)
ν2of3 = 6U2µ− 6U3µ = 6U2(1− U)µ . (2.38)

2.2.4. 2-out-of-m systems with identical components

The above discussion can be extended to general 2-out-of-m systems. The Boolean function of
2-out-of-m systems can be described as:

X2ofm = X1X2 · · ·Xm−1∨X1X2 · · ·Xm−2Xm∨ · · · ∨X2X3 · · ·Xm

=
m∧

i

Xi∨
m∨

i

{(
m∧

k,k 6=i

Xk

)
∧ X̄i

}
. (2.39)

Similar to the derivation of Equation (2.37), the corresponding unavailability becomes

U2ofm = Um +mUm−1A

= Um +mUm−1(1− U)

= mUm−1 + (1−m)Um . (2.40)

According to the theorem on frequency of unidirectional changes of state presented in [59], if
the Boolean function ϕ(X1, · · · , Xn) is given in the multi-linear pseudo-polynomial, the mean
failure frequency can be described for statistical independent X1, · · · , Xn as:

νϕ =
m∑

i=1

[
ci

(
ni∏

j=1

p̃li,j

)
ni∑

j=1

µ̃li,j

]
, (2.41)
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where (for k = li,j)

p̃k =

{
pk for X̃k = Xk

p̄k ≡ 1− pk for X̃k = X̄k
, (2.42)

and

µ̃k =

{
µk for X̃k = Xk

−λk for X̃k = X̄k
. (2.43)

Finally, from Equations (2.24), (2.39), and (2.41), the mean failure frequency of 2-out-of-m
systems with identical components can be described as

ν2ofm = mUmµ+mUm−1(1− U){(m− 1)µ− λ}
= mUmµ+m(m− 1)Um−1(1− U)µ−mUm−1Aλ

= m(m− 1)Um−1(1− U)µ . (2.44)

These equations can be applied for m ∈ {2, 3, 4 · · · }.

2.3. Reliability against TID effects

The effects of TID is cumulative and can not be repaired by means of reconfiguration. The
failure rate against the TID effects are related with the amount of dose and does not obey
constant failure rate over time unlike the exponential case described above. The probability
density function of the failure rate against TID effects can be well modeled by applying normal
(Gaussian) function. Accordingly, the probability density function of the life time can be
described in terms of the amount of dose z as:

fL(z) =
1

σ
√

2π
exp

(
−1

2

(
z − ζ
σ

))
,−∞ < z <∞ , (2.45)

where

σ =

√√√√1

n

n∑

i=1

(zi − ζ)2 (2.46)

is the population standard deviation and

ζ =
1

n

n∑

i=1

zi (2.47)

is the population mean of the discrete random variable samples zi, and n is the total number
of items in the population [60]. One can transform this normal distribution function into the
standard normal distribution function by applying following conversions:

u =
z − ζ
σ

(2.48)

fL(z) =
fL(u)

σ
, (2.49)
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resulting in:

fL(u) =
1√
2π

exp

(
−1

2
u2

)
,−∞ < u <∞ . (2.50)

From Equation (B.2), the corresponding probability distribution function can be described as:

FL(u) =

u∫

−∞

1√
2π

exp

(
−1

2
u2

)
du . (2.51)

The integral of this equation can not be expressed in terms of standard functions, however by
using a special function erf , it can be written as:

FL(u) =
1

2

(
1 + erf

(
u√
2

))
. (2.52)

where erf(x) is the error function:

erf(x) =
2√
π

x∫

0

e−t2dt . (2.53)

From Equations (2.3), (2.48), and (2.49), the reliability of a system under TID effects can be
finally described as

RTID(z) = 1− FL(z) = 1−
z∫

−∞

fL(z)dz = 1−
u∫

−∞

fL(u)du = 1− FL(u) . (2.54)

As described above, one can calculate the reliability of a specific device against TID effects if
experimental data on its TID performance are available.

2.3.1. Reliability of voter against TID effects

The TID performance of FPGAs are independent of the size of the gate. Unlike SEEs, TID
can be mitigated by shielding the components with, e.g., aluminum plates. By using thick
aluminum plates within the allowable mass budget, the TID effects can be mitigated. The data
on TID performance of the sample Flash-FPGA device RTProASIC is available in [35]. By
taking the amount of reduction of the maximum frequency of the device due to TID effects
as the measure, the reduction of 10 % is defined as a device failure through this analysis.
According to the analysis results in [61], the approximate population mean and population
standard deviation can be obtained as:

σ = 2.2249 (2.55)

ζ = 19.70 (2.56)

From a past study, typical TID of LEO is estimated as up to around 1.5 krad/year for devices
shielded with 3 mm thick aluminum plates [62]. Accordingly, from Equation (2.54) the reliability
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2. Application method of reconfigurable FPGAs for space systems

of the voter with RTProASIC against TID effects in 2 years is:

RV,TID(t = 2years) = 0.99999 ≈ 1 . (2.57)

The value of the reliability is directly related with the curve of the error function, and becomes,
e.g., RV,TID(t = 10years) = 0.98268 and RV,TID(t = 15years) = 0.10410. This indicates that
the safe operation is assured for at least 10 years of mission life time, however, the system will
fail most probably in the next some more years.

2.3.2. Reliability of node system against TID effects

The reliability of a single SRAM-FPGA node against TID effects can be calculated in the same
way as above section. Because the node system is redundant, the total reliability of the node
system against TID effects shall be analyzed on a case by case basis.

2-out-of-3 system

In case of 2-out-of-3 system, the three nodes shall be always available for the voting. In this
sense, failure of one node out of the three caused by TID effects leads to the system failure.
Accordingly, letting “NU” indicate the Node Unit, the reliability of the node system against
TID effects can be described as:

R2of3,NS,TID = RNU,TID
3 , (2.58)

where RNU,TID is the reliability of a node unit against the TID effects.

3-out-of-4 system

Similar to the case above, the reliability of 3-out-of-4 system against TID effects are:

R3of4,NS,TID = RNU,TID
4 . (2.59)

Example with Xilinx Virtex-II Pro

From the Table 1.2 the TID limit of Virtex-II Pro devices can be estimated as 250 krad. By
considering the analysis results in Section 2.3.1, the reliability of a single Virtex-II Pro node
for the mission duration of 2 years can be easily estimated to be

RNU,TID(t = 2years) ≈ 1 . (2.60)

Consequently, even though the reliabilities of the node system in each above listed cases differ,
TID effects on Virtex-II Pro node system can be regarded as negligible, so that

RNS,TID(t = 2years) ≈ 1 . (2.61)
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2.4. Node system design

2.4.1. Trade-off on degree of redundancy

Based on the reliability modeling conducted in the above section, the unavailability of 2-out-of-m
systems U2ofm against the unavailability of identical units UNU can be illustrated in Figure 2.4.
In this figure, the U2ofm with m ∈ {2, 3, 4, 5} are illustrated to see the characteristics.
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Figure 2.4.: 2-out-of-m systems unavailability
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Figure 2.5.: 2-out-of-m systems MTBF

Given a unit unavailability, the higher the degree of redundancy (m) the lower the system
unavailability, i.e., the higher the system availability. In other words, given a system unavail-
ability, the higher the degree of redundancy, the higher the unit unavailability can be. This
implies that in case the system reliability is fixed as a requirement, it can be achieved by more
reliable components with a lower degree of redundancy, or by less reliable components with a
higher degree of redundancy. It shall be noticed that the merit of using one component more
becomes smaller if the m becomes larger. Because a higher value of m means a higher system
complexity and a higher system development cost, trade-off shall be done so that the system
fulfills the requirements with minimum number of redundancy. It is also worth noting that a
higher redundancy plays important role in the region of lower system unavailability.

Another important aspect of the degree of redundancy is its effect on the mean time between
failure. As described in Equations (2.23) and (2.44), one needs to specify the unit repair rate
to obtain the relation between MTBF2ofm and UNU . Because a shorter MTTRNU makes the
node system more available, the design goal it to keep it as short as possible. Taking a realistic
limit value of MTTRNU = 5 s for SRAM-FPGAs, therefore µNU = 0.2, the MTBF2ofm with
m ∈ {2, 3, 4, 5} against the unit unavailability can be calculated as illustrated in Figure 2.5
with y axis shown in logarithm. This MTTRNU includes reconfiguration of the FPGA and
resynchronization with other nodes.

As Equation (2.44) indicates, the effect of UNU on MTBF2ofm is exponential, and therefore in
the region where the UNU is small, the effect of the degree of redundancy is significant. Because
there is a practical engineering limit on MTTRNU , the effect of MTTFNU defines the UNU by
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2. Application method of reconfigurable FPGAs for space systems

Equations (2.16) and (2.17). Here, U is originally a function of t, however, the second term of
Equation (2.16) is negligible for the selected µNU , assuming that unit failure rate λNU is much
smaller than µNU . Therefore, the unit unavailability UNU can be regarded as static. Notice
that this is an approximation of safe side.

Based on the failure frequency analysis in Chapter 1 and obtained Tables A.1 and Table A.2,
and by assuming a statistical independence between failure modes, the failure rate of the two
selected devices Virtex-II Pro and Virtex-4QV can be summarized as listed in Table 2.1. In the
table, the data of normal radiation condition and the worst radiation condition are summarized.
Notice that only the failure rate of configuration memory and Block RAM are taken into account
due to their higher failure rate than the others with the magnitude of 2 to 16. The corresponding
unit unavailability and MTBF of 2-out-of-m systems with m ∈ {3, 4} are also summarized in
the table.

In the normal case, the node system mean time between failures of both devices with the
redundancy degree of 3 are less than 2 months. This means that a system with this concept
fails once a two months even in the normal radiation condition, which is not acceptable for space
systems with years of mission life time. Compared to this, if the redundancy degree is set as 4
the node system MTBF for both devices exceed one century well beyond the practical mission
life time. This deference comes from the fact, that in case of m = 4, one more component can
fail, before the first failed component is repaired. This analysis suggests that the node system
shall be designed with four or more redundant SRAM-FPGAs for a safe mission operation in
the normal radiation condition. Adding one more component than necessary for the majority
voting, can also offer the possibility to absorb a permanent failure of one node unit downgrading
to 2-out-of-3 system.

In the worst radiation condition, however, the unit unavailability becomes about 1 for both
of the devices indicating that the node system is not available at all. This worst radiation
condition shall last only 5 minutes. In order to prevent malfunction of the satellite, the node
system shall be completely turned off beforehand for the expected duration, letting the satellite
system move into the safe mode. This analysis results summarize to what extent reconfigurable
FPGAs can be used in the space environment.

2.4.2. Node system reliability after latest repair

With the assumption that the node system are repairable as good as new, following discus-
sion holds. If the system unavailability (Equation (2.40)) and system failure frequency (Equa-
tion (2.44)) are available based on the unit MTTF and MTTR, using Equation (2.17) and

Table 2.1.: 2-out-of-m system MTBF2ofm for selected SRAM-FPGAs with MTTRNU = 5s

Parameters Virtex-II Pro (XC2VP50) Virtex-4QV (XQR4VFX60)

Radiation Condition Normal Worst Normal Worst
λNU 9.56E-5 3.59E+2 8.31E-5 2.96E+2
UNU 4.78E-4 ≈ 1 4.15E-4 ≈ 1

MTBF2of3 [years] 0.116 ≈ 0 0.153 ≈ 0
MTBF2of4 [years] 121 ≈ 0 184 ≈ 0
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2.5. Summary

Equation (2.24) one can calculate the failure rate of the 2-out-of-m system λ2ofm,NS:

λ2ofm,NS =
1

1− U2ofm,NS

· ν2ofm,NS

=
{m(m− 1)UNU

m−1(1− UNU)}µNU

1−mUNU
m−1 − (1−m)UNU

m . (2.62)

Finally, one can calculate the system reliability at t after the last complete node system repair
at t′ as:

R2ofm,NS(t) = e−λ2ofm,NS(t−t′) . (2.63)

2.4.3. Effect of periodic preventive renewals

It is possible to reconfigure SRAM-FPGA units periodically during the normal operation. Fol-
lowing the discussion in [59] the point unavailability of periodic renewals at distance T can be
written as:

U(kT + t) = FL(t); 0 < t ≤ T. (2.64)

Since a statistical independence of successive unit lives is assumed, using probability distribution
functions of work time FW :

FW (kT + t) = 1− [1− FL(T )]k[1− FL(t)]; 0 < t ≤ T. (2.65)

After differentiation using F̄ ≡ 1− F , the probability density function fW can be obtained as:

fW (kT + t) = [F̄L(T )]kfL(t); 0 < t ≤ T. (2.66)

In the exponential case with fL(t) = λe−λt, F̄L(t) = e−λt,

fW (kT + t) = λ · e−(kT+t)λ ⇔ fW (τ) = λ · e−λτ . (2.67)

This is obviously the same as Equation (2.8), therefore, periodic preventive renewals has no
meaning. In the real case of SRAM-FPGA, it is usually not possible to detect every single SEE.
In this sense, each node has always a potential risk, that it contains invisible SEE failure inside
the configuration. Because of this, it is still helpful to introduce periodic preventive renewals.

2.5. Summary

The effects of TID on SRAM-FPGAs are negligible compared to those by SEEs. It is a good
assumption that failures caused by SEEs on SRAM-FPGAs can be repairable as good as new.
Therefore, as far as failures caused by SEEs can be detected, isolated and recovered (reconfig-
ured), a node system based on SRAM-FPGAs can survive under space radiation environment
and fulfill their functional requirements.

As one can see from the reliability analysis of repairable systems, the mean time to repair
shall be short enough relative to the mean time to failure in order to keep the reliability
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(availability) sufficiently high. For this purpose, periodical check of failures shall be conducted
with a sufficiently high frequency. In order to recover the failed unit for the voting again, the
unit shall be reconfigured, synchronized to other node units, and initialized in terms of system
variables. These processes shall be conducted within the required time frame. Because the unit
unavailability is related with the system unavailability, the degree of redundancy influences the
requirements of each unit. Higher reliability requirements can be fulfilled by employing a higher
degree of redundancy. Consequently, the number of redundancy and mean time to repair of
units are the main system trade-off variables, in order to mitigate radiation effects by SEEs on
a node system based on given SRAM-FPGA devices.

The difficult point of the radiation effects analysis for SRAM-FPGAs is that in case of worst
case scenario, the SRAM-FPGAs can not survive no longer than several seconds. However,
obviously, these conditions happen only from time to time, and in case of nominal radiation
environment, the radiation effect is lower than that of worst case (“Peak-5min” condition of
CREME96 model) with four to seven orders of magnitude (see Appendix A). Due to this fact,
the system shall be designed in such a way that it can survive worst case conditions moving
into a special mode, shutting down the node system, and also shall be able to recover after the
events.

Flash-FPGAs considered in this chapter revealed the feasibility of applying them to the voter
under the assumption that the effects of SET and SEU on data flip-flops can be mitigated.
Consequently, the important strategy for acquiring a high system reliability is to keep the
voting logic as compact as possible, and make the part as reliable as possible by applying
internal multi-module redundancy. Failed node units can be repaired, as far as this voting
element survives.
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Part II.

Demonstration with the small satellite
Flying Laptop

This part describes the design and development of the proposed FPGA-based on-board com-
puter architecture according to the conceptualized application and radiation mitigation meth-
ods in Part I. Within the scope of the thesis, the breadboard model and partially engineering
model of the OBC hardware, as well as the control algorithm (hardware logic inside FPGAs)
are developed. For the realization of the OBC, the system design of the target demonstration
small satellite Flying Laptop is also conducted within the scope of the thesis. Firstly, Chapter 3
provides introduction of the small satellite Flying Laptop including the mission facts, scientific
payload instruments, and required attitude determination and control components. The sys-
tem design of the Flying Laptop satellite is summarized in Chapter 4 with an emphasis on the
electrical architecture design. Chapter 5 summarizes the development of hardware components
of the OBC of the Flying Laptop. Finally, Chapter 6 describes the development of the control
algorithm of the OBC, which is implemented into the hardware logic inside the FPGAs. The
attempt to implement all satellite control algorithms into FPGAs is new and has never demon-
strated so far. This part provides complete information of the implementation method of the
FPGA-based OBC. The developed breadboard model of the OBC serves as the platform for
the further development and optimization of the control algorithm.
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3. Flying Laptop satellite

The small satellite Flying Laptop is the target satellite on which the FPGA-based on-board
computer, developed within the scope of this thesis, shall be demonstrated. In order to demon-
strate the maximum high computational capability of the OBC, the satellite is equipped with
very challenging scientific instruments and communication systems [63].

The small satellite Flying Laptop is the first satellite within the “Stuttgart Small Satellite Pro-
gram”[64], in which the Institute of Space Systems (Institut für Raumfahrtsysteme: IRS) at the
Universität Stuttgart is developing several small satellites aiming to launch a small spacecraft
to the moon (Lunar Mission BW1 [65], [66], and [67]) as the final goal. All these satellites are
developed, built and operated by the IRS. The mission objectives of the Flying Laptop which
is a cubic, 3-axis stabilized satellite with the edge lengths of about 600 mm× 700 mm× 800 mm
and with a mass of about 120 kg are new technology demonstrations and scientific Earth obser-
vations. The space qualification of the reconfigurable FPGA-based on-board computer system
is the one of the most important technology demonstrations. This OBC is not a test component
but the main computing system of the satellite. All components are driven by this central OBC.
The launch is planned by the Polar Satellite Launch Vehicle (PSLV) of Indian Space Research
Organisation (ISRO) as a biggyback payload into a polar, sun-synchronous, low Earth orbit
around 600 km. The mission lifetime shall be longer than 2 years. The mission parameters of
the Flying Laptop are listed in Table 3.1.

Figure 3.1.: Flying Laptop satellite, artist impression
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This small satellite program was initiated in 2003 in order to establish a basis of space devel-
opment at the university with the cooperation by regional industrial partners and academic
institutions. To support the long-term development of spacecraft, an own clean room, a ground
station, a thermal-vacuum chamber, an optical integration room were also installed. The
“Space-Center Baden-Württemberg (Raumfahrtzentrum Baden-Württemberg)” is under con-
struction at the time of writing, which further strengthens and supports the activities. A part
of the technology demonstration mission of Flying Laptop is planned for the following spacecraft
in the Stuttgart small satellite program.

Table 3.1.: Flying Laptop mission parameters

Parameters Value

Launch Vehicle PSLV (ISRO)
Orbit Type Circuler, polar, sun-synchronous
Orbit Altitude 500 – 900 km
LTDN 09:30 - 11:00 h
Launcher Envelope 600 mm × 700 mm × 850 mm
Weight < 120 kg
Mission Life Time > 2 years

3.1. Flying Laptop project

The Flying Laptop project is a small satellite development project with several doctoral students
being its main developers. Each doctoral student takes a responsibility for a specific aspect of
the satellite development activities mostly based on a subsystem-basis. The contributions of this
thesis to the project is developing the FPGA-based on-board computer as well as conducting the
system design of the whole satellite system. This is necessary because all aspect of the satellite
system, including electrical components/interfaces, power budget, operational concept/modes,
data handling, link budget, and required size of hardware logic inside FPGAs etc. influence the
functionality of the OBC. This section summarizes the contributions of each doctoral student.

Georg Grillmayer, who was responsible to the attitude control system, has established the
requirements, defined the specifications, and developed the engineering model of the attitude
control system. He developed mathematical attitude control laws for six attitude control modes
and implemented them into the Mathworks MATLAB model [68], [69]. He also conducted
orbit analysis [70], [71]. He has selected/developed sensors and actuators. He has implemented
driver algorithms of those components into an FPGA development board and tested their
functionalities with the EM assemblies. The translation of the MATLAB code into the hardware
description language is done by both Grillmayer and Yasir Muhammad [72]. Grillmayer was
responsible to the GENIUS and NEO detection experiments and organized the cooperations.

Sebastian Walz, who was responsible to the payload systems, has established requirements and
defined specifications of the EM of the camera systems including the cassegrain mirror sys-
tem. He has performed feasibility study on the Bidirectional Reflectance Distribution Function
(BRDF) measurements and designed three camera systems in green, red, NIR and thermal
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infrared spectral regions as well as panchromatic in visible range [73]. He also conducted in-
vestigations on manufacturing the mirror by coated CFRP structure. EMs of these camera
systems are under development at the time of writing.

Michael Lengowski, who was responsible to the structure and mechanisms and thermal control
subsystems, has played a central role in designing every single structural component of the
satellite. He introduced modular architecture to the satellite main structure classifying into
core, payload, and service modules [74], [75]. Especially, the optical bench, on which all camera
systems and star trackers are mounted, is designed and manufactured in such a way that
the pointing accuracy and stabilities of the camera system fulfill the requirements. He also
developed the electrical solar panel deployment mechanism and verified its functionality with
laboratory models. Finally, he conducted thermal design of the satellite.

Albert Falke has installed a model-based development and verification environment at the IRS
with the support of EADS Astrium GmbH (Chapter 7) [76], [77]. Based on the simulation
and verification environment, he implemented software component models of the Flying Laptop
satellite according to the hardware specifications. He also established the architecture of the
simulation and verification facility including satellite and project databases and intellectual
property management systems. He also installed a satellite operation facility based on the
SCOS-2000 as well as a test case scripting engine based on the MOIS [78], [79], and [80].

3.2. Mission description

The Flying Laptop is the testbed for an on-board computer with a reconfigurable, redundant
and self-controlling high computational capability, based on Field Programmable Gate Arrays.
This technology shall meet the recent needs on applying new high density reconfigurable FPGA
technologies for space use, which enables innovative approaches to architecture of OBCs, es-
pecially for demanding small satellite applications. As payload scientific instruments, Flying
Laptop is equipped with three camera systems and two communication systems. Besides several
technology demonstrations, Flying Laptop shall perform following scientific Earth observations:

• Bidirectional Reflectance Distribution Function (BRDF) measurement

• Multi-spectral Earth observation

• Precipitation measurement

• Atmospheric trace gas detection

The main interest of Earth observations by the camera systems is the BRDF measurements
[81], [74]. BRDF is a mathematical function that quantifies the reflectance of a target as a
function of the independent variables characterizing viewing and illumination angles, and of a
set of variables determining the geometric and optical properties of the observed scene. For a
scene with given properties, the reflectance observed varies with the angles of observation and
illumination [81]. The BRDF helps to improve not only the classification accuracy of space
images analyzing the vegetation of the Earth surface, but also accuracy of calculating albedo
effects, calibrating instruments and stitching together space images from multiple overflights.
The research on BRDF takes many forms. It can be measured using ground based measurement
facilities, airborne scanner, or observation from spacecraft. In order to observe the target point
from different observation angles, the Flying Laptop shall perform a target pointing mode, in
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which the body-mounted camera instruments are pointed toward the specific target position
on the ground, through the fly-over path. The attitude control system of the Flying Laptop
shall ensure that the same ground pixel remains in the image sensors and can be observed from
different directions.

The two communication systems are used for precipitation (regional rainfall rate) measurements
using dual-frequencies in Ka- and Ku-Band based on the attenuation difference in both com-
munication signals. Also, the frequency tunable Ka-Band transmitter can detect the existence
of atmospheric trace gases. In addition to this, the Ka-band system shall be able to perform
high-speed communications up to 500 Mbps twice per day with ground stations. Because these
communication instruments are also fixed on the satellite body, the attitude control system
shall perform target pointing mode to conduct these experiments. Detailed mission objectives
and their descriptions can be seen in [82].

3.3. Scientific payload instruments

The payload system is divided into two groups: camera systems and communication systems.
The camera systems consist of three instruments: Multi-spectral Imaging Camera System
(MICS), Thermal-infrared Imaging Camera System (TICS), and Panoramic Camera (PAM-
CAM), while the communication systems consist of Ka- and Ku-Band instruments.

3.3.1. Camera systems

The three types of payload camera systems are developed by Walz and his team within the
project. MICS consists of three identical CCD array cameras with different interference filters in
green, red and near infrared spectral regions with a bandwidth of 50 nm at half maximum [83].
The schematic of a MICS camera is illustrated in Figure 3.2.

Figure 3.2.: Schematics of MICS [76]

The requirements of the MICS system is derived from the BRDF measurements. A medium geo-
metrical resolution is pursued with the focus on radiometric accuracy. The filters are mounted
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on the top of the camera heads. As the sensor, Kodak KAI-1003M with 1024× 1024 pixels is
selected [84] with a 12-bit A/D converter. The on-board mass memory requirement is defined
from the needs of BRDF measurement using MICS. During one BRDF measurement, each
camera of MICS takes 125 images. The required size of mass memory is defined as at least
600 MB from this requirement. For the scientific evaluation of the data, LEDs are implemented
inside the camera unit for in-flight calibration.

The TICS instrument will demonstrate the use of micro-bolometer detectors for infrared imaging
with a relatively high geometrical resolution [85]. The goal is to achieve a ground sample
distance of 100 m. Therefore, a cassegrain mirror system is used as optic. The sensor of TICS
is a uncooled micro-bolometer Ulis UL 01011 with 320 × 240 pixels [86]. The primary mirror
will work as antenna for the Ka-band system with the feed horn located at the hole of the
secondary mirror. A schematic of the TICS camera is illustrated in Figure 3.3.

Figure 3.3.: Schematics of TICS [86]

The PAMCAM is used for public relation and live video transmissions. The high geometrical
resolution will give a good overview of the observed scene, and the video mode will allow color
live video with a frame rate of 5 Hz during a fly-over. The sensor is a commercial FillFac-
tory IBIS5A-1300 CMOS sensor with 1280× 1024 pixels with a Bayer color filter array. The
characteristics of the camera systems are summarized in Table 3.2. The values are based on a
reference orbit with an altitude of 600 km.

Table 3.2.: Characteristics of scientific payload camera instruments

Instruments Spectral band Wavelength [nm] GSD [m] Swath width [km] System

MICS Green 530 - 580 25 25 Optical
Red 620 - 670 25 25 Optical
Near infrared 820 - 870 25 25 Optical

TICS TIR 8000 - 12000 100 32 Cassegrain
Pamcam Panchromatic 400 - 700 200 250 Optical
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3.3.2. Scientific communication systems

The characteristics of the scientific communication systems are listed in Table 3.3. The signals
in Ka and Ku-Bands are used for scientific Earth observations. The Ka-Band system is capable
of bi-directional communication with maximum down-link baud rate of 500 Mbps and up-link
with up to 100 Mbps. This feature enables high-speed bi-directional communication on the
platform of a small satellite. This communication system ensures down-link of all acquired
image data within a single ground contact. The Ku-Band is only for the scientific experiment
and no data transfer through Ku-band is foreseen.

Table 3.3.: Characteristics of scientific payload communication instruments

Band Channel Frequency [GHz] Baud rate [Mbps]

Ka-Band High Power Down-link (200 W) 20.2 - 21.2 500
Low Power Down-link (17 W) 20.2 - 21.2 -
Up-link 29.5 - 30.0 100

Ku-Band Down-link 10.0 -

All of these instruments described above shall be driven by the OBC, and therefore the electrical
interface design shall be performed throughly. Especially, image processing of the camera sys-
tems and signal processing for the high-speed communication systems are challenging missions.
Detailed implementation of OBC is described in Chapter 5 and Chapter 6.

3.4. Attitude control system

The Attitude Control System (ACS) is developed by Grillmayer and his team within the project.
The requirement of the ACS is to provide the satellite with desired attitude control capabilities.
Based on the requirements coming from scientific payload instruments, ACS components are
selected as listed in Table 3.4 [87].

Table 3.4.: Quantity of attitude control system components

ACS Instruments Quantity

Reaction Wheels 4
Magnetic torquers 3
Magnetometers 2
GPS unit (GPS receivers) 1 (3)
Star Tracker (camera head units) 1 (2)
Fiber Optic Gyros 4
Sun sensor unit (sun sensors) 2 (16)

ACS hardware components are shown in Figure 3.4. The ZARM-Technik AMR-magnetometer is
a microcontroller based 3-axis magnetometer with digital output. The C-FORS fiber optic gyros
from Litef are arranged in a tetrahedral configuration, to allow for a single failure. The micro-
Advanced Stellar Compass from the Technical University of Denmark consists of two camera
head units connected to a data processing unit. The star tracker provides an attitude knowledge
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3. Flying Laptop satellite

Figure 3.4.: Attitude control system hardware components

of 7 ”. The GENIUS (GPS Enhanced Navigation Instrument for the Universität Stuttgart
micro-satellite) system, which is based on three COTS Phoenix GPS receivers, is developed
as an experiment for accurate attitude determination using GPS [88]. The three antennas are
placed at three corners of the middle solar panel in an L-like arrangement. Furthermore the
receivers are synchronized via an ultra-stable 10 MHz oscillator. Each two of sixteen sun sensors
based on solar cells are mounted at eight different positions as a redundant pair. The sensor
voltages are digitized and sent to the OBC. Four reaction wheels from Teldix are running in
a hot redundant tetrahedral configuration. Each wheel has an angular momentum capacity of
0.12 Nms and a reaction torque of 5 mNm. Three ZARM-Technik magnetic torquers with a
linear dipole moment of 6 Am2 are connected to a power electronics box. The whole system is
single redundant. A detailed description of ACS components can be seen in [89]. All of these
sensors and actuators are connected to the OBC.

3.4.1. Attitude pointing modes

The Flying Laptop satellite shall be able to perform different types of attitude pointing modes.
The pointing modes of the Flying Laptop can be classified into three modes: inertial, nadir,
and target pointing modes [90].

Target pointing mode

In the target pointing mode the payload instruments are pointed toward a fixed point on the
Earth’s surface. This attitude control mode is utilized for BRDF measurements and high-speed
communication with a ground station. This mode enables an observation of the target point
from a wide range of angles. For the BRDF measurements, attitude pointing accuracy shall be
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better than 150 ”with a pointing knowledge of better than 7 ”. The maximum slew rate for this
mode is about 1 ◦/s. For BRDF measurements, the angle of observation is defined as +/- 60 ◦

off nadir and +/- 30 ◦ roll as illustrated in Figure 3.5.

