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As long as a branch of knowledge o�ers an abundance of problems, it is full of
vitality. David Hilbert

Before you generalize, formalize, and axiomatize, there must be mathematical
substance. Hermann Weyl

Our science, in contrast to others, is not founded on a single period of human
history, but has accompanied the development of culture through all its stages.
Mathematics is as much interwoven with Greek culture as with the most modern
problems in engineering. It not only lends a hand to the progressive natural sci-
ences but participates at the same time in the abstract investigations of logicians
and philosophers. Felix Klein



1 Introduction.

Scattering of acoustic or electromagnetic waves plays an important role in many
�elds of applied sciences. Acoustic and electromagnetic waves are used and in-
vestigated in such di�erent areas as medical imaging, ultrasound tomography,
material science, nondestructive testing, radar, remote sensing, aeronautics and
seismic exploration.

In the last twenty years the development of computational power has had a
strong impact also on the classical �elds of direct and inverse scattering. The
computational simulation of scattering processes has become accessible using mi-
crocomputers and the �eld of inverse scattering problems, which is concerned with
the reconstruction of scattering objects or their properties, grew from its early
beginnings in the middle of the century to a large and fastly developing area of
applied mathematics.

In the �rst part of this Section we give a brief introduction into inverse scatter-
ing theory and outline our main results. In the second part we collect de�nitions
and tools from functional analysis and integral equations, which are the basis for
the further sections.

1.1 A review of the main results.

Scattering by obstacles and media. The classical area of acoustic and elec-
tromagnetic scattering is concerned mainly with two di�erent problems, which
are studied and applied in many di�erent settings and applications.

The �rst problem is the scattering of time-harmonic acoustic or electromag-
netic waves by an impenetrable scatterer, i.e. the waves do not signi�cantly pen-
etrate into the interior of the scattering obstacle D. In this case the scattering
process is determined by the shape of D and boundary conditions.

The second problem consists in the scattering of time-harmonic acoustic or
electromagnetic waves by a penetrable scatterer, where the waves penetrate the
obstacle and the interior structure of the obstacle strongly in
uences the scat-
tering process. If the scatterer is homogeneous, the second problem leads to
transmission problems, however if the scatterer is inhomogeneous, we speak of
scattering by an inhomogeneous medium.

We will use the letterD to denote the full scatterer with its physical properties
and D to denote the interior of the support of the scatterer in IRm, m = 2; 3. We
will always assume that the scatterer D is bounded in IRm.
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Mathematically the behavior of a time-harmonic acoustic wave u(x)e�i!t in a
homogeneous background medium is governed by the Helmholtz equation

4u+ �2u = 0; (1.1.1)

where � = !=c0 > 0 is the wave number of the acoustic wave, w its frequency and
c0 the speed of sound. For scattering of an incident wave ui by an impenetrable
scatterer D a mathematical model also needs to take into account the behavior
of the total �eld

u = ui + us (1.1.2)

at the boundary @D of the scatterer. Here us denotes the scattered acoustic
�eld. Di�erent boundary conditions are used to model the underlying physical
behavior. For a sound-soft scatterer the total �eld vanishes at the boundary,
which leads to the Dirichlet boundary condition

u(x) = 0; x 2 @D; (1.1.3)

for a sound-hard scatterer the Neumann boundary condition

@u

@�
(x) = 0; x 2 @D; (1.1.4)

is used, where � denotes the exterior unit normal vector to the boundary @D.
The model is completed by the Sommerfeld radiation condition

lim
r!1 r

m�1
2

 
@us(x)

@r
� i�us(x)

!
= 0; r = jxj; (1.1.5)

uniformly for all directions x=jxj for the scattered �eld us. It physically implies
that energy is transported to in�nity and it is an important ingredient to obtain
the physical solution of the scattering problem.

To model scattering by inhomogeneous media the equations (1.1.1), (1.1.3) or
(1.1.1), (1.1.4) are replaced by

4u+ �2n(x)u = 0 in (1.1.6)

in the whole space or IRm n @D. Here

n(x) :=
c20

c(x)2
+ i�(x)

is the refractive index, emerging from the sound speed c0 in the homogeneous
host medium and c(x) in the inhomogeneous medium and a term �(x) to model
absorption.
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For scattering of electromagnetic waves in IR3 the corresponding governing
equations are the time-harmonic Maxwell equations

curl E � i�H = 0; curl H + i�E = 0 (1.1.7)

for the electric �eld E and the magnetic �eld H in a homogeneous medium, where
� := !

p
�0�0 is the wave number and ! the frequency of the time-harmonic wave,

�0 the electric permittivity and �0 the magnetic permeability of the host medium.
For scattering of an incident electromagnetic �eld Ei; H i by a perfect conductor
D the boundary condition

�(x)� E(x) = 0; x 2 @D; (1.1.8)

for the total �eld
E := Ei + Es (1.1.9)

models the behavior of the electric �eld at the boundary @D of D. The tangential
components of the electric �eld E vanish at the boundary @D of the perfect
conductor D. The appropriate radiation condition is the Silver-M�uller radiation
condition

lim
r!1(H

s � x� rEs) = 0 (1.1.10)

for the scattered electromagnetic �eld Es; Hs.
To describe scattering of electromagnetic waves by an inhomogeneous medium

the equations (1.1.7) and (1.1.8) are replaced by

curl E � i�H = 0; curl H + i�n(x)E = 0; (1.1.11)

where the refractive index

n(x) :=
1

�0

 
�(x) + i

�(x)

w

!

is de�ned using the permittivity �(x) of the the inhomogeneous medium, the
permittivity �0 of the homogeneous background medium, the conductivity �(x)
and the frequency w of the wave. The magnetic permeability � is assumed to be
constant.

The radiation conditions (1.1.5) or (1.1.10) together with the governing equa-
tions (1.1.1) or (1.1.7) imply the behavior

us(x) =
ei�r

r
m�1
2

�
u1(x̂) + O

�
1

r

��
; r = jxj ! 1; (1.1.12)
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where x̂ := x=jxj and

Es(x) =
ei�r

r

�
E1(x̂) + O

�
1

r

��
; r = jxj ! 1; (1.1.13)

of the scattered acoustic or electric �eld us(x) or Es(x), respectively. Here u1 and
E1 are known as the acoustic and electromagnetic far �eld pattern or scattering
amplitude. In the acoustic case the far �eld pattern is a scalar function de�ned on
the unit sphere 
, in the electromagnetic case the far �eld pattern is a tangential
vector �eld on 
.

Direct and inverse scattering problems. For a direct scattering problem
the scatterer and the incident �eld is assumed to be given. The problem is to
compute the scattered �eld or the far �eld pattern, respectively. Direct scattering
problems have been studied for a long time and a number of di�erent approaches
for their solution have been developed (see [1], [5], [27], [43], [44], [48], [53], [64],
[67], [75]). However, it is an important problem of current research to develop
e�cient algorithms for the numerical computation of the scattered �eld, especially
in three dimensions.

There is a whole range of di�erent inverse problems, which are of interest
in this framework. Given the far �eld pattern for scattering of plane waves we
may try to reconstruct special properties of D or the full scatterer with all its
properties. Di�erent settings for the measurements lead to a variety of practically
relevant mathematical and algorithmical problems.

In this work we will focus on the reconstruction of the shape D of the scat-
terer D, i.e. the scattering domain for obstacle scattering and the support of the
inhomogeneity for scattering by an inhomogeneous medium. For a wide range
of applications it is not necessary to reconstruct the full behavior and actual
values of the refractive index n(x), but it is su�cient to approximately deter-
mine the support D := supp(n). For example in nondestructive testing often this
information is all that is needed.

As scattering data we use the far �eld pattern u1(�; d) or E1(�; d; p) for scat-
tering of incident plane waves

ui(x; d) := ei�x�d; x 2 IRm; (1.1.14)

in the acoustic case or

Ei(x) = i�(d� p)� d ei��d

H i(x) = i�d� p ei�x�d
; x 2 IR3; (1.1.15)

in the electromagnetic case, respectively, where d 2 
 denotes the direction of
incidence and p the polarization of the electromagnetic wave. We will investigate
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the cases where the far �eld pattern is given for one, a �nite number or all incident
plane waves either on the whole unit sphere 
 or for a given �nite number n of
observation points x̂j 2 
, j = 1; :::; n.

Basic mathematical problems. The investigation of an inverse problem
consists of several basic mathematical questions, which are strongly related to
the inverse nature of the task.

First, it has to be asked which data sets uniquely determine the object, i.e.
we have to answer the problem of uniqueness.

Second, one will ask whether there exists a solution of the inverse problem for
a given data set. This is the problem of existence.

Third, usually there is an error in the measurements or in the numerical
storage of data and thus we have to ask whether we have stability for the recon-
struction of D from the given far �eld data. Mathematically this is the question
of continuity of the nonlinear inverse operator under appropriate assumptions.

Fourth, there is the need to develop e�cient and stable reconstruction algo-
rithms. This leads us to the numerical and algorithmical analysis.

We will now place our results in a historical context and give a brief intro-
duction to our contributions to the above questions. This includes a sketch of
related methods and a description of di�erences and similarities.

The ill-posedness of inverse scattering problems. First we introduce
one of the main features of inverse scattering problems. Let B denote a ball with
�xed radius Re around the origin. We assume the a-priori information that B
contains the scatterer D in its interior. By

S : usj@B 7! u1 (1.1.16)

we denote the operator, which maps the scattered �eld us(x), x 2 @B, onto
its far �eld pattern u1(x̂), x̂ 2 
. Computing S explicitly, it can be seen to be
compact in any reasonable function space, for example fromC(@B) into L2(
) (see
Section 2 for further details). Thus by functional analytic arguments the range
of the operator S cannot be the whole space and the inverse S�1 of the operator
S cannot be bounded. This indicates that the inverse scattering problem is an
ill-posed problem in the sense of Hadamard [15], i.e. that the demands of existence
and stability are violated. The uniqueness problem, i.e. does u1 determine D,
may also be violated.

The problem of existence for given measured data. First, consider the
problem of existence. We already pointed out that in general we do not have
existence. The most we can expect is the denseness or completeness of the far
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�eld patterns for a given set of incident waves or of scatterers D. Completeness of
the set of far �eld patterns for the above acoustic and electromagnetic scattering
problems for a set of incident plane waves ui(�; dn), n 2 IN , where fdn; n 2 INg
is dense in the unit sphere 
, has been investigated in detail by Colton, Kirsch,
Kress, Bl�ohbaum and P�aiv�arinta between 1984 and 1990 (see [6] for further refer-
ences). Necessary conditions for a function in L2(
) to be a far �eld pattern can
be given in terms of the decay of the Fourier coe�cients with respect to spherical
harmonics (see [6], Theorem 2.16). This can be obtained by an expansion of
the scattered �eld outside of the ball B. Further necessary conditions have been
given by M�uller [49] (see also Colton and Kress [5]) using entire functions of ex-
ponential type. More recently Kirsch [32], [33] obtained a characterization of the
set of far �eld patterns for a given scatterer in terms of its series representation
with respect to the eigenfunctions of the corresponding far �eld operator

(F')(x̂) :=
Z


u1(x̂; d) '(d)ds(d); x̂ 2 
: (1.1.17)

A corresponding method for the reconstruction of the support D of the scatterer
D is described below. To the author's knowledge no general characterization of
the set of far �eld patterns for arbitrary scatterers D is known.

In this work we will not pursue further the problem of existence of a solution
to the inverse problem or the characterization of the set of far �eld patterns.
We will assume that the given data are either the exact far �eld data u1 for
scattering by a scatterer D or some measured data

u1� 2 L2(
� 
)

with
jju1(�; �)� u1� (�; �)jjL2(
�
) � �: (1.1.18)

We will also study the �nite data case, where a �nite number of measured data
u1(no;ni);� 2 L2(
no � 
ni) are given with

0
@ cm
no

cm
ni

X
x̂2
no

X
d2
ni

���u1(x̂; d)� u1(no;ni);�(x̂; d)
���2
1
A

1
2

� � (1.1.19)

for � � 0 with some constant cm. Here we assume (
n)n2IN to be a sequence of
�nite subsets 
n of 
, such that 
n consists of n elements and for given � we can
�nd n such that the distance

d(x̂;
n) := inf
d2
n

jx̂� dj
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is smaller than � for all x̂ 2 
. The left-hand side of (1.1.19) de�nes a norm
jj � jjL2(
no�
ni ). The positive real number � is refered to as the data error.

Uniqueness results for reconstructions. The origin of uniqueness results
for inverse obstacle scattering problems can be found in the works of Rellich in
the 40's. He proved that the far �eld pattern uniquely determines the (analytic)
scattered �eld in the exterior of the scatterer D (which we refer to as Rellich's
Lemma). Then Schi�er (see [43]) showed for the inverse acoustic obstacle scatter-
ing problem with Dirichlet boundary condition that the far �eld pattern u1(x̂; d),
x̂; d 2 
, for all incident plane waves and for one �xed wave number � uniquely
determines the domain of the scatterer. The corresponding result for the re-
construction of the acoustic refractive index in three dimensions was obtained
by Nachman [52], Novikov [54] and Ramm [65] and considerably simpli�ed by
H�ahner [16] (see also [17]) in 1996. Analogous results for the electromagnetic
problems were �rst obtained by Colton and P�aiv�arinta [8] in 1990, Colton and
Kress [6] in 1993 and by Ola, P�aiv�arinta and Somersalo [55] in 1993.

In 1983 Colton and Sleeman [11] investigated the case where the sound-soft
scatterer is known to be a subset of a ball with given radius Re. They showed
that the support is determined by a �nite number N of incident plane waves
depending on Re. If Re is small enough, one wave is su�cient to determine the
scatterer.

So far it has not been possible to extend Schi�ers approach or the ideas of
Colton and Sleeman to the sound-hard scatterer or to the case of an inhomoge-
neous medium. In 1992 Isakov [23] obtained uniqueness results for penetrable
obstacles using di�erent techniques, which were simpli�ed and applied to impen-
etrable sound-soft and sound-hard scatterers by Kirsch and Kress [29] in 1993.
The results could also be successfully transfered to the case of electromagnetic
obstacle scattering [6]. Since these ideas will be the starting point of a large part
of this work (with contributions to uniqueness, stability, the �nite data problem
and reconstruction algorithms), we brie
y want to describe the main ingredients.

Consider the scattered acoustic �eld for a point-source �(�; z) with source
point z 2 IRmnD, where � is the fundamental solution of the Helmholtz equation
in two or three dimensions, respectively. From the sound-soft boundary condition
and the singularity of the incident point-source we derive that for a point x 2 @D
we have

�s(x; z)!1; z ! x: (1.1.20)

Kirsch and Kress used (1.1.20) to show that, if the far �eld patterns of two
scatterers D1 and D2 for scattering of plane waves coincide for all directions of
incidence d 2 
, then the domains D1 and D2 are the same.
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In Section 3 we will further develop the techniques of Kirsch and Kress to
derive uniqueness of the support D of an inhomogeneous medium n, if n has a
jump in one of its derivatives at the boundary of the scatterer D. For the three-
dimensional case this also can be obtained from the results of Nachman [52],
Novikov [54] and Ramm [65] for the acoustic and from Colton and P�aivairinta
[9] in the electromagnetic case. In two dimensions Sun and Uhlmann [71] proved
uniqueness of the support of n, if n has a jump at the boundary. They use Fourier
techniques, which are di�erent from our approach.

�-Uniqueness for �nite data. Uniqueness results for inverse scattering
problems usually assume the full far �eld pattern on the unit sphere to be given.
Often it is assumed that the far �eld pattern is known for all or a full open set
of directions d 2 
 of the incident plane waves. Since most proofs use Rellich's
Lemma, the knowledge of the far �eld pattern at least in an open subset of 

seems to be necessary to uniquely determines the scattered �eld us.

