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As long as a branch of knowledge offers an abundance of problems, it is full of
vitality. David Hilbert

Before you generalize, formalize, and axiomatize, there must be mathematical
substance. Hermann Weyl

Our science, in contrast to others, is not founded on a single period of human
history, but has accompanied the development of culture through all its stages.
Mathematics is as much interwoven with Greek culture as with the most modern
problems in engineering. It not only lends a hand to the progressive natural sci-
ences but participates at the same time in the abstract investigations of logicians
and philosophers. Feliz Klein



1 Introduction.

Scattering of acoustic or electromagnetic waves plays an important role in many
fields of applied sciences. Acoustic and electromagnetic waves are used and in-
vestigated in such different areas as medical imaging, ultrasound tomography,
material science, nondestructive testing, radar, remote sensing, aeronautics and
seismic exploration.

In the last twenty years the development of computational power has had a
strong impact also on the classical fields of direct and inverse scattering. The
computational simulation of scattering processes has become accessible using mi-
crocomputers and the field of inverse scattering problems, which is concerned with
the reconstruction of scattering objects or their properties, grew from its early
beginnings in the middle of the century to a large and fastly developing area of
applied mathematics.

In the first part of this Section we give a brief introduction into inverse scatter-
ing theory and outline our main results. In the second part we collect definitions
and tools from functional analysis and integral equations, which are the basis for
the further sections.

1.1 A review of the main results.

Scattering by obstacles and media. The classical area of acoustic and elec-
tromagnetic scattering is concerned mainly with two different problems, which
are studied and applied in many different settings and applications.

The first problem is the scattering of time-harmonic acoustic or electromag-
netic waves by an impenetrable scatterer, i.e. the waves do not significantly pen-
etrate into the interior of the scattering obstacle D. In this case the scattering
process is determined by the shape of D and boundary conditions.

The second problem consists in the scattering of time-harmonic acoustic or
electromagnetic waves by a penetrable scatterer, where the waves penetrate the
obstacle and the interior structure of the obstacle strongly influences the scat-
tering process. If the scatterer is homogeneous, the second problem leads to
transmission problems, however if the scatterer is inhomogeneous, we speak of
scattering by an inhomogeneous medium.

We will use the letter D to denote the full scatterer with its physical properties
and D to denote the interior of the support of the scatterer in IR™, m = 2,3. We
will always assume that the scatterer D is bounded in IR™.
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Mathematically the behavior of a time-harmonic acoustic wave u(x)e ! in a

homogeneous background medium is governed by the Helmholtz equation
Au+ K*u =0, (1.1.1)

where kK = w/cy > 0 is the wave number of the acoustic wave, w its frequency and
co the speed of sound. For scattering of an incident wave u’ by an impenetrable
scatterer D a mathematical model also needs to take into account the behavior
of the total field

u=u'+u’ (1.1.2)

at the boundary 0D of the scatterer. Here u® denotes the scattered acoustic
field. Different boundary conditions are used to model the underlying physical
behavior. For a sound-soft scatterer the total field vanishes at the boundary,
which leads to the Dirichlet boundary condition

u(x) = 0, z€dD, (1.1.3)

for a sound-hard scatterer the Neumann boundary condition

ou

ov
is used, where v denotes the exterior unit normal vector to the boundary 9D.
The model is completed by the Sommerfeld radiation condition

() = 0, = €D, (1.1.4)

r—00 or

lim r™z <8u (=) —mus(x)> =0, r=|z|, (1.1.5)

uniformly for all directions z/|x| for the scattered field u®. It physically implies
that energy is transported to infinity and it is an important ingredient to obtain
the physical solution of the scattering problem.

To model scattering by inhomogeneous media the equations (1.1.1), (1.1.3) or
(1.1.1), (1.1.4) are replaced by

Au+ k*n(r)u=0 in (1.1.6)

in the whole space or IR™ \ 0D. Here

2
Cp

c(x)?
is the refractive indez, emerging from the sound speed ¢y in the homogeneous

host medium and ¢(z) in the inhomogeneous medium and a term o(z) to model
absorption.

n(zx) := +io(x)
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For scattering of electromagnetic waves in IR® the corresponding governing
equations are the time-harmonic Mazwell equations

curl £ —ixH =0, curl H +ikE =0 (1.1.7)

for the electric field E' and the magnetic field H in a homogeneous medium, where
K = w./€fip is the wave number and w the frequency of the time-harmonic wave,
€o the electric permittivity and po the magnetic permeability of the host medium.
For scattering of an incident electromagnetic field E?, H® by a perfect conductor
D the boundary condition

v(z) x E(x) = 0, x € 0D, (1.1.8)

for the total field
E:=FE +E° (1.1.9)

models the behavior of the electric field at the boundary 0D of D. The tangential
components of the electric field F vanish at the boundary 9D of the perfect
conductor D. The appropriate radiation condition is the Silver-Miiller radiation
condition

lim(H* xxz—rE°) =0 (1.1.10)

r—00

for the scattered electromagnetic field E*, H*.
To describe scattering of electromagnetic waves by an inhomogeneous medium
the equations (1.1.7) and (1.1.8) are replaced by

curl £ —ikH = 0, curl H +ikn(z)E =0, (1.1.11)

where the refractive index

n(z) = = <e(a:) 4 Z%>

is defined using the permittivity e(x) of the the inhomogeneous medium, the
permittivity €y of the homogeneous background medium, the conductivity o(x)
and the frequency w of the wave. The magnetic permeability u is assumed to be
constant.

The radiation conditions (1.1.5) or (1.1.10) together with the governing equa-
tions (1.1.1) or (1.1.7) imply the behavior

u' () = —= {u"o(i) + O (%)}, r=|z| — oo, (1.1.12)
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where & := x/|z| and

KT
e

B = S {me@) + o(%)} r = |2 = oo, (1.1.13)

r

of the scattered acoustic or electric field u®(x) or E*(x), respectively. Here u® and
E*° are known as the acoustic and electromagnetic far field pattern or scattering
amplitude. In the acoustic case the far field pattern is a scalar function defined on
the unit sphere €2, in the electromagnetic case the far field pattern is a tangential
vector field on ).

Direct and inverse scattering problems. For a direct scattering problem
the scatterer and the incident field is assumed to be given. The problem is to
compute the scattered field or the far field pattern, respectively. Direct scattering
problems have been studied for a long time and a number of different approaches
for their solution have been developed (see [1], [5], [27], [43], [44], [48], [53], [64],
[67], [75]). However, it is an important problem of current research to develop
efficient algorithms for the numerical computation of the scattered field, especially
in three dimensions.

There is a whole range of different inverse problems, which are of interest
in this framework. Given the far field pattern for scattering of plane waves we
may try to reconstruct special properties of D or the full scatterer with all its
properties. Different settings for the measurements lead to a variety of practically
relevant mathematical and algorithmical problems.

In this work we will focus on the reconstruction of the shape D of the scat-
terer D, i.e. the scattering domain for obstacle scattering and the support of the
inhomogeneity for scattering by an inhomogeneous medium. For a wide range
of applications it is not necessary to reconstruct the full behavior and actual
values of the refractive index n(z), but it is sufficient to approximately deter-
mine the support D := supp(n). For example in nondestructive testing often this
information is all that is needed.

As scattering data we use the far field pattern u>(-, d) or E*(-,d, p) for scat-
tering of incident plane waves

u'(z,d) := "4z e R™, (1.1.14)

in the acoustic case or

Ei(z) = ik(d x p) x d e

3
HZ(:L‘) = ikd % P 6i/~m:~d T € R ) (1'1'15)

in the electromagnetic case, respectively, where d € ) denotes the direction of
incidence and p the polarization of the electromagnetic wave. We will investigate
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the cases where the far field pattern is given for one, a finite number or all incident
plane waves either on the whole unit sphere €2 or for a given finite number n of
observation points £; € 2, j =1,...,n.

Basic mathematical problems. The investigation of an inverse problem
consists of several basic mathematical questions, which are strongly related to
the inverse nature of the task.

First, it has to be asked which data sets uniquely determine the object, i.e.
we have to answer the problem of uniqueness.

Second, one will ask whether there exists a solution of the inverse problem for
a given data set. This is the problem of existence.

Third, usually there is an error in the measurements or in the numerical
storage of data and thus we have to ask whether we have stability for the recon-
struction of D from the given far field data. Mathematically this is the question
of continuity of the nonlinear inverse operator under appropriate assumptions.

Fourth, there is the need to develop efficient and stable reconstruction algo-
rithms. This leads us to the numerical and algorithmical analysis.

We will now place our results in a historical context and give a brief intro-
duction to our contributions to the above questions. This includes a sketch of
related methods and a description of differences and similarities.

The ill-posedness of inverse scattering problems. First we introduce
one of the main features of inverse scattering problems. Let B denote a ball with
fixed radius R, around the origin. We assume the a-priori information that B
contains the scatterer D in its interior. By

S u|op — u™ (1.1.16)

we denote the operator, which maps the scattered field u’(z), * € 0B, onto
its far field pattern u®(z), £ € Q. Computing S explicitly, it can be seen to be
compact in any reasonable function space, for example from C(9B) into L?(£2) (see
Section 2 for further details). Thus by functional analytic arguments the range
of the operator S cannot be the whole space and the inverse S! of the operator
S cannot be bounded. This indicates that the inverse scattering problem is an
ill-posed problem in the sense of Hadamard [15], i.e. that the demands of ezistence
and stability are violated. The uniqueness problem, i.e. does u® determine D,
may also be violated.

The problem of existence for given measured data. First, consider the
problem of ezxistence. We already pointed out that in general we do not have
existence. The most we can expect is the denseness or completeness of the far
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field patterns for a given set of incident waves or of scatterers D. Completeness of
the set of far field patterns for the above acoustic and electromagnetic scattering
problems for a set of incident plane waves u'(-,d,), n € IN, where {d,,n € IN}
is dense in the unit sphere €2, has been investigated in detail by Colton, Kirsch,
Kress, Blohbaum and Péivérinta between 1984 and 1990 (see [6] for further refer-
ences). Necessary conditions for a function in L?(2) to be a far field pattern can
be given in terms of the decay of the Fourier coefficients with respect to spherical
harmonics (see [6], Theorem 2.16). This can be obtained by an expansion of
the scattered field outside of the ball B. Further necessary conditions have been
given by Miiller [49] (see also Colton and Kress [5]) using entire functions of ex-
ponential type. More recently Kirsch [32], [33] obtained a characterization of the
set of far field patterns for a given scatterer in terms of its series representation
with respect to the eigenfunctions of the corresponding far field operator

(Fy)(#) ::/Qu‘x’(:%,d) o(d)ds(d), &€ Q. (1.1.17)

A corresponding method for the reconstruction of the support D of the scatterer
D is described below. To the author’s knowledge no general characterization of
the set of far field patterns for arbitrary scatterers D is known.

In this work we will not pursue further the problem of existence of a solution
to the inverse problem or the characterization of the set of far field patterns.
We will assume that the given data are either the exact far field data u* for
scattering by a scatterer D or some measured data

uP € L*(Q x Q)

with

() = ug” (5 )l 2xq) < 0. (1.1.18)
We will also study the finite data case, where a finite number of measured data
ule. s € L2 (Qn, X Q) are given with

No,Nj

1
2

Cm Cm o . ) )
(__ > 3 (x’d)—“(no,ni),(s(x,d)\) <9 (1.1.19)

Mo i 4eq,, deQn,

for § > 0 with some constant ¢,,. Here we assume (£2,)n,cnv to be a sequence of
finite subsets €2,, of 2, such that €2, consists of n elements and for given € we can
find n such that the distance

d(z,Q,) = inf |2 —d|

dey,
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is smaller than € for all £ € . The left-hand side of (1.1.19) defines a norm
- [|22(0, x2,)- The positive real number § is refered to as the data error.

Uniqueness results for reconstructions. The origin of uniqueness results
for inverse obstacle scattering problems can be found in the works of Rellich in
the 40’s. He proved that the far field pattern uniquely determines the (analytic)
scattered field in the exterior of the scatterer D (which we refer to as Rellich’s
Lemma). Then Schiffer (see [43]) showed for the inverse acoustic obstacle scatter-
ing problem with Dirichlet boundary condition that the far field pattern u®(z, d),
z,d € Q, for all incident plane waves and for one fixed wave number x uniquely
determines the domain of the scatterer. The corresponding result for the re-
construction of the acoustic refractive index in three dimensions was obtained
by Nachman [52], Novikov [54] and Ramm [65] and considerably simplified by
Héhner [16] (see also [17]) in 1996. Analogous results for the electromagnetic
problems were first obtained by Colton and Paivéirinta [8] in 1990, Colton and
Kress [6] in 1993 and by Ola, Péivirinta and Somersalo [55] in 1993.

In 1983 Colton and Sleeman [11] investigated the case where the sound-soft
scatterer is known to be a subset of a ball with given radius R.. They showed
that the support is determined by a finite number N of incident plane waves
depending on R.. If R, is small enough, one wave is sufficient to determine the
scatterer.

So far it has not been possible to extend Schiffers approach or the ideas of
Colton and Sleeman to the sound-hard scatterer or to the case of an inhomoge-
neous medium. In 1992 Isakov [23] obtained uniqueness results for penetrable
obstacles using different techniques, which were simplified and applied to impen-
etrable sound-soft and sound-hard scatterers by Kirsch and Kress [29] in 1993.
The results could also be successfully transfered to the case of electromagnetic
obstacle scattering [6]. Since these ideas will be the starting point of a large part
of this work (with contributions to uniqueness, stability, the finite data problem
and reconstruction algorithms), we briefly want to describe the main ingredients.

Consider the scattered acoustic field for a point-source ®(-,z) with source
point z € IR™\ D, where @ is the fundamental solution of the Helmholtz equation
in two or three dimensions, respectively. From the sound-soft boundary condition
and the singularity of the incident point-source we derive that for a point x € 9D
we have

®°(z,2) — 00, 2 — . (1.1.20)

Kirsch and Kress used (1.1.20) to show that, if the far field patterns of two
scatterers D; and D for scattering of plane waves coincide for all directions of
incidence d € €2, then the domains D; and D, are the same.
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In Section 3 we will further develop the techniques of Kirsch and Kress to
derive uniqueness of the support D of an inhomogeneous medium n, if n has a
jump in one of its derivatives at the boundary of the scatterer D. For the three-
dimensional case this also can be obtained from the results of Nachman [52],
Novikov [54] and Ramm [65] for the acoustic and from Colton and Péivairinta
[9] in the electromagnetic case. In two dimensions Sun and Uhlmann [71] proved
uniqueness of the support of n, if n has a jump at the boundary. They use Fourier
techniques, which are different from our approach.

e-Uniqueness for finite data. Uniqueness results for inverse scattering
problems usually assume the full far field pattern on the unit sphere to be given.
Often it is assumed that the far field pattern is known for all or a full open set
of directions d € €2 of the incident plane waves. Since most proofs use Rellich’s
Lemma, the knowledge of the far field pattern at least in an open subset of (2
seems to be necessary to uniquely determines the scattered field u°.

From a practical perspective it is reasonable to ask the question what can be
said if the far field pattern is given only at a finite number of measurement points
and for a finite number of waves. In Section 3, we develop a technique to answer
this question and thus avoid the use of Rellich’s uniqueness results. It leads to a
relaxed concept of uniqueness, a preliminary version of which was first proposed
in 1998 (see [59]). We will prove e-uniqueness for the reconstruction of the shape
of a scatterer, i.e. given € > 0 there are n,,n; € IN such that, if for two scatterers
D, and D, the far field patterns for all n; directions of incidence d € 2,,, coincide
at the n, observations points & € , , the Hausdorff distance d(Dy, Ds) of the
scatterers D, and D, satisfies the estimate

d(Dl, DZ) < €.

Since the concept of e-uniqueness is close to stability, let us postpone further
discussion and first discuss the stability question.

Stability estimates. We have already pointed out that inverse scattering
problems are #ll-posed problems, i.e. that for the inverse of the nonlinear scattering
operator in general we do not have stability. There exist two main approaches to
restore stability results for this ill-posed problem.

The first approach consists in a modification of the norm used for the far field
pattern. In inverse scattering it was used for example in 1990 by Stefanov [70]
to study stability for inverse scattering by a medium and has been extended by
Héhner [17] in 1998 to electromagnetic and elastic scattering. In principle they
consider a space F of functions on {2 with a very strong norm || - ||z involving all
derivatives of functions ¢ € C*°(Q), such that the inverse S™' : F — C(9B) of
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(1.1.16) becomes a bounded operator. But since for real data derivatives of the
far field pattern are not available, from a practical point of view this approach
only shifts the ill-posedness to the mapping of the data space into F. We will
not further pursue the idea.

Another approach is the use of a-priori bounds on the set of fields or objects
to be determined (see for example [26]). This approach has been applied to
scattering theory by Isakov [23], [24] (see also [25]). We will use the well known
fact that the inverse of a continuous mapping is continuous if it is defined on a
compact subset of a Banach space. Thus with appropriate restrictions on the set
of scatterers stability can be restored and stability estimates can be obtained.

Isakov’s restrictions mainly consist in a uniform bound on the C*®-norm of all
boundaries in a special parametrization. For the reconstruction of the shape of a
sound-soft, scatterer from the knowledge of the far field pattern for one incident
wave Isakov derives a double-logarithmic estimate

- (1.1.21)

d(D1, Dy) < C(In|In[[u*() — u3*()l o)
for the Hausdorff distance d(D;, D) of the domains Dy, D, with positive con-
stants C,7 depending on a bound for the C%*®mnorm of the boundary. So far
[sakov’s techniques could not be used to treat other boundary conditions or elec-
tromagnetic scattering problems.

In Section 3 we will pursue the idea of imposing appropriate restrictions on
the set of scatterers under consideration. With techniques different from Isakov
we will be able to derive stability estimates for the reconstruction of the shape of
either a penetrable or impenetrable scatterer from the knowledge of the far field
patterns for all incident plane waves. More explicitly we prove an estimate of the
form

A(D1.Dy) < F([uE() = v (M lizapers), (1.122)

where F' is a function with the property
F(§) =0, 6§ >0, (1.1.23)

which can be computed according to some a-priori knowledge on the class of
scatterers. For the convex hulls (D) of the shape D of scatterers D we derive
a logarithmic estimate

-

d(H(D1), H(D2)) < C |In[[u(-,) = u (-, )| p2ey<r2)| (1.1.24)

with constants C' and 7.
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Our technique is inspired by the uniqueness proof of Isakov, Kirsch and Kress.
The first step is the explicit estimation of the behavior of ®°(z, z) for z — 0D. As
a second step we develop a method for the approximate reconstruction of ®°(z, 2)
in the exterior of the domain

D,:={y € R", d(y,D) < p} (1.1.25)

with some small parameter p > 0 from the scattering data u>(z, d) for all Z, d in
Q) . Estimating the bound of the approximate reconstruction operator

Q: L2(Q) x [*(Q) — C(B\ D,)

and using the fact that ®°(z, z) is large only in a neighborhood of the boundary,
stability estimates will be obtained in Section 3. For the acoustic sound-soft and
sound-hard scatterer the results can be found in [60]. Similar stability results
for the reconstruction of the support of media and for electromagnetic scattering
problems will be derived in Section 3.

At this point we would like to relate our results to some demands on the
degree of ill-posedness of an inverse problem formulated by Fritz John [26] in
1960. For purposes of computation John demands Holder continuous dependence
of a problem on the data. Here for the reconstruction of the domains we obtained
logarithmic continuity, which is a typical type of estimate for continuing solutions
of the wave equation in space-like directions.

As shown in [60], for the reconstruction of the scattered field u® on fixed
compact subsets U of the open exterior of the convex hull H(D) of D

yields the estimate

5
ui(z) — u;(x)‘ < dTEmon, ¢ e U,

with constants «, 3,y > 0. This can be proven with the same techniques which we
will use in Section 3. These estimates come close to Holder continuity demanded
by John and are reflected by the numerical results of Sections 5 and 6.

Stability for the case of finite data: e-stability. With the help of the
stability estimates it is not difficult to derive related statements for the case of
finite data.

We will work with the same assumptions as for stability or e-uniqueness,
i.e. a uniform bound on the C?—norm of the boundaries (and corresponding
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assumptions on the uniform smoothness of the refractive index n), to derive a
uniform bound for the far field patterns in C'(Q x ). This bound can be used
to relate the distance of two far field patterns at a finite number of points to
the distance of the full far field patterns. Then for the case of finitely many
measurements we derive e-uniqueness and a modified stability statement, which
we will refer to as e-stability.

Consider a simple example for the derivation of e-uniqueness. Given € > 0 we
can use (1.1.24) to obtain a § > 0 such that

||UC1>O(7 ) - u;o(, ')||L2(Q)><L2(Q) <9 (1.1.26)

implies

d(H(Dy), H(D,)) <e. (1.1.27)
Now given o, we choose n € IN sufficiently large such that with the help of the
bound on [[u(-,-)||c1axa) for j = 1,2, the equation

u(&,d) = u®(&,d) for all 2,d € Q, (1.1.28)

yields (1.1.26). Thus given € we may choose n € IN such that (1.1.28) implies
(1.1.27), i.e. we have proven the statement of e-uniqueness for the convex hulls of
the scattering domains as a simple consequence of stability.

Now, we describe the concept of e-stability. Since in general we do not have
uniqueness, for a finite data set we will not be able obtain stability. More explic-
itly, we can not obtain a function F'(§) which satisfies (1.1.23) and an estimate of
the type (1.1.22) when § is the data error at finitely many points. But for given
€ > 0 it is possible to find n,,n; € IN and a function F,, »,)(0), such that F' has
the behavior

limsup Fin, »,)(8) < € (1.1.29)

6—0

and the domains Dy and D, satisfy the estimate
d(D17 D2) < F(no,ni) (| |u<1>?(no,nl) o u;?(no,ni) | |L2(QnoXQni) ) (1130)
with || - [|22(,, xq,,) given by (1.1.19) and

) 00
Uy (non;) -= Uy

€ L*(Qy, X Q)

Qn, XQ"i

for j = 1,2. We call a statement of this form e-stability. We will prove e-
stability for the reconstruction of the shape of the scatterer for the scattering



16 1. Introduction.

problems described above and explicitly study the behavior of Fi,, ,,)(d) for the
reconstruction of the convex hull of a scatterer.

Three main categories of reconstruction methods. Consider now the
problem of the actual reconstruction of the shape of the unknown scatterer.
Mainly three different types of reconstruction methods have been developed. We
will summarize their main features and use them as a background to explain our
results.

The first category. There is first the approach to consider the inverse
problem as a nonlinear ill-posed operator equation and adapt iterative methods of
gradient- or Newton-type to solve this equation. For inverse obstacle scattering
this approach mainly relies on the Fréchet differentiability or domain derivative of
the scattered field with respect to variations of the boundary of the scatterer and
a characterization of the derivative as a corresponding boundary value proble.
Results for interior boundary value problems were obtained in 1980 by Simon
[69] with the help of the implicit function theorem, for the scattering problems
in 1993 by Kirsch [30] using variational methods and in 1994 by the author [57]
by means of integral equations.

For a discussion of the large number of papers on the numerical implemen-
tation of these type of methods (for example Murch, Tan and Wall [51], Roger
[66], Tobocman [73], Wang and Chen [74], Kirsch [30], [31], Kress and Rundell
[40], [41], [42], Kress [38], [36], [39] Mdnch [47], Hohage [21], Hanke, Hettlich
und Scherzer [18] and Hettlich [19]) we refer to the second edition of the book of
Colton and Kress [6]. The present work will not be concerned with this category
of methods.

The second category and the point-source method. The second cate-
gory in principle splits the inverse scattering problem into the linear ill-posed part
to reconstruct the scattered field in the exterior of the scatterer and a nonlinear
well-posed part to find the boundary of the scatterer or the refractive index using
the boundary condition or the partial differential equation, respectively.

Typical examples in this category are the methods proposed by Colton and
Monk 1985 and by Kirsch and Kress 1986, both described in [6]. In Section 5 with
the point-source method we describe a method of this second category, developed
by the author since 1995. Different steps in this development can be found in
[61], [62] and [63].

The main aim of the point-source method is the explicit construction of a
kernel ¢(z,d), such that in the domain B\ D,, where D, is given by (1.1.25) and
B by (1.1.16), the scattered field u® is approximated in the form Au® with a
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linear integral operator
(4p)(2) ::/Qg(z,f)go(i) ds(2), » € B. (1.1.31)

To this end the far field pattern ®*°(-, z) for incident point-sources ®(-, z) with
source-point z is considered. Given some a-priori knowledge on the size of the
scatterer, the kernel g will be constructed in the following three steps.

1. An approximation for a point-source by a superposition of plane waves
O(r,7) ~ /em-dg(z,d) ds(d), z €D, 2 € B\D,. (1.1.32)
Q

is computed.

2. Passing to the far field patterns, an approximation for the far field pattern
due to point-sources by a superposition of the far field patterns of plane
waves

(i, 2) ~ /uoo(i",d)g(z, d)ds(d), i€Q, 2 B\D,  (1.1.33)
Q

is obtained.

3. Using the mized reciprocity relation ®°(%,z) = ~yu®(z, —z), the far field
reciprocity relation u*(Z,d) = u®(—d,—2) and the substitution d — —d,
an approximation

1
Wz, —1) ~ / u®(d, —#) {—g(z, —d)} ds(d), #€Q, € B\D,.
Q v
(1.1.34)
for the scattered field u® from its far field pattern u* is derived.

With the help of rotations and translations of the approximating functions, the
computation of g can be performed efficiently. Given the reconstruction of the
scattered field u®, parts of the unknown boundary dD of D can be found using
the total field u = u’+u® and the boundary condition. For electromagnetic waves
a corresponding operator will be constructed (see also [63]).

To get a better insight into the method, we briefly compare some features of
the point-source method with the method of Kirsch and Kress as described in [6],
Section 5.4. This method approximates the scattered field u® by a single-layer
potential S on a curve or surface I, which has to be located in the interior
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of the unknown scatterer D. Then the boundary 0D of the unknown scatterer
is found by first minimizing the functional |[S®¢s — uf|[7sq), i-e. fitting the
far field pattern Sy of the single-layer potential to the given measured data
ug®, and then minimizing |[Sgs + u'|[72p) with respect to 0D, i.e. fitting the
scattered field on the boundary of the scatterer to the incident field To obtain
the convergence

Sps — u®, for us® — v and 6 — 0,

on subsets of IR™ \ D and
0Ds — 0D for ug® — u™ and 6 — 0,

one has to combine the minimization of these functionals with respect to ¢s in
L*(T") and the boundary 9D of D.

The last point is a central difference of the two methods. For the point-source
approach we obtain convergence for the reconstruction of the scattered field u*
without the simultaneous reconstruction of the unknown scatterer.

As a second difference, the point-source method for the reconstruction of
0D does not need a parametrization of the whole boundary. We are able to
reconstruct parts of the boundary independently.

Third, it is possible to reconstruct scatterers which consist of an unknown
number of components. However, some restrictions on the location of these com-
ponents are required due to the exterior cone condition.

Fourth, the reconstruction operator A given by (1.1.31) is computed according
to some a-priori knowledge. We do not have to invert a linear system involving
the far field data or to minimize a functional with a possibly large number of
unknown coefficients.

Note that there are some similarities between the construction procedure of
the point-source method and the Backus-Gilbert method or mollifier methods [35],
[12], [45].

The third category and the method of singular sources. Since 1996
methods for the reconstruction of the shape of a scatterer have been developed,
which are based on characterizations of the boundary of the scatterer independent
of its physical properties. For an algorithm of category III the boundary condition
or physical properties of the scatterer do not need to be known. The independence
of a reconstruction method on the physical properties of the scatterers is of great
practical importance, since in many cases a knowledge about the properties of
the searched objects does not exist.

A linear sampling method has been proposed 1996 by Colton and Kirsch [4],
see also Colton and Monk [7] and Colton, Piana and Potthast [10]. The idea is
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to characterize the boundary 90D of a scatterer D by the behavior of the solution
g=g(z,-) € L*(Q) of a linear integral equation of the first kind

(Fg)(2) = e7™*% 7 eqQ, (1.1.35)
for z € D, where F is the far field operator

(Fg)(#) ::/Qu‘x’(:fs,d)g(d) ds(d), & € Q. (1.1.36)

Examining either an interior boundary value problem or an interior transmission

problem, in [10] (see also [6]) it is shown, that there exists an approximate solution
of (1.1.35) with

19(2, )||r2) — 0o and |[Hg(z,-)||r2p) = o0 for 2z — 0D, (1.1.37)

where Hg denotes the Herglotz wave function
(Hg)(z) == / "y (d) ds(d), = € R™
Q

Colton and Kirsch propose to compute a regularized approximate solution of
(1.1.35) on a grid containing D. The domain D then can be found as the set of
points where ||g(z,-)||r2) is large. Numerical experiments can be found in [4],
[7], [10] and [2].

Colton, Piana and Potthast [10] also applied Morozov’s discrepancy principle
for the solution of (1.1.35) and used either ||g(z,-)|| or the values of the regular-
ization parameter a(z) to determine the shape D of the scatterer D. Numerical
results of this method can also be found in [2].

As mentioned above, more recently Kirsch [32], [33] was able to derive a
characterization of the shape D of the scatterer D for acoustic scattering in the
case of obstacles or non-absorbing media, i.e. a real-valued refractive index n.
Kirsch showed that the domain D is the set of points z, where the equation

(F*F)Y/4g(3) = e7™% & e Q, (1.1.38)

is solvable. This characterization holds both for scattering by obstacles [32] or for
a non-absorbing medium [33]. The support of the scatterer can then be found as
above, computing approximate regularized solutions of (1.1.38) and using either
the norm ||g(z, -)|| of the solution or the size of the regularization parameter a(z),
which is chosen according to Morozov’s discrepancy principle. A comparison of
numerical results for the method of Colton and Kirsch (1.1.35) and the version
proposed by Kirsch (1.1.38) can be found in [2]. We will not further investigate
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the method of Colton and Kirsch, but develop a different method in this third
category of reconstruction methods.

In Section 6, we propose a method of singular sources for the reconstruction
of the support of obstacles or scattering media from the knowledge of the far field
pattern u*®(z,d), ,d € Q. It is based on the ideas used in the uniqueness and
stability proofs. For the reconstruction of obstacles in the case of acoustic waves
theoretical and numerical results can be found in [60].

We want to sketch the main ideas of this method. As described above,
the boundary 0D of an obstacle D is the set of points where the scattered
field ®°(z, z) for incident point-sources becomes singular. We construct a ker-
nel g,(x,d)gy(z, CZ), such that for z,z € B\ D, an approximation for the field
®*(z,z) is obtained in the form (Qu*)(z,z) with the bounded linear integral

operator () defined by
(Qp)(x, 2) ::/Q/QgT(x,d)gn(z,J)gp(d,J) ds(d)ds(d), =,2€ B.  (1.1.39)

The boundary 0D is found as the set of points, where (Qu®™)(z, z) is large. We
investigate the method both for the reconstruction of obstacles and the support
of media and give numerical examples.

The methods of the second and the third category have important differences
on a fundamental level. Methods of the second category use the scattered field
and the boundary condition to determine the scatterer. The boundary condition
does not need to be known for the reconstructions with methods of the third
category. The missing knowledge leads to a different behavior of the algorithm
and (as we show and discuss in Section 6) influences the ill-posedness of the
inverse scattering problem.

Contents. We split our presentation into six Sections. The Section 1.1 of this
Section has already been used to introduce the main ideas and results. Section
1.2 serves to present basic definitions and tools for further use.

In Section 2 we study the solutions to the direct scattering problems and
derive properties, on which our investigation of the inverse problems will be based.
The main results of Section 2 will be uniform bounds for integral operators and
scattering maps and estimates for the behavior of the scattered field ®;, (2, 2) for
incident multipoles of order y and polarization ¢ € €.

The themes of Section & are uniqueness and stability for the reconstruction of
the shape of a scatterer. We first derive uniqueness results from the knowledge
of the full far field patterns u*(z,d), £,d € Q. In a second part we develop
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a technique to derive stability estimates for the reconstruction of the shape of
both impenetrable and penetrable scatterers from the knowledge of the far field
patterns for all incident plane waves.

The finite data case is investigated in Section 4. We investigate the question
of uniqueness if the far field patterns are known only for a finite number of
observation points and a finite number of incident plane waves. For this situation
we propose a concept which we call e-uniqueness: given e there are numbers
ng, n; such that the far field patterns for n; directions of incidence measured at
n, observations directions determines the unknown shape up to an error € in the
Hausdorff distance of the domains.

In a second part stability for a finite set of measured data is studied. For this
case we propose a concept of e-stability: given € there are numbers n,,n; and a
function Fiy, ,.), such that (1.1.29) and (1.1.30) are satisfied.

In Section 5 a point-source method is introduced for the reconstruction of a
scattered field u® from its far field pattern «® and the construction of the shape
of an unknown impenetrable scatterer D. We explicitly construct a family of
bounded linear integral operators (1.1.31) for the reconstruction of u* and prove
error estimates and convergence to the true scattered field. Numerical examples
for reconstructions in three dimensions are given.

A method for the reconstruction of the shape of both impenetrable and pen-
etrable scatterers is proposed in Section 6. We call it the method of singular
sources, since it uses the singular behavior of the scattered fields ®¢ (z,z) of
multipoles, if the source point z of the incident multipole ®, (-, z) tends to the
boundary of the scatterer. Some numerical examples in two dimensions demon-
strate the applicability of the ideas.
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1.2 Basic definitions and tools.

We now introduce some basic definitions, notations and theorems from analysis,
functional analysis, scattering and potential theory for later use. An introduction
into these areas can be found in [37], [20] and [6].