Figure 3.5.: Target pointing mode

Nadir pointing mode

In this mode the satellite body is aligned in the direction of the Earth, i.e., the +Z vector
of the satellite’s body coordinate system (see Chapter 4) is pointed toward the Earth center
(Figure 3.6), thus the angular rate remains constant. This mode is mainly utilized for the multi-
spectral Earth observations. Though the Flying Laptop is not equipped with an Earth sensor,
data from GPS and star trackers enables transformation of coordinate systems.

Inertial pointing mode

In the inertial pointing mode, the satellite attitude is fixed relative to the inertial frame, and
payload camera systems can be oriented to a given attitude relative to stars (Figure 3.7). The
star trackers are used for experimental Near Earth Objects (NEOs) detection in this pointing
mode.

Figure 3.6.: Nadir pointing mode Figure 3.7.: Inertial pointing mode
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4. System design of the Flying Laptop

The small satellite Flying Laptop is a challenging satellite with a variety of instruments, which
shall demonstrate the capability of small satellites. The most important mission objective of the
Flying Laptop satellite is the demonstration of the application of reconfigurable FPGAs in the
space environment. The FPGA based OBC shall demonstrate its high computational capability
with the flexible and parallel processing features. As the size and mass of the satellite is limited,
the on-board computing system of the Flying Laptop shall be a centralized system connected
with all of the peripheral components with a point-to-point star configuration. The OBC shall
be capable of controlling the payload instruments as well as performing attitude determination
and control, power management, thermal management, and telecommunications. In order to
make this concept possible, the satellite system shall be throughly designed.

Within the scope of this thesis, the system design of the Flying Laptop has been conducted.
An effective system design as well as an effective project management method for small satel-
lite projects are proposed by author and applied to the Flying Laptop project [91]. Based
on the requirements of scientific instruments, experiments, and attitude control performance,
the satellite system was designed/developed. During this system design activity, operational,
attitude control, mechanical and thermal, and electrical aspects are iteratively designed. As
the consequence of the system design activities, satellite on-board components are identified
as listed in Table 4.1. The mechanical configuration of the satellite is illustrated in Figure 4.1
together with the body coordinate system.

Figure 4.1.: Flying Laptop satellite mechanical configuration

A system design activity is multidimensional. The difficult challenge in the electrical architec-
ture design of the Flying Laptop is that all peripheral electronics shall be connected with the
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Table 4.1.: Flying Laptop system components

Sub-system Electrical Components Qty. Interface Qty. Max. baud rate

Payload MICS 1 each I2C 1 100K
Green, Red, NIR LVTTL 1 16K

LVDS 2 80M
TICS 1 LVTTL 2 9.6K

LVDS 5 14.3M
Panoramic Camera System 1 LVDM 2 200M
Ka-band TX 1 LVDM 2 250M
Ka-Band RX 1 LVDS 1 20M
Ku-band Transmitter 1 LVDS 1 1M

Attitude Control System Reaction Wheels 4 RS-422 1 9.6K
Magnetic Torqure Unit 2 I2C 1 100K
Magnetometers 2 RS-422 1 57.6K
GPS Unit 1 RS-422 3 57.6K

LVTTL 9 100K
Star Tracker Unit 1 RS-422 3 115.2K
Fiber Optic Gyro Unit 1 RS-422 4 2M
Sun Sensor Unit 2 I2C 1 100K

Telemetry, Tracking S-Band TX 1 LVDS 2 2.2M
& Command S-band RX 2 LVDS 2 250M

UHF-Band TX 1 LVDS 2 38.4K
UHF-band RK 2 LVDS 2 250M
VHF-Band RX 1 LVDS 2 9.6K

Power Supply System PCDU 1 I2C 3 100K
LVTTL 3 1K

Battery Unit 1 - - -
Solar Panels 3 - - -

Thermal Control System Housekeeping Unit 1 I2C 2 100K
Heaters 8 - - -

Structure & Mechanisms Solar Panel Depl. Mech. 2 - - -
Command & USO 1 TTL 3 10M
Data Handling On-board Computer 1 - - -

single OBC, while the OBC shall be as compact and light as possible to be integrated into the
small satellite. Another aspect of the electrical interface design is that the actual mechanical
connection shall be realizable, i.e., the spatial margin shall be large enough for connectors to
be mated/unmated keeping the physical loads remain under certain limits. Furthermore, the
Flying Laptop project aims to use as many COTS components as possible to reduce the de-
velopment cost with applying a single-failure-tolerance concept to critical components. Also it
introduces Proto-Flight Model (PFM) philosophy combined with partial Engineering Models
(EMs) and Breadboard Models (BBMs). The purpose of this chapter is to provide a sufficient
background for the initiation of the OBC design. Due to the limited space and to keep the dis-
cussion not diverged, the focus of this chapter is put on the electrical and operational designs.
The system electrical architecture and the operational concept, including commanding, data
handling, and contingency operation are established. Communication system and power sup-
ply system are designed and power balancing design of the satellite is conducted. The detailed
implementation of subsystems are summarized in Appendix C.
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4. System design of the Flying Laptop

4.1. Electrical architecture design

The quantity of identified electrical component units, as well as type, quantity and maximum
baud rate of their electrical interfaces between the OBC are summarized in Table 4.1. The
OBC shall be equipped with all of these interfaces so that it can communicate with and control
them. As listed in the table, the required interface types are TTL, LVTTL, I2C, RS-422, LVDS,
and LVDM. Though LVDM belongs to LVDS, it is differentiated from it in terms of the higher
communication speed grade. Taking the redundancy and reliability issues into account, all
electrical interfaces between components have been designed. In the scope of this electrical
interface design, the mechanical design of the actual harness system is also taken into account.
Due to the small size of the satellite body, the integration of all components into the satellite
can raise serious problems. In order to prevent those kind of problems, the harness cabling
system is designed with a help of a real-size mock-up model. Indeed, the harness system is an
important element in the overall system design for spacecraft mechanisms. The mass ratio of
harness relative to the satellite mass can rise up to 10 % and the well-designed harness cabling
reduces the mass ratio of harnesses, resulting in considerable weight saving, and makes a great
profit for system level trade-off.

The electrical interface design of the Flying Laptop introduces following design tools:

• Electrical interconnections block diagram

• Input/Output diagram

• Mock-up model

• Harness cabling plan

Each item of these is described below in detail.

4.1.1. Electrical interconnections block diagram

According to the functional analysis [91], all identified functions are allocated to components.
Based on the functional requirements, the interconnects between these components were de-
fined. This design has been done by means of an electrical interconnection block diagram
(Figure 4.2). This diagram summarizes the existence of electrical interconnections between all
electrical components of the satellite system and provides the overview of the harness architec-
ture. This diagram also illustrates the type of interconnections such as signal lines, power lines,
analogue signal lines, and pulse signal lines and enables identification of each single interface.

4.1.2. Input/Output diagram

An I/O diagram defines electrical input and output interfaces of an electrical satellite equipment
which is identified in the electrical interconnections block diagram. In this way, every single
electrical interface between components including power lines can be designed and graphically
represented. I/O diagrams also allocate input and output lines to actual physical element (pins)
of assigned connectors. An exemplary I/O diagram of magnetic torquer driver electronic board
is illustrated in Figure 4.3. This diagram defines, for example, the “pin 3” on the “connector 1”
of the electronic board is connected with the “pin 1” on the “connector 3” of the Power Control
and Distribution Unit (PCDU).
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4.1. Electrical architecture design

Figure 4.2.: Electrical interconnection block diagram

4.1.3. Mock-up model development

One of the most important features in designing the harness system of the Flying Laptop is the
development of its mock-up model. Because of the model philosophy of the Flying Laptop, no

Figure 4.3.: Input/Output diagram (magnetic torquer unit)
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4. System design of the Flying Laptop

complete engineering model of the whole satellite is built and therefore, it is quite meaningful
that a mock-up model in original size is developed. This is a significant merit of developing a
small satellite [92]. The mock-up model of the Flying Laptop satellite is shown in Figure 4.4.

Figure 4.4.: Mock-up model of Flying Laptop satellite

This mock-up model enables to build the harness layout plan in consideration of the 3-
dimensional effects and the integration feasibility. In addition, the model helps to propose
the modification of the satellite’s internal structures so that they can be adapted to harness
cabling relevant aspects, such as holes and position of the cable brackets. The amenities of the
mock-up model are:

• cables can be easily grouped into harness units, after once they are laid on the model,

• the accessibility of the harness, such as insertion, extraction and tightening of the screws
can be evaluated,

• the capability and flexibility of mounting/demounting components can be assessed, and

• the correct cable length can be measured and the mass of harness system can be estimated
accurately.

In addition to these, satellite integration procedures can be planned by using this model.

4.1.4. Harness cabling plan

The connectors with pin allocation in the I/O diagram are actually physically connected with
the help of mock-up model. During this activity, the cabling path of every single cable/cable
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4.2. System electrical architecture

Figure 4.5.: Harness cabling plan

unit is optimized in terms of length, integration capability, wiring radius, physical loads, and
consideration on electromagnetic compatibility (EMC) effects. After defining the cable paths,
those cables which are on the same or partially same path are united into one harness unit,
taking the integration and assembly capability into account. Consequently, a cabling plan can
be obtained as illustrated in Figure 4.5.

4.2. System electrical architecture

The designed system electrical architecture is illustrated in Figure 4.6. The detailed design
of the OBC is described in Chapter 5. High-speed communication interfaces are implemented
as differential signals, such as RS-422, LVDS, and LVDM. The power supply lines are also
illustrated in the figure. To reduce the development cost as much as possible, COTS components
are used with redundancies. Sun sensor units and magnetic torquer units are organized in cross
coupling configurations with redundant low speed I2C communication interfaces. I2C interfaces
of PCDU are also triple redundant. Most of the high-reliability components are not in redundant
as the result of cost-to-reliability trade-off. Otherwise, other components are designed based
on a single-failure-tolerant design concept. The detailed electrical interface description of the
OBC of the Flying Laptop is summarized in [93]

47



4. System design of the Flying Laptop

Figure 4.6.: Flying Laptop system electrical architecture
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4.3. Operational design

4.3. Operational design

In this section, the operational design of the Flying Laptop satellite is briefly summarized
in terms of the operational mode, commanding concept, data handling, communication, and
contingency operations. The launch of the Flying Laptop is planned by the PSLV of the ISRO
as a piggy-back launch. Because of this, the satellite system shall be designed in such a way
that the satellite can fulfill all mission requirements within a certain orbit envelop. This is
illustrated in Figure 4.7 [70]. Seven reference orbits are defined for orbit simulations and
system characterization (Table 4.2). It is determined by past research that the lower orbits No.
4 & 5 are the thermal hot cases and the higher orbits No. 6 & 7 are the cold cases [83].

Figure 4.7.: Orbit envelop and reference orbits

4.3.1. Operational design concept

In order to achieve Flying Laptop’s wide-ranging mission objectives, the operation of the satel-
lite needs to be supported by a discrete time-to-time planning rather than a continuous and
periodical operational planning, partly because most of the missions are single-shot missions.
For example, a BRDF measurement of a specific target at a specific time shall be planned by
analyzing the availability of the star trackers according to the satellite position, target position,
and sun incident angle. The operational plan shall be flexible and adaptable in the late mission
phase even after the launch. In order to achieve this operational concept, the commanding
function shall support any kind of combination of satellite operations. In this way, the mission
operation plan can be continuously updated in consequence of individual mission/experiment
planning. The other aspect of the difficulty in the mission planning of the Flying Laptop is that
its on-board computer is based on the FPGA technology, which means there is no traditional
processor aboard. The functionalities which are usually implemented into software on other
satellites need to be replaced with a complex hardware logic realized in the FPGA chips. The
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4. System design of the Flying Laptop

Table 4.2.: Parameters of reference orbits

Orbit Number Altitude [km] LTDN [hh:mm] Inclination [◦] Period [min]

1 600 10:30 97.79 96.69
2 600 09:30 97.79 96.69
3 600 11:00 97.79 96.69
4 500 09:30 97.40 94.63
5 500 11:00 97.40 94.63
6 900 09:30 99.03 102.99
7 900 11:00 99.03 102.99

operational plan shall be designed so that, on the one hand, the strong capability of paral-
lel processing of the FPGA can be maximized and, on the other hand, the operability of the
satellite system by telecommanding can ensure trouble-free conduction of every single mission.

4.3.2. Operational mode design

Generally, satellite peripherals can be grouped into several subsystems. That means the satel-
lite system can be decomposed into several subsystems and those subsystems can be further
decomposed into components. In this way, a hierarchical relationship between satellite system,
subsystems, and components can be established as listed in Table 4.1. In order to utilize the
greatest benefit of the parallel processing features of FPGAs, each subsystem of Flying Laptop
is controlled completely in parallel to each other. This concept is enabled by the allocation of
a state-machine to each of the subsystems. A state-machine is a diagram which illustrates the
relationship between several modes and the transition conditions between them. Consequently,
a system mode can be described as a combination of subsystem modes. From the technical
point of view, these application algorithms can be implemented as completely parallel pro-
cesses in terms of hardware logic design within FPGAs. These parallel processes are controlled
by individual commands. Detailed implementation method of hardware logic inside FPGAs is
described in Chapter 6.

The designed system level state-machine is illustrated in Figure 4.8. After the orbit insertion,
satellite system goes into safe mode through initial sequence mode. System can be switched
to the idle mode from the safe mode only by telecommands. All scientific experiments are
assigned to the active operation mode and can be initiated from idle mode. In safe mode it
shall be ensured that the battery can be charged up to full by using reliable and minimum
attitude determination and control components. The state-machine of the ACS is illustrated
in Figure 4.10 and that of TT&C (Telemetry, Tracking & Command subsystem) in Figure C.1.

4.3.3. Commanding concept

The commanding concept of the Flying Laptop differs based on the operational phase. At the
beginning of the mission life time, the satellite is operated only by telecommands without any
on-board autonomy. A sample scenario is described in Table 4.3. This is therefore performed
by sending telecommands one by one. Each transition number represents the corresponding
telecommand. The commands are time-tagged and executed at the defined on-board real time.
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Figure 4.8.: Flying Laptop satellite system state-machine

At the later operational phases, the autonomy level of the telecommands can be raised. In this
case, the satellite uses databases with sets of commands, which are executed by a single telecom-
mand. For the sample scenario described above, a single telecommand “BRDF measurement”
with appropriate parameters, such as target positions and camera settings, is up-linked.

Table 4.3.: Mission operation sample scenario (BRDF measurement)

Transition Number System/Subsystem State/State Transitions

0 System Idle mode
1 System Active operation mode
2 P/L (cameras) Operation mode (Idle mode)
3 ACS Nadir pointing mode
4 ACS Target pointing mode
5 P/L cameras Operation mode
6 ACS Nadir pointing mode
7 P/L cameras Idle mode
8 System Idle mode
9 P/L (cameras) Off mode (Off mode)
10 ACS Idle mode

4.3.4. Data handling

The data to be handled on-board the satellite is composed of housekeeping and scientific data.
Housekeeping data is continuously collected over time and constitutes a negligible part of the
total data volume, while scientific data amounts to notable volume depending on the payload
sensors, their usages, and the downlink concept. The design driving application for the on-board
storage capacity is the BRDF experiment as described in Section 3.3.1.
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For other possible Earth observation applications such as continuous Earth surface scanning
requires much more capacity. For this application MICS generates data at 1.6 MB/s, TICS
at 0.05 MB/s and PAMCAM at 0.06 MB/s, which add up to about 1.7 MB/s. Assuming a
continuous scanning in nadir pointing except in eclipse, the amount of uncompressed raw data
adds up to about 6.5 GB per orbit. The storage of such a data volume is expensive in terms of
mass, spatial requirement, power consumption, and price. The actual storage size of the Flying
Laptop is defined as 4 GB. Possible intelligent on-board data handling was investigated in [94].

4.3.5. Communication structure

The communication channels of the Flying Laptop are listed in Table 4.4 with their baud rate
and operational concept. The primary communication channel of the satellite is the S-band.
The LG and HG stand for Low Gain and High Gain, respectively. The LG down-link channel
uses omni-directional antenna and can be used in case the satellite does not perform pointing
attitude control toward the ground station. The patch antenna for the HG down-link channel
is mounted on the same surface as the camera systems and can be used only when the satellite
performs pointing attitude control. Unless the system is in safe mode, the satellite is able to
perform HG communications. The UHF and VHF channels are intended for the cooperation
with other universities and amateur band communities and used as back-up channels of the
S-band. The Ka-band up and down-link is an experimental channel and can transmit up to
500 Mbps in down-link. Detailed link budget calculation, system characterization, and state-
machine of the TT&C subsystem of the Flying Laptop are described in Appendix C.1.

Table 4.4.: Communication channels of Flying Laptop

Channel Baud Rate Modulation Operational Concept Min. Data Volume
[bps] [Mbyte/day]

VHF Up 19.2 K BPSK/FSK On demand 30.87
UHF Up 4.8 K FSK Periodical/On Demand 7.718
UHF Down 38 K (O)QPSK Periodical/On Demand 61.10
S Up 19.2 K FSK Primary 30.87
S Down LG 150 K OQPSK Primary (nondirectional) 241.2
S Down HG 2.2 M OQPSK Primary (directional) 1900.8
Ka Up 10 M QPSK Max. 2 times/day 7320.0
Ka Down < 500 M OFDM Max. 2 times/day 73200.0

4.3.6. Contingency operation

The contingency operation of the Flying Laptop is classified into two cases: contingency level
1 and 2. In case of level 1 contingency, the satellite system goes into idle mode. For example,
in case of insufficient battery charge for a planned operation, the satellite goes into idle mode.
The level 2 contingency represents severe contingency cases in which, for example, a primary
sensors for idle mode are broken and the idle attitude control becomes impossible. In this case,
the satellite system goes into safe mode. During the safe mode, the causes of the contingency
are analyzed and identified on the ground basis before commanded back to idle mode.
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4.4. Attitude control

4.4.1. Attitude control modes

Due to the mission objectives, the Flying Laptop shall perform three pointing modes: inertial
pointing mode (3), nadir pointing mode (4), and target pointing mode (5), as illustrated in
Figure 4.9. In addition to these, ACS performs three more control modes to support system
level mission operations, which are detumbling mode (0), safe mode (1), and idle mode (2).

Figure 4.9.: Attitude control modes of ACS

The scientific Earth observations such as BRDF experiment and precipitation measurements, as
well as high-speed communication require the target pointing mode to orient its instruments to
the ground target. This mode enables payload camera systems to take desired high resolution
images with sufficient integration times. Detailed description of pointing modes can be seen in
Section 3.4.1. The combinations of the sensors and actuators used are different in each attitude
control mode as is described in Table 4.5.

Table 4.5.: Attitude control system components on/off table (×: on)

Mode Nr. RW MGT MGM GPS STR FOG SuS

Detumbling 0 × ×
Safe 1 × × ×
Idle 2 × × × × × ×
Inertial P. 3 × × × × × ×
Nadir P. 4 × × × × × × ×
Target P. 5 × × × × × × ×

4.4.2. Attitude control system state-machine

The state-machine of the ACS subsystem is illustrated in Figure 4.10. In system level idle
mode, the ACS is also in idle attitude control mode. Every time the system goes into safe
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mode, the attitude control system goes through detumbling mode so that the rotational rate
remains under a certain limit, preventing the payload camera systems from seeing the sun
directly. Pointing modes are for the scientific experiments in the system level active operation
mode. Among these modes, especially detumbling mode and safe mode are critically important
to ensure a high survivability of the satellite and therefore shall be designed carefully.

Figure 4.10.: State-machine of ACS

4.5. Power balancing design

Based on the above described operational concept, attitude control mode, and power supply
system design (Appendix C.2), the power budget of the satellite is calculated for different
scenarios. Mathematical models of the power supply system, solar panels, battery, and PCDU
are integrated with the attitude control algorithm model inside Mathworks MATLAB/Simulink.
The specification of solar panels are obtained from [95], and those of battery cells and battery
assembly are from [96] and [97], respectively. Detailed modeling technique of solar panels are
described in detail in [98]. Summary of characteristics of batteries can be seen in [99].

Table 4.6.: Solar panel parameters

Winter Solstice Summer Solstice
Solar Panels Cell Area Max. Power Max. Voltage Max. Power Max. Voltage

[m2] [W] [V] [W] [V]

Middle 0.241 55.6 27.0 53.0 27.5
Right (+X) 0.317 86.7 23.4 82.2 23.9
Left (-X) 0.317 86.7 23.4 82.2 23.9

The characteristics of the solar panels are listed in Table 4.6. The target orbit for simulations
below is the reference orbit “1” in summer solstice in order to simulate the worst case scenarios.
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Because the simulation model does not contain thermal model of the satellite, the temperature
of the solar panels remain constant. Operational temperature of the middle solar panel is
identified as 139.0 ◦C and those of side solar panels as 85.4 ◦C.

During the normal operation, the state of charge (SOC) of the battery is kept above 80 %.
However, during the Launch and Early Orbit Phase (LEOP), it is required by the launcher
organization to keep the SOC considerably lower not to risk the main payload satellite. Because
the actual required value of SOC is not available at the time of writing, the initial SOC is set as
50 %. For the following simulations, three configuration of solar panel deployment are considered
as illustrated in Figure 4.11. The moment of inertia of the satellite in three configurations are
summarized in Appendix D.3.

Figure 4.11.: Solar panel deployment configuration

4.5.1. Launch and early orbit phase scenario

After the separation from the launcher, the satellite performs detumbling mode to decrease
the rotational rate, and then moves into safe mode. The solar panels are also deployed at the
moment the satellite goes into the safe mode. The attitude control laws of the detumbling
and safe modes and the moment of inertia of the Flying Laptop applied for the simulations are
summarized in Appendix D. Figure 4.12 illustrates the state of charge of the battery together
with the existence of the sun, as well as the amounts of total power generation of three solar
panels, their individual power generation, and satellite total power consumption. It can be seen
that the battery is successfully charged up to 100 % in this scenario. Solar panel can be also
deployed by sending command at the initial ground contact, however, because the SOC at the
beginning is decreasing, it can lead to a mission loss. Decision was made to deploy the side
solar panels automatically. Figure 4.13 indicates that the solar panels are originally pointed
toward different direction before they are deployed at around 800 s. After the stabilization of
the rotational motion of the satellite body, the total power generation amounts to about 200 W.
The SOC of the battery becomes 100 % in about 5 orbits after the initiation of safe mode.

Figure 4.13 illustrates the satellite’s rotational rate, angle between the solar panel normal and
the sun vector, and two elements of the rotational rate parallel and orthogonal to the reference
principal axis, which is the one with the largest moment of inertia (see Appendix D). The total
rotational rate is reduced to 0.4 ◦/s before the satellite initiates the safe mode. It can be seen
that the rotational rate of about 2 ◦/s is achieved in the safe mode, which succeeds to keep the
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Figure 4.12.: Battery state of charge with sun flag and total power consumption and generation
(Configuration A)
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Figure 4.13.: Rotational rate, sun vector angle, and component of rotational rate parallel and or-
thogonal to the reference principle axis (Configuration A)
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4.5. Power balancing design

satellite attitude stable even during the eclipse phase. The solar panels are coarsely pointed
toward the sun with an offset angle of about 18 ◦.

4.5.2. Analysis of failure scenarios

The failure of deployment of solar panels can lead to a mission loss. Based on the single failure
tolerant design concept, the satellite shall be able to survive in case one of the two solar panels
failed to be deployed. An analysis has been done on this as illustrated below. The above figure
of Figure 4.14 illustrates the power budget simulation with the same condition except that one
of the two side solar panels (-X) remains closed. The below figure of Figure 4.14 illustrates the
simulation results in case both of the solar panels are not deployed.

As illustrated in Figure 4.14, the SOC of the battery can be charged up to 100 % even if one
solar panel is closed. It can be also seen that the failed solar panel is in sun light, because of the
misalignment between the reference axis and the solar panel normal. It is worth noting that
in case of total failure of one side solar panel (e.g. electrical open circuit), the power budget
becomes even worse than illustrated in this figure.

Failure of deployment of both side solar panels are considered as multiple failures, therefore,
this case is not a driving requirement for the system design. However, it is still important to
take a look at what happens to the satellite. As illustrated in Figure 4.14, the SOC increases
slightly. Because the middle solar panel is the smallest solar panel (Table 4.6), the amount of
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Figure 4.14.: Battery state of charge and total power consumption and generation in configuration
BR (above) and C (below)
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4. System design of the Flying Laptop

power generation is significantly small. One can orient one of the side solar panels toward the
sun except for the middle solar panel, but for this purpose two different safe modes shall be
prepared and be switched with according to the status of the solar panel deployment. This
complexity can also lead to a severe failure aboard the satellite. Decision was made to use
only one common safe mode for all of above three cases, mostly because the third case is not a
design driving requirement. Therefore, the designed safe mode is optimized for the solar panel
configuration A. In the worst case with the solar panel configuration C, a new configuration file
shall be uplinked for the OBC in order to completely change the safe mode strategy.

4.5.3. Analysis of a maximum power consumption scenario

The feasibility of high-speed communication with the Traveling Wave Tube Amplifier (TWTA)
shall be demonstrated by the power analysis. This communication is one of the most important
technology demonstration missions of the satellite and also will be used for periodical downlink
of the large amount of scientific data. The TWTA requires electrical power of about 200 W.
This operation is conducted in the target pointing mode in order to point the Ka-band antenna
toward the communicating ground station. The amount of total power consumption of the
satellite system sums up to about 310 W during this operation. As defined in requirements,
this high-speed communication shall be able to be conducted twice per day. In the following
simulation, this communication has conducted twice in consequent two ground contacts. The
initial SOC is set to 100 %. The simulation scenario is summarized in Table 4.7. The simulation
results are illustrates in Figure 4.15 and Figure 4.16. The initial rotational rate is set to 3 ◦/s
around the Y body-axis.

Table 4.7.: High-speed communication simulation scenario

Sequence [min] System mode ACS mode TT&C mode

0 Safe Detumbling (0) -
35 Safe Safe (1) -

220 Idle Idle (2) -
235 Active operation Nadir pointing (4) -
240 Active operation Target pointing (5) High-speed communication
255 Idle Idle (2) -
320 Active operation Nadir pointing (4) -
340 Active operation Target pointing (5) High-speed communication
355 Safe Detumbling (0) -
400 Safe Safe (1) -

Figure 4.15 illustrates the battery SOC, existence of the sun, and the attitude control system
mode, together with the summary of system power consumption and generations. As described
in Figure 4.10, in order to move into target pointing mode, ACS needs to be commanded through
idle mode and nadir pointing mode, starting from the safe mode. The mode number of the
ACS is also listed in Table 4.7. The first high-speed communication takes place at 240 minutes,
and the second at 340 minutes, respectively. Each communication lasts 15 minutes. After the
first communication, the system goes back into idle mode, while the second communication is
followed by system safe mode (ACS goes into the detumbling mode).
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Figure 4.15.: Battery state of charge, ACS mode, and total power consumption and generation
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Figure 4.16.: Rotational rate and sun vector angle
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4. System design of the Flying Laptop

From Figure 4.15, it can be seen that the SOC of the battery decreases down to about 93 %
after the second communication, and again increases up to 100 % in the next orbit. It is
also illustrated that the power consumption rises up to the maximum value of about 310 W
during the high-speed communications. Figure 4.16 illustrates the absolute rotational rate of
the satellite body and the angle between the sun vector and the solar panel normal. It can be
seen that the initial rotational rate was successfully detumbled at first, before moving into safe
mode. Also the rotational rate remains lower than about 1 ◦/s during the active operation. In
the safe mode, the solar panels are successfully pointed toward the sun with an offset of about
18 ◦. It can be seen that the angle between the solar panel normal and the sun vector changes
dramatically during the active operation. In this simulation scenario the satellite goes into safe
mode (ACS once goes into detumbling mode and then into safe mode) just after the second
communication in order to simulate mulfunction of attitude control components as the worst
case. As illustrated in the figure, the satellite establishes its stable attitude by the end of the
next orbital phase. This performance of the satellite promises its safety power management.
Consequently, this simulation results ensures that the Ka-band high-speed communication can
be conducted at least twice per day as required.

4.6. Summary

This chapter described the system design of the Flying Laptop mainly from the aspects of
electrical architecture and operational design. According to the mission requirements and con-
straints, the electrical architecture of the satellite system was designed. Functional analysis
defined required satellite components. The electrical interfaces between satellite peripherals
and the on-board computer are designed by means of electrical interconnections block diagram,
I/O diagram, the real-size mock-up model of the satellite system, and the harness cabling plan.
This activity provides design requirements of the OBC.

The operational design of the Flying Laptop satellite was summarized in terms of operational
mode design, commanding design, data handling design, communication structure design, and
contingency operation design. The validities of these operational designs in terms of power
balancing are verified by the mathematical model based on Mathworks MATLAB/Simulink
model. Simulations have illustrated that the established LEOP operation scenario can ensure
secure establishment of the initial condition of the satellite. Simulations indicated that the
satellite can survive and conduct missions even if one side solar panel is failed to be deployed.
Finally, it is also validated, that the Ka-band high-speed communication can be safely conducted
twice per day. The contingency operation concept ensures secure recovery of the system.

The FPGA-based on-board computer of the Flying Laptop shall fulfill the requirements iden-
tified in this chapter. Furthermore, the hardware logic inside FPGAs shall support the op-
erational concept developed in this chapter, including the operational modes, commanding
structure, and communication algorithms, together with the attitude control algorithms.
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In this chapter, the proposed concept of FPGA-based computer system is applied to the demon-
stration small satellite Flying Laptop. This system concept is named as FPGA-based On-board
Computer for Reconfigurale Computing on Space Systems: FORS. As described in Chapter 4,
the design of the OBC is strongly related with the system design of the whole satellite system.
The computing resource of the Flying Laptop satellite are provided by a single unified OBC that
performs the control functions of the traditional satellite bus controller (SBC) and all tasks of
the payload data handling and processing system. In general, when designing an OBC based
on COTS components, the design strategy has to be based on the assumption that, because of
the SEE, failures within the system must not be considered as an exception but, in principle,
as normal operation. Such a design principle requires fault tolerance features to be added to
the system [100].