From a practical perspective it is reasonable to ask the question what can be
said if the far �eld pattern is given only at a �nite number of measurement points
and for a �nite number of waves. In Section 3, we develop a technique to answer
this question and thus avoid the use of Rellich's uniqueness results. It leads to a
relaxed concept of uniqueness, a preliminary version of which was �rst proposed
in 1998 (see [59]). We will prove �-uniqueness for the reconstruction of the shape
of a scatterer, i.e. given � > 0 there are no; ni 2 IN such that, if for two scatterers
D1 and D2 the far �eld patterns for all ni directions of incidence d 2 
ni coincide
at the no observations points x̂ 2 
no , the Hausdor� distance d(D1; D2) of the
scatterers D1 and D2 satis�es the estimate

d(D1; D2) < �:

Since the concept of �-uniqueness is close to stability, let us postpone further
discussion and �rst discuss the stability question.

Stability estimates. We have already pointed out that inverse scattering
problems are ill-posed problems, i.e. that for the inverse of the nonlinear scattering
operator in general we do not have stability. There exist two main approaches to
restore stability results for this ill-posed problem.

The �rst approach consists in a modi�cation of the norm used for the far �eld
pattern. In inverse scattering it was used for example in 1990 by Stefanov [70]
to study stability for inverse scattering by a medium and has been extended by
H�ahner [17] in 1998 to electromagnetic and elastic scattering. In principle they
consider a space F of functions on 
 with a very strong norm jj � jjF involving all
derivatives of functions ' 2 C1(
), such that the inverse S�1 : F ! C(@B) of
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(1.1.16) becomes a bounded operator. But since for real data derivatives of the
far �eld pattern are not available, from a practical point of view this approach
only shifts the ill-posedness to the mapping of the data space into F . We will
not further pursue the idea.

Another approach is the use of a-priori bounds on the set of �elds or objects
to be determined (see for example [26]). This approach has been applied to
scattering theory by Isakov [23], [24] (see also [25]). We will use the well known
fact that the inverse of a continuous mapping is continuous if it is de�ned on a
compact subset of a Banach space. Thus with appropriate restrictions on the set
of scatterers stability can be restored and stability estimates can be obtained.

Isakov's restrictions mainly consist in a uniform bound on the C2;�-norm of all
boundaries in a special parametrization. For the reconstruction of the shape of a
sound-soft scatterer from the knowledge of the far �eld pattern for one incident
wave Isakov derives a double-logarithmic estimate

d(D1; D2) < C
�
ln
��� ln jju11 (�)� u12 (�)jjC(
)

�����
 (1.1.21)

for the Hausdor� distance d(D1; D2) of the domains D1, D2 with positive con-
stants C; 
 depending on a bound for the C2;�-norm of the boundary. So far
Isakov's techniques could not be used to treat other boundary conditions or elec-
tromagnetic scattering problems.

In Section 3 we will pursue the idea of imposing appropriate restrictions on
the set of scatterers under consideration. With techniques di�erent from Isakov
we will be able to derive stability estimates for the reconstruction of the shape of
either a penetrable or impenetrable scatterer from the knowledge of the far �eld
patterns for all incident plane waves. More explicitly we prove an estimate of the
form

d(D1; D2) � F
�
jju11 (�; �)� u12 (�; �)jjL2(
)�L2(
)

�
; (1.1.22)

where F is a function with the property

F (�)! 0; � ! 0; (1.1.23)

which can be computed according to some a-priori knowledge on the class of
scatterers. For the convex hulls H(D) of the shape D of scatterers D we derive
a logarithmic estimate

d
�
H(D1);H(D2)

�
� C

��� ln jju11 (�; �)� u12 (�; �)jjL2(
)�L2(
)

����
 (1.1.24)

with constants C and 
.
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Our technique is inspired by the uniqueness proof of Isakov, Kirsch and Kress.
The �rst step is the explicit estimation of the behavior of �s(z; z) for z ! @D. As
a second step we develop a method for the approximate reconstruction of �s(z; z)
in the exterior of the domain

D� := fy 2 IRm; d(y;D) < �g (1.1.25)

with some small parameter � > 0 from the scattering data u1(x̂; d) for all x̂; d in

 . Estimating the bound of the approximate reconstruction operator

Q : L2(
)� L2(
)! C(B nD�)

and using the fact that �s(z; z) is large only in a neighborhood of the boundary,
stability estimates will be obtained in Section 3. For the acoustic sound-soft and
sound-hard scatterer the results can be found in [60]. Similar stability results
for the reconstruction of the support of media and for electromagnetic scattering
problems will be derived in Section 3.

At this point we would like to relate our results to some demands on the
degree of ill-posedness of an inverse problem formulated by Fritz John [26] in
1960. For purposes of computation John demands H�older continuous dependence
of a problem on the data. Here for the reconstruction of the domains we obtained
logarithmic continuity, which is a typical type of estimate for continuing solutions
of the wave equation in space-like directions.

As shown in [60], for the reconstruction of the scattered �eld us on �xed
compact subsets U of the open exterior of the convex hull H(D) of D������u11 � u12

������
L2(
)

� �

yields the estimate ���us1(x)� us2(x)
��� � ��

�
j ln(�
 ln(�))j ; x 2 U;

with constants �; �; 
 > 0. This can be proven with the same techniques which we
will use in Section 3. These estimates come close to H�older continuity demanded
by John and are re
ected by the numerical results of Sections 5 and 6.

Stability for the case of �nite data: �-stability. With the help of the
stability estimates it is not di�cult to derive related statements for the case of
�nite data.

We will work with the same assumptions as for stability or �-uniqueness,
i.e. a uniform bound on the C2�norm of the boundaries (and corresponding
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assumptions on the uniform smoothness of the refractive index n), to derive a
uniform bound for the far �eld patterns in C1(
 � 
). This bound can be used
to relate the distance of two far �eld patterns at a �nite number of points to
the distance of the full far �eld patterns. Then for the case of �nitely many
measurements we derive �-uniqueness and a modi�ed stability statement, which
we will refer to as �-stability.

Consider a simple example for the derivation of �-uniqueness. Given � > 0 we
can use (1.1.24) to obtain a � > 0 such that

jju11 (�; �)� u12 (�; �)jjL2(
)�L2(
) � � (1.1.26)

implies
d
�
H(D1);H(D2)

�
� �: (1.1.27)

Now given �, we choose n 2 IN su�ciently large such that with the help of the
bound on jju1j (�; �)jjC1(
�
) for j = 1; 2, the equation

u11 (x̂; d) = u1(x̂; d) for all x̂; d 2 
n (1.1.28)

yields (1.1.26). Thus given � we may choose n 2 IN such that (1.1.28) implies
(1.1.27), i.e. we have proven the statement of �-uniqueness for the convex hulls of
the scattering domains as a simple consequence of stability.

Now, we describe the concept of �-stability. Since in general we do not have
uniqueness, for a �nite data set we will not be able obtain stability. More explic-
itly, we can not obtain a function F (�) which satis�es (1.1.23) and an estimate of
the type (1.1.22) when � is the data error at �nitely many points. But for given
� > 0 it is possible to �nd no; ni 2 IN and a function F(no;ni)(�), such that F has
the behavior

lim sup
�!0

F(no;ni)(�) � � (1.1.29)

and the domains D1 and D2 satisfy the estimate

d(D1; D2) � F(no;ni)

�
jju11;(no;ni) � u12;(no;ni)jjL2(
no�
ni )

�
(1.1.30)

with jj � jjL2(
no�
ni ) given by (1.1.19) and

u1j;(n0;ni) := u1j
���

no�
ni

2 L2(
no � 
ni)

for j = 1; 2. We call a statement of this form �-stability. We will prove �-
stability for the reconstruction of the shape of the scatterer for the scattering
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problems described above and explicitly study the behavior of F(no;ni)(�) for the
reconstruction of the convex hull of a scatterer.

Three main categories of reconstruction methods. Consider now the
problem of the actual reconstruction of the shape of the unknown scatterer.
Mainly three di�erent types of reconstruction methods have been developed. We
will summarize their main features and use them as a background to explain our
results.

The �rst category. There is �rst the approach to consider the inverse
problem as a nonlinear ill-posed operator equation and adapt iterative methods of
gradient- or Newton-type to solve this equation. For inverse obstacle scattering
this approach mainly relies on the Fr�echet di�erentiability or domain derivative of
the scattered �eld with respect to variations of the boundary of the scatterer and
a characterization of the derivative as a corresponding boundary value proble.
Results for interior boundary value problems were obtained in 1980 by Simon
[69] with the help of the implicit function theorem, for the scattering problems
in 1993 by Kirsch [30] using variational methods and in 1994 by the author [57]
by means of integral equations.

For a discussion of the large number of papers on the numerical implemen-
tation of these type of methods (for example Murch, Tan and Wall [51], Roger
[66], Tobocman [73], Wang and Chen [74], Kirsch [30], [31], Kress and Rundell
[40], [41], [42], Kress [38], [36], [39] M�onch [47], Hohage [21], Hanke, Hettlich
und Scherzer [18] and Hettlich [19]) we refer to the second edition of the book of
Colton and Kress [6]. The present work will not be concerned with this category
of methods.

The second category and the point-source method. The second cate-
gory in principle splits the inverse scattering problem into the linear ill-posed part
to reconstruct the scattered �eld in the exterior of the scatterer and a nonlinear
well-posed part to �nd the boundary of the scatterer or the refractive index using
the boundary condition or the partial di�erential equation, respectively.

Typical examples in this category are the methods proposed by Colton and
Monk 1985 and by Kirsch and Kress 1986, both described in [6]. In Section 5 with
the point-source method we describe a method of this second category, developed
by the author since 1995. Di�erent steps in this development can be found in
[61], [62] and [63].

The main aim of the point-source method is the explicit construction of a
kernel g(z; d), such that in the domain B nD�, where D� is given by (1.1.25) and
B by (1.1.16), the scattered �eld us is approximated in the form Au1 with a
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linear integral operator

(A')(z) :=
Z


g(z; x̂)'(x̂) ds(x̂); z 2 B: (1.1.31)

To this end the far �eld pattern �1(�; z) for incident point-sources �(�; z) with
source-point z is considered. Given some a-priori knowledge on the size of the
scatterer, the kernel g will be constructed in the following three steps.

1. An approximation for a point-source by a superposition of plane waves

�(x; z) �
Z


ei�x�d~g(z; d) ds(d); x 2 D; z 2 B nD�: (1.1.32)

is computed.

2. Passing to the far �eld patterns, an approximation for the far �eld pattern
due to point-sources by a superposition of the far �eld patterns of plane
waves

�1(x̂; z) �
Z


u1(x̂; d)~g(z; d) ds(d); x̂ 2 
; z 2 B nD� (1.1.33)

is obtained.

3. Using the mixed reciprocity relation �1(x̂; z) = 
us(z;�x̂), the far �eld
reciprocity relation u1(x̂; d) = u1(�d;�x̂) and the substitution d ! �d,
an approximation

us(z;�x̂) �
Z


u1(d;�x̂)

(
1



~g(z;�d)

)
ds(d); x̂ 2 
; z 2 B nD�:

(1.1.34)
for the scattered �eld us from its far �eld pattern u1 is derived.

With the help of rotations and translations of the approximating functions, the
computation of g can be performed e�ciently. Given the reconstruction of the
scattered �eld us, parts of the unknown boundary @D of D can be found using
the total �eld u = ui+us and the boundary condition. For electromagnetic waves
a corresponding operator will be constructed (see also [63]).

To get a better insight into the method, we brie
y compare some features of
the point-source method with the method of Kirsch and Kress as described in [6],
Section 5.4. This method approximates the scattered �eld us by a single-layer
potential S' on a curve or surface �, which has to be located in the interior
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of the unknown scatterer D. Then the boundary @D of the unknown scatterer
is found by �rst minimizing the functional jjS1'� � u1� jj2L2(
), i.e. �tting the
far �eld pattern S1' of the single-layer potential to the given measured data
u1� , and then minimizing jjS'� + uijj2L2(@D) with respect to @D, i.e. �tting the
scattered �eld on the boundary of the scatterer to the incident �eld To obtain
the convergence

S'� ! us; for u1� ! u1 and � ! 0;

on subsets of IRm nD and

@D� ! @D for u1� ! u1 and � ! 0;

one has to combine the minimization of these functionals with respect to '� in
L2(�) and the boundary @D of D.

The last point is a central di�erence of the two methods. For the point-source
approach we obtain convergence for the reconstruction of the scattered �eld us

without the simultaneous reconstruction of the unknown scatterer.
As a second di�erence, the point-source method for the reconstruction of

@D does not need a parametrization of the whole boundary. We are able to
reconstruct parts of the boundary independently.

Third, it is possible to reconstruct scatterers which consist of an unknown
number of components. However, some restrictions on the location of these com-
ponents are required due to the exterior cone condition.

Fourth, the reconstruction operator A given by (1.1.31) is computed according
to some a-priori knowledge. We do not have to invert a linear system involving
the far �eld data or to minimize a functional with a possibly large number of
unknown coe�cients.

Note that there are some similarities between the construction procedure of
the point-source method and the Backus-Gilbert method or molli�er methods [35],
[12], [45].

The third category and the method of singular sources. Since 1996
methods for the reconstruction of the shape of a scatterer have been developed,
which are based on characterizations of the boundary of the scatterer independent
of its physical properties. For an algorithm of category III the boundary condition
or physical properties of the scatterer do not need to be known. The independence
of a reconstruction method on the physical properties of the scatterers is of great
practical importance, since in many cases a knowledge about the properties of
the searched objects does not exist.

A linear sampling method has been proposed 1996 by Colton and Kirsch [4],
see also Colton and Monk [7] and Colton, Piana and Potthast [10]. The idea is
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to characterize the boundary @D of a scatterer D by the behavior of the solution
g = g(z; �) 2 L2(
) of a linear integral equation of the �rst kind

(Fg)(x̂) = e�i�z�x̂; x̂ 2 
; (1.1.35)

for z 2 D, where F is the far �eld operator

(Fg)(x̂) :=
Z


u1(x̂; d)g(d) ds(d); x̂ 2 
: (1.1.36)

Examining either an interior boundary value problem or an interior transmission
problem, in [10] (see also [6]) it is shown, that there exists an approximate solution
of (1.1.35) with

jjg(z; �)jjL2(
) !1 and jjHg(z; �)jjL2(D) !1 for z ! @D; (1.1.37)

where Hg denotes the Herglotz wave function

(Hg)(x) :=
Z


ei�x�dg(d) ds(d); x 2 IRm:

Colton and Kirsch propose to compute a regularized approximate solution of
(1.1.35) on a grid containing D. The domain D then can be found as the set of
points where jjg(z; �)jjL2(
) is large. Numerical experiments can be found in [4],
[7], [10] and [2].

Colton, Piana and Potthast [10] also applied Morozov's discrepancy principle
for the solution of (1.1.35) and used either jjg(z; �)jj or the values of the regular-
ization parameter �(z) to determine the shape D of the scatterer D. Numerical
results of this method can also be found in [2].

As mentioned above, more recently Kirsch [32], [33] was able to derive a
characterization of the shape D of the scatterer D for acoustic scattering in the
case of obstacles or non-absorbing media, i.e. a real-valued refractive index n.
Kirsch showed that the domain D is the set of points z, where the equation

(F �F )1=4g(x̂) = e�i�z�x̂; x̂ 2 
; (1.1.38)

is solvable. This characterization holds both for scattering by obstacles [32] or for
a non-absorbing medium [33]. The support of the scatterer can then be found as
above, computing approximate regularized solutions of (1.1.38) and using either
the norm jjg(z; �)jj of the solution or the size of the regularization parameter �(z),
which is chosen according to Morozov's discrepancy principle. A comparison of
numerical results for the method of Colton and Kirsch (1.1.35) and the version
proposed by Kirsch (1.1.38) can be found in [2]. We will not further investigate
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the method of Colton and Kirsch, but develop a di�erent method in this third
category of reconstruction methods.