By D we denote a bounded open set in IR™, m € IN, with boundary 0D and
closure D, such that the exterior of D in IR™ is connected. B,(z) is the open ball
with radius r and center z in IR™. The lower half plane is given by

H:={z=(z1,.... %p), xm < 0}

and we define H, := B,(0) N H. Let Z,, be the open finite cylinder

Zyy = {x = (21, ..., o) € R™, \/x% +o 22 <1y Tm] < a}. (1.2.1)

We use the notation Z, , (z, p) for the cylinder defined by (1.2.1) in the coordinate
system with origin x and the z,,-axis given by p € IR™.

The spaces of continuous or [-times continuously differentiable functions on D
or dD are denoted by C(D), C'(D) or C(0D), C'(0D), respectively. The space
of [-times Holder continuously differentiable functions with Holder coefficient o
is C4*(D) or C"*(dD), respectively.

For a multi-index
Y= (717 teey /Ym)

we define .
V= (1.2.2)
7j=1

The [-th derivatives of a function f € C'(D) are given by

f(v) . 8Mf

Coongy...00mg,,

for all v € INJ® with |y| = . We will need the space L?(D) of square-integrable
functions on D and the Sobolev spaces H'(D), which are defined as the closure of
CY(D) with respect to the norm

1 lmy == 2 1IF D 22(w)- (1.2.3)

lv[<l
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Given m € INy and « € [0, 1] the boundary 0D is said to be of class C»*, if
for each point x € 0D there is an open set V' € IR™ with x € V and a bijective
mapping 1 € C*(B;(0)) such that ¢(B;(0)) = V and ¢(H,) = VN D. Since 9D
is compact, we can always find a finite number of such domains V' which cover
0D. A parametrization of V' N 9D is given by 9|y, with

U, .= {IL‘ € Bl(O),l'm = 0} (124)
Then {Uy, 4,V NaD} is called a set of local coordinates for 0D

For domains of class C%* with [ > 1 and «a € [0,1] let v(x) be the exterior
unit normal vector to the boundary 0D of D in the point x € 0D. We use special
local coordinates for dD. For a point x € 0D we can find a coordinate system
K, with origin = and the z,,-axis given by {z + hv(z),h € IR}. In this special
coordinate system in a neighborhood Z, , of 0 with r, @ > 0, a parametrization of
oD N Z,, is given by

OD N Zya = {(t1, s tmer, f(t1, s tmet)), (b tm) € Bo(0)} (1.2.5)

with a mapping f € C**(B,(0)) defined on the open set B,(0) C IR™'. The
function f € C*(B,(0)) is uniquely determined and we have

DNZ.o=A{(t1,..tm) € Zra, tm < f(t1, s tm1)} (1.2.6)

For later use we need to specify classes of domains, for which the properties
of special functions and integral operators are valid uniformly.

DEFINITION 1.2.1 Given constants Re,1o,a0, [ € IN, a € [0,1], Cy > 0 and
Be > 0 we define the class

A: A(Reﬂ"g,ag,l,@, C()) (127)

of domains in IR™, which satisfy the following conditions:

1. (Boundedness.) For all D € A we have
D C Bg,(0). (1.2.8)

2. (Smoothness.) For each point x € 0D there is a special coordinate
system K, defined above, such that for r = ry, a = ag and with the function
f € CH(B,,(0)) the equations (1.2.5) and (1.2.6) and the estimate

[ flletas, ) < Co (1.2.9)
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are satisfied.

3. (Exterior cone condition.) For each x € IR™\ D there is a cone

co(z,p, Be) := {y e R == .p> cos(ﬂe)} (1.2.10)

? |y—z|

with direction p € 0, and opening angle 3. in the exterior IR™ \ D of D.

In contrast to the theory of partial differential equations, where cone condi-
tions are used to describe the regularity of the boundary of a domain, here the
infinite cone condition is a geometrical condition. It can be seen as a condition
to limit non-convexity and, simultaneously, allow scatterers consisting of several
separate components. It guaranties that each point x on the boundary 9D can be
reached by an exterior infinite cone co(z, p, 3.) with a direction p € Q depending
on z and a fixed given opening angle .. We use the notation B := Bpg_(0).

To work with the class A of domains we need to note some of its properties.

THEOREM 1.2.2 For parameters Re,rg,a9 > 0, 1 > 2, a € [0,1] and Cy > 0 we
obtain for the class of domains A = A(R,, 1o, ag, [, a, Co) the following properties.

1. There is a radius r; = 1;(rg, ag, Cy), such that for each domain D € A and
each point x € 0D we have

B,,(x +v(z)r;) C R™\ D (1.2.11)

and
B,,(x —v(x)r;) C D. (1.2.12)

2. Fach domain D € A is a union of balls with radius r;.

3. For each domain D € A and each point x € 0D we have
x+v(z)s ¢ D, se€l0,r] (1.2.13)
and

x—v(zr)se€ D, se€(0,r]. (1.2.14)

4. There is a number Ly = Li(R.,ro,ay,Cy) € IN, such that for each do-
main D in A the boundary 0D of D is piecewise parametrized by Ly twice
continuously differentiable injective mappings

bt By (0) = R™, j=1,..., Ly, (1.2.15)

of the form (1.2.5) with a norm (1.2.9) bounded uniformly for all domains
De A
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5. There is a number Ly = Ly(Re, 70, ag, Cy), such that for every scatterer D
in A the domain D is parametrized by Lo injective mappings

Wit Zrga — R™, j=1,..., Ly, 1.2.16
J 0,

where v; is an element of C**(Z,y4), j = 1,..., Ly with a norm bounded
uniformly for all domains D € A.

Proof. Given x € 0D the property 1 is obtained with the help of the special
coordinate system K, and the bound Cjy on the norm

[ fllc20(8,,(0))

by elementary calculations as follows. We only need to consider the line x9 = 0
in a neighborhood of 0. Here the boundary of B,, (0 + v(0)r;) is given by

9(551) =T \/7“1'2 —l"%a 0<z <y

For r; < Cio we estimate the derivative of ¢ by

> TS G, 0< o <1 (1.2.17)
r? —a? Ti
o 0/ (,0) 0°£(1,0)
t ! t
00 = [ 2L0D,,
o @n0) o of
for the derivative of f we derive
of(t,0
| f(&; )(x1,0)| < Cory, 0< a1 <1j0 (1.2.18)
Thus for the derivatives of g and f from (1.2.17) and (1.2.18) we obtain the
estimate 9 9f(z1,0)
g Ty,
— > | 0<z <ry,
s (1) > | 071 (x)|, 0< @ <r

which yields
g(x1) > f(z1,0), 0 <z <my,

and thus property 1.
The properties 2 and 3 are an immediate consequences of property 1. Property
4 can be obtained by compactness of

Br, (0) ¢ R™, (1.2.19)
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since there is a finite number L; of balls B,,(z), x € Bg,(0), which cover (1.2.19)
and for each ball B, (z) the set 0D N B, () is parametrized by special local
coordinates of the form (1.2.5) with norm bounded by (1.2.9).

To prove 5 we first proceed as in 4 and obtain L; local coordinate systems
K,; and corresponding local coordinates of the form (1.2.5) covering dD. For the
local coordinates K, we obtain a mapping 1 : Zy, 0 — Zrya N D by

tm +a

% [f(tl,...,tm_l)—l—a] —a).

(L1, ooy ) — (tl,...,tm_l,

For this mapping from (1.2.9) we derive |[t)1;]|cte(z,, .y < C with some constant
C uniformly for D € A. The set

G:=D\ ( L—j1 @/)1]'(Zro,a))-

is a compact subset of D with
d(G,0D) > 1> 0. (1.2.20)

uniformly for all domains D € A.

Second, there is a finite number L of cylinders ZT/3,7/3(yjan), yi,p; € IR™,
which cover Bp, (0). We choose those cylinders which are contained in D. Because
of (1.2.20) they cover G. Using translation, rotation and multiplication with a
diagonal matrix with diagonal terms 7/(3ry) and 7/(3a) we obtain continuously
differentiable parametrizations vy; @ Zng 0 — Zr3./3(Yj:05), J = 1,...,L, such
that

Lo
G < (U t2(Zrna)
7j=1

The proof is now completed with L, := L; + L by combining step one and two.
|

For the work with the exterior cone condition the following technical lemma
will be useful.

LEMMA 1.2.3 Given the class A of domains, there is 0 < By < (. and py > 0
such that all domains

D,={yeR" dy,D)<p} (1.2.21)

with D € A and 0 < p < pg satisfy the exterior cone condition with angle 3.
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Proof. We will show that there is 0 < (y < (., such that for each point z
in R™\ D, C IR™\ D and each cone co(z,p, 3.) € IR™ \ D the cone co(z,p, )
satisfies

co(z,p, Bo) C IR™\ D,.

According to Theorem 1.2.2 the domain D is the union of balls with radius r;.
Thus D is a subset of

G = U ) B, (y)-

Br; (y) CIR™\(By (z)Uco(x,p,Be

Considering balls B,,(y), which
touch both B,(z) and co(z, p, Be),
we obtain by elementary geomet-
ric arguments from Figure 1, that
for angles

T
1= arccos 1.2.22
0 () (22)

with
v < B (1.2.23)

we have

BrH—p(?J) Nco(z,p, B — ) = 0.

Figure 1

Thus we have proven
CO(l’,p, ﬂe - ()0) N Dp - CO(ZU,p, ﬁe - ()0) N Gp - wa

i.e. we have
CO(IL',p, ﬁe - 90) C Rm \ DP‘

The proof is complete by observing that arccos(r;/(r; + p)) — 0,p — 0. and
choosing pg, By such that for all p < py and ¢ defined by (1.2.22) the estimate

(1.2.23) is satisfied.
|
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An indispensable tool for the investigation of both direct and inverse scatter-
ing problems are special solutions to the Helmholtz equation. For later use we
now introduce Legendre polynomials, associated Legendre polynomials, spherical
harmonics, Bessel and Neumann functions and note some of their properties. If
not pointed out otherwise, for a proof of these properties we refer to [6].

Let V! for [ = —n,...,n and n = 0,1,2, ... be a complete orthonormal system
of spherical harmonics, as for example given by

2n+1(n —|I|)! .

Y0, ¢) == Plll(cos(0))e'? 1.2.24
10.9) \} i P eost)e (1220
for | = —n,...,n, n =0,1,2,.... Here, P! are the associated Legendre functions,

which can be derived from the Legendre polynomials P, by

d'P,(t)

Pl(t) := (1 — tQ)WT, 1=0,1,..,n. (1.2.25)
The Legendre polynomials
1 odr .,
Pu(z) = 5 da:”{(x ~1)"}, n=0,1,.. (1.2.26)

form an orthogonal system in L?[—1, 1], more explicitly we have

1 2
P,Pt)dt = —=—— 6,4, n,0=0,1,2,.... 1.2.27
/_1 (1) P (¢) S Ot 1 ( )

They satisfy the inequality
|P(t)] <1, —=1<t<1, n=0,1,2,... . (1.2.28)
For 2n + 1 orthonormal spherical harmonics of order n the addition theorem

n+1
47

S VT =

l=—n

Py(cos(9)) (1.2.29)

holds for z,y € €2, where 0 is the angle between = and . For the surface gradient
of spherical harmonics we note the estimate

(Grad V;i(#)] < Cn2||V}||r2e), & €9, (1.2.30)

(see Section X, Lemma 6.1 of [46]).
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The spherical Bessel functions and spherical Neumann functions of order n
are given by the series
00 (_1)ptn+2p

n(t) :=
in(?) 172;)21’p!1-3---(2n+2p+1)

(1.2.31)

and

(2n)! & (—1)pe2e—n-1

2l pz% 2epl(—2n+1)(=2n+3) -+ (—2n+2p—1)’

Yn(t) := (1.2.32)

where the first coefficient in the series (1.2.32) has to be set equal to one. The
linear combinations
AL = g+ iy, (1.2.33)

are known as spherical Hankel functions of the first and second kind of order n.
By straightforward calculation from the series (1.2.31) and (1.2.32) it is possible
to derive the differentiation formula

() = % {1 ) (1.2.34)

for both f, = j, and f, = y,, and together with Stirlings formula

n! =2 <ﬁ>n (1+0(1), n— o0 (1.2.35)

e

we obtain the behavior

Jult) = — <%>n(1+0<1>), n — oo, (1.2.36)

2n+1 n

and

rD(t) = —V2 <2—n>n (1+0 (%) ), n— oo, (1.2.37)

t et

uniformly on compact subsets of (0,00). One can use the spherical harmonics
and the spherical Bessel or Hankel functions to construct special solutions to the
Helmholtz equation. Given a spherical harmonic Y,, of order n, the function

Un () := jn(k|z]) Yo (2) (1.2.38)
is an entire solution to the Helmholtz equation. The multipole of order n

A (k|z]) Y, (2) (1.2.39)

v () :
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is a radiating solution to the Helmholtz equation in IR™\ {0}. Modulo a constant
the threedimensional multipole of order zero is the point-source

1 6in|:1:7z\

o - =S
("'U7Z) 47T|"L'—Z| )

(1.2.40)

the multipole of order one is a dipole, the multipole of order two a quadrupole etc.

Multipole expansions, i.e. expansions of solutions of the Helmholtz equation
with respect to the functions v,, are used both in direct and inverse scattering.
For the proof of explicit stability estimates in Section 3, we will need the multipole-
expansion of the fundamental solution

ey) = iwd Y AR @0 DTG, (1.241)

n=0I=-—n

where & = z/|x| and § = y/|y|. Here, the series and its term by term derivatives
with respect to x and y are absolutely and uniformly convergent on compact
subsets of |x| > |y|. Further tools are given by the Funk-Hecke formula

[ 2@ dsz) = T j(sleVa(e), v € B (12.42)

for spherical harmonics Y, of order n and the Jacobi-Anger expansion

eerd — i i"(2n + 1) jn(k|x|) Py(cos(R)), = € R™, (1.2.43)

n=0

where d is a unit vector, f denotes the angle between x and d and the convergence
is uniform on compact subsets of IR™.

For scattering in IR? the multipoles and some constants have to be modified.
The functions j, and ¥, are replaced by the Bessel function of order n

) =3 D (3>n+2p (1.2.44)

=i (n+p)\2
and the Neumann function of order n

Y, (1) _ 2 {lnngC} z;: n—l— (n—1-p)! (%)712]7

™

—%i — (t)"”p{wmp)w(p)}

(1.2.45)
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vp) =7 p=12,., (1.2.46)

and )
C := lim {Z% - lnp} (1.2.47)

denotes Fuler’s constant, and if n = 0 the finite sum in (1.2.45) is set equal to
zero. The linear combinations

H? = J, +iY, (1.2.48)

are called Hankel functions of the first and second kind of order n, respectively.
The multipoles in IR? are given by the functions

Vio(x) := HWY (kr)em® (1.2.49)

with the polar coordinates (r, ). For the twodimensional fundamental solution
B(r,z) = LHO (1.2.50)
2) =g o (Kl — z]) 2.

we obtain the multipole-expansion
- 00

®(z,y) = %Hél)(/i|x|)J0(/<;|y|) +5 > HO(slal) Ju(kly) cos(nd),  (1.2.51)

n=1

where 6 denotes the angle between x and y. It is valid uniformly on compact
subsets of |z| > |y|. The Jacobi-Anger expansion (1.2.43) in IR* assumes the
form N

e = Jo(klz]) +2 Y i" Ju(klz|) cos(nd), =€ IR (1.2.52)

n=1

We will use the boundary-layer approach to investigate the properties of the
solutions to scattering problems for impenetrable scatterers. With the help of
boundary-layer potentials the scattering problems are reduced to integral equa-
tions on the boundary of the scatterer.

For a domain D C IR™ with boundary of class C? consider the single-layer
potential

u(z) = /aD o(y)®(x, y)ds(y), =€ R™ (1.2.53)
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and the double-layer potential

0%(x,y)
= — d € IR™\ 0D. 1.2.54
ow) = [ oy s, @€ B (1.2.54)
Later we will also use Py and Psp for the single-layer or double-layer poten-
tial, respectively. The behavior of the single- and double-layer potentials at the
boundary 0D is described by the following jump relations.

THEOREM 1.2.4 (Jump relations.) The single-layer potential u with continu-
ous density ¢ is continuous throughout IR™. On the boundary we have

u(z) = /aD e(y)®(x,y) ds(y), =€ dD, (1.2.55)
and
%L—:(x) - /aD So(y)% ds(y) F %%0(56% x € 0D, (1.2.56)
where
aau—;(x) = hl_i)ril0 v(x) - grad u(z + hv(x)) (1.2.57)

is to be understood in the sense of uniform convergence on 0D. The double-layer
potential v with density ¢ can be continuously extended from D to D and from
R™\ D to IR™\ D with limiting values

8av_;(x) - /aD W(y)% ds(y) + %so(x), z € 0D, (1.2.58)
where

ve(r) = hllrﬂo v(x £ hv(x))

and where the integral exists as an improper integral. For a density ¢ € L*(0D)
the jump relations (1.2.55) to (1.2.58) have to be replaced by

Jim [ fue £ (@) —/aD () ®(x,y) ds(y)| ds(x) = 0 (1.2.59)
dim [ |5y — [ o5 ds) & el dsa) = o
(1.2.60)

and

eiv) ~ [ ot ast) 7 gef dsta) = o

lim ‘@ (
h—+0 Jop | Ov
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Proof. The proof for continuous densities can be found in [5], Theorems 2.12,
2.13 and 2.19, the proof for ¢ € L*(9D) is due to Kersten [28]. 0

With the help of boundary layer potentials and jump relations the acoustic
and electromagnetic scattering problems can be reduced to boundary integral
equations of the second kind, i.e. operator equations of the form

I-Ae=Ff (1.2.62)

with a compact linear operator A : X — X defined on a normed space X. Integral
equations of this kind can be solved using the following theorem of Riesz.

THEOREM 1.2.5 (Riesz Theorem.) Let X be a normed space and A : X — X
a compact linear operator. If the homogeneous equation

(I =A)p=0

only has the trivial solution ¢ = 0, then for oll f € X the inhomogeneous equation
(I=Ap=f

has a unique solution ¢ € X and this solution depends continuously on f.

Proof. See Corollary 1.17 of [5]. O

According to the Riesz theorem the injectivity of an operator I — A yields
its continuous invertibility. Usually the injectivity of an integral operators corre-
sponding to a scattering problem is obtained from the uniqueness of the solution
to this scattering problem.

For the investigation of special scattered fields for scattering from inhomo-
geneous medium scatterers we will need to study the integral equations of the
scattering problems both in the spaces of continuous and square-integrable func-
tions. The injectivity of the integral operators in L?(D) will be obtained from
the results in C'(D) with the help of dual systems, defined on subspaces of L?(D)
by the sesquilinear form

(o) = [ ow)e(y)dy (1.2.63)

for p,v € L*(D).
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THEOREM 1.2.6 (Fredholm Alternative Theorem) Let X and Y be normed
spaces, (X,Y) a dual system and A : X — X, B :Y — Y compact adjoint
operators. We have either

N(I-A) ={0} and N(-B)=/{0}

and
I-A)(X)=X and (I-B)(Y)=Y
or
dimN(/ — A)=dimN(I — B) € IN
and
(I-A)(X)=NI-B)" and ([I-B)(Y)=NI-A)"
Proof. For a proof we refer the reader to [37]. 0

In general, inverse problems are ill-posed in the sense of Hadamard [15], i.e. the
demands of uniqueness, existence and stability are violated. Ill-posed equations
of the type

Alp) =f (1.2.64)

with a compact (linear or nonlinear) operator A : X — Y are usually solved ap-
proximately by a family of bounded (linear or nonlinear) regularization operators

R,:Y =X, a>0, (1.2.65)

with the property
lim R,(A(z)) =z forall z € X, (1.2.66)

a—0
i.e., the operators R,A converge pointwise to the identity, if the regularization
parameter o tends to zero. In this case the family of operators R, is called a
regularization strategy (see [35]).

As a main tool for the investigation of inverse scattering problems we will use
the approximation of multipoles by a superposition of plane waves. This leads to
the approximate solution of ill-posed linear operator equations of the form

Ho=f (1.2.67)

in a Hilbert space X, where the ill-posedness of the equation is due to the un-
boundedness of the operator H~!'. A standard regularization strategy for the
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approximate solution of equation (1.2.67) is given by the Tikhonov regularization
scheme, which computes an approximate solution ¢, by

Yo = (ol + H*H) 'H*f. (1.2.68)

For more details we refer the reader to [35] or [6].

Another possibility to approximately solve (1.2.67) are minimum norm solu-
tions. For a bounded linear operator H : X — Y between two normed spaces X
and Y, 7> 0and f € Y an element ¢, € X is called minimum norm solution of
Hy = f with discrepancy 7, if ||[Hpy — f|| < 7 and

|lpol| = inf {[lel|, [[He = fI| <7}

THEOREM 1.2.7 (Minimum norm solutions) Let X,Y be Hilbert spaces. If
H has dense range in 'Y, then for each f € Y there is a unique minimum norm
solution wy of Hp = f with discrepancy 7. The minimum norm solution oy can
be calculated by

o= (al + H*H)""H*f, (1.2.69)

where a is a zero of the function
G(o) = |[(af + B B) ' Hf — f|[ — 7. (1.2.70)

Proof. A proof is given in [37]. 0

The preceding theorem can be interpreted as an a-posteriori strategy for the
choice of the parameter « in the Tikhonov regularization scheme for the approx-
imate solution of Hy = f.

An impenetrable acoustic or electromagnetic scatterer is given by a domain
D and a boundary condition. We will use the letter D for the full scatterer with
all its properties. The type of a scatterer is either sound-soft or sound-hard for
the acoustic problems or perfect-conductor for electromagnetic scattering. Thus,
an impenetrable scatterer D can be viewed as a pair

D = (D, type) (1.2.71)

of its domain D and its boundary condition.
For penetrable scatterers the situation slightly more complicated. Again, we
use D for the full scatterer. The scatterer D is given by a domain D, defined as
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the interior of the support of the inhomogeneity, and a refractive index n with
|5 =1 and njp € C%*(D). The full scatterer D is the pair

D = (D,n). (1.2.72)

We will study uniqueness, stability and algorithms for the reconstruction of
the domain D of impenetrable and penetrable scatterers D for both acoustic and
electromagnetic scattering problems.



2 Direct scattering problems.

For the investigation and solution of inverse scattering problems a good know-
ledge about the direct scattering problems is indispensable. Thus in this Section
on direct scattering problems we collect and derive definitions and results for
further use in the following sections.

2.1 Acoustic obstacle scattering.

We consider acoustic scattering from a bounded sound-soft or sound-hard impen-
etrable scatterer D. The scatterer D consists of a domain D C IR™, m = 2,3 and
a boundary condition for the total field on 0D. We always assume the boundary
of dD of D to be of class C? and the open exterior IR \ D of D to be connected.
An incident field '’ is a solution to the Helmholtz equation

Au+ K =0 (2.1.1)
with wave number k > 0 on a domain containing D in its interior.

DEFINITION 2.1.1 Given an incident field u* and a scatterer D, the direct acous-
tic obstacle scattering problem is to find a scattered field

u® € C*(IR™\ D)NC(IR™\ D),

which solves the Helmholtz equation (2.1.1) in IR™\ D and satisfies the Sommer-
feld radiation condition

m—1 ,Qu®
TTI( 5; - mus) — 0, r=|z| — oo, (2.1.2)
uniformly in all directions & = x/|x|, such that the total field
u=u'+u’ (2.1.3)

satisfies the sound-soft boundary condition
u' +u* =0 on D (2.1.4)

or the sound-hard boundary condition

%(ul + us) =0 on 0D. (2.1.5)

Here v denotes the unit outward normal vector to 0D and the normal derivative
in (2.1.5) is understood in the sense of (1.2.57). A solution u of the Helmholtz
equation in the exterior of some ball B satisfying (2.1.2) is called radiating.
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The main tools for the investigation and solution of the direct scattering
problem are Green’s integral theorems. In particular, for u,v € C?(G) we have
Green’s second theorem

ov ou
/G {ulhv —vAu}de = / (ua - 1)5) ds, (2.1.6)

where G denotes a domain of class C'! and v the unit normal vector to the
boundary 0G directed into the exterior of G. Green’s integral theorems can be
used to derive for a radiating solution u* of the direct acoustic scattering problem
Green’s formula

() = /BD{u«yﬁg’jg;ﬂ o (y)@(x,m}ds(y), reR"\D  (217)

and the asymptotic behavior

us(z) = em_{ (55)+o<| |>},|x|—>oo, (2.1.8)

|

where 7 := z/|z| € Q and Q := {x € R™, |z| = 1}, see [6], Theorem 2.5. The
function u® is called the far field pattern of the scattered acoustic wave.

As incident fields u’ plane waves and point-sources are of special interest. We
denote the scattered field for an incident plane wave

u'(z,d) ="z c IR™,

with direction d € Q by u®(x,d), x € IR™\ D, and the corresponding far field
pattern by u®(z,d), & € . An incident point-source ®(-, z) with source point
z € IR™ is given by the fundamental solution to the Helmholtz equation (1.2.40).
The scattered field for an incident point-source ®(-,2) with source point z is
denoted by ®*(-, z) and the corresponding far field pattern by ®*(z, 2), & € Q.

Several approaches have been developed to solve the direct scattering problem.
We will use integral equations to obtain a representation of the solution in terms
of boundary-layer potential and to study properties of the scattered fields. To
this end, let us introduce the classical boundary integral operators. We use the
single-layer operator

- 2/ (y)ds(y), = €D, (2.1.9)

the double-layer operator

0P (z,y)

- T(y)gp(y)ds(y), x € 0D, (2.1.10)

(Kep)(x) =2
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the L2-adjoint of the double-layer operator

0P (z,y)

(K*p) () =2 ()

o(y)ds(y), = €D, (2.1.11)

and the normal derivative of the double-layer operator

0 0P(z,y)
To)(x) =2 / ! ds(y), x € dD. 2.1.12
Tow) =250 [ e P ouds(y). = (21.12)

For a derivation of the following uniqueness and existence results for the direct
acoustic scattering problems we refer to [6], Section 3. Here we only summarize
the results.

THEOREM 2.1.2 The direct acoustic scattering problem with sound-soft or sound-
hard boundary condition has a unique solution and the solution depends continu-
ously on the boundary data u’[sp or %L‘?D, respectively, of the incident field in
C(0D) with respect to uniform convergence of the solution and all its derivatives
on closed subsets of IR™\ D.

In particular, for the case of the sound-soft boundary condition, the solution
can be represented as a combined acoustic double- and single-layer potential

u®(z) = /ar) {% - i@(x,y)} o(y)ds(y), =€ R™\ D, (2.1.13)

where the density o € C(0D) is a solution of the boundary integral equation
(I+ K —iS)p = —2u'|sp. (2.1.14)

Here I stands for the identity operator. For the case of the sound-hard boundary
condition, a representation of the solution is given by the modified acoustic single-
and double-layer potential

ww = [ {(b(fc,y)so(y) . i%(&?w)(y)} ds(y), @€ B"\ 9D, (2.1.15)

where Sy denotes the operator S in the case k = 0 and the density ¢ € C(0D)
solves the boundary integral equation

ou’
ov -
Proof. We refer to Theorem 3.7, Theorem 3.9 and Theorem 3.10 of [6].

(I — K*—iTS3)p =2 (2.1.16)
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Before we investigate more details of the behavior of integral operators for the
solution to the direct scattering problem, we introduce some symmetry properties
of the scattered fields or far field patterns, respectively, which are called reciprocity
relations. Due to reciprocity relations, the role of source and receiver in the
scattering process can be exchanged.

Reciprocity relations play an important role for the investigation of both di-
rect and inverse scattering problems. We will use reciprocity relations in nearly
all further sections, for example for a proof of the Isakov-Kirsch-Kress unique-
ness theorem, to prove uniqueness for the support of scattering media, to obtain
stability estimates, to introduce the point-source method and also to derive the
method of singular sources.

For further argumentation we distinguish different reciprocity relations ac-
cording to the location of the source and receiver in the near field, the far field
or a mixed location with either the source in the near field and the observations
in the far field or vice versa.

THEOREM 2.1.3 (Far field reciprocity relation.) The far field patterns for
scattering of plane waves by a sound-soft or sound-hard scatterer satisfy

u® (@, d) = u®(—d, &), #,de Q. (2.1.17)

Proof. We refer to [6], Theorem 3.13 for the sound-soft scatterer. The sound-
hard boundary condition can be treated analogously, see for example the proof
of the mixed reciprocity relation below. 0

For the mixed reciprocity relations we need the constant

67Z7r/4
m =2
NEIT
Vo = (2.1.18)
1
4_7 m = 37
m

depending on the dimension m = 2, 3.

THEOREM 2.1.4 (Mixed reciprocity relation.) For acoustic scattering of
plane waves u'(-,d), d € Q and point-sources ®(-,z), = € R™\ D from a sound-
soft and a sound hard scatterer D we have

O®(7,2) = Y u(2,—2), 2€ R™\ D, & €. (2.1.19)
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Proof. The proof for the sound-soft scatterer is due to Kress [36]. By Green’s
second theorem (2.1.6) we have that

/8D (@S(y, Z)aqgsy(é’)d) - 3@;2((3;,)2’) u®(y, d))ds(y) =0, (2.1.20)

for . € IR™\ D, d € Q. Passing to the limit |z| — oo in Green’s formula (2.1.7)
we obtain the representation

(&, 2) = Ym /8 ; (®*(y, 2) a;yl(;y — e)aq: (y, z)e "V )ds(y) (2.1.21)

for 2 € R™\ D, & € Q. Let u(.,d) denote the total field for the sound-soft or the
sound-hard scattering problem with incident plane wave of direction d. Adding
Ym times (2.1.20) with d replaced by — to equation (2.1.21) with the help of the
boundary conditions we obtain

R s ou(y, —T I
(2, 2) = Vi /M)(I) (y,z)%ds(y), z€ R"\ D, €9, (21.22)

for the sound-soft scatterer and

O (i,2) = —fym/ 0y, 2)

oo oy U Dds@), 2 € BU\D, $€Q, (2123)

for the sound-hard scatterer. Again from Green’s theorem have the representation
formula

Quy.d) ) ), v e R*\D, de (2.1.24)

w(ed) =~ [ @)

oD

for the sound-soft boundary condition and

0P —
u'(z,d) = / —(z,y)u(y,d)ds(y), € R™\ D, de) (2.1.25)
oD Ov
for the sound-hard boundary condition. Now from (2.1.22), (2.1.24) and (2.1.23),
(2.1.25) using the boundary condition for ®° we obtain (2.1.19) both for the
sound-soft and sound-hard boundary condition. 0

Before we can start to investigate the direct scattering problems, we have to
think about the scatterers under consideration for reconstruction. Appropriate
assumptions on the scatterers, as for example a bound on the size of the scatterer,
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occur in uniqueness theorems (see for example [6], Theorem 5.2). As indicated
in the introduction, bounds on the curvature of the scatterer can be used to
obtain results on stability. To prove convergence of reconstruction algorithms,
it is usually required to know some geometric properties of the scatterers under
consideration. For example, it is required to know a part of the interior of the
unknown domain for the method of Kirsch and Kress (Section 5.4 of [6]).

We now define classes of scatterers for further investigation. They do not
describe the weakest possible restrictions for the different statements and algo-
rithms, but they play the role of some simple limitations, which are adequate for
the behavior of the inverse scattering problems under consideration.

DEFINITION 2.1.5 Given positive constants R, ry, ag, Cy, B, we define the class

Css = Css(Rea T, Go, C(), ﬁe)

as the set of sound-soft scatterers with domain

D € A(R.,rg,a9,l,a,Co, () (2.1.26)
forl=2, =0 and A given by (1.2.7). The class

Csn = Csn(Re, 70, an, Co, Be)

is the set of sound-hard scatterers D with domain D satisfying (2.1.26). The
classes Cgs and Cgp, together form the class

Cobst = Css U Csh-

To define the convergence of a sequence of domains or boundaries, respectively,
we use the parametrizations (¢;),=1,..r,, which we constructed in Theorem 1.2.2.

DEFINITION 2.1.6 The convergence
0D — 0D

is understood as a convergence of the parametrizations ¢; — ;, j = 1,..., L1 in

the norm of C*(B,,(0)).

We first derive a compactness property of the class Cpps;.

LEMMA 2.1.7 Given a sequence (D;)jenw of scatterers Dj € Copsy, there is a sub-
sequence (Dj, Jkewv of (Dj)jemn, for which the sequence of domains (D;, )kem con-
verges in the CY®-norm to a domain D C B.
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Proof. Consider a sequence (D;),ew of scatterers. Due to Theorem 1.2.2 we
obtain mappings ¢, : B,,(0) — IR™ with |[1;]|c2(B,,0)) < Co, such that the sets

‘/jZ = w]l(Bn(O))a [ = L, "'7L17

cover dD;. Since a bounded subset of C*(B,,(0)) is a relatively compact sub-
set of CY*(B,,(0)), we can find a convergent subsequence (1;,1)kemnv Of (¥1)jem
in CY*(B,,(0)). Then, we consider the corresponding subsequence (t);,2)gen of
(¥j2)jenv and again choose a convergent subsequence (t;, o)new Of (¥j,2)kem-
We proceed in the same way with [ = 3, ..., L; and after L; steps we obtain a sub-
sequence (Dj, Jyew of (D;) e with a convergent sequence (Dj, )yen of domains.
This completes the proof. O

We now collect some results on the integral operators S, K, K* and T. We
have to be careful with bounds, since we need most bounds and constants to
hold uniform for scatterers D € C,s;. We first summarize the classical mapping
properties of the potential operators.