5.1. Requirements of OBC

From the system design activity described in Chapter 4, the requirements of the OBC are
defined as follows. The OBC of the Flying Laptop shall

• be equipped with reconfigurable SRAM-FPGAs for the demonstration of reconfigurable
computing on spacecraft,

• be a single centralized OBC which performs all kind of general functions of SBC,

• be connected with all peripheral instruments,

• be capable of conducting all required subsystem functions such as image processing, atti-
tude determination and control, telecommunication, and housekeeping,

• be capable of numerical computation based on fixed point calculations with an absolute
pointing accuracy of 150 ”,

• be capable of high-speed data transfer for Ka-Band communications up to 500 Mbps,

• be compatible to the mechanical structure of Eurocard 3U specification,

• be equipped with compactPCI connectors with the quantities of input/output pins of
each board up to 220,

• be equipped with mass memories equal to or larger than 4 GB in which the scientific and
housekeeping data, as well as uplinked commands are stored,

• have total power consumption of up to 20 W,

• be reconfigurable via telecommands,

• have a design life time of 2 years,

• be based on COTS components as much as possible,
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5. Design of OBC hardware

• be based on a single failure redundant design concept, and

• offer capability of floating-point calculation based on internal PowerPC Cores.

5.2. Applied OBC design

According to the discussion in Chapter 2, the selected concept of the FORS for Flying Laptop
satellite is based on a combinational use of reconfigurable SRAM-FPGAs and Flash-FPGAs.
The internal configuration and mechanical structure of the OBC is illustrated in Figure 5.1 and
Figure 5.2.

Figure 5.1.: OBC internal configuration Figure 5.2.: OBC mechanical structure

The OBC of the Flying Laptop consists of four Central Processing Nodes (CPNs) and one
Command Decoder and Voter (CDV). They are connected with each other through a backplane
(BPL) and with other peripheral electronics through a Connector Interface Board (CIB) as
illustrated in above figures. Each CPN is based on a reconfigurable SRAM-FPGA: Virtex-II
Pro XC2VP50 of Xilinx. The CDV is based on two Flash-FPGAs: RTProASIC RT3PE3000L
of Actel. The SRAM-FPGA is selected partly because the chip was the state-of-the-art SRAM-
FPGA at the time of its design fix and also partly because the chip offers additional processor
core named PowerPC inside. Therefore, the CPN can also be loaded with a soft-core of a
microprocessor so that usual floating-point calculation can be performed on demands. This
capability enables a “Rent-A-Sat Mode” for the satellite, in which the satellite is temporally
lent to third parties for orbit verification of their satellite software such as attitude determination
and control algorithm. The applied SEE-tolerant FPGA for the CDV is the state-of-the-art
radiation tolerant Flash-FPGA. Both of the applied FPGAs, XC2VP50 and RT3PE3000L, are
the very devices whose SEE and TID effects are investigated in Part I, and therefore, the
exact results of reliability analysis hold for the OBC of the Flying Laptop. The development of
the OBC follows a model philosophy of breadboard model, engineering model, and then flight
model.
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The redundancy degree of the CPN is decided as four. This can also incorporate the uncertainty
of space radiation model and the case of permanent failure of one of the four CPNs. Further-
more, 4 nodes allows self voting by themselves by communicating with each other if required.
Generally, 3n+ 1 system can detect n simultaneous failures. The merits of this approach are:

• the extended lifetime of the OBC in the event of a permanent failure of a CPN,

• the short outage time (higher availability) in the event of SEU induced failures, and

• the redundant internal voting capability on demand.

The design is based on the assumption that each CPN performs the exact same tasks at the
same time. This is why all input/output signals between peripheral components, in total more
than 200 lines, shall be connected to CPNs in parallel, so that each single CPN can execute full
functions and control tasks. CPNs shall be also physically identical. The hardware structure of
the OBC plays an important role against TID. The width of the aluminum structure is 3 mm.

5.3. System reliability

Following the discussions in Part I, the system reliability can be simply described as Equation
(2.2). Because the reliability of the node system against SEEs is repairable, the term RNS,SEE

is dependent on the time after the last (complete) node system start-up at t′, which can be
obtained by Equation (2.63). Consequently, the system reliability at t with the redundancy
degree of m = 4 can be described as

Rsys,NS3of4
(t) = RV (t) ·R2of4,NS(t)

= RV,SEE(t) ·RV,TID(t) ·R2of4,NS,SEE(t− t′) ·R3of4,NS,TID(t) , (5.1)

where R3of4,NS,TID(t) can be obtained by Equation (2.59) with knowing the amount of total
ionizing dose in time t. In case one node unit failed permanently due to any kind of reasons,
the node system works as a 2-out-of-3 system. The reliability of this system can be described
as

Rsys,NS2of3
(t) = RV,SEE(t) ·RV,TID(t) ·R2of3,NS,SEE(t− t′) ·R2of3,NS,TID(t) , (5.2)

where R2of3,NS,TID(t) can be obtained by Equation (2.58) and the t remains as the total mission
time after the launch.

According to the analysis on the reliabilities of the selected FPGA devices against TID effects,
the terms RV,TID(t), R3of4,NS,TID(t), and R2of3,NS,TID(t) for t ≦ 2 years can be regarded as ≈ 1.
Therefore, under the assumption that the SEE effects on Flash-FPGAs can be mitigated, the
system reliability mainly depends on the time interval t−t′. Suppose that t−t′ = 30 days, for the
given unit failure frequency (or given MTTFNU) identified in Section 1.4.3 (in total 9.56 · 10−5

assuming a statistical independence) and a MTTRNU = 5 s, the total system reliability in
t = 2 years for m = 4 and for m = 3 can be calculated by above equations as

Rsys,NS3of4
(t− t′ = 30days) = 0.99932 , (5.3)

and
Rsys,NS2of3

(t− t′ = 30days) = 0.49181 . (5.4)
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5.4. Functional requirements allocation

The requirements of OBC shall be fulfilled by the combinational functionality of its components.
The functional requirements of CPN and CDV are derived from the above mentioned top level
requirements as follows:

Functional Requirements of the CPN

CPNs shall

• conduct all satellite control functions,

• be reconfigurable both from stored memory and in streaming mode from the CDV,

• be quad-redundant and be capable of absorbing a permanent failure of one CPN,

• be able to communicate with each other,

• report checksums to CDV,

• be equipped with a safety circuit in order to detect SEL and isolate from the power supply,

• be isolated from the communication bus via isolation buffers controlled by the CDV,

• be synchronized with the other CPNs within 5 s after reconfiguration, and

• be able to transport data with a baud rate of up to 500 Mbps to the Ka-band system.

Functional requirements of the CDV

CDV shall

• be single event effects tolerant,

• be equipped with Flash mass memories equal to or larger than 4 GB,

• be connected with primary communication components to decode up-link commands,

• monitor the checksum from CPNs and vote the master CPN out of the four,

• forward the SRAM-FPGA’s new configuration data to the CPNs in both normal transfer
mode and streaming mode,

• be capable of enforcing reset/recovery of each CPNs,

• be capable of shutting down each CPN,

• be capable of transporting date to each CPNs with a baud rate of up to 500 Mbps,

• conduct power cycling of a CPN,

• execute high level commands which are not processed by CPNs,

• retain on-board real time clock information and deliver it to CPNs,

• distribute reference clock signals to CPNs, and

• not be reconfigured on orbit.

All control and data processing functions of the satellite, which are not directly executed by the
CDV, are implemented into the SRAM-FPGA on the CPNs. Main satellite controlling functions
of the CPNs are attitude control algorithm computation, real-time image processing, generation
of scientific telemetry data, TM/TC processing and execution of housekeeping routines.
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5.4.1. FDIR strategy

Due to the SEU sensitivity of the SRAM-FPGAs, arbitrary failures of the CPN shall be ex-
pected. The Failure Detection, Isolation, and Recovery (FDIR) strategy of the OBC operation
is based on:

• failure detection by comparing the checksums generated by the replicated redundant CPNs

• failure isolation by voting the checksums and selecting a master CPN

• failure recovery by enforcing the CPN delivering a wrong checksum to perform re-
set/restart procedures and subsequently re-synchronize with the other nodes

Within this straight forward FDIR strategy, failure handling mainly relies on the implementa-
tion of the robust restart capability.

5.4.2. Node system configuration and interface replication

Figure 5.3 illustrates the internal functional architecture of the OBC. The CDV selects one CPN
as the master node by switching the isolation buffers. Only the master node is able to drive
the output lines to the devices of the satellite. The redundant nodes in general are receiving
the same digital inputs and executing the same functions, thus producing the same results.

Figure 5.3.: OBC internal architecture

The faulty node delivering a wrong or no result are enforced to perform the reset/restart
function. If the current master fails to produce the correct checksum, the CDV will select
another node as the master which is giving correct outputs. To avoid accumulation of latent
errors in the master node, the CDV may cyclically select a new master enforcing the old master
to execute the reset/restart function. Following CPN states shall be determined by the CDV.

• Inactive (power off, isolated from the shared buses)

• Master (selected to drive the output lines of the shared I/O buses)

• Monitor under recovery (performing the restart/recovery function)

• Monitor synchronized (runs synchronously, provides correct checksums, can be selected
as the master)
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5.5. Design implementation of CPN

5.5.1. Node structure

The block diagram of the developed engineering model of the CPN is illustrated in Figure 5.4.
The CPN was developed under a contract by the Steinbeis Transferzentrum Raumfahrt (TZR)
[101]. The design of the CPN is specified in [100]. The secure reconfiguration of the Virtex-II
Pro FPGA is performed by a dedicated configuration controller (CC) implemented in a separate
FPGA with radiation hard configuration on EEPROM. Multiple versions of the configuration
files for the Virtex-II Pro FPGA can be stored in three separate NOR-Flash memories. The
CDV has access to them via the CC either to load new versions of configuration files or to
restore corrupted ones.

Figure 5.4.: Block diagram of CPN [100]

Storing different versions of configuration data for the Virtex-II Pro FPGA in different Flash
memory devices allows secure in orbit reconfiguration of the satellite functions. Loading the
Flash memories under control of the CDV in a streaming mode ensures that CPNs can be
reconfigured even if all configuration data in the Flash memory has been corrupted.

In addition to the robust restart capability of the nodes, the availability and reliability of the
OBC highly depends on the feature to securely isolate a faulty node so that it can not obstruct
the correct operation of the rest of the system. All I/O connections are implemented by isolation
buffers that completely disconnect all interface signals from the shared I/O and communication
buses if the CDV switches off the power supply of a node. In addition, the enable control signal
of the isolation buffer devices is used to control the output drivers of the CPNs such that only
the selected master node is able to drive the output lines.

The Virtex-II Pro FPGA has accesses to four parallel operating banks of fast SSRAM (Syn-
chronous Static Random Access Memory) for intermediate results and to two banks of DDR
SDRAM (Synchronous Dynamic Random Access Memory) to be used for application data or
optionally as program memory of the PowerPC core. Additional NAND Flash memory can be
used for permanent storage of application data or optionally of the PowerPC code. PowerPC
Cores can be used for intensive numerical calculations such as, e.g., Kalman filtering.
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5.5.2. Interface isolation

The possible data rates of the isolating communication drivers can be obtained from the diagram
in Figure 5.5. Input buffers are always enabled, while output buffers are disabled by default.
Only the output drivers of the master node are enabled by the CDV.

Figure 5.5.: Signalling rates vs. distance of the isolation buffer devices [100]

The differential high-speed serial connections (M-LVDS, LVDM, RS-422) and the I2C bus re-
quire appropriate termination of the I/O signals. Depending on the topology of the connection
the termination resistors must be placed nearby the receiver and/or transmitter connected by
the longest path of the topology. To have four identical CPNs, termination cannot be imple-
mented on the boards, thus the termination resistors need to be placed on the BPL.

The high-speed communication interface between the Ka-band transmitter is realized as two
250 Mbps LVDM channels, in order to reduce the required clock frequency inside FPGAs,
though the interface standard allows higher baud rates. Implementation techniques of high-
speed asynchronous interfaces with low clock frequencies are provided by Xilinx in [102].

5.5.3. System clock

To allow an efficient and tight synchronization a reference clock of 10 MHz is generated by the
CDV and distributed to CPNs via point-to-point LVDS signals routed on the BPL.

Figure 5.6.: System clock distribution
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The routing characteristics of the signal (length, impedance, delay) must be identical for each
connection as illustrated in Figure 5.6. An internal zero delay clock multiplier generates clock
signals for the FPGAs. For the Virtex-II Pro, the reference clock is multiplied by 8 to deliver an
80 MHz clock. To support stand alone operation of the node an internal 10 MHz clock oscillator
is implemented on CPNs. The output of this internal clock is connected to the CDV.

5.5.4. Engineering model of CPN

The engineering model of the CPN is developed based on the above mentioned functionalities.
The developed EM of the CPN can be seen in Figure 5.7. The detailed internal architecture of
the CPN can be seen in [100].

(a) Front side

(b) Back side

Figure 5.7.: Engineering model of CPN
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5.6. Design implementation of CDV

The CDV is the component which requires the highest reliability among the on-board com-
ponents. The solution to this requirement is to keep the high reliability logic as compact as
possible and apply internal multi-module redundancy to achieve a higher reliability. Indeed,
the size of the available Flash-FPGA RTProASIC is very limited to be implemented with all
functionalities of the CDV in a TMR configuration, therefore, trade-off shall be done defin-
ing priorities of functionalities and applied radiation mitigation methods. Applied radiation
mitigation methods are described in Chapter 6.

According to this background, besides the Flash-FPGA which is responsible to command de-
coding and voting, one more Flash-FPGA for on-board data handling is also implemented on
the CDV. The FPGA for the command decoding and voting is named as Main Decoder/Voter
unit (MDV) and the additional Flash-FPGA is named as Data Handling Support unit (DHS).
For both FPGAs, the same Flash FPGA RTProASIC is selected.

Because the functionalities of the CDV is very critical, on-board reconfiguration of the hardware
configuration of the CDV is not planned. Therefore, the control algorithms of the CDV shall
have been developed before the launch. The final FM can be theoretically configured many
times, it shall be kept minimum in order to prevent extra degradations before flight. Due to this,
the most of the functionalities shall be throughly developed based mainly on breadboard and
engineering models. The FM shall be reconfigurable on ground with external reconfiguration
instruments.

5.6.1. Flash-FPGA RTProASIC

RTProASIC3 devices are pin-compatible and timing-compatible with the commercial equivalent
ProASIC3EL devices in Fine-Pitch Ball Grid Array (FG) packages. For example, to prototype
a space-flight design intended for RT3PE600L, the A3PE600L can be used. Since ProASIC3
FPGAs are reconfigurable, only a very small number of prototyping devices are required. Char-
acteristics of available two types of RTProASIC chips are summarized in Table 5.1. Due to the
demands on larger logic size, the RT3PE3000L is selected for both of MDV and DHS.

Table 5.1.: Characteristics of RTProASIC FPGAs [17]

Device RT3PE600L RT3PE3000L

System Gates 600,000 3,000,000
Logic Tiles 13,824 75,264
Core RAM Blocks 24 112
Core RAM Bits (k=1,024) 108 k 504 k
FlashROM Bits (k=1,024) 1 k 1 k
Routed 18 18
PLLs 6 6
I/O Banks 8 8
User I/Os 270 620
I/O Registers 810 1,860
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5.6.2. Internal structure and interfaces

The designed internal structure and the interfaces between peripheral electronics of the CDV
including CPNs are illustrated in Figure 5.8. The main components of the CDV is the MDV
and DHS Flash-FPGAs, Flash mass memory, Real Time Clocks (RTCs), and housekeeping
unit. Each hardware components and its functions are described in detail below.

Figure 5.8.: CDV internal structure and peripheral interfaces

5.6.3. Main decoder/voter FPGA

The MDV is responsible for the safe operation of the CPNs performing their voting and com-
mand decoding. The logic inside the MDV shall be compact to ensure highly reliable voting.
The RTCs and housekeeping unit is connected with the MDV. The functions of MDV are:
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• command decoding

• telemetry downlink in contingency

• voting of CPNs by monitoring the checksum and housekeeping data

• clock signal selection and distribution

• real time clock management

• configuration management of CPNs

• self housekeeping monitoring

Command decoding

All uplink channels of the Flying Laptop except for the Ka-band are connected with the MDV
as well as the four CPNs. Demodulated uplink bit streams can be decoded at the MDV. Flying
Laptop introduces two levels of telecommands, high level and low level. High level commands
includes CDV operation commands, e.g., “CPN reset”, are executed by the MDV. Low level
commands, e.g., “take an image”, are executed by CPNs directly.

Telemetry downlink in contingency

Downlink channels of the UHF and S-Bands are also connected with the MDV, as well as
the four CPNs. MDV is capable of sending primitive housekeeping data to ground stations
activated by high level commands. This is necessary in case of severe radiation conditions
caused by coronal mass ejections, because the CPNs can not be operated safely. MDV is also
capable of sending reset commands to the PCDU directly, shutting down all electric components
which are not needed in safe mode. In this way, MDV can reset the satellite status without
CPNs.

Voting mechanism

The voting of the master node is closely related with housekeeping data monitoring. The MDV
has nine TTL interfaces between each CPN in order to monitor its status and also to control
the operation of CPNs. The information exchanged and control signals are listed in Table 5.2.

Table 5.2.: Housekeeping and control signals of CPN

Data Line Type Description

V ALERT HK Data Voltage Alert: Supply voltages lower than threshold
C ALERT HK Data Current Alert: Supply Current higher than threshold
T ALERT HK Data Temperature Alert: Temperature higher than threshold
CC ERROR HK Data Reconfiguration of CPN failed
READY HK Data Reconfiguration of CPN succeeded
SYNCED HK Data Synchronized with other CPNs
POWER ON Control Power-on CPN
OBC RESET Control Reset (Reconfigure) CPN
MASTER Control Select as the Master Node
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Each CPN reports six different housekeeping data. The first three ALERT signals are for mon-
itoring supply voltage, supply current, and temperature of the CPN. If the voltage drops below
the threshold a hard reset of the CPN is performed and reported to the MDV. If the current
exceeds maximum threshold, it is reported to the MDV and the CPN once becomes isolated
from the power source and then powered on again. The CC ERROR reports a failure of recon-
figuration and the READY reports a success of reconfiguration of the CPN. A CPN performs
synchronization with other CPNs and reports SYNCED after successfully synchronized. MDV
can control whether the CPN shall be powered on, reset, and selected as the master or not
through control signals.

For the voting of the CPN, each CPN also reports hash signals to the MDV. These lines are
only one directional from CPNs to the CDV, however, a hash signal from a CPN is connected
with all other CPNs as illustrated in Figure 5.9. After the synchronization, all CPNs perform
the same task at the very same clock cycle and then start to send hash signal (information for
voting) to the CDV. CDV can simply compare the contents of the hash packages from CPNs
and if an anomaly exists, it isolates the failing CPN. CDV selects one master node out of the
synchronized and consistent CPNs. This communication is conducted based on the High-Level
Data Link Control (HDLC) protocol [103].

Figure 5.9.: Hash signal interface between CDV and CPNs

Node synchronization

The synchronization of the four nodes are performed through “Sync” packets exchange between
each other via hash channels based on the HDLC protocol as illustrated in Figure 5.10. Each
CPN is capable of shifting its operation phase and performs self-synchronization automatically
by receiving the “Sync”packets from other three CPNs and resetting the internal clock counter.
If a CPN is powered on or reset, it starts a synchronization procedure just after the initialization,
sending a “Sync” packet every 100 ms. It also counts up its internal clock counter to measure
the interval of 100 ms. If a CPN receives a “Sync” packet, it sets the value of the internal
counter with an initialization value. This procedure ensures that the clock counters inside the
receiving and sending CPNs are synchronized. In case of system power on or reset as illustrated
in Figure 5.10 (a), the clock counters of CPN B, C, and D, which run slightly later than A, are
synchronized with that of the CPN A. Similarly, in case one CPN is reset, the CPN synchronizes
itself to the other CPNs as illustrated in Figure 5.10 (b). Once more than one CPNs are already
synchronized, they behave just like a single CPN. In this way, synchronization can be done even
in case more than one CPNs are randomly reset. The trick in this mechanism is that the first
“Sync” packet is suppressed and is not really sent to others (Figure 5.10). This mechanism
ensures that joining CPNs synchronize themselves to already synchronized CPNs.
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Figure 5.10.: Mechanism of node synchronization

The exceptional case is that more than one CPNs start synchronization procedures almost
simultaneously with a deviation of around 100 ns. In this case, more than one “Sync” packets
are sent because of the finite processing period of an HDLC packet. If this happens, the second
packet is just ignored as illustrated in Figure 5.10 (c). This feature also ensures that already
synchronized CPNs are not influenced by newly joining CPNs.

Clock signal selection and distribution

CDV performs clock signal selection and distribution. CDV receives one Ultra Stable Oscillator
(USO) clock signal “USOCLK”and four clock signals from the internal oscillator “INTCLK”on
the CPNs. CDV selects one of them and distribute it to the four CPNs so that all CPNs receive
the same reference clock signal “REFCLK”. The schematics of this operation is illustrated in
Figure 5.11. After the orbit insertion, the USO is always powered-on. This component is already
space qualified. However, in case of absence of “USOCLK”, one of the “INTCLK” is selected
and distributed. The oscillators on CPNs are designed in such a way that the “INTCLK” is
always synchronized with the “REFCLK.” This mechanism ensures smooth switching between
the reference clock signals without any phase mismatch at the CDV.

Figure 5.11.: Clock signal interface between CDV and CPNs
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Real time clock monitoring and distribution

The CDV is also equipped with triple redundant, on-board Real Time Clocks (RTCs). This
RTCs is used to store and propagate the clock from a given point in orbit. Real time information
can be obtained from the on-board GPS receivers (triple redundant) and command uplink.
Every time GPS is powered on, or experiencing ground contact, the value is reset. This RTC
is not mission critical.

Configuration management of CPNs

All CPNs are connected with the MDV through their own special bidirectional channels for
configuration control of the main SRAM-FPGA. MDV shall conduct

• programming of configuration Flash memories 0, 1, and 2 on CPNs,

• reconfiguration of the SRAM-FPGA in a streaming mode,

• selection of a Flash memory from which the SRAM-FPGA shall be reconfigured, and

• erasure of configuration data in Flash memories.

The three NOR-Flash memories on CPNs can be used as triple module redundancy, and also
single separate configuration memories. MDV can forward received new configuration files to-
ward these Flash memories or directly reconfigure the SRAM-FPGA on CPNs in a streaming
mode. MDV can also select one Flash memory from which the SRAM-FPGA shall be reconfig-
ured. MDV can also erase the data in the Flash memories. All these operations are conducted
using predefined communication packages between CDV and CPNs.

5.6.4. Data handling support FPGA

DHS is responsible to telemetry data and memory management. The telemetry data of the
Flying Laptop is classified into housekeeping data and scientific data. Between the MDV and
DHS FPGAs bidirectional dedicated data transfer interface is implemented and the housekeep-
ing data gathered at the MDV is once transported into the DHS and saved into the Flash
mass memory. The main data transport channels are “On-board Data Tx/Rx.” The Hash
signal channels are also connected with DHS and can be also used for data transfer as back-up
channels. DHS performs the data handling received from the four CPN, the memory manage-
ment and the data traffic between the master CPN and the mass memory. Thus this FPGA
contains a file management capability for managing this data stream. Moreover, it saves the
housekeeping data of the last three orbits into the mass memory.

5.6.5. Mass memory

The mass memory is selected according to the investigation of radiation effects on different
types of Flash memories by Micron, Hynix and Samsung [104]. The 4Gbit Flash memory by
Samsung revealed its excellent performance against TID effects. Detailed experimental results
can be seen in [105]. The high performance of the Samsung NAND-Flash memory against
Toshiba NOR and Spansion NOR, STMicroelectronics NAND-Flash memories is also reported
by the NASA in [106]. Detailed analysis of TID effects on Flash memories can be seen in [107].
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Figure 5.12.: Flash memory (EM) Figure 5.13.: Flash memory (BBM)

The selected Flash memory is the 16 Gbit (2 GB) NAND-Flash memory by 3D PLUS (Fig-
ure 5.12) [108]. This memory is internally based on four of the above mentioned 4 Gbit Sam-
sung Flash memories [109]. The CDV is equipped with two of these Flash memories. For the
development purpose of control algorithm, functionally equal engineering model with the same
electrical interface is developed based on the original Samsung memory (Figure 5.13). One
module is used for scientific data and the other is used for housekeeping data.

5.7. Design implementation of backplane

The limitation in pin numbers comes from the maximum quantity of the pins of CompactPCI
connectors mounted on the Eurocards. By having four CPNs and one CDV, as well as one CIB,
the total quantity of pins routed through the BPL exceeds 1800 (Figure 5.14). This integrated
dense electrical interconnects allows the over-all satellite design concept. Interface lines of
LVDM are designed to allow 250 Mbps communications. Because the CPNs are connected with
the satellite peripheral electronics in a bus configuration, termination resistors are mounted on
the back side of the BPL in order to realize identical manufacturing of the CPNs (Figure 5.15).

Figure 5.14.: Backplane (EM) Figure 5.15.: Termination resistors
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5.8. Summary

As the consequence of the above described hardware development activities, the breadboard
model of the OBC is developed and assembled as illustrated in Figure 5.16. This BBM assembly
demonstrates the electrical functionality and is the fundamental basis of the control algorithm
development of the OBC of the Flying Laptop, which is described in detail in Chapter 6.

Figure 5.16.: Breadboard model of the on-board computer

According to the BBM-EM-FM model philosophy of the OBC development, most of the com-
ponents applied for the BBM are electrically equivalent to the FM. For the agile development
purposes, several FPGA development boards such as RC10 and RC240 of Agility Design Solu-
tions are integrated in the model. The Flash-FPGAs on the CDV are replaced with a commercial
ProASIC3 with a support of one Virtex-5 chip. This combination shall reduce the development
cost as well as accelerate the control algorithm development in Handel-C followed by porting
through VHDL into Flash-FPGAs. All components of the BBM can be gradually upgraded
with EM and FM, according to the progress of hardware development. Indeed, EMs of the
CPN are integrated in this environment to verify their functionalities. The architecture of the
control algorithms are designed in a portable manner (see Chapter 6) so that the developed
and verified control algorithms by BBM can be further implemented into EM and FM. The
design activities based on this BBM shall produce detailed requirements and implementation
techniques for EM and FM. This model is also used for the verification of developed control
algorithms with the simulation and verification environment described in Chapter 7.
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The hardware logic inside FPGAs are different from the traditional software which is executed
in a processor. In the scope of this study the hardware logic designed for FPGAs are denoted
as Control Algorithm (CA), indicating the difference from software. Control algorithms can
be designed by software tools and can be updated even after the launch. The significant
difference in designing CA is that it is no longer software design but hardware design. Therefore,
the designer of CA requires complete knowledge about the behavior of hardware components
inside the target FPGA as well as types, sizes, timing, and performances of available hardware
resources. Especially, the size of designed hardware logic shall be optimized to be as small as
possible, so that it can fit inside the target FPGAs. Moreover, due to the massive parallelism
of the FPGA architectures, the CA shall be implemented in a parallel manner. In other words,
in order to maximize the capability of FPGA devices, the CA shall be as parallel as possible,
otherwise lower clock frequency of FPGAs becomes demerit compared to processors.

In the beginning of this chapter, internal hardware resources of SRAM- and Flash-FPGAs are
briefly summarized. After that the developed design methods and the development environment
of CA for the Flying Laptop are described.

6.1. Mechanism of SRAM-FPGA

In this chapter the internal hardware resources of the Virtex-II Pro SRAM-FPGA by Xilinx is
briefly summarized with an emphasis on programmable logics. Even though, there are several
differences in size and performance between the different families, general mechanism of the
Virtex series are quite similar. The mechanism of SRAM-FPGA products of other companies
can be regarded as comparable.

The CA of the SRAM-FPGA is stored in external memory devices such as Flash-memory or
EEPROM. After powered on, the program stored there are loaded into the FPGA. The files
which are called in this process are called bit stream data. This information is loaded into
configuration memory in the FPGA, which consists of 1 bit column SRAM memory cell. This
loaded information becomes the source of FPGA configuration. The internal structure of the
FPGA can be classified into followings:

• Configurable Logic Block (CLB)

• Multipliers (Special Purpose Logic)

• Block RAM (BRAM)

• Digital Clock Manager (DCM) and clock network

• I/O Block (IOB)

• Programmable Interconnects

The internal block diagram of an FPGA is illustrated in Figure 6.1.
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Figure 6.1.: Mechanism of SRAM-FPGA [53] Figure 6.2.: Configuration logic block [53]

6.1.1. Configurable logic block

The configurable logic is the central programmable element of an FPGA. Most of the user
logic are implemented into this element. CLBs are organized in an array and used to build
combinational and synchronous logic designs. A CLB element of Virtex-II Pro comprises 4
slices which are split into two columns of two slices (Figure 6.2).

Function generators

Each slice consists of two 4-input function generators, carry logic, arithmetic logic gates, multi-
plexers and two storage elements [53] (Figure 6.3). The function generators are implemented as
4-input Look-Up Tables (LUTs), which can also be used as distributed SelectRAM+ memory
or 16-bit variable-tap shift register element. LUTs are able to implement any arbitrary boolean
function of four inputs. The output signals of LUTs can be routed either to the data input
(D) of the storage element, or to the MUXF5, or to the carry-logic multiplexer, or to the XOR
gates, or can exit the slice from X or Y output. Each slice contains one MUXF5 and one of
either MUXF6, MUXF7, or MUXF8 multiplexer. These multiplexers enable combinational use
of function generators across the slices.