In Section 6, we propose a method of singular sources for the reconstruction
of the support of obstacles or scattering media from the knowledge of the far �eld
pattern u1(x̂; d), x̂; d 2 
. It is based on the ideas used in the uniqueness and
stability proofs. For the reconstruction of obstacles in the case of acoustic waves
theoretical and numerical results can be found in [60].

We want to sketch the main ideas of this method. As described above,
the boundary @D of an obstacle D is the set of points where the scattered
�eld �s(z; z) for incident point-sources becomes singular. We construct a ker-
nel g� (x; d)g�(z; ~d), such that for x; z 2 B n D� an approximation for the �eld
�s(x; z) is obtained in the form (Qu1)(x; z) with the bounded linear integral
operator Q de�ned by

(Q')(x; z) :=
Z



Z


g�(x; d)g�(z; ~d)'(d; ~d) ds(d)ds( ~d); x; z 2 B: (1.1.39)

The boundary @D is found as the set of points, where (Qu1)(z; z) is large. We
investigate the method both for the reconstruction of obstacles and the support
of media and give numerical examples.

The methods of the second and the third category have important di�erences
on a fundamental level. Methods of the second category use the scattered �eld
and the boundary condition to determine the scatterer. The boundary condition
does not need to be known for the reconstructions with methods of the third
category. The missing knowledge leads to a di�erent behavior of the algorithm
and (as we show and discuss in Section 6) in
uences the ill-posedness of the
inverse scattering problem.

Contents. We split our presentation into six Sections. The Section 1.1 of this
Section has already been used to introduce the main ideas and results. Section
1.2 serves to present basic de�nitions and tools for further use.

In Section 2 we study the solutions to the direct scattering problems and
derive properties, on which our investigation of the inverse problems will be based.
The main results of Section 2 will be uniform bounds for integral operators and
scattering maps and estimates for the behavior of the scattered �eld �s�;q(z; z) for
incident multipoles of order � and polarization q 2 
.

The themes of Section 3 are uniqueness and stability for the reconstruction of
the shape of a scatterer. We �rst derive uniqueness results from the knowledge
of the full far �eld patterns u1(x̂; d), x̂; d 2 
. In a second part we develop
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a technique to derive stability estimates for the reconstruction of the shape of
both impenetrable and penetrable scatterers from the knowledge of the far �eld
patterns for all incident plane waves.

The �nite data case is investigated in Section 4. We investigate the question
of uniqueness if the far �eld patterns are known only for a �nite number of
observation points and a �nite number of incident plane waves. For this situation
we propose a concept which we call �-uniqueness: given � there are numbers
no; ni such that the far �eld patterns for ni directions of incidence measured at
no observations directions determines the unknown shape up to an error � in the
Hausdor� distance of the domains.

In a second part stability for a �nite set of measured data is studied. For this
case we propose a concept of �-stability: given � there are numbers no; ni and a
function F(ni;no), such that (1.1.29) and (1.1.30) are satis�ed.

In Section 5 a point-source method is introduced for the reconstruction of a
scattered �eld us from its far �eld pattern u1 and the construction of the shape
of an unknown impenetrable scatterer D. We explicitly construct a family of
bounded linear integral operators (1.1.31) for the reconstruction of us and prove
error estimates and convergence to the true scattered �eld. Numerical examples
for reconstructions in three dimensions are given.

A method for the reconstruction of the shape of both impenetrable and pen-
etrable scatterers is proposed in Section 6. We call it the method of singular
sources, since it uses the singular behavior of the scattered �elds �s�;q(z; z) of
multipoles, if the source point z of the incident multipole ��;q(�; z) tends to the
boundary of the scatterer. Some numerical examples in two dimensions demon-
strate the applicability of the ideas.
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1.2 Basic de�nitions and tools.

We now introduce some basic de�nitions, notations and theorems from analysis,
functional analysis, scattering and potential theory for later use. An introduction
into these areas can be found in [37], [20] and [6].

By D we denote a bounded open set in IRm, m 2 IN , with boundary @D and
closure D, such that the exterior of D in IRm is connected. Br(x) is the open ball
with radius r and center x in IRm. The lower half plane is given by

H := fx = (x1; :::; xm); xm � 0g

and we de�ne Hr := Br(0) \H. Let Za;r be the open �nite cylinder

Za;r :=
n
x = (x1; :::; xm) 2 IRm;

q
x21 + :::+ x2m�1 < r; jxmj < a

o
: (1.2.1)

We use the notation Za;r(x; p) for the cylinder de�ned by (1.2.1) in the coordinate
system with origin x and the xm-axis given by p 2 IRm.

The spaces of continuous or l-times continuously di�erentiable functions on D
or @D are denoted by C(D), C l(D) or C(@D), C l(@D), respectively. The space
of l-times H�older continuously di�erentiable functions with H�older coe�cient �
is C l;�(D) or C l;�(@D), respectively.

For a multi-index

 := (
1; :::; 
m)

we de�ne

j
j :=
mX
j=1


j: (1.2.2)

The l-th derivatives of a function f 2 C l(D) are given by

f (
) :=
@j
jf

@
1x1:::@
mxm

for all 
 2 INm
0 with j
j = l. We will need the space L2(D) of square-integrable

functions on D and the Sobolev spaces H l(D), which are de�ned as the closure of
C l(D) with respect to the norm

jjf jjHl(D) :=
X
j
j�l

jjf (
)jjL2(D): (1.2.3)
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Given m 2 IN0 and � 2 [0; 1] the boundary @D is said to be of class C l;�, if
for each point x 2 @D there is an open set V 2 IRm with x 2 V and a bijective
mapping  2 C l;�(B1(0)) such that  (B1(0)) = V and  (H1) = V \D. Since @D
is compact, we can always �nd a �nite number of such domains V which cover
@D. A parametrization of V \ @D is given by  jU1 with

U1 := fx 2 B1(0); xm = 0g: (1.2.4)

Then fU1;  ; V \ @Dg is called a set of local coordinates for @D

For domains of class C l;� with l � 1 and � 2 [0; 1] let �(x) be the exterior
unit normal vector to the boundary @D of D in the point x 2 @D. We use special
local coordinates for @D. For a point x 2 @D we can �nd a coordinate system
Kx with origin x and the xm-axis given by fx+ h�(x); h 2 IRg. In this special
coordinate system in a neighborhood Zr;a of 0 with r; a > 0, a parametrization of
@D \ Zr;a is given by

@D \ Zr;a =
n�
t1; :::; tm�1; f(t1; :::; tm�1)

�
; (t1; :::; tm�1) 2 Br(0)

o
(1.2.5)

with a mapping f 2 C l;�(Br(0)) de�ned on the open set Br(0) � IRm�1. The
function f 2 C l;�(Br(0)) is uniquely determined and we have

D \ Zr;a = f(t1; :::; tm) 2 Zr;a; tm � f(t1; :::; tm�1)g: (1.2.6)

For later use we need to specify classes of domains, for which the properties
of special functions and integral operators are valid uniformly.

Definition 1.2.1 Given constants Re; r0; a0, l 2 IN , � 2 [0; 1], C0 > 0 and
�e > 0 we de�ne the class

A = A(Re; r0; a0; l; �; C0) (1.2.7)

of domains in IRm, which satisfy the following conditions:

1. (Boundedness.) For all D 2 A we have

D � BRe(0): (1.2.8)

2. (Smoothness.) For each point x 2 @D there is a special coordinate
system Kx de�ned above, such that for r = r0, a = a0 and with the function
f 2 C l;�(Br0(0)) the equations (1.2.5) and (1.2.6) and the estimate

jjf jjCl;�(Br(0)) � C0 (1.2.9)
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are satis�ed.

3. (Exterior cone condition.) For each x 2 IRm nD there is a cone

co(x; p; �e) :=
n
y 2 IRm; y�xjy�xj � p � cos(�e)

o
(1.2.10)

with direction p 2 
, and opening angle �e in the exterior IRm nD of D.

In contrast to the theory of partial di�erential equations, where cone condi-
tions are used to describe the regularity of the boundary of a domain, here the
in�nite cone condition is a geometrical condition. It can be seen as a condition
to limit non-convexity and, simultaneously, allow scatterers consisting of several
separate components. It guaranties that each point x on the boundary @D can be
reached by an exterior in�nite cone co(x; p; �e) with a direction p 2 
 depending
on x and a �xed given opening angle �e. We use the notation B := BRe(0).

To work with the class A of domains we need to note some of its properties.

Theorem 1.2.2 For parameters Re; r0; a0 > 0, l � 2, � 2 [0; 1] and C0 > 0 we
obtain for the class of domains A = A(Re; r0; a0; l; �; C0) the following properties.

1. There is a radius ri = ri(r0; a0; C0), such that for each domain D 2 A and
each point x 2 @D we have

Bri(x + �(x)ri) � IRm nD (1.2.11)

and
Bri(x� �(x)ri) � D: (1.2.12)

2. Each domain D 2 A is a union of balls with radius ri.

3. For each domain D 2 A and each point x 2 @D we have

x+ �(x)s 62 D; s 2 [0; ri] (1.2.13)

and
x� �(x)s 2 D; s 2 (0; ri]: (1.2.14)

4. There is a number L1 = L1(Re; r0; a0; C0) 2 IN , such that for each do-
main D in A the boundary @D of D is piecewise parametrized by L1 twice
continuously di�erentiable injective mappings

 j : Br0(0)! IRm; j = 1; :::; L1; (1.2.15)

of the form (1.2.5) with a norm (1.2.9) bounded uniformly for all domains
D 2 A.
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5. There is a number L2 = L2(Re; r0; a0; C0), such that for every scatterer D
in A the domain D is parametrized by L2 injective mappings

 j : Zr0;a ! IRm; j = 1; :::; L2; (1.2.16)

where  j is an element of C l;�(Zr0;a), j = 1; :::; L2 with a norm bounded
uniformly for all domains D 2 A.

Proof. Given x 2 @D the property 1 is obtained with the help of the special
coordinate system Kx and the bound C0 on the norm

jjf jjC2;0(Br0 (0))

by elementary calculations as follows. We only need to consider the line x2 = 0
in a neighborhood of 0. Here the boundary of Bri(0 + �(0)ri) is given by

g(x1) := ri �
q
r2i � x21; 0 � x1 < ri:

For ri <
1
C0

we estimate the derivative of g by

x1q
r2i � x21

� x1
ri

> C0x1; 0 � x1 < ri: (1.2.17)

From
@f(t; 0)

@t
(x1; 0) =

Z x1

0

@2f(t; 0)

@t2
dt

for the derivative of f we derive

j@f(t; 0)
@t

(x1; 0)j � C0x1; 0 � x1 < ri: (1.2.18)

Thus for the derivatives of g and f from (1.2.17) and (1.2.18) we obtain the
estimate

@g

@x1
(x1) > j@f(x1; 0)

@x1
(x1)j; 0 � x1 < ri;

which yields
g(x1) > f(x1; 0); 0 � x1 < ri;

and thus property 1.
The properties 2 and 3 are an immediate consequences of property 1. Property

4 can be obtained by compactness of

BRe(0) � IRm; (1.2.19)
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since there is a �nite number L1 of balls Br0(x), x 2 BRe(0), which cover (1.2.19)
and for each ball Br0(x) the set @D \ Br0(x) is parametrized by special local
coordinates of the form (1.2.5) with norm bounded by (1.2.9).

To prove 5 we �rst proceed as in 4 and obtain L1 local coordinate systems
Kxj and corresponding local coordinates of the form (1.2.5) covering @D. For the
local coordinates Kxj we obtain a mapping  1j : Zr0;a ! Zr0;a \D by

(t1; :::; tm) 7!
�
t1; :::; tm�1;

tm + a

2a

h
f(t1; :::; tm�1) + a

i
� a

�
:

For this mapping from (1.2.9) we derive jj 1jjjCl;�(Zro;a) � C with some constant
C uniformly for D 2 A. The set

G := D n
� L1[
j=1

 1j(Zr0;a)
�
:

is a compact subset of D with

d(G; @D) � � > 0: (1.2.20)

uniformly for all domains D 2 A.
Second, there is a �nite number ~L of cylinders Z�=3;�=3(yj; pj), yj; pj 2 IRm,

which cover BRe(0). We choose those cylinders which are contained inD. Because
of (1.2.20) they cover G. Using translation, rotation and multiplication with a
diagonal matrix with diagonal terms �=(3r0) and �=(3a) we obtain continuously
di�erentiable parametrizations  2j : Zr0;a ! Z�=3;�=3(yj; pj), j = 1; :::; ~L, such
that

G �
� L2[
j=1

 2j(Zr0;a):

The proof is now completed with L2 := L1 + ~L by combining step one and two.
2

For the work with the exterior cone condition the following technical lemma
will be useful.

Lemma 1.2.3 Given the class A of domains, there is 0 < �0 � �e and �0 > 0
such that all domains

D� := f y 2 IRm; d(y;D) < � g (1.2.21)

with D 2 A and 0 � � � �0 satisfy the exterior cone condition with angle �0.
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Proof. We will show that there is 0 < �0 < �e, such that for each point x
in IRm nD� � IRm nD and each cone co(x; p; �e) 2 IRm nD the cone co(x; p; �0)
satis�es

co(x; p; �0) � IRm nD�:

According to Theorem 1.2.2 the domain D is the union of balls with radius ri.
Thus D is a subset of

G :=
[

Bri(y)�IRmn(B�(x)[co(x;p;�e
)Bri(y):

Bri(y)

' Bri+�(y)
B�(x)

'
p

co(x; p; �e � ')

co(x; p; �e)

Figure 1

Considering balls Bri(y), which
touch both B�(x) and co(x; p; �e),
we obtain by elementary geomet-
ric arguments from Figure 1, that
for angles

' := arccos(
ri

ri + �
) (1.2.22)

with
' < �e (1.2.23)

we have

Bri+�(y) \ co(x; p; �e � ') = ;:

Thus we have proven

co(x; p; �e � ') \D� � co(x; p; �e � ') \G� = ;;

i.e. we have

co(x; p; �e � ') � IRm nD�:

The proof is complete by observing that arccos(ri=(ri + �)) ! 0; � ! 0. and
choosing �0; �0 such that for all � < �0 and ' de�ned by (1.2.22) the estimate
(1.2.23) is satis�ed.

2
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An indispensable tool for the investigation of both direct and inverse scatter-
ing problems are special solutions to the Helmholtz equation. For later use we
now introduce Legendre polynomials, associated Legendre polynomials, spherical
harmonics, Bessel and Neumann functions and note some of their properties. If
not pointed out otherwise, for a proof of these properties we refer to [6].

Let Y l
n for l = �n; :::; n and n = 0; 1; 2; ::: be a complete orthonormal system

of spherical harmonics, as for example given by

Y l
n(�; ') :=

vuut2n+ 1

4�

(n� jlj)!
(n+ jlj)! P

jlj
n (cos(�))e

il' (1.2.24)

for l = �n; :::; n, n = 0; 1; 2; :::. Here, P l
n are the associated Legendre functions,

which can be derived from the Legendre polynomials Pn by

P l
n(t) := (1� t2)l=2

dlPn(t)

dtl
; l = 0; 1; :::; n: (1.2.25)

The Legendre polynomials

Pn(x) :=
1

2n n!

dn

dxn

n
(x2 � 1)n

o
; n = 0; 1; ::: (1.2.26)

form an orthogonal system in L2[�1; 1], more explicitly we have

Z 1

�1
Pn(t)Pl(t)dt =

2

2n+ 1
�nl; n; l = 0; 1; 2; :::: (1.2.27)

They satisfy the inequality

jPn(t)j � 1; �1 � t � 1; n = 0; 1; 2; ::: : (1.2.28)

For 2n+ 1 orthonormal spherical harmonics of order n the addition theorem

nX
l=�n

Y l
n(x̂)Y

l
n(ŷ) =

2n+ 1

4�
Pn(cos(�)) (1.2.29)

holds for x̂; ŷ 2 
, where � is the angle between x̂ and ŷ. For the surface gradient
of spherical harmonics we note the estimate���Grad Y l

n(x̂)
��� � C n3=2jjY l

njjL2(
); x̂ 2 
; (1.2.30)

(see Section X, Lemma 6.1 of [46]).
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The spherical Bessel functions and spherical Neumann functions of order n
are given by the series

jn(t) :=
1X
p=0

(�1)ptn+2p

2pp!1 � 3 � � � (2n+ 2p+ 1)
(1.2.31)

and

yn(t) := �(2n)!