THEOREM 2.1.8 For « € (0,1) the operators S, K, K* and T — Ty are bounded
operators from C(OD) into C%*(dD). The operators S and K are also bounded
from C%*(0D) into C»*(0D). The operator T is bounded from C“*(0D) into
C%*(dD). The double-layer potential defines a bounded operator from C%*(9D)
into C'(B\ D). All bounds hold uniformly for scatterers D € Copg;.

Proof. The proofs for the mapping properties of the operators can be found
in the Theorems 2.12, 2.15, 2.30 and 2.31 of [5]. Using the properties of the class
A it has been worked out in [58] that the estimates are satisfied uniformly for

scatterers D € Copg;. -

For the use of continuity and compactness arguments, we need to investigate
the dependence of the operators S, K, K* and T — T, on the domain 0D. We
investigate the operators as bounded linear operators on C(9D).

To treat functions and operators on 0D in dependence on 0D we need to
define appropriate reference spaces. This will be the spaces

X = [0 (B, (0)] "

and for [ € {0,1}
Y = (O (B, ()"
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For each scatterer D € Cppy there is a parametrization (¢y),—;..z, € X. This
defines a mapping
IT: Cobst — X: oD (wl)lzl ..... Ly
Later we will need the set
V = H(Cobst)-

Let Wyp be given by

Uop : CH*(OD) =Y, ¢+ (poiy)i, .1,
For fixed 0D the linear operator ¥yp is injective. We define

W = Uyp(CH(OD)). (2.1.27)

Since for ¢ € C*(dD) by
2(7) = p(x) for &=y (x)), = €dD,
we can define ¢ € C»*(dD) with
Pan(p) = ¥yp(o),
the set W is independent of D € C,,; and W is well defined. We have

pL(i(2)) + o2(u(@)) = (1 + @2) (Wu())

and
Ap(thi(z)) = (M) (Ui(2)),

thus the set W is a linear space. Equipped with the norm of Y the space W C Y
becomes a normed space. Easily W can be seen to be complete, i.e. W is a
Banach space, on which for each D € C,s; the mapping

Uy W — CH*(0D)
is well defined and bounded.

DEFINITION 2.1.9 For functions ¢ € Ct*(dD) and ¢, € C4*(0D,,),n € IN, we
say that
gon % 807 n % (X)7

if 0D, — 0D, n — oo, and

Yop, (wn) = Wap(p), n — oo,
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in'Y. A bounded linear operator J on C**(0D), | € {0,1},a € [0,1], is said to
depend continuously on 0D, if the mapping

J(OD) := Uy, J(OD) W51, € BL(W, W)

depends continuously on 0D.

For the investigation of continuity properties of boundary integral operators
with weakly singular kernel, we need some further technical tools.

LEMMA 2.1.10 For scatterers D € Copsy we uniformly have the estimate
lv(20) - (y —20)] < L|y— 2% v,20 €0D, (2.1.28)
with a constant L and there are constants 7,C' > 0 such that

1 1

ly =zl ly— 2l

<C, y,z0€0D,0< h <, (2.1.29)
where zp, 1= zo + v(zp)h.

Proof. First note, that for each point zy € 0D the statements have to be
shown only for y in a neighborhood B, (%) of 2, since for y & B, () the terms
are bounded by a constant uniformly for all domains D € C,s;. For y € B, (20)
we will give a proof by choosing the special coordinate system K, introduced in
Section 1.2. The origin of this system is z; and the direction of the third axis
es is given by v(z). By rotation around the third axis we can obtain 0 for the
second coordinate of y. According to Theorem 1.2.2 in a neighborhood of z, the
intersection of the boundary 0D with the e; — e3-plane of the new coordinate
system is given in the form (¢,0, f(¢)) with a function f with |f(t)| < Cypt? for all
t with |t| < ry.

To prove the first part of the theorem we estimate

v(z0) - (y = 20)] = |(0,0,1)-((¢,0, (#)) - (0,0,0))]
= |f(1)
Cyt?
Co |y — 20 (2.1.30)

ININ
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For the second statement we calculate and estimate with the help of the mean
value theorem

‘ 1 1
ly — 2] |y — 2=

_ “(t, 0, £(£)) — (0,0, h)

= |(# + (£ + 17 - 25 (0)n)
2f(t)h

(#2 + [ (]2 + b2 — 2| f(£)|h)?
2C,t%h

< -
T (1= 2C,h)E2 + h2)*

" "

—|(,0, £ (1)) = (0,0,=h)

:_ (2 + [ +h? +2f()h)

[SIE

<

(2.1.31)

We now use spherical coordinates (r, ¢) for (t,h), i.e. we insert ¢ = rsin(y) and
h = rcos(p) into (2.1.31). With the help of the estimate

1 3 1
(57"2 sin®(¢) 4 r? cos® <p) > \/gr?’
we derive

200t%h
(1 — 2C5h)E2 + h2)?

< 2v/8 Cysin®(¢) cos(p) < 2v8 Cy (2.1.32)

forall0 < h < ﬁ and all 0 <t < ry. This ends the proof.

LEMMA 2.1.11 Consider normed spaces X,Y, a subset V. C X and a function
f:V =Y. We assume that for each ¢ > 0 we have the decomposition

f - fl,e+f2,ea

with functions fie:V =Y and fo : V = Y. If for each fized € > 0 the function
fa,c depends continuously on = at a point xy € V' and if the family (f1¢)eso satisfies
the estimate

[ fre(z)]] < ce (2.1.33)

with a constant ¢ in a neighborhood V' of xq, then the function f depends contin-
wously on x at the point xy.
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Proof. Given 7 > 0 we have to find § > 0, such that ||f(xz) — f(z0)|| < 7 for
all x € Bs(zp) C V C X. We first choose € := 7/(4¢) and obtain

| fre(@)]| < 7/4

for all z € V'. From the continuity of f,. we obtain a § > 0 such that

[ fo.e(z) = foe(zo)|| < 7/2

for all ||z — || < 6. Adding fi . and fo, from

1f (@) = Flo)ll < | fre(@)]] + [ fre(@o)ll + [ fae(x) = faelwo)ll

we derive the statement of the lemma.
O

THEOREM 2.1.12 The operators S, K, K* and T — Ty in BL(C(0D),C(0D))
depend continuously on the boundary 0D of the scatterer D € Cypsy with respect
to the CY*-norm for 0D.

Proof. The continuity statement for C?-boundaries is a consequence of more
general results on the Fréchet differentiability of the operators with respect to
the domain, see [57] and [58]. Here, we will give a proof for boundaries of class
Cb which does not use Fréchet derivatives.

We consider the operator K* in the three dimensional case m = 3. The
operator K* has the kernel

l/(fL') ’ VCI:(I)("an)a T,y € oD.

Let @y denote the fundamental solution in the case x = 0 and K the corre-
sponding operator K*. First we note that by (2.1.28) the difference

v(r) Vi ((7,y) — Po(z,y))
eiklr—yl 1
=)V <4w|x Y R y|>
—v(z) -V, (Z (ir)" |z = y ) (2.1.34)

|
— 4 n!

_vz)-(z—y) <§°: (ik)* (n —1) |& — y|n—2>

A |z — y| n!

n=2
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is a continuous function in x,y € dD. For such kernels the continuity statements
are straightforward to prove, i.e. the difference K* — Kj depends continuously on
the boundary 0D. We investigate the weakly singular part K with the kernel

v(z) - Vy@o(z,y) = %, z,y € 0D. (2.1.35)

By definition of the class A we can choose a local coordinate system with = = 0
and v(z) = (0,0,1). Then the boundary 0D in a neighborhood of z is represented
in the form (s,t, f(s,t)), s,t € IR, with |[f(s,t)] < Cyl(s,t)|>. We obtain the
estimate

f(s,1)
(82 + 82+ [f(s,)]2)
Co(s +12) 72
Colz —y|™" (2.1.36)

V(x)-(x—y)‘

lz —y?

<
<

in a neighborhood |z —y| < \/5100 of z. Thus for all scatterers D € C,,s; the kernel

(2.1.35) of the integral operator K has a weak singularity, which is bounded by
the weakly singular function (2.1.36). Decomposing the domain of integration
into B(z) N 0D and 0D \ B.(z) for all sufficiently small ¢ > 0 we obtain

(Kso)w) = [ kalw)e(w)ds(y) (2.1.37)

k d
+ S o(z,y)e(y)ds(y)

with the kernel ko given by (2.1.35). We can use the bound (2.1.36) for the
singularity of the kernel to estimate the first term of (2.1.37) uniformly for all
scatterers D € Copsy and all x € 0D by

\/ Fo(x,y)e(y)ds(y)| < cellellewn) (2.1.38)
Be(z)NOD

with some constant c. For each fixed € > 0 the second integral depends continu-
ously on the boundary 0D and it is bounded uniformly for € > 0 and D € Cpg
by

‘/E(m)ﬁaD ko(a:,y)@(y)ds(y)‘ < dl¢llcon) (2.1.39)

with some constant ¢. Let the subset U of X be given by U := II(Cpps). We
define the mapping K; : U — BL(W, W) for j = 1,2 by

(Ki0D)e)(w) = [ kol(w)elw)ds(y), = € oD,
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and
(K3 0D)0)@) = [ kol )e(w)ds(y), = € 9D,

From (2.1.37) we derive K§ = Ki_+ K; _. Now we apply Lemma 2.1.11 to the
mapping
V — BL(W,W), 0D~ K*(0D)

to obtain with the help of (2.1.38) and (2.1.39) the continuous dependence of K
on 0D. Thus we have proven that K* = (K* — K}) + K depends continuously
on the boundary 9D with respect to C®-norm for D.

The statement for S, K and T"— T, and for the two-dimensional case m = 2
can be proven analogously. 0

To obtain uniform bounds for the mapping of the incident field onto the
scattered field or its far field pattern, respectively, we have to study the inverse
of the integral operators I + K — 1S for the sound-soft and I — K' — iT'S? for the
sound-hard boundary condition. Their existence and boundedness is obtained
from the Riesz theory. But the Riesz theory does not give a possibility to control
the bounds. To derive uniform boundedness in C,, we use compactness and
continuity arguments in the following theorem.

As a preparation we consider the operator strongly singular integral operator
T used for the solution of the sound-hard scattering problem. Strongly singular
operators are more difficult to handle than operators with weakly singular kernels.
Due to the following relations, for the products ST and T'S it is possible to obtain
a representation in terms of weakly singular integral operators K and K*. The
integral operators S and 7T satisfy the relations

ST =K*—1 (2.1.40)

and
TS = (K*)*—1. (2.1.41)

A proof can be found in [6], equations (3.12) and (3.13).
THEOREM 2.1.13 In the space BL(C(0D),C(0D)) the integral operators
(I+K—iS)™! (2.1.42)

and
(I — K*—4iTSg)™! (2.1.43)

are bounded by a constant ¢ uniformly for scatterers D € Cgpgy.
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Proof. First we consider (I + K —4S)~'. The boundary integral operators
S and K depend continuously on the boundary with respect to the C'*-norm.
Since the inverse A~! of an operator A depends continuously on A, the opera-
tors (2.1.42) and (2.1.43) depend continuously on the boundary 0D with respect
to the C*norm. Using the compactness of the imbedding of C?(B,,(0)) into
CY*(B,,(0)), the statement is a consequence of the fact that continuous func-
tions on compact sets are bounded.

To treat the operator (I — K* —iT'Sg)~" we use (2.1.41) to obtain

(I —K*—iTSg)™ = (I-K"—i(T - T0)52+T052)
= (I - K" —i(T - To)Sg + [(K3)* — 1]So) ™

and proceed in the same way as for (I + K —iS)™". O

THEOREM 2.1.14 The mappings of the incident field u* € C(0D) onto the far
field pattern u™ € CY(Q2) of the scattered field u® for scattering by a sound-soft
scatterer and of the normal deriwative % € C(0D) onto the far field pattern
u® € CY(Q) of u® for scattering by a sound-hard scatterer are bounded uniformly

for D € Copst by a constant csp.

Proof. We use the representations (2.1.13) and (2.1.15) for the solution of
the scattering problems. Then the far field patterns of the scattered fields u*® are
given by

00/ AN oerty . ikdy ~
u>®(%) = Ym { ) ie }gp(y) ds(y), =€ (2.1.44)

with density ¢ = —2(I + K —iS) 'u’ in the sound-soft case and by

@)= [ {0t + G st fast, sen @21
with density ¢ = 2(I — K* — iT'S3)™'2% for the sound-hard scatterer. The
mapping u’ — u*> can be split into the i 1nver510n of the corresponding boundary
integral equation and the mapping (2.1.44) or (2.1.45), respectively. We will show
that each of these mappings is bounded uniformly for D € C,ps;.
The boundary integral operators (I + K —iS)~! and (I — K* —iTSZ)~!

uniformly bounded according to Theorem 2.1.13. The functions (2.1.44) and
(2.1.45) are considered as linear operators from C(9D) into C'(2). The first
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operator (2.1.44) has continuous kernel and thus depends continuously on 9D €
Copst With respect to the C*-norm. The second operator (2.1.45) is a sum and
composition of integral operators with continuous kernels and the operator Sy,
which due to Theorem 2.1.12 depends continuously on 0D. Thus (2.1.45) depends
continuously on 0D.

As in the proof of Theorem 2.1.13, we may use the compactness of the imbed-
ding C?*(B,,(0)) into C'*(B,.(0)) and the boundedness of continuous functions
on compact sets to obtain a uniform bound for scatterers D € C,pg. u

Our main idea and the ongoing theme will be the use of point-sources, dipoles
or multipoles for the investigation and solution of inverse scattering problems.
As indicated by the mixed reciprocity relations above, the far field pattern of
point-sources can be useful for reconstructions, since, up to a constant factor,
it is equal to the scattered field of a plane wave. This observation will lead us
to the point-source method in Section 5. For contributions to the questions of
uniqueness, stability and for the method of singular sources we will investigate
the scattered field of incident point-sources, dipoles or multipoles.

We now investigate the behavior of the scattered field for incident point-
sources. In the sound-soft case, for points x on the boundary 9D from the
boundary condition we have

O%(z,2) = —P(z,2), = € ID,
and thus
®°(x,2) = 00, z— .
This leads to the idea to use ®°(z, z) for reconstructions of the unknown boundary.
But from the viewpoint of the inverse problem, where the boundary 9D is not
known, we would like to replace the point x € D by something which is known.
This new function should not assume knowledge about the boundary, but lead to
the same singular behavior. In the following theorem a corresponding behavior
is found for
P (2, 2)
and we estimate the nature of the singularity.

By d(z, D) or d(Dy, Dy) we denote the Hausdorff distance
d(z,D) :=inf{|]z —y|, y € D} (2.1.46)

or
d(Dl,Dg) = 1Hf{|21 — ZQ|, 21 € Dl, 2o € DQ} (2147)

between 2z and the domain D or between the two domains D; and Ds, respectively.
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THEOREM 2.1.15 Consider the scattering of a point-source ®(-,2) by a sound-
soft or sound-hard scatterer D € Copsr. In IR? there exist constants T,¢ > 0, such
that the scattered field ®° satisfies the lower estimate

@S(z,z)‘ > c‘lnd(z,D)‘ (2.1.48)

in the strip 0 < d(z, D) < 7. With constants C, E > 0 we have the upper estimate

®*(z,2)| < C|Ind(z,D)| + E (2.1.49)

for all z € B\ D. In IR? the corresponding estimates are

C

*(2,2)] > FEwl (2.1.50)
and
®*(2,2)| < m. (2.1.51)

All estimates hold uniformly for domains D € Cgypg;.

Proof. Consider the sound-hard boundary condition. We will investigate the
behavior of ®* using the solution of the direct problem by means of boundary
integral equations.

We abbreviate the modified acoustic single- and double-layer potential (2.1.15)
by

e aq)(x7y) 2 m
o) = [ {2teetn) + G S50 | ast), o e oD
(2.1.52)
Then from Theorem 2.1.2 we obtain a representation
O(-
(-, 2) =2P(I — K' — iTS@)’la a(y Z), z € R™\ 0D, (2.1.53)

for the scattered field of point-sources.
For a point z € IR™\ D with d(z, D) sufficiently small we have the unique
representation z = z;, with

Zn = 20 + I/(Zg)h, 20 € oD

and h > 0.
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We use 2, to decompose

2P(I — K* — iTSS)‘nggijh)
718(1)(',2_}1)
ov(-)
8@(-,zh) 8<I>(-,z,h)
) o) }

= —2P(I — K* —iTS})

+2P(I — K* —iTS;) ! {

= (-, 2p) (2.1.54)

8<I>(-,zh) 8@(-,z_h)
() o) }

+2P(I — K* —iTS;) ! {

First, consider the term —®°(+, z_;) of (2.1.54). Since z_;, is in the interior of
the scatterer, we have

—®%(x,2_p) = ®(x,2_p), v € R™\D. (2.1.55)

In two dimensions ® has a logarithmic singularity, in three dimensions its singu-
larity is of first order.

To obtain the estimates of the theorem we will show that the singularity of
the second term of (2.1.54) is weaker than the singularity of the first term. To
this end, in the three-dimensional case m = 3 we establish that

2P(I — K* — iTS2) ! {aq;(y-gh) - a%('y’(%)_h)} (1)

< C|lnh| (2.1.56)

for all sufficiently small h > 0 with some constant C' independent of 0D. We
decompose

P(I-K*—iTS})' = P + P(I - K*—iTS5) "(K*+iTS3), (2.1.57)
where P, given by (2.1.52), is the sum
P = P + iPS; (2.1.58)

of a single-layer potential P, as defined in (1.2.53) and a term P,S? with a double-
layer potential P, given by (1.2.54). Abbreviating

0P(y,z,)  0P(y, z_p)
ov(y) ov(y)

Uy (y) := { } , y€ oD, helo,1], (2.1.59)
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we obtain
P(I— K* —iTS}) "W, = (PuWy) + PaSo(So®n) (2.1.60)
+ P(I— K" —iT83) (K" ¥)
+iP(I = K* —iT'S3) ™ (TS (So¥n)
Below we will derive the logarithmic bounds
(PW)(zn)] < clIn(h)],

(So W) ()| ¢ |In(h)|,z € D, (2.1.61)

<
(K*%)(x)\ < c|In(h)],z € 0D,

with some constant ¢ uniformly for D € C,5;. To keep the main line of reasoning,
here we first use (2.1.61) and finish the proof. We note that by

TSO — (T - TO)SO + T()S()
= (T-Ty)S + [(K3)* —1],
the operator T'Sy can be extended from C%*(9D) to C(0D) and is bounded in
C(0D) uniformly for all D € Cups. According to Theorems 2.1.8 and 2.1.13 the

operators
(I — K*—iTS;)™": C(0D) — C(0D),

TS, : C(dD) — C(dD),
Sy : C(dD) — C**(dD)

and
P, C’O’a(aD) — C(B \ﬁ)

are bounded uniformly for D € C,s. The single-layer
P, : C(0D) — C(B\ D)

is bounded uniformly for D € C,s. Using the properties of P, and Sy the same
is obtained for the operator

P:C(0D) — C(B\ D).

Then from the decomposition (2.1.60) using the bounds (2.1.61) we derive the
estimate (2.1.56). Finally, we combine (2.1.56), (2.1.55) and (2.1.54) to obtain
the statements (2.1.50) and (2.1.51) of the Theorem.

We now reduce (2.1.61) to the potential theoretic case k = 0 and estimate the
corresponding integrals explicitly. The reduction is possible, since the difference



2.1 Acoustic obstacle scattering. 55

®(z,y) — Po(z,y) and its normal derivative are continuous functions. Thus, to
estimate the singularity in (2.1.61), we can replace ® by ®,. We proceed in three
steps.

1. For ¥ in the case k = 0 we calculate

{3@0(31, z)  0B(y, zh)}

U (y)

ov(y) v (y)
_ vy m) )y - 20) (2.1.62)
ly — 2|3 ly — 2

—V(y)l/(z)h< Lo )

|?J - Zh|3 |y - Z—h|3

With the help of |v(y) - (y — 20)| < L|y — 2|? given in Lemma 2.1.10 the first two
termes of (2.1.62) can be estimated by

cly — zan|™" (2.1.63)
uniformly for scatterers D € Dy The last term of (2.1.62) can be decomposed

into
) v (s -

ly—zl> |y =zl
_ V(y)l/(z)h< 1 1 )

ly —znl Ty — 2

|y — 2n]?
N v(y) v(z) h ( 1 1 >
ly—znl -1y —z-nl \ly =zl |y — 2]
h 1 1
) V(Z)Q ( - ) . (2.1.64)
ly =zl \ly—2nl |y — 2l
Then with the help of (2.1.29) and
h < |y — Zih|

we derive the bound (2.1.63) also for the third term of (2.1.62).
2. The kernel ®(z,,y) with =, = = + nv(z), n € [0,h], of the single-layer
potential P; or the operator Sy can be estimated by

C

[P n] < 5
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for z,y € 0D and h > 0 sufficiently small. For the kernel %ﬁg) of K* we have

‘3q>(af,y)‘ . _c
ov(z) | = |z—y|

for x,y € 0D. Thus to prove (2.1.61) we need to estimate

1 1
ds(y 2.1.65
|8 e R ey “‘ (2.1.65)

for n € [0, h] and 0 < h < 7 with some sufficiently small parameter 7.
3. We decompose the domain of integration

/aD“'dS(y) = /BDDBR(@... ds(y) + /BD\BR(m)m ds(y) (2.1.66)

with R chosen sufficiently small. Let us first consider the second integral. It is
bounded by

1

il
— —ds(y)|.
R‘ dD\Br(wo) |y — Z+4| ( )‘

The weak singularity of |y — z45| ! is integrable with bounded integral. Thus the
second integral of (2.1.66) is bounded uniformly for D € C,ps; and = € OD.

For the first integral of (2.1.66) we use the special coordinate system with
origin xy, third axis given by v(z¢) = (0,0, 1) and 2y on the e;-axis. The tangent
plane 7}, in xy coincides with the e; —es-plane. The tangent plane in zy is denoted
by T,,. We consider only the case |z — zp| < 2R, since otherwise we may proceed
as above.

Let ¢ denote the projection of y onto T,,. Using the bound on the C*-norm
of the surface by some lines of computation we estimate

ly—zen] > c\/1g—2l? + B2, |y — 20| < 4R, (2.1.67)

with some positive constant ¢ uniformly for D € C,;. We now project 4 and z
onto the plane T},,. Let y and Z; be the projection of § and zy, respectively. With
the help of polar coordinates (r, ¢) in T,, we obtain the estimate

7= 20 > |7 %] (2.1.68)
\/7"2 — 2|zg — Zy|rcos(d) + |zo — Zp|?

and
ly =y > |§—m] = 7 (2.1.69)
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Thus with b := |z — Z| € [0,2R)] an estimate for (2.1.65) is given by a constant
C' times the integral

R 1
dr = —In(vVb2 +h2 —b
/0 Ny n( )

+1n (\/h? + (R = b)? + R —b).

We derive

< CO|lnh| (2.1.70)

1 1
/ ds(y)
on T — ol Ty =2l

for all n € [0, h] and sufficiently small A > 0 with a constant C' uniformly for
scatterers D € C,s. This completes the proof for the three-dimensional case.
For scattering in two dimensions m = 2 and in the sound-soft case the state-
ments can be proven analogously. To avoid repetitions we leave this part to the
reader. O

In the following Theorem we investigate the scattered fields ®; (z,z) for
scattering of multipoles by a sound-soft or sound-hard impenetrable scatterer.
We will use the results for the reconstruction of the shape of a scatterer, if the
physical properties of the scatterer are unknown.

THEOREM 2.1.16 We consider the scattering of a multipole @, 4(-, 2) by a sound-
soft or sound-hard scatterer D € Copsi. In a sufficiently small neighborhood
0 < d(z,D) < 7 of the boundary 0D let zy be defined by the unique represen-
tation z = zy + hv(zp).

There are constants T,¢ > 0, such that in the strip 0 < d(z,D) < 7 the
scattered field ®° (20) satisfies the lower estimate

W, —v
s —p—m+2
‘q)u,fu(zo)(zaz)‘ Z & ‘d(z, D)‘ (2].7].)
uniformly for D € Copss. For all z € B\ D we have the upper estimate
s —p—m+2
o) (25 Z)\ < C \d(z, D)\ (2.1.72)

with a constant C uniformly for D € Cups;-

Proof. For a proof we can go along the lines of the proof of Theorem 2.1.15. To
avoid repetitions we will only sketch the differences for the case of the sound-hard
scatterer. As in (2.1.54) we decompose into

f (2) = =@ i) (5 22n) (2.1.73)

ws—v(20) v

. _ 0P —u(z ( z ) 0P vz ( Z,h)
g 2\—1 w,—v(z0) "y ©h v (20)\ %
+2P(I — K* —iTS§) { () + () .




58 2. Direct scattering problems.

With the same arguments as in the proof of Theorem 2.1.15 the second term of
(2.1.73) can be estimated by

2P(I - K* —iTS}) ! {0%,5@(0))(-, ) (2.1.74)
]/ .
O 120 (-5 Z-1) | In Al
b < .
a0 | < C s

Then both estimates (2.1.71) and (2.1.72) are a consequence of (2.1.73) and
(2.1.74). 0



2.2 The inhomogeneous acoustic medium.

We now consider the scattering of time harmonic acoustic waves u'(x)e™*! by
a penetrable inhomogeneous scatterer. The inhomogeneity of the scatterer is
described by a refractive index

2
Co

c*(x)

n(zx) := +io(x),

where c¢(z) is the sound speed at the point © € IR™, ¢y denotes the sound speed
of a homogeneous background medium and o > 0 is a function which models
the influence of absorption. We assume the scatterer to be bounded, i.e. we have
n(z) = 1 for z in the open exterior of a bounded domain D. The refractive
index may have jumps on the boundary dD of D. Let the boundary 0D of the
inhomogeneity be of class C? and n € C%*(D). As described in (1.2.72) we use
the letter D for the full inhomogeneous scatterer and y :=1 — n.

DEFINITION 2.2.1 Given an incident field u' with wave number k = w/cy and an
inhomogeneous penetrable scatterer D, the direct acoustic inhomogeneous medium
scattering problem is to find a radiating scattered field

u® € C*(IR™\ 0D) N C*(IR™),
such that the total field u = u® 4+ u® satisfies
Au+ k*n(z)u =0 (2.2.1)
in IR™\ OD.

Since n(z) = 1 for x € IR™ \ D, in the open exterior of D the scattered field
is a radiating solution of the Helmholtz equation (1.1.1). Thus Green’s formula
(2.1.7) and the asymptotic behavior (2.1.8) remain valid for scattering from an
inhomogeneous medium, i.e. the scattered field u® has a far field pattern u>.

To solve the scattering problem by means of integral equations we introduce
the volume potential

(Ve)a) = [ @(e.p)ely) dy, @€ R, (222)

defined on a bounded domain D C IR™. For a proof of the following uniqueness
and existence result for the inhomogeneous medium scattering problem we refer
to Theorems 8.3 and 8.7 of [6].
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THEOREM 2.2.2 The inhomogeneous medium Scattering problem has a unique
solution and the solution v depends continuously on the incident field u* with re-
spect to the norm in C(D). In particular, the scattered field u® can be represented
as a volume potential

w(@) == [ e(w,xwuly) dy, =€ R, (2:2.3)
where the total field u is a solution of the Lippmann-Schwinger equation
(I + &>V Y)u = u'". (2.2.4)

The integral operator I + k*V x is continuously invertible in C'(D). O

Recall that for incident plane waves u'(z,d) = ¢**? we denote the scattered
field by u*(-,d) and its far field pattern by u>(-, d). If the incident field is given
by a point-source ®(-, z) with source-point z € IR™\ D, for the scattered field we
write ®°(-, z) and for its far field pattern ®>(-, z). As for scattering by obstacles
the symmetry between source and receiver is expressed by far field and mixed
reciprocity relations.

THEOREM 2.2.3 (Far field reciprocity relation.) The far field patterns for
scattering of plane waves by an inhomogeneous medium D satisfy

u® (@, d) = u®(—d, &), #,d € Q. (2.2.5)

Proof. We refer to [6], Theorem 8.8. 0

THEOREM 2.2.4 (Mixed reciprocity relation.) For acoustic scattering of
plane waves u'(-,d), d € Q and point-sources ®(-, z), z € IR™\ D from an inho-
mogeneous medium D we have

O®(,2) = Y u’(z,—2), 2€ R™\ D, & €, (2.2.6)
where the constant v, is defined in (2.1.18).
Proof. By Green’s theorem (2.1.6) we have that
Ou’(y,d)  09*(y,2)

/M) (@s(y,z) o) o) us(y,d))ds(y) =0, z€ R™"\ D, d €.
(2.2.7)
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Green’s formula (2.1.7) yields the representation

aefini-y oPs o
o (4 — S _ —IKZ-Y A~
(7, 2) = Ym /8D (<I> (y, 2) ) 5 (y,2)e )ds(y), zeQ (2.238)

with 7, given by (2.1.18). Adding 7,, times (2.2.7) with d replaced by —2 to
equation (2.2.8) we obtain

ou(y,—z) 0P°

V(2 = [ (¥ 0:2) 75 - G e —)dsty) (229

for 2 € IR™\ D and & € Q2. We can now use Green’s second theorem (2.1.6), the
differential equation (2.2.1) and the representation (2.2.3) of the scattered field
to derive (2.2.6). O

We now define an appropriate class of media for further investigation. For
the interior D of the support of the inhomogeneity we will have to demand the
same restrictions as for obstacle scattering. To obtain stability estimates for the
support of the function y = 1 — n we will also need to uniformly specify the
behavior of n at the boundary 0D and to assume uniform smoothness of n or ¥,
respectively, on D.

DEFINITION 2.2.5 Given positive constants R., ro, ag, Co, Be, Chn, Cmin, Cmaz,
po € Ny, I =2 and o € [0,1] we define the class Cp, of inhomogeneous medium
scatterers D = (D, n) by the following assumptions.

1. The domain D is of class A(Re, o, ag,l, v, Co, (Be)-
2. The refractive index n is in C*%(D) with
|[n]|cuoa(py < Ch. (2.2.10)
If po > 1, the condition
n € C*~Y(Bg,(0))
15 satisfied.

3. At the boundary 0D the function x =1 —n has a jump in its po-th deriva-
tives uniformly for D € C,, in the sense that

3#0 X

0< Cmin S |aljl‘0

(z)] < ¢mass T € D. (2.2.11)
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We will now use the assumptions to derive uniform bounds for the solution of
the scattering problem.

THEOREM 2.2.6 For scatterers D € C,, the norms

|z +=2v0 7|

of the integral operators (I + k*V x)™" are uniformly bounded by some constant c.
Proof. We first note that due to [13], Section II, §13, the operator
Vx:C(D)— CY(B)

is well defined. Thus Vx : C(B) — C(B) is compact and by Riesz’ theory the
injectivity of I + k?V'y yields its invertibility and the boundedness of the inverse
operator. The injectivity of I + k?*Vx in C(B) is proven in [6], Theorem 8.7.
The operator Vx depends continuously on the function xy € L*°(B), since the
singularity of @ is integrable and we can estimate

Vxellew = || [ 2@ yxwiew) .,
< cllxlle=mllellcm (2.2.12)
with some constant c. Then also the operator (I + 2V x) ! depends continuously
on x for all x € L*°(B) for which I + x*Vx is invertible. We will show that the

set
M :={x, n=1- xis refractive index of D € C,,}

is relatively compact in L>°(B). Let (D;)jew € Cn be a sequence of scatterers
and n; the refractive index of D;. Then x; =1 —n; € M, j € IN. With the
parametrizations 1, constructed in part 5 of Lemma 1.2.2 we have

hse

coni ) S (2.2.13)
forall j € IN and [ = 1, ..., Ly with some constant ¢ depending only on C,,. We
use the compactness of the imbedding of C%%(Z,, ,,) into C(Z,, 4,) to successively
construct convergent subsequences of (x; o ¢;)jew for [ = 1,..., Ly. We obtain
a subsequence (Dj, )rew of (D;)jenw, such that (x;, )rew is convergent towards a
function y € L*(B), i.e. we have shown that the set M C L>(B) is relatively
compact.

From the construction of the convergent subsequence above we derive that
each element x of M C L*®(B) is in C(D) with a domain D C B of class C"
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and y = 0 in the exterior of D. We have shown above that for such functions the
operator I 4 x*Vx is injective and thus (I + #°Vx)~" is well defined. Since on
the compact set M C L*°(B) the operator

(I +K*Vx)™' € BL(C(B),C(B))

depends continuously on Y, it is bounded uniformly for D € C,, and the proof is
complete. 0

THEOREM 2.2.7 The mapping of the incident field u* € C(D) onto the far field
pattern u™ € CY(Q) of the scattered field u® for scattering from an inhomogeneous
medium is bounded by a constant co, uniformly for D € C,, .

Proof. We use the representation (2.2.3) for the scattered field. Passing to
the limit || — oo a representation of the far field pattern of u* is given by

u(@) = —ym [ eI ()uy) ds(y), @€ Q (22.14)
with u = (I + x*Vy) 1u’. By
—IKT-Y d
I /Be X)e(y) ds(y)| @

< || [ (=irg)e = ds(y)

(2.2.15)

ey Plle) [xllzes)

the integral operator (2.2.14) from C(B) into C'(Q) depends continuously on
X € L*>®(B). We can use the compactness arguments of Theorem 2.2.6 to derive
its boundedness uniformly for scatterers D € C,,. From the bound for (2.2.14)
and the uniform bound for the operators (I + k*Vx)~! given in Theorem 2.2.6
we obtain the statement of the theorem. 0

We will also need the mapping properties of (I + xk?Vx) ! in L?*(B) and of
the potential V'x from L?(B) into C'(B).