Storage element

Storage elements can be configured either as flip-flops (FFs) or as level sensitive latches. Tow
storage elements inside a slice have common clock (CK), clock enable (CE), and set/reset (SR)
input signals. FFs are essential for step-wise logic operation in sequential clock cycles.
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Figure 6.3.: Structure of a slice

6.1.2. Peripheral hardware resources

Besides CLBs, Virtex-II Pro is equipped with following hardware resources as illustrated in
Figure 6.1. Detailed information can be found in [53].

Multipliers: Virtex-II Pro multipliers, also called as special purpose logic, are optimized for
high-speed operations with a lower power consumption compared to an 18-bit× 18-bit multiplier
in slices. Complex signal processing such as arithmetic calculations can be performed.

Block RAM: Virtex-II Pro devices incorporate large amount of Block RAM resources. Each
BRAM is an 18 Kb true dual-port RAM with two independently clocked and independently
controlled synchronous ports that access a common storage area. BRAM also supports various
configurations, including single- and dual-port RAM and various data/address aspect ratios.

Digital clock manager: For the internal clock management, Virtex-II Pro is equipped with
Digital Clock Managers (DCMs). DCMs can generate new clocks with clock multiplica-
tion/division and phase shifting. DCMs allow to have multiple clock domains inside an FPGA.

I/O Block: I/O blocks are in groups and provide external interfaces. Each IOB can be used
as input and/or output for single-ended I/Os. Two IOB can be used as a differential pair.

Programmable Interconnects: Most of the signals inside an FPGA are routed by means of
programmable interconnects through the device. These global routing resources are located in
horizontal and vertical routing channels between each switch matrix.
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Figure 6.4.: Mechanism of Flash-FPGA [17] Figure 6.5.: LUT configurations

6.2. Mechanism of Flash-FPGA

The internal structure of the RTProASIC chips are illustrated in Figure 6.4 [17]. The structure
of RTProASIC Flash-FPGA is simpler than that of the Virtex-II Pro SRAM-FPGA. The main
programmable logic part is the VersaTiles. This VersaTile supports:

• All 3-input logic functions - LUT-3 equivalent

• Latch with clear or set

• D-flip-flop with clear or set

• Enable D-flip-flop with clear or set.

VersaTiles generate user defined functionalities similar to the CLBc in Xilinx FPGA. The Flash-
FPGA also incorporates RAM Blocks based on SRAMs, however, based on the requirements
of high reliability, it is not used for reliable logic in the scope of this research. In addition to
these, the chip also offers 1 kbit of on-chip, user accessible nonvolatile FlashROM. This can be
used in diverse system applications, for example:

• System calibration settings

• Secure key storage for secure communications algorithms

• Date stamping

Furthermore, RTProASIC devices offer Flash*Freeze technology, which enables the devices to
be instantaneously shut off dynamic power consumption while retaining all SRAM and register
information. Consequently, most of the design effort of Flash-FPGA in the scope of this research
is done for VersaTile.
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6.3. Control algorithm design methods

6.3.1. Hardware description languages

The selected hardware description languages (HDLs) for the development of control algorithms
of Flying Laptop are VHDL and Handel-C. The VHDL is a low level HDL and stands for Very-
high-speed integrated circuit HDL. VHDL has constructs to handle the parallelism inherent
in concurrent hardware designs and is able to design complex, tailor-made hardware logics.
Designers can specify every single gate or flip-flop built and manipulate the propagation delays
of signals throughout the system. VHDL is a dataflow language whose processes are parallel
by default.

The second language Handel-C is a high level HDL, which is originally developed by the Oxford
University Computing Laboratory [110], and is a product of Mentor Graphics at the time of
writing. Handel-C is a programming language for compiling programs into hardware images in
SRAM-FPGAs. It is a rich subset of ANSI C, with non-standard extensions to control hardware
instantiation and parallelism. Even though, floating point data types were omitted, floating
point arithmetic can be supported through external libraries. Opposed to existing other simple
C-translators for FPGAs, Handel-C targets hardware directly, and further provides hardware
optimizing features. A big advantage, compared to the C-translators, is that variables and
constants can be given a certain width, as small as one bit. Also, Handel-C provides bit
manipulation operators and the possibility of parallel processing of single statements or whole
modules. This can not be realized with other approaches based on a sequential language.

6.3.2. Development environment of CPN

The programming of CPNs is based on the DK design suits of Mentor Graphics, which is the
programming environment of Handel-C. In contrast to VHDL, the focus of Handel-C is on fast
prototyping and design optimization at the algorithmic level. Low-level problems are hidden
completely and all gate-level decisions and optimizations are done by the compiler. It also
provides simulation capabilities of the circuit behavior at the algorithmic level, based on the
Handel-C semantics. Designers can track the values of variables throughout the simulations,
which is very attractive to satellite control algorithm implementation.

Handel-C has not ever been applied for on-board computers of spacecraft, therefore this thesis
also focuses on investigating the capability and feasibility of applying Handel-C for space sys-
tems to realize complete satellite control functions in FPGA chips. Though the programming
with Handel-C is very much similar to programming, designers require hardware logic level
knowledge. The mechanism of hardware mapping by Handel-C is separately investigated and
summarized in Appendix E.

6.3.3. Development environment of CDV

For the development of hardware logic inside Flash-FPGAs, both of the Handel-C and VHDL
are applied. Even though, the Handel-C is attractive, it does not directly support Flash-FPGAs
nor Antifuse-FPGAs. However, Handel-C also supports VHDL output and this can be further
used as input files into Actel’s VHDL programming environment Libero IDE.
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6.4. CPN Control algorithm architecture

The strictly limiting factor in implementing traditional satellite control functions into FPGAs
is the amount of hardware resources available inside an FPGA chip. The designed control
algorithm shall as compact as possible in terms of generated hardware to fit into the targeting
device. In order to make the idea come true, there are several important criteria which influence
the design of the control algorithm architecture.

The first criterion is the portability. The developed CA shall be portable into different platforms,
for example not only into the flight model hardware, but also into the engineering model or
any kind of verification model, so that the verified control algorithm can be directly ported
into the real flight configuration. This is indispensable to achieve a higher verifiablility of the
developed functionality of the CA prior to the actual implementation into the FM. This criteria
accelerates a modular design of CAs.

The second criterion is the parallelism. The computational performance and efficiency of FPGA
devices are depending on the degree of internal parallelization of the algorithm. Due to their
inherent low clock frequencies relative to modern processors, implementing a purely sequential
process can not exploit the potential capability of FPGA technologies. To achieve high com-
putational throughputs, significant parallelization shall be introduced. This criterion invokes
innovative parallelization techniques unlike usual satellite software in sequential programs.

The control algorithm architecture of the Flying Laptop is designed to fulfill above requirements.
First of all, in order to realize a high portability, abstraction layers are introduced. Secondly,
parallelization techniques of satellite control functions are developed.

6.4.1. Vertical layered structure

The first decomposition of the control algorithm is done in the vertical direction in terms of
the level of abstraction. An abstraction layer is originally a concept of software architecture.
It is a way of hiding implementation details of a particular functionality. This helps to make
applications independent from platforms by well defined interfaces between the layers. In order
to communicate with the outer world (read and write from/to devices) at the application level,
the program uses low level functions [111].

Since there is no operating system or firmware on an FPGA, the designed layers of the control
algorithm are, from lower level layer to the higher:

• PSL - Platform Support Library,

• PAL API - Platform Abstraction Layer Application Programming Interface,

• PAL-Core - Platform Abstraction Layer Core, and

• Application.

This is also illustrated in Figure 6.6. This four level approach conceals the low level func-
tions and platform dependent interfaces from application programmers and leads to a great
portability of the application algorithms. The functionality of each layer is described below.

Platform support library: The platform support library provides accesses to the platform
dependent external hardware resources, such as I/O devices and on-board memories. The PSL
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Figure 6.6.: Layered control algorithm structure

is comparable to the board support package provided by embedded operating system vendors.
Once a PSL has been implemented, a PAL can be developed to provide accesses to the PSL
using the PAL standard API calls.

Platform abstraction layer API: The Platform Abstraction Layer is divided into the PAL
API and the PAL Core. The PAL API provides generic and easy-to-use access functions to
the PSL and thus shields the programmer from low-level and hardware specific programming.
PAL-API represents the resources of the board through a set of functions according to the
specific functionality of the resources.

Platform abstraction layer core: The PAL-Core, also called as Satellite Hardware Interface
Protocol (SHIP), is an implementation specific layer, in which every satellite component is
represented by relevant variables and functions, enabling application programmers to access
the peripherals without knowing their exact specifications. For example, periodical sensor data
collection is implemented in this layer. For example, the details of the SHIP for the attitude
control system is specified in [112].

Application layer: The application layer is the highest layer where all user specific computing,
such as satellite control algorithm, attitude control algorithm, telecommunication algorithms,
FDIR routines, and every mission specific processing are implemented. The layer is fully plat-
form independent.
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6.4.2. Sequential and parallel processes

Traditional satellite control algorithms are sequential processes with partial time-divided par-
allel execution. The target CA of the Flying Laptop shall perform ACS algorithms (periodical),
payload instrument operations (continuous), telecommunications (periodically continuous), and
housekeeping (periodical). Due to the limited maximum clock frequency of FPGA up to several
hundreds of MHz, implementing these processes in a traditional sequential way is not feasible,
and therefore, parallelism of the FPGA shall be sufficiently exploited. This section describes
the implementation methods of both sequential and parallel processes in an FPGA.

Sequential processes in FPGA

Unlike software, each piece of CA is implemented as a part of huge state-machines inside a
hardware logic. Indeed, DK design suit translates CA into complex state-machines. A process
in Handel-C can call sub-processes in a form of macro expressions. It is still possible that
a sequential process calls two parallel processes in parallel. In order to come back to the
original process, both of the sub-processes shall terminate. In the following example, the
“sequentialProcess3” will be executed only after both sub-processes (1&2) were terminated.

do { // parent sequential process

par{

sequentialProcess1;

sequentialProcess2;

}

sequentialProcess3;

} while(1);

The demerit of this structure is that the shorter sub-process freezes until the longer terminated.
Furthermore, if one of the two processes goes into a dead-lock, the whole process freezes.
Consequently, functions such as interrupt and watch-dog timer shall be implemented.

Interrupt implementation: The only way of implementing interrupt functions into Handel-C
code, is to let the parent process periodically monitor the existence of interrupt events, for
example timeout report from a watch-dog timer. Otherwise, there is no possibility to cut
in the middle of a sequential process. For this purpose, one can use “prialt” construct (see
AppendixE.10) to monitor the existence of events without loosing extra time for it in the
following method:

prialt {

chWD ? a: WDStatement; break;

default: break;

}

statement1:

If the chWD is going to be written by a watch-dog timer, the channel communication is activated
followed by the WDStatement, and then statement1. If there is no watch dog event, the default
branch is activated and statement1 is executed immediately in the very same clock cycle.
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Watch-dog timer implementation: One can implement a watch-dog timer as described be-
low. Note that this while loop goes through the whole process once in a clock cycle. If the
counter reaches to the “upperLimit,” then it tries to perform channel communication with the
main process. At the same time, it resets the value of the counter to 0. Until the communication
is actually conducted, the watch-dog timer waits for the channel communication. If the value
of the counter is not yet equal to that of “upperLimit,” then it resets the value of the counter to
0 in case it receives a counter reset request from another process, otherwise it increments the
counter by one. By applying these techniques, CAs can be implemented as sequential processes
with partial parallelism on demand.

do { // watch-dog timer

if (counter==upperLimit) {

par {

chWD ! 1; // wait until chWD? is ready

counter = 0; // reset

}

} else {

prialt {

chReset ? b: counter = 0; break;

default: counter++; break;

}

}

} while(1);

Parallel processes in FPGA

Firstly, one can produce parallel processes by declaring multiple main’s. In Handel-C one can
use more than one main functions, which are implemented as independent parallel processes.
One can even run these main’s in different clock domains. The second way to declare parallel
processes is to use “par{}” syntax. The difference between these two methods is that declaring
multiple main’s can create independent processes, while “par{}” can declare either sequential
processes which come back to the parent process, or while-loop processes which will never come
back to the parent process. This is illustrated in the following example:

seq { // parent process loop1() { loop2() {

par{ do{ do{

loop1(); statement1; statement2;

loop2(); ch ! a; ch ? b;

} }while (1); delay;

statement3; } }while (1);

} }

In this example, the statement3 will never be executed. This latter method is the only way to
declare (interacting) independent parallel processes in the scope of single main process. Indeed,
these “do-while” loops are the basic processing units inside an FPGA which provide continuous
functions. Consequently, the whole scheme of FPGA CA can be regarded as a combination of
multiple “do-while” (- equivalent) loops, which communicate with each other.
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6.4.3. Decomposition into parallel processes

By applying the above method, one can decompose a main function into a combination of
repetitive (loops) and non-repetitive (sequential) processes. Because loops are the fundamental
units, one can illustrate this decomposition in terms of loops. The following decomposition
code generates the left hand side figure of Figure 6.7.

main(){

initialization();

par{

A(); B(); C(); D(); E(); F(); G();

}

}

Here the “initialization()” is the initialization function for environment variables, and processes
in “par{}” are loops. In the figure, the exemplary communication lines between processes are
also illustrated. As is clear from this figure, the more processes there are, the more complex
the entire architecture becomes, which makes the verification, especially partial verification of
the control algorithm extremely difficult.

Figure 6.7.: Decomposition of control algorithms

On the contrary, the following codes generate the processes illustrated in the right hand side of
Figure 6.7, which is actually the same architecture as that of above example.

main(){ H(){ I(){ J(){

initMain(); initH(); initI(); initJ();

par{ par{ par{ par{

H(); A(); F(); B();

E(); J(); G(); C();

I(); } } D();

} } } }

} }
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The main, H, I, and J are sequential processes and the functions with“init” are initialization
functions specially designed for the process group. Processes vanish after they called loop
processes.

The merit of latter method is, firstly, that the loop processes are classified into several groups,
which helps to get the picture of the whole complex control algorithms. Secondly, the initial-
ization functions, which can be specially designed for each group encapsulate variables and
constructs such as signals and channels from others. One can clearly define the interfaces and
see the scope of groups. Thirdly, by making the group according to their functionalities, one
can easily identify functional grains and develop them as modular and verify each of them sep-
arately from the others. In the following section, this idea is further extended by introducing a
multi-agent programming method.

6.4.4. Multi-agent programming

In this chapter the decomposition methodology of the CA architecture according to the func-
tional units based on multi-agent approach is described. Multi-agent systems are very closely
related with Distributed Artificial Intelligence (DAI). The history of DAI starts from mid 1970s
and it is an established and promising research and application field which brings together and
draws on results, concepts, and ideas from many disciplines, including artificial intelligence (AI),
computer science, sociology, economics, organization and management science, and philosophy
[113]. In [113] it is described as:

“DAI is the study, construction, and application of multiagent systems, that is systems in which
several interacting intelligent agents pursue some set of goals or perform some set of tasks.”

“An agent is a computational entity such as a software program or a robot that can be viewed
as perceiving and acting upon its environment and that is autonomous in that its behavior at
least partially depends on its own experience.”

Now it is worth considering an example of agents. A simplest example selected here is a ther-
mostat, which keeps the room temperature higher than a limit temperature. The thermostat
has a temperature sensor for measuring room temperature, and a heater to heat the room.
Based on the information from the temperature sensor, the thermostat makes decisions, either
“temperature lower than limit temperature” or “temperature higher than limit temperature.”
The heater simply heats the room when it receives the decision, that is:

temperature lower than the limit temperature → heater on

temperature higher than the limit temperature → heater off

Clearly, this thermostat can be regarded as an agent based on the above definition. As a part
of the satellite controlling functions exactly the same function as the above example, which
maintains the satellite’s temperature instead of the room temperature, needs to be implemented.
This kind of function can be implemented as an agent inside the FPGA.
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Introduction of compositional multi-agent system

For the purpose of implementing CA of Flying Laptop into an FPGA, the concept of multi-agent
system is extended to be compositional, in which an agent can be a composition of multiple
lower level agents. This idea is illustrated in Figure 6.8. The architecture in the figure is
corresponding to that of Figure 6.7. All circles in the figure represent each agent.

Figure 6.8.: Compositional multi-agent System

In this figure the system consists of three agents 1, 2, and 3, and the agent 1 further consists
of agent 1.1 and 1.2, and so forth. Because the substance of the system does not exists, (it is
actually a composition of three agents) the circle is marked as “virtual” agent. By comparing
this figure with the Figure 6.7, one can recognize the analogy between them. Indeed, by
regarding the functional units of loop processes as agents, the whole CA can be understood as
a compositional multi-agent system. For example, the temperature sensor and the heater in
the above example of an agent, can be also regarded as lower level agents of the “thermostat
agent.”

Decomposition of satellite system

As described above sections, the decomposition of the CA shall be done in terms of functional
units. A satellite system can be decomposed into multi-agents as followings:

• level 1: subsystems and additional high level functions such as mission scheduler

• level 2: units of components such as magnetometers and camera instruments, as well
as subsystem control functions such as attitude control algorithms, telecommunication
algorithms

• level 3: unit level control algorithms such as a magnetometer

All these agents run in parallel and communicate with each other. The another merit of using
multi-agent approach is that a failure in process can be easily allocated with the corresponding
functional unit, which makes the failure management clearer. However, because more than one
processes are running in parallel, it is difficult to manage an consistent FDIR activities. FDIR
concept shall be always taken into account in the architecture design.
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6.4.5. FDIR structure

FDIR stands for Fault Detection, Isolation and Recovery. The control algorithm shall detect
all failure sources and types, which have been identified through system design activities, and
isolate and recover them. The failure sources are usually identified by FMECA (Failure Mode,
Effects, and Criticality Analysis) activities. Because agents can face to failures, we need a
concept which can organize these events, and corresponding reactions in a total manner [114].

Fault tree

A Fault Tree (FT) is a picture of the Boolean function describing the way in which the n
binary components states jointly determine the binary system state. For the detail of Boolean
functions, see Appendix B.5. An FT is an excellent tool to connect system level fault with
component level faults, also providing the reasoning at the same time. In Figure 6.9, a part
of the FT of BRDF measurement is illustrated. As illustrated in the figure, the system level
fault is reasoned by logical connection with lower level faults. It is worth noting that this
implementation into FPGAs costs only simple logical connection with most of the part in
wires. In Figure 6.9, from the definition of indicator variables, Xs = 1 indicates that the BRDF
is not ready.

Figure 6.9.: Fault tree of a BRDF measurement

Fault tree boolean function

FTs can be represented by Boolean functions as a part of the FDIR function. The purpose of
these Boolean functions is to built bridges between the system level faults and component level
faults in an FPGA hardware logic.

Generally, the status information of a target component can be described by a state vector V,
which is a n-bit binary variable. For example, VGPS contains all status information about the
GPS component in a binary form. By introducing Boolean function ϕ, the status of an one
level higher binary indicator variable can be reasoned by the combinational logic based on the
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status of the lower level components, that is:

Xs = ϕ(X1, . . . , Xn) . (6.1)

The state vector, which is a binary variable, can be also regarded as an adjacency matrix of
Boolean indicators, such that:

V ≡ X ≡ (X1, · · · , Xn) . (6.2)

Introducing one more Boolean function ψ, which resolves state vector into boolean indicator

X = ψ(V) , (6.3)

the FT in Figure 6.9 can be simply described as

X1 = XOrb.Pos.Gps Ready = ψ(VGPS) , (6.4)

X5 = XOrb.Pos Ready = ϕ(XOrb.Pos.Gps Ready, XOrb.Pos.Orb.Prop Ready) , (6.5)

X7 = XACS Ready = ϕ(XOrb.Pos Ready, XAtt.Det Ready, . . .) . (6.6)

Finally,
Xs = XBRDF Ready = ϕ(XACS Ready, XP/L Ready, . . .) . (6.7)

Assuming that both XACS Ready and XP/L Ready are 1-bit binary variable, Equation (6.7) can
be implemented in Handel-C codes as:

X_BRDF = X_ACS || X_P/L || ... ;

State vector operation

Suppose there are three heaters 0, 1, and 2, we can generate a state vector (which contains
state information of all heaters) from state vectors of each heater by concatenation operations,
such that:

Vheaters = Vheater0
@Vheater1

@Vheater2
, (6.8)

where @ is the concatenation function (see Appendix E.1). If all heaters are intact (that
is Vheateri

= 0), the generated state vector is Vheaters = 0b000, where “0b” indicates binary
variable.

Suppose these three heaters are a 1-out-of-3 redundant system, applying the bit selection op-
erator (see Appendix E.1) the indicator variable of the system can be described as:

X_HeaterSystem = (V_Heaters[0]==1)&&(V_Heaters[1]==1)&&(V_Heaters[2]==1);

= V_Heaters[0] && V_Heaters[1] && V_Heaters[2];

Clearly, if all of the heaters are defect, the value of “X HeaterSystem” becomes “1”.
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Consideration on layered FDIR functions

Because the entire processes are parallel processes, one shall decide where to place the FDIR
function, either top or distributed. If one put a central FDIR function at the top of the whole
processes, it looks the same as left hand side of the Figure 6.7. Firstly, one shall deal with
complex communications between the FDIR function and all other parallel processes. Secondly,
it is hard to keep the modularity of the entire control algorithm, and therefore, it is hard to
conduct partial verification.

The solution to this problem is to implement the FDIR function in a layered manner, letting
the system level (highest) FDIR function possess the highest authority. This can be achieved
implementing an FDIR function to functional grains identified in the right figure of Figure 6.7.
For example, a magnetometer units in a 1-out-of-2 configuration is operable as far as one of
them is ready. The fault in one sensor is reported as a part of the state vector, however it does
not affect system’s functionality, because the system can fulfill all required tasks as far as one
of two magnetometers is ready. In this case, the internal status of the unit can be encapsulated
inside the unit level FDIR function. The system level FDIR function may make a decision to
turn the faulty magnetometer off by sending a command. For the realization of this suggested
layered FDIR concept, the information exchange between parallel processes shall take place as
smooth as possible. The next section describes about the solution to this topic.

6.4.6. Decision making based on information filtering

Logical hierarchy

An agent in a compositional multi-agent system consists of internal parallel processes. Although
these processes are running parallel, there are usually logical hierarchy between them. For
example, an organizer defines what action the agent shall perform. In addition to this, an agent
may receive command from other agents, and also may have FDIR function which generates
action requests according to the faults happened. This is illustrated in Figure 6.10.

Figure 6.10.: Information filtering for decision making

One can try to implement these top-level processes in a combined single loop process. However,
the logic becomes large and long making the reaction speed very slow, because one need to deal
with a large number of asynchronous and occasionally simultaneous communications.
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Parallel asynchronous reactive system

In this section, the developed new programming method of control algorithms in a form of
PARS (Parallel Asynchronous Reactive System) is described. This idea is originated from the
subsumption architecture, which was at first introduced by Rodney Brooks in his publication
in 1986 [115]. After that it is influencing autonomous robotics and real-time AI. A subsump-
tion architecture is based on bottom-up approach, and can decompose complicated (intelligent)
behaviors into simple behavior modules organized in layers. Each layer implements a partic-
ular objectives with higher layers having higher degree of abstraction. Layers are made up of
asynchronous modules that communicate with each other. Brooks also elaborates the idea in
[116] and [117].

The common points of PARS and the subsumption architecture is that both of them target
asynchronous hierarchically layered systems which produces decisions in order to fulfill system
level objectives. On the other hand, PARS is a simple decision making mechanism based on
information filtering which is specially suitable to logical bit-operation in FPGAs.

The task of PARS is to produce a consequent decision out of n inputs. Here we consider the
case with four inputs: Low Priority Telecommands, Internal Information Basis, FDIR, and
High Priority TC. The low priority TC represents stored commands on-board with time tags.
Because these commands are occasionally not executable based on the status of environment,
it is evaluated before execution. Figure 6.11 illustrates internal structure of the PARS.

Figure 6.11.: Architecture of parallel asynchronous reactive system

Let Ilow be a set of intention of lower level input, Ihigh be a set of intentions of higher level
input, and Fhigh be a set of filtering rules of higher level input, then
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Ilow × Fhigh × Ihigh → Ihigh , (6.9)

where Ilow × Fhigh × Ihigh is implemented as a sequential combination of AND and OR. For
example, suppose we send a Low Level Command (LLC) intending turning components on/off.
This information is implemented in a bit table such that iLLC = 0b00001111, where each bit
corresponding a electrical component which shall be turned on (1) or turned off (0). Now
the Internal Information Basis (IIB) interpreter sets the IIB filter as fIIB = 0b00111100 and
generates intention as iIIB = 0b11000000. Then we get final intention as:

fIIB & iLLC = 0b00001100

iIIB = iIIB | (fIIB & iLLC) = 0b11001100 , (6.10)

where & and | are bitwise AND and OR operators, respectively. This process takes only few
clock cycles to make a decision.

6.4.7. Control algorithm architecture of Flying Laptop

The designed control algorithm architecture of the Flying Laptop is illustrated in Figure 6.12.
The system consists of system level agents representing subsystems and several other functions
– the colored components inside the application level control algorithms. Some of these system
level agents are further decomposed into sub-agents applying the developed multi-agent pro-
gramming method described in Section 6.4.4. Subsystems consist of a Central Control Logic
(CCL), an Inter-agent I/O, a pair of TC and TM, a Fault Detection, and Functions. The CCLs
are the central logic of subsystem level agents. They receive TC from the Up-link Manager
and send TM to the data manager, which further forwards the data either to the Inter-lane
Communication or to the Down-link Manager. The subsystem agents also communicate with
each other through the Inter-agent I/O. The communication is based on predefined state vec-
tors and a subsystem agent broadcasts its state vector information every time the internal state
is changed, e.g., its mode transited from idle mode to safe mode. The other subsystems have
knowledge about what the state vector actually means and are capable of making decisions if
required. For example, if the ACS fails to achieve the required pointing accuracy and sends
this information through the communication channel, the P/L decides to terminate its image
acquisition activity and return to idle mode. The Fault Detection is responsible to observing
internal variables and health status of the corresponding hardware components. If an anomaly
happens, e.g., a sensor does not responds for the request or inconsistency between sensor data
happens, it reports the fact to the CCL. Finally, all subsystem-relevant functions, such as
attitude determination and control and/or image data processing are implemented in the Func-
tions. In this way, CCLs can observe all circumstances around them and generate decisions
and execute appropriate functions in order to fulfill their required tasks. This decision making
is based on the developed PARS mechanism as described in Section 6.4.6. In order to react to
changes on the surrounding environment in a sufficiently short period, all incoming information
are processed by interpreters at first and internal filtering conditions are configured.

As indicated in Figure 6.12, CCLs also communicate with the System FDIR agent in order
to achieve system level consistency. The subsystem level status and event of FDIR functions
are implemented in indicator variables as described in Section 6.4.5, which are actually n-bit

93



6. Design of OBC control algorithm

Figure 6.12.: Control algorithm architecture of the Flying Laptop satellite

binary variables. CCL is responsible to deal with subsystem level failures performing FDIR
functions. System FDIR gathers reported system level fault events and their status from CCLs
and performs system level FDIR functions, which has a higher priority than the decisions of
CCLs. If required, System FDIR generates commands to CCLs.

The TCs uplinked from the IRS ground station are received by the TT&C subsystem agent and
then forwarded to the Up-link Manager. Similarly, the TM delivered to the Down-link Manager
can be downlinked by the TT&C subsystem agent through its communication hardware com-
ponents. If the received TC shall be executed as fast as possible, the Up-link Manager forwards
it to the corresponding subsystems. However, if the TC is a time-tagged one, it is forwarded to
the Mission Scheduler, which is capable of managing on-board real time clock and tagged TCs.
If the RTC reaches to the pre-defined time, the TC is sent to the corresponding agent. Mission
Scheduler also communicates with the System FDIR so that it does not forward unauthorized
TCs in case of system fault. The Inter-lane Communication is responsible to synchronization
with the other CPNs, as well as exchanging data with the other CPNs and the CDV. Scientific
data and housekeeping data gathered at the Data Manager can be transported to and from the
mass memory on the CDV through this agent.

In Figure 6.12, the PAL-Core layer is also illustrated. A PAL-SHIP consists of control algo-
rithms of component units. Fault Detection and Functions agents of subsystem level agents
communicate with the corresponding units. A unit is further decomposed into several loop
and sequential functions. The loop functions run eternally after their initialization and deal
with routine tasks which are required to control real hardware components. As the strategy
of organizing activities of all subsystem agents and to ensure the consistent behavior of the
satellite system, their functionalities are organized in state-machines as described in the next
section.
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6.4.8. State-machine design

For the design of state-machines of subsystems, the following two aspects play an important
role: mode design and transition logic design. The former ensures that there are enough
modes provided with which the system, subsystems, and components can fulfill their functional
requirements. The latter defines possible transition paths between all modes and specifies
triggering events and conditions for all of those transition paths. This transition logic shall be
designed in such a way that the consistency between all subsystems can always be ensured.
Generally, a system with i subsystems has i · (i− 1) interfaces between them, and a subsystem
with j modes has j · (j − 1) theoretically possible transition paths between the modes. This
large number of combinational states shall always be consistent. For the subsystem level state-
machine design of the Flying Laptop, MathWorks Simulink-/Stateflow Toolbox is utilized.

Figure 6.13 illustrates the Simulink model which includes four subsystem Stateflow blocks
together with the internal structure of the attitude control system Stateflow block. These
Stateflow blocks communicate with each other and exchange current mode information. In
order to let a state transition in a Stateflow block trigger the consequential state transitions in
other Stateflow blocks the triggering Stateflow block generates event signals, and delivers them
to the other blocks. Some of the triggered blocks transit to another mode and also generate
event signals. In the end, all blocks come to a consistent mode combination as the result of
iterative interaction between each other. As is illustrated in this figure, the Stateflow Toolbox
allows to define the possible transition path as a single directional arrow between two states,
and also one can define the transition condition from one state to another allocating them to the
specific transition path. In addition to this, each Stateflow block can contain internal variables
and pre-defined logic-bit-tables so that allowed transition mask tables can be implemented. It
also supports execution of variable manipulation at three different phases: entering phase into a
state, maintaining phase in a state and moving-out phase from a state. These functions provide
a convenient state-machine logic development environment.