2nn!

1X
p=0

(�1)pt2p�n�1
2pp!(�2n+ 1)(�2n+ 3) � � � (�2n+ 2p� 1)

; (1.2.32)

where the �rst coe�cient in the series (1.2.32) has to be set equal to one. The
linear combinations

h(1;2)n := jn � iyn (1.2.33)

are known as spherical Hankel functions of the �rst and second kind of order n.
By straightforward calculation from the series (1.2.31) and (1.2.32) it is possible
to derive the di�erentiation formula

tn+1fn�1(t) =
d

dt

n
tn+1fn(t)

o
(1.2.34)

for both fn = jn and fn = yn, and together with Stirlings formula

n! =
p
2�n

�
n

e

�n
(1 + o(1)); n!1 (1.2.35)

we obtain the behavior

jn(t) =
1

2n+ 1

�
et

2n

�n �
1 +O

�
1

n

��
; n!1; (1.2.36)

and

h(1)n (t) =
�p2
t

�
2n

et

�n �
1 +O

�
1

n

� �
; n!1; (1.2.37)

uniformly on compact subsets of (0;1). One can use the spherical harmonics
and the spherical Bessel or Hankel functions to construct special solutions to the
Helmholtz equation. Given a spherical harmonic Yn of order n, the function

un(x) := jn(�jxj)Yn(x̂) (1.2.38)

is an entire solution to the Helmholtz equation. The multipole of order n

vn(x) := h(1)n (�jxj)Yn(x̂) (1.2.39)
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is a radiating solution to the Helmholtz equation in IRm nf0g. Modulo a constant
the threedimensional multipole of order zero is the point-source

�(x; z) :=
1

4�

ei�jx�zj

jx� zj ; (1.2.40)

the multipole of order one is a dipole, the multipole of order two a quadrupole etc.

Multipole expansions, i.e. expansions of solutions of the Helmholtz equation
with respect to the functions vn, are used both in direct and inverse scattering.
For the proof of explicit stability estimates in Section 3, we will need themultipole-
expansion of the fundamental solution

�(x; y) = i�
1X
n=0

nX
l=�n

h(1)n (�jxj)Y l
n(x̂)jn(�jyj)Y l

n(ŷ); (1.2.41)

where x̂ = x=jxj and ŷ = y=jyj. Here, the series and its term by term derivatives
with respect to x and y are absolutely and uniformly convergent on compact
subsets of jxj > jyj. Further tools are given by the Funk-Hecke formulaZ



e�i�x�ẑYn(ẑ) ds(ẑ) =

4�

in
jn(�jxj)Yn(x̂); x 2 IRm (1.2.42)

for spherical harmonics Yn of order n and the Jacobi-Anger expansion

ei�x�d =
1X
n=0

in(2n+ 1)jn(�jxj)Pn(cos(�)); x 2 IRm; (1.2.43)

where d is a unit vector, � denotes the angle between x and d and the convergence
is uniform on compact subsets of IRm.

For scattering in IR2 the multipoles and some constants have to be modi�ed.
The functions jn and yn are replaced by the Bessel function of order n

Jn(t) :=
1X
p=0

(�1)p
p!(n+ p)!

�
t

2

�n+2p

(1.2.44)

and the Neumann function of order n

Yn(t) :=
2

�

�
ln
t

2
+ C

�
Jn(t)� 1

�

n�1X
p=0

(n� 1� p)!

p!

�
2

t

�n�2p

� 1

�

1X
p=0

(�1)p
p!(n+ p)!

�
t

2

�n+2p

f (n+ p) +  (p)g
(1.2.45)
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for n = 0; 1; 2; :::, where we de�ne  (0) := 0,

 (p) :=
pX
l=1

1

l
; p = 1; 2; :::; (1.2.46)

and

C := lim
p!1

( pX
l=1

1

l
� ln p

)
(1.2.47)

denotes Euler's constant, and if n = 0 the �nite sum in (1.2.45) is set equal to
zero. The linear combinations

H(1;2)
n := Jn � iYn (1.2.48)

are called Hankel functions of the �rst and second kind of order n, respectively.
The multipoles in IR2 are given by the functions

Vn(x) := H(1)
n (�r)e�in' (1.2.49)

with the polar coordinates (r; '). For the twodimensional fundamental solution

�(x; z) :=
i

4
H(1)

0 (�jx� zj) (1.2.50)

we obtain the multipole-expansion

�(x; y) =
i

4
H

(1)
0 (�jxj)J0(�jyj) + i

2

1X
n=1

H(1)
n (�jxj)Jn(�jyj) cos(n�); (1.2.51)

where � denotes the angle between x and y. It is valid uniformly on compact
subsets of jxj > jyj. The Jacobi-Anger expansion (1.2.43) in IR2 assumes the
form

ei�x�d = J0(�jxj) + 2
1X
n=1

inJn(�jxj) cos(n�); x 2 IR2: (1.2.52)

We will use the boundary-layer approach to investigate the properties of the
solutions to scattering problems for impenetrable scatterers. With the help of
boundary-layer potentials the scattering problems are reduced to integral equa-
tions on the boundary of the scatterer.

For a domain D � IRm with boundary of class C2 consider the single-layer
potential

u(x) :=
Z
@D
'(y)�(x; y)ds(y); x 2 IRm; (1.2.53)
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and the double-layer potential

v(x) :=
Z
@D

@�(x; y)

@�(y)
'(y)ds(y); x 2 IRm n @D: (1.2.54)

Later we will also use P1' and P2' for the single-layer or double-layer poten-
tial, respectively. The behavior of the single- and double-layer potentials at the
boundary @D is described by the following jump relations.

Theorem 1.2.4 (Jump relations.) The single-layer potential u with continu-
ous density ' is continuous throughout IRm. On the boundary we have

u(x) =
Z
@D
'(y)�(x; y) ds(y); x 2 @D; (1.2.55)

and
@u�
@�

(x) =
Z
@D
'(y)

@�(x; y)

@�(x)
ds(y)� 1

2
'(x); x 2 @D; (1.2.56)

where
@u�
@�

(x) := lim
h!+0

�(x) � grad u(x� h�(x)) (1.2.57)

is to be understood in the sense of uniform convergence on @D. The double-layer
potential v with density ' can be continuously extended from D to D and from
IRm nD to IRm nD with limiting values

@v�
@�

(x) =
Z
@D
'(y)

@�(x; y)

@�(y)
ds(y)� 1

2
'(x); x 2 @D; (1.2.58)

where
v�(x) := lim

h!+0
v(x� h�(x))

and where the integral exists as an improper integral. For a density ' 2 L2(@D)
the jump relations (1.2.55) to (1.2.58) have to be replaced by

lim
h!+0

Z
@D

���u(x� h�(x))�
Z
@D
'(y)�(x; y) ds(y)

���2 ds(x) = 0 (1.2.59)

lim
h!+0

Z
@D

���@u
@�

(x� h�(x)) �
Z
@D
'(y)

@�(x; y)

@�(x)
ds(y)

1

2
� '(x)

���2 ds(x) = 0

(1.2.60)
and

lim
h!+0

Z
@D

���@u
@�

(x� h�(x)) �
Z
@D
'(y)

@�(x; y)

@�(y)
ds(y) � 1

2
'(x)

���2 ds(x) = 0:

(1.2.61)
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Proof. The proof for continuous densities can be found in [5], Theorems 2.12,
2.13 and 2.19, the proof for ' 2 L2(@D) is due to Kersten [28].

2

With the help of boundary layer potentials and jump relations the acoustic
and electromagnetic scattering problems can be reduced to boundary integral
equations of the second kind, i.e. operator equations of the form

(I � A)' = f (1.2.62)

with a compact linear operator A : X ! X de�ned on a normed spaceX. Integral
equations of this kind can be solved using the following theorem of Riesz.

Theorem 1.2.5 (Riesz Theorem.) Let X be a normed space and A : X ! X
a compact linear operator. If the homogeneous equation

(I � A)' = 0

only has the trivial solution ' = 0, then for all f 2 X the inhomogeneous equation

(I � A)' = f

has a unique solution ' 2 X and this solution depends continuously on f .

Proof. See Corollary 1.17 of [5].
2

According to the Riesz theorem the injectivity of an operator I � A yields
its continuous invertibility. Usually the injectivity of an integral operators corre-
sponding to a scattering problem is obtained from the uniqueness of the solution
to this scattering problem.

For the investigation of special scattered �elds for scattering from inhomo-
geneous medium scatterers we will need to study the integral equations of the
scattering problems both in the spaces of continuous and square-integrable func-
tions. The injectivity of the integral operators in L2(D) will be obtained from
the results in C(D) with the help of dual systems, de�ned on subspaces of L2(D)
by the sesquilinear form

h';  i :=
Z
D
'(y) (y)dy (1.2.63)

for ';  2 L2(D).
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Theorem 1.2.6 (Fredholm Alternative Theorem) Let X and Y be normed
spaces, hX; Y i a dual system and A : X ! X, B : Y ! Y compact adjoint
operators. We have either

N(I � A) = f0g and N(I � B) = f0g
and

(I � A)(X) = X and (I � B)(Y ) = Y

or
dimN(I � A) = dimN(I � B) 2 IN

and

(I � A)(X) = N(I �B)? and (I � B)(Y ) = N(I � A)?:

Proof. For a proof we refer the reader to [37]. 2

In general, inverse problems are ill-posed in the sense of Hadamard [15], i.e. the
demands of uniqueness, existence and stability are violated. Ill-posed equations
of the type

A(') = f (1.2.64)

with a compact (linear or nonlinear) operator A : X ! Y are usually solved ap-
proximately by a family of bounded (linear or nonlinear) regularization operators

R� : Y ! X; � > 0; (1.2.65)

with the property
lim
�!0

R�(A(x)) = x for all x 2 X; (1.2.66)

i.e., the operators R�A converge pointwise to the identity, if the regularization
parameter � tends to zero. In this case the family of operators R� is called a
regularization strategy (see [35]).

As a main tool for the investigation of inverse scattering problems we will use
the approximation of multipoles by a superposition of plane waves. This leads to
the approximate solution of ill-posed linear operator equations of the form

H' = f (1.2.67)

in a Hilbert space X, where the ill-posedness of the equation is due to the un-
boundedness of the operator H�1. A standard regularization strategy for the
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approximate solution of equation (1.2.67) is given by the Tikhonov regularization
scheme, which computes an approximate solution '� by

'� := (�I +H�H)�1H�f: (1.2.68)

For more details we refer the reader to [35] or [6].
Another possibility to approximately solve (1.2.67) are minimum norm solu-

tions. For a bounded linear operator H : X ! Y between two normed spaces X
and Y , � > 0 and f 2 Y an element '0 2 X is called minimum norm solution of
H' = f with discrepancy � , if jjH'0 � f jj � � and

jj'0jj = inf fjj'jj; jjH'� f jj � �g:

Theorem 1.2.7 (Minimum norm solutions) Let X; Y be Hilbert spaces. If
H has dense range in Y , then for each f 2 Y there is a unique minimum norm
solution '0 of H' = f with discrepancy � . The minimum norm solution '0 can
be calculated by

'0 = (�I +H�H)�1H�f; (1.2.69)

where � is a zero of the function

G(�) :=
������(�I +H�H)�1H�f � f

������2 � � 2: (1.2.70)

Proof. A proof is given in [37].
2

The preceding theorem can be interpreted as an a-posteriori strategy for the
choice of the parameter � in the Tikhonov regularization scheme for the approx-
imate solution of H' = f .

An impenetrable acoustic or electromagnetic scatterer is given by a domain
D and a boundary condition. We will use the letter D for the full scatterer with
all its properties. The type of a scatterer is either sound-soft or sound-hard for
the acoustic problems or perfect-conductor for electromagnetic scattering. Thus,
an impenetrable scatterer D can be viewed as a pair

D = (D; type) (1.2.71)

of its domain D and its boundary condition.
For penetrable scatterers the situation slightly more complicated. Again, we

use D for the full scatterer. The scatterer D is given by a domain D, de�ned as
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the interior of the support of the inhomogeneity, and a refractive index n with
njIRmnD = 1 and njD 2 C0;�(D). The full scatterer D is the pair

D = (D; n): (1.2.72)

We will study uniqueness, stability and algorithms for the reconstruction of
the domain D of impenetrable and penetrable scatterers D for both acoustic and
electromagnetic scattering problems.



2 Direct scattering problems.

For the investigation and solution of inverse scattering problems a good know-
ledge about the direct scattering problems is indispensable. Thus in this Section
on direct scattering problems we collect and derive de�nitions and results for
further use in the following sections.

2.1 Acoustic obstacle scattering.

We consider acoustic scattering from a bounded sound-soft or sound-hard impen-
etrable scatterer D. The scatterer D consists of a domain D � IRm, m = 2; 3 and
a boundary condition for the total �eld on @D. We always assume the boundary
of @D of D to be of class C2 and the open exterior IRm nD of D to be connected.
An incident �eld ui is a solution to the Helmholtz equation

4u+ �2u = 0 (2.1.1)

with wave number � > 0 on a domain containing D in its interior.

Definition 2.1.1 Given an incident �eld ui and a scatterer D, the direct acous-
tic obstacle scattering problem is to �nd a scattered �eld

us 2 C2(IRm nD) \ C(IRm nD);

which solves the Helmholtz equation (2.1.1) in IRm nD and satis�es the Sommer-
feld radiation condition

r
m�1
2

�@us
@r

� i�us
�
! 0; r = jxj ! 1; (2.1.2)

uniformly in all directions x̂ = x=jxj, such that the total �eld

u = ui + us (2.1.3)

satis�es the sound-soft boundary condition

ui + us = 0 on @D (2.1.4)

or the sound-hard boundary condition

@

@�

�
ui + us

�
= 0 on @D: (2.1.5)

Here � denotes the unit outward normal vector to @D and the normal derivative
in (2.1.5) is understood in the sense of (1.2.57). A solution u of the Helmholtz
equation in the exterior of some ball B satisfying (2.1.2) is called radiating.
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The main tools for the investigation and solution of the direct scattering
problem are Green's integral theorems. In particular, for u; v 2 C2(G) we have
Green's second theoremZ

G
fu4v � v4ug dx =

Z
@G

 
u
@v

@�
� v

@u

@�

!
ds; (2.1.6)

where G denotes a domain of class C1 and � the unit normal vector to the
boundary @G directed into the exterior of G. Green's integral theorems can be
used to derive for a radiating solution us of the direct acoustic scattering problem
Green's formula

us(x) =
Z
@D

(
us(y)

@�(x; y)

@�(y)
� @us

@�
(y)�(x; y)

)
ds(y); x 2 IRm nD (2.1.7)

and the asymptotic behavior

us(x) =
ei�jxj

jxjm�1
2

(
u1(x̂) +O

 
1

jxj
!)

; jxj ! 1; (2.1.8)

where x̂ := x=jxj 2 
 and 
 := fx 2 IRm; jxj = 1g, see [6], Theorem 2.5. The
function u1 is called the far �eld pattern of the scattered acoustic wave.