THEOREM 2.2.8 For scatterers D € C,, the operator I + k?V'x is invertible in
L*(B). The norms of

(I +x*VY)™": L*(B) — L*(B) (2.2.16)

and
Vx: L*(B) — C(B) (2.2.17)

are bounded uniformly for D € C,, by some constant c.
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Proof. As shown in [6], Theorem 8.2, the operator V defines a bounded
operator from L?(B) into H?(B). Thus also Vx is bounded from L?(B) into
H?(B) and it is compact in L?*(B). By the Riesz Theory for compact operators,
injectivity of I + k?Vy in L?*(B) yields its invertibility. To show injectivity let
us assume u + &2V xu = 0 for u € L?(B). Then we have u = —x*V yu € H*(B).
Since H%(B) is a subset of C(B) we obtain u = 0 from the injectivity of I +x%*Vy
in C(B).

To get uniform bounds for the norms with the help of the Cauchy Schwarz
inequality we first derive the estimate

Vxellem = H/ T, Y)X dyH
< <sup |®(z, )| dy> / Ix(y)p(y)|* dy
< Xl ez (2.2.18)

with some constant ¢. Thus Vy : L?(B) — C(B) depends continuously on y and
we can proceed as in the proof of Theorem 2.2.6 to obtain the bounds uniformly
for D € C,,. O

In the case of obstacle scattering two different ideas lead to the investigation
of point-sources. First, with the help of the mixed reciprocity relation 2.1.4 we
want to reconstruct the scattered field «® in a constructive way from its far field
pattern u*°. Then we can use u* to detect unknown scatterers using the boundary
condition for the total field (see the point-source method in Section 5). Second,
in Theorem 2.1.15 we obtained a characterization of the unknown scatterer by
the behavior of the scattered field of point-sources ®*(z, z), which shall lead us
to the method of singular sources for reconstructions in Section 6.

In the case of scattering by an inhomogeneous medium the situation is differ-
ent. First, we will have to observe that the reconstruction of the scattered field
u® in the exterior of the unknown scatterer does not provide a straightforward
possibility to detect the unknown scattering domain D or the size of the refrac-
tive index n. Second, we will show that the scattered field ®°(z, z) is bounded
for z € IR™\ D. Thus the behavior of ®° does not characterize the unknown
boundary.

LEMMA 2.2.9 For scattering of a point-source ®(-,z) by an inhomogeneous
medium we have

@*(x,2)| < ¢, 7€ R™,z€ R™\D, (2.2.19)

with a constant ¢ uniformly for scatterers D € C,,
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Proof. We use the representation (2.2.3) of the solution to the scattering
problem to derive the decomposition

P5(-,2) = —kVx(+K&VY)T'O(2) (2.2.20)
= —HZVX@(-,Z) + /i4VX(T+/~i2Vx)’1VXd>(-,z).

Estimating the singularity of the kernel of the volume potential we derive that
|VXx®(:, 2)||c(p) is bounded uniformly for z € IR™\ D and D € C,. Now the
statement of the theorem follows with the help of Theorem 2.2.6. 0O

For scattering by inhomogeneous media to obtain a singular behavior for the
scattered field of an incident singular source when the source point tends to the
boundary of the scatterer we have to work with multipoles of higher order. With
Ym given by (2.1.18) for the multipole of order u € INy we use the notation

Ve P (klx — y[)e”, m=2,
Dpglz,y) = (2.2.21)
yshi) (|2 — y|) Pu(cos(0)), m =3,

where 0 is the angle between x —y and ¢. Point-sources ® are the multipoles @,
of order zero. If the incident field is ®,4(, z), we denote the scattered field by
@2 (-, z) and its far field pattern by @7 (-, 2).

We first calculate some integrals, which are needed for the proof of the fol-
lowing Lemma 2.2.11.

LEMMA 2.2.10 For p € IN we have

/7;//22 cost(¢) cos((+2)¢) dp = 0, (2.2.22)
/2 m

/M2 In(cos(¢)) cos”(¢) cos((p + 2)¢) dp = s (2.2.23)
/2 i ) B 1

/g COs(6) 1 (cos(6) sin(6) dB = (v (2.2.24)

Proof.: We first treat the integral (2.2.22). By straightforward differentiation
we verify

cos”(0) cos((pn+2)0) do =

2.2.25
—/2 p+1 )2 ( )

/wz cost+1(0) sin((u + 1)0)]™?
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Since cos(+7/2) = 0, we obtain (2.2.22). By partial integration we calculate

[ nlcos(a) cos(6) cosl(e+210) o

cost (@) sin((p + 1)¢)]7r/2
w1 -m/2
/2 sin(¢p) costTH (@) sin((u+ 1)¢)

* —r/2 cos(o) p+1 d¢

1 /2 .
= 1 [, m(0) sin((n+1)0) cost(6) do»

1

IR /0% sin(¢) sin((u+1)¢) cos”(¢) do. (2.2.26)

With the help of the identity

= [In(cos(9))

sin(9) sin((ys-+1)6) = 5 (cos(ug) — cos(+2)9), (2.2.27)
the expansion
cost ¢ = 2% (ei‘z’ + e’i‘z’)#

1

T ut kzu:[] < k > cos(k9)

1
= o cos(pp) + lower terms, (2.2.28)

the integral
2w
/ cos*(up)dgp = m, p € IN, (2.2.29)
0

and the orthogonality of cos(k¢) and cos(j¢) for k # j from (2.2.26) we derive
(2.2.23). With the substitution cos(f) = = we get

/OW/2 cos”(0) P,41(cos(#)) sin(f) df = /01 2" P,y () dx, (2.2.30)

where the Legendre polynomial P, (z) is given by formula (1.2.26). By induction
we calculate

1 b1 ) i
/oxudx”“{(x —1# e (2.2.31)
_ . M! 1 _,du+17j N n
- G [ e
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1 <j < p. For j = p this yields

/01 ' P, (z) do = = /01 4 {(x2 - 1)‘”’1} dx

(u+1)20+1 Jo dx
_ ! (2.2.32)
~ (p1)2e o
and the proof is complete. 0
LEMMA 2.2.11 With ugy given by the definition of C,, and
1= { ho+1 m=3, (2.2.33)
we obtain the estimate
Injz—z|| + E m=2
‘VX(I)LMI("Z)('T)‘ < C { ! I m =3 (2.2.34)

forallz € B,z € B\ D, v # 2, and q € Q with constants C, E uniformly for
scatterers D € Cp,.

There are constants T,¢ > 0, such that in a strip 0 < d(z,D) < 7 for the
special choice q(2) := —v(29) with zy defined by the unique representation

z =2y +v(%)h
the lower estimate
VX, () (- 2)(2)| > ¢ |Ind(z,D)| (2.2.35)
holds uniformly for D € C,,. For z € B\ D we have the upper estimate
Vx®ug(,2)(2)| < C|nd(z,D)| + B (2.2.36)
with constants C, E uniformly for scatterers D € C,,.

Proof. We first investigate the behavior of x near a point zy € 0D. From
the continuity of the derivatives x() for |y| < po on B we obtain (" (z) = 0
for |y| < wo. Thus the tangential derivatives of x up to the order py vanish in
2o. Then in a neighborhood Bg(z) N D of z; in D, 0 < R < r, < 1, Taylor’s

expansion of x € C**(D) assumes the form

(_1)M0 auoX
! Ovko

x(y) = (20)(rcos(0))" + O (7"”““) (2.2.37)
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uniformly for D € C,, with

ri=|y — 2|, cos(f):=—v(z)-(y—20)/r (2.2.38)
and 5
10
X
Cmin S 8yu0 (ZU) S Crmaz-

To prove (2.2.35) we split the domain of integration into D \ Bg(z) and
D N Bgr(z). The integral

/D\BR(Z) ©(2,y)X (1) Ppg(y, 2) dy. (2.2.39)

has a bounded integrand and is bounded uniformly for D € C,,. To treat the
integral on the ball Br(zy) we define

(_1)M0 auox
fo!  Ovko

Xo(y) := (20) (7 cos(8))H, (2.2.40)

where r and 6 are given by (2.2.38), and decompose

d P d

/DnBR(Z) (2, y)x(y) H;‘I(ya z)dy

i ' ? 2.2.41
/DmBR(z) (2, 4)x0(y) u,q(y, 2)dy ( )

+ (2, ) (X (1) = x0(1)) @y, 2)dy.

DﬂBR(z)

We may use (2.2.37), the definition (2.2.33) of 1 and the singularity of the mul-
tipoles @, , as given by (1.2.32) and (1.2.45) to estimate the second integral on
the right-hand side of (2.2.41) by

(2.2.42)

/DﬁBR(z) ® (2, 9) (x(¥) = X0(1) ) Pug(y, 2)dy

l Q
LTI,
(6

R
/ |In(r)|r*~tdr < R®
h

«

IN
o

R 1
/ re~tdr < —RY, m =3,
h Q

with some constant ¢, i.e. for 2 € B\ D and ¢ € ) the integral (2.2.42) is bounded
by a constant uniformly for D € C,,.
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We now investigate the first integral on the right-hand side of (2.2.41). In a
neighborhood of a point 2y € D a domain D with C?-boundary is close to a half
space

H(z) :={y € R™, (y— 20) - ¥(20) < 0}.

To estimate the difference of the integral

/ (2, y)x0(Y) Pug(y, 2) dy (2.2.43)
DﬂBR(Z)

to the corresponding integral where D is replaced by the half-space H(z), we
define the set

A= (DN Bp(2))\ H(z0) U (H(z0) N Br(2))\ D.

Using the bound on the second derivatives of the parametrizations of 0D by
straightforward calculations we obtain the bound

‘/A@(Z,Q)XO(?J)@M,q(y,z) dy‘ < e (2.2.44)

with some constant ¢ uniformly for 2 € B\ D and D € C,,. Thus a lower bound
for (2.2.43) is provided by

/ (2, 9)X0(¥) Py, 2) dy‘ (2.2.45)
DﬂBR(Z)

>

(2, y)x0(y) Puyg(y, 2)

— C

/H(zo)ﬂBR(z)

with ¢ given by (2.2.44). For ¢ = —v(z) we now explicitly calculate the leading
term of (2.2.45). In two dimensions we derive

/H(zo)ﬁBR(Z) (2 )Xo (y)q)u,q (y,2)
—° /i /i;’ii In(r) (r cos(y)))"** v cos((uo + 2)¥)) rer dw‘ + 0(1)
%o
B g /_% [ In*(R) — In d(z, D) — In® cos(4)) (2.2.46)

+2Ind(z, D) lncos(@/))} cost (1) cos((po + 2)¢) d@/}‘ + O(1)
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with vy defined by h = Rcos(t)y) and some constant ¢. We can now use Lemma
2.2.10 to calculate the integrals in (2.2.46) and derive

/ Bz, y)x0(y)®uy(y, 2)| > ¢ |Ind(z, D) (2.2.47)
H(20)NBg(z)

for d(z, D) sufficiently small with some constant ¢ uniformly for D € C,,. From
(2.2.39), (2.2.42), (2.2.45) and (2.2.47) we obtain (2.2.35).

The estimate (2.2.36) can be proven analogously to (2.2.35), where now an
upper estimate for (2.2.43) has to be calculated. Since basically all arguments
are the same as above, we leave this part to the reader.

In three dimensions for (2.2.45) we calculate

e Pualth 2 2.2.48
/H(zO)nBR(z) (2, ¥)X0(Y) Ppug (¥ 2) ( )
fo R 2T 1 o | 2
=c |/ /i(z,p)/o ; (rcos(f))H0 r7Ho=2P, 1 1(cos(8)) sin(#) r“dy dr db
cos(f)
+ O(1)

0
= 27c / 0 [ln(R) —1In d(z, D) +1n COS(H):|

0

cos"®(8) P,,+1(cos()) sin(f) do| + O(1)

with 6y defined by h = Rcos(fy) and some constant ¢. We use equation (2.2.24)
of Lemma 2.2.10 and proceed as in the two-dimensional case.

We now prove the upper estimates (2.2.34). For the function

U(y,2) = x(4)Puq(y, 2)

we have o
U(y,2)| < cly—21% yeB,ze B\D, x#y (2.2.49)

with some constant ¢ uniformly for D € C,,,. We split the domain of integration
into three parts. For x € IR™ \ {z} we define R := |z — 2|/2 and use the sets
D, := DN Bg(x), Dy := D N Bg(z) and D3 := D \ (Dy; U Dy). We first treat
the three-dimensional case m = 3. For the following calculations we use C' as a
generic constant, i.e. C' may vary from line to line. The integral over D; can be
estimated by

IN

R
C R? d
/0 rar
C (2.2.50)

‘/D Oz, y)¥(y, 2) dy‘

IN
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uniformly for D € C,,. To estimate the integral over Dy we use the decomposition

[ ewwrwaa| < |[ (@) - ow@2) vz dy
+ ‘/[)2 O (z, 2)U(y, 2) dy‘ : (2.2.51)

From the mean value theorem we derive

|q)(xay) - q)(xaz)| < mw - Z|7 yE DZ
and estimate (2.2.51) by
R R
‘/DQ(I)(x,y)\If(y,z) dy‘ < C [ﬁ/o rdr + —/0 dr]
< C. (2.2.52)
The integral over Dj can be estimated by
C 1
o v dyl < — | ——d
[ ownvwaa) < G f s
C
< = 2.2.53
<9 (22.53)

with some constant C'. Note that the last estimate is not sharp, but sufficient for
our purposes. Now, from (2.2.50), (2.2.52) and (2.2.53) we obtain the estimate
(2.2.34) for the case m = 3.

In principle in two dimensions we can proceed analogously. A modification is
necessary where W(-, z) is considered, since for m = 2 the function |y|2 is not
integrable. To obtain the estimate (2.2.51) we need to proceed as in (2.2.46) and
estimate

\/ PBug(y, 2) dy | < C. (2.2.54)

Since all other parts of the proof are analogous to m = 3, to avoid repetitions we

leave these parts to the reader. -

We are now prepared to prove estimates for the behavior of the scattered fields
of multipoles.
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THEOREM 2.2.12 With u given by (2.2.33) consider the scattering of a multipole
®, , from an inhomogeneous medium scatterer D € C,,. There are constants
7,¢ > 0, such that in the strip 0 < d(z, D) < 7 the scattered field ®;, =~ satisfies
the lower estimate

@5y (2:2)] > ¢ |Ind(z, D) (2.2.55)
uniformly for scatterers D € Cp,, where zy € 0D 1is defined by the unique repre-
sentation z = zy + hv(z). With constants C, E for all z € B\ D and q € Q we
have the upper estimate

@5,(2,2)| < C|Ind(z,D)| + E (2.2.56)
uniformly for D € C,,.

Proof. As in (2.2.20) we decompose

@ (n2) = —RVxDu(,2) (2.2.57)
+ &MV x (I + I€2VX)_1VX(I>H,(](-, z).

We have shown in Lemma 2.2.11 that the function Vx®,,(-,z) is bounded in
L?*(B) uniformly for D € C,,. From Theorem 2.2.8 we know that (I + 2V x) ! is
bounded in L?(B) and that V' is bounded from L?*(B) into C'(B) uniformly for
D € C,,. Thus

V(I + &2VX) TV x®,,(, 2)
is bounded for z € B\ D by some constant ¢ uniformly for D € C,,.

Since the second term of (2.2.57) is bounded, the statements of Theorem 2.2.12
are a consequence of the estimates (2.2.35) and (2.2.36) of Lemma 2.2.11 for the

function (VX(I)n,q(-, z)) (2). 0
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We now switch from the Helmholtz equation to Maxwell’s equations to investigate
the scattering of electromagnetic waves. As in the case of acoustic scattering we
separately study the cases of impenetrable and penetrable scatterers. Here we
start with the problem of scattering by a perfectly conducting obstacle D in IR3.
We assume the boundary 0D of the support of the scatterer D to be of class
C%%. A time-harmonic incident field E?, H* is a solution to the reduced Mazwell
equations

curl E —ikH =0, curl H+ikE =0 (2.3.1)

where the wave number k is a constant given by

K? = (6 + E) pw? (2.3.2)
w

with the electric permittivity €, the magnetic permeability u, the electric con-
ductivity o, the frequency w of the time-harmonic wave and the sign of x chosen
such that Imx > 0.

DEFINITION 2.3.1 Given an incident electromagnetic field E*, H' and a domain
D, the direct electromagnetic scattering problem with perfect conductor bound-
ary condition s to find a scattered electromagnetic field E*, H® which solves the
reduced Mazwell equations (2.5.1) in IR*\ D and satisfies the Silver-Miiller radi-
ation condition

lim(Exz+rH) = 0, r=]|z|, (2.3.3)

r—00

where the limit is assumed to hold uniformly in oll directions x/|z|, such that the
total field _ _
E=E+E, H=H+H (2.3.4)

satisfies the perfect conductor boundary condition
vx E =0 ondD. (2.3.5)

A solution of the reduced Mazwell equations in the exterior of some ball B which
satisfies (2.5.3) is called radiating.

An important tool for the treatment of the direct and inverse scattering prob-
lems will be again Green’s first and second theorem and a version of Green’s
formula for electromagnetic waves. For a radiating solution

E,H e C'(IR*\ D)NC(IR*\ D)
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to Maxwell’s equations we have the Stratton-Chu formulas

E(z) = Curl/ y)®(z,y) ds(y)
(2.36)
— %curl curl /BD v(y) x H(y)®(z,y) ds(y), =€ R*\D,
and
H(z) = Curl/ (y)®(z,y) ds(y)
O (23.7)
+ Rcurl curl /aD v(y) x E(y)®(z,y) ds(y), =€ R*\D.

Every radiating solution F, H to the Maxwell equations has the asymptotic form

By = {Ew(;e)+o<1>}, 2] = oo

H (2.3.8)

H = {HOO(:%)+O<| |>} 2] = oo

]

uniformly for all directions & = z:/|x|. The vector fields E* and H* are defined
on the unit sphere 2 and known as the electric and magnetic far field pattern,
respectively. They satisfy

H*=vx E* andv-E* =v-H>=0. (2.3.9)

Solutions F, H to Maxwells equations are divergence free and satisfy the vector
Helmholtz equation

AE+k*E =0 and AH+rx*H =0. (2.3.10)

Passing to the far fields in (2.3.6) and (2.3.7) we obtain

E>®(x) = ik curl / )e~ Y ds(y)
A _ (23.11)
- ;curl curl ) X H( Je Y ds(y), x € R*\ D,
and
H>(z) = ik curl / e Y ds(y)
(2.3.12)

+ Zeurl curl / ( ) X E( )e Y ds(y), x € IR*\ D.
i oD
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As for acoustic scattering we will use integral equations to solve the direct
scattering problem and study the properties of the scattered fields. With the
fundamental solution ®(z,y) of the Helmholtz equation we use the magnetic
dipole operator

(Ma)(x) =2 - v(z) x curl , {a(y)®(x,y)} ds(y), = € 0D (2.3.13)

and the electric dipole operator

(Nb)(x) := 2v(zx) x curl curl v(y) x bly) ®(z,y) ds(y), (2.3.14)

oD

x € 0D. Further, we define the projection operator P by
(Pb)(z) = (v(z) x b(x)) x v(z), = € OD. (2.3.15)

THEOREM 2.3.2 The direct electromagnetic scattering problem with perfect con-
ductor boundary condition has a unique solution and the solution depends con-
tinuously on the incident field in the sense that the mapping of the boundary data
v x E' onto the scattered fields is continuous from

T)*(0D) := {a € C®*(dD), Div a € C**(9D),v -a = 0} (2.3.16)
into C%*(IR*\ D) x C"*(IR*\ D).
In particular, the combined magnetic and electric dipole potential
(Pga)(x) = curl /BD a(y)®(z,y)ds(y)

+ ¢ curl curl - v(y) x (S3a)(y)®(z,y)ds(y), (2.3.17)

1
(Pga)(z) = %curl E*(x), x € 0D,

with density a € To**(dD) and Sy defined as in (2.1.15) solves the electromagnetic
scattering problem provided the density a solves the integral equation

a+ Ma+ i NPSga = —2v x E". (2.3.18)
The inverse operator (I + M 4+ iNPS2)™" exists and is bounded in Ty*(0D).

Proof. We refer to Theorem 6.18 and 6.19 of [6]. 0
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For the electromagnetic scattering problems we will proceed along the lines
of the acoustic problems. We first prove reciprocity relations; i.e. we show that
for electromagnetic scattering the role of source and receiver can be exchanged.

In the following D is a perfect conductor. Let ¢ € {2 be a constant vector. The
electric field of incident plane waves with polarization ¢ and direction of incidence
d is given by

E;;l(x, d,q) =ir(d x q) x d ei’”d, ;l(x, d,q) = ird x q e***4, (2.3.19)

The corresponding scattered fields and far field patterns are Ej;, H;
respectively.
First we formulate reciprocity for the far field patterns.

H? and E5p, H

pl > *pl>

THEOREM 2.3.3 (Far field reciprocity relation.) For scattering of electro-
magnetic plane waves by a perfect conductor we have the reciprocity relation

q-Ey(&,d,p)=p- Ey(—d,—,q) (2.3.20)
for all z,d,p,q € €.
Proof. See [6], Theorem 6.28. 0

To obtain a reciprocity relation if either the source or the receiver is in the near
field, we consider the electromagnetic field of an electric dipole with polarization
p, which is given by

: 1
By (x,2,p) = — curl ,curl y(p(I)(a:, z)), ( |
2.3.21

H}y(x,2,p) = curl y(pq)(x, z))
for x # z. We denote the corresponding scattered field by
esdp('a Zap)a Hs(ip(-a Zap)a

its far field pattern by

E:z):i)p('a Zap)a Hg:ijp('a Zap)
For the total field, i.e. the sum of incident and scattered field, we use

Eedp(-a Zap)a Hedp('a Zap)
The total field for plane waves is denoted by

Epl(-; d, q), le(., d, q)
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THEOREM 2.3.4 (Mixed electromagnetic reciprocity.) For scattering by a
perfect conductor we have

q- Egy(#,2,p) =vp- Epy(z,—7,q) (2.3.22)
fori€Q, 2€ RM\ D and p,q € Q, where v = ﬁ.

Proof. We proceed in two steps. First, from Green’s Vector Theorem for
electromagnetic plane waves we derive the equation

0 = curl [ w(y)x By, —i,q)®(z,y)ds(y) (2.3.23)
oD
1 i ; 3\ T
—%Curl curl - v(y) x Hy(y,—2,q¢)®(z,y)ds(y), z€ R\ D.

We add (2.3.23) to the representation formula (Stratton-Chu formula)

Bz, —2,q) = curl - v(y) x Ey(y, —%,q)®(z,y)ds(y) (2.3.24)
1 \ )
—ECUI'I curl oD l/(y) X le(ya -7, q)(I)(Z, y)dS(y),

z € IR?\ D, and calculate

Ey(z,—%,q) = curl - v(y) x Eu(y, —2,q)® (2, y)ds(y) (2.3.25)

1 N
—%curl curl - v(y) x Hy(y, —2,q)®(z,y)ds(y)

1 .
= —%curl curl - v(y) X Hy(y, —2,q)®(z,y)ds(y),

z € IR?\ D, where for the last equality we used the boundary condition for a
perfect conductor. By elementary calculations we may verify the equality

p - curl yeurl ,(a(y)®@(y, 2)) = aly) - curl ,curl ,(p®(y, 2)). (2.3.26)

Using (2.3.26) we derive from (2.3.25)

p- E;l(za —.'i',Q) = /(9D V(y) X le(ya _i‘7Q) ) Egdp(yazap) dS(y),

= - aDV(y)XEidp(y,z,p)-sz(y,—:ﬁ,q) ds(y) (2.3.27)

for 2 € IR*\ D and p, q € .
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Second, from the Stratton-Chu formula (2.3.11) and (2.3.12) for far field pat-
terns and the definition of the electromagnetic plane waves we get

0-E@.zp) = v [ {v) x Biyly.zp) - Hyly,~d.0)  (23.28)
+ l/(y) X Hesdp(ya Zap) ' E;Jl(ya _"i.a q)} dS(y)

for # € Q and z € IR?\ D. Analogously to (2.3.23) we derive the formula

0 = K /(9D {l/(y) X E;dp(ya Zap) ’ Hgl(ya _jaq) (2329)
+ v(y) X Hiyy(y, 2,p) - Ey(y, —i,q) } ds(y)

from Green’s vector formula and the Maxwell equations applied to the scattered
electromagnetic fields. We multiply (2.3.29) by 7/ix and add it to (2.3.28) to
obtain

¢ Bep(2,2,p) = 7/3]3 {v(v) % Biyy(y, 2,p) - Huly, —i,9)

+u(y) X Hiyy(y, 2,p) - By, —i,9) } ds(y)
= 7 oD V(y) X Eesdp(ya Zap) ' le(ya _ja q)dS(y) (2330)

for z € IR*\ D and p, q € ), where we used the boundary condition for the total
field Ey(., —%,q).
Now, (2.3.27) and (2.3.30) and the boundary condition for E,4(., z,p) yield

the statement of the theorem. 0

We now discuss appropriate assumptions on the boundary of a perfectly con-
ducting scatterer D. For the electromagnetic scattering problems we will need
slightly more regularity than for the acoustic problems, since we need to work
with the mapping properties of M and N and S, in appropriate Holder spaces
on the boundary 0D of the domain D.

DEFINITION 2.3.5 Given positive constants R, rq, ag, Co, Be, | = 2 and a € (0, 1]
we define the class

Cpc = Cpc(Rea To, Ag, l, a, C(), ﬁe)

of impenetrable perfectly conducting scatterers D as the set of perfect conductors
with scattering domain D € A(R., 1o, ag,l, at, Co, Be).
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Clearly, for electromagnetic scatterers of class C,. the statements of Lemmas
1.2.3 and 1.2.2 remain true. Instead of Lemma 2.1.7 we need the following prop-
erty.

LEMMA 2.3.6 Given a sequence (D;)jen of scatterers D;j € Cpe and 0 < o' < a,
there is a subsequence (Dj,)kew of (D;)jem, for which the sequence of scattering
domains (D;, )xenw converges in the C** -norm to a domain D C B.

Proof. The proof is analogous to the proof of Lemma 2.1.7, where we now use
the compactness of the imbedding of C%*(B,,(0)) into C%*'(B,,(0)).

We need to collect some of the well-known mapping properties of the operators
M and N to use results of [6]. Let C'T(0D) be the space of continuous tangential
vector fields on the boundary 0D of the scatterer D. CT™*(0D) are the tangential
vector fields of C™*(@D) for n € IN,. The space Ty *(0D) has been defined in
(2.3.16). We also need the space

T%*(9D) := {b € CT"(dD),v x b € Tf’a(aD)}. (2.3.31)
For a more detailed study we refer to [6]

THEOREM 2.3.7 The operator M is bounded from CT(0D) into CT**(OD),
CT"(dD) into CTY*(dD) and Ty(dD) into TyY*(dD). The operator N is
bounded from T%*(dD) into Ty"*(dD).

Proof. The first statement for M is given by Theorem 3.32 of [5], the second
by Theorem 3.3 of [34], the third by Theorem 6.16 of [6]. The mapping properties

of N are proven in Theorem 6.17 of [6].
|

Since the kernel of N has a strongly singular part, for M + iNPS? it is
more difficult to obtain continuity statements with respect to the boundary of
the domain than for the weakly singular acoustic potential operators S, K, K* or
T — Ty. In the following we use the results of [58] on the Fréchet differentiability
of the operators with respect to the boundary of the domain, which imply the
continuous dependence.
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THEOREM 2.3.8 For each 0 < o < 1 the operators

Sy : CT(0D) — C**(dD),
So: C"™(0D) — C**(dD)
M : CT(0D) — CT"*(0D)

depend continuously on the boundary 0D of the scatterer D with respect to the
C?—norm of OD. The operator

N: C"*(0D) — CT>*(0D)

depends continuously on the boundary 0D of the scatterer D with respect to the
C?**—norm of OD.

Proof. The proof for the first statement for Sy and M is a consequence of
Theorem 3.14 of [58]. The second statement for Sy is given by Theorem 3.18 of

[58]. The statement for N can be found in Corollary 3.15 of [58]. 0

THEOREM 2.3.9 For 0 < o' < « the operators

Sy : CT(dD) — C* (D),
Sy : C*(dD) — C(AD)
M : CT(dD) — CT*¥ (dD)
N: CY(dD) — CT** (9D)

are bounded uniformly for D € Cp,.

Proof. By the compactness of the imbedding C*%(B,,(0)) into C>*(B,,(0))
for o/ < « the uniform bounds are a consequence of the continuous dependence
given by Theorem 2.3.8.

O

THEOREM 2.3.10 For 0 < o < « the boundary integral operators
(I + M+ iNPS})™': CT(0D) — CT(dD)

and

(I+ M+ iNPS?)~': cT* (D) — CT"*(dD)

are bounded by a constant ¢ uniformly for scatterers D € Cp,.
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Proof. We first prove the invertibility of the integral operator [+ M + (N PS?
in CT(8D) and CT> (0D). Since M and NPS? are compact in CT(9D) and
in CT% (0D) we have to prove injectivity of the integral operator to obtain
invertibility by the Riesz-Theory for compact operators. Injectivity in Tg o (0D)
is stated in Theorem 2.3.2. We assume that a is a density in CT(0D) such that

(I 4+ M+ iNPS})a = 0.

Then we have a = —Ma — iNPSZa. By the mapping properties of M, N and
S2 as given by Theorem 2.3.7 we first obtain a € CT%* (0D), in a second step
a € TV (OD). We obtain a = 0 from Theorem 2.3.2, i.c. the integral operator is
injective in CT(0D) and CT%* (0D) and thus continuously invertible.

In CT(OD) and CT*(dD) for 0 < o/ < « the integral operator depends
continuously on the boundary D with respect to the C>® -norm for the domain.
We use the compactness of the imbedding C?*(Uy) — C?>% (U,) and the fact that
continuous functions on compact sets are bounded to derive the statement of the
theorem. 0

The preceding theorems enable us to derive bounds for the mapping of the
incident field onto the far field pattern of the scattered electromagnetic wave
uniformly for scatterers D € C,..

THEOREM 2.3.11 For scattering by a perfect conductor the mapping of the in-
cident electromagnetic field E', H" in T;’a(aD) onto the far field pattern E*° in
CY(Q, IR?) of the scattered electric field E* is bounded by a constant co, uniformly
for scatterers D € Cp,.

Proof. We use the combined magnetic and electric dipole potential (2.3.17) for
the solution of the scattering problem. Then the far field pattern of the electric
field is given by

(PFa)@) = i x [ aly)e ™ ds(y) (2.3.3)
+i Z—W 7 x /aD (v(y) x (S2a)(y)) x & ™4 ds(y), & € Q,

with a density a given by (2.3.18). By the now well-known compactness ar-
guments, the mapping (2.3.32) is bounded from 7,"*(0D) into C*(f2, IR®) uni-
formly for D € C,.. Together with the uniform bound for the integral operator
(I + M + iNPS2)~! we obtain the statement of the theorem. O
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We now study the behavior of the scattered field for incident electric dipoles.
The following theorem is the basis and main ingredient for the proof of stability
in Section 4 and the convergence properties of the method of singular sources for
the reconstruction of electromagnetic scatterers in Section 6.

THEOREM 2.3.12 Consider scattering of an incident electric dipole Eedp, Hedp by
a perfect conductor D € Cp.. There are constants T,c¢ > 0, such that in the strip
0 < d(z, D) < 7 the scattered electric field E3,,(z,2,v(2)), with 2y € 0D defined
by the unique representation z = zy + hv(z), satisfies the lower estimate

c

ZZVZ[)))‘ > G DE

(2.3.33)

‘ edp

With a constant C we have for all p € Q and z € B\ D the upper estimate

C

TG DIF (2.3.34)

‘ESdp(zazap)‘ S
The estimates are satisfied uniformly for scatterers D € Cp,.

Proof. With z;, := 25 + hv(2) and a representation of the scattered electric
field by means of the combined potential Pr we decompose

EPetr (- 2, p)
= —2 Py (I+ M+ iNPS3) "} (v x Ely(-, 2n,p))
= 2P (I+ M+ iNPS3) (v X By 2-n,p))
—2Pp (I+ M+ iNPS3)™ (v x {ELy,(, 20, p) + Bl 2on,0) } )
= _Eesdp('vz—hap)
— 2 Py (l/ X {Eédp(-,zh, p) + Ely (-, z_h,p)})
+2 Pp (I + M + iNPS3) (M + iNPS}) (2.3.35)
(z/ X {Eidp(-, 2, P) + Elgy (-, z,h,p)} )

For the first term of (2.3.35) we have —ES; (-, 2-4,p) = Ely (-, 2-4,p). By
straightforward differentiation with the help of

curl curl = —A + grad div (2.3.36)
we calculate
3¢p- (x— _
B2y = ——P jeplezalzz o ). (2.3.37)

v = 2 = 2 | = 2[?
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with some constant ¢. We estimate

- |
By 2o v(20)) = O(55) + 4—231/(,20), (2.3.38)

i.e. the first term of the right-hand side of (2.3.35) has a singularity of order three
in h. To obtain the statement of the theorem we will show that all other terms
can be estimated by a constant times A2 uniformly for scatterers D € Cp.. We
will proceed in four steps.