Figure 6.13.: Simulink and Stateflow model
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6.5. CDV Control algorithm

The most important objectives of designing the CA of the CDV is the mitigation of SEEs (see
Section 1.3). The relevant radiation effects are SEEs in the Data Flip-Flops (DFFs) and SETs.

6.5.1. Single event upset mitigation methodology

Mechanism of single event upsets

The hardware logic elements of Flash-FPGAs can be used as configuration elements and DFFs.
Unlike volatile memory-based FPGAs, the configuration memory (FPGA core) of a non-volatile
FPGA cannot be upset and therefore will suffer no changes of functionality. The combinational
logic is only sensitive to SETs while the sequential logic (DFF) could have SEUs and SETs
as illustrated in Figure 6.14. Since the configuration memory is not sensitive to SEU, no
refreshment (scrubbing) of the configuration memory content is necessary.

Figure 6.14.: Radiation effects on Flash-FPGAs

Due to this background, following radiation effect mitigation strategies can be applied.

• Mitigation of SEUs of the DFFs.

• Filtering of SETs in the combinational logic at the inputs of the DFFs.

A heavy ion that hits a DFF can induce an SEU but if it hits a combinational logic cell it starts
an SET, and that can induce SEUs if it occurs on a clock edge of the DFF (Figure 6.15). The
duration of the SET is related with the amount of the energy of the heavy ion. The higher the
clock frequency is, the higher the probability that the DFF captures faulty values due to SETs.

Figure 6.15.: Mechanisms of SET
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Mitigation methods of SEUs

In order to ensure a safe operation of the satellite, SEU effects inside Flash-FPGAs shall be
surely detected, isolated, and recovered. The mitigation method applied for the Flying Laptop
is the Triple Module Redundancy (TMR). Each combinational logic and following DFFs are
TMR’ed and the saved results in DFFs are voted before starting the next logical operation.
This is illustrated in Figure 6.16.

Figure 6.16.: TMR design method for SEE mitigation

Having the TMR’ed configuration logic and DFFs, a SET can affect only single DFF of them,
and therefore, the output information of all voters are always correct. In this way the combina-
tional logic in the next stage can operate with correct information delivered from the previous
logic. Using TMR, SET effects happened between two sequential DFFs, SET effects trapped
by a DFF, SEU effects inside a DFF can be mitigated. An example of TMR’ed design actually
implemented in the CDV of the Flying Laptop by means of the Libero IDE is illustrated in
Figure 6.17. It is worth noting that this is the actual implementation of the 2-out-of-3 system
illustrated in Figure 2.3.

Figure 6.17.: Implemented TMR design into Flash-FPGA

6.5.2. Single event transient filtering

Because an SET is essentially a pulse signal with a very short width which propagates through
the combinational logic, this can be filtered out introducing propagation delay elements. This
SET filter consists of two main elements: 1) a SET transition delay mechanism and 2) guard
gate (GG) which actually filters out SETs. The most simple delay mechanism, which can
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be implemented in the Flash-FPGA logic cells is the inverter logics. By connecting these an
arbitrary number of inverters in serial, transition delay of SET can be adjusted. The second
element GG is a combinational logic based on NAND logics. A GG produces one output value
from two input values. The output of an GG is either one or zero and transition from one of
them to the other happens only when both of the two input values shifted to the same new
value as illustrated in Figure 6.18. In the figure, the logical combination of the inputs and the
output is also illustrated. Every SET, which propagates through this mechanism, is separated
into two waves, reaching to the GG at different time periods. If the amount of the delay is
larger than that of the SET width, the SET can be filtered out at the GG [118].

Figure 6.18.: SET filtering mechanism

Applying this filter mechanism, the redundant modules in TMR can be omitted as illustrated
in Figure 6.19 (a) and (b). Furthermore, SET effects on output signals can be filtered out just
before the output interfaces as illustrated in Figure 6.19 (c). This method is very attractive
for the SET mitigation of large combinational logics, for which TMR takes too much hardware
resources. However, for the secure mitigation, one shall measure the actual SET width for
estimated energy range of heavy ions. In addition to this, the operational frequency shall be as
low as possible in order to keep the relative duration of SET sufficiently shorter. For the design
of the CA of the Flying Laptop the TMR method is applied.

Figure 6.19.: Possible design trade-off of SEE mitigation methods[118]
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6.6. Control algorithm development environment

The design environment of the CA of the Flying Laptop’ OBC is established as illustrated in
Figure 6.20. The CA for Xilinx SRAM-FPGAs are coded based on the DK Design Suite. After
the design verification by compiler simulation an EDIF netlist is generated. This becomes
the input of the design synthesis activity by Xilinx ISE (Integrated Software Environment)
tool. The generated hardware logic file is finally written into the configuration memories inside
SRAM-FPGAs.

The CA for Actel Flash-FPGA is developed based on both DK Design Suite and Libero IDE
(Integrated Design Environment). The CAs developed in the DK Design Suite environment
can be exported as VHDL files, which can be inported into the Libero environment. The other
CAs are directly developed in the Libero by using VHDL. Both of these design files can be
stored as VHDL libraries, on demand. Based on the simulation capability and analysis tools
inside the Libero, the hardware design can be optimized. Finally, the generated design files
can be written in the configuration memories inside Flash-FPGAs. This environment build the
basis of the CA development of the Flying Laptop’s OBC.

Figure 6.20.: Control algorithm development environment [119], [120]
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6.7. Summary

In this chapter the development of the control algorithms of OBC was summarized. Based on
the developed breadboard model of the OBC described in Chapter 5, the CA of the CPNs and
the CDV are developed.

The design of the CA is a hardware development activity. Firstly, the internal hardware re-
sources of SRAM- and Flash-FPGAs are briefly summarized, which are the target of the design
trade-off. The CA of the CPNs is developed by means of Handel-C hardware description lan-
guage. The CA of the CPNs is designed in a layered manner in order to realize a higher
portability of the application level algorithms, which accelerates the entire design activities.
After a brief discussion on parallel and sequential logic implementation into FPGAs, a CA
architecture of compositional multi-agent system is conceptualized. In this architecture, func-
tional unit of CA such as subsystems and components are implemented as communicating
parallel running agents. Also the FDIR function is implemented based on fault tree structures
utilizing state vector variables and bit operations of Handel-C. This method can maximize the
hardware implementation efficiency. An implementation method of complex decision making
logic, named as parallel asynchronous reactive system (PARS), is developed and is applied
to the central control logic of the CA. The PARS can realize fast reactive decision making
against different types and levels of environmental conditions. The behaviors of the agents
are specified by means of state-machines. These state-machines are designed in a MathWorks
Simulink-/Stateflow environment.

The main concern of the development of CA for the CDV is the secure radiation mitigation. The
radiation effects and their mitigation methods based on triple module redundancy and single
event transient filters, as well as their application methods are summarized. Finally, a control
algorithm development infrastructure for both SRAM- and Flash-FPGAs were established by
integrating development tools of DK Design Suite (Handel-C), Xilinx ISE (SRAM-FPGAs),
and Actel Libero IDE (Flash-FPGAs).

In this part as a whole, the design and development of the FPGA-based on-board computer for
the Flying Laptop were described based on the conceptualized application methods of reconfig-
urable FPGAs summarized in Part I. In Chapter 4 firstly, the system design of the whole Flying
Laptop was conducted according to the system level requirements and constraints, so that all
mission objectives can be fulfilled by the FPGA-based on-board computer. The conducted
system design allows the actual implementation of the OBC as the central computing system
of the satellite. Based on the results of the system design, the hardware of the FPGA-based
OBC was designed and its breadboard model, as well as engineering models of some compo-
nents were developed. By utilizing the breadboard model assembly, the control algorithms of
the OBC were developed. Consequently, this part provided the complete information on the
conceptualized application methods of reconfigurable FPGAs for on-board computers of space
systems.
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Part III.

Simulation and verification

In this part, the simulation and verification aspects of the developed control algorithm are
described. Taking the parallel behavior of the hardware logic inside an FPGA into account,
the functionalities of the developed control algorithm in Chapter 6 need to be verified in order
to prove the validity of the design. In Chapter 7, the developed hardware-in-the-loop sim-
ulation and verification environment for FPGA-based on-board computers is described. The
developed data exchange interface implemented in the extra hardware logic inside an FPGA
allows the communication between an simulator to realize simulation and verification of the
control algorithm implemented inside the target FPGA. In Chapter 8, the simulation results
by means of the established environment are summarized. The results prove the validity of
the control algorithm implementation and the feasibility of the whole concept proposed in this
thesis. Finally, Chapter 9 summarizes the results of investigation on and development of formal
verification methods of the control algorithms. Formal verification provides a concrete confi-
dence of validity of the designed algorithm, which is desired for critical application fields such as
space systems. The existing formal semantics of the Handel-C hardware description language
is extended in terms of “signal” syntax in order to cover the all applied behavior of the control
algorithm. This new formal semantics indicate the possibility of formal verification of control
algorithms including signal syntax, which can be implemented into model check tools in the
future. Consequently, this part illustrates the validity of the investigation and development
described in Part I and Part II.
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environment

Simulation environments are indispensable for satellite development. It also holds the truth for
on-board computers based on FPGAs. The simulation environment of FPGA-based OBCs shall
be capable of dealing with the parallel behavior of FPGAs. In this chapter, the development
and implementation of an FPGA hardware-in-the-loop simulation and verification environment
are described.

Over the past few years, model-based development and verification has been playing a very
important role in satellite design processes of industry-led space projects [121]. Since 2001
EADS Astrium GmbH, for example, has developed a new, highly integrated model-based real-
time system simulation infrastructure to support spacecraft development, on-board software
verification/maintenance and spacecraft design validation [77]. This simulation infrastructure
is called ”Model-based Development and Verification Environment” (MDVE). As described
in Section 3.1 Albert Falke has established an MDVE at the Universität Stuttgart with the
support of EADS Astrium [78]. Though an MDVE offers attractive simulation and verification
capabilities for satellite developments, it was originally designed for traditional processor-type
on-board computing systems, i.e., there is no possibility to emulate parallel execution behaviors
of FPGAs inside the simulator. In order to support the development of the innovative FPGA-
based OBC architecture of the Flying Laptop, there was a need on establishing a simulator
interface which allows FPGA hardware-in-the-loop simulations with the MDVE. This chapter
describes the detail of the development and implementation of this interface. A summary of
this subject can be found in the publication [122].

7.1. Model based development and verification environment

7.1.1. State of the art

The MDVE simulation environment provides a tool infrastructure allowing spacecraft models
ranging from early pure virtual simulations via hybrid testbenches up to full FlatSat configura-
tions. This largely minimizes cost for hardware models, and in parallel provides risk mitigation
through stepwise verification of on-board software, on-board hardware, flight procedures and
so forth. The MDVE is a real-time simulator with models of the space environment, spacecraft
dynamics, thermal and electrical power models, and all satellite components. MDVE is, at the
same time, an engineering environment which enables the developers to systematically develop
spacecraft. Generally, the available MDVE testbed configurations are:
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Figure 7.1.: Model based development and verification environment [123]

• Early system simulations and tests of the on-board software (yet without available space-
craft hardware and software)

• Extensive simulation and verification of an on-board computer software based on a pro-
cessor emulation (before availability of the computer hardware).

• Verification of an on-board software with the real-time simulator and the Core EGSE in
a hardware-in-the-loop configuration.

• Simulation and verification of whole satellite components in a flat-sat configuration.

• Software maintenance and operator training in the ground station.

The core element of the MDVE is an On-board Computer Simulator (OBC-Simulator) and a
Real-Time Simulator (RTS) (Figure 7.1 1). OBC-Simulator is a simulator of the OBC software
and hardware. It is based on a processor emulator and can be built both by simple functional
model and complete detailed implementation of the OBC software. RTS is responsible for
modeling the remaining equipment units of the spacecraft, spacecraft dynamics, space envi-
ronments, as well as thermal and electrical conditions. In dedicated simulation setups both of
these simulators (synchronized to each other) are commanded via a control console – in most
cases a Core EGSE, which is the man-machine interface to control all possible simulation con-
figurations. The functional behavior of the satellite system and all interactions of the on-board
equipments are modeled inside the MDVE. The Generic Modular Frontend (GMFE) consists
of interface cards, which enables communication between software models in simulation envi-
ronment and real hardware components connected to the simulator. The Special Check-out
Equipment (SCOE) supports additional hardware interfaces with special test equipments with
which the real sensor data can be reflected to simulations.

A major benefit of the model-based system development utilizing an MDVE is the possibility
for early simulated satellite mission operations. By the use of the model based concept each
flight hardware unit can be realized by an equivalent software model prior to the availability of
the real hardware. This represents an outstanding support to system design qualification and
performance verification.

1Figure used by courtesy of Astrium GmbH, Friedrichshafen, Germany c©Astrium GmbH
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7.1.2. MDVE configurations

The developed interface and simulation environment enables a number of design, development,
and verification tasks in different working environments in various project phases. The impor-
tant MDVE configurations relevant to this thesis are summarized below.

Software verification facility

In this Software Verification Facility (SVF) configuration, basic functionalities of the OBC
are verified with the satellite component models in the RTS. The data handling and the ACS
algorithms, as well as test and operating procedures can be developed and verified. The sim-
ulated satellite is controlled through TC/TM to and from the simulated OBC. The developed
hardware-in-the-loop simulation environment makes use of FPGA development boards for the
simulation of the real hardware CA, while SVF is originally based on a processor emulation on
which the on-board software can run like on the real OBC.

Real-time testbed

In this Real-time Testbed (RTB) configuration, the real OBC is in the loop with the RTS
and the Core EGSE through the GMFE. In RTB the real functionality of the OBC is verified.
System level tests can be performed with the RTB.

Flat-sat configuration

The flat-sat is an extended real-time testbed. Following the OBC, further real hardware com-
ponents are integrated into the loop, which can be driven by special checkout equipment.

Software maintenance facility

This configuration is used as the CA maintenance facility for operations support after the launch
of the spacecraft. Changes in on-board CA can be verified on the simulator before the updated.

7.2. Development of a hardware-in-the-loop environment

7.2.1. Implementation concept

To incorporate the real on-board CA into the MDVE closed loop simulation the MDVE requires
FPGA chips for on-board CA execution. The assumptions made for this implementation are:

• Periodical execution rate of routine tasks of OBC is maximum 10 Hz

• RTS executes the attitude control simulation loop with a frequency of minimum 20 Hz,
in order to guarantee a stable simulation

• The timing discrepancy between MDVE and FPGA-based OBC is negligible during the
range of simulation duration of interest
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According to these assumptions, it is estimated that computation speed of both the RTS and
the simulating FPGA is fast enough, so that all parallel communications can be transported
through serial communication lines within the required time step. This communication channel
consists of a full-duplex RS-422 interface with a baud rate of 921600 [124].

7.2.2. Extended layered structure of control algorithm

The most important requirement of this simulation and verification environment is that the
application level control algorithms remain the same in flight and verification configurations
so that the verified CA can be directly ported into the real flight configuration. To fulfill this
requirement the simulator interface is implemented into lower levels than PAL API as a part
of the abstraction layers. The extended layered structure of the CA is illustrated in Figure 7.2.

Figure 7.2.: Extended layered structure of control algorithm

7.3. Development of a simulator front-end

The simulator front-end (SimFE) is implemented as an extra CA function within the FPGA
as illustrate in Figure 7.2. As described above, the SVF is intended to enable the development
and verification of functionalities of the basic CA architecture, attitude control algorithms,
commanding procedures and operational plans, as well as power balancing and thermal design.
Within the scope of this thesis, in order to achieve these purposes, primary satellite components
are implemented as described below. Since in this configuration no GMFE is present and the
OBC is represented by an FPGA development board with less functionality than the real OBC,
a SimFE needs to be implemented which realizes the communication with the RTS.
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7.3.1. Communication link budget

Since the MDVE reflects hardware components down to electrical communication protocols
the communication interface need to be bit for bit compatible with the real communication
interface between hardware components. On the first look, the SimFE interface seems to be a
bottleneck, because the communication of several independent hardware devices, taking place
in parallel, have to be routed through a single serial communication line. However, as shown
below, the total amount of demanded bandwidths is small enough, so that the the real-time
simulation requirements can be fulfilled. On the one hand the simulation relies on the fact that
it receives information from the OBC instantaneously, on the other hand, the timing of the
incoming and outgoing communication should reflects the real behavior of satellite hardware
components as precise as possible. In Table 7.1 and Table 7.2, the communication budgets of
implemented relevant primary satellite components are summarized.

Table 7.1.: Simulator front-end uplink budget (to RTS)

Component Quantity Rate STF-Length Bandwidth Transmission
[Hz] [byte] [bit/s] time [µs]

MGM Req. 2 6 7 336 60.76
MGT Req. 1 10 7 560 60.76
MGT Com. 1 10 9 720 78.13
SuS Req. 2 1 8 64 69.44
PCDU Req. 1 1 7 56 60.76
PCDU Com. 1 1 17 136 147.57

Sum: 5952

Table 7.2.: Simulator front-end downlink budget (from RTS)

Component Quantity Rate STF-Length Bandwidth Transmission
[Hz] [byte] [bit/s] time [µs]

MGM 2 6 15 720 130.21
MGT 1 10 8 640 69.44
SuS 2 1 40 320 347.22
PCDU 1 1 53 424 460.07

Sum: 7864

7.3.2. Simulator transfer frame and DLE protocol

The communication between SimFE and RTS utilizes a packet format called simulator transfer
frame (STF). An STF is composed of: the first byte standard STX followed by two bytes of
length (n) information of the transfered data including the checksum in little endian order, unit
ID which makes the routing in SimFE and RTS possible, n-1 bytes of user data, one byte of
checksum based on a cyclic redundancy check, and the standard ETX (Figure 7.3).

Since the start and stop bytes of the STF (STX and ETX) shall be avoided inside the packet,
these control bytes are masked with the data link escape (DLE) protocol. The STX, ETX, CR,
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Figure 7.3.: Simulator transfer frame

or DLE byte will be masked by replacing them with a combination of a DLE and an replacement
byte as summarized in Table 7.3. Each entity listed in above tables has its own unit ID for the
identification, which is included in the STF for the internal routing purposes.

Table 7.3.: Control characters of DLE protocol

Control Characters Hexadecimal Replacement Characters

STX 0x02 0x10 0x42
ETX 0x03 0x10 0x43
CR 0x0D 0x10 0x4D
DLE 0x10 0x10 0x10

7.3.3. Data transfer strategies

The transportation of STFs are implemented in an asynchronous manner. This allows the CA
to be left nearly untouched, since the communications between the FPGA and the satellite
peripheral components in the real case take place asynchronously. A synchronous implemen-
tation, on the other hand, requires a considerable amount of additional timing information to
be transported in order to deal with the asynchronous behavior, which has a great impact on
the simulation speed. In this way, the SimFE simply acts as a router, wrapping every piece of
communication into an STF and sending it to the RTS in serial as quickly as possible. On the
way back the SimFE it analyzes the sanity of the incoming STF, unwraps and distributes it to
the intended instance of CA. This approach reflects the parallelism of the FPGA much better
and produces less informational overhead. The communication speed should be fast enough to
achieve short transfer time even when more than one communications shall be conducted at
the very same time, thus achieving a hardware-like timing behavior.

7.3.4. Clock domains

The SimFE runs in parallel to the satellite CA and is placed in another clock domain with a
clock frequency of 96 MHz, eight times faster than the core CA which runs with a frequency
of 12 MHz. This enables a sufficiently high data processing throughput and a clear modular
design to keep the application level CA unchanged. The much faster processing of wrapping
and routing of information ensures stable communication between an FPGA and the RTS. The
faster clock rate results in harder timing constrains, and therefore, the logical depth of the
SimFE is carefully designed to fulfill the timing requirements.
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Figure 7.4.: Internal architecture of simulator front-end

7.3.5. Structure of simulator front-end

The SimFE is located in the PAL Core. SimFE consists of three levels of routines: routing
interface routines (RIR), front-end routines, and port routines. In addition to this, the H/W-
SHIP was slightly modified to SIM-SHIP so that it communicates with the SimFE instead of
accessing hardware components. The structure of the SimFE is illustrated in Figure 7.4.

Port routines: The write and read port routines are implemented as PSL functions and ac-
tually drive hardware components on the board. This layer ensures platform independence of
the SimFE. Low level DLE protocol is implemented in this layer.

Front-end routines: The front-end routines consist of outgoing- and incoming- loops and
buffers, where the latter are accessible from RIRs. Front-end routines are responsible to the
serialization of data streams. Every time a data packet is stored in the outgoing buffer by one of
the RTRs with raising a flag, other interface routines are blocked from the buffer. The outgoing
loop calculates the checksum for the data packet and wraps into an STF before sending it to the
write port routine. The incoming loop once stores the received DLE packet into the incoming
buffer by proving the checksum at the same time. If the packet is not corrupted it raises a flag
to inform RTRs that a packet has been received.
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Routing interface routines: The routing interface routines are the interface between SimFE
and SIM-SHIP. Each CA instance in SIM-SHIP has the corresponding RTR in SimFE. Each
RTR is identified by the unit ID and performs storing of data packets into the outgoing-buffer
and extracting from the incoming-buffer in the front-end routines. The communication between
the SIM-SHIP is realized by channels, which ensures a timing and information consistency since
the receiver of a channel has to wait until the data is sent, so it is assured that timing consistency
is given and no byte is accidentally skipped. An RTR of a component consists of a output loop
and a input loop. The output loop stores outgoing data packets into the outgoing-buffer and
set a flag if it is not occupied by other routines. The input loop waits until a data packet with
its unit ID is stored in the incoming-buffer and routes it to the SIM-SHIP.

7.4. Timing analysis

In order to ensure the validity of the developed SimFE, the response time of communications
between MDVE and FPGA-based OBC for relevant components are measured and statistically
analyzed. The values are measured for each component: magnetometer (MGT), magnetic
torquer (MGT), sun sensor (SuS), and power control and distribution unit (PCDU) for 60
minutes. Figure 7.5 illustrates the measured response time of magnetometer communication
along the simulation time, which needs the longest response time among the components.
Figure 7.6 illustrates the histograms of the measured response time of the four components in
concern. The number of packets is plotted against the measured response time.
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Figure 7.5.: Measured timing of magnetometer communication

Those values illustrated in Figure 7.6 shall be as similar as possible to the behaviors of the real
hardware components. The response time of the magnetometer is specified as 142 ms due to its
integration time of the Earth’s magnetic field, while those of the other components shall be as
short as possible. This time delay of magnetometer is deliberately implemented in the software
model in the RTS. Figure 7.6 illustrates that most of the magnetometer communications have
taken place within 148 ms. It is estimated that the delay of approximately 6 ms from the desired
value is due to the transmission time through the communication lines and disturbances by other
internal processes and other packets. It can be seen in Figure 7.5 that there are many peaks with
the values of up to around 175 ms. Because these peaks also happen to the other components
at the same moment, it is assumed that this phenomenon is caused by the temporal overload
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Figure 7.6.: Statistics of measured communication timing

on simulator kernel. The lower limit of response time of the PCDU is because of the larger size
of its STF. Response time of sun sensors are significantly short because of the simple processing
of their sensor data at the RTS side.

It can be seen that the implemented hardware specific time delay of magnetometer is consistent
with the required value in the presence of acceptable distribution of around ±3 ms. There is
also a possibility of improvement by optimizing the software model in the RTS by tuning this
value. The other communications also take place in a sufficiently short time, which enables the
update of sensor data within the required time periods under the assumptions described above.
What shall be also mentioned is that these communication take place individually, without
waiting for other processes. According to these results, it is proved that the communication
speed between MDVE and FPGA-based OBC is high enough so that the parallel asynchronous
communication of FPGA can be successfully serialized by the SimFE.

7.5. Developed hardware-in-the-loop simulation environment

The developed FPGA hardware-in-the-loop real-time simulation environment is illustrated in
Figure 7.7. The SVF is supported by a central control system (CCS), a test scripting engine,
MDVE development PCs and a server. For the mission control system, SCOS-2000 is selected
and implemented in the CCS. The RTS on the SVF can be controlled by SCOS-2000. A
standalone proxy application between the SCOS and RTS, running inside the SVF, enables
conversion and forwarding of data from SCOS-2000 to the simulator. Spacecraft TC and TM
can be also directly routed between the SCOS and the FPGA development board through the
application. The test scripting engine is based on a test procedure editor and executer MOIS,
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Figure 7.7.: FPGA hardware-in-the-loop simulation environment

which enables test case generation and management for their reproducibility [79]. MOIS can
create test cases using flowcharts. Being supported by this test scripting engine, any test
scenario can be executed automatically. Information required for the simulations, such as
spacecraft database, project documentation, source codes, control algorithms for FPGAs etc.,
is stored in the central server.

The control algorithms for the on-board computer including those for the development boards
are developed by the Control Algorithm Development Facility (CADF). After the simulator
is set to ready, the development board is initialized and then both of RTS and FPGA start
real-time simulation synchronously. The exchanged TM data, e.g., the actual attitude control
mode, state of charge of the battery and so forth, can be routed to SCOS-2000 and then either
numerically or graphically displayed. For the real-time visualization purpose of the simulation
results, especially the satellite’s attitude and orbit conditions, a real-time visualization facility
(RVF) is developed. RVF is based on a visualization software Celestia, which communicates
with the RTS via a port and actualizes the visualization.

For the real-time testbed configuration of the MDVE, the facility is extended with SCOE and
GMFE. The real OBC, as well as satellite components can be connected with the facility via
GMFE. Satellite components can be either connected with the OBC or GMFE or both of them
based on simulation and verification purposes. For example, camera units can be connected
directly with the OBC to be controlled or some sensor data can be generated and sent to the
OBC via GMFE. For the interfaces which is not widely supported by standard PC interface
cards, additional FPGA development boards can be used as a part of the GMFE.
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7.6. Control algorithm development facility

As the consequent of above development activity, the development environment of the on-board
control algorithms is established as illustrated in Figure 7.8. Starting from the mathematical
modeling of the attitude control algorithms, the whole satellite control algorithm, which shall be
finally implemented into the FM of the FPGA-based OBC can be developed in this environment.
MATLAB/Simulink is used for the initial control algorithm development and optimization,
whose results can be also visualized and evaluated/validated in the environment. The MATLAB
codes are then manually ported into Handel-C codes partially supported by a modular concept.
The portability into Handel-C codes and performance analyzed by DK simulation can be fed
back to the original MATLAB codes and the numerical model and codes are optimized. The
functionalities of the hardware logic designed in Handel-C can be simulated and verified in the
FPGA hardware-in-the-loop simulation environment based on the MDVE as described above.
The simulation results can be visualized in real-time by the RVF. The real hardware of the
OBC can be integrated in the RTB configuration together with the satellite components and
the verified final CA can be implemented into the FM of the OBC. Even after the launch, the
CA can be maintained, modified, verified based on this environment. This facility provides
comprehensive supports for the CA development.

Figure 7.8.: Control algorithm development environment and procedures
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8. FPGA Hardware-in-the-loop simulation
results

This chapter summarizes the simulation and verification results based on the developed
hardware-in-the-loop simulation environment as described in Chapter 7. Section 8.1 describes
the simulation and verification results of attitude control algorithms of detumbling and safe
modes implemented into the FPGA hardware logic, as well as the functionalities of the de-
veloped simulation interface SimFE. Section 8.2 describes the simulation results of the LEOP
scenario, which validates the operational concept in this phase in terms of power budget. Sec-
tion 8.3 summarizes the power budget simulation results, which verify the validity of system
design of the Flying Laptop in terms of electrical design, power balancing design, operational
scenario, and attitude control strategies. Finally, Section 8.4 summarizes simulation and veri-
fication results of a normal operation scenario including FDIR functions.

8.1. Attitude control algorithm simulation

The attitude control algorithms of the detumbling mode and the safe mode are simulated in
the FPGA hardware-in-the-loop simulation facility. In order to verify the functional perfor-
mance of the developed environment, the simulation results are evaluated by comparing with
a mathematical model based on Mathworks MATLAB/Simulink. At the time of simulation,
the moment of inertia of the Flying Laptop satellite was not yet available, and therefore, the
inertia matrix and principal axis in Equation (D.15) and Equation (D.16) were used for the
both simulations. The environmental model of the MDVE is much more precise than that of
MATLAB model including additional effects of the residual magnetic dipole moment of the
satellite, the atmospheric drag and the albedo effect. However, the albedo effect is deactivated
in this section in order to enable a better qualitative verification of the control algorithms.

During the simulation, FPGA-based OBC measures the Earth’s magnetic field and sun vector
by accessing the magnetometer and sun sensor models in the RTS and sends back calculated
commands to the magnetic torquer models in the RTS. RTS then propagates the satellite
attitude and orbital position based on the induced torques and prepares sensor information for
the next step. The reference orbit 1 (see Table 4.2) is selected for both simulations. Every
simulation starts just after the satellite entered into the sun light out of the umbra.

8.1.1. Detumbling mode simulation

Figure 8.1 illustrates the angular rate of the satellite body and Figure 8.2 illustrates the induced
torques after the separation from the launcher with an estimated initial angular rate of 8 ◦/s
in both simulation environment, respectively.