As incident �elds ui plane waves and point-sources are of special interest. We
denote the scattered �eld for an incident plane wave

ui(x; d) := ei�x�d; x 2 IRm;

with direction d 2 
 by us(x; d), x 2 IRm n D, and the corresponding far �eld
pattern by u1(x̂; d), x̂ 2 
. An incident point-source �(�; z) with source point
z 2 IRm is given by the fundamental solution to the Helmholtz equation (1.2.40).
The scattered �eld for an incident point-source �(�; z) with source point z is
denoted by �s(�; z) and the corresponding far �eld pattern by �1(x̂; z), x̂ 2 
.

Several approaches have been developed to solve the direct scattering problem.
We will use integral equations to obtain a representation of the solution in terms
of boundary-layer potential and to study properties of the scattered �elds. To
this end, let us introduce the classical boundary integral operators. We use the
single-layer operator

(S')(x) := 2
Z
@D

�(x; y)'(y)ds(y); x 2 @D; (2.1.9)

the double-layer operator

(K')(x) := 2
Z
@D

@�(x; y)

@�(y)
'(y)ds(y); x 2 @D; (2.1.10)
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the L2-adjoint of the double-layer operator

(K�')(x) := 2
Z
@D

@�(x; y)

@�(x)
'(y)ds(y); x 2 @D; (2.1.11)

and the normal derivative of the double-layer operator

(T')(x) := 2
@

@�(x)

Z
@D

@�(x; y)

@�(y)
'(y)ds(y); x 2 @D: (2.1.12)

For a derivation of the following uniqueness and existence results for the direct
acoustic scattering problems we refer to [6], Section 3. Here we only summarize
the results.

Theorem 2.1.2 The direct acoustic scattering problem with sound-soft or sound-
hard boundary condition has a unique solution and the solution depends continu-
ously on the boundary data uij@D or @ui

@�
j@D, respectively, of the incident �eld in

C(@D) with respect to uniform convergence of the solution and all its derivatives
on closed subsets of IRm nD.

In particular, for the case of the sound-soft boundary condition, the solution
can be represented as a combined acoustic double- and single-layer potential

us(x) =
Z
@D

(
@�(x; y)

@�(y)
� i�(x; y)

)
'(y)ds(y); x 2 IRm nD; (2.1.13)

where the density ' 2 C(@D) is a solution of the boundary integral equation

(I +K � iS)' = �2uij@D: (2.1.14)

Here I stands for the identity operator. For the case of the sound-hard boundary
condition, a representation of the solution is given by the modi�ed acoustic single-
and double-layer potential

us(x) :=
Z
@D

(
�(x; y)'(y) + i

@�(x; y)

@�(y)
(S2

0')(y)

)
ds(y); x 2 IRm n @D; (2.1.15)

where S0 denotes the operator S in the case � = 0 and the density ' 2 C(@D)
solves the boundary integral equation

(I �K� � iTS2
0)' = 2

@ui

@�
: (2.1.16)

Proof. We refer to Theorem 3.7, Theorem 3.9 and Theorem 3.10 of [6]. 2
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Before we investigate more details of the behavior of integral operators for the
solution to the direct scattering problem, we introduce some symmetry properties
of the scattered �elds or far �eld patterns, respectively, which are called reciprocity
relations. Due to reciprocity relations, the role of source and receiver in the
scattering process can be exchanged.

Reciprocity relations play an important role for the investigation of both di-
rect and inverse scattering problems. We will use reciprocity relations in nearly
all further sections, for example for a proof of the Isakov-Kirsch-Kress unique-
ness theorem, to prove uniqueness for the support of scattering media, to obtain
stability estimates, to introduce the point-source method and also to derive the
method of singular sources.

For further argumentation we distinguish di�erent reciprocity relations ac-
cording to the location of the source and receiver in the near �eld, the far �eld
or a mixed location with either the source in the near �eld and the observations
in the far �eld or vice versa.

Theorem 2.1.3 (Far �eld reciprocity relation.) The far �eld patterns for
scattering of plane waves by a sound-soft or sound-hard scatterer satisfy

u1(x̂; d) = u1(�d;�x̂); x̂; d 2 
: (2.1.17)

Proof. We refer to [6], Theorem 3.13 for the sound-soft scatterer. The sound-
hard boundary condition can be treated analogously, see for example the proof
of the mixed reciprocity relation below.

2

For the mixed reciprocity relations we need the constant


m =

8>>>>><
>>>>>:

ei�=4p
8��

; m = 2

1

4�
; m = 3;

(2.1.18)

depending on the dimension m = 2; 3.

Theorem 2.1.4 (Mixed reciprocity relation.) For acoustic scattering of
plane waves ui(�; d), d 2 
 and point-sources �(�; z), z 2 IRm nD from a sound-
soft and a sound hard scatterer D we have

�1(x̂; z) = 
m us(z;�x̂); z 2 IRm nD; x̂ 2 
: (2.1.19)
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Proof. The proof for the sound-soft scatterer is due to Kress [36]. By Green's
second theorem (2.1.6) we have that

Z
@D

�
�s(y; z)

@us(y; d)

@�(y)
� @�s(y; z)

@�(y)
us(y; d)

�
ds(y) = 0; (2.1.20)

for z 2 IRm nD; d 2 
: Passing to the limit jxj ! 1 in Green's formula (2.1.7)
we obtain the representation

�1(x̂; z) = 
m

Z
@D

�
�s(y; z)

@e�i�x̂�y

@�(y)
� @�s

@�
(y; z)e�i�x̂�y

�
ds(y) (2.1.21)

for z 2 IRm nD; x̂ 2 
. Let u(:; d) denote the total �eld for the sound-soft or the
sound-hard scattering problem with incident plane wave of direction d. Adding

m times (2.1.20) with d replaced by �x̂ to equation (2.1.21) with the help of the
boundary conditions we obtain

�1(x̂; z) = 
m

Z
@D

�s(y; z)
@u(y;�x̂)
@�(y)

ds(y); z 2 IRm nD; x̂ 2 
; (2.1.22)

for the sound-soft scatterer and

�1(x̂; z) = �
m
Z
@D

@�s(y; z)

@�(y)
u(y;�x̂)ds(y); z 2 IRm nD; x̂ 2 
; (2.1.23)

for the sound-hard scatterer. Again from Green's theorem have the representation
formula

us(x; d) = �
Z
@D

�(x; y)
@u(y; d)

@�
ds(y); x 2 IRm nD; d 2 
 (2.1.24)

for the sound-soft boundary condition and

us(x; d) =
Z
@D

@�

@�
(x; y)u(y; d)ds(y); x 2 IRm nD; d 2 
 (2.1.25)

for the sound-hard boundary condition. Now from (2.1.22), (2.1.24) and (2.1.23),
(2.1.25) using the boundary condition for �s we obtain (2.1.19) both for the
sound-soft and sound-hard boundary condition.

2

Before we can start to investigate the direct scattering problems, we have to
think about the scatterers under consideration for reconstruction. Appropriate
assumptions on the scatterers, as for example a bound on the size of the scatterer,
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occur in uniqueness theorems (see for example [6], Theorem 5.2). As indicated
in the introduction, bounds on the curvature of the scatterer can be used to
obtain results on stability. To prove convergence of reconstruction algorithms,
it is usually required to know some geometric properties of the scatterers under
consideration. For example, it is required to know a part of the interior of the
unknown domain for the method of Kirsch and Kress (Section 5.4 of [6]).

We now de�ne classes of scatterers for further investigation. They do not
describe the weakest possible restrictions for the di�erent statements and algo-
rithms, but they play the role of some simple limitations, which are adequate for
the behavior of the inverse scattering problems under consideration.

Definition 2.1.5 Given positive constants Re; r0; a0; C0, �e, we de�ne the class

Css = Css(Re; r0; a0; C0; �e)

as the set of sound-soft scatterers with domain

D 2 A(Re; r0; a0; l; �; C0; �e) (2.1.26)

for l = 2, � = 0 and A given by (1.2.7). The class

Csh = Csh(Re; r0; a0; C0; �e)

is the set of sound-hard scatterers D with domain D satisfying (2.1.26). The
classes Css and Csh together form the class

Cobst := Css [ Csh:
To de�ne the convergence of a sequence of domains or boundaries, respectively,

we use the parametrizations ( j)j=1;:::;L1, which we constructed in Theorem 1.2.2.

Definition 2.1.6 The convergence

@ ~D ! @D

is understood as a convergence of the parametrizations ~ j !  j, j = 1; :::; L1 in
the norm of C l;�(Br0(0)).

We �rst derive a compactness property of the class Cobst.
Lemma 2.1.7 Given a sequence (Dj)j2IN of scatterers Dj 2 Cobst, there is a sub-
sequence (Djk)k2IN of (Dj)j2IN , for which the sequence of domains (Djk)k2IN con-
verges in the C1;�-norm to a domain D � B.
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Proof. Consider a sequence (Dj)j2IN of scatterers. Due to Theorem 1.2.2 we
obtain mappings  jl : Bri(0)! IRm with jj jljjC2(Bri (0))

� C0, such that the sets

Vjl :=  jl(Bri(0)); l = 1; :::; L1;

cover @Dj. Since a bounded subset of C2(Bri(0)) is a relatively compact sub-
set of C1;�(Bri(0)), we can �nd a convergent subsequence ( jk1)k2IN of ( j1)j2IN
in C1;�(Bri(0)). Then, we consider the corresponding subsequence ( jk2)k2IN of
( j2)j2IN and again choose a convergent subsequence ( j(kn)2)n2IN of ( jk2)k2IN .
We proceed in the same way with l = 3; :::; L1 and after L1 steps we obtain a sub-
sequence (Djk)k2IN of (Dj)j2IN with a convergent sequence (Djk)k2IN of domains.
This completes the proof. 2

We now collect some results on the integral operators S, K, K� and T . We
have to be careful with bounds, since we need most bounds and constants to
hold uniform for scatterers D 2 Cobst. We �rst summarize the classical mapping
properties of the potential operators.

Theorem 2.1.8 For � 2 (0; 1) the operators S, K, K� and T � T0 are bounded
operators from C(@D) into C0;�(@D). The operators S and K are also bounded
from C0;�(@D) into C1;�(@D). The operator T is bounded from C1;�(@D) into
C0;�(@D). The double-layer potential de�nes a bounded operator from C0;�(@D)
into C(B nD). All bounds hold uniformly for scatterers D 2 Cobst.

Proof. The proofs for the mapping properties of the operators can be found
in the Theorems 2.12, 2.15, 2.30 and 2.31 of [5]. Using the properties of the class
A it has been worked out in [58] that the estimates are satis�ed uniformly for
scatterers D 2 Cobst.

2

For the use of continuity and compactness arguments, we need to investigate
the dependence of the operators S, K, K� and T � T0 on the domain @D. We
investigate the operators as bounded linear operators on C(@D).

To treat functions and operators on @D in dependence on @D we need to
de�ne appropriate reference spaces. This will be the spaces

X :=
h
C1;�(Br0(0))

iL1

;

and for l 2 f0; 1g
Y := [C l;�(Br0(0))]

L1:
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For each scatterer D 2 Cobst there is a parametrization ( l)l=1;:::;L1 2 X. This
de�nes a mapping

� : Cobst ! X; @D 7! ( l)l=1;:::;L1:

Later we will need the set
V := �(Cobst):

Let 	@D be given by

	@D : C l;�(@D)! Y; ' 7! (' �  l)l=1;:::;L1

For �xed @D the linear operator 	@D is injective. We de�ne

W := 	@D(C
l;�(@D)): (2.1.27)

Since for ' 2 C l;�(@D) by

~'(~x) := '(x) for ~x = ~ l
�
 �1l (x)

�
; x 2 @D;

we can de�ne ~' 2 C l;�(@ ~D) with

	@D(') = 	@ ~D( ~');

the set W is independent of D 2 Cobst and W is well de�ned. We have

'1( l(x)) + '2( l(x)) = ('1 + '2)( l(x))

and
�'( l(x)) = (�')( l(x));

thus the set W is a linear space. Equipped with the norm of Y the space W � Y
becomes a normed space. Easily W can be seen to be complete, i.e. W is a
Banach space, on which for each D 2 Cobst the mapping

	�1
@D : W ! C l;�(@D)

is well de�ned and bounded.

Definition 2.1.9 For functions ' 2 C l;�(@D) and 'n 2 C l;�(@Dn); n 2 IN; we
say that

'n ! '; n!1;

if @Dn ! @D; n!1; and

	@Dn('n)! 	@D('); n!1;
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in Y . A bounded linear operator J on C l;�(@D), l 2 f0; 1g; � 2 [0; 1], is said to
depend continuously on @D, if the mapping

Ĵ(@D) := 	@DJ(@D)	�1
@D 2 BL(W;W )

depends continuously on @D.

For the investigation of continuity properties of boundary integral operators
with weakly singular kernel, we need some further technical tools.

Lemma 2.1.10 For scatterers D 2 Cobst we uniformly have the estimate

j�(z0) � (y � z0)j � L jy � z0j2; y; z0 2 @D; (2.1.28)

with a constant L and there are constants �; C > 0 such that

����� 1

jy � zhj �
1

jy � z�hj

����� � C; y; z0 2 @D; 0 < h � �; (2.1.29)

where zh := z0 + �(z0)h.

Proof. First note, that for each point z0 2 @D the statements have to be
shown only for y in a neighborhood Bri(z0) of z0, since for y 62 Bri(z0) the terms
are bounded by a constant uniformly for all domains D 2 Cobst. For y 2 Bri(z0)
we will give a proof by choosing the special coordinate system Kz0 introduced in
Section 1.2. The origin of this system is z0 and the direction of the third axis
e3 is given by �(z0). By rotation around the third axis we can obtain 0 for the
second coordinate of y. According to Theorem 1.2.2 in a neighborhood of z0 the
intersection of the boundary @D with the e1 � e3-plane of the new coordinate
system is given in the form (t; 0; f(t)) with a function f with jf(t)j � C0t

2 for all
t with jtj � r0.

To prove the �rst part of the theorem we estimate

j�(z0) � (y � z0)j =
���(0; 0; 1) � �(t; 0; f(t))� (0; 0; 0)

����
= jf(t)j
� C0t

2

� C0 jy � z0j2: (2.1.30)
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For the second statement we calculate and estimate with the help of the mean
value theorem����� 1

jy � zhj �
1

jy � z�hj

�����
=
�������(t; 0; f(t))� (0; 0; h)

����1 � ���(t; 0; f(t))� (0; 0;�h)
����1����

=
�����t2 + [f(t)]2 + h2 � 2f(t)h

�� 1
2 �

�
t2 + [f(t)]2 + h2 + 2f(t)h

�� 1
2

����
� 2f(t)h

(t2 + [f(t)]2 + h2 � 2jf(t)jh) 32

� 2C0t
2h

((1� 2C0h)t2 + h2)
3
2

: (2.1.31)

We now use spherical coordinates (r; ') for (t; h), i.e. we insert t = r sin(') and
h = r cos(') into (2.1.31). With the help of the estimate

�1
2
r2 sin2(') + r2 cos2 '

�3
2 �

s
1

8
r3

we derive

2C0t
2h

((1� 2C0h)t2 + h2)
3
2

� 2
p
8 C0 sin

2(') cos(') � 2
p
8 C0 (2.1.32)

for all 0 < h � 1
4C0

and all 0 � t � r0. This ends the proof.
2

Lemma 2.1.11 Consider normed spaces X; Y , a subset V � X and a function
f : V ! Y . We assume that for each � > 0 we have the decomposition

f = f1;� + f2;�;

with functions f1;� : V ! Y and f2;� : V ! Y . If for each �xed � > 0 the function
f2;� depends continuously on x at a point x0 2 V and if the family (f1;�)�>0 satis�es
the estimate

jjf1;�(x)jj � c� (2.1.33)

with a constant c in a neighborhood V 0 of x0, then the function f depends contin-
uously on x at the point x0.
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Proof. Given � > 0 we have to �nd � > 0, such that jjf(x)� f(x0)jj � � for
all x 2 B�(x0) � V � X. We �rst choose � := �=(4c) and obtain

jjf1;�(x)jj � �=4

for all x 2 V 0. From the continuity of f2;� we obtain a � > 0 such that

jjf2;�(x)� f2;�(x0)jj � �=2

for all jjx� x0jj � �. Adding f1;� and f2;� from

jjf(x)� f(x0)jj � jjf1;�(x)jj + jjf1;�(x0)jj+ jjf2;�(x)� f2;�(x0)jj

we derive the statement of the lemma.