1. As a first step from (2.3.37) by some lines of computation as in (2.1.64) we
derive the estimate

X { By 20 v(20) + By 20, v(20) } = 0Gz) (2339

legon
uniformly for scatterers D € C,.. Using the bounds of Theorem 2.3.9 we obtain

| (7 +inPSY) (2.3.40)

(v x (Bl )+ Figoz 100D} ) [l pronriomy = 0(%)

and from Theorem 2.3.10 we calculate the estimate

| (T+ M+ iNPS3)™H(M +iNPS}) (2.3.41)

(1/ X {Eidp(', zn, V(20) + Eidp('a Z—hs V(ZU))})HCT0=D"(3D) - O(%)

2. We now investigate the potential Py defined by (2.3.17). We first note that
using

grad ,®(z,y) = —grad ,®(z,y), (2.3.42)
the relation 5
grad v = Grad v + a_vy (2.3.43)
v

in a neighborhood of 0D and the partial integration

/ vDivads = — | Gradv-ads (2.3.44)
oD oD

for continuously differentiable functions v and tangential fields a and for points
x € IR3\ 0D we obtain

div /8D a(y)®(z,y) ds(y) = Div a(y)(®(x,y) ds(y). (2.3.45)

oD
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By an application of (2.3.36) with the help of (2.3.45) we derive
(Pea)(a) = cul [ a(y)®(a,y) ds(y)
+ 12 [ a(y)0(a.y) ds(y) (2:3.46)

+ grad | Div (v(y) x Sga(y)®(w,y) ds(y),

r € IR*\ OD.

3. We now investigate the behavior of the potential Pg for a Holder continuous
density a with ||a||croe@p) = O(h™?). Since the gradient of the single-layer
potential with Hélder continuous density is bounded (see Theorem 2.17 of [5] for
the boundedness and [58] for the uniformity of the bounds), we obtain

1
|(Pea)()| = O(55)

uniformly for scatterers D € C,, i.e. we obtain the desired estimate for the last
term of (2.3.35).
4. Finally, we investigate the term

PE (l/ X {Eédp('a Zhs P )+ Eedp( Z—hap)}) ) (2347)
where no smoothing operators are involved. For the second and third summand
of (2.3.46) appropriate bounds can be found by the same arguments as above.

We will have to explicitly calculate the leading term of the first summand of Ppg,
ie.

/3D (l/( ) X {Eédp(y, 2, D) + Elgy (v, z_h,p)}) X qu)(x,y)‘m:% ds(y), (2.3.48)

since for the gradient of the single-layer potential with mere continuous density
we have no general estimates available. Proceeding as in (2.1.64) and (2.3.39) we
derive a bound

c

() x {Elg(y, 2,0) + Elgy, 20,0) }| < = 2anlly — 2on]

The leading term of (2.3.48) is thus bounded by

C
ds 2.3.50

/BD [y — 20?1y — 22nlly — 224 ) ( )
with some constant C'. We proceed analogously to the part 3 of the proof of
Theorem 2.1.15. With the help of the integral

2m rdgpdr 1 1
= ——— 2.3.51
/ / r2 + h?)? 2h? 2(R? + h?) ( )

we obtain O(h™?2) for (2.3.50) and the proof is complete. =

(2.3.49)




2.4 Electromagnetic waves in an inhomogeneous medium.

The inhomogeneity of an inhomogeneous medium for scattering of an electromag-
netic wave is described by the refractive index

(@) = — <e(a:) + z@> (2.4.1)

€0 W

where € = ¢(z) > 0 denotes the electric permittivity, o = o(z) the electric
conductivity of the medium, and where w is the frequency of the wave. The
magnetic permeability is considered to be a constant p = o > 0. We assume the
medium to be bounded, i.e. €(x) = ¢ and o(x) = 0 for z ¢ D for some domain
D contained in a fixed ball B = Bpg_(0). Let the domain D have the boundary
dD of class C** and n € CH*(IR?) for some 0 < a < 1. The inhomogeneous
electromagnetic scatterer is denoted by D = (D, n) and we use x := 1 — n.

DEFINITION 2.4.1 For an incident time-harmonic electromagnetic field E*, H',
curl B' — ixH" = 0, curl H' +ikE" = 0 (2.4.2)

with wave number k = eyuow? and an inhomogeneous penetrable scatterer D, the
electromagnetic inhomogeneous medium scattering problem is to find a radiating
scattered field E*, H* € C'(IR®), such that the total field

E=FE+F*, H=H'+H* (2.4.3)
satisfies the time-harmonic Mazwell equations
curl E —ikH =0, curl H +ikn(z)E =0 (2.4.4)
in IR?\ OD.

Outside of the support of the scatterer D the scattered field E®, H® solves the
Maxwell equations (2.3.1). Thus the Stratton-Chu formulas (2.3.6) and (2.3.7)
are valid and the scattered field has the asymptotic behavior (2.3.8) uniformly
for all directions, i.e. the scattered fields have a far field pattern E*°, H*.

To study the properties of the scattered field £, H®* we use a solution of the
direct scattering problem by means of volume integral equations. For a continuous
vector field a we define the potential

(Ta)@) ==+ [ @(.y)x(w)aly) dy
1

24.5
+ grad /D n(y)grad n(y) - a(y)®(z,y) dy, = € IR>. ( )

We summarize uniqueness and existence results in the following theorem.
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THEOREM 2.4.2 The electromagnetic inhomogeneous medium scattering problem
has a unique solution and the solution depends continuously on the incident field
with respect to the mazximum norm on D. In particular, the scattered electric field
E? can be represented as a potential T, E, where the total electric field E satisfies
the integral equation

(I -T,)E = F (2.4.6)

on D. The integral operator I — T, is continuously invertible in C'(D).

Proof. We refer to Theorems 9.1, 9.2, 9.4 and 9.5 of [6].

As for obstacle scattering we denote an incident plane wave with polarization
q € Q and direction of incidence d € Q by E/(-,d,q), H}(-,d, q). The correspond-
ing scattered fields and far field patterns are £, Hy and E7, HJP, respectively.

) . pb>» *p
An incident electric dipole E;,,, H;;, produces the scattered field E;,,, HZ;, with

edp?
far field pattern EZ;,, HZ,. We obtain electromagnetic reciprocity relations as

follows.

THEOREM 2.4.3 (Far field reciprocity relation.) The far field patterns for
scattering of plane waves by an inhomogeneous medium D satisfy

¢ Ey(,d,p) = p-Epy(—d,—i,q) (2.4.7)

for z,d,p,q € Q.

Proof. See [6], Theorem 9.6.

THEOREM 2.4.4 (Mixed reciprocity relation.) The far field patterns for
scattering of plane waves by an inhomogeneous medium D satisfy
q- Eggy(t,2,p) = vp-Ey(z,—7,q) (2.4.8)

for &,p,q € Q and z € R*\ D, where vy = ;-.

Proof. The proof is literally the same than for Theorem 2.3.4.
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To detect the boundary of an inhomogeneous medium using incident singular
sources, in acoustic scattering we needed a jump in one of the derivatives of n.
For the treatment of electromagnetic inhomogeneous medium scattering by means
of integral equations, to avoid the use of boundary integral terms we will have
to restrict our presentation to a refractive index n € CY*(IR*). Thus the order
of the derivatives of n, where jumps can occur, must be larger or equal to two.
Here we will restrict ourselves to a jump in the second derivative of the refractive
index at the boundary of the inhomogeneous medium. In addition, we need some
smoothness conditions on n to obtain stability estimates.

DEFINITION 2.4.5 Given positive constants R,, ro, ag, Co, Bes Cns Cmin> Cmaz
[ =2 and o € (0,1] we define the class Cep of electromagnetic inhomogeneous
medium scatterers D by the following assumptions.

1. The scattering domain D is of class A(Re, ro, ag, , «, Cy, Be)-
2. The refractive index n is in CH*(IR3) and in C*>%(D) with

||n||cz,a(D) S Cn (2.4.9)

3. At the boundary 0D the function x = 1 — n has a jump in its second
deriwatives uniformly for D € C,, in the sense that

0%y

w(xﬂ < Cmaz, T E D. (2.4.10)

O<Cmin§|

We need to study the mapping properties of the operator T, and (I — T,)~!
in the spaces of continuous and of L2-integrable functions.

THEOREM 2.4.6 For the integral operator (I — T,)™" the norms
(T = T.) ey (2.4.11)
are bounded by some constant ¢ uniformly for scatterers D € Cop,.

Proof. The operator T, as a mapping from C'(B) into C'(B) depends contin-
uously on the refractive index n € C'(B) and the same is true for the inverse
of the operator I — T,. Thus the uniform bound is obtained by a compactness

argument using the imbedding from C»*(B) into C'(B) as in Theorem 2.2.6.
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With the same compactness arguments we derive the following uniform bound
for the scattering map. We leave the straightforward proof to the reader.

THEOREM 2.4.7 For scattering of electromagnetic waves from an inhomogeneous
medium the mapping of the incident electric E* € C(D) onto the electric far field
patterns E*° € C'(Q) is bounded uniformly for D € Cep by a constant c.

Please note that the singularity of the operator T, is one order stronger than
the singularity of the acoustic volume potential V. Thus the proofs of upper and
lower estimates for E7,, will be more complicated than in the acoustic case.

The following theorem investigates the behavior of Ey, (2, z,p), if z tends to
the boundary of an electromagnetic inhomogeneous medium scatterer D € Ceyp, .

As a preparation we prove a lemma.

LEMMA 2.4.8 For the kernel ¥(y, z) we assume
[W(y,2)| < cly—=2? yeD, 2€B, y#z (2.4.12)
with some constant c. Then we have

‘/ grad ,®(x,y)¥(y, 2) dy‘ < |L, r,z € B, ©v# z, (2.4.13)
D T

—Z|

with a constant C' uniformly for D € Cepp-

Proof. We need to work out the proof only for the potential theoretic case
k = 0. We split the domain of integration into three parts. For z € IR*\ {z}
we define R := |r — z|/2 and use Dy := D N Bg(z), Dy := D N Bg(z) and
D3 := D\ (D, U D).

1. The integral over D; can be estimated by

R C
V. ®(z,y)¥(y, 2) dy‘ < C’R_Z/ dr < = (2.4.14)
0

‘Dl

with some constant C'.
2. To estimate the integral over Dy we use the decomposition

‘/Dz V@ (z,y)¥(y, 2) dy‘ < ‘/D2 (qu)(x,y) - Vx(I)(g;,z))\I](y,Z) dy‘

_|_

v, (z, 2)U(y, 2) dy‘ . (2.4.15)

Do
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With .
Va®(z,y) — Vo @(z,2)| < mw —z|, ly—2 <R

for some constant ¢ we estimate (2.4.15) by

1 R 1 R
V. ®(z,y)¥(y, 2) dy‘ < [@/0 rdr + ﬁ/o dr}

‘ C
D>

C
— 24.1
R’ ( 6)

where C' is a generic constant; i.e. C' may change from line to line.

3. The domain D3 can be decomposed again into the subdomains Dy :=
D\ Bsgr(z) and D5 := DN (Bsr(z) \ (Br(z) U Br(z)). We use polar coordinates
with origin z and third axis given by = — z to calculate

ly — z|* = 4R* + r? — 4r Rcos(f).

Now the integral over Dy is estimated by a constant times

" ! d L " 2.4.17
/31?, A4R? +r2 —4rR "= {_T—QRL,R' (2:4.17)
The integral over Ds can be estimated by a constant times
1 3R 2
— dr = —. 2.4.18
R? /R "R (2.4.18)
The estimates (2.4.17) and (2.4.18) yield
C
‘ V. ®(z, y)U(y, 2) dy‘ << (2.4.19)
D3 R
with some constant C'. Now from (2.4.14), (2.4.16) and (2.4.19) we obtain the
estimate (2.4.13). O

THEOREM 2.4.9 Consider scattering of an electric dipole by an inhomogeneous
medium scatterer D € Cupyy. There are constants T,c¢ > 0 such that in the strip

0 < d(z,D) < 7 the scattered field E};,(z,2,v(20)) satisfies the lower estimate

c
E? > 2.4.20
‘ edp(z?z7l/(zo))‘ = |d(Z,D)|’ ( )
where zy € 0D is defined by the unique representation z = zy + hv(zy). With a
constant C' we hve for all z € B\ D the upper estimate

B2 (2, 2,v(20))| < ﬁ. (2.4.21)
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Proof. By Theorem 2.4.2 we have a representation of the scattered field of an
incident electric dipole by

Eesdp('azap) = Te([—Te)flEidp(-,z,p)
= T.E.4(2p) + T.0U-T.) 'T.E., (-, 2,p)
= TeEédp('7Z7p) + TeTeEédp('7Z7p) (2.4.22)
+ T.(I = T.) "T.T.E.4 (-, 2, p),

where we twice inserted the identity operator I = (I — T,) + T,. We first give
upper and lower estimates for the singularity of TeEf;dp(-, z,p), in a second step
prove the boundedness of TeTeEédp(-, z,p) and in a third step derive bounds for
T,(I = T,) \T.T,Ei, (-, 2,p) in R".

1. We need to investigate the refractive index near the boundary. From
Definition 2.4.5 as in (2.2.37) we obtain

— ]'aX 2 2+«

x(y) = 55(20)(7" 005(9)) + O(r=m®) (2.4.23)
with polar coordinates r = |y — 2o, cos(0) = —v(z) - (y — 20)/r and
aX sin(0) cos(¢)
grad n(y) = %(z’o) 7 cos(6)?- | sin(0)sin(p) (2.4.24)
cos(0)
cos(0) cos(p)
— COS(G) SIH(G) : cos(0) sin(yp) + O(T1+a)

—sin(0)

uniformly for scatterers D € C,,,.

Consider the operator T, as defined by (2.4.5). It consists of two terms, the
first one of which is a single-layer potential and the second the gradient of a
single-layer potential. From (2.4.23) we derive

i C
\x(y)Eedp(y,p,z)\ < L y €D, (2.4.25)

with some constant ¢. Thus by standard arguments the potential
/D O(,y)x(y) Eegp(2, 0, 2) dy

is bounded uniformly for 2 € B\ D and for all scatterers D € Ce,,. We now
investigate the second term of 7,. We use Lemma 2.4.8 to estimate the integral

1 .
[ () s e ny) - Elylypz) dy (2420

J

=:¥(y,z)
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and derive the upper estimate

‘(T E; 4 (-, z,p))(x)‘ < ﬁ, peQ, x,2€ B, x#z, (2.4.27)

with some constant C' uniformly for scatterers D € Cgpy,.
We now calculate a lower bound for T, E.; (2, 2,v(%)). The leading term of
the potential is given by

/ P _y|3 grad n(y) - (2.4.28)
36 V(ZO) (y—2) (y—2) cv(z) e B\D
{ y— o |y—z|3}dy’ cEAD.

We insert (2.4.24) into (2.4.28) and use an argumentation analogous to the deriva-
tion of (2.2.46) and (2.2.48) to derive

T, Eedp(z, z,v(20))

o o sin(6) cos(p) cos(0) cos(p)
= C/ / / cos(0)? sin(f) sin(p) | — cos(8)sin(8) | cos(f)sin(yp)
(2,D)/ cos(0
cos(f) —sin(0)
sin(6) cos(p) 0 sin(#) cos(¢) 1
3cos(0) | sin(0) sin(yp) -1 o sin(0) sin(p) ﬁ dr df d(p + 0(1)
cos(0) 1 cos(0)

with a sufficiently small fixed constant Ry and 6 defined by Ry cos(6y) = d(z, D).
We expand the products and first integrate over ¢ to obtain zero for the e; and
es components of the vector. Evaluating the integral over r we derive

T, Eedp(z, z,v(2p))

C 0 % 3 2

R || cos’(0) {3 eos?(0) =1} a8 + O(1)
C 0 3\

- d(z, D) (1) FOW e

with a generic constant C'. This yields

C —
> 3 4.
B2, 2,v(20))| > G “EE\D, (2.4.29)
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with some constant C' uniformly for scatterers D € C,,.

2. We need to investigate T,T,E!y (-, z,p). From (2.4.27) we derive

(ErE )| < of 2 SE o). (s

Since the integral in (2.4.30) can be estimated by a constant, the right-hand side
is bounded. These bounds hold uniformly for D € Cy,.

3. To complete the proof we collect the estimates (2.4.27), (2.4.29) and
(2.4.30), use the decomposition (2.4.22) and the uniform bounds for (I —7,)! in
C(B) as given by Theorem 2.4.6 to derive the upper and lower bounds (2.4.20)
and (2.4.21). 0



3 Uniqueness and stability in inverse scattering.

Uniqueness theorems usually investigate the amount of data necessary to deter-
mine scattering objects uniquely. Clearly, if we do not have uniqueness, we cannot
expect to obtain stable numerical algorithm for the computation of the scattering
objects. Thus uniqueness is a question of practical importance.

In this chapter we first investigate the question of uniqueness of the support
of obstacle scatterers, given the far field patterns for incident plane waves at
a fixed wave number k. We will show that the shape D of the scatterer D is
uniquely determined by the far field patterns u®(-,d) of the scattered fields for
all incident plane waves u'(-,d) with directions of incidence d € 2. Uniqueness
for penetrable scatterers will be obtained as a consequence of stability, which is
the second problem of this section.

The question of stability leads right into the center of the difficulties of inverse
problems. How do errors in the measurements affect the reconstructions? We
already indicated that inverse scattering problems are ill-posed, because a radi-
ating solution to the Helmholtz equation in the exterior of a ball does not depend
continuously on its far field pattern. We also indicated that with appropriate
assumptions on the scatterers under consideration stability can be restored and
stability estimates can be derived.

In this section we will derive stability estimates for the reconstruction of the
domain D of a scatterer D from the far field patterns u*>(z, d) for &, d in Q, where
for measurements of the far field patterns we will use the practically relevant L2-
norm. A stability estimate consists of a function F' : IRT — IR* with the property

F(6) — 0, § =0, (3.0.1)
such that the Hausdorff distance d(D;, Dy) of two scatterers can be estimated by
A(D1, Do) < F([u¥(7) w3, s (3.0.2)

For the convex hulls #(D;) and #H(D5) of impenetrable acoustic or arbitrary
electromagnetic scatterers Dy and Dy we will derive a logarithmic estimate, i.e.

C
FO = @y

with constants C' > 0 and 0 < ¢ < 1 uniformly for the given classes of scatterers.

Clearly stability inplies uniqueness and thus as a consequence of stability we
obtain uniqueness statements. In particular, this will yield new uniqueness results
for inhomogeneous medium scatterers.
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3.1 Acoustic scattering.

The following uniqueness theorem for the reconstruction of domains in obstacle
scattering was first proven in 1993 by Kirsch and Kress [29], simplifying techniques
of Isakav [22]. Tt will be the starting point for our further considerations, and we
will give an even simpler proof using mixed reciprocity relations.

THEOREM 3.1.1 Let Dy, Dy be sound-soft or sound-hard scatterers. If the far
field patterns us°(z,d) and u®(z,d) for scattering of plane waves coincide for all
J,A',d S Q, then D1 = DQ.

Proof. Let D, be the unbounded component of IR™ \ (D; U D,). From
uP(z,d) = u®(z,d), z,deQ,
and the Rellich Lemma we obtain
ui(z,d) = uj(z,d), z€ D,, de.

We use the mixed reciprocity relation (2.1.4) on both sides to derive for the far
field patterns of incident point-sources the equality

®°(d, z) = ®3°(d,z), z€ D,, d €.
Again we use the Rellich lemma to get
®i(x,2) = ®3(x,2), z,2 € D,. (3.1.1)

From (3.1.1) and Theorem 2.1.15 we derive Dy = D, in the following way. We
assume that 9D, \ Dy # 0 and 25 € D, \ Dy. Then

00 > Dy(29, 20) = z»l;gleDe Dy(2,2) = Hlé,r?eDe D(2,2) =00

and we obtain a contradiction. In the same way we treat the case 2y € 9Dy \ D;.
Thus we obtain D; = D> and the proof is complete. 0

Since most further results will hold both for scattering from an impenetrable
and penetrable scatterers, we define the class

C = Copst U Cpn. (3.1.2)
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We will now focus on the stability question and develop techniques to prove
stability for the reconstruction of the domain D of both impenetrable and penetra-
ble scatterers. Since stability implies uniqueness, we also will obtain uniqueness
statements for D. All further results will use the following two steps.

As the first step, we consider approximations of a multipole by a continuous
superposition of plane waves, i.e. by a Herglotz wave function

(Hg)(z) == /Q "y (d) ds(d), = € R™ (3.1.3)

To obtain these approximations in a uniform way we use the exterior cone con-
dition as follows. With the help of the cone (1.2.10) we define the domain

— P . pp
Gapp = Bop. (2 )\ eo(s = o p: o) (3.1.4)

for z € R™,p € Qand p > 0
as shown in Figure 2. Here, since
the parameter (3, is kept constant
throughout this work, we do not
explicitly note the dependence of
G on ). From the exterior cone
condition for D C Bpg, (0) for each
z € B\ D, we obtain a vector
p € 2, such that D C G, ,.

Bag, (2)

G We first consider the operator H
from L?(Q2) into L?(0G), where G
Figure 2 denotes a appropriately chosen do-

main G with G D Gy, , and 0 ¢ G.

Z’p’p

LEMMA 3.1.2 [t is possible to choose a domain G D Gy,, with 0 ¢ G and
boundary OG of class C?, such that the homogeneous interior Dirichlet problem

—Au=r*uinG, u=0 on G (3.1.5)

has only the trivial solution w = 0. In this case the operator H has dense range
in L*(0G).
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Proof. Due to Theorem 4.7 of [44] for the [-th eigenvalue \; of the prob-
lem (3.1.5), where the eigenvalues are ordered according to their magnitude and
multiplicity

M< <. <N< .,

we have the monotonicity property

Gy é Gy = )\171 > )\2,1, leIN. (316)

Thus, if for a domain o
G1 D Gopp 0 G

and [ € IN we have \;; = k2, we can choose a domain
Gy D Gy, 0 ¢ Gy,

such that Aoy # k? for all I’ € IN. Then k? is not an eigenvalue for the domain
G5 and every solution u of (3.1.5) with G := G5 must vanish identically.

To show denseness for the range of H in L?(0G) we prove injectivity of the
adjoint H* of the operator H. The adjoint H* of H is given by

(H'o)(@) = [ e p(y) ds(y), &€

The function H*y is the far field pattern of the single-layer potential

(S9)(@) = [ ®(@,p)ely) dsy), @€ R".

We assume H*p = 0 on Q for ¢ € L*(OG). Then Rellich’s Lemma yields
(Sp)(z) = 0 for z € IR™\ G. Now from the jump-relations for L2-densities
Theorem 1.2.4 we get (I — K*)p = 0. We can apply the Fredholm alternative
1.2.6 first in the dual system

(C(oD), L*(0D)), (0.0) = [ b dy.

and then in the dual system
(L20D), L*0D)), (o) = [ ovdy,

to conclude that the null spaces of I — K* in L*(0G) and C(9G) have the same
finite dimension. Since C'(D) is a subset of L?(D), the null spaces coincide and ¢
is in C'(0G). Now continuity of the single-layer potential with continuous density
implies that S¢ solves the homogeneous Dirichlet problem in G. From the first
part of the lemma we obtain S = 0 on GG. Now the jump relations of Theorem
1.2.4 yield ¢ = 0 and thus the injectivity of H*. O
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We now complete the first step and show, that in the space C*(Gy,,) the
function @, ,(-,0) can be approximated by a Herglotz wave function.

LEMMA 3.1.3 Given p,s € INg, p> 0 and 7 > 0 there is a finite set

g = g(Ta Py My S, /80)

of densities g in L*(Q), such that for each p,q € Q there is a density g € G with

[ @+, 0) — Hg|

< T (3.1.7)

Cs(Gop,p) —

Proof. According to Lemma 3.1.2, given € > 0, we can find g € L*(Q) such
that

H(I)#,q(-,()) - Hg‘

Let g be the minimum norm solution of (3.1.8), which is unique according to
Theorem 1.2.7. We note that both ®,, and Hg solve an interior Dirichlet prob-
lem for the Helmholtz equation in the domain G and can be represented as the
combined acoustic double- and single-layer potential (2.1.13). Differentiating un-
der the integral sign and using the Cauchy-Schwarz inequality we observe that
on compact subsets of G the solution of the interior Dirichlet problem depends
continuously on the boundary values in L?(9G); i.e. from (3.1.8) with e replaced
by €/c with some constant ¢ we obtain (3.1.7).

So far, the density ¢ in (3.1.8) depends on the parameters p,q € Q. We
observe that for fixed ¢ the norm

oy S € (3.1.8)

Hq)u,q('a 0) — Hg‘

cs (GO,p,p)

depends continuously on p and ¢. Thus given p,q € Q and g € L?(Q2) such that

T

H(I)M,LI('vO) - Hg‘ C5(Gop.p) < 5

(3.1.9)

is satisfied, there is a neighborhood U of p and a neighborhood V' of ¢, such that

H(I)u,q’('vo) - HgHCS(GO,p,,p) <7 (3.1.10)
is satisfied for all ¢’ € U and all p’ € V. The compact set ) is covered by a finite
number of such domains U and V; i.e. there is a finite set G of densities ¢, such
that for all p, g € Q the estimate (3.1.7) is satisfied with a density g € G. 0
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In the second step estimates for the difference of the fields ®f , and @3 ,  for

scattering of a multipole from two scatterers D; and Dy will be used to estimate
the Hausdorff difference d(D;, Dy) of the domains D; and Ds.

We need to consider six different situations according to the physical proper-
ties of the scatterers D; and D, in two or three dimensions. For each situation
we need a corresponding choice of the parameter p.

Situation | Properties of D; and Dy 1]
S1 D, D, impenetr. scatterers in IR? 0
S2 D:, D, impenetr. scatterers in IR? 0
S3 D5 inhom. medium scatterer and
D, impenetr. scatterer or vice versa in IR? | ug + 2 (3.1.11)
S4 D5 inhom. medium scatterer and
D, impenetr. scatterer or vice versa in IR? | po + 1
S5 D;, D, inhom. medium scatterers in IR? Lo + 2
S6 D;, D, inhom. medium scatterers in IR o + 1
For technical reasons we introduce the set
U(Dy, Dy, p,3y) = {z€ B\ (D1,UD5,), (3.1.12)

dp € Q such that co(z,p, By) C R™\ (D1,UDy,)}.

LEMMA 3.1.4 We consider scattering of acoustic waves by two scatterers Dy, Dy
in C and choose i € INy according to the table above . Assume that with param-

eters p,o > 0 the scattered fields @7 , . and ®3 , = satisfy
‘Q)iﬂzq(z’ Z) - q)g,u,q(z7 2)‘ S o (3113)

for all g € Q and z € U(Dy, Dy, p, o). Then we conclude
d(Dl,Dg) S Fl(p; O') (3114)
where the function Fy is defined according to the situations S1 to S6 by

p + B0 p® S1, 85 and S6
c
Filpo) = { P+ =5 s 52, (3.1.15)
c o\ Y/ (ko+m+
p+(a|lnp|—a) S3 and S/

with constants B, b, s,c and C uniformly for Dy, Dy € C.
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Proof. We split the proof into two parts.
1. We consider the scattered fields for a point z € U(Dy, Do, p, (). From (2.1.48),
(2.1.49) and (3.1.13) we obtain for situation S1 of two impenetrable scatterers in
the two dimensions the estimate

C ‘ln d(z, Dl)‘ + E > (] 0% z)‘
> |3 (22 2)| — 0 (3.1.16)
> ¢ ‘lnd(z, Dg)‘ - o,
which can be transformed into
d(z,D1) < BV d(z,Ds)* (3.1.17)

with constants B = e®/C b = ¢/ and 1 > s = ¢/C > 0. In the same way
for scattering by impenetrable scatterers in three dimensions (situation S2) we
obtain from (2.1.50), (2.1.51) and (3.1.13)

C c

> — 3.1.18
d(z,D1) — d(z,Ds) 7 ( )
and transform it into Cd(z. Dy)
2y 2
dlz, D) < ——————=2 | A1
(z:D1) < ¢ — od(z, Dy) (3.1.19)

Consider an inhomogeneous medium scatterer Dy and an impenetrable scatterer
Dy i.e. the situations S3 and S4. From the definition of the multipoles and the
choice of p we derive

< Cd(z,Dy) o3 (3.1.20)

H(I)”’q("z)‘ c'(D1)

with some constant C'. The scattering map u’ + u® from C*(D;) into C'(B\D;,,)is
bounded by b/p™~" with some constant b uniformly for D € C,s. Thus we obtain

@2 ,(2,2)] < Cbld(z Dy)| 7o ™2 (3.1.21)
Now from the lower estimate (2.2.55) we derive
Cbld(z,D)| " ™2 > ¢|Ind(z,Ds)| — o (3.1.22)

with constants ¢, C,b > 0, which yields

C g *%
d(z,D,) < (@ |Ind(z, Dy)| — %) hoFm¥ (3.1.23)
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If Dy is an impenetrable scatterer and D; an inhomogeneous medium, the esti-
mates can be obtained as in (3.1.17) and (3.1.19). Since the functions are dom-
inated by (3.1.23), a bound is again given by (3.1.23). For two inhomogeneous
medium scatterers D; and Dy we derive from (2.2.55), (2.2.56) and (3.1.13) the
bound (3.1.17)

2. We now come to the second step of the proof. According to the cases S1
to S6 we choose € := Fi(p, o) with F; defined in (3.1.15).

First, we consider a point zg € dDs, such that for 2’ := 2y + pr(z) we have
2 € U(Dy, Dq,p, By). From the triangle inequality, p = d(z’, D2) and the first
part of the proof we obtain

d(ZO,Dl) d(Z(),ZI) + d(Z,,Dl)

<
< F(po) = e (3.1.24)

Second, we investigate an arbitrary cone
co(z,p, o) C IR™\ D . (3.1.25)

To show
co(z,p, o) N Dy =0 (3.1.26)

by contradiction, we assume that
CO(Z,p, 50) N D2 7£ @ (3127)

Then we have
ry = inf{ r >0, (DZ Nco(z,p, ﬂo)) C (Br(x) Nco(z,p, ﬂe)) } >0,
and we can find a point z; € 9Dy N OB, (x) N co(z,p, 3). On the line
L={z+tpte(0,00)}

there is a point 2’ with d(2', Dy) = p. Then we have 2 = zy + pr(2,) for some
point zg € 0Dy and 2’ € U(Dy, Do, p, ). Now, the estimate (3.1.24) yields
d(z9, D1) < €. But from (3.1.25) we obtain € < d(z, D1) and thus a contradiction
i.e. the assumption (3.1.27) is wrong and (3.1.26) is shown.

Finally, we note that for D; € C and e sufficiently small the open exterior of
D, can be covered by cones co(z,p, fy) with z € IR™\ D; . and p € €; i.e. from
(3.1.26) we obtain Dy C D;.. Since we can go through all arguments with D,
and D exchanged, we obtain (3.1.14). 0
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We will define and study an operator (), which is built to approximate the
scattered fields of multipoles by a superposition of the far field patterns of the
scattered fields of plane waves. To this end we need some further preparations.

a) Consider scattering of an incident field given by a superposition Hg of
plane waves (3.1.3) with density g € L*(2). Using the scattered field u*(-,d) and
the far field pattern u®(-,d) for the scattering of plane waves, by linearity and
boundedness of the scattering maps u’ — u* and v’ — u> the scattered field and
far field pattern can be expressed by

(H*g)(x) = /QUS(x, d)g(d) ds(d), =€ R™\ D (3.1.28)

and
(H®g) () :/Quoo(i",d)g(d) ds(d), &€, (3.1.29)

respectively.

b) Lemma 3.1.3 states the possibility of approximations of multipoles with
source-point = 0 on a domain Gy, , by a superposition of plane waves. To ap-
proximate a multipole with source-point x # 0 on G, , we consider translations
of both the multipole and the Herglotz wave function.

Translations of a Herglotz wave function Hg, with a translation vector x
can be performed by multiplication of the density go(d) with the complex factor
e~rd  (Clearly, the density

g(x,d) == e " gy(d) (3.1.30)

of the translated Herglotz wave function has the same norm as the original density
go- From (3.1.7) by translation we derive
< T (3.1.31)

[#0a2) = Eoe ), <

¢) The density g defined by (3.1.30) and Lemma 3.1.3 is a function

g = g(xadapa(b’ra P 1, 8750)-

We will need the density ¢ with two different sets of values for z, d, 4 and 7 and
for vectors p and ¢ depending on . We use the abbreviation

g-(w,d) == g(x,d, p(x),q(x), 7, p, 11 5, o) (3.1.32)

d) To estimate the error of the approximations we need the bound

brps o = max {|lgll2), 9 € G(r,p, 11,5, Bo) } (3.1.33)
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with the set G(7, p, i, s, fo) of densities given by Lemma 3.1.3. We use the ab-
breviation

bT = bTapa.u/aszﬁO
or
b’ﬂﬂ = bT:ﬂ:/—‘:&ﬂO’

if the dependence on p, u, s, By or on p, s, 3y is not needed. For the set G we will
write

gq— = g(T, P Ky S, 50)

e) For a scatterer D € C and a point € B\ D,, according to the boundedness
of D and the exterior cone condition we can find p € €2 with

D C Gapyp (3.1.34)

Thus it is possible to define a function p : B — Q, such that with p = p(x)
the condition (3.1.34) is satisfied for all x € B\ D,. The condition (3.1.34)
will be needed to estimate the approximation of @Z,q(x,z) by Qu*>. Later we
will work with two different domains D; and D,. Then for a fixed functions p
only at points x € B, for which (3.1.34) is satisfied for both D; and Ds, the
approximation properties of the corresponding operator () will be valid for both

scattered fields ®§ , and @5 , .

We are now ready to formulate the definition of the operator ) and to investi-
gate its approximation properties.

DEFINITION 3.1.5 Given a set of parameters p € INyg, s = 1, p,7 > 0 and
functions p,q : B — ) with the help of

gT(xa d) = g(xadap(x)7Q(x)a7—a P, 07 8750)

and

gﬂ(z7d) = g(Z, dap(z)aq(z)anapa H, 8750)

we define the operator
Q:L*(Qx Q) — L™(B)

(Qu)(z,z) = / / g-(x,d)g,(2 d)} w(—d,d) ds(d)ds(d), z,z € B.
(3.1.35)
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THEOREM 3.1.6 Consider scattering by a sound-soft, sound-hard or inhomo-
geneous medium scatterer D € C. The error for the approximation of @Z,q(x,z)
by Qu™ is estimated by

s 00 n
Pg(:2) = (Qu*) (@,2)] < e+ Cbupnas T (3.1.36)

for all x,z € B\ D,, for which (3.1.34) is satisfied for p = p(x) or p = p(z),
respectively. The constants ¢ and C depend on i, but not on D € C.