113



8. FPGA Hardware-in-the-loop simulation results

(a) MDVE hardware-in-the-loop simulation
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(b) MATLAB simulation

Figure 8.1.: Rotational rate in detumbling mode

(a) MDVE hardware-in-the-loop simulation
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(b) MATLAB simulation

Figure 8.2.: Induced torque in detumbling mode
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8.1. Attitude control algorithm simulation

In this mode, the angular rate is reduced by means of magnetic torquers. It can be seen that
the angular rates around the three axes are reduced near to zero in both simulations. The
absence of the sun light does not play any role for the detumbling mode, because the rotational
rate information is based only on the magnetometer measurement. The time duration needed
for the sufficient detumbling is slightly more than 100 minutes in the MDVE simulation and
around 60 minutes in the MATLAB model. This difference is caused by the greater disturbance
forces applied in MDVE, thus deviation of attitude takes much longer to damp. Even though
there is a quantitative difference between these figures, the comparison of them clearly shows
the qualitative consistency between the two simulations. At the same time, the comparison
of these figures shows that the FPGA-based OBC and magnetometer and magnetic torquer
models in MDVE communicate with each other properly.

8.1.2. Safe mode simulation

Once the satellite initiated the safe mode, it spins itself up around its principle axis with the
maximum moment of inertia in order to stabilize the attitude with coarsely orienting the solar
panel normal toward the sun. Figure 8.3 illustrates the angle between solar panel normal and
sun vector with the indication of sun light and umbra portion. The offset angle between solar
panel normal and sun vector is about 38 ◦, because the principal axis, which is pointed toward
the sun, is not aligned with the solar panel normal. When the satellite enters into the umbra,
the pointing accuracy becomes worse because the satellite loses the sun vector information. The
pointing stability becomes gradually better in later orbits. Figure 8.4 illustrates the rotational
rate and Figure 8.5 illustrates the induced torques just like the case of the detumbling mode.

(a) MDVE hardware-in-the-loop simulation
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Figure 8.3.: Sun vector angle against solar panel normal in safe mode
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(a) MDVE hardware-in-the-loop simulation
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(b) MATLAB simulation

Figure 8.4.: Rotational rate in safe mode

(a) MDVE hardware-in-the-loop simulation
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(b) MATLAB simulation

Figure 8.5.: Induced torque in safe mode
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8.1. Attitude control algorithm simulation

(a) Angular velocity

(b) Angle between sun vector and solar panel normal

(c) Battery SOC

Figure 8.6.: LEOP simulation
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From Figure 8.4 it can be seen that the satellite gradually spins itself up at the beginning of
the simulations. Because the estimated residual magnetic dipole moments of the satellite is
implemented in the MDVE, the induced torque is not equal to zero even during the umbra
(Figure 8.5). Comparisons of these figures prove the followings:

• all communication between OBC and software models in MDVE took place correctly.

• hardware control algorithm implemented in the FPGA performs correct attitude control
same as mathematical model in MATLAB model.

• all component software models in MDVE are correctly implemented and work as same as
real hardware components in the simulation environment.

According to the above consideration and evaluation, the validity of the implementation of the
hardware-in-the-loop simulation and verification environment in terms of satellite’s attitude
behavior is verified. This developed simulation environment is capable of performing a real-
time attitude simulation of the satellite, as well as evaluation and verification of the attitude
control algorithms implemented in FPGA hardware logic.

8.2. Launch and early orbit phase simulation

The satellite operation in the LEOP is simulated and the results are summarized in Figure 8.6.
After the separation from the launcher, the satellite performs detumbling mode at first. Then
it automatically moves into safe mode at the moment the angular rate becomes lower than a
predefined value of 0.3 ◦/s. The solar panels are closed at the initial detumbling phase and then
deployed at the same time the safe mode is initiated. For this simulation and all later ones, the
albedo effect is included in the environmental model and also the actual moment of inertia of
the Flying Laptop is used (see Appendix D.3).

In this simulation, the initial angular rate of around 8 ◦/s is detumbled within about 80 minutes
after the launcher separation and the satellite moves into safe mode deploying the solar panels
at the same time (Figure 8.6(a)). The battery SOC remains almost the same until the safe
mode is initiated. In the safe mode, the satellite spins itself up to the reference angular rate
of 2 ◦/s. The angle between the solar panel normal and the sun vector becomes around 18 ◦ at
the end of simulation, which comes from the offset between the reference principle axis and the
solar panel normal (Figure 8.6(b)). Because of the albedo effect, the pointing stability is less
than the result with no albedo effect illustrated in Figure 8.3(a). Finally, the battery state of
charge successfully rises up to 100 % (Figure 8.6(c)), which ensures a secure establishment of
the satellite’s initial condition in the LEOP. Consequently, these simulation results ensure the
validity of the LEOP concept of the Flying Laptop.

8.3. Power budget simulation

In order to verify the power balance design of the Flying Laptop described in Section 4.5, a set
of power budget simulations for three solar panel deployment configurations A, BR, and C (see
Figure 4.11) have been conducted in safe mode with the albedo effect and the actual moment
of inertia of the Flying Laptop. With the same reason described in Section 4.5, the initial value
of the battery state of charge is set to 50 %.
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8.3. Power budget simulation

(a) Configuration A

(b) Configuration BR

(c) Configuration C

Figure 8.7.: Power balance simulation
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Figure 8.7 illustrates the simulation results for the three configurations. Figure 8.7(a) illustrates
that the battery SOC rises up to 100 % in 6 orbits. Considering the fact that the simulation
result in MATLAB model in Figure 4.12 required only 5 orbits to charge the battery to 100 %
after the initiation of the safe mode, the modeling in MATLAB can be regarded as an optimistic
one. This is because the MDVE includes not only electrical but also thermal models of all
components, as well as the satellite structures and heaters. Therefore the simulation result
by MDVE can be thought to be closer to the real behavior. This can be seen, e.g., in the
figure that the battery temperature is continuously kept within the range of between 8 and
14 ◦C. The dependency of the battery voltage on the battery temperature and SOC can be also
recognized. Furthermore, the albedo effect implemented inside the MDVE causes worse pointing
accuracy of the solar panels toward the sun, which results in less power generation. According to
these considerations, the simulation results in the hardware-in-the-loop simulation environment
ensure the validity of the power balancing design of the satellite system in the configuration A.

Figure 8.7(b) and Figure 8.7(c) illustrate the simulation results in configuration BR and C,
respectively. The battery can be safely charged up to 100 % even in the configuration BR.
Because all missions of the Flying Laptop satellite are single-shot missions, this simulation result
indicates that the satellite can perform all missions from time to time by charging the battary
during sufficient amout of time intervals. Even the Ka-band communication can be performed
if the battery SOC once becomes near to 100 %. On the other hand, the latter figure indicates
that the battery SOC continuously decreases in the configuration C, while the corresponding
simulation result by MATLAB model suggested the opposite (Figure 4.14). Therefore, both
of the side solar panels shall be deployed as early as possible after the separation from the
launcher. However, based on the single-failure tolerant design concept (only one deployment
failure either the left or right solar penel is considered), this configuration C is not a driving
requirement for the satellite design. If this scenario actually happens, the on-board control
algorithm shall be changed to use another attitude control strategy, which wins higher pointing
accuracy of the solae panel toward the sun at the price for using none high-rel components, for
example, such as fiber optic gyros. The configuration C is only enough to keep the SOC for
several orbits.

8.4. Satellite operation simulation

The purpose of this simulation is to demonstrate the capability of standard operation of the
Flying Laptop satellite, as well as to verify the functionalities of the developed on-board control
algorithms, including the operability of BRDF measurement experiment and Ka-band high-
speed communication, the commanding concept and structure, and FDIR algorithms. This
simulation results shall verify the development activities of the thesis.

The relevant subsystems to this simulation are the ACS, P/L and TT&C subsystems. The
state-machines of the system, ACS, and TT&C are illustrated in Figure 4.8, Figure 4.10, and
Figure C.1, respectively. The state-machine of the P/L camera system has only two modes:
Off and Operation mode, while the MICS, TICS, and PAMCAM themselves have three modes:
off, idle, and operation modes. Other components have only on and off modes. The operational
scenario of this simulation is summarized in Table 8.1. The satellite is at first in safe mode
with an initial angular velocity of 0 ◦/s and a battery SOC of around 86 %. The satellite
establishes a stable attitude with solar panels pointed toward the sun in about 100 minutes.
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8.4. Satellite operation simulation

Table 8.1.: Satellite operation scenario

Time [min] Sys. event ACS event P/L event TT&C event

0 Safe mode (4) Safe mode (1) Off mode (0) Stand-by mode (0)
110 Idle mode (5) Idle mode (2) | |
115 | | Operation mode (1) |
120 Active op. (6) Nadir P. mode (4) | |
125 | | Camera Idle (1) |
130 | Target P. mode (5) Camera Operation (2) |
145 | Nadir P. mode (4) Camera Idle (1) |
150 | | Camera Off (0) |
155 Idle mode (5) Idle mode (2) Off mode (0) |
210 Active op. (6) Nadir P. mode (4) | Standard contact mode (1)
215 | | | S-Band LG On (1)
220 | | | High-speed com. mode (3),
| | | | S-Band LG Off (0),
| | | | Ka-Band On (1)

225 | Target P. mode (5) | |
240 | | | Stand-by mode (0),
| | | | Ka-Band Off (0)

242 Safe mode (4) RW malfunction | |

After coming into the sun light from the umbra, the satellite moves into idle mode to prepare
for the BRDF measurement. At 115 minutes, the P/L moves into operational mode. Then the
satellite performs nadir pointing mode from 120 minutes in order to start the target pointing
mode at 130 minutes. P/L turns camera instruments on at 125 minutes. At 130 minutes, the
satellite initiates the BRDF measurement performing the target pointing and image aquisitions
for 15 minutes, before ACS moves back to nadir pointing mode at 145 minutes. P/L cameras
go back to idle mode then turned off at 150 minutes, and P/L itself remains in operation mode
5 minutes longer until the satellite moves into idle mode. At 210 minutes, ACS initiates nadir
pointing mode and the TT&C goes into standard contact mode. At 215 minutes, the S-band
Low Gain is turned on until the TT&C moves into the high-speed Ka-band communication
mode at 220 minutes and turns Ka-band instruments on in order to heat up amplifiers for a
stable communication. From 225 minutes, the satellite performs high-speed communication for
15 minutes. At 240 minutes, TT&C goes back to stand-by mode. Finally, at 242 minutes, ACS
experiences malfunction of a reaction wheel and detects a higher angular velocity than the
pre-defined maximum value of 3 ◦/s. The FDIR function automatically decide to move back
into the detumbling mode imediately and turns all components off, which are not needed in
the system safe mode. After the angular velocity becomes smaller than 0.3 ◦/s, the ACS moves
into safe mode again and stabilizes the attitude. All of above mode changes are conducted by
sending commands from the ground station based on the SCOS-2000.

In Figure 8.8, the simulation results of the above operational scenario is summarized. Since
only two attitude control algorithms were converted into OBC control algorithms for FPGAs
at the time of writing, the idle mode and three pointing modes of the ACS perform the safe
mode. From the amount of the total power consumption in Figure 8.8(a), one can see that
all components are correctly turned on and off according to the commands received. Several
heaters are also automatically turned on and off. It also illustrates that the battery SOC
decreases about 4 % during the high-speed communication, and is charged back to 100 % in the
next orbits even in the safe mode.
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8. FPGA Hardware-in-the-loop simulation results

(a) Power balance and battery SOC

(b) Temperatures of core, service, and payload modules and battery

(c) Angular velocity

(d) Angle between sun vector and solar panel normal

(e) Mode transitions

Figure 8.8.: Normal operation scenario simulation
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From Figure 8.8(b), one can also see that the temperature of the core module dramatically
rises during the Ka-Band high-speed communication, where the traveling wave tube amplifier
is mounted on. The other modules also receives the heat flux with a certain time delay. Af-
ter the communication, the temperatures gradually decrease, again. From Figure 8.8(c) and
Figure 8.8(d), it is easy to notice that the satellite experienced a disturbance at 242 min. The
rotational rate became more than 4 ◦/s. As the reaction against this contingency event, the
satellite system went back to the safe mode and let the ACS perform detumbling mode to
reduce the rotational rate. Around at 330 min, the ACS successfully finished detumbling and
initiated the safe mode. This is also clearly summarized in Figure 8.8(e). The figure illustrates
the mode transitions of the system, subsystems, and components took place correctly as they
are designed. Though some attitude control algorithms were not available, this simulation il-
lustrates the secure operational capability and correct functionalities of the developed satellite
control algorithm implemented inside the on-board computer breadboard model.

8.5. Summary

This chapter summarized simulation results by the hardware-in-the-loop simulation and verifi-
cation environment, from which the following conclusions can be derived.

• The developed hardware-in-the-loop simulation and verification environment is capable
of simulating the behavior of FPGA-based on-board computers in real-time to verify the
whole satellite control algorithms to be implemented in FPGAs. The developed special
simulation interface SimFE works correctly and realizes asynchronous communications
between the CA inside an FPGA and the RTS.

• The developed simulation environment is capable of attitude control algorithm simulations
supported by environmental models in the MDVE. Comparison with the reference results
by mathematical MATLAB model qualitatively verified its correct simulation capability.
This simulation environment becomes the basis of attitude control algorithm development.

• Attitude control algorithms of detumbling mode and safe mode implemented in the FPGA
with fixed point conversion were qualitatively verified. This is the world’s first prove of
the correct real-time functionality of satellite attitude control algorithms implemented
inside an FPGA.

• Validity of the LEOP concept of the Flying Laptop was verified. The simulation result
illustrated the safe initialization of the satellite after the orbit insertion.

• Validity of the power balancing design together with the electrical component design,
operational design, and attitude control strategies of the Flying Laptop was verified.

• Operability of the whole satellite system down to the subsystems and components by
telecommanding was verified. A sample operational scenario including a BRDF measure-
ment and a high-speed Ka-band communication was demonstrated. This result verifies the
validity of the satellite’s state-machine design, mode design, and commanding structure
design.

• Preliminary FDIR function implemented in the FPGA was demonstrated, which verifies
the developed implementation strategy of the FDIR functions. Also an automatic mode
transitions and solar panel deployment were demonstrated and their correct functionalities
were verified.
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9. Formal verification of Handel-C
program

It is often the case that software and hardware systems which require high safety and/or security
are subject to be formally verified in industrial fields. A satellite system is also one of those
critical systems for which extremely high safety and security is required. Formal verification
supported by formal methods has capability of providing mathematically-reasoned specification,
development and verification for such systems.

This also applies to the control algorithms which shall be implemented into FPGAs as hard-
ware logic. FPGA based reconfigurable satellite on-board computing systems require hardware
logics to be implemented and updated just like software for usual computers based on proces-
sors. Moreover, the algorithms implemented inside an FPGA are parallel running concurrent
processes. On the one hand, the strong logic design capability of the Handel-C enables flexible
and rapid hardware design, on the other hand, the produced algorithms shall be proven as
failure free by some means. The possible methods of verifying this control algorithm is to test
the functionality in the simulated environment in a form of point-to-point test. Unfortunately,
this method can prove fulfillment of defined requirements, but it can not ensure existence or
absence of certain properties, e.g., dead-lock. In order to verify these special properties of con-
trol algorithms, formal verification is the only way of proving. Thinking about the fact that
the control algorithms in FPGAs are combinational parallel running hardware logics, testing
of all possible combinational behaviors every time a new one is developed is not feasible at
all. Formal verifications provide not only verification of the developed algorithms, but also the
specification of algorithm design activities. For the realization of formal verification of Handel-
C codes, there is a clear need for both a formal semantics of Handel-C as well as an appropriate
methodology and tool support. In this chapter, the formal verification methods of Handel-C
is investigated in detail and the formal semantics of the Handel-C which also incorporates the
signal construct is established. The notation references used in this chapter are summarized in
Appendix F.

9.1. Formal verification of concurrent systems

The study of formal verification methods of concurrent systems has actively started in 1980’s
after C. A. R. Hoare has published his Communicating Sequential Processes (CSP) in 1985
[125]. A. W. Roscoe has then provided comprehensive and partly extended version of the
CSP in his publication [126]. It is also described that SCP can be analyzed and solved by
Failures/Divergence Refinement (FDR, now FDR2) model checking tool over a wide range of
application areas. As Handel-C came to the world in around early 1996, it was considered that
it is a hybrid of CSP and C [127], [128]. Indeed, some of the syntax of Handel-C are based on
that of CSP, e.g., those of channels “c!e” (see Appendix F). The study of formal verification of
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9.2. Scope of Handel-C semantics

Handel-C program has been started by several researchers since the beginning of 21st century.
An extensive investigation has been done by Butterfield [129]. As he mentioned in [110] and
[130], it was not possible to handle “prialt” (prioritized alternative) syntax of Handel-C because
of the difficulty treating the priorities in concurrent processes in CSP. One of the main issues is
that the asynchronous nature of CSP formalisms makes it very difficult to establish when prialts
are “coming together,” in order for their communication requests to be resolved. Focusing on
the presence of a synchronizing clock in Handel-C, Butterfield treated the behavior of the prialt
as static problem of resolving priorities of a known collection of prialts, and presented complete
formal semantics for prialt in [110]. At this point, channels are treated as a prialt with only
one guard condition. Recently, the hardware compiler semantics, one of the formal semantics
of Handel-C, is to be translated into a UTP (Unifying Theories of Programming) framework
for realization of formal verification [129].

The main concern here was the dead-lock caused by priority in channel communication in prialt.
A prialt selects the highest channel communication (the channel communication listed at the
top of the list in prialt) out of those which are ready in the clock cycle (see Appendix E.10). The
following example with synchronized two processes is the typical case of a dead-lock, because
the priority between the two communication channels forms a loop.

chan unsigned 1 ch1, ch2; // shared by both processes

unsigned 1 x, y;

//process A //process B

prialt { prialt {

ch1!1: break; ch2!1: break;

ch2?x: break; ch1?y: break;

} }

One important point, however, is that these previous research have focused on the channel
communications as the standard communication method between two concurrent processes and
did not include signal constructs (see Appendix E.7). Because signals allow broadcasting of
information from one to many processes, while channels allow only one-to-one communication,
signals enable simultaneous synchronization among multiple processes. Moreover, the signal
lines are implemented as wires in FPGAs, which is very efficient in terms of hardware resources.
It is now a great concern whether the signal construct can be included in the formal semantics
described above. In this chapter, an investigation on including signal construct into operational
semantics and hardware compiler semantics is described in detail. Furthermore, the previously
proposed formal semantics by other authors are limited in a single clock domain. In Section 9.5,
one possible method of extending the scope to multiple clock domains is investigated.

9.2. Scope of Handel-C semantics

The scope of the Handel-C semantics can be summarized in following four components:

Types: A range of Handel-C data types ultimately reduce down to specification of bit strings
of fixed length.

Synchronous “cores”: Regions of hardware under the control of a single clock. Operational
semantics described here is about the behavior of these cores.
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9. Formal verification of Handel-C program

Priority: The “channel” communication constructs of Handel-C are provided in the form of
prialt-statements, which requires all choices between communication events to be prioritized.

Asynchronous environment: The synchronous cores can be regarded that they communicate
with each other and with the environment via asynchronous interfaces.

9.2.1. Handel-C abstract syntax

The operational semantics suggested by Butterfield does not include the signal construct.
Here, the complete abstract syntax, including the signal construct is developed. Following
the methodology given in [110], firstly, two given sets of identifiers can be defined: one for vari-
ables (v, x, y, z ∈ V ar) and the other for channels (c, d ∈ Ch). Also provided are expressions
built from constants, variables and various operators and functions (e, s, b ∈ E). In addition to
these, the target sets of signals can be also defined as (sig ∈ Sig). Variables and expressions
includes both booleans and integers. According to these definitions, the abstract syntax can be
expanded in terms of signal construct as follows.

p ∈ P :: = 0 Skip

| 1 Delay

| v := e Assignment

| sig :≏ d← e Signal Assignment

| p1 ⊳ c ⊲ p2 Conditional

| s ◮ [pi] Selection

| b ∗ p While

| p1; p2 Sequential Composition

| p1 ‖ p2 Parallel Composition

| 〈gi → pi〉 Prioritized Choice (prialt) . (9.1)

The unit delay (1) statement does nothing, but takes one complete clock cycle to do it. The
assignment statement (v := e) evaluates the expression e consulting the current value of any
variables it references. The variable v is then updated at the end of the clock cycle. The
signal statement (sig :≏ d ← e) holds the default value d in sig unless the expression e is not
assigned at the beginning of the clock cycle. If it is assigned with expression e, the value of
the sig changes at the very beginning of the clock cycle before any selection happens. The
conditional statement (p1 ⊳ c ⊲ p2) evaluates its condition at the beginning of the clock-cycle,
and then executes p1 if c is evaluated to true, otherwise it turns p2. The selection (switch or
case) statement (s ◮ [pi]) evaluates the expression s, which should always result in a value in
the range 1..n. The process pi for which i = s then starts executing immediately. The iteration
(while) statement (b ∗ p) evaluates the boolean expression b. If false, the statement terminates
immediately, otherwise the process p has terminated. This activity continues until b is evaluated
to false. The sequential composition (p1; p2) of two statements simply indicates that the first
process runs to completion, and then the second starts up immediately afterward. Parallel
composition (p1 ‖ p2) involves both processes starting simultaneously, and it terminates when
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9.3. Extended operational semantics

both processes have finished. The prialt statement (〈gi → pi〉) can be viewed as a sequence
of guard-process pairs, where the guards (g ∈ G) are either communication actions like input
(c?v) or output (c!e) or a default guard (!?) to be invoked if no communication guard is enabled.
Hence:

g ∈ G ::= c?v | c!e | !? . (9.2)

9.3. Extended operational semantics

This section summarizes the extended operational semantics which includes signal construct.

9.3.1. Operational phase

The Handel-C has sequential and parallel constructs, global variable assignment, and channel
communication. For the establishment of the operational semantics for Handel-C, it is necessary
to understand the process behavior of all constructs during a clock cycle. For the inclusion of
the signal construct, the behavior of them shall be analyzed. Typical signal assignment is
described in Appendix E.7. The value assignment to a signal takes place at the very beginning
of the clock cycle, before other first conditional processes are evaluated. Because the scope of
atomic actions of the former operational semantics by Butterfield starts from the conditional
evaluation, atomic actions by signal shall be inserted before that. Because this phase is related
to the signal propagation, it can be named as “signal propagation” (pro) phase. The next
following phase to this is the “select” (sel) phase, in which the conditional and while-loop
expressions are evaluated based on the state of “signal” as well as the flow of control from the
statements executed on the previous clock cycle. The next phase is the “request” (req) phase.
In this phase, all the selected prialts load their corresponding requests with the environment.
At the end of this phase, the system has global knowledge of communication request associated
with this clock cycle. In the fourth “resolve” (res) phase, the system resolves all these requests
and define which communication actions are going to be executed. The final “action” (act)
phase is where all the atomic assignment and active communication actions take place. In this
stage, the permanent change on system state is made, which persist across clock boundaries.

All processes in these phases are actually implemented into hardware logic. The first four
phases are implemented as combinational logic, which finally makes decisions well within the
time allocated to the clock cycle. The last phase is synchronized to the end of the cycle.
Because the resolution determines the final communication actions between parallel processes
which affect to consequent permanent state changes, the sequencing of these phases are very
important. In the hardware implementation, this can be achieved by letting the resulting
combinational logic have enough time to settle into a consistent state.

9.3.2. Phase transitions

Transition types: A transition type (TType) is one of the above mentioned five phases, there-
fore:

TType =̂ {pro, sel, req, res, act} pro < sel < req < res < act . (9.3)
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Now statements can be classified by associating a transition type set (tts(p)):

tts : P → PTType

tts(0) =̂ {pro}
tts(sig :≏ d← e) =̂ {pro}
tts(p1 ⊳ c ⊲ p2) =̂ {sel}

tts(s ◮ [pi]) =̂ {sel}
tts(b ∗ p) =̂ {sel}

tts(〈gi → pi〉) =̂ {req}
tts(+〈gi〉) =̂ {req}

tts(a〈gi〉 ◮ [pi]) =̂ {res}
tts(w〈gi〉 ∗ p) =̂ {res}, w = FALSE

tts(w〈gi〉 ∗ p) =̂ {act}, w = TRUE

tts(1) =̂ {act}
tts(v := e) =̂ {act}
tts(p1; p2) =̂ tts(p1)

tts(p1 ‖ p2) =̂ tts(p1) ∪ tts(p2)

ttype : P → TType

ttype(p) =̂ min(tts(p)) . (9.4)

Based on this transition type, the system state can be defined as a tuple:

(p, t, ρ, γ, B, τ) : State , (9.5)

where:
p : P process syntax-state
t : TType current transition type

ρ : Id
m−→ V al variable environment

γ : Ch
m−→ G+ active channels

B : P(G+) requested/brocked prialts
τ : N current clock value

Given an initial program p0, the initial system state can be provided as:

(p0, pro, θ, θ, ∅, 0) , (9.6)

where θ denotes an empty map, and ∅ an empty set.

Transition events: Formally, all events can be regarded as functions on global state:

Evt =̂ State→ State , (9.7)

[[·]]T : P → Evt , (9.8)
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[[x := e]]T (. . . , ρ, . . .) =̂ (. . . , ρ † {x 7→ [[e]]ρ}, . . .) , (9.9)

[[+〈gi〉]]T (. . . , B, . . .) =̂ (. . . , B ∪ {〈gi〉}, . . .) . (9.10)

Transition relation: Given a state pair consisting of program (p) and transition type (t),
transition conditions can be defined. By including the signal construct, the transition relation
suggested by Butterfield can be extended by inserting corresponding two transition conditions.
All transition conditions are summarized in Table 9.1. The system switches from one state to
the next higher when no more processes are wishing to do transitions of lower type.

Table 9.1.: Extended transition conditions

transition enable condition changes

pro t = pro ∧ ttpype(p) = pro p
pro−−→ p′

pro2sel t = pro ∧ ttpype(p) 6= pro t := sel

sel t = sel ∧ ttpype(p) = sel p
sel−−→ p′

sel2req t = sel ∧ ttpype(p) 6= sel t := req

req t = req ∧ ttpype(p) = req p
req−−→ p′

req2res t = req ∧ ttpype(p) 6= req t := res

res t = res ∧ ttpype(p) = res p
res−−→ p′

res2sel t = res ∧ ttpype(p) = sel t := sel
res2act t = res ∧ ttpype(p) = act t := act

act t = act ∧ act ∈ tts(p) p
act−−→ p′

act2pro t = act ∧ act /∈ tts(p) ∧ actttype(p) = pro t := pro
act2sel t = act ∧ act /∈ tts(p) ∧ actttype(p) = sel t := sel

The complexity arises when t = act, and signal propagation occurs as the resulting process.
This signal may again trigger other “select” conditions in different place, and therefore, the pro
is selected as the next process. This can be seen in the following example code.

static signal unsigned 1 sig1 = 0; // shared by all processes

static signal unsigned 1 sig2 = 0; // shared by all processes

static signal unsigned 1 sig3 = 0; // shared by all processes

do { do { do {

sig1 = 1; if(sig1==1) { if(sig1==1 && sig2==1) {

delay; sig2 = 1; sig3 = 1;

} while(1); } else { } else {

delay; delay;

} }

} while(1); } while(1);

The first process sets the value of sig1 in the first pro phase, the second and third process
evaluates the “if” condition in the first sel phase. As the evaluation result, the second process
sets the value of the sig2 as “1” in the first act phase. At this point, the third process selected
the action of delay. However, after the propagation of the signal of sig2, the “if” condition
of the third process is eventually evaluated as TRUE, and the value of the sig3 is set as “1”.
Which action the third process finally choose is defined at the end of the current clock cycle.
For the detailed description about the behavior of the prialt see [110].
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9. Formal verification of Handel-C program

Transition rules: Transition rule of the signal construct can be defined as follows using the
semantics suggested in [110].

Sig-Assign
sig :≏ d← e

pro−−−−−−−→
sig:≏d←[[e]]ρ

0
. (9.11)

After execution of the signal assignment, the value is kept as the result value of e based on
the variable environment ρ as defined in Section 9.3.2, until the end of the current clock cycle.
After the “tick,” the value is set to the default value d.

Execution trace: An execution trace of a Handel-C program can be finally described as a
sequence of transitions occurring with the following structure:

((pro∗; sel∗; req∗; res∗)∗; act+)+ , (9.12)

where “;” denotes concatenation, and x∗ and x+ denote zero-or-more xs and one-or-more xs,
respectively.

9.4. Extended hardware compiler semantics

As described in [110], nested prialts require us to iterate its request-resolve loop several times
in any given clock cycle. Combined signal lines shall be also iteratively solved tracing the
final result of combinational signal propagation. Managing this micro-cycles activity severely
complicates the operational semantics. However, the underlying hardware does not iterate,
as it just propagates signals through combinational logic and also make decision on which
communication lines are to be active in any given clock cycle using combinational logic.

The key concept behind the hardware semantics is to recognize that the resulting hardware
simply consists of a fixed bank of registers, connected by fixed combinatorial logic – in effect a
large (finite-) state-machine [127]. New values of the register state are computed as a function
of the current values on each clock cycle. From this point of view, the hardware semantics of a
Handel-C program is therefore simply a fixed function, that is:

f : State→ State , (9.13)

where State denotes the contents of all registers. The relationship between operational and
hardware compilation semantics can be seen in [127].