2

Theorem 2.1.12 The operators S, K, K� and T � T0 in BL(C(@D); C(@D))
depend continuously on the boundary @D of the scatterer D 2 Cobst with respect
to the C1;�-norm for @D.

Proof. The continuity statement for C2-boundaries is a consequence of more
general results on the Fr�echet di�erentiability of the operators with respect to
the domain, see [57] and [58]. Here, we will give a proof for boundaries of class
C1;�, which does not use Fr�echet derivatives.

We consider the operator K� in the three dimensional case m = 3. The
operator K� has the kernel

�(x) � rx�(x; y); x; y 2 @D:

Let �0 denote the fundamental solution in the case � = 0 and K�
0 the corre-

sponding operator K�. First we note that by (2.1.28) the di�erence

�(x) � rx (�(x; y)� �0(x; y))

= �(x) � rx

 
ei�jx�yj

4�jx� yj �
1

4�jx� yj
!

= �(x) � rx

 1X
n=1

(i�)n jx� yjn�1
4� n!

!
(2.1.34)

=
�(x) � (x� y)

4� jx� yj
 1X
n=2

(i�)n (n� 1) jx� yjn�2
n!

!
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is a continuous function in x; y 2 @D. For such kernels the continuity statements
are straightforward to prove, i.e. the di�erence K��K�

0 depends continuously on
the boundary @D. We investigate the weakly singular part K�

0 with the kernel

�(x) � ry�0(x; y) =
�(y) � (x� y)

jx� yj3 ; x; y 2 @D: (2.1.35)

By de�nition of the class A we can choose a local coordinate system with x = 0
and �(x) = (0; 0; 1). Then the boundary @D in a neighborhood of x is represented
in the form (s; t; f(s; t)), s; t 2 IR, with jf(s; t)j � C0j(s; t)j2. We obtain the
estimate ������(x) � (x� y)

jx� yj3
����� =

����� f(s; t)

(s2 + t2 + [f(s; t)]2)
3
2

�����
� C0(s

2 + t2)�
1
2

� C0jx� yj�1 (2.1.36)

in a neighborhood jx�yj � 1p
2 C0

of x. Thus for all scatterers D 2 Cobst the kernel
(2.1.35) of the integral operator K�

0 has a weak singularity, which is bounded by
the weakly singular function (2.1.36). Decomposing the domain of integration
into B�(x) \ @D and @D nB�(x) for all su�ciently small � > 0 we obtain

(K�
0')(x) =

Z
B�(x)\@D

k0(x; y)'(y)ds(y) (2.1.37)

+
Z
@DnB�(x)

k0(x; y)'(y)ds(y)

with the kernel k0 given by (2.1.35). We can use the bound (2.1.36) for the
singularity of the kernel to estimate the �rst term of (2.1.37) uniformly for all
scatterers D 2 Cobst and all x 2 @D by��� Z

B�(x)\@D
k0(x; y)'(y)ds(y)

��� � c�jj'jjC(@D) (2.1.38)

with some constant c. For each �xed � > 0 the second integral depends continu-
ously on the boundary @D and it is bounded uniformly for � > 0 and D 2 Cobst
by ��� Z

B�(x)\@D
k0(x; y)'(y)ds(y)

��� � cjj'jjC(@D) (2.1.39)

with some constant c. Let the subset U of X be given by U := �(Cobst). We
de�ne the mapping Kj : U ! BL(W;W ) for j = 1; 2 by

(K�
1;�(@D)')(x) :=

Z
B�(x)\@D

k0(x; y)'(y)ds(y); x 2 @D;
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and
(K�

2;�(@D)')(x) :=
Z
@DnB�(x)

k0(x; y)'(y)ds(y); x 2 @D:

From (2.1.37) we derive K�
0 = K�

1;� + K�
2;�. Now we apply Lemma 2.1.11 to the

mapping
V ! BL(W;W ); @D 7! K�(@D)

to obtain with the help of (2.1.38) and (2.1.39) the continuous dependence of K�
0

on @D. Thus we have proven that K� = (K� �K�
0) +K�

0 depends continuously
on the boundary @D with respect to C1;�-norm for @D.

The statement for S, K and T � T0 and for the two-dimensional case m = 2
can be proven analogously.

2

To obtain uniform bounds for the mapping of the incident �eld onto the
scattered �eld or its far �eld pattern, respectively, we have to study the inverse
of the integral operators I +K � iS for the sound-soft and I �K 0� iTS2

0 for the
sound-hard boundary condition. Their existence and boundedness is obtained
from the Riesz theory. But the Riesz theory does not give a possibility to control
the bounds. To derive uniform boundedness in Cobst we use compactness and
continuity arguments in the following theorem.

As a preparation we consider the operator strongly singular integral operator
T used for the solution of the sound-hard scattering problem. Strongly singular
operators are more di�cult to handle than operators with weakly singular kernels.
Due to the following relations, for the products ST and TS it is possible to obtain
a representation in terms of weakly singular integral operators K and K�. The
integral operators S and T satisfy the relations

ST = K2 � I (2.1.40)

and
TS = (K�)2 � I: (2.1.41)

A proof can be found in [6], equations (3.12) and (3.13).

Theorem 2.1.13 In the space BL(C(@D); C(@D)) the integral operators

(I +K � iS)�1 (2.1.42)

and
(I �K� � iTS2

0)
�1 (2.1.43)

are bounded by a constant c uniformly for scatterers D 2 Cobst.
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Proof. First we consider (I + K � iS)�1. The boundary integral operators
S and K depend continuously on the boundary with respect to the C1;�-norm.
Since the inverse A�1 of an operator A depends continuously on A, the opera-
tors (2.1.42) and (2.1.43) depend continuously on the boundary @D with respect
to the C1;�-norm. Using the compactness of the imbedding of C2(Bri(0)) into
C1;�(Bri(0)), the statement is a consequence of the fact that continuous func-
tions on compact sets are bounded.

To treat the operator (I �K� � iTS2
0)
�1 we use (2.1.41) to obtain

(I �K� � iTS2
0)
�1 = (I �K� � i(T � T0)S

2
0 + T0S

2
0)
�1

= (I �K� � i(T � T0)S
2
0 + [(K�

0)
2 � I]S0)

�1

and proceed in the same way as for (I +K � iS)�1.
2

Theorem 2.1.14 The mappings of the incident �eld ui 2 C(@D) onto the far
�eld pattern u1 2 C1(
) of the scattered �eld us for scattering by a sound-soft

scatterer and of the normal derivative @ui

@�
2 C(@D) onto the far �eld pattern

u1 2 C1(
) of us for scattering by a sound-hard scatterer are bounded uniformly
for D 2 Cobst by a constant c1.

Proof. We use the representations (2.1.13) and (2.1.15) for the solution of
the scattering problems. Then the far �eld patterns of the scattered �elds us are
given by

u1(x̂) = 
m

Z
@D

(
@ei�x̂�y

@�(y)
� iei�x̂�y

)
'(y) ds(y); x̂ 2 
 (2.1.44)

with density ' = �2(I +K � iS)�1ui in the sound-soft case and by

u1(x̂) := 
m

Z
@D

(
ei�x̂�y'(y) + i

@ei�x̂�y

@�(y)
(S2

0')(y)

)
ds(y); x̂ 2 
 (2.1.45)

with density ' = 2(I � K� � iTS2
0)
�1 @ui

@�
for the sound-hard scatterer. The

mapping ui 7! u1 can be split into the inversion of the corresponding boundary
integral equation and the mapping (2.1.44) or (2.1.45), respectively. We will show
that each of these mappings is bounded uniformly for D 2 Cobst.

The boundary integral operators (I +K � iS)�1 and (I �K� � iTS2
0)
�1 are

uniformly bounded according to Theorem 2.1.13. The functions (2.1.44) and
(2.1.45) are considered as linear operators from C(@D) into C1(
). The �rst
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operator (2.1.44) has continuous kernel and thus depends continuously on @D 2
Cobst with respect to the C1;�-norm. The second operator (2.1.45) is a sum and
composition of integral operators with continuous kernels and the operator S0,
which due to Theorem 2.1.12 depends continuously on @D. Thus (2.1.45) depends
continuously on @D.

As in the proof of Theorem 2.1.13, we may use the compactness of the imbed-
ding C2(Bri(0)) into C

1;�(Bri(0)) and the boundedness of continuous functions
on compact sets to obtain a uniform bound for scatterers D 2 Cobst. 2

Our main idea and the ongoing theme will be the use of point-sources, dipoles
or multipoles for the investigation and solution of inverse scattering problems.
As indicated by the mixed reciprocity relations above, the far �eld pattern of
point-sources can be useful for reconstructions, since, up to a constant factor,
it is equal to the scattered �eld of a plane wave. This observation will lead us
to the point-source method in Section 5. For contributions to the questions of
uniqueness, stability and for the method of singular sources we will investigate
the scattered �eld of incident point-sources, dipoles or multipoles.

We now investigate the behavior of the scattered �eld for incident point-
sources. In the sound-soft case, for points x on the boundary @D from the
boundary condition we have

�s(x; z) = ��(x; z); x 2 @D;
and thus

�s(x; z)!1; z ! x:

This leads to the idea to use �s(x; z) for reconstructions of the unknown boundary.
But from the viewpoint of the inverse problem, where the boundary @D is not
known, we would like to replace the point x 2 @D by something which is known.
This new function should not assume knowledge about the boundary, but lead to
the same singular behavior. In the following theorem a corresponding behavior
is found for

�s(z; z)

and we estimate the nature of the singularity.

By d(z;D) or d(D1; D2) we denote the Hausdor� distance

d(z;D) := inf fjz � yj; y 2 Dg (2.1.46)

or
d(D1; D2) := inf fjz1 � z2j; z1 2 D1; z2 2 D2g (2.1.47)

between z and the domainD or between the two domainsD1 andD2, respectively.
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Theorem 2.1.15 Consider the scattering of a point-source �(�; z) by a sound-
soft or sound-hard scatterer D 2 Cobst. In IR2 there exist constants �; c > 0, such
that the scattered �eld �s satis�es the lower estimate����s(z; z)��� � c

��� ln d(z;D)
��� (2.1.48)

in the strip 0 < d(z;D) < � . With constants C;E > 0 we have the upper estimate

����s(z; z)��� � C
��� ln d(z;D)

��� + E (2.1.49)

for all z 2 B nD. In IR3 the corresponding estimates are

����s(z; z)��� � c

jd(z;D)j (2.1.50)

and ����s(z; z)��� � C

jd(z;D)j : (2.1.51)

All estimates hold uniformly for domains D 2 Cobst.

Proof. Consider the sound-hard boundary condition. We will investigate the
behavior of �s using the solution of the direct problem by means of boundary
integral equations.

We abbreviate the modi�ed acoustic single- and double-layer potential (2.1.15)
by

(P')(x) :=
Z
@D

(
�(x; y)'(y) + i

@�(x; y)

@�(y)
(S2

0')(y)

)
ds(y); x 2 IRm n @D:

(2.1.52)
Then from Theorem 2.1.2 we obtain a representation

�s(�; z) = 2P (I �K 0 � iTS2
0)
�1@�(�; z)

@�
; z 2 IRm n @D; (2.1.53)

for the scattered �eld of point-sources.
For a point z 2 IRm n D with d(z;D) su�ciently small we have the unique

representation z = zh with

zh := z0 + �(z0)h; z0 2 @D

and h � 0.
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We use zh to decompose

2P (I �K� � iTS2
0)
�1@�(�; zh)

@�(�)
= � 2P (I �K� � iTS2

0)
�1@�(�; z�h)

@�(�)
+ 2P (I �K� � iTS2

0)
�1
(
@�(�; zh)
@�(�) +

@�(�; z�h)
@�(�)

)

= ��s(�; z�h) (2.1.54)

+ 2P (I �K� � iTS2
0)
�1
(
@�(�; zh)
@�(�) +

@�(�; z�h)
@�(�)

)
:

First, consider the term ��s(�; z�h) of (2.1.54). Since z�h is in the interior of
the scatterer, we have

��s(x; z�h) = �(x; z�h); x 2 IRm nD: (2.1.55)

In two dimensions � has a logarithmic singularity, in three dimensions its singu-
larity is of �rst order.

To obtain the estimates of the theorem we will show that the singularity of
the second term of (2.1.54) is weaker than the singularity of the �rst term. To
this end, in the three-dimensional case m = 3 we establish that����� 2P (I �K� � iTS2

0)
�1
(
@�(�; zh)
@�(�) +

@�(�; z�h)
@�(�)

)
(zh)

����� � C
��� lnh��� (2.1.56)

for all su�ciently small h > 0 with some constant C independent of @D. We
decompose

P (I �K� � iTS2
0)
�1 = P + P (I �K� � iTS2

0)
�1(K� + iTS2

0); (2.1.57)

where P , given by (2.1.52), is the sum

P = P1 + iP2S
2
0 (2.1.58)

of a single-layer potential P1 as de�ned in (1.2.53) and a term P2S
2
0 with a double-

layer potential P2 given by (1.2.54). Abbreviating

	h(y) :=

(
@�(y; zh)

@�(y)
+
@�(y; z�h)
@�(y)

)
; y 2 @D; h 2 [0; 1]; (2.1.59)
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we obtain

P (I �K� � iTS2
0)
�1	h =

�
P1	h

�
+ P2S0

�
S0�h

�
(2.1.60)

+ P (I �K� � iTS2
0)
�1�K�	h

�
+ iP (I �K� � iTS2

0)
�1�TS0��S0	h

�
Below we will derive the logarithmic bounds���(P1	h)(zh)

��� � c j ln(h)j;���(S0	h)(x)
��� � c j ln(h)j; x 2 @D;���(K�	h)(x)
��� � c j ln(h)j; x 2 @D;

(2.1.61)

with some constant c uniformly for D 2 Cobst. To keep the main line of reasoning,
here we �rst use (2.1.61) and �nish the proof. We note that by

TS0 = (T � T0)S0 + T0S0

= (T � T0)S0 + [(K�
0 )

2 � I];

the operator TS0 can be extended from C0;�(@D) to C(@D) and is bounded in
C(@D) uniformly for all D 2 Cobst. According to Theorems 2.1.8 and 2.1.13 the
operators

(I �K� � iTS2
0)
�1 : C(@D)! C(@D);

TS0 : C(@D)! C(@D);

S0 : C(@D)! C0;�(@D)

and
P2 : C

0;�(@D)! C(B nD)

are bounded uniformly for D 2 Cobst. The single-layer
P1 : C(@D)! C(B nD)

is bounded uniformly for D 2 Cobst. Using the properties of P2 and S0 the same
is obtained for the operator

P : C(@D)! C(B nD):

Then from the decomposition (2.1.60) using the bounds (2.1.61) we derive the
estimate (2.1.56). Finally, we combine (2.1.56), (2.1.55) and (2.1.54) to obtain
the statements (2.1.50) and (2.1.51) of the Theorem.