Remark. For an appropriate choice of 7 and 7 the error in (3.1.36) can be
made arbitrary small. Given ¢ > 0 we first choose n = ep™~Y/(2¢) and then
T =€/(2Cb,) to obtain

) (7, 2) = (Qu™) (z, z)‘ <€ z,2z€ B\D,. (3.1.37)

Proof. First, for g,(z,) by definition we have
[@q(-2) = Hay(2, )|

The scattering map u’ — u® is bounded from C'(D) into C(B\ D,). We use
the solutions of the scattering problems as given in Section 2 and estimate the
scattered field u® with the help of the Cauchy-Schwarz inequality to obtain

@02 = 042 )1 < €

for all z € B\ D,, for which (3.1.34) is satisfied, with some constant ¢ not
depending on p or D € C. In the same way for g,(z, ) we derive

1) < 7. (3.1.38)

(3.1.39)

@, x) — H*g,(x H (3.1.40)

for all x € B\ D,, for which (3.1.34) is satisfied, W1th some constant ¢ uniformly
for D € C. We use the mixed reciprocity relations (2.1.4) and (2.2.4) to transform

(3.1.40) into

u(w,d) = — (Hg,(2,)) ()| < < (3.1.41)

m Tm
for all d € Q. Using the Cauchy-Schwarz inequality from (3.1.41) we obtain the
estimate

(Hgy(2,)) () = (Qu*°) (x, 2)]

- | /Q<u8(x,d)_7im [we(=d.d) g,(s,d) ds(d)) 9ol d) ds(d)
< Cllgn(2.)] . (3.1.42)
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with some constant C'. Now from (3.1.42) and (3.1.39) we derive

D q(1,2) = (Qu=) (2. 2)| < |@(2,2) = (Hogs(2,)) (@)
+[(Hogn(2,)) (@) = (Qu™)(w, 2)]

< ¢ +C |[gn(z, )| T (3.1.43)

- pm—l

L2(Q)

with constants ¢, C' > 0, which yields (3.1.36). 0

The operator @ is a bounded operator from L?(Q x Q) into L>°(B). We will
exploit the behavior of the bounds to derive stability estimates for the recon-
struction of the scattered field ®; = and use these estimates to obtain stability
estimates for the reconstruction of the shape D of a scatterer D.

LEMMA 3.1.7 Let ui®(z,d) and u®(z,d), &,d € Q, be the far field patterns for
scattering of acoustic plane waves two from scatterers Dy, Dy € C. If for some
parameter 6 > 0 the far field patterns satisfy

< 4, (3.1.44)

o0 o0
Uy —u ‘
H 1 2 L2(QxQ) —

then the fields ®7 , , and ®3 , ., u € Ny, for scattering of multipoles by Dy and

Ds, respectively, satisfy the estimate

1
+20 by 7 + —byb. 0 (3.1.45)

pml Ym

(I)iu,q(x’ z) — @5

2,9

(x,z)‘ < 2

for all g € Q, p,7,m > 0 and all points x,z € U defined by (3.1.12), where the
constants ¢, C' are given by Theorem 3.1.6. .

Proof. We define the function p : B — 2 such that the condition (3.1.34) for
both scatterers D; and Dy is satisfied in & € U. Then for the operator ) given
by (3.1.35) we use (3.1.36) for each scatterer D; and Dy and the Cauchy-Schwarz
inequality applied to Q(uf, , — u5S, ;) to derive from

(@F (2, 2) = @3, (3, 2)] < |, (x,2) — (Qui)(, 2)| (3.1.46)
Qu* = ug®) (2, 2)| + [(Qui®)(w,2) = @3, (. 2)|

the estimate (3.1.45). O
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It is now possible to use Lemma 3.1.4 to obtain estimates for the Hausdorff
distance d(D;, D) between the two scatterers D; and D, and derive stability
estimates for the reconstruction of the shape of scatterers. For positive parameter
p, 7, n and ¢ let the function F5 be given by

Ui

pm—l

1
+2C by, T + —by,br, 0, (3.1.47)

m

Fy(p,1,n,0) := 2¢

where the bounds b, , and b, , are defined by (3.1.33) and the constants ¢ and C
are chosen according to Theorem 3.1.6. We define

F(8) = inf {Fi(p, Fa(p,7,,0)), 7,m,p >0} (3.1.48)
with Fy given by (3.1.15).

The following lemma and corollary will be needed to study the behavior of
the function F. For a function f : (0,€) x (0,€) — IR we define

f*(s,t) := sup f(s,€), (3.1.49)

ge[tyeo)

i.e. we build the supremum in the second coordinate.

LEMMA 3.1.8 For every function f : (0,€y) — IR with f(t) — oo fort — 0 there
exists a function g : (0,00) — (0, €) with

f(g(0))0 = 0 and g(6) =0 ford— 0. (3.1.50)

Proof. Let f' be a strictly monotone function with f'(t) > f(¢). On (a,o0)
with a := f'(€g) there is an inverse function

(/)" (a,00) = (0, €0)

with (f")7'(f'(s)) = s and f'((f")~'(t)) = t for all s € (0,¢) and t € (a,00).
Then for the function

g:(0,80) = (0,60), g(0) = (f)"" (=),

with & defined by (f")~1(1/v/) = €y we obtain the behavior (3.1.50).
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COROLLARY 3.1.9 For every function f : (0, €) % (0,€y) — IR with f(t,s) — o0
for (t,s) — 0 there ezists a function g : (0,dy) — (0,€) x (0,€), g = (91, 92)
which satisfies

91(0)

f(g(6))d — 0, g(6) =0 and .

- —0 ford—0. (3.1.51)

t2,1/(m=1)) to obtain a func-

Proof. Use the preceding Lemma for f(t) := f*(
=gl

tion ¢ and define g by ¢,(d) := g(6)? and g¢»(9)

O
After these preparations we investigate the behavior of the function F'.
LEMMA 3.1.10 The function F defined by (3.1.48) satisfies
F(§) =0, § = 0. (3.1.52)

Proof. The function F'(¢) is dominated by
Fy (h(6), Fa(ha(6), ha(), h3(9)) )

with arbitrary positive functions hy, he and hz on (0,dy). We will show, that we
can choose hi, hy and hs such that

Fy (hy(0), Fa(ha(6), ha(8), hs(8))) = 0, & — 0. (3.1.53)

The function F3 can be decomposed into the sum and product

Fy(p,1,n,0) = 2¢

+by, (207 + %bw ).

pmfl

By an application of Corollary 3.1.9 to f(s,t) := bs; we obtain functions hy and
hy(6) =0, § — 0,

and
hs(6) — 0, § — 0, (3.1.54)

such that the functions

1
h6(6) = 20 h4((5) + ,y_b}:zl,hs((s) (5

m
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and ha(6)
he(8) 1= 20— 4 b 5
7(9) Ch5(6)m—1 t Ohy(6),15(6)
with b* defined in (3.1.49) satisfy

he(6) — 0, 6 =0,

and
h7(6) — 0, 6§ — 0.
For
hl((S) = max{h,5(6),h,5(h6(6))},
hz((S) = h4(5),
h3(6) = hy(hg(9))
we obtain
Fy(hn(6), ha(6), hs(6), 5)8 (3.1.55)
3(0
= 20#57”)_1 + bh3(5),h1(5) (20h2(5)+7imbh2(6),h1(6)5)
ha(hs(6))

IN
N
)

a(he( 1
_HalB0)) gy 20ha(6) + —b 5
@t @y (20hs0) + b))

— 0, 6 > 0.
Thus we have
Fy (h1(0), Fa(ha(8), ha(8), ha(6),8)) = 0, 6 =0 (3.1.56)
and the proof is complete. O
We now put all previous steps together to obtain the main stability result.

THEOREM 3.1.11 Let u$°(Z,d) and u*(z,d), &,d € Q, be the far field patterns
for scattering of acoustic plane waves two from scatterers Dy, Dy € C. We assume
that with a nonnegative parameter § the difference between the far field patterns
satisfies

Hui’o - ué’o‘ , < (3.1.57)
L2(Ox0)

Then with the function F defined by (3.1.48) the Hausdorff distance d(Dy, Dy) of
the two scatterers Dy, Dy € C can be estimated by

d(Dy,D,) < F(5) (3.1.58)
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Proof. With F, defined by (3.1.47) we use Lemma 3.1.7 to derive

@5, (0 2) = @5, (@,2)] < Falp,7,n,0) (3.1.59)
for all ¢ € Q, p, 7,m > 0 and all points z,z € U with U defined by (3.1.12). We

can now apply Lemma 3.1.4 to derive
d(DlaDZ) < Fl(p7F2(p77_77775)) (3160)

for every choice of parameters p, 7,7 > 0. With the definition (3.1.48) for F from
(3.1.60) we obtain (3.1.58). .

Lemma 3.1.10 shows that the estimate (3.1.58) in fact is a stability estimate for
the reconstruction of D from the far field patterns for scattering of plane waves.
The function F' can be calculated or estimated according to the a-priori knowledge
about the unknown scatterers as given by the class C defined in Definitions 2.1.5
and 2.2.5.

The natural problem is the investigation of the dependence of F(§) on ¢.
Unfortunately, for general angles 3, we were not yet able to estimate explicitly
the behavior of F', but for ) = 7 and for impenetrable domains we will now use
the asymptotics of Bessel and Hankel functions to derive a logarithmic bound.
More general, we will explicitly estimate the dependence of the function F'(4) on
0 for the estimate

d(H(D1), H(D2)) < F(9) (3.1.61)

for the convex hulls H(D;) and H(D;) of two scatterers Dy, Dy € Copst-

THEOREM 3.1.12 Let Dy, Dy € Copst be impenetrable scatterers with scattering
data u$°(%,d) and us*(z,d), &,d € Q. If

(3.1.62)

(o0} (o0}
U, — U ‘ <
H 1 2 llr2axq) —

then we have

d(H(D1)aH(D2)) < ﬁ

with constants C' > 0 and 0 < ¢ < 1 uniformly for all D € Copss.

(3.1.63)

Proof. We consider the three-dimensional problem. Let zy € 0Dy N OH(D5)
be a point, such that for z = zg+v/(zy)p we can choose a domain of approximation
Gzpp), P € Q, with the angle 3, = 7/2 and

D;caG j=1,2.

Z2,D,P)
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Then we can use Lemma 3.1.7 and proceed along the lines of the proof of Lemma
3.1.4 to obtain

d(z0, D) < Fy (P, Fy(p,7,m, 5) (3.1.64)

for every choice of parameters p, 7,1 > 0 with the functions F; defined by (3.1.15)
and F, defined by (3.1.47). For the special choice

p=|Ind|~7, n=e "7 and 7=¢ 0o (3.1.65)

with0<c¢i < <1,¢0+c<1and0<c3 <cy—c; we will derive
|Fa(p,m,€,0)] < C (3.1.66)
for all sufficiently small 6 > 0. Then from (3.1.64), (3.1.65) and (3.1.66) we obtain

the explicit stability estimate (3.1.63).

To prove (3.1.66) we proceed in six steps.

1. We explicitly construct the domain G of
Lemma 3.1.2. Consider the domain G, ,
and define G := Bg(zp) by

3, R2 = (R — p/4)? + (2R, + p/2)?,
vy =2 — (§+ R)p,

(3.1.67)
where the first equation yields

5) 2(2R,)?
< R=2L4 (2R.)

~— ‘ 8 P
p/2

+2R,  (3.1.68)

B Then, by straightforward geometric argu-
r(%o) ments with the help of Figure 2 we derive
P

G.pp C Br(zo), d(z,Bg(z)) = T

Figure 3 and
d(G2p,p, Qr(T0)) >
for sufficiently small p.

2. We need to estimate the bounds b, defined in (3.1.33). To this end we
investigate special solutions of the interior Dirichlet problem for the Helmholtz
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equation in the domain Bpg(zy). We choose a coordinate system centered at
o = 0 and define the special functions

Z Z at jr(klz)) Y, N(2), =€ R (3.1.69)
k=0 1=k
with coefficients al := mh,ﬁ (k|z|)YE(2) for k = 0,...,n, | = —k,....,k. From the
expansion
O(z,2) = mz Z WY (k| 2) Y 2) g (k]2 Y, (), (3.1.70)
k=01=—k
oo k
=YY djelela)Y (@) (3.0.71)
k=01=—k

of ®(x,z) for |z| < |z| with respect to the spherical harmonics, the addition

theorem

S Ve ) = 2 peos) (3.1.72)

o 47

with the Legendre Polynomial Py, where # denotes the angle between Z and z,
the asymptotic behavior (1.2.36) and (1.2.37) of the Hankel and Bessel functions
and |Pg(t)] <1 for t € [-1, 1] we obtain

126.2) = ] ooy = S5 WOslel) YG) dulsR) Vi ') o
k= n-l—lm_—k
2k+1
= || kgn;lh (k|2]) ji(kR) Pk(cos(H))‘Lz(Q)
C_O 00 ko ﬂ qn+1
< M2 T 11

with ¢ := R/|z| < 1 and a constant ¢y not depending on R, |z| or n. Since for
compact subsets G, , of Br(zy) the solution of the interior Dirichlet problem
in Bp(zy) with L?>-boundary data on Qr(z,) defines a bounded mapping from
L*(Qg(z0)) into C(G,,,), we get a factor A such that

Hd)(-,z) - u”HC(GZ,p,,)) < A H(I)(" z) = Un 12(Qn(z0)) (3.1.74)
% fn_ﬂq (3.1.75)

The factor A is a function of 2z, R and p.
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3. To evaluate the dependence of A on p let u be a solution to the interior
Dirichlet problem for the Helmholtz equation in Bg(zy). We will show

C
u(z)| < 7 ] L2 (o)) (3.1.76)

for v € Bgr_,2(20), ie. A < Cp~? with some constant C. We present a proof
by means of spherical harmonics and Bessel functions. Again using a coordinate
system centered at xy = 0, from Green’s formula and the expansion (3.1.70) we
observe that

oo k

=3 > aljr(k|z|)Yi(2), x € Br(wo), (3.1.77)

k=01=—k
where the sum (3.1.77) converges uniformly on compact subsets of Bg(zy). We use
the Cauchy-Schwarz inequality to calculate for |u(z)| with « = r& € Bg_,/2(20)
the estimate

9] k

i |2
u@)? = | >3 a jilklal) Vi) |
k=0 1=—k
oo k -
< (v Z ak ji(vR)| Z > [vi@) () F]. @.Ls)
k=0 I=—Fk k=0 I=—Fk Jr(kR)
For the first term of (3.1.78) we observe that
o k 9
S X ok kR = Nl u o, < oo (3.1.79)
k=0 1=—k

For the second term of (3.1.78) we use the estimate

Vi(2)

1Ville@), €9, (3.1.80)

for spherical harmonics of order k£ € IV (see Chapter X, Lemma 6.1 of [46]) and
the asymptotic behavior of the spherical Bessel functions to derive

)3 Xk: vi(2) (&) I (3.1.81)
T 1.
k=11=—k Sk “R)
00 k 00 00
k=01=—k (“R) k=0 k=0

& g d q . 1 2q°
T =t T yg\i=g) T I—¢  1-g)
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with ¢ := % and a constant ¢. From (3.1.68) and 0 < r < R — p we obtain

cp® < 1—q <1, |Ing| > Bp? (3.1.82)

for sufficiently small p > 0 with constants ¢, C and B. We now use 1 — ¢®> =
(1—¢q)(1+¢q) and 1+ ¢ > 1 to estimate (3.1.81) by c¢p™ with a constant c. We
take the square root of (3.1.78) to obtain (3.1.76), i.e. we have proven A < Cp~2
with a constant C' not depending on p.

4. For the function
n k 1 l l
k=0Il=—k

we calculate u,, = Hg,. With n chosen as

ln(7 (=0l
n = [%] —1, (3.1.84)

where [a] denotes the smallest integer larger than a € IR, by straightforward
calculation from the estimate (3.1.75) we derive

< (3.1.85)

[2C.2) = Houl| . g—), <

With the help of (3.1.82) and A < ¢p~2 we derive for n the estimate

| In(c7p?)]

n<C
p?

(3.1.86)

with constants C, c.

5. We now estimate the norm of the function g, with n given by (3.1.84). We
calculate

2 Ty & &,
Q) (E) > D lal

k=01l=—k

9n

< o é(%“)(eiﬁﬂ%
< o @nt D+ 1)(—)" (3.1.87)

ek|z|
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with a constant ¢;. We insert (3.1.84) into (3.1.87) to obtain

¢ Lin(erp®)|

o < C<|ln(02p3)|>2(Clln(cm?’)l) T 3188

p p

o

with constants ¢ and C' not depending on p.

6. We need to investigate the set of densities G which we constructed in
Lemma 3.1.3. Since we chose g € G to be minimum norm solutions of (3.1.8), the
norm ||gn||z2(q) is an upper bound for b,.

Finally, the bound (3.1.66) for |Fy(p,n,7,0)| can be obtained by straight-
forward (but lengthy) calculation from definition (3.1.47) of F,, the choice of
parameters (3.1.65) and the estimate (3.1.88) for the bounds b, and b,,.

The proof in two dimensions can be worked out in the same way with obvious

modifications. O

From stability as a corollary we obtain uniqueness of the support of penetrable
or impenetrable scatterers.

COROLLARY 3.1.13 For acoustic scatterers D € C the domain D is uniquely
determined by the far field pattern for scattering of all plane waves.



3.2 Electromagnetic scattering.

In this section we will prove stability estimates for inverse electromagnetic scat-
tering. Consider the electromagnetic Herglotz pair

) . 1
(Vo)) i= [ £ V) Vae™g(d) ds(d), ~curl Vg (3:2.1)
with a density g € L?(Q2). With the aid of
VXxVx((pw)=@p-V)Vw, peq, (3.2.2)
for solutions w of the Helmholtz equation and
medm):idepbuwmd::%Vxwix@émﬂ (3.2.3)

we derive

(Vg)(z,p) / (2, d, p)g(d)ds(d), z e IR’ (3.2.4)

By linearity and continuity of the direct scattering problem the incident electro-
magnetic wave

. . 1
E':=Vg, H':= —curlVyg

has the scattered field "

(V'o)wp) = [ Balr,dop)g(@ids(d), —cul (Vg)(op)  (3:25)
and far field pattern

(V> / (. d, p)g(d)ds(d), v x (VXg)(-,p). (3.2.6)

For fixed p > 0 we will construct an approximation

Ely(z,2,p) ~ (Vg(z,-)(z,p), = €D, (3:2.7)

for an electric dipole uniformly for z € B\ D,. Since both plane waves and
multipoles in acoustic and electromagnetic are strongly related to each other, we
will be able to use the results of the acoustic parts. From Lemma 3.1.3 we first
derive the following lemma.
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LEMMA 3.2.1 Given p,7 > 0 there exists a density g € L*(Q), such that for each
p,q € Q) there is an orthogonal matriz M with

C*(Gop) < T (3.2.8)

[El4p(0,0) = (VM) (- q)|

Proof. We use Lemma 3.1.3 for s = 4 and g = 0. For the special case
= 0 the multipole ®;, = ® has rotational symmetry. Thus for p € 2 we
obtain the approximation of ®(-,0) by Hg on Gy, , from the approximation on
Goerpr €1 = (1,0,0), by a simple rotation of the Herglotz wave function. The
domain of approximation Gy, , is obtained from the domain of approximation
Go,e.,p by rotation with an orthogonal matrix M satisfying p = Me;. Clearly,
the rotated Herglotz wave function v(z) := (Hg)(M 'x) approximates the point-
source ®(-,0) on Gy, ,. We calculate

zm)zﬂymﬁwwww

= [ e tg(a) ds(d)

:/wwww%@@. (3.2.9)
Q

To obtain the statement of the lemma we now apply the differential operator
L(q- V)V to both ®(-,0) and Hg(M'.). 0

Given the density g of the preceding lemma and an orthogonal matrix function
M on B we define the translated and rotated density by

g(x,d, M,7,p,B) = e "=lg(M " (x)d), de€ Q. (3.2.10)
We use the abbreviations

gT(xa d) - g(xa d7 M: T, P, 50)7

brp = lg- (2, )2 @),

and
b'r - bT,/n

where b, , is well defined, since the norm of g, (z,-) is independent of z € IR>.
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DEFINITION 3.2.2 Given a set of parameters p € INy, s =4, p,7,n >0, v = ﬁ
and an orthogonal matrix function M on B with the help of

gT(x7d) = g(xada MaTapa 07 5760)

and ) )
gn(z’d) = g(zvda Manapnua 5750)

we define the operator

Q: L*(Qx Q,IR*) — L™(B, IR*) (3.2.11)

(Qu)(z,2) = % /Q/Q{gT(x,d)gn(z,cz)}w(—d,d) ds(d)ds(d), =,z € B
(3.2.12)

The Operator (3.2.12) is basically the operator given by (3.1.35), but now
applied to vector-valued functions. It can be used to construct E,, from the
knowledge of E}7. Again, we observe the strong relationship between acoustic
and electromagnetic scattering. We use the class C of electromagnetic scatterers
defined by

C := Cpe U Cotm. (3.2.13)

THEOREM 3.2.3 Consider electromagnetic scattering by a perfect conductor or
an inhomogeneous medium scatterer D € C. The error for the approximation of
Ey, by QE; satisfies

G- By, 20) — (¢ QEZ (. 9)(.2)] < c% + Cb,,T (3.2.14)

for all q,§ € Q and all points x,z € B\ D,, for which (3.1.34) is satisfied with
p = M(z)ey or p= M(z)ey, respectively. The constants ¢ and C' hold uniformly
for D eC.

Proof. For n > 0 and ¢ € €2 by definition of the kernel g, we have

1B 200) = (Von(z ) 0)

oy S (3.2.15)

for all z € B\ D,, for which (3.1.34) is satisfied with p = M (2)e;.
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For the perfect conductor we use the boundedness of the integral operator
(I + M +iNPSZ)~!, the singularity of the kernels of the potential Pz and the
Cauchy-Schwartz inequality to estimate the corresponding scattered fields by

B2 (o 2.0) = (Vo0(2.)) 0]y < c% (3.2.16)

with some constant ¢ not depending on p or D € C. If the scatterer is an
inhomogeneous medium we obtain an analogous estimate by consideration of the
volume integral equation and the potential 7.

In the same way for a second independent parameter 7, ¢ € Q and all points
x € B\ D,, for which (3.1.34) is satisfied with p = M(z)e;, we derive

|E5, oz, @) = (V2gr () (- q)HC(Q) <ecr (3.2.17)

with some constant c. With the help of the mixed reciprocity relations Theorems
2.3.4 and 2.4.4 we transform (3.2.17) into

7+ By(e, ~d,q) - (q-%VOOgT(x,-))(d,(j)‘ <ty (3.2.18)

=210

with some constant ¢. We use (3.2.18) to estimate
‘(q'vsgﬂ(z"))(f’?aq) - (Q'QE‘X’(-,-,G))(:U,Z)‘
o 1 NP L
= ‘/Q (q -Ey(r,d,q) — ;/Qq - E%®(—d,d,§)g:(z,d) ds(d)> gy(2,d) ds(d)‘

< C|lga= )]

T (3.2.19)

L2(Q)

with some constant C'. Now from (3.2.19) and (3.2.16) we derive

T

G- Bigy(@,2,0) = (0- QE (- 0)) (x,2)| < C% + Cllontz. )| L2(9)

with constants ¢, C' > 0, and the proof is complete.

We will use the preceding theorem to estimate the difference between the
scattered fields of electric dipoles for two scatterers D; and Dy in C.
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LEMMA 3.2.4 Let B\ (%,d,q) and Eyy(%,d,q) for &,d,q € Q be the far field
patterns for scattering of electromagnetic plane waves from two scatterers Dy, Do
in C. If for some parameter § > 0 the far field patterns satisfy

<65 peq, (3.2.20)

|5 ) = B Conap) oy <

then with the constants ¢, C given by Theorem 3.2.3 we have

‘Eesdp,l(xvzaq) - E;dp,Q(xazaq)‘ (3221)
n

S 20;

1
+ 200y, T + —by, by, 0
g

for all g € Q, p,7,m >0 and all points x,z € U, where U is defined by (3.1.12).

Proof. Let M be an orthogonal matrix function on B, such that for all x € U
with p = M(z)e; the condition (3.1.34) is satisfied for both scatterers D; and D,.
We use (3.2.14) for each scatterer D; and Dy. Then as in (3.1.46) the estimate

(3.2.21) is obtained with the help of the Cauchy-Schwarz inequality. 0

We now prove the electromagnetic counterpart of Lemma 3.1.4. From esti-
mates for the difference of E7, ; and E7, , for scattering by two scatterers D,
and Dy we derive estimates for the Hausdorff distance d(Dy, Ds) of the scatterers.
Again we have to consider different situations according to the physical properties
of the scatterers D; and D,.

Situation | Properties of D; and D,

S1 D, Dy are impenetrable scatterers
52 D, is an inhomogeneous medium scatterer and (3.2.22)
D, is an impenetrable scatterer or vice versa

S3 D, Dy are inhomogeneous medium scatterers.

LEMMA 3.2.5 We consider scattering of electromagnetic waves by two scatterers
Dy, D,y € C. Assume that with parameters o,p > 0 the scaltered fields EZ,,, and
EZy, o for scattering of electric dipoles by Dy or Dy, respectively, satisfy

‘Esdp,l(z’z7q) - ESdp,Q(Z7 Za‘])‘ <o (3223)

e
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for all ¢ € Q and for points = € B\ (D1, U Dy ,), for which a cone co(z,p,, f),
p. € Q, in the exterior of Dy, U Dy, exists. Then we conclude

d(Dl,Dg) S Fl(p, O'), (3224)
where the function Fy is defined according to the situations S1 to S3 by
P+ oy 5L,

1/3
Fi(p,o) = P+(f§p)/ . s2, (3.2.25)
p+f§p, S3

with constants ¢ and C not depending on the scatterers D1, Dy € C.

Proof. We split the proof in two parts. First, consider the scattered fields at
a special point z in B\ (D; U Dy), such that z = 25 + pr(zo) with 2o € 0Dy and
p = d(z, Ds) sufficiently small and there exists a cone

co(z,p, ) CIR™\ (D1,UD,,), pe.

Then from (2.3.33), (2.3.34) and (3.2.23) for situation S1 of two impenetrable
scatterers we obtain the estimate

C
- > ES
aG.ogp 2 [P0
> |Blypa(z2p)| =0 (3.2.26)
c
> T3 O 3.2.27
= G DY)P (3.2.27)
which can be transformed into
Cd(z, D
d(z,D,) < (2, Ds) (3.2.28)

1/3

(c - ad(z,D2)3)

with constants C' and ¢. In the same way for situation S2 we we use (2.3.33),
(2.3.34), (2.4.20) and (2.4.21) to derive

Cd(z, D) \?
< | == ) 2.2
O ) (3:2.20
For situation S3 we estimate
Cd(Z,Dz)
D) < ———2 3.2.30
d(z D) < ¢ —od(z,Dy) ( )

The second part of the proof is literally the same as in Lemma 3.1.4 and thus
from the estimates (3.2.28), (3.2.29) and (3.2.30) we obtain Lemma 3.2.5. O
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Let the function F, be given by

1
Fy(p,1,1n,0) = 20% + 2Cb, ,7 + ;bn,p by, 6 (3.2.31)

for p,7,m,6 > 0, where the constants ¢, C' are chosen according to Theorem 3.2.3.
Then we define the function

F(8) := inf {Fi(p, Fa(p,7,,0)), 7,m,p >0} (3.2.32)

with Fy given by (3.2.25). The functions F' for acoustic and electromagnetic
scattering differ by constants and by the definitions of the function Fy(p, o). The
proof and statement of Lemma 3.1.10 is literally the same for the electromagnetic
case (3.2.32), i.e. we have

F(6) -0, § —0. (3.2.33)

We now collect all previous results to obtain the main stability result for electro-
magnetic scattering by a perfect conductor or an inhomogeneous electromagnetic
medium.

THEOREM 3.2.6 (Stability estimate.) Let EJ,(,d,p) and Ejy,(%,d,p) for
Z,d,p € Q be the far field patterns for scattering of electromagnetic plane waves
from two scatterers Dy, Dy € C. We assume that with a nonnegative parameter o
the difference between the far field patterns satisfies

HEEZI(., L p) — B, (-, .,p)‘

< (3.2.34)
L2(QxQ)

for allp € Q. Then with the function F defined by (3.2.32) the Hausdorff distance
d(Dy, Dy) of the domains Dy and Dy can be estimated by

d(Dy,Ds) < F(0) (3.2.35)

Proof. With Fy defined by (3.2.31) we use Lemma 3.2.4 to derive
|Eiipa(@.2,0) = Blypo(a,20)| < Falp,7,1,0) (3.2.36)
for all p € Q, p,7,n > 0 and all points z,z € U with U defined by (3.1.12). We

now apply Lemma 3.2.5 to derive (3.2.35). O

We would like to explicitly estimate the behavior of the function F(¢) for
0 — 0. For the convex hulls we will now derive an logarithmic estimate both for
a perfect conductor and an inhomogeneous electromagnetic medium.
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THEOREM 3.2.7 (Explicit stability estimate.) Let Dy, D, € C be two electro-
magnetic scatterers with scattering data Ey7 (%, d, p) and Ey,(%,d, p), &,d,p € 2.
Then

[Es2L( o) = Epal-, )| ke S (3.2.37)
for all p € Q yields
C
d(H(D1)aH(D2)) < Inofe (3.2.38)

with constants C' >0 and 0 < ¢ < 1.

Proof. The theorem can be proven analogously to Theorem 3.1.12. Here we
paraphrase the proof and point out the places where changes have to be made.

The explicit estimate (3.1.63) is obtained by explicitly estimating the behavior
of the functions Fy(p, 7,7,0), and Fi(p,0). To this end the domain of approxi-
mation G, , is placed in a ball Bg(z). In the ball Bg(x() an expansion of both
the point-source ®(+, z) and the incident Herglotz wave function with respect to
spherical harmonics and (spherical) Bessel functions is used. With the help of the
asymptotic behavior of the spherical Bessel functions, the norm of the minimum
norm solution ¢ with discrepancy 7 of

(Hg)(x) = (I)(ZU,Z), LS QR(‘TO)a
with H : L*(Q) — L*(Qg(x) is estimated in (3.1.88).

For the electromagnetic cases we first note that the incident electric dipole is
obtained by

Egdp(xa z,p) = %(p : Vx)vxq)(xa Z) (3239)
as a second derivative of the acoustic point-source and that the electric field
(Vo)a.p) = ~(p- V.)V, /Q em g () ds(d) (3.2.40)

of the electromagnetic Herglotz pair is obtained by an application of the same
differential operator to the acoustic Herglotz wave function Hg. Thus to obtain
an approximation of Eédp by Vg instead of equation (3.1.74) we have to derive
the estimate

Hd)(-,z) — Uy,

: < A H@(,z) - un‘

(3.2.41)

04(Gz,p,p L¥(Qg(z0))

and investigate the behavior of the corresponding constant A with respect to
variations of p. Instead of a singularity of second order here we obtain A < Cp~5.

Then we use the special choice (3.1.65) to derive (3.2.38) in the same way as in
Theorem 3.1.12. O
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From stability as a corollary we obtain uniqueness of the support of penetrable
or impenetrable scatterers.

COROLLARY 3.2.8 For electromagnetic scatterers D € C the domain D is unique-
ly determined by the far field pattern for scattering of all plane waves.



4 The case of finite data.

In this chapter we will investigate uniqueness and stability of inverse problems
in the case where only a finite number of measurements of the far field patterns
u®(-,d) are given for a finite number of incident plane waves.

Since we search for domains in a space of infinite dimension, in this case in
general we will not obtain a full uniqueness or stability result. We introduce
a concept to treat the situation appropriately, which we call e-uniqueness or e-
stability, respectively.

First, we show that for given € > 0 there are integers n;,n, in IN, such that,
if for n; incident plane waves the far field patterns for two scatterers D; and D,
coincide for n, observation directions, the Hausdorff distance d(D;, Dy) of the
domains D; and D, satisfies

d(Dl, Dg) S €.

The distance d( D, D) tends to zero, if n; and n, tend to infinity. This is a kind of
continuity statement: with more measurements we obtain better reconstructions,
and in the limit n;,n, — oo we obtain precise reconstructions. We call the
concept e-uniqueness in analogy to the e-d-formulation of continuity.

We would like to point out the difference of e-uniqueness and stability. Sta-
bility investigates the continuity of the mapping from the data space into the
space of domains. Stability implies full uniqueness. In contrast to stability,
e-uniqueness investigates a sequence of finite data-spaces for which uniqueness is
not necessarily satisfied.

Second, we will investigate stability for the case of finitely many measurements
and for a finite number of incident plane waves. In this case, where we do not
have uniqueness, it cannot be possible to obtain full stability results. We develop
a concept of e-stability as follows. Given € > 0 it is possible to find n,,n; € IN
and a function Fip, ;) : IRt — IR" with the behavior

lim sup Fip,n,)(8) < € (4.0.1)

6—0

such that the Hausdorff distance d(D;, Ds) of the domains D; and D, of the
scatterers D; and D, can be estimated by

d(Dla DQ) < F(no,ni)( ||u<1>o(, ) - ugo(’ -)||L2(Qni><9n0) ) (402)

Clearly, each function F{y, ,,) with (4.0.1) and (4.0.2) provides an e-stability es-
timate for the reconstruction of the shapes of scatterers.