The contribution of this thesis is to extend the equations that model the behavior of the
hardware in terms of signal constructs, to describe how f is computed. The hardware features
that need to be modeled are: registers, multiplexers, input start : B and output finish : B

signals to and from program statements (see Appendix E.2), clock cycle control tokens, as well
as “signals.” These shall be expressed using a set of equations Eqn. As the consequence, the
overall system is described as a list of such equations:

Sys =̂ PEqn . (9.14)
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Following the convention suggested in [127], the above features can be described as building
blocks. The extended description including “signals” is summarized as follows:

Multiplexers:

muxn : B
n → Z

n → Z

muxn(c1, . . . , cn)(data1, . . . , datan) =̂ datai, ifci . (9.15)

Registers:

register[load : B, in : Z] : Z . (9.16)

Clock cycle control token:

wait[finish : B] : B . (9.17)

Synchronous block:

syncn[finish1 : B, . . . , f inishn : B] : B . (9.18)

Signal:

signal[load : B, set : Z, default : Z] : Z . (9.19)

9.4.1. Hardware compilation semantics

Hardware compilation semantics provides mapping of processes into sets of hardware equations,
that is:

[[−]] : P → Eqn . (9.20)

Here the extended semantics including signal constructs are summarized as follows:

[[l :: Skip]] =̂ finishl = startl , (9.21)

[[l :: Delay]] =̂ finishl = wait[startl] , (9.22)

[[l :: x := e]] =̂ in.x = mux1(startl)([[e]]);

load.x =
∨
{startl};

x = register[load.x, in.x];

finishl = wait[startl] , (9.23)

[[l :: x :≏ d← e]] =̂ set.x = mux1(startl)([[e]]);

load.x =
∨
{startl};

x = signal[load.x, set.x, d];

finishl = wait[startl] , (9.24)
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[[l :: (m :: p1 ⊳ c ⊲ n :: p2)]] =̂ [[m :: p1]] ⊎ [[n :: p2]] ⊎
startm = startl ∧ [[c]];

startn = startl ∧ ¬[[c]];

finishl = finishm ∨ finishn , (9.25)

[[l :: (s ◮ [m :: pi])]] =̂ [[m :: p1]] ⊎ . . . ⊎ [[m :: pi]] ⊎
startmi

= startl ∧ i = s;

finishl =
∨

i

{finishmi
} , (9.26)

[[l :: (b ∗m :: p)]] =̂ [[m :: p]] ⊎
startm = [[b]] ∧ (startl ∨ finishm);

finishl = ¬[[b]] ∧ (startl ∨ finishm) , (9.27)

[[l :: (m :: p1;n :: p2)]] =̂ [[m :: p1]] ⊎ [[n :: p2]] ⊎
startm = startl;

startn = finishm;

finishl = finishn , (9.28)

[[l :: (m :: p1 ‖ n :: p2)]] =̂ [[m :: p1]] ⊎ [[n :: p2]] ⊎
startm = startl;

startn = startl;

finishl = sync2[finishm, f inishn] . (9.29)

Finally, the running program is characterized by a sequence of states generated on successive
clock-cycles by the repeated use of f on some starting state s0 : State, therefore:

s0, f(s0), f
2(s0), f

3(s0), . . . . (9.30)

9.5. Formal verification of logics in multiple clock domains

The past studies about formal semantics of Handel-C concentrated to only the case with a
single clock domain with one master clock, and so far, the communications between outer
world were regarded as asynchronous communications. The truth is, however, that some of the
effective design methods enables synchronized communication between processes in different
clock domains. For these cases, the combination of several clock domains can be regarded as a
single complex combinational logic and becomes the target of combinational formal verification.
The only problem here is that the language reference manual of the Handel-C [131] does not
include detailed information about the duration of channel communication between two clock
domains. It just notes that those communications take at least one clock cycle, possibly more
than one. For the following discussion, we make two assumptions:
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• if a pair of communication channels (“in” and “out”) is ready in both clock domains, the
communication takes place immediately.

• the beginning of clock cycles of all clock domains are aligned with no phase shift, which
is technically well possible.

9.5.1. Introduction of observation clock domain

For multiple clock domains with each frequency Fi, an observation clock domain with a Least
Common Multiple (LCM) frequency FLCM can be introduced and the communication can be
observed from this newly generated clock domain. For example, for two clock domains with
different clock frequencies of F1 = 100 MHz and F2 = 150 MHz, respectively, LCM frequency of
FLCM = 300 MHz can be generated as illustrated in Figure 9.1. Provided that an output channel
is ready in the second clock cycle in the clock domain 2 and waiting for the corresponding input
channel in the clock domain 1. Because the channel communications take place immediately
after resolution, if the input channel becomes ready in the first clock cycle of the clock domain
1, then the communication takes place in the third clock cycle of the LCM observation clock
domain (A in Figure 9.1). On the contrary, if the input channel becomes ready in the second
clock cycle of the clock domain 1, then the communication takes place in the forth clock
cycle of LCM observation clock domain (B in Figure 9.1). On the other hand, synchronous
communications between above two clock domains can be performed with a frequency of up
to 50 MHz. This maximum value is the highest common factor of the clock domains. Clearly,
these concepts can be also applied for more than two different clock domains.

Figure 9.1.: Multiple clock domains

9.5.2. Derivation of synchronization function

Now define a delay function (df) for each i-th clock domain relative to the frequency of the
observation clock domain, such that:

dfi =
FLCM

Fi

. (9.31)
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Now a clock domain synchronization function domSync can be introduced modifying the above
defined wait function in Equation (9.17), that is:

domSync[df : Z, f ini : B] : B , (9.32)

where
domSync[df, fini] =̂ wait[wait[wait[fini]]]︸ ︷︷ ︸

df

. (9.33)

Replacing the wait function with domSync, the corresponding atomic statements can be ob-
tained as:

[[l :: Delay]] =̂ finishl = domSync[startl] , (9.34)

[[l :: x := e]] =̂ in.x = mux1(startl)([[e]]);

load.x =
∨
{startl};

x = register[load.x, in.x];

finishl = domSync[startl] , (9.35)

[[l :: x :≏ d← e]] =̂ set.x = mux1(startl)([[e]]);

load.x =
∨
{startl};

x = signal[load.x, set.x, d];

finishl = domSync[startl] . (9.36)

As the result, by introducing the notion of LCM frequency, delay function, and synchronization
function, hardware compilation semantics in Section 9.4.1 can be extended to include multiple
clock domains. This method has advantage against introducing explicit clock variables in the
equations, in terms of simplicity and easy extendability.

9.6. Formal verification with UTP

In the above sections, formal semantics of operational and hardware compilation semantics of
Handel-C are extended to include signal syntax into the scope of formal verification. Though
the formal semantics written in CSP can be verified with tools such as FDR2, there is unfortu-
nately no tool available verifying the formal semantics developed in this chapter at the time of
writing. However, as suggested in [127], transformation of above Handel-C hardware compila-
tion semantics into Unifying Theories of Programming (UTP) framework [132] is possible, by
regarding the whole as a group of complex state-machines. It will be the future work to apply
this technique to realize formal verification of Handel-C codes. It shall be also specified what
is the full range of Handel-C laws that can be verified using the hardware semantics. It is the
future work to strictly clarify the scope and also constrains of formal verification of Handel-C
codes, so that design specification of control algorithms can be derived from, and developed
control algorithms can be verified by formal methods.
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9.7. Discussion on using signal constructs

Signal is the only construct with which one can (manually) generate direct electrical signal
lines connecting combinational logics. Because the signal allocation command line can be
nested inside the select conditions, the complete behavior of more than one “signals” shall be
iteratively solved, and therefore, one shall take the resulting combinational hardware logic into
account. Similar to the shared variables in Handel-C, which can not be written by more than
one assignments, there is a constraint for using signals called “combinatorial cycles”.

static signal unsigned 1 sig1 = 0; // shared by both processes

static signal unsigned 1 sig2 = 1; // shared by both processes

//process A //process B

if (sig2 == 1) { if (sig1 == 1) {

sig1 = 1; sig2 = 0;

} else { } else {

delay; delay;

} }

In the above example, the two signals sig1 and sig2 have default values of “0” and “1”, respec-
tively. Provided that both processes start at the same time, the first process evaluates the if
condition as TRUE setting the value of sig1 as “1”, and the second process evaluates the if
condition as FALSE and performs delay at the very beginning of the clock cycle. However,
because the values of sig1 eventually propagates up to 1 within the clock cycle, the if condition
in the second process is evaluated as TRUE setting the value of sig2 to “0”, which leads again
the change of the sig1. This behavior is called combinatorial cycle, which can be classified
as live-lock. The compiler of DK Design Suite can detect this condition and report an error
message. This behavior is often called as zero-delay combinatorial cycles.

The important point here, is that a “signal” can be further connected with other signals nested
in select conditions, but they may not be connected with each other resulting in combinatorial
cycles. As the compiler can detect this failure, it is assured that this kind of combinatorial
cycles of signals do not exist in the designed control algorithms. This condition is necessary to
ensure that extended formal semantics with signals described above can be surely solved. In
other words, the resolution process of formal semantics shall be iteratively performed until all
sequential combination of signal propagation lines are evaluated.

Synchronization of multiple clock domains

Channel communications can be executed only when the both input and output channels be-
came ready. Due to this nature of channel construct, it can not be used for synchronization of
more than two processes. To see the problem, consider the processes explained in the below
example. Provided that all processes start at the same time, the process A intends channel
communication trying to synchronize the other two processes B and C. However, because only
process B is ready to receive the data, only the ch1 communication takes place in the first
clock cycle. In the next clock cycle, process B performs statement1, while process C performs
channel communication through ch2. Consequently, two statement1 and statement2 can not
be synchronized.
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chan unsigned 1 ch1; // shared by all processes

chan unsigned 1 ch2; // shared by all processes

unsigned 1 a, b;

//process A //process B //process C

do { do { do {

par { ch1?a delay;

ch1!1;//1st clock statement1; ch2?b;

ch2!1;//2nd clock delay; statement2;

} } while (1); } while (1);

delay;

} while (1);

However, this problem can be solved by using the signal as described in the example codes
below. In the example, the process A sets the value of sig1 as “1” in the second clock cycle,
by performing the statement1 at the same time. This assignment of the signal value is not
dependent on the other processes any more. Process B and C wait until the value of the
sig1 becomes “1” and if the value changes to “1”, they performs statement2 and statement3,
respectively in the very same clock cycle. In this way, all three statements can be synchronized.

static signal unsigned 1 sig1 = 0; // shared by all processes

//process A //process B //process C

do { do { do {

delay; while(sig1!=1){ while(sig1!=1){

par { delay; delay;

sig1 = 1; } }

statement1; statement2; statement3;

} } while (1); } while (1);

} while (1);

As described in this example, “signals”provide attractive features for synchronizations of multi-
ple parallel running processes, as well as for simultaneous information exchanges between them,
which can realize an effective use of hardware logic inside FPGAs and convenient logic design
implementations.

9.8. Conclusion

In this chapter, the existing formal semantics of the Handel-C hardware description language is
extended in terms of “signal” syntax in order to cover all aspects of applied control algorithms
implemented into the on-board computer of the Flying Laptop in Part II. The formal semantics
are also extended to deal with multiple clock domains inside an FPGA. This method introduces
an observation clock domain to solve the behavior of hardware logic. The combinational use
of the developed formal semantics and the UTP will be able to realize formal verification of
Handel-C codes in order to assure the fault-free functionality of designed control algorithms
which shall be implemented into FPGA-based OBCs for future space systems.
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10. Conclusions and outlook

The application of “reconfigurable computing” based on FPGA technologies provides ideal so-
lutions for fulfilling high demands on computational capabilities of recent and future space
systems. The extremely high throughput of FPGAs due to their internal parallel processing
promises an innovative leap of the capability of computing systems aboard spacecraft. Other
features of reconfigurable FPGAs – dense interface implementation capability, lower power con-
sumption, low cost, high flexibility, and small hardware size – are very attractive, especially
for the application fields of small satellites. However, due to their radiation susceptibilities,
reconfigurable FPGAs have not yet been used in practical space applications. This thesis con-
ceptualized an application method of ground-based reconfigurable FPGAs for space systems,
with the approach of a combinational use of SRAM-FPGAs and Flash-FPGAs for radiation
mitigation. Within the scope of this thesis an FPGA-based on-board computer was developed
for the demonstration small satellite Flying Laptop. This is a purely FPGA-based and the only
on-board computer of the satellite, in which all satellite control functions shall be implemented.
Accordingly, this thesis realizes following three innovations:

• Application of ground-based reconfigurable FPGAs for space systems.

• Demonstration of an FPGA-based on-board computer on the small satellite Flying Laptop.

• Demonstration of the implementation of the whole satellite control functions into the
control algorithms inside FPGAs.

The contributions of this thesis are:

• Extensive investigation on radiation effects on existing reconfigurable FPGA devices and
failure rate estimation in LEO.

• Conceptualization of reconfigurable FPGA-based on-board computers for space systems
applying a combinational use of SRAM- and Flash-FPGAs for the radiation mitigation.

• Reliability modeling and establishment of an operational strategy of the proposed on-
board computer concept reflecting its repairable features and degree of redundancy.

• System design of the demonstration small satellite Flying Laptop in order to realize the
implementation of the on-board computer.

• Development of the hardware breadboard model of the on-board computer as well as
partial engineering models of its components.

• Development of the hardware logic (control algorithm) inside the FPGAs which shall
replace the software functions of traditional satellites and shall conduct the whole control
functions of the Flying Laptop satellite.

• Development of a simulation interface inside FPGAs for hardware-in-the-loop simulation
and verification purposes.

• Simulation and verification of the functionalities of the implemented control algorithms
by means of the established simulation and verification environment.
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• Investigation on formal verification methods of hardware logic inside FPGAs and exten-
sion of formal semantics in terms of “signal” syntax and multiple clock domains.

First of all, an extensive investigation about radiation effects on different types of FPGAs has
been conducted. Experimentally obtained characteristics against radiation effects were surveyed
for SRAM- and Flash-based FPGA devices. According to the available experimental data,
mainly from scientific publications, manufacturers, and the NASA’s Office of Logic Design, the
state-of-the-art SRAM-FPGA devices Virtex-II Pro and Virtex-4QV, as well as Flash-FPGA
devices ProASIC3 and RTProASIC were selected as candidates. Failure frequencies estimated
by means of the industry-standard radiation effects model CREME96 indicate the possibility
of realizing SRAM-FPGA-based OBCs with continuous repairs against SEEs in case of modest
radiation conditions. The strong tolerance of SRAM-FPGAs against TID effects allows the
assumption that the radiation effects due to SEEs can be repaired by reconfigurations. It
also indicated that under heavy radiation conditions, such as those caused by coronal mass
ejections, existing SRAM-FPGAs can not survive even few seconds without an error (it can
be repaired/reconfigured). This fact derives the requirement that the FPGA-based OBC shall
possess the capability of being completely shut down in case of heavy radiation conditions.
On the contrary, Flash-FPGAs revealed their tolerance against SEEs with adequate mitigation
methods.

Based on the achievements above, an application method of reconfigurable FPGAs for the
space radiation environment with a combinational use of SRAM-FPGAs and Flash-FPGAs was
conceptualized. This method applies multiple SRAM-FPGAs for multi-chip redundancy (2-out-
of-m) in order to mitigate SEEs monitoring their behavior using Flash-FPGAs as the voting
function. The Flash-FPGAs do not need to be reconfigured in orbit. The reliability modeling
of these conceptualized repairable redundant systems has been conducted. Investigations on
radiation effects and the reliability analysis revealed that 2-out-of-4 system based on Virtex-
II Pro XC2VP50 (which was actually applied for the OBC of the Flying Laptop) provides a
sufficient high reliability against the radiation effects for the mission life time of 2 years in
LEO, whereas 2-out-of-3 system is estimated to fail around every 2 months. The required
repair rate was identified as a realistic value of 5 s. It was also illustrated that periodical
reconfigurations shall ensure a sufficiently high reliability against SEEs. Reliability against
TID can be evaluated separately and is not repairable. The selected RTProASIC RT3PE3000L
can provide a sufficient reliability for the mission life time of around 10 years in LEO, assuming
an annual dose of about 1.5 krad with a 3 mm of aluminum shielding. The reliability against
SEEs depends on the duration after the most recent start-up, while the reliability against TID
depends only on the duration after the launch. Consequently, applying 2-out-of-4 redundant
SRAM-FPGAs with Flash-FPGAs as the voter, a system reliability of ≈ 1 can be achieved in
2 years after 30 days of operational time of the node system. In case of 2-out-of-3 system, this
reliability decreases to about 0.49. The quad-redundant system can also absorb a permanent
failure of one SRAM-FPGA chip resulting in a 2-out-of-3 system.

The above conceptualized application method has been applied to the design of the OBC of
the small satellite Flying Laptop. The Flying Laptop is a scientific Earth observation and
technology demonstration satellite and is equipped with various scientific instruments, such as
camera instruments as well as communication instruments. All on-board electrical components
shall be controlled by the OBC. First of all, the system design of the whole satellite was
conducted within the scope of the thesis. The electrical architectures of the satellite system
were established and the electrical interfaces were specified. By means of a real-size mock-
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up model of the satellite, harness cabling was designed in order to define realistic hardware
interfaces of the OBC. The functional parameters of the TT&C and PSS subsystems were
defined and the satellite’s operational concept, including commanding, data handling, and
contingency operation has been established. The state-machine of the system and subsystems
were designed. A power balancing design was conducted reflecting the target orbit, attitude
control modes, and solar panel configurations, which ensures the secure operation of the satellite.

Derived from the system design of the satellite, requirements of the OBC have been defined. The
design of 2-out-of-4 system was selected to secure a higher reliability. The hardware breadboard
model of the OBC was developed and assembled and engineering models of the central process-
ing node were developed. The control algorithms were developed using the breadboard model.
The layered architecture of the control algorithm realizes a higher portability. A compositional
multi-agent programming method and layered FDIR architecture were established for the im-
plementation of subsystem and component control algorithms. The main central control logics
were implemented based on the developed concept of parallel asynchronous reactive system
(PARS). State-machines of subsystems were developed in the Mathworks MATLAB/Simulink
environment. Furthermore, an integrated control algorithm development environment for both
SRAM- and Flash-FPGAs were established.

For the verification purposes of the control algorithms inside FPGAs, a hardware-in-the-loop
simulation environment was developed. A special simulation interface which allows commu-
nications between parallel processes inside an FPGA and the simulator was developed and
implemented into the FPGA. This interface realizes a hardware-in-the-loop simulation and
verification environment based on the model-based development and verification environment
established at the IRS with the support of EADS Astrium. By means of this environment,
extensive simulations have been conducted. The simulation results illustrate validities of the
implementation methods of control algorithms, their functionalities, and the system design of
the satellite, in terms of power balancing design, operational design, commanding architecture
design, state-machine design, and FDIR design.

Finally, an investigation on formal verification methods of the hardware description language
Handel-C was conducted. The existing formal semantics of the Handel-C were extended in
terms of “signal” syntax in order to cover all aspects of applied control algorithms. The formal
semantics were also extended to deal with multiple clock domains inside an FPGA, introducing
an observation clock domain. The combinational use of the developed formal semantics and the
UTP will be able to realize formal verification of Handel-C codes in order to assure fault-free
functionalities of designed control algorithms for FPGA-based OBCs of future space systems.

As a future work, radiation tests shall be performed as soon as the engineering model of the
OBC becomes available. After the qualification of the engineering model, the flight model
shall be developed. The control algorithms shall be continuously improved/developed based on
the breadboard model and the hardware-in-the-loop simulation and verification environment.
Starting from the EM, satellite peripheral components shall be integrated with the OBC and
their combinational functionalities shall be verified. After the launch of the satellite, the OBC
shall demonstrate the validity of its design, as well as the introduced application methods of
reconfigurable FPGAs for space systems. Furthermore, if the mission life time allows, appli-
cation capabilities of the OBC for intelligent space systems can be demonstrated by testing
higher level autonomy functions. The OBC promises successful achievements of all scientific
experiments and technology demonstrations of the Flying Laptop satellite.
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A. Failure frequency of SRAM-FPGAs

This appendix provides failure frequencies of the selected Xilinx SRAM-FPGAs (Virtex-II Pro
XC2VP50 and Virtex-4QV XQR4VFX60), calculated by the radiation model CREME96 [56].

Table A.1.: Failure frequency of Virtex-II Pro XC2VP50 [device/s]

Case CFG BRAM POR
PUP HUP PUP HUP PUP HUP

Solar Max 1.15E-14 7.46E-5 2.73E-15 2.10E-5 5.95E-21 1.87E-10
Solar Min 4.83E-15 2.76E-5 1.14E-15 7.84E-6 2.48E-21 7.64E-11
Worst Week 1.04E-10 1.39E+1 2.32E-11 4.10 4.09E-17 3.58E-5
Worst Day 6.29E-10 6.76E+1 1.39E-10 2.00E+1 2.37E-16 1.76E-4
Peak-5min 2.51E-9 2.77E+2 5.54E-10 8.19E+1 9.34E-16 7.22E-4

Case SMAP JCFG –
PUP HUP PUP HUP – –

Solar Max 9.11E-21 2.00E-10 4.56E-21 2.49E-11
Solar Min 3.82E-21 7.97E-11 1.91E-21 9.45E-12
Worst Week 8.23E-17 3.26E-5 4.12E-17 4.76E-6
Worst Day 4.97E-16 1.58E-4 2.49E-16 2.31E-5
Peak-5min 1.99E-15 6.50E-4 9.94E-16 9.49E-5

Table A.2.: Failure frequency of Virtex 4QV XQR4VFX60 [device/s]

Case CFG BRAM F/F(1) F/F(0)
PUP HUP PUP HUP PUP HUP PUP HUP

Solar Max 1.05E-6 4.57E-5 3.05E-7 3.74E-5 1.20E-9 6.63E-7 3.61E-9 2.81E-7
Solar Min 4.50E-7 2.16E-5 1.27E-7 2.08E-5 5.01E-10 3.29E-7 1.50E-9 1.16E-7
Worst Week 4.02E-3 7.78 1.10E-3 5.55 4.35E-6 1.10E-1 1.30E-5 5.44E-2
Worst Day 2.35E-2 4.04E+1 5.90E-3 3.14E+1 2.33E-5 5.90E-1 6.97E-5 2.72E-1
Peak-5min 9.32E-2 1.66E+2 2.28E-2 1.30E+2 8.98E-5 2.44 2.69E-4 1.12

Case POR SMAP GSIC –
PUP HUP PUP HUP PUP HUP – –

Solar Max 3.47E-12 1.48E-10 2.71E-12 1.17E-11 3.42E-12 5.21E-12
Solar Min 1.46E-12 7.69E-11 1.14E-12 6.06E-12 1.45E-12 2.90E-12
Worst Week 1.41E-8 2.90E-5 2.51E-8 2.37E-6 1.66E-8 9.58E-7
Worst Day 8.06E-8 1.60E-4 1.51E-7 1.30E-5 9.83E-8 5.55E-6
Peak-5min 3.18E-7 6.61E-4 6.03E-7 5.38E-5 3.91E-7 2.29E-5

PUP: Proton induced events HUP: Heavy ion induced events
CFG: A SEU in the configuration memory BRAM: A SEU in the Block RAM
POR: SEFI in the Power-on-Reset circuitry SMAP: A SEFI in the SelectMAP circuitry
JCFG: A SEFI in the JTAG Configuration Access Port GSIG: Global Signal
F/F(1): User flip-flops in state of “1” F/F(0): User flip-flops in state of “0”
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B. Basic probability calculus

This appendix provides a fundamental background of basic probability calculus. For detailed
information on basic probability calculus one can refer, e.g., [59].

B.1. Definition of distribution function and density function

In general, the probability distribution function of a random variable Z in an exponential case
can be described as

FZ(z) ≡ P (Z≤z) . (B.1)

In case FZ(z) is differentiable, its derivative

fZ(z) ≡ d

dz
FZ(z) (B.2)

is called the probability density function of Z. In case Z is a continuous random variable,

E(Z) =

∞∫

−∞

zfz(z)dz (B.3)

is the expected value of Z. In case of non-negative random variables such as Z ≡ L ≤ 0 for life
time, the value of E(L) can be described as Riemann integral approximation:

E(L) =

∞∫

0

tfL(t)dt =
∞∑

i=1

i∆t[FL(i∆t+ ∆t)− FL(i∆t)] + O(∆t) . (B.4)

This is on the other side equal to the shaded area in Figure B.1 [59]. Consequently the following
equation can be derived:

E(L) =

∞∫

0

tfL(t)dt =

∞∫

0

[1− FL(t)]dt =

∞∫

0

F̄L(t)dt =

∞∫

0

R(t)dt , (B.5)

where F̄L(t) and R(t) are called the survivor function and reliability of the random variable L
at t. The normation condition of the probability distribution function has the form of

FZ(∞) = 1 ⇔
∞∫

−∞

fz(z)dz = 1 . (B.6)
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Figure B.1.: Non-negative random variable

B.2. Distribution of the sum of two random variables

A single distribution function which is a combination of two random variables can be defined
by

FZ1,Z2
= P{(Z1 ≤ z1) ∩ (Z2 ≤ z2)} . (B.7)

For statistically independent random variables, this yields

FZ1,Z2
= FZ1

(z1)FZ2
(z2)⇔ fZ1,Z2

= fZ1
(z1)fZ2

(z2) . (B.8)

Distribution of the sum of two statistically independent variables L1, L2 ≥ 0 can be now written
as:

FL1+L2
(t) =

t∫

0

fL1
(τ)FL2

(t− τ)dτ . (B.9)

Differentiating this and applying the sign “⊗” indicating convolutional functions we get

fL1+L2
(t) =

t∫

0

fL1
(τ)fL2

(t− τ)dτ ≡ fL1
⊗ fL2

. (B.10)

For detailed derivation of above equations, see [59].
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B.3. Basic Laplace transformation

Generally, Laplace transformation of the function f(t) can be described as:

f ∗(s) ≡ L{f(t)} ≡
∞∫

0

f(t)e−stdt . (B.11)

where, L indicates Laplace transformation. Letting L−1 indicate inverse Laplace transforma-
tion, the relation can be also described as:

f(t) ≡ L−1{f ∗(s)} . (B.12)

From the definition,

L{1} =

∞∫

0

e−stdt =
1

s
. (B.13)

Prominent properties of the Laplace transformation can be described as follows.

Differentiation rule:

L
{
d

dt
f(t)

}
= sf ∗ − g(+0) . (B.14)

Integration rule:

L






t∫

0

f(τ)dτ




 =
f ∗(s)

s
. (B.15)

Multiplication rule:

L






∞∫

0

f1(τ)f2(t− τ)dτ




 = f ∗1 (s)f ∗2 (s) . (B.16)

As a practical application, one can transform Equation (B.10) for τ →∞ obtaining

f ∗L1+L2
(s) = f ∗L1

(s)f ∗L2
(s) . (B.17)
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B.4. Markov model of a repairable unit

For the Markov model of a single repairable unit, illustrated in Figure B.2, the Ṗ1(t) can be
described as

Ṗ1(t) ≡
dP1(t)

dt
= −λP1(t) + µP2(t) . (B.18)

Figure B.2.: Markov graph of a single repairable unit

By the normation equation of probabilities

P1(t) + P2(t) = 1 , (B.19)

Equation (B.18) can be written as

Ṗ1(t) + (λ+ µ)P1(t)− µ = 0 . (B.20)

The general solution can described as

P1(t) = α+ β · e−γt , (B.21)

and inserting Equation (B.21) to Equation (B.20) results

− βγe−γt + (λ+ µ)α+ (λ+ µ)βe−γt − µ = 0 . (B.22)

This yields two equations, i.e., for t = 0

− βγ + (λ+ µ)(α+ β)− µ = 0 , (B.23)

and for t→∞ (for Re(γ) ≥ 0),

(λ+ µ)α− µ = 0⇒ α =
µ

λ+ µ
. (B.24)

with the initial condition P1(0) = 1, Equation (B.21) yields

α+ β = 1 . (B.25)

From Equation (B.24)

β =
λ

λ+ µ
. (B.26)
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With α and β known, γ can be determined as

γ =
λ

β
= λ+ µ , (B.27)

and this acknowledges the above assumption Re(γ) ≥ 0. Consequently, P1(t) can be determined
as

P1(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t . (B.28)

B.5. Basic Boolean functions

Provided that a component C has a binary property, it can be modeled by a Boolean indicator
variable X

X =

{
0, if the component has the certain property
1, else

. (B.29)

Boolean function ϕ depending on X1, . . . , Xn and resulting in Xϕ can be described as

Xϕ = ϕ(X1, · · · , Xn) . (B.30)

Generally, Boolean algebra can be defined by means of three operations: conjunction operation
(AND) with the operator ∧, disjunction operation (OR) with the operator ∨, and negation
operation (NOT) with the operator .̄ For complex calculations of Boolean functions with n not
too small, the Boolean operators in Boolean functions can be further replaced by mathematical
operations such that:

∧

i

Ai =
∏

i

Ai , (B.31)

and ∨

i

Ai = 1−
∏

i

(1− Ai) = 1−
∏

i

Āi . (B.32)

For Boolean indicator quantities A and B clearly

A ∧B = AB (B.33)

meaning concatenation (multiplication), and

A ∨B = A+B − AB = 1− (1− A)(1−B) = A+ ĀB . (B.34)

Negation can be replaced by
Ā = 1− A , (B.35)

and idempotence law also holds as
A2 = A . (B.36)
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C. Flying Laptop satellite subsystem
design

Based on the system design activity functions and components are allocated to subsystems.
In following chapters, relevant design aspects of the subsystems TT&C (Telemetry Tracking &
Command) and PSS (Power Supply System) are described.

C.1. Telemetry, Tracking & Command subsystem design

As the components of TT&C subsystem, VHF-Band up-link, UHF-Band down/up-link, S-Band
down/up-link are implemented. The S-Band is the main communication channel of the Flying
Laptop and is equipped with high gain and low gain down-link antennas. The down-link baud
rates are 2 Mbps and 150 kbps, respectively. For the redundancy, the receiver of the S-Band
and UHF-Band are fully hot redundant and they are always powered on. The VHF channel is
only for the up-link. These VHF and UHF channels will be partly opened for amateur radio
community.

C.1.1. Link equation

The most basic link equation, which relates concerned parameters to design a digital data link
with desired performances is

Eb

N0

=
PtLlGtLsLaGr

kTsRd

, (C.1)

where Eb/N0 is the ratio of received energy-per-bit to noise-density, Pt is the transmitter power,
Ll is the transmitter-to-antenna line loss, Gt is the transmit antenna gain, Ls is the space
loss, La is transmission path loss, Gr is the receive antenna gain, k is Boltzmann’s constant
(1.380× 10−23 J/K), Ts is the system noise temperature, and Rd is the data rate [133]. La is a
function of factors such as rainfall density and atmospheric attenuations.