We now reduce (2.1.61) to the potential theoretic case � = 0 and estimate the
corresponding integrals explicitly. The reduction is possible, since the di�erence
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�(x; y) � �0(x; y) and its normal derivative are continuous functions. Thus, to
estimate the singularity in (2.1.61), we can replace � by �0. We proceed in three
steps.

1. For 	h in the case � = 0 we calculate

	h(y) =

(
@�0(y; zh)

@�(y)
+
@�0(y; z�h)
@�(y)

)

=
�(y) � (y � z0)

jy � zhj3 +
�(y) � (y � z0)

jy � z�hj3 (2.1.62)

� �(y) �(z) h

 
1

jy � zhj3 �
1

jy � z�hj3
!
:

With the help of j�(y) � (y� z0)j � Ljy� z0j2 given in Lemma 2.1.10 the �rst two
termes of (2.1.62) can be estimated by

c jy � z�hj�1 (2.1.63)

uniformly for scatterers D 2 Dobst. The last term of (2.1.62) can be decomposed
into

�(y) �(z) h

 
1

jy � zhj3 �
1

jy � z�hj3
!

=
�(y) �(z) h

jy � zhj2
 

1

jy � zhj �
1

jy � z�hj
!

+
�(y) �(z) h

jy � zhj � jy � z�hj
 

1

jy � zhj �
1

jy � z�hj
!

+
�(y) �(z) h

jy � z�hj2
 

1

jy � zhj �
1

jy � z�hj
!
: (2.1.64)

Then with the help of (2.1.29) and

h < jy � z�hj

we derive the bound (2.1.63) also for the third term of (2.1.62).
2. The kernel �(x�; y) with x� = x + ��(x), � 2 [0; h], of the single-layer

potential P1 or the operator S0 can be estimated by

����(x�; y)��� � c

jx� � yj ;
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for x; y 2 @D and h � 0 su�ciently small. For the kernel @�(x;y)
@�(x)

of K� we have

�����@�(x; y)@�(x)

����� � c

jx� yj
for x; y 2 @D. Thus to prove (2.1.61) we need to estimate�����

Z
@D

1

jx� � yj
1

jy � z�hj ds(y)
����� (2.1.65)

for � 2 [0; h] and 0 < h � � with some su�ciently small parameter � .
3. We decompose the domain of integrationZ

@D
::: ds(y) =

Z
@D\BR(x)

::: ds(y) +
Z
@DnBR(x)

::: ds(y) (2.1.66)

with R chosen su�ciently small. Let us �rst consider the second integral. It is
bounded by

1

R

��� Z
@DnBR(x0)

1

jy � z�hjds(y)
���:

The weak singularity of jy� z�hj�1 is integrable with bounded integral. Thus the
second integral of (2.1.66) is bounded uniformly for D 2 Cobst and x 2 @D.

For the �rst integral of (2.1.66) we use the special coordinate system with
origin x0, third axis given by �(x0) = (0; 0; 1) and z0 on the e1-axis. The tangent
plane Tx0 in x0 coincides with the e1�e2-plane. The tangent plane in z0 is denoted
by Tz0 . We consider only the case jx0�z0j � 2R, since otherwise we may proceed
as above.

Let ŷ denote the projection of y onto Tz0 . Using the bound on the C2-norm
of the surface by some lines of computation we estimate

jy � z�hj � c
q
jŷ � z0j2 + h2; jy � z0j � 4R; (2.1.67)

with some positive constant c uniformly for D 2 Cobst. We now project ŷ and z0
onto the plane Tx0. Let ~y and ~z0 be the projection of ŷ and z0, respectively. With
the help of polar coordinates (r; �) in Tx0 we obtain the estimate

jŷ � z0j � j~y � ~z0j (2.1.68)

=
q
r2 � 2jx0 � ~z0jr cos(�) + jx0 � ~z0j2

and
jy � x�j � j~y � x0j = r (2.1.69)
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Thus with b := jx0 � ~z0j 2 [0; 2R] an estimate for (2.1.65) is given by a constant
C times the integralZ R

0

1p
r2 � 2br + b2 + h2

dr = � ln(
p
b2 + h2 � b)

+ ln
�q

h2 + (R� b)2 +R� b
�
:

We derive �����
Z
@D

1

jx� � yj
1

jy � zhj ds(y)
����� � Cj lnhj (2.1.70)

for all � 2 [0; h] and su�ciently small h > 0 with a constant C uniformly for
scatterers D 2 Cobst. This completes the proof for the three-dimensional case.

For scattering in two dimensions m = 2 and in the sound-soft case the state-
ments can be proven analogously. To avoid repetitions we leave this part to the
reader. 2

In the following Theorem we investigate the scattered �elds �s�;q(z; z) for
scattering of multipoles by a sound-soft or sound-hard impenetrable scatterer.
We will use the results for the reconstruction of the shape of a scatterer, if the
physical properties of the scatterer are unknown.

Theorem 2.1.16 We consider the scattering of a multipole ��;q(�; z) by a sound-
soft or sound-hard scatterer D 2 Cobst. In a su�ciently small neighborhood
0 < d(z;D) < � of the boundary @D let z0 be de�ned by the unique represen-
tation z = z0 + h�(z0).

There are constants �; c > 0, such that in the strip 0 < d(z;D) < � the
scattered �eld �s�;��(z0) satis�es the lower estimate����s�;��(z0)(z; z)��� � c

���d(z;D)
������m+2

(2.1.71)

uniformly for D 2 Cobst. For all z 2 B nD we have the upper estimate����s�;��(z0)(z; z)��� � C
���d(z;D)

������m+2
(2.1.72)

with a constant C uniformly for D 2 Cobst.
Proof. For a proof we can go along the lines of the proof of Theorem 2.1.15. To

avoid repetitions we will only sketch the di�erences for the case of the sound-hard
scatterer. As in (2.1.54) we decompose into

�s�;��(z0)(�; z) = ��s�;�(z0)(�; z�h) (2.1.73)

+ 2P (I �K� � iTS2
0)
�1
(
@��;��(z0)(�; zh)

@�(�) +
@��;�(z0)(�; z�h)

@�(�)
)
:



58 2. Direct scattering problems.

With the same arguments as in the proof of Theorem 2.1.15 the second term of
(2.1.73) can be estimated by

���2P (I �K� � iTS2
0)
�1
(
@��;��(z0)(�; zh)

@�(�) (2.1.74)

+
@��;�(z0)(�; z�h)

@�(�)
) ��� � C

j lnhj
h�+m�3

:

Then both estimates (2.1.71) and (2.1.72) are a consequence of (2.1.73) and
(2.1.74).

2



2.2 The inhomogeneous acoustic medium.

We now consider the scattering of time harmonic acoustic waves ui(x)e�i!t by
a penetrable inhomogeneous scatterer. The inhomogeneity of the scatterer is
described by a refractive index

n(x) :=
c20

c2(x)
+ i�(x);

where c(x) is the sound speed at the point x 2 IRm, c0 denotes the sound speed
of a homogeneous background medium and � � 0 is a function which models
the in
uence of absorption. We assume the scatterer to be bounded, i.e. we have
n(x) = 1 for x in the open exterior of a bounded domain D. The refractive
index may have jumps on the boundary @D of D. Let the boundary @D of the
inhomogeneity be of class C2 and n 2 C0;�(D). As described in (1.2.72) we use
the letter D for the full inhomogeneous scatterer and � := 1� n.

Definition 2.2.1 Given an incident �eld ui with wave number � = !=c0 and an
inhomogeneous penetrable scatterer D, the direct acoustic inhomogeneous medium
scattering problem is to �nd a radiating scattered �eld

us 2 C2(IRm n @D) \ C1(IRm);

such that the total �eld u = ui + us satis�es

4u+ �2n(x)u = 0 (2.2.1)

in IRm n @D.

Since n(x) = 1 for x 2 IRm nD, in the open exterior of D the scattered �eld
is a radiating solution of the Helmholtz equation (1.1.1). Thus Green's formula
(2.1.7) and the asymptotic behavior (2.1.8) remain valid for scattering from an
inhomogeneous medium, i.e. the scattered �eld us has a far �eld pattern u1.

To solve the scattering problem by means of integral equations we introduce
the volume potential

(V ')(x) :=
Z
D
�(x; y)'(y) dy; x 2 IRm; (2.2.2)

de�ned on a bounded domain D � IRm. For a proof of the following uniqueness
and existence result for the inhomogeneous medium scattering problem we refer
to Theorems 8.3 and 8.7 of [6].
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Theorem 2.2.2 The inhomogeneous medium scattering problem has a unique
solution and the solution u depends continuously on the incident �eld ui with re-
spect to the norm in C(D). In particular, the scattered �eld us can be represented
as a volume potential

us(x) = ��2
Z
D
�(x; y)�(y)u(y) dy; x 2 IRm; (2.2.3)

where the total �eld u is a solution of the Lippmann-Schwinger equation

(I + �2V �)u = ui: (2.2.4)

The integral operator I + �2V � is continuously invertible in C(D).
2

Recall that for incident plane waves ui(x; d) = ei�x�d we denote the scattered
�eld by us(�; d) and its far �eld pattern by u1(�; d). If the incident �eld is given
by a point-source �(�; z) with source-point z 2 IRm nD, for the scattered �eld we
write �s(�; z) and for its far �eld pattern �1(�; z). As for scattering by obstacles
the symmetry between source and receiver is expressed by far �eld and mixed
reciprocity relations.

Theorem 2.2.3 (Far �eld reciprocity relation.) The far �eld patterns for
scattering of plane waves by an inhomogeneous medium D satisfy

u1(x̂; d) = u1(�d;�x̂); x̂; d 2 
: (2.2.5)

Proof. We refer to [6], Theorem 8.8.
2

Theorem 2.2.4 (Mixed reciprocity relation.) For acoustic scattering of
plane waves ui(�; d), d 2 
 and point-sources �(�; z), z 2 IRm nD from an inho-
mogeneous medium D we have

�1(x̂; z) = 
m us(z;�x̂); z 2 IRm nD; x̂ 2 
; (2.2.6)

where the constant 
m is de�ned in (2.1.18).

Proof. By Green's theorem (2.1.6) we have that

Z
@D

�
�s(y; z)

@us(y; d)

@�(y)
� @�s(y; z)

@�(y)
us(y; d)

�
ds(y) = 0; z 2 IRm nD; d 2 
:

(2.2.7)
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Green's formula (2.1.7) yields the representation

�1(x̂; z) = 
m

Z
@D

�
�s(y; z)

@e�i�x̂�y

@�(y)
� @�s

@�
(y; z)e�i�x̂�y

�
ds(y); x̂ 2 
 (2.2.8)

with 
m given by (2.1.18). Adding 
m times (2.2.7) with d replaced by �x̂ to
equation (2.2.8) we obtain

�1(x̂; z) = 
m

Z
@D

�
�s(y; z)

@u(y;�x̂)
@�(y)

� @�s

@�
(y; z)u(y;�x̂)

�
ds(y) (2.2.9)

for z 2 IRm nD and x̂ 2 
. We can now use Green's second theorem (2.1.6), the
di�erential equation (2.2.1) and the representation (2.2.3) of the scattered �eld
to derive (2.2.6). 2

We now de�ne an appropriate class of media for further investigation. For
the interior D of the support of the inhomogeneity we will have to demand the
same restrictions as for obstacle scattering. To obtain stability estimates for the
support of the function � = 1 � n we will also need to uniformly specify the
behavior of n at the boundary @D and to assume uniform smoothness of n or �,
respectively, on D.

Definition 2.2.5 Given positive constants Re, r0, a0, C0, �e, Cn, cmin, cmax,
�0 2 IN0, l = 2 and � 2 [0; 1] we de�ne the class Cm of inhomogeneous medium
scatterers D = (D; n) by the following assumptions.

1. The domain D is of class A(Re; r0; a0; l; �; C0; �e).

2. The refractive index n is in C�0;�(D) with

jjnjjC�0;�(D) � Cn: (2.2.10)

If �0 � 1, the condition

n 2 C�0�1(BRe(0))

is satis�ed.

3. At the boundary @D the function � = 1� n has a jump in its �0-th deriva-
tives uniformly for D 2 Cm in the sense that

0 < cmin � j@
�0�

@��0
(x)j � cmax; x 2 D: (2.2.11)
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We will now use the assumptions to derive uniform bounds for the solution of
the scattering problem.

Theorem 2.2.6 For scatterers D 2 Cm the norms������(I + �2V �)�1
������
C(B)

of the integral operators (I +�2V �)�1 are uniformly bounded by some constant c.

Proof. We �rst note that due to [13], Section II, x13, the operator
V � : C(D)! C1(B)

is well de�ned. Thus V � : C(B) ! C(B) is compact and by Riesz' theory the
injectivity of I + �2V � yields its invertibility and the boundedness of the inverse
operator. The injectivity of I + �2V � in C(B) is proven in [6], Theorem 8.7.
The operator V � depends continuously on the function � 2 L1(B), since the
singularity of � is integrable and we can estimate

jjV �'jjC(B) =
������ Z

B
�(x; y)�(y)'(y) dy

������
C(B)

� c jj�jjL1(B)jj'jjC(B) (2.2.12)

with some constant c. Then also the operator (I+�2V �)�1 depends continuously
on � for all � 2 L1(B) for which I + �2V � is invertible. We will show that the
set

M := f�; n = 1� � is refractive index of D 2 Cmg
is relatively compact in L1(B). Let (Dj)j2IN 2 Cm be a sequence of scatterers
and nj the refractive index of Dj. Then �j = 1 � nj 2 M, j 2 IN . With the
parametrizations  l constructed in part 5 of Lemma 1.2.2 we have�������j �  l������

C0;�(Zr0;a0)
� c (2.2.13)

for all j 2 IN and l = 1; :::; L2 with some constant c depending only on Cm. We
use the compactness of the imbedding of C0;�(Zr0;a0) into C(Zr0;a0) to successively
construct convergent subsequences of (�j �  l)j2IN for l = 1; :::; L2. We obtain
a subsequence (Djk)k2IN of (Dj)j2IN , such that (�jk)k2IN is convergent towards a
function � 2 L1(B), i.e. we have shown that the set M � L1(B) is relatively
compact.

From the construction of the convergent subsequence above we derive that
each element � of M � L1(B) is in C(D) with a domain D � B of class C1
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and � = 0 in the exterior of D. We have shown above that for such functions the
operator I + �2V � is injective and thus (I + �2V �)�1 is well de�ned. Since on
the compact set M� L1(B) the operator

(I + �2V �)�1 2 BL(C(B); C(B))
depends continuously on �, it is bounded uniformly for D 2 Cm and the proof is
complete. 2

Theorem 2.2.7 The mapping of the incident �eld ui 2 C(D) onto the far �eld
pattern u1 2 C1(
) of the scattered �eld us for scattering from an inhomogeneous
medium is bounded by a constant c1 uniformly for D 2 Cm .

Proof. We use the representation (2.2.3) for the scattered �eld. Passing to
the limit jxj ! 1 a representation of the far �eld pattern of us is given by

u1(x̂) = �
m
Z
B
e�i�x̂�y�(y)u(y) ds(y); x̂ 2 
 (2.2.14)

with u = (I + �2V �)�1ui. By������ Z
B
e�i�x̂�y�(y)'(y) ds(y)

������
C1(
)

(2.2.15)

�
������ Z

B
(�i�y)e�i�x̂�y ds(y)

������
C1(
)

jj'jjC(B) jj�jjL1(B)

the integral operator (2.2.14) from C(B) into C1(
) depends continuously on
� 2 L1(B). We can use the compactness arguments of Theorem 2.2.6 to derive
its boundedness uniformly for scatterers D 2 Cm. From the bound for (2.2.14)
and the uniform bound for the operators (I + �2V �)�1 given in Theorem 2.2.6
we obtain the statement of the theorem. 2

We will also need the mapping properties of (I + �2V �)�1 in L2(B) and of
the potential V � from L2(B) into C(B).