4.1 Acoustic scattering.

The proof of the uniqueness theorem 3.1.1 is based on the application of Rellich’s
lemma and it cannot be applied to the case where the far field pattern is known
only for a finite number of observation points and incident waves. Since Rellich’s
lemma includes an analyticity argument, it is not possible to use approximations
to treat a finite data set. We now develop modified techniques to derive the results
of e-uniqueness, which in the limit-case ¢ — 0 also yield the above uniqueness
results.

We will replace the role of Rellich’s lemma by an operator Q,, ;) for the
approximate reconstruction of point-sources ®°(x, z) and, more general, the scat-
tered field @ (z,z) of multipoles. We will obtain

®; (r,2) ~ (Q(no,ni)uf“jbo,ni))(x, z), x,z€ B\ D,,
on a set B\ D, with p > 0, where for d;,d; € Q

ull, ny = (u(d;, dy)) eqnen (4.1.1)

(n 7j=1,...,n0,k=1,...,n;

denotes a finite set of measured far field patterns. We consider subsets of the unit

sphere
Q, = 4d;,7=1,..n} CQ 4.1.2
j

with d; # d; for i # j, d;,d; € Q,. For simplicity, for the sequence (€2, )nen we
demand the denseness property

d(z,8,) — 0, n— oo (4.1.3)
for all € ), the symmetry property
de, = —-def, (4.1.4)
if n is even and the monotonicity property
Q. CQ, forn>n' (4.1.5)
The function space L?(€,) is defined as the space of functions
w:Q, -C

equipped with the norm

1

Crn 2
ollzr = (— 5 |w<dk>|2> ,
k=1

n
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where ¢, is given by
2r m=2
Cm = : (4.1.6)
4T m =3
The mapping
viw = (w(dg))g=1,.n €C"

is a norm isomorphism from the space L?(,) onto the space " equipped with

the norm .
) (4.1.7)

C n
lal 2m = (—m 5 |ak|2)
no=

In the same way L?*(£2,, x €,.) with the norm

no MNg %
Con Cm,
w][£2(0,, x00,) = (—— > Iw(dk,dj)l2> :

Mo Ty 21 521

ng

is defined and shown to be isomorphic toC" ™ equipped with the norm (4.1.7),
where c,, has to be replaced by ¢? . Usually, we will identify the two spaces and
treat ufy, . (defined in (4.1.1)) as an element of L?(Qy, x2,,). By A:=:""oAos
Operators A :C" — Y can be considered as operators

AL (Qn, x Q) =Y.
We will usually identify A and A.

To construct the approximation operator @, ;) in principle we have two
possibilities. First, we may discretize the continuous operator (). Second, we may
approximate point-sources by a finite superposition of plane waves and proceed
analogously to the derivation of the operator (). Here, we will choose the second
approach.

A finite superposition of plane waves is given by the finite Herglotz wave
function
(Hoa)(z) := 23 e diq, 7€ R™ (4.1.8)
n =
7j=1
with density vector a €C" and ¢, given by (4.1.6). For scattering of the functions
H, a from a scatterer D we can exploit the linearity of the scattering problem. If
H,a is the incident field, the corresponding scattered field and its far field pattern
are given by
n
(Hia)(z) = == 5" w*(z,d;)a;, € R™\ D, (4.1.9)

n
n i
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and .
(H®a)(3) = ™Y u®(z,d;)a;, i€ Q. (4.1.10)
7j=1

n =

In the next two lemmas we investigate the approximation of a multipole &,
of order p1 by a finite superposition of plane waves H,g on the domains G, ,
introduced in (3.1.4).

LEMMA 4.1.1 For fized pu,s € INy and p > 0 the error

E(n) = sup 1€rquf; thﬂyq(-,z)—Hna (4.1.11)

p,geQ @

C*(Gzp.p)

for an proximation of the multipole of order p by a finite superposition of plane
waves s independent of z € IR™ and satisfies

Jim E(n) =0. (4.1.12)
Define
b = inf ®,.(-,2) — Hpal|es < 4.1.1
(€,n) sup i, {lall2@u)| 1@ug(-s2) = Huallos(py S ¢f  (41.13)
if
{a €] [|®,4(,2) = Huallcc.,,) <€} # 0 V¥p,g€Q

and b(e,n) := 0 otherwise. For fized € > 0 the function b(e, ) is bounded.

Proof. As for the continuous case we use the fact that G, , is obtained from
Gop,p by translation. If we translate a finite Herglotz wave function (4.1.8) by
2z € IR™, the result is again a finite Herglotz wave function with density vector

s~ —ikzedj
a; ‘=€

aj, j=1,..,n. (4.1.14)
Hence, an approximation of ®(-,z) on D C G, , can be derived from an approx-
imation of ®(-,0) on Gy .

Because of (4.1.14) the error E(n) is independent of z and we can restrict our
investigation to the case z = 0. We will use an approximation argument to derive
the statements from the continuous case.

For € > 0 consider the finite set G(¢/3, p, 11, s, 5y) given by Lemma 3.1.3. By
the definition of L? a function g € G C L*(f2) can be approximated by a function
g € C'(Q) such that

g — g

€
S —
CS(GO,p,p) 3
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For the density g € C''(Q) we can apply the standard convergence theorems for
quadrature rules to approximate the integral Hg by a finite sum H,a with error

<_

|HG = Hua ‘cs(Go,p,n 3’

where a € €" is given by a; := ag-n)ﬁ(dj), j = 1,...,n, with appropriate weights
agn). For the weights we assume |a§-n)| <e¢,j=1,..,n,n € IN with some constant
¢, which is valid for example for the approximate computation of integrals by
Riemann sums. Hence, given ¢ > 0 we can find n € IV, such that for every pair
p,q € € there is a €C" with

[@,4(-,0) = Hya (4.1.15)

< [[@nal.0) - gl

C*(Go,p,p) C5(Gop,p)

H|He - H3 ., + |15 = Hul

< 6

$(Go P, p CS(GO,p,p)

where g € G(¢/3, p, i, s, o) has to be chosen appropriately. Clearly, the function
on the left-hand side of (4.1.15) is an upper bound for the function E(n) defined
n (4.1.11). By (4.1.5) the function E is monotonous. Thus we obtain E(n) — 0
for n — oco. For the norm of a we estimate for sufficiently large n

n

C n) ~
g (dj) 2 (4.1.16)
1

2
||a||L2(Qn) = ij

n
< sz ||9 )? — C||g||%2(ﬂ)7 n — oo;

i.e. the norm of a is bounded uniformly for n € IN. Thus we obtain the bound-
edness of b(e, -) and the proof of Lemma 4.1.1 is complete. O

For p,s € INy and p,7 > 0 according to the behavior (4.1.12) of E(n) there
is an even integer n € IV such that

sup 1nf {H@M ,0) —Hna‘

p,qeQ o€

(4.1.17)

|3

<
CS(GO,p,p) } o
is satisfied.

LEMMA 4.1.2 Given p,s € INg, p,7 > 0 and an even integers n € IN such that
(4.1.17) is satisfied, there is a finite set

G=G(n,1,p p,s,0) CTC"
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such that for each p,q € ) there is a vector a € G with

[@4(-,0) = Hogl ey ST (4.1.18)

If for p, s, p, 7 and n the condition (4.1.17) is not satisfied, we define

g(na Ty Py Ky S,y 50) = {0}
Proof. Consider p,q € 2 and a €C" with

Hq)u,q('vo) — Hya

(4.1.19)

|3

Cs(Gop,p) —

Since for fixed a € C" the function on the left-hand side of (4.1.19) depends
continuously on p and ¢, by compactness of €2 as in the proof of Lemma 3.1.3 we
obtain a finite set G of vectors a € ", such that for p,q € € there is a vector
a € G which satisfies the estimate (4.1.21). O

As shown in (4.1.14), an approximation of @, ,(-,0) on G, , yields an approx-
imation of @, ,(-,z) on Gy ,,. For a vector a inC" we define the vector function

a(:) : B—=QC" by

a;(v) = e g, j=1,.,n, x€B, (4.1.20)
where d; is given by (4.1.2). From (4.1.18) by translation we derive
@, 7) = Hya(a)] compy ST (4.1.21)

Following Lemma 4.1.2 and (4.1.20) the vector a is a function

a:a(x,p,q,T,p,u,S,ﬂg). (4122)

We will need the vector with two different sets of values for z, 7 and p and with
vectors p, ¢ depending on z. To indicate the dependence we will use the notation

ar(z) = a(z,p(x), ¢(x), T, p, 1, 5, Bo)- (4.1.23)

The j-th component of a,(x) €C" is denoted by

aT,j (.'L.) *
For the set G we write as in the continuous case
Gr =G(n,7,p, 1, s, Bo)- (4.1.24)

We are now prepared to define the operator Q,, »,)-
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DEFINITION 4.1.3 Given a set of parameters yp € INg, s = 1, p,7,n > 0, even
integers ny,n; € IN, for which (4.1.17) is satisfied for (0,7,n,), (i, n,n;), and
functions
p,q: B —

with the help of

G’T(x) = a(l',p(l'),Q(fL'),T,p,O,S,ﬁg).
and

ay(z) = a(z,p(2),q(2), 7, p, 1, 5, Bo).

we define the operator

Q(no,ni) : LZ(Qno X an) - LOO(B)

by
1 ¢ Cm S5 &
(Q(no,ni)w)(x’z) PV Z ZaT,] ank (—dk,dj) (4.1.25)
/Y’ITL nO nZ .7 1 k=1
for x,z € B.

THEOREM 4.1.4 Consider scattering by a sound-soft, sound-hard or inhomoge-
neous medium scatterer D € C. For all x,2 € B\ D,, for which (3.1.34) is
satisfied for p = p(x) or p = p(z), respectively, the error for the approximation of
@Z,q(x,z) by Q(no,ni)u?’;o,ni) is estimated by

5 00 n
‘éﬂyq(x,z) — (Q(no,ni)u(nmni)) (x,z)‘ < c P +C Han(z)‘ 2y T (4.1.26)
uniformly for D € C with constants ¢ and C' depending on L.
Proof. We start with the estimate
@40, 2) = Ha,a(2)] iy S (4.1.27)

derived from (4.1.21). The scattering map u’ — u® is bounded from C'(D) into
C(B\ D,). Estimating the combined single- and double-layer potential with the
help of the Cauchy-Schwarz inequality we derive a constant ¢, such that (4.1.27)
yields

@5, 2) — H;

20| g,y S T (4.1.28)
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uniformly for all scatterers D € C. We exploit the estimate (4.1.21) a second
time, now for 7,n, and p = 0, to obtain a constant ¢ with

H(I)"o(-,x)—ngaT(x)HC(m <ecr (4.1.29)

uniformly for all scatterers D € C. We use the mixed reciprocity relation (2.1.4)
to transform (4.1.29) into

s —i ©a-(x))(— — T
w(z, d) - (He2ar(@))(-d)| < - (4.1.30)

for all d € Q2. We now insert the approximation (4.1.30) for u*(x, —d) into

(Hy,00(2)) () —C’"Z (2, dy )y 1 (2).

i x5

From the Cauchy-Schwarz inequality we obtain the estimate
|(H3,05(2)) (@) = (Quomoy il mn) ) (2 2)]
Cm o= [ Cm >
— (U (a:, dk — ZU dk; a'r](x)) an,k(z)

mojl

< | (4.1.31)

an(z)‘ 12(@n,) |

with some constant C' uniformly for scatterers D € C. We can now use (4.1.31)

and (4.1.28) to estimate the distance between @}, , and Q(n,n,)Uufy, »,)- We calcu-
late
@5, (z,2) — ( (o) U ) ) (7 2)| (4.1.32)
< |2 (z,2 (Hsan )) (@)
+ | (Hyan(2)) (2) = (Quomule ) (&, 2)|
< a(2)] ey T (4.1.33)
with constants ¢ and C' uniformly for scatterers D € C. 0

In the finite data case it is of interest to explicitly formulate the approximation
properties of QQ(,, ;) in a corollary.
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COROLLARY 4.1.5 For scattering by a sound-soft, sound-hard or inhomogeneous
medium scatterer D € C we consider the approzimation of ®;, . by Q(”oa”i)u?go,ni)'

Given p € INy, p,o > 0 and functions p,q : B — ) there are parameter T,n1 > 0
and even integers n;,n, € IN, such that

@54(2,2) = (Quupn U5, ) (@.2)| < o, (4.1.34)

for all x,z € B\ D,, for which (3.1.34) is satisfied for p = p(x) or p = p(2),
respectively.

Proof. Given p,0 > 0 for n = 0/(2¢) we use Lemma 4.1.2 and first obtain
n; € IN such that (4.1.17) is satisfied with (7,n) replaced by (n,n;). We then
construct the function a,(-) as in (4.1.23). In the same way for 7 = o /(2C'||a, (2)]|)
and p = 0 we get n, € IN to obtain the estimate (4.1.17) with n replaced by n,.
Now an application of Theorem 4.1.4 yields (4.1.34). 0O

We can use the Operator @, ;) to obtain estimates for the difference of
the scattered fields ®] ,  or @35 by scatterers D; or Dy, respectively, from the
knowledge of a finite data set of far field patterns for scattering of plane waves.

LEMMA 4.1.6 Let ui®(Z,d) and u®(z,d), &,d € Q, be the far field patterns for
scattering of acoustic plane waves from scatterers Dy, Dy € C. Given ju € INy,
p >0 and o > 0 there are even integers n;,n, € IN, such that

uP(i,d) = uX(2,d), &€, dE D, (4.1.35)

yields

\qﬁ,u,q(fc&)—<I>§,M,q(:c,Z)\ <o (4.1.36)

for all g € Q and all points x,z € U, where U is defined by (3.1.12).

Proof. First we remark, that we can choose a function p : B — €2 such that
(3.1.34) is satisfied for both scatterers D; and Dy and for all x € U. We choose
an arbitrary constant function ¢(-) : B — Q. With Q, »,) given by (4.1.25) we
estimate

‘@i%q(x, z) — <I>§,u,q(x, z)‘
q)iu,q (1‘7 Z) - (Q(no,nz)u(lx,)(no,nl)) (1‘7 Z)‘
+ ‘ (Q(no,nz)ucl)?(no,nl)) (ZL‘, Z) - (Q(no,nz)u;?(no,nl)) (ZL‘, Z)‘

+ ‘ (Q(no,nz)u;?(no,nl)) (ZL‘, Z) - q’;,”,q (ZL‘, Z)‘ (4137)

<
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According to Corollary 4.1.5 given ¢/2 we obtain 7,17 > 0, n,,n; € IN, such that
the first and the last term of (4.1.37) are bounded by ¢ /2 for all points z,z € U,
where according to Lemma 4.1.2 we may choose n;,n, and 7,7 uniformly for
q € Q. From (4.1.35) we derive that the central term of (4.1.37) is zero, thus we
obtain the estimate (4.1.36). O

We are now prepared to formulate the main theorem on e-uniqueness for the
reconstruction of the shape of a sound-soft, a sound-hard or an inhomogeneous
medium scatterer D € C from a finite data set Ul ) of scattered plane waves.

THEOREM 4.1.7 (e-uniqueness) Let u®(z,d) and u(z,d), &,d € Q, be the far
field patterns for scattering of plane waves from two acoustic scatterers Dy, Dy in
C. Given € > 0 there is ny,n; € IN, such that

uX (@, d) = uP(#,d), &€ D, dE Q. (4.1.38)

yields the estimate
d(Dl, D2) S € (4139)

for the Hausdorff distance d(Dy, D3) of Dy and Ds.

Proof. Consider one of the situations S1 to S6. Given € > 0 we choose p and o
such that € = Fy(p, o) with F; given by (3.1.15). We use Lemma 4.1.6 to obtain
integers n; and n, such that

2,u,q

‘@i%q(z, z)— @5, (2, z)‘ <o (4.1.40)
is satisfied for all ¢ € 2 and for all points z € U with U defined by (3.1.12). Then
the estimate (4.1.39) for the chosen situation is given by (3.1.14) of Lemma 3.1.4.
To obtain the statement (4.1.39) for arbitrary situations we take the maximum
of all n;, n, for S1 to S6. 0

We have shown that a sufficiently large finite number of measurements of the
far field patterns determine the boundary of an acoustic scatterer up to a given
error € in the Hausdorff distance. This is independent of the physical properties of
the scatterer, i.e. the scatterer may be an impenetrable sound-soft or sound-hard
obstacle or an inhomogeneous medium scatterer.

If more information about the physical properties of the scatterer is known,
we may obtain better estimates for the dependence of n, and n; on €; i.e. less
measurements are necessary to determine the boundary up to an error e. This
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is due to the fact that we do not have to build a maximum of all bounds for
the different possible situations S1 to S6. The observation indicates, that the
ill-posedness of an inverse problem is influenced by the amount of information
given for reconstructions.

As a simple consequence of e-uniqueness we obtain the uniqueness statements
of Corollary 3.1.13 for the support of either impenetrable or inhomogeneous
medium scatterers D € C.

The second theme of this section is stability in the case of finite data. In
this case we do not have uniqueness and thus it cannot be possible to obtain full
stability statements. We will show that it is still possible to derive statements
close to stability which we refer to as e-stability.

The concept of e-stability is closely related both to full stability and to
e-uniqueness as introduced in Section 3. To emphasize and enlighten the con-
nections we will give two proofs for the main theorem on e-stability. The first
approach does not build on stability estimates, but derives the statements of e-
stability in a way close to e-uniqueness. The second approach shows how the
statements of e-stability can be derived from full stability.

The main tool of the first approach is the operator ((n,n,) defined in (4.1.25).
We need some further preparations. To estimate the norm of @(,,,,,) We use the
bound

bnrp 1= max{||a||Lz(@n), a€G(n,t, p,u,s, BO)} (4.1.41)

where the norm || - |[2@n) is given by (4.1.7) and the set G(n,T,p, i, s, By) by
(4.1.24). In Lemma 4.1.1 it has been shown, that for fixed p,7 > 0 the constant
by,r.p is bounded uniformly for n,,n; € IN. We define

Ui

Fy(no,ni, p,7,1m,0) = QCpm_l + 2C by T (4.1.42)
1
+ f)/_mbnhnvpbnoﬂ—:p 5
and
Flngn(0) = inf{F1 (p, Fy(ny,ni, p, 7,77,5))‘ p,7,m >0 (4.1.43)

for which (4.1.17) is satisfied for (i, n,n;) and (0,7, n,) }

with the function Fj given by (3.1.15) according to the situations S1 to S6. We
first study the behavior of Fiy, ,,)(d) for 6 — 0.
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LEMMA 4.1.8 Given € > 0 there is no,n; € IN, such that the function F,, »,)
defined by (4.1.43) satisfies

lim sup Fip, 5,)(6) < €. (4.1.44)
0—0

Proof. For n,,n; € IN the function F{,, ,,(d) is dominated by

Fy (po, E3(no, mi, po, To, Mo, 5))

for all positive parameters py, 79 and 1y, for which the condition (4.1.17) is sat-
isfied. We show that for € > 0 we can find n,,n; € IN and parameters p,, 7o and
1o, such that
lim sup F} (pg, Fy(ny,ni, po, To, Mo, 6)) <e (4.1.45)
0—0

and (4.1.17) is satisfied for (u, n9, n;), (0,79, n,) and py. We proceed in two steps.
1. The function F5 can be decomposed into the sum and product
Fy(no, n; 0) = 20— + by (20 by 9)
2\No, Ni, P, T, 17, - Cpm—l ni,150 T Yim No,T,p

Since for fixed p, 7 > 0 the constant b, ;, is bounded independently of n, € IV,
by an application of Corollary 3.1.9 to f(t,s) := supnenbnts we obtain functions
hy and hs with

hy(6) =0, § — 0,
and

hs(6) =0, § — 0, (4.1.46)

such that the functions

1
he(0) = 2C hy(0) + ,Y_b:o,h4,h5(5) 0
held) = 20— b g
0= 2

with b* defined in (3.1.49) satisfy
he(d) — 0, 6 — 0,

and
h7(6) — 0, § — 0,
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uniformly for n;,n, € IN. For
hi(6) = max{hs(9),hs(hs(d))},
ho(6) = hy(d)
hg((S) = h4(h6(6))

we obtain
Fg(no,ni,hl(é),hz(é),h3(5),5)5 (4147)
hs(d
= QChl (ng)—l + bni,h3((5) hi(6) (20h2(5) + bno,h2(6),h1(6)5)
ha(he(9)) 1
< 2 o 20ha(8) + —b" 5
= h5(h6(5))m—1 isha(he(0)) h5(h6(5))( 4( ) N ha(8),hs(0) )

— 0, 0 —>0.
Thus we have
Fy (h1(0), Fa(ng, ni, b (), ha(6), h3(6),0)) =0, 6 — 0, (4.1.48)
uniformly for all n,,n; € IN.

2. For € > 0 from (4.1.48) with the explicit form of F> and F; we get param-
eters po, 7o, 7o > 0 and some constant C', such that we have

sup  Fy(no, ni, po, 70,M0,0) < C

No,n; EIN

and
FI(PO;U) S €

for all ¢ sufficiently small and 0 < o0 < C. This yields

limsup sup F1(;00,F2(no,ni,P0,Toa77075)) < e
0—0 ne,n;EIN

We now explicitly take into account the condition (4.1.17). For py, 7y and ng
following Lemma 4.1.1 we choose n,,n; € IN such that (4.1.17) is satisfied for
(e, Mo, mi) and (0,79, n9). Then we obtain (4.1.45) and thus (4.1.44). O

To prove the following Theorem on e-stability we will use the approximation
of the fields ®° by the operator @(,,,,,) applied to

U?zo’ni) = (Uoo(d],dk))

to derive an estimate for the Hausdorff distance d(Dy, Ds) between the domains
of two scatterers D; and D, in C.

€ L*(Qy, x Q)

j=1,..,no,k=1,...,n;
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THEOREM 4.1.9 (e-stability) Let u®(z,d) and u®(z,d), z,d € €, be the far
field patterns for scattering of acoustic plane waves from two scatterers Dy, Dy in
C. Given € > 0 there are even integers n,,n; € IN such that, if for a nonnegative
parameter 0 the far field patterns satisfy

o0 o0
H“l(no,ni) ~ U2(ng,n;)

< g, (4.1.49)

L2(Qny X,
the Hausdorff distance d(Dy, D) of the two scatterers can be estimated by
d(D1,Dy) < Finyny(6). (4.1.50)

Proof. Let u € INy be given according to the situations S1 to S6 defined in
(3.1.11). For € > 0 following Lemma 4.1.8 there are even integers n,, n; € IN, such
that the function F{,, ,,) satisfies (4.1.44). We now keep n;,n, fixed and apply
Theorem 4.1.2 to each choice of p, 7,1 > 0, for which the conditions (4.1.17) and
(4.1.17) are satisfied. Then for a function p: B —  and ¢ € Q an application of
Theorem 4.1.4 to the scatterer D, j = 1,2, yields

‘(I)Juq z) — (Q(no,”i)uf(no,ni)) (x,z)‘ S p

for all , z € B, for which (3.1.34) is satisfied. We use (4.1.51) for D; and D, and
the Cauchy-Schwarz inequality applied to

Ui
m—1

+Cbpy,t  (4.1.51)

Q(ucl)?#,q B ug?u,q)

to derive from

@] ,0(2,2) = B, (2, 2)| < |9,,(2,2) — (Qui)(z,2)] (4.1.52)
+Q(us = u) (,2)| + |(Qu®)(w,2) — @3, (x, 2)|
the estimate

@7 ,.4(z,2) — @3

2,19

(ZU,Z)‘ S F2(no,nz',P,T,7775) (4153)

for all ¢ € Q2 and all points z,z € B\ (Dl,p U Dg,p), for which cones co(z, pg, Bo)
and co(z,p., Bo), Pz, . € Q, in the exterior of D, U D, , exist. Now we apply
Lemma 3.1.4 to obtain

d(DlaD2) S Fl(paFZ(noaniap77_77775))' (4154)

Since this is valid for each choice of the parameters p, 7,1 satisfying (4.1.17) and
(4.1.17), we obtain the estimate (4.1.50).
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O

We now come to the second approach to prove the estimates of e-stability.
For €, given by (4.1.2) we know that

7(n) : = max rr%m d(z,d;) — 0, n— oc. (4.1.55)
x j=1,..,n

We will prove Theorem 4.1.9 with the function F,, »,) replaced by
Flnyn(0) = F(167*(47Clo(7(no) + 7(m:)) +0)), § >0, (4.1.56)

where F'is given by (3.1.48).

From Theorem 2.1.14 for impenetrable scatterers and Theorem 2.2.7 for the
inhomogeneous medium scatterer we obtain that the set of far field patterns
u®(-,d) € C'(Q) is bounded uniformly for d € Q and scatterers D € C. By the
same arguments this can be seen to be true for the surface gradient Gradg u*(-, d).
Thus the functions u™ (-, -) are bounded in C* (2 x Q) by a constant C, uniformly
for all scatterers D € C. Using the mean value theorem we have for n,,n; € IN
and 7 =1,2

s (&, §) — w3 (di, d)| < 2] ononey (A&, d) + d(@, dp)). (4.1.57)
From (4.1.49) and (4.1.57) we obtain
(@, 9) — w3, 9)| < [ur (@, 9) — ui(di, d)|
‘ v (dy, dy) — u3 (dz,dk)‘
\ 2 (dr, di) — u (,9)|
47 Clo (d(&, dy) + d(i, di)) +6.  (4.1.58)
By integration of |u$® — u$°|? with the help of (4.1.55) we now derive

< 167 (4rClo(T(no) + 7(1s)) + 6). (4.1.59)

u® —u ‘
1 2 llL2(axq)

Given € > 0 because of (4.1.55) and the behavior (3.1.52) of F' it is possible to
choose n,,n; € IN such that

F(647T3Coo(7'(no) + T(n,))) < e

Then for Fiy, ,,) defined by (4.1.56) we calculate (4.1.44). Finally, from (4.1.59)
and Theorem 3.1.11 we derive (4.1.50) with F{,, ,,) defined by (4.1.56).
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It is an important question to explicitly determine the behavior of Fi,, ,,)(9)
for 6 — 0 and for n;, ng — oo. For the reconstruction of the convec hull #(D) of
a scatterer D € D we will now answer this question.

THEOREM 4.1.10 Let u$°(Z,d) and u*(z,d), &,d € Q, be the far field patterns
for scattering of acoustic plane waves two from scatterers Dy, Dy € C. Given
€ > 0 there is n,,n; € IN such that, if for a nonnegative parameter § the far field

patterns satisfy
< 4, (4.1.60)

L2(Qnp X)) —

[oe] [oe]
Hul(no,ni) = U(ngy,ny)

the Hausdorff distance d(H(D1),H(D3)) of the convex hulls of two scatterers
D1, Dy € C can be estimated by

C
d(H(D,), H(Dy)) < _ 4.1.61
(H(Dy), H(D2)) ‘ln [16%2 (47TC’00(T(n0) +7(n;)) + 5)] ( )

with constants C' >0, 0 < ¢ <1 and Cy.

Proof. We proceed analogously to the second proof of Theorem 4.1.9, where
the role of Theorem 3.1.11 has to be replaced by Theorem 3.1.12. 0



4.2 Electromagnetic scattering.

For electromagnetic scattering to obtain uniqueness and e-uniqueness in principle
we can proceed in the same way as for acoustic scattering. For diversity here we
use a second approach to e-uniqueness via the results of stability. The following
theorem includes scattering from a perfect conductor or from an inhomogeneous
electromagnetic medium.

THEOREM 4.2.1 (e-uniqueness) Let E5y,(7,d, q) and E5f,(7,d, q) be the elec-
tric far field patterns for scattering of plane waves from two electromagnetic scat-
terers Dy, Dy € C. Given € > 0 there is ny, nj, Nyt € IN, such that

Ex(2,d,q) = E,(2,d,q), ©€Q,,, d€Q,, g€ (4.2.1)

Npol

yields the estimate
d(Dl,Dg) S € (422)

for the Hausdorff distance d(Dy, D3) of Dy and Ds.

Proof. We base our proof on the stability estimates. A stability estimate
consists of a function F : RT — IR

F(6) -0, § =0, (4.2.3)

such that for two scatterers D; and D, in C with electric far field patterns

By, (2,d,q) and EPy(2,d, q), respectively, the estimate

L2 < 0, qeEf, (4.2.4)

H pll 77q 510,2('7'7q)‘

yields
d(Dy,Dy) < F(9). (4.2.5)
From Theorem 2.3.11 for the perfect conductor and Theorem 2.4.7 for the inho-
mogeneous electromagnetic medium we obtain bounds for the far field patterns
i), J = 1,2, in CH(Q x Q x Q) uniformly for scatterers D; € C. Thus
given € > 0 and ¢ with F(0) = €, we can find n,, n; and n,y in IV such that

o (#,d,q) = By (#,d,q), # €0, d€Q, g€, (4.2.6)
yields
@) = B )|y < (4.2.7)

for all ¢ € Q. Now from (4. .7) and (4.2.5) we obtain (4.2.2) and the proof is
complete. O
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The brevity of the preceding proof compared to the lengthy estimates for the
acoustic case may be surprising at a first glance. Of course, the main work to
obtain estimates has to be done at some place. Here it is hidden in the stability
estimate (4.2.5), proven in the preceding chapter.

In a similar way it is possible to derive the results of e-stability for the above
inverse electromagnetic scattering problems. To avoid repetitions we omit the
presentation.



5 A point-source method in inverse scattering.

In the preceding sections we used point-sources to obtain uniqueness and stability
results for inverse scattering problems. We will now investigate the reconstruction
of the domain D of scatterers D from the algorithmical and numerical viewpoint.

As a starting point we develop a point-source method to reconstruct the scat-
tered field u®(z,d) in the exterior of a scatterer D € C. More explicitly, given a
scatterer D € C and p,7 > 0 we will construct a kernel

g9-(z,%), z€ B, &€Q,

such that the reconstruction of the scattered field u®(z, d) by
(mﬁuammzé%@@mﬂ@@@@LzGBu%

satisfies the error estimate

Analogous estimates will be derived for electromagnetic scattering from a
perfect conductor or an inhomogeneous electromagnetic medium. We will prove
the convergence of the point-source method to reconstruct u*, i.e. given a family
of measured far field patterns u$°, & € (0,1), with

M@@—AW%JWWBWHST. (5.0.1)

[[u™ (-, d) = ug’||r2@) < 6

we will show that we can choose 7 = 7(§) such that

The operator A is a kind of backprojection operator as used for the Backus-Gilbert
or mollifier methods, see [35], [12] and [45].

In a second step we will use the scattered field u*, the known incident field v’
and the boundary conditions of an impenetrable scatterer D for reconstructions
of the domain D of D. Numerical examples are provided for acoustic scattering
in three dimensions.

A different approach to the point-source method, which does not use the
reciprocity relations, has been developed in [61], [62] and [63].

uS(-,d)—AugOH —0, §—0.
L>=(B\D,)



5.1 Acoustic obstacle scattering.

For the construction of the operator A we need to investigate the approximation
of point-sources by a superposition of plane waves as in Section 3.

DEFINITION 5.1.1 For u=0,s =1, p,7 > 0 and a function p : B — €0 let the
density g,(z,-) be given by (3.1.32). We define the operator

A L*(Q) — L™(B)

(Aw)(z) = — [ g2z, dyw(~d) ds(d), = € B. (5.1.1)

The error for the reconstruction of a scattered field u®(-, d) from its far field
pattern u* (-, d) is estimated in the following theorem.

THEOREM 5.1.2 Consider scattering by a sound-soft, sound-hard or inhomoge-
neous medium scatterer D € C. For p = 0,s = 1, p,7 > 0 and a vector field
p: B — Q with

D C Gm,p(w),p, r€B \ Dp, (5.1.2)

let the operator A be given by (5.1.1). Then for fized d € Q and a measured far
field pattern u° (-, d) with

[u (-, d) = ug (-, )|

< 5§ (5.1.3)

L2(Q) —

the error for the approximation of u’(-,d) by Au$°(-,d) satisfies

u'(z,d) = (AuP(-,d))(2)| < 7+ Cb,, 0, 2€ B\ D, (5.1.4)

with the constant b, , defined by (3.1.33) and constants ¢,C > 0 uniformly for
scatterers D € C.

Remark. The elements of the following proof have already been used to in-
vestigate the reconstruction properties of the operator ).
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Proof. First, for 7 > 0 and z € B\ D, by definition of g we have

< T (5.1.5)

[@ua2) = Horlz)| ) <

The scattering map maps the incident field in C*(D) boundedly onto the far field
pattern of the scattered field in L?(2). Thus we obtain a constant ¢ such that

[@(, 2) — Hg, (2 <ecr (5.1.6)

")HC(Q) =

We use the mixed reciprocity relations (2.1.4) and (2.2.4) to transform (5.1.6)
into

s 1 o c
w(z,d) — v_m(H 9-(2,)) (=d)| < T (5.1.7)
for all d € Q2. From the decomposition
u'(z,d) = (AuP(,d)) (z)| < |u'(z,d) - —(H°°gT ) (~d)| (5.1.8)
= [ d{u(=d ) — i (~d )} as(@)

with the help of the Cauchy-Schwarz inequality we derive (5.1.4).