The received power C at the antenna can be described as the power flux density Wf times the
effective receiver antenna aperture area Ar:

C = WfAr , (C.2)

where Wf and Ar can be described as

Wf =
PtLlGtLa

4πS2
, (C.3)

148



C.1. Telemetry, Tracking & Command subsystem design

Ar =
πD2

r

4
· η . (C.4)

Here, S is the path length between the two antennas in meter, and η is the antenna efficiency
of receive antenna. The maximum distance in case of Flying Laptop is calculated with the
elevation angle of 7 ◦ for the orbit with an altitude of 900 km. The part of parameters which
can be measured by means of sensors, that is Pt, Ll, and Gt are also called as effective isotropic
radiated power EIRP . Therefore, Wf can be also described as

Wf =
(EIRP )La

4πS2
. (C.5)

The receiver antenna gain can be defined as the ratio of its effective aperture area Ar to the
effective area of a hypothetical isotropic antenna λ2

w/4π, where λw is the wavelength of the
transmitted signal, such that

Gr =

(
πD2

rη

4

)(
4π

λ2
w

)
=
π2D2

rη

λ2
w

. (C.6)

From above equations, the Equation (C.2) can be now described as

C = PtLlGtLaGr

(
λw

4πS

)2

≡ PtLlGtLsLaGr ≡ (EIRP )LsLaGr , (C.7)

where
Ls = (λw/4πS)2 = (c/4πSf)2 (C.8)

is defined as the space loss. Here, f is the carrier signal frequency in Hz and c = 3 × 108 m/s
is the speed of light.

The received energy per bit Eb is equal to the received power times the bit duration, therefore

Eb =
C

Rd

. (C.9)

The total received noise power N is the noise spectral density N0 times the received noise
bandwidth B

N = N0B , (C.10)

where N0 is related to the system noise temperature Ts by:

N0 = kTs . (C.11)

N0 is in W/Hz, N is in W, Ts is in K, and B is in Hz.

Because the link equations are products of successive terms, they are conventionally expressed
in terms of decibels (dB). Equation (C.1) can be described as

Eb/N0 = Pt + Ll +Gt + Ls + La +Gr + 228.6− 10 log Ts − 10 logRd , (C.12)
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and the carrier-to-noise-ratio C/N results in

C/N = EbRd/N0B

= Eb/N0 ×Rd/B

≡ Pt + Ll +Gt + Ls + La +Gr + 228.6− 10 log Ts − 10 logB . (C.13)

Pointing loss: For the link design of the Flying Laptop, only the pointing losses of directional
antennas have been taken into account. For circular directional antenna beam, the half-power
beam width θ is the angle across which the gain is within 3 dB of the peak gain. As described
in [133], the half-power beam width of a receiver antenna is empirically,

θ =
21

fGHzDr

, (C.14)

where fGHz is the carrier frequency in GHz and Dr is the receiver antenna diameter in meter, θ
is in degrees. A receiver antenna might not be located at the center of the transmitter antenna
beam, or vice versa. The reduction from peak gain, due to the pointing error e can be estimated
by the following equation.

Lθ = −12(e/θ)2 . (C.15)

System noise: A system noise temperature represents communication loss against noises
from a number of individual noise sources. Dividing these sources into two groups, antenna
noise temperature Tant originating ahead of the antenna aperture and receiver noise temperature
Tr originating from between the antenna terminal and the receiver output, the system noise
temperature can be described as:

Ts = Tant +

(
T0(1− Lr)

Lr

)(
Tr

Lr

)
, (C.16)

where, the Lr is the line loss between the antenna and receiver, T0 is a reference temperature,
usually set as 290 K. The relation between Tr and T0 is defined using noise figure Fnoise:

Fnoise = 1 +
Tr

T0

. (C.17)

According to the empirical numbers in [133], antenna noise (K), line loss noise (K), and receiver
noise figure (dB) can be summarized in Table C.1.

Table C.1.: System noise sources

Frequency (GHz)
Noise Downlink Uplink
Temperature 0.2 2–12 20 0.2–20 40

Antenna Noise (K) 150 25 100 290 290
Line Loss Noise (K) 35 35 35 35 35
Receiver Noise Figure (dB) 0.5 1.0 3.0 3.0 4.0
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Transmission path loss: The transmission path loss caused by the Earth’s atmosphere, La,
is a function of frequency. According to [133], provided that the zenith attenuation La,zenith is
available, the loss at elevation angle β of above 5 ◦ can be obtained by

La =
La,zenith

sinβ
. (C.18)

In [133], one can find values of zenith attenuation in different carrier frequencies. The La of the
communication channels of the Flying Laptop have been obtained as summarized in Table C.2
and Table C.3. The attenuation by rain La,rain is also counted in the transmission path loss.
This effect is negligible for lower frequencies than about 10GHz. The estimated value of the
rain attenuation based on the Crane model [134] are summarized in [133]. These values for the
Flying Laptop are also listed in the tables below. Other atmospheric attenuation effects are
described in detail in, e.g., [135], [136], and [137]. However, these effects are small relative to
the others and have not been taken into account for the link design of the Flying Laptop.

C.1.2. Link budget of Flying Laptop

Finally, the designed link budgets of communication systems of the Flying Laptop are summa-
rized in following tables. Link budgets of nondirectional communication channels are summa-
rized in Table C.2 and those of directional communications including the experimental trans-
mitters in Ka and Ku-Bands are summarized in Table C.3.

C.1.3. State-machine of the TT&C subsystem of Flying Laptop

The designed state-machine of the TT&C subsystem is illustrated in Figure C.1.

Figure C.1.: State-machine of TT&C subsystem of Flying Laptop
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Table C.2.: Link budget of omnidirectional communications

Parameter Unit VHF-Up UHF-Up UHF-Down S-Up S-Down LG

Pt W 1.00E+00 5.00E+00 5.00E+00 5.00E+00 5.00E+00
f Hz 1.45E+08 4.50E+08 4.50E+08 2.03E+09 2.20E+09
B Hz 3.00E+04 1.25E+04 5.00E+04 3.00E+04 2.50E+05
Rd bps 1.92E+04 4.80E+03 3.80E+04 1.92E+04 1.50E+05
Gt dB 7.00E+00 1.00E+01 0.00E+00 3.23E+01 0.00E+00
Gr dB 0.00E+00 0.00E+00 1.00E+01 0.00E+00 3.30E+01
Ll dB 1.00E+00 3.00E+00 1.00E+00 3.00E+00 2.00E+00
La dB 5.59E-01 5.59E-01 5.59E-01 1.00E+00 1.00E+00
Lθ,G.S. dB – – – 7.01E-01 7.01E-01
Ls dB 1.45E+02 1.55E+02 1.55E+02 1.68E+02 1.68E+02
Ts K 6.14E+02 6.14E+02 1.00E+03 6.14E+02 1.50E+02
Eb/N0 dB 1.67E+01 2.08E+01 1.11E+04 2.29E+01 2.11E+01
C/N dB 1.47E+01 1.67E+01 1.05E+01 2.09E+01 1.88E+01
MEb/N0

dB 6.65E+00 1.08E+01 1.11E+04 1.29E+01 1.11E+01
MEb/N0,Rain dB 6.65E+00 1.08E+01 1.11E+04 1.29E+01 1.11E+01
MC/N,Rain dB 1.47E+01 1.67E+01 1.05E+01 2.09E+01 1.88E+01

Table C.3.: Link budget of directional communications

Parameter Unit S Down-HG Ka-Up Ka-Down HG Ka-Down LG Ku

Pt W 5.00E+00 2.00E+00 5.60E+01 1.00E+00 1.00E-02
f Hz 2.20E+09 3.00E+10 2.00E+10 2.00E+10 1.20E+10
B Hz 2.50E+06 1.50E+07 8.00E+08 1.00E+05 1.40E+06
Rd bps 2.20E+06 1.00E+07 5.00E+08 6.00E+04 1.00E+03
Gt dB 1.00E+01 5.73E+01 3.73E+01 2.00E+01 2.00E+01
Gr dB 3.30E+01 4.08E+01 5.38E+01 5.38E+01 4.93E+01
Ll dB 2.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
La dB 1.00E+00 1.94E+00 2.89E+00 2.89E+00 1.00E+00
Lθ,G.S. dB 7.01E-01 2.20E+00 9.80E-01 9.80E-01 3.53E-01
Lθ,FLP dB 4.80E-01 4.96E-02 5.51E-01 3.00E-02 4.80E-01
Ls dB 1.68E+02 1.91E+02 1.87E+02 1.87E+02 1.83E+02
Ts K 1.50E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
Eb/N0 dB 1.89E+01 3.67E+01 3.04E+01 3.54E+01 3.53E+01
C/N dB 1.80E+01 3.50E+01 2.84E+01 3.32E+01 3.81E+00
MEb/N0

dB 8.91E+00 2.67E+01 2.04E+01 2.54E+01 2.53E+01
La,rain dB 0.00E+00 2.20E+01 2.00E+01 2.00E+01 2.00E+01
MEb/N0,Rain dB 8.91E+00 4.72E+00 4.40E-01 5.42E+00 5.28E+00
MC/N,Rain dB 1.80E+01 1.30E+01 8.40E+00 1.32E+01 -1.62E+01
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C.2. Power supply system deisgn

The PSS of the Flying Laptop satellite consists of the following major components: Power
Control and Distribution Unit (PCDU), three solar panels, battery management system and
battery with six battery cells. The solar panel configuration of the Flying Laptop is wing-shaped.
A body mounted solar array configuration was also considered because it simplifies the design
of the satellite and improves system reliability. However, for the body mounted configuration,
we need to rotate the satellite around its Y axis and camera systems are forced to see the
sun. Because of this reason, wing-shaped solar panels are selected. For the deployment of the
solar panels electrical solar panel deployment mechanisms are developed. In Figure C.2 the
configuration of the solar panels and solar cells on them are illustrated.

Solar panels

Each of the 7 strings on the side panels consists of serial 15 solar cells (GaAs) and each of
the 4 strings on the middle panel consists of 16 cells in series. The additional one solar cell
in each string of the middle solar array compensates for the lack of the string total voltage
resulting from the cells’ functional degradation because of the higher operational temperature
of the middle body mounted solar panel relative to the side solar panels. A pair of 8 solar cells
mounted on outboard of the middle solar panel is connected into one string in series. The string
colored with gray on the middle solar panel is a test string with 16 test solar cells with higher
voltages. The developed flight model of the middle solar panel is illustrated in Figure C.3.

Figure C.2.: Solar panel configuration

Power distribution

As shown in Figure C.4, four redundant shunt regulators are implemented on the PCDU to
distribute the power. The forth regulator is redundant and can bear the function of a failed
regulator. The power lines to the satellite electronics are divided into four lines as illustrated
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Figure C.3.: Flight model of the middle solar panel

Figure C.4.: Configuration of solar panels and PCDU

in Figure 4.6. The power source is distributed into two inverters for the most of the electrical
satellite components, one high voltage line for the Ka-Band Traveling Wave Tube Amplifier
(TWTA), which consists of TWT and Electric Power Controller (EPC), and one nonregulated
voltage lines for solar panel deployment mechanisms and heaters which are protected by protec-
tion switches, respectively. As shown in Figure 4.6 most of the redundant components, reaction
wheels, magnetic torquers, magnetometers, UHF/S-Band receivers, central processing nodes,
and command decoder and voter, are divided into two groups each supplied from one of the
two main inverters. The solar panel deployment mechanisms are arranged as full redundant
and their power supply are cross coupled. The most of the heaters are mounted as paired and
supplied with power independently. The detailed description of the PCDU can be seen in [138].
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Battery

The battery of the Flying Laptop consists of six Li-ion battery cells (Figure C.5), which is
connected in series, and battery management system. Li-ion battery cells are chosen because
of its higher energy storage density. The characteristic of the battery is listed in Table C.4.
The PCDU even operates under breakdown of one battery cell, that is with voltage of about
16 V. The solar panel deployment mechanisms and heaters have less influence from battery
breakdown because they are supplied unregulated power from the main power bus.

The Battery Management System conducts battery cell balancing and ensures that all bat-
tery cells are supplied with constant current/constant voltage power. It also prevents battery
cells from over charging, protects from over/under–voltage, and monitors supplied current and
voltage for cells and temperatures of the battery. The temperature control of battery cells are
accomplished with redundant bi-metal heaters.

Figure C.5.: Li-Ion battery cell

Table C.4.: Battery cell characteristics

Parameter Performance

Minimum (BOL) cell capacity 50 Ah
Minimum (EOL) cell capacity 30 Ah
Battery Configuration 6 cells in series
Depth of Discharge 20 % max. BOL
Discharge Voltage (Battery total) 21.6 V
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In this appendix, mathematical descriptions of detumbling mode and safe mode of the Flying
Laptop satellite are presented. For detailed information see [89].

D.1. Detumbling mode

The objective of the detumbling mode is to reduce the angular velocity ω after the launcher
separation. It is also used for rate damping in case the rotational rate accidentally exceeds the
maximum limit. This mode plays an important role for safe satellite operation [139]. Due to
high angular rates in this mode, the measured magnetic field vector changes mainly as a result of
the satellite’s rotation and not because of the orbit variation of the Earth’s magnetic field. Thus,
the derivative of the magnetic field vector is a good approximation for the magnitude of the
satellite’s angular velocity and detumbling can be performed with magnetometer measurements
alone. Because a rotation about the Earth’s magnetic field vector does not change its derivative,
only vector components perpendicular to the magnetic field can be measured at every given
point of time. Nevertheless, the magnetic field variation over a whole orbit allows a full 3-axis
rate damping.

The control law of the detumbling mode is based on the common B-dot control, such that

mDet = −kb
Ḃ

‖B‖ , (D.1)

where mDet is the controlling magnetic dipole moment, B is the measured magnetic field vector,
kb is a positive scalar gain.

D.2. Safe mode

The sensors for this mode need to have high reliabilities and sensor outputs shall be available
all the time. For this reason, this mode uses only sun sensors and magnetometers. The control
torque is generated by means of magnetic torquers.

In this mode, during the sun phase, the reference axis sref , which is equal to the negative prin-
cipal axis, is aligned with the sun direction s, and at the same time, an additional spin around
this axis is built up. Due to this spin stabilization, the satellite attitude can be maintained
during eclipse phases without the sun sensor information.

Sun acquisition is achieved by:

Tsun = ks(s× sref )− k⊥(ṡ× s) . (D.2)
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The first term controls the deviation from the desired attitude relative to the sun and the second
controls the rate perpendicular to the sun vector to zero. ks and k⊥ are positive scalar gains.

The spin rate along the reference axis is approximated as

ω‖ ≈ −
(B× sref )Ḃ

‖B× sref‖2
. (D.3)

The spin-up control law can be written with a positive scalar gain k‖ as:

Tspin = k‖(ωref − ω‖)s . (D.4)

As the result, The controlling magnetic dipole moment is calculated as

mSafe =
B× (Tsun + Tspin)

‖B‖2 . (D.5)

D.3. Inertia matrices

The inertia matrix I, principal moments of inertia Ip, principal axes A of the Flying Laptop
satellite in configuration A, BR, and C at the time of writing is summarized in followings:

Configuration A:

IFLP,Config.A =




8.710976 −0.265904 0.26067
−0.265904 8.223424 −0.147369
0.26067 −0.147369 9.719775



 kg ·m2 (D.6)

IpFLP,Config.A =




8.105861
9.810634
8.73768



 kg ·m2 (D.7)

AFLP,Config.A =




0.394957 −0.258783 −0.881499
0.91848 0.132194 0.372718
0.020076 −0.956847 0.289898



 (D.8)

Configuration BR:

IFLP,Config.BR
=




8.652003 −0.27986 0.679485
−0.27986 7.39654 −0.161595
0.679485 −0.161595 8.951864



 kg ·m2 (D.9)

IpFLP,Config.BR
=




7.336762
9.540287
8.123358



 kg ·m2 (D.10)

AFLP,Config.BR
=




0.201585 −0.629008 −0.750808
0.979382 0.13976 0.145868
0.013181 −0.764732 0.644213



 (D.11)
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Configuration C:

IFLP,Config.C =




8.588082 −0.25981 0.262629
−0.25981 6.572013 −0.18192
0.262629 −0.18192 8.191257



 kg ·m2 (D.12)

IpFLP,Config.C =




6.52571
8.763774
8.061868



 kg ·m2 (D.13)

AFLP,Config.C =




0.11316 −0.457686 0.881883
0.989471 −0.028695 −0.141857
0.090232 0.888651 0.44962



 (D.14)

Following inertia matrix and principal axis Az were used for simulation purposes before the
actual value of the Flying Laptop satellite became available.

ISIM =




3.8965 −0.03007 0.02355
−0.03007 4.0906 −0.25174
0.02355 −0.25174 4.2621



 kg ·m2 (D.15)

AzSIM =




−0.0667305
0.5818428
−0.8105591



 (D.16)
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Handel-C is based on ANSI C syntax. Programming with Handel-C is a hardware design
activity. It has extensions and restrictions for hardware design such as to produce parallelism,
arbitrary bit width/operation, synchronization, and hardware interfaces. In order to produce
high performance hardware logics, following programming aspect shall be taken into account.

E.1. Types and operators

The basic type in Handel-C is integer and no floating types are supported. Integers can be of
any width as signed or unsigned. For n-bits integer, Most Significant Bit (MSB) is bit n-1 and
Least Significant Bit (LSB) is bit 0. These variables actually behave like registers in the sense
that they receive new values on the clock cycle following an assignment. Handel-C operators
include bitwise operators, shift operators, bit manipulation operators, and arithmetic operators
as well as relational operators and logical operators. Handel-C does not allow side-effects in
expressions. The following assignment is implemented in a logic between D-type Flip-Flops
(FFs) as illustrated in Figure E.1 (see Figure 6.3 for hardware resources of a Slice).

unsigned 1 a, b;

a = b;

Figure E.1.: Hardware logic of variable allocation

Shift operator: Shift operators are implemented as wires and shift bits in variables to right
(>>) or left (<<). Bit manipulation operators “Take” (<-) or “Drop” (\\), which are also
implemented as wires, enable bitwise assignment from one variable to another. Take operator
returns the n LSB of a value and the drop operator returns all but n LSB bits of a value.

Arithmetic operator: Arithmetic operators are Add (+), Subtract (-), Multiply (*), divide (/)
and modulus (%). Because / and % produce deep hardware logic, their use shall be prevented.

Bitwise operator: Bitwise operators enable AND (&), OR (|), NOT (∼), and XOR (∧) bitwise
operation. Following exemplary operation is implemented in a LUT as illustrated in Figure E.2.
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unsigned 1 a, b, c, d, e;

e = (a ^ b) | (c & d);

Figure E.2.: Combinational logic in LUT

Conditional operator: Handel-C also supports conditional operator as described below. If the
“condition”evaluates to 0, then the results is“expression2”, otherwise the result is“expression1”.

condition ? expression1 : expression2

Assignment of conditional operator takes one clock cycle to complete. Both expressions are
indeed evaluated in parallel, while “if” statements, which is described later, select which state-
ment to execute. Following conditional operator is implemented in hardware logic as illustrated
in Figure E.3.

c = (a == b) ? (x * y) : z;

Figure E.3.: Conditional operator implementation

Concatenation operator: Concatenation operator (@) joins two sets of bits together into a
set of bits, whose width is the sum of the widths of the two operands. Following example results
in x = 0b10.

unsigned 2 x; unsigned 1 a, b;

a = 0b1; b = 0b0;

x = a @ b;

Bit selection operator: Bit selection operator [:] selects out either individual or a range of
bits from a value. Bit 0 is the LSB. Following example results in b = 0b1100, c = 0b0.

unsigned 8 a; unsigned 4 b; unsigned 1 c;

a = 0b10110000;

b = a[5:2];

c = a[6];
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E.2. Parallelism

Handel-C is implicitly sequential and each assignment takes one clock cycle. In the hardware
level, each logic block has an input signal Start and an output signal Finish. When a specific
statement is to be executed, its Start signal goes high for one clock cycle. In this way, multiple
blocks are executed in sequences. Handel-C introduces “par” statement to implement parallel
processes. On the contrary, sequential processes may be explicitly declared as“seq”as illustrated
below.

// Sequential Block // Parallel Block

seq { // 2 Clock Cycles par { // 1 Clock Cycle

a = 1; a = 1;

b = 2; b = 2;

} }

The propagation of Start signal to Finish signal in a sequential case is illustrated in Figure E.4.

Figure E.4.: Sequential processes

It is important to note that this par statement enables both individual statements to be declared
exactly in parallel at a clock cycle (fine-grained parallelism) and functions in parallel (coarse-
grained parallelism). If declared as par, the block completes when longest parallel branch
completes. This is implemented in hardware logic in the way illustrated in Figure E.5.

Figure E.5.: Synchronization block of parallel logics

The important constrains of Handel-C coding are:

• one can read from a variable from multiple points in the code, which is implemented as
parallel wires from the register in the actual hardware.

• one can not write to the same variable in parallel, otherwise secure operation in hardware
logic can not be assured.

161



E. Hardware logic design with Handel-C

It is also a significant difference from ANSI C, that one does not need extra temporary variables
to swap values, that is the following exemplary code is valid, performing swap of the values of a
and b in a single clock cycle. This is clear because the values of variables are kept at the output
signal of FFs in Slices, two output signals can be cross-connected to the input port of the FFs,
assigning swapped new values at the next clock cycle. This is illustrated in Figure E.6.

unsigned 1 a, b;

a = 1;

b = 0;

par {

a=b;

b=a;

}

Figure E.6.: Variable swap implementation

E.3. Conditional logic

“if” statement

The expressions in conditions are evaluated in 0 clock cycle. The important point here is
that one shall insert “delay;” statement even if there is nothing to do to keep the balance of
execution time. In the following example, if the a is actually equal to 0, then the assignment
a++ is performed, therefore it takes one clock cycle. However, without the delay statement, if
a is not equal to 0, then this conditional branch does not produce any clock cycle. This may
cause uncertain“combinational cycle” in the code, which can not assure correct implementation.
This example is implemented in hardware as illustrated in Figure E.7.

if (a == 0) {

a++;

} else {

delay;

}

Figure E.7.: Hardware implementation of “if” condition

“do{ } while” loops

This statement is the most hardware efficient implementation of loop logics. The example
codes below are implemented in the hardware logic as illustrated in Figure E.8. There is a
delay statement “delay;” in order to produce one clock cycle delay. The most remarkable point
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of parallelism is that each function, which shall be conducted periodically and repeatedly, is
implemented as“while(1)” loop, which runs forever. This idea is completely different than usual
software processes. Because of their hardware level inefficiency, “for” loops shall not be used.

do {

statement;

} while(Condition);

Figure E.8.: Hardware implementation of “do-while” condition

E.4. Arrays, RAMs and ROMs

Arrays can be multi-dimensional. Even though using a variable as an array index is possible,
this can lead inefficient hardware implementation, and therefore constants shall be used as an
array index. All elements of Arrays can be accessed in parallel.

RAMs and ROMs can only read from or write to one location in a clock cycle. ROM has no
write data bus. Handel-C implements these to distributed RAM by default. RAM shall be used
for Random access and large data storage. RAM can not be read, modified, and written in the
same clock cycle. It is possible to use Multi-Port RAM. In this mode, devices have entirely
independent read/write ports and these can be used on the same clock cycle, which is useful
for, for example, line buffers in image processing. ROM can be used for, for example, LUTs of
coefficients.

E.5. Initialization

FPGA can initialize variables and memories at start-up, and this can be specified in Handel-C
without any logic overhead. Only static and global variables can be initialized. If a variable is
not initialized, one can not assume that it will be 0 on start-up. If no initializer is specified, a
static variable will be initialized to 0.

E.6. Arithmetic operation

Although arithmetic operation can be implemented into normal CLBs, it is very costly in
terms of hardware logic. Xilinx Virtex offers special embedded Arithmetic LUT (ALUs) which
is specially designed for efficient arithmetic operations. 18-bit multiplier blocks of Xilinx Virtex-
II Pro can be utilized for mathematical operations of satellite control functions such as attitude
control algorithms. Because the amount of resources are limited, efficient coding is necessary.
Handel-C has the capability of mapping the design to these special elements.
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E. Hardware logic design with Handel-C

E.7. Communication between logics

The most indispensable key technique of designing efficient hardware logics based on parallelism
is the implementation of communication mechanisms between parallel running processes. There
are three possible ways in Handel-C: via channels, via signals, and via variables.

Channels

Channels enable communication between two processes running in parallel. They block the
execution of both processes until both sides, read (?) and write (!) are ready. Channels
can be also used in FIFO (First In First Out) mode. Channels allow communication between
processes even in different clock domains. Channels can be used for synchronization between
two processes. In the following exemplary codes, two parallel running processes communicate
through the channel“myChannel”. Starting at the same clock cycle, the first process try to send
the value of the variable a. The communication, however, actually occurs in the second clock
cycle, after the second process becomes ready to read the myChannel. In this way, the two
processes can exchange information through the channel, and at the same time, the two program
lines are synchronized. Channels can be used between only two processes in a point-to-point
manner, and do not allow multi-point communications.

chan unsigned 2 myChannel; // shared by both parallel processes

unsigned 2 a; unsigned 2 b;

do { do {

myChannel ! a; // send delay;

delay; myChannel ? b; // receive

} while(1); } while (1);

Signals

Signals behave like wires and take the assigned value for the current clock cycle only. Compar-
ison between register implementation and signal implementation are described below.

// implementation with variables //implementation with signals

unsigned 2 a[4], c; unsigned 2 a[4], c;

unsigned 2 b[2]; signal unsigned 2 b[2];

do { // 2 Clock Cycles do { // 1 Clock Cycles

par{ par {

b[0] = a[0] + a[1]; b[0] = a[0] + a[1];

b[1] = a[2] + a[3]; b[1] = a[2] + a[3];

} c = b[0] + b[1];

c = b[0] + b[1]; }

} while(1); } while (1);

In the case of with variables, the value of c is assigned at the second clock cycle, and becomes
actualized in the third clock cycle as the sum of the all component of the array a. On the
contrary, in the case with signals, the value of c is assigned at the first clock cycle and becomes
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E.8. Pipelining

Figure E.9.: Pipelining of design

actualized already in the second cycle (Figure E.9). Because signals are implemented as simple
wires, they can be connected with multiple processes. In this way, signals enable instantaneous
multi-point communications between parallel processes in the very clock cycle, which is attrac-
tive for synchronization of processes, simultaneous exchange of information, and establishment
of data consistency.

E.8. Pipelining

Combinational use of par and variables enables pipelining of data stream processing, as exem-
plary described below. In case the value of a is continuously updated, the value of c is also
continuously updated with the sum of all component of the array a with a time delay of one
clock cycle. This programming technique is called pipelining and is very useful for efficient and
fast image and digital signal processing.

unsigned 2 a[4], c;

unsigned 2 b[2];

do { // 2 Clock Cycles

par{

b[0] = a[0] + a[1];

b[1] = a[2] + a[3];

c = b[0] + b[1];

}

} while(1);

E.9. Timing

Each Handel-C program shall have input clock signal. This can be defined in the main source
file. Each assignment in Handel-C codes takes one clock cycle. Because the duration of one
clock cycle is fixed, the logic propagation through hardware elements shall meet the timing
constrains. For example, each piece of hardware logic with a clock frequency of 250 MHz shall
meet 4 ns logic propagation. Handel-C allows existence of more than one main source files, i.e.,
more than one clock domains within a design.
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E. Hardware logic design with Handel-C

E.10. Prialt

The prialt statement of Handel-C can select the first channel ready to communicate from a list
of channel cases. The syntax of a prialt is

prialt {

case ChannelStatement1:

statement1

break;

case ChannelStatement2:

statement2

break;

....

default:

statementDefault

break;

}

where the “ChannelStatement” shall be either read (?) or write (!) channel statement (see
SectionE.7). The “case” whose communication statement is the first to be ready to exchange
data executes the channel communication. Following statements till the next break statement
will then be executed.

Priority

If two or more channels become ready in the same clock tick, the one which is listed earlier
(upper) receives the higher priority.

Default case

If no communication statement is ready in the clock tick, the default case is executed. The
default case is optional and if so, execution halts until one of the communication statement
becomes ready.
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F. Notation reference for formal
verification of Handel-C code

The notations used in Chapter 9 are summarized based on those described in [110] and [127].

PA set of A

× cross product

∈ membership

∪ union

A∗ zero or more As

A+ one or more As

A
m−→ B finite partial map from A to B

{x 7→ y} singleton map from x to y

† override

A→ B total function from A to B

A→ B → C curried function from A to B → C

=̂ “is defined equal to”

(c!e) output request on c of value e

(c?v) input request on c into variable v

? in

! out

!? default guard

τ timestamp

⊎ equation join operator (PEqn× PEqn→ PEqn)
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[91] Kuwahara, T., Falke, A., and Röser, H.-P., “Effective Project Management of Small
Satellite Projects from the System Engineer’s Point of View, An Example of the Small
Satellite Flying Laptop Project,” Transactions of Japan Society for Aeronautical and
Space Sciences, Space Technology Japan, Vol. 7, No. ists26, 2009, pp. Pt 1–Pt 8.
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tional Concept and Payload Data Processing for the Flying Laptop Satellite,”Acta Astronautica,
Vol.65, No.11–12, 2009, pp. 1616–1627.
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Hardware-in-the-Loop Simulation Environment on an MDVE for FPGA-based On-board Com-
puting Systems,” Transactions of Japan Society for Aeronautical and Space Science (JSASS)
Space Technology Japan, vol. 7, No. ists26, 2009, pp.Pf 1–Pf 9.
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FPGAs with the High-level Hardware Description Language Handel-C for Space Applications,”



27th International Symposium on Space Technology and Science (2009-f-09), Tsukuba, Japan,
June 6–10 2009.

T. Kuwahara, C. Ziemke, M. Fritz, J. Eickhoff, H.-P. Röser, “Asynchronous Parallel Reac-
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