Theorem 2.2.8 For scatterers D 2 Cm the operator I + �2V � is invertible in
L2(B). The norms of

(I + �2V �)�1 : L2(B)! L2(B) (2.2.16)

and
V � : L2(B)! C(B) (2.2.17)

are bounded uniformly for D 2 Cm by some constant c.
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Proof. As shown in [6], Theorem 8.2, the operator V de�nes a bounded
operator from L2(B) into H2(B). Thus also V � is bounded from L2(B) into
H2(B) and it is compact in L2(B). By the Riesz Theory for compact operators,
injectivity of I + �2V � in L2(B) yields its invertibility. To show injectivity let
us assume u+ �2V �u = 0 for u 2 L2(B). Then we have u = ��2V �u 2 H2(B).
Since H2(B) is a subset of C(B) we obtain u = 0 from the injectivity of I+�2V �
in C(B).

To get uniform bounds for the norms with the help of the Cauchy Schwarz
inequality we �rst derive the estimate

jjV �'jj2C(B) =
������ Z

B
�(x; y)�(y)'(y) dy

������2
C(B)

�
 
sup
x2B

Z
B
j�(x; y)j2 dy

! Z
B
j�(y)'(y)j2 dy

� c jj�jj2L1(B) jj'jj2L2(B) (2.2.18)

with some constant c. Thus V � : L2(B)! C(B) depends continuously on � and
we can proceed as in the proof of Theorem 2.2.6 to obtain the bounds uniformly
for D 2 Cm. 2

In the case of obstacle scattering two di�erent ideas lead to the investigation
of point-sources. First, with the help of the mixed reciprocity relation 2.1.4 we
want to reconstruct the scattered �eld us in a constructive way from its far �eld
pattern u1. Then we can use us to detect unknown scatterers using the boundary
condition for the total �eld (see the point-source method in Section 5). Second,
in Theorem 2.1.15 we obtained a characterization of the unknown scatterer by
the behavior of the scattered �eld of point-sources �s(z; z), which shall lead us
to the method of singular sources for reconstructions in Section 6.

In the case of scattering by an inhomogeneous medium the situation is di�er-
ent. First, we will have to observe that the reconstruction of the scattered �eld
us in the exterior of the unknown scatterer does not provide a straightforward
possibility to detect the unknown scattering domain D or the size of the refrac-
tive index n. Second, we will show that the scattered �eld �s(z; z) is bounded
for z 2 IRm n D. Thus the behavior of �s does not characterize the unknown
boundary.

Lemma 2.2.9 For scattering of a point-source �(�; z) by an inhomogeneous
medium we have ����s(x; z)��� � c; x 2 IRm; z 2 IRm nD; (2.2.19)

with a constant c uniformly for scatterers D 2 Cm .
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Proof. We use the representation (2.2.3) of the solution to the scattering
problem to derive the decomposition

�s(�; z) = ��2V �(I + �2V �)�1�(�; z) (2.2.20)

= ��2V ��(�; z) + �4V �(I + �2V �)�1V ��(�; z):

Estimating the singularity of the kernel of the volume potential we derive that
jjV ��(�; z)jjC(B) is bounded uniformly for z 2 IRm n D and D 2 Cm. Now the
statement of the theorem follows with the help of Theorem 2.2.6. 2

For scattering by inhomogeneous media to obtain a singular behavior for the
scattered �eld of an incident singular source when the source point tends to the
boundary of the scatterer we have to work with multipoles of higher order. With

m given by (2.1.18) for the multipole of order � 2 IN0 we use the notation

��;q(x; y) :=

8><
>:

2H

(1)
� (�jx� yj)ei��; m = 2;


3h
(1)
� (�jx� yj)P�(cos(�)); m = 3;

(2.2.21)

where � is the angle between x�y and q. Point-sources � are the multipoles �0;q

of order zero. If the incident �eld is ��;q(�; z), we denote the scattered �eld by
�s�;q(�; z) and its far �eld pattern by �1�;q(�; z).

We �rst calculate some integrals, which are needed for the proof of the fol-
lowing Lemma 2.2.11.

Lemma 2.2.10 For � 2 IN we have

Z �=2

��=2
cos�(�) cos((�+ 2)�) d� = 0; (2.2.22)

Z �=2

��=2
ln(cos(�)) cos�(�) cos((�+ 2)�) d� =

�

(�+ 1) 2�+1
; (2.2.23)

Z �=2

0
cos�(�)P�+1(cos(�)) sin(�) d� =

1

(�+ 1) 2�+1
: (2.2.24)

Proof.: We �rst treat the integral (2.2.22). By straightforward di�erentiation
we verify

Z �=2

��=2
cos�(�) cos((�+ 2)�) d� =

"
cos�+1(�) sin((�+ 1)�)

�+ 1

#�=2
��=2

: (2.2.25)
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Since cos(��=2) = 0, we obtain (2.2.22). By partial integration we calculateZ �=2

��=2
ln(cos(�)) cos�(�) cos((�+ 2)�) d�

=
h
ln(cos(�))

cos�+1(�) sin((�+ 1)�)

�+ 1

i�=2
��=2

+
Z �=2

��=2
sin(�)

cos(�)

cos�+1(�) sin((�+ 1)�)

�+ 1
d�

=
1

�+ 1

Z �=2

��=2
sin(�) sin((�+ 1)�) cos�(�) d�:

=
1

2(�+ 1)

Z 2�

0
sin(�) sin((�+ 1)�) cos�(�) d�: (2.2.26)

With the help of the identity

sin(�) sin((�+ 1)�) =
1

2

�
cos(��)� cos((�+ 2)�)

�
; (2.2.27)

the expansion

cos� � =
1

2�

�
ei� + e�i�

��
=

1

2��1

�X
k=0

 
�
k

!
cos(k�)

=
1

2��1
cos(��) + lower terms, (2.2.28)

the integral Z 2�

0
cos2(��)d� = �; � 2 IN; (2.2.29)

and the orthogonality of cos(k�) and cos(j�) for k 6= j from (2.2.26) we derive
(2.2.23). With the substitution cos(�) = x we getZ �=2

0
cos�(�)P�+1(cos(�)) sin(�) d� =

Z 1

0
x�P�+1(x) dx; (2.2.30)

where the Legendre polynomialP�+1(x) is given by formula (1.2.26). By induction
we calculate Z 1

0
x�

d�+1

dx�+1

n
(x2 � 1)�+1

o
dx (2.2.31)

= (�1)j �!

(�� j)!

Z 1

0
x��j

d�+1�j

dx�+1�j
n
(x2 � 1)�+1

o
dx;
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1 � j � �. For j = � this yieldsZ 1

0
x�P�+1(x) dx =

(�1)�
(�+ 1)2�+1

Z 1

0

d

dx

n
(x2 � 1)�+1

o
dx

=
1

(�+ 1) 2�+1
(2.2.32)

and the proof is complete. 2

Lemma 2.2.11 With �0 given by the de�nition of Cm and

� :=

(
�0 + 2 m = 2
�0 + 1 m = 3;

(2.2.33)

we obtain the estimate

���V ���;q(�; z)(x)��� � C

( j ln jx� zjj + E m = 2
1

jx�zj m = 3
(2.2.34)

for all x 2 B; z 2 B n D, x 6= z, and q 2 
 with constants C;E uniformly for
scatterers D 2 Cm.

There are constants �; c > 0, such that in a strip 0 < d(z;D) � � for the
special choice q(z) := ��(z0) with z0 de�ned by the unique representation

z = z0 + �(z0)h

the lower estimate ���V ���;��(z0)(�; z)(z)��� � c
��� ln d(z;D)

��� (2.2.35)

holds uniformly for D 2 Cm. For z 2 B nD we have the upper estimate���V ���;q(�; z)(z)��� � C
��� ln d(z;D)

��� + E (2.2.36)

with constants C;E uniformly for scatterers D 2 Cm.
Proof. We �rst investigate the behavior of � near a point z0 2 @D. From

the continuity of the derivatives �(
) for j
j < �0 on B we obtain �(
)(z0) = 0
for j
j < �0. Thus the tangential derivatives of � up to the order �0 vanish in
z0. Then in a neighborhood BR(z0) \ D of z0 in D, 0 < R < ro < 1, Taylor's
expansion of � 2 C�0;�(D) assumes the form

�(y) =
(�1)�0
�0!

@�0�

@��0
(z0)(r cos(�))

�0 + O
�
r�0+�

�
(2.2.37)
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uniformly for D 2 Cm with

r := jy � z0j; cos(�) := ��(z0) � (y � z0)=r (2.2.38)

and

cmin �
�����@

�0�

@��0
(z0)

����� � cmax:

To prove (2.2.35) we split the domain of integration into D n BR(z) and
D \ BR(z). The integralZ

DnBR(z)
�(z; y)�(y)��;q(y; z) dy: (2.2.39)

has a bounded integrand and is bounded uniformly for D 2 Cm. To treat the
integral on the ball BR(z0) we de�ne

�0(y) :=
(�1)�0
�0!

@�0�

@��0
(z0)(r cos(�))

�0 ; (2.2.40)

where r and � are given by (2.2.38), and decomposeZ
D\BR(z)

�(z; y)�(y)��;q(y; z)dy

=
Z
D\BR(z)

�(z; y)�0(y)��;q(y; z)dy (2.2.41)

+
Z
D\BR(z)

�(z; y)
�
�(y)� �0(y)

�
��;q(y; z)dy:

We may use (2.2.37), the de�nition (2.2.33) of � and the singularity of the mul-
tipoles ��;q as given by (1.2.32) and (1.2.45) to estimate the second integral on
the right-hand side of (2.2.41) by�����

Z
D\BR(z)

�(z; y)
�
�(y)� �0(y)

�
��;q(y; z)dy

����� (2.2.42)

� c

8>>>>><
>>>>>:

Z R

h
j ln(r)jr��1 dr � R� j ln(R)j

�
+
R�

�2
; m = 2;

Z R

h
r��1 dr � 1

�
R�; m = 3;

with some constant c, i.e. for z 2 BnD and q 2 
 the integral (2.2.42) is bounded
by a constant uniformly for D 2 Cm.
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We now investigate the �rst integral on the right-hand side of (2.2.41). In a
neighborhood of a point z0 2 @D a domain D with C2-boundary is close to a half
space

H(z0) := fy 2 IRm; (y � z0) � �(z0) < 0g:
To estimate the di�erence of the integralZ

D\BR(z)
�(z; y)�0(y)��;q(y; z) dy (2.2.43)

to the corresponding integral where D is replaced by the half-space H(z0), we
de�ne the set

4 := (D \BR(z)) nH(z0) [ (H(z0) \ BR(z)) nD:

Using the bound on the second derivatives of the parametrizations of @D by
straightforward calculations we obtain the bound����

Z
4
�(z; y)�0(y)��;q(y; z) dy

���� � c (2.2.44)

with some constant c uniformly for z 2 B nD and D 2 Cm. Thus a lower bound
for (2.2.43) is provided by

�����
Z
D\BR(z)

�(z; y)�0(y)��;q(y; z) dy

����� (2.2.45)

�
�����
Z
H(z0)\BR(z)

�(z; y)�0(y)��;q(y; z)

����� � c

with c given by (2.2.44). For q = ��(z0) we now explicitly calculate the leading
term of (2.2.45). In two dimensions we derive

�����
Z
H(z0)\BR(z)

�(z; y)�0(y)��;q(y; z)

�����
= c

�����
Z  0

� 0

Z R

d(z;D)
cos( )

ln(r) (r cos( ))�0 r��0�2 cos((�0 + 2) ) rdr d 

����� + O(1)

=
c

2

�����
Z  0

� 0

h
ln2(R)� ln2 d(z;D)� ln2 cos( ) (2.2.46)

+ 2 lnd(z;D) ln cos( )
i
cos�0( ) cos((�0 + 2) ) d 

����� + O(1)
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with  0 de�ned by h = R cos( 0) and some constant c. We can now use Lemma
2.2.10 to calculate the integrals in (2.2.46) and derive�����

Z
H(z0)\BR(z)

�(z; y)�0(y)��;q(y; z)

����� � c j lnd(z;D)j (2.2.47)

for d(z;D) su�ciently small with some constant c uniformly for D 2 Cm. From
(2.2.39), (2.2.42), (2.2.45) and (2.2.47) we obtain (2.2.35).

The estimate (2.2.36) can be proven analogously to (2.2.35), where now an
upper estimate for (2.2.43) has to be calculated. Since basically all arguments
are the same as above, we leave this part to the reader.

In three dimensions for (2.2.45) we calculate�����
Z
H(z0)\BR(z)

�(z; y)�0(y)��;q(y; z)

����� (2.2.48)

= c

�����
Z �0

0

Z R

d(z;D)
cos(�)

Z 2�

0

1

r
(r cos(�))�0 r��0�2P�0+1(cos(�)) sin(�) r2d' dr d�

�����
+ O(1)

= 2�c

�����
Z �0

0

h
ln(R)� ln d(z;D) + ln cos(�)

i
cos�0(�) P�0+1(cos(�)) sin(�) d�j + O(1)

with �0 de�ned by h = R cos(�0) and some constant c. We use equation (2.2.24)
of Lemma 2.2.10 and proceed as in the two-dimensional case.

We now prove the upper estimates (2.2.34). For the function

	(y; z) := �(y)��;q(y; z)

we have
j	(y; z)j � c jy � zj�2; y 2 B; z 2 B nD; x 6= y (2.2.49)

with some constant c uniformly for D 2 Cm. We split the domain of integration
into three parts. For x 2 IRm n fzg we de�ne R := jx � zj=2 and use the sets
D1 := D \ BR(x), D2 := D \ BR(z) and D3 := D n (D1 [ D2). We �rst treat
the three-dimensional case m = 3. For the following calculations we use C as a
generic constant, i.e. C may vary from line to line. The integral over D1 can be
estimated by ����

Z
D1

�(x; y)	(y; z) dy
���� � C R�2

Z R

0
r dr

� C (2.2.50)
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uniformly for D 2 Cm. To estimate the integral over D2 we use the decomposition

����
Z
D2

�(x; y)	(y; z) dy
���� �

����
Z
D2

�
�(x; y)� �(x; z)

�
	(y; z) dy

����
+
����
Z
D2

�(x; z)	(y; z) dy
���� : (2.2.51)

From the mean value theorem we derive

j�(x; y)� �(x; z)j � C

jx� zj2 jy � zj; y 2 D2

and estimate (2.2.51) by

����
Z
D2

�(x; y)	(y; z) dy
���� � C

h 1
R2

Z R

0
r dr +

1

R

Z R

0
dr
i

� C: (2.2.52)

The integral over D3 can be estimated by

����
Z
D3

�(x; y)	(y; z) dy
���� � C

R

Z
D3

1

jy � zj2ds(y)

� C

R
(2.2.53)

with some constant C. Note that the last estimate is not sharp, but su�cient for
our purposes. Now, from (2.2.50), (2.2.52) and (2.2.53) we obtain the estimate
(2.2.34) for the case m = 3.

In principle in two dimensions we can proceed analogously. A modi�cation is
necessary where 	(�; z) is considered, since for m = 2 the function jyj�2 is not
integrable. To obtain the estimate (2.2.51) we need to proceed as in (2.2.46) and
estimate ��� Z

D2

�(y)��;q(y; z) dy
��� � C: (2.2.54)

Since all other parts of the proof are analogous to m = 3, to avoid repetitions we
leave these parts to the reader.

2

We are now prepared to prove estimates for the behavior of the scattered �elds
of multipoles.
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Theorem 2.2.12 With � given by (2:2:33) consider the scattering of a multipole
��;q from an inhomogeneous medium scatterer D 2 Cm. There are constants
�; c > 0, such that in the strip 0 < d(z;D) < � the scattered �