We use the operator A to reconstruct the field u*(-, d) from a measured far
field pattern ug®. Given the error ¢ in the measurements, the error of the re-
constructions is given by (5.1.4). For a family of measurements u§°, 6 € (0,1),
with

||u§° — Uoo(',d)||L2(Q) — 0, o — 0,

by an application of Lemma 3.1.8 there is a function h with
h(6) =0, 6§ =0,

such that A defined with 7 = h(¢) satisfies

We have proven the convergence of the point-source method for the reconstruction
of the scattered field u*(-, d).

w(,d) — AugOH cmpyy 0 50
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The kernel g.(z, -) of the operator A can be calculated according to the a-priori
knowledge about the unknown scatterers D given by the class C of scatterers (see
Definitions 2.1.5 and 2.2.5). In a first step the set of densities G has to be
computed according to Lemma 3.1.3 . Then g, (z,-) is given by (3.1.30). Clearly
the computation of the function gy € L?(Q2) with

< T (5.1.9)
C%(Go,p,p)

| ®(-.0) — Hgo|

for each p € 2 and s = 1 is not effective from a computational point of view.
We now describe a possibility to obtain g,(z,-) by the computation of only one
solution gy € L*(Q) of (5.1.9).

LEMMA 5.1.3 For a vector py € Q let go be a solution of (5.1.9) and let p; € Q
be given. Then the minimum norm solution g, for (5.1.9) with py replaced by p,
can be obtained from go by rotation

g1(d) := go(M~*d) (5.1.10)
with an orthogonal matriz M which satisfies py = Mpy.

Proof. The proof is obtained by a simple rotation of the domain of approxi-
mation and the Herglotz wave function from the fact that the rotated Herglotz
wave function

e g (dyds(d) = [ e g(d)ds(a)

— /Q eirdg (V=1 d)ds(d) (5.1.11)

is again a Herglotz wave function with the the rotated density g(M d). a

We now investigate the reconstruction of an unknown impenetrable scatterer
D from the knowledge of the far field pattern for scattering of a plane wave. As
described in Theorem 5.1.2 it is possible to use the operator A to reconstruct
u®(-,d) in the exterior of D.

We first consider the reconstruction of a sound-soft scatterer. In this case
we can use the boundary condition (2.1.4) to find the unknown scatterer as a
minimum curve of the total field

uf (-, d) +u' (-, d). (5.1.12)
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But so far the construction of the operator A to compute an approximation for
u® is built on the knowledge of D. The construction of the kernel g,(z,-) of A to
obtain the approximation (5.1.4) assumes the knowledge of adequate directions
p = p(z) such that

DC Gzyp(z)yp, z€B \ Dp, (5.1.13)

is satisfied, i.e. it assumes the knowledge of the unknown scatterer. Clearly we
do not know the scatterer and a knowledge for the choice of p(z) is not available,
when we start the algorithm. This gives rise to different strategies to choose p(z)
in a multistep procedure.

We now describe one simple strategy to reconstruct u® and p in several steps.
We start with a number of fixed directions p(z) = pe for £ = 1,..., N, compute
the corresponding operators A, and the fields

(Aeus) (2) + ' (2, d). (5.1.14)

For each £ = 1,..., N we search for parts of the unknown boundary 0D of the
domain D as the minimum curve of (5.1.14) and obtain a first approximation 0D
to the boundary 0D. In each further step we adapt the choice of p(2) according
to the reconstruction 0D, of the n-th step to achieve the condition (5.1.13) for
further points z € B and obtain an approximation 0D, ;. A stopping criterion
is provided by the condition (5.1.13), which has to be satisfied for the current
choice of p and the current reconstruction D,,. Efficient adaptive algorithms for
the choice of p will have to be part of further research (see also [14]).

For the sound-hard scatterer we have to modify the approach according to the
different boundary condition

a%(m(-, d) +ui(-,d)) = 0. (5.1.15)
So far, we described the reconstruction of u®. But to use the normal derivative
in (5.1.15) the reconstruction of Vu?® is needed.

As a consequence of the linearity and boundedness of the scattering operator
S : u' — u™ for scattering of point-sources ®(-, z) the operator S and the differ-
entiation V, with respect to the source point can be exchanged. This is a simple
consequence of the linearity and boundedness of S. Thus we have

V.0%(~d,2) = V.S(0(-2))(~d)
S(V.9(-,2))(~d). (5.1.16)
= —8(V®(-,2))(~d).
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Due to Lemma 3.1.3 there is an approximation of V®(-,2) by a Herglotz wave
function

Vy/Qei’“y'dgT(z, d) ds(d) = /Qi/id e"ilg (2,d) ds(d). y€ B\ D,, (5.1.17)

We define

(Aw)(2) = vim [ (cind) go(z,d) w(~d) ds(d), =€ B\D,  (5119)

and obtain an approximation of Vu®(-,d) by A'u®(-,d) with the error estimate
Vut(z,d) = (AuP(-,d)(2)| < er+Cb,, o, (5.1.19)

analogous to (5.1.4). For the reconstruction of a scatterer D with sound-hard
boundary condition we can now proceed analogously to the sound-soft case, where
the sound-soft boundary condition (5.1.12) has to be replaced by the sound-hard
condition (5.1.15).

Before we present numerical results, let us compare the design of the above
point-source method to the reconstruction of the unknown scatterer with a related
method of Kirsch and Kress [6].

First, Kirsch and Kress search for the unknown scattered field u®(-,d) as a
single-layer potential S on a curve I with has to be in the interior of the unknown
scatterer D. Thus the method needs to know some apriori-knowledge about the
location of the scatterer. In contrast to this, the point-source method does need
to know only a rough bound on the size of the scatterer but no information about
its location. Also the point-source method allows the reconstruction of scatterers,
which consist of an unknown number of separated components.

Second, for the reconstruction of u*(-,d) by a single-layer potential without
the simultaneous reconstruction of the full domain we do not obtain convergence
of the reconstructions, if the data error tends to zero. Even if the exact far
field pattern u> of a scattered field u® is given, in general we will not observe
convergence of the approximations to u®. This is due to the ill-posedness of this
inverse problem and the fact that in general the far field pattern u° is not in
the range of the single-layer potential operator. Using the single-layer potential
we cannot control the regularization error, which due to (5.1.4) and (5.1.19) is
possible for the point-source method.
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To obtain convergence, Kirsch and Kress had to combine the solution of the
far field equation

Sp =u>

and the minimization problem
min ||u’ + S¢l[z2op)

to find the unknown boundary 0D from the approximation gy, for the total
field u into one nonlinear optimization problem. Thus convergence needs the
reconstruction of the full scatterer.

With the point-source method it is possible to reconstruct the scattered field
u®(-,d) on arbitrary subsets of the exterior of D. It is possible to obtain recon-
structions of parts of 0D without consideration of other parts. The method still
involves optimization problems for the reconstructions, that is the search of parts
of the unknown boundary as a minimum curve from the reconstruction ugpprox
of the total field u. But the reconstruction of w is given by an application of
the integral operator A and the search for parts of 0D can be performed locally,
thus we may split the problem into a series of optimization problems and the
dimension of each of these optimization problems can be chosen arbitrarily small.
Especially in three dimensions this reduces the reconstruction time considerably.

In the following we show numerical results by Giebermann and Potthast [14],
who used the point-source method for the reconstruction of scatterers in three
dimensions. The measured data consist of the far field patterns for six different
incident plane waves at 256 observation points.
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Figure 5.2 shows a cut of the reconstruction in the z-z-plane in the second
second step of the reconstruction algorithm. The first step is given by Figure 5.3
to Figure 5.8, i.e. the minimum curves for different waves and orientations of the
domain of approximation. With the direction of incidence d and p = —d we show
the minimum curves of |ugpproz| for d = (0,0, —1) in Figure 5.3, d = (0,0,1) in
Figure 5.4, d = (0,1,0) in Figure 5.5, d = (—1,0,0) in Figure 5.6, d = (0, —1,0)
in Figure 5.7 and d = (0,0, 1) in Figure 5.8.
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Instead of a further minimization here we built the union of the minimum
points and then removed those points from the union, which according to the
orientation of the domain of approximation in comparison with the union of min-
imum points for the six steps could not be part of the boundary of the scatterer.
The union of the minimum points and the result of the removal-step can be seen
in Figure 5.9, 5.10 and 5.2.

15 15 1.5]
=

-1 0 1 ’ -1 0 1 ’ -1 0 1

Figure 5.9 Figure 5.10 Figure 5.2 (see above)
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In a second example we want to show, that we can reconstruct obstacles which
consist out of several separate components. Figure 5.11 shows two balls which
are reconstructed with the point-source method. Here we again use six different
waves and show the second step, i.e. the union of the minimum points, which
are this time shown in a full three-dimensional plot in Figure 5.12 without an
application of a removal-step.

Figure 5.11 Figure 5.12



5.2 Electromagnetic scattering by a perfect conductor.

The operator A defined by (5.1.1) for the reconstruction of the scattered acoustic
fields can be used also for the reconstruction of the scattered electromagnetic
field E)(z,d,p), 2 € B\ D,, from its far field pattern E7(-,d,p). For the electro-
magnetic case we have to choose the kernel g, (z, -) such that the estimates (3.1.31)

r (5.1.9), respectively, are satisfied with s = 4. The following theorem investi-
gates not only the perfect conductor, but also an inhomogeneous electromagnetic
medium.

THEOREM 5.2.1 Consider the scattering of electromagnetic waves by a perfect
conductor or an inhomogeneous medium scatterer D € C. For y = 0,5 = 4,
p, T > 0 and a vector field p : B — Q satisfying (5.1.2) the operator A is defined
by (5.1.1). Let the measured far field pattern E5° satisfy the data error estimate

< 6. (5.2.1)

L2(Q,R3) —

Then the error for the approzimation of Ey (-, d,p) by AEF® is estimated by
B (2,d,p) = (AE)(2)| < er + Cllgolliayd, 2 € B\D,,  (5.2.2)
with constants c¢,C' > 0 and gy defined by Lemma 5.1.5.
Proof. Given p,7 > 0 and z € B\ D, by the definition of g, we have

By 200) = [ Bl dp)gs(,d) ds(d)]|

_ H(q-V)V (@(-,z) —/Qei““JgT(z, d) dS(J)>\

c2(D)

|@(,2) - /Q ¢ty (2,d) ds(d)| , >
<7 (5.2.3)

IN

for all ¢ € Q2. The mapping of the incident electric field in C?(D) onto the far field
pattern of the scattered electric field in C''() is bounded uniformly for scatterers
D € C. Thus there is a constant ¢ such that

‘ edp )y R q / E d p gT d) dS(Ci)

With the help of the reciprocity relations (2.3.20), (2.3.22), (2.4.7) and (2.4.8)
from (5.2.4) we obtain the estimate

iy S €T (5.2.4)

< <7 (5.2.5)
(@)

|Eyy(zd,q) — / (—d, d, p)g:(,d) ds(d)

-2
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for = € B\ D,. Using the Cauchy-Schwarz inequality we calculate the norm of
the operator A and estimate

B (2,d,p) = (ABZ)(2)| < |B'(2,d p) — (ABZ(d,p))(2)|
(et - £2)0)
< 57 + 7 19012201 (5.2.6)
This completes the proof. 0

We can use the preceding theorem to formulate a point-source method for the
reconstruction of a perfect conductor D from the knowledge of a measured far
field pattern E§° for an incident plane wave E;;l(-, d,p). According to (5.2.2) for
an appropriate choice of the parameters p, 7 and the function p : B — € the
function AER® approximates the scattered field £y (-, d,p) on B\ D,. We can use
the boundary condition (2.3.5) to search for parts A of the unknown boundary
0D of the scatterer D as a surface where

‘I/A(') X (E;l('advp) +AE§O)‘

is small. Here v, is a function B — €2, which coincides with the normal vector v
to A on A.

We face similar problems as for the reconstruction of sound-hard acoustic
scatterers. First, the choice of g.(z,-) involves the orientation p € Q of the
domain of approximation G, ,, which has to be chosen such that the unknown
scatterer D is in the interior of G, y(.),. Second, the boundary condition involves
the normal vector to the unknown surface

For the reconstruction of a perfect conductor in principle the strategy, which
we suggested for the acoustic inverse scattering problems, can be used to overcome
the problems and reconstruct the scatterer in a multistep procedure.






6 Singular sources and shape reconstruction.

The methods discussed in the preceding Section 5 need to know the boundary
condition to reconstruct the unknown scatterer. But in many practical situations
the physical properties of the scatterer are not known and these methods are not
applicable. It is therefore of practical interest to develop reconstruction methods
which do not need to know the boundary condition or the physical properties of
a scatterer.

We will develop a method of singular sources for the reconstruction of a scat-
tering object when the physical properties of the scatterer are not known. In a
first step we will consider a sound-soft or sound-hard impenetrable scatterer and
show in a second step how the results can be extended to the reconstruction of
the shape of an unknown inhomogeneous medium scatterer.

6.1 Acoustic scattering.

The main idea of the method of singular sources is the use of the field ®*(z, z) to
reconstruct the shape of the scattering object. In a first part of this section we use
the operator ) given by (3.1.35) for the reconstruction of ®°(z, z) for scattering by
impenetrable scatterers. We estimate the error for the reconstruction of ®°(z, 2)
by (Qu*)(z, z) in the following theorem.

THEOREM 6.1.1 Consider the far field patterns u™(-,d) for scattering of plane
waves u'(-,d), d € Q, by a sound-soft or sound-hard scatterer D € C. Let the
function p : B — Q) be chosen such that (5.1.2) is satisfied. Given p=0,s =1,
7,1m,p > 0 and a measured far field pattern us°® with data error

> ‘

) (6.1.1)
L2(OxQ)

Hugo —u
the error for the approximation of ®*(x, z) by Quy® is estimated by

n

m—1

1
‘Qs(x, 2) — (Quy®) (z, z)‘ < c +Cb,, T + v—bwbw J, (6.1.2)

m

for x,z € B\ D, with the constants b, , defined by (5.1.33) and constants c,C
uniformly for domains D € C.



154 6. Singular sources and shape reconstruction.

Proof. We use Theorem 3.1.6 and the Cauchy-Schwarz inequality applied to
the first and second term of the right-hand side of the decomposition

[©%(2,2) = (Qui°) (x,2)] < [@°(2,2) - (Qu™) (,2)]
+ [(Qw* —uf) ) (w, 2)]

to obtain (6.1.2). 0

According to Theorem 6.1.1 we can use the operator () to reconstruct ®° from
the knowledge of the far field patterns u>(-,d) of the scattered fields u®(-,d) of
incident plane waves for all directions of incidence d € €. Given the error 0 in
the measurements, the error for the reconstruction of ®° from u$° is estimated
by (6.1.2). The density functions g,(z,-) and g,(z,-) used to define () can be
computed according to some apriori-knowledge on the unknown scatterer D as
given by the class C of scatterers defined in Definition 2.1.5 and Definition 2.2.5.

The operator @ is strongly related to the operator A defined by (5.1.1) to set
up the point-source method. We can use Lemma, 5.1.3 to efficiently compute the
densities g, and g, using rotations and translations. The computation of g, for
different p € € is reduced to the computation of one density function g, of (5.1.9)
with p = py €  and discrepancy 7 and another density function g, of (5.1.9)
with p = py € € and discrepancy 7.

Given an approximating function a(z) for ®*(z,2),2 € B\ D,, we may follow
Theorem 2.1.15 and search for the boundary of the unknown scatterer D as the
set of points z where a(z) is larger than a constant C' > 0. We call this the
method of singular sources, since the main reason for the behavior of ®° is the
singularity of the source ®(-, z). The constant C' plays the role of a regularization
parameter and has to be chosen according to the other regularization parameters
of the reconstruction, i.e. depending on p, 7 and 7.

The method of singular sources has some features, which are similar to the
point-source method. The choice of the orientations p(z) of the domain of approxi-
mation needs a knowledge about the unknown scatterer. The following multistep
procedure describes a method to successively construct both the scatterer and an
appropriate function p(z).

e As a first step compute for a number of fixed orientations pg, £ = 1,.., N
approximations aél)(z) for the field ®°(z, z) using the operator Q, where
() is depending on p, via the densities g,(z,-) and g,(z,-). Search an ap-
proximation D; for the shape D of the unknown scatterer D as the set
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D, = {zGB,|aé1)(z)| > C’forﬁzl,...,N}

of the points where all approximations ag)(z) are larger than C.

e Adapt in each further step n > 1 the orientation p,(2) of the domain of ap-
proximation to the knowledge about the unknown scatterer of the previous
steps 1,...,n — 1 and repeat the procedure to compute an approximation
a™(2) to ®*(z, z) and to search an approximation D,, for D according to

D, = {z€ B |a"(z)| > C}.

A background of this procedure is the observation, that the values of a¢(2) in
general are very large, if the unknown scatterer D is not contained in the domain
of approximation Gy, 5 Thus we obtain large values of ag(z), if z is in the
interior of the unknown scatterer and we can replace the search for 9D by the
search for D.

An obvious advantage of the method of singular sources is the fact, that we
do not need to take into account the boundary condition of the impenetrable
scatterer. In contrast to the point-source method, for the method of singular
sources the reconstruction algorithm is the same for the sound-soft and sound-
hard boundary condition, i.e. the boundary condition does not need to be known
for the algorism. This feature is one of the main reasons which leads to the
distinction of category II and III of reconstruction methods. The method of
singular sources thus belongs to the third category.

One of the prices paid for the advantage of the method of singular sources is
the amount of data necessary for reconstructions. The method of singular sources
needs the far field pattern for a large number of incident plane waves, whereas
with the point-source method we obtain reconstructions even for one or a small
number of measured far field patterns.

Another price, which has to be paid to be independent of the boundary con-
dition, is the ill-posedness of the reconstruction operator (). The norm of @) is
given by

g7 (2, )|z + 192 )20y
with the densities g, and g,, which form the kernel of ). For the point-source
method the norm of the operator A is equal to ||g-(2,-)||z2(q). This is only the
square root of the norm of (). We will observe below, that the ill-posedness of the
problem is becoming even worse, if we consider at the same time impenetrable
and penetrable scatterers.
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Figure 6.1

Figure 6.1 shows a surface plot of the approximation a(z) and the boundary
0D of the unknown sound-soft scatterer for k = 2 in the second step of the recon-
struction algorithm. Here the orientation p(2) of the domain of approximation is
chosen as p(z) = z/|z|.

Figure 6.2

Figure 6.2 shows a contour plots of a(z) in step 2 of the algorithm for one or
two sound-soft domains, k = 3 and p(z) = z/|z|. Here we used the same set of
regularization parameters for the different data sets for one or two obstacles.
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Figure 6.3

Figure 6.3 shows density plots of a(z) in the second step of the reconstruction
algorithm for one or two sound-soft domains and one or two sound-hard domains,
k =4 and p(z) = z/|z|. We used the same set of regularization parameters for
all four images.

We now investigate the reconstruction of the shape of an object, which may
be either an impenetrable or an inhomogeneous medium scatterer D € C. From
the sections on uniqueness and stability we know that the shape of the scatterer is
uniquely determined by the far field patterns for all incident plane waves and that
the shape depends stable on the far field patterns with respect to the data error
in L*(Q2 x Q). Results on e-uniqueness and e-stability for a large finite number of
measurements investigate the practical situation, where only a finite number of
measurements of the far field pattern for a finite number of incident plane waves
are possible.

For the reconstruction of the shape D of an inhomogeneous medium scatterer
D we will use Theorem 2.2.12 and the operator @ defined by (3.1.35). We have
to adapt the order p of the multipole to the behavior of the refractive index n
at the boundary of the unknown scatterer according to the situation S5 or S6 in
(3.1.11) and Definition 2.2.5. In the same way as Theorem 6.1.1 we obtain

THEOREM 6.1.2 Consider the far field patterns u™(-,d) for scattering of plane
waves u'(-,d), d € Q, by a sound-soft, sound-hard or inhomogeneous medium
scatterer D € C. For a measured far field pattern ug® with data error

< 4, (6.1.3)

L2(QxQ) —

s = v

the error for the approrimation of <I>Z7q(ac, 2) by Qus° is estimated by

1
@2 (2,2) = (Qui) (w,2)| < ¢ T 4Oy, T+ 7—b,,,pbﬂ,, 5, (6.1.4)

-1
P m
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z,z2 € B\ D,, with b, , defined by (3.1.33) depending on p, p >0 and n > 0 and
constants ¢ and C uniformly for D € C.

Following Theorem 6.1.2 we can use the operator () to reconstruct
(EZ,*V(ZO)(Z’ Z) (615)

from the knowledge of the far field patterns u®°(-, d) of the scattered fields u*(-, d)
for all directions of incidence d € 2. Given the error ¢ in the measurements, the
error for the reconstruction of (6.1.5) from u§° is estimated by (6.1.4).

With these preparations we can formulate a method of singular sources for the
reconstruction of the shape of an object, which may be either an impenetrable
or an inhomogeneous medium scatterer. Due to Theorems 2.2.12 and 2.1.16 the
singular behavior of (6.1.5) can be used to find the support of the unknown scat-
terer as the set of points where the approximation a(z) for (6.1.5) is sufficiently
large. A corresponding constant C' has to be chosen according to the other pa-
rameters of the reconstruction, i.e. depending on p,7 and 1. We have to use a
strategy to adapt the orientation p = p(z) of the domain of approximation and
the polarization ¢ = ¢(z) of the multipole to the knowledge about the scatterer
in each step of a multistep procedure.

At this point we have to realize a difference between the cases u = 0 and p > 0.
For p4 = 0 the multipole has a rotational symmetry. In this case we can work
with rotations and do not need to compute different densities for different vectors
q or v(zg) € €, respectively. For the cases u > 0 we need to compute different
densities for the reconstruction of (6.1.5), if the angle between the orientation
p of the domain of approximation and the polarization ¢ of the approximated
multipole changes. From a practical point of view this problem is not as serious
as it first seems, since usually a small number of different angles is sufficient to
obtain a reasonable reconstruction of the shape of the unknown scatterer.

We close with a remark on the ill-posedness of the method of singular sources.
If it is not known whether the unknown scatterer is penetrable or impenetrable,
we have to work with multipoles of order p for reconstructions. Since the ill-
posedness of the reconstruction of D is mainly influenced by the norm of the
densities g, and g,, and since these norms increase with p, the ill-posedness for
the general problem is considerably larger than the ill-posedness for the recon-
struction of arbitrary impenetrable scatterers or the ill-posedness for the case of
a given boundary condition of an impenetrable scatterer.



6.2 Electromagnetic scattering.

In Theorems 2.3.12 and 2.4.9 of Section 2 the behavior of the scattered field
E}4,(z,2,p) for points near a scatterer D is estimated. The boundary 9D of the

scatterer D is the set of points, for which

‘ edp 2,2,V ZO))‘
becomes infinite, where in a neighborhood of the boundary zq € 9D is given by
the unique representation

z =z + hv(z).

In Section 4, Theorem 3.2.3, we constructed the operator () for the reconstruction
of E},, from the far field patterns EP(-,-,¢), ¢ € 2. For a measured far field
patterns E5° the error for the reconstruction of E?, by QE$° is estimated in the

edp
following theorem.

THEOREM 6.2.1 We consider the scattering of electromagnetic plane waves
E;;l(-,d,p) for d,p € Q by a scatterer D € C. Given a measured far field pat-
tern E5° with data error

‘ Y 7p Ego(aap) < (57 peE Qa (621)

L2(2xQ)
the error for the approzimation of Eesdp(x, z,p) by QE5° is estimated by

g+ By, 2,0) = (p- QEE(-,,0)) (@, 2)] (6.2:2)

Ui

1
< “» + Cllggllzem + §||97||L2(9)||9ﬂ||L2(9) 0

z,z € B\ D,, with constants ¢ and C uniformly for D € C and functions g, and
gy depending on p, T and 1.

Proof. The estimate can be obtained from (3.2.14) with the help of
\ By, 20) = (0 QEF (-, 0)(, 2)

< o~ Eogp(w,20) — 0 QEY () (x,2)]
+|{p-QEFC0) = B G 0)} (2,2)] (6.2.3)

and the Cauchy-Schwarz inequality. 0
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A reconstruction of the boundary of a scatterer D € C with the help of the
singular scattered field Eesdp(z, z,p) can be formulated in analogy to the acoustic
case. As a difference to the acoustic case both for the reconstruction of a perfect
conductor and the reconstruction of the shape of an inhomogeneous medium we
can use the scattered field of electric dipoles. For inverse scattering from an
acoustic inhomogeneous medium we had to use multipoles of higher order even

for the simplest case of a medium with a jump at the boundary 9D.
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A operator, 34, 125

A reconstruction operator, 17, 142
A’ reconstruction operator, 146
A¢ reconstruction operator, 145
B exterior ball, 9, 24

B,.(z) ball, 22

C(D) function space, 22
C(0D) function space, 22
CT(0D) function space, 79
CT™*(0D) function space, 79
Ch(D) function space, 22
Ch*(9D) function space, 22
CY(D) function space, 22
C'Y(0D) function space, 22

Cy bound for smoothness, 23
C,, constant, 61

D domain, 22

D, domain, 14, 26

E total electric field, 7, 73, 85
E* far field pattern of E*, 8
E> far field pattern of E?, = 76, 86

edp edp’

Ep; far field pattern of £, 76, 86

E", H' incident electromagnetic field,
8,73

E!,, electric dipole, 76

E,;, H,, incident electromagnetic
plane wave, 76

E? scattered electric field, 7

E;,, scattered field of an electric
dipole, 76, 86

E;, scattered field of an electromag-
netic plane wave, 76, 86

F far field operator, 10, 19

F () stability function, 13, 93, 105

Fin, n;)(0) stability function, 15

F\(p, o) function, 98

Fy(p,1,1n,9) function, 105

G domain, 95

G p,, domain of approximation, 95

H Herglotz wave operator, 95

H half plane, 22

H linear operator, 34

H total magnetic field, 73, 85

Hgy, far field pattern of HZ,,, 76, 86

Hy far field pattern of Hp, 76, 36

H®>g far field pattern of H®¢g, 101

HY(D) function space, 22

H? scattered magnetic field, 7

H;Z,, scattered field of an electric
dipole, 76, 86

H,, scattered field of an electromag-
netic plane wave, 76, 86

H?g scattered field of a Herglotz wave
function, 101

H{1?) Hankel functions, 31

H,a finite Herglotz wave function,
125

H, half ball, 22

H g Herglotz wave function, 19, 95

I identity operator, 39

I + K — iS operator, 39

I + M + iNPS? operator, 75

I + K%V x operator, 60

I — K* — iT'S? operator, 39

I — T, operator, 86

J reconstruction operator, 116

J,, Bessel function, 30

K double-layer operator, 38

K* adjoint of K, 39

K operator K* for k = 0, 47

K, special coordinate system, 23

L*(D) function space, 22
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L*(Qy,, % Q,,) function space, 125

L*(9,) function space, 124

L1 number of parametrizations, 24

Lo number of parametrizations, 25

M magnetic dipole operator, 75

N electric dipole operator, 75

N number of directions, 145, 155

P modified acoustic single- and
double-layer potential, 52

P projection operator, 75

P! associated Legendre functions, 28

P, single-layer potential
operator, 32

P; double-layer potential
operator, 32

Pr combined magnetic and electric
dipole potential, 75

P, Legendre polynomials, 28

() reconstruction operator, 14, 20,
102, 153, 157

R, regularization operators, 34

R, exterior radius, 11, 23

S single-layer operator, 38

S1 — S6 situations, 98

S1 — S3 situations, 118

Sy single-layer operator for k = 0, 39

T normal derivative of K, 39

Tg’a function space, 75

T, vector potential, 85

T%*(dD) function space, 79

T, tangent plane, 56

U subset of IR™, 98

U, open set in IR' or IR?, 23

V' set of all parametrizations, 44

V' volume potential, 59

V> far field pattern of Vg, 114

V3¢ scattered field of Vg, 114

Vg, icurl Vg electromagnetic
Herglotz pair, 114

Index

W image space of Wyp, 44

X space of parametrizations, 43

Y reference space for C'(0D), 43

Y, Neumann function, 31

Y, spherical harmonics, 30

Zar cylinder, 22

Zqr(x,p) cylinder, 22

Q unit sphere in IR? or IR?, 8

Q,, finite subsets of 2, 10, 124

® point-source, 11, 30, 38

&> far field pattern of ®*, 38, 60

@, far field pattern of @7 , 65

®° scattered field for @, 11, 38, 60

@7, , scattered field of a multipole, 65

®, point-source for k = 0, 47

®,, , multipole, 65

IT mapping of Cys; into X, 44

¥ singular function, 88

U, mapping of CH¥(0D) into Y, 44

W, help function, 53

a Holder coefficient, 22, 23

a regularization parameter, 34

By opening angle, 26

B. opening angle, 24

x reduced refractive index, 59, 85

co(x, p, () cone, 24

0 data error, 11, 142, 150, 153, 157

e-uniqueness, 12

e—stability, 14

v constant, 116

v multi-index, 22

Ym constants, 40, 60

k wave number, 6, 7, 37, 73

A factor, 110

i order of multipoles, 67

Lo constant, 61

v(x) exterior unit normal vector, 6,
23, 37

1 local parametrization, 23
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p distance parameter, 14

po distance constant, 26

Yo regularized solution, 35

a(z) approximating function, 154

ao parameter for local coordinates, 23

b;, bound for densities, 102, 115

b, bound for densities, 102, 115

b,.r, bound for density vectors, 133

cm constant, 125

d(Dy, D) Hausdorff distance, 13

d(z, M) distance, 10

f function, 46

f*(s,t) function derived from f(s,t),
105

f1,e function, 46

fa,e function, 46

g-(x,d) density function, 101

h{1?) spherical Hankel functions, 29

Jjn spherical Bessel functions, 29

[ order of smoothness, 23

n refractive index, 6, 7, 36, 59, 85

ro parameter for local coordinates, 23

r; parameter for local coordinates, 24

u total acoustic field, 6, 37, 41, 59

u™ far field pattern of u*, 8, 38, 59

Ul i) finite set of far field values,
124, 135

u! incident acoustic field, 6, 8, 38, 59

u® scattered acoustic field, 6, 37, 59

Yn spherical Neumann functions, 29

2y, point near the boundary, 52

A class of domains, 23

C class of scatterers, 94, 116

Ceim class of inhomogeneous medium
scatterers, 87

C,, class of inhomogeneous medium
scatterers, 61

Copst Class of obstacle scatterers, 42
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Cpc class of perfect conducting scat-
terers, 78

C,p, class of sound-hard scatterers, 42

C,s class of sound-soft scatterers, 42

D scatterer, 35

F function space, 12

G set of densities, 97, 102

H(D) convex hull of D, 13

M set of refractive indices, 62

S scattering operator, 9

|| - || 7 strong norm, 13

a-posteriori strategy, 35

acoustic inhomogeneous medium
scattering problem, 59

addition theorem, 28

associated Legendre functions, 28

Backus-Gilbert method, 18, 141

Bessel function, 30

boundary integral equations of the
second kind, 33

boundary-layer approach, 31

boundedness condition, 23

class Cb®, 23

combined acoustic double- and
single-layer potential, 39

completeness, 10

convex hull, 13, 108, 138

data error, 11, 142, 150, 153, 157
denseness property, 124
differentiation formula, 29

dipole, 30, 76

direct scattering problem, 8, 37
Dirichlet boundary condition, 6, 37
discrepancy, 35

double-layer operator, 38
double-layer potential, 32
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dual systems, 33

electric permittivity, 7, 73
electromagnetic Herglotz pair, 114
electromagnetic inhomogeneous me-
dium scattering problem, 85
electromagnetic scattering
problem, 75
Euler’s constant, 31
existence problem, 9
exterior cone condition, 24

far field operator, 10, 19

far field pattern, 8, 38, 59, 74

far field reciprocity relation, 17, 40,
60, 76, 86

finite data, 10, 123

finite Herglotz wave function, 125

Fredholm Alternative Theorem, 33

Funk-Hecke formula, 30

Green’s formula, 38, 73
Green’s theorems, 38

Holder continuously differentiable
functions, 22

Hankel functions, 31

Hausdorff distance, 12, 51

Helmholtz equation, 6, 37, 59, 74

Herglotz wave function, 19, 125

ill-posed, 9, 34
inhomogeneous media, 6, 59, 85
inverse scattering problems, 8

Jacobi-Anger expansion, 30, 31
jump relations, 32

Legendre polynomials, 28
linear sampling method, 18
Lippmann-Schwinger equation, 60

Index

local coordinates, 23
logarithmic continuity, 14

magnetic permeability, 7, 73
Maxwell equations, 7, 73, 85
method of singular sources, 20, 153
minimum norm solutions, 35
mixed reciprocity relation, 17, 40, 60,
76, 86
modified acoustic single- and double-
layer potential, 39, 52
mollifier methods, 18, 141
monotonicity property, 124
Morozov’s discrepancy principle, 19
multipole, 29, 31, 65
multipole-expansions, 30, 31

Neumann boundary condition, 6, 37
Neumann function, 30

perfect conductor boundary
condition, 7, 73

point-source, 11, 30, 38

point-source method, 17, 141

quadrupole, 30

radiating, 37, 73

reciprocity relations, 17, 40, 60, 76,
86

reconstruction methods, 16, 141, 153

refractive index, 6, 7, 36, 59, 85

regularization operators, 34, 142, 157

regularization parameter, 34, 154

regularization strategy, 34, 146

Rellich’s Lemma, 11

Riesz Theorem, 33

scattering amplitude, 8
sesquilinear form, 33
shape reconstruction, 8, 153
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Silver-Miiller radiation condition, 7,
73
single-layer operator, 38
single-layer potential, 31
smoothness condition, 23
Sommerfeld radiation
condition, 6, 37
sound-hard boundary
condition, 6, 37
sound-soft, boundary
condition, 6, 37
spherical Bessel functions, 29
spherical Hankel functions, 29
spherical Neumann functions, 29
stability, 12, 14, 93
Stirlings formula, 29
Stratton-Chu formulas, 74
superposition of plane waves, 17, 95
symmetry property, 124

Tikhonov regularization scheme, 35
type of a scatterer, 35

uniqueness, 11, 12, 39, 93, 123

volume potential, 59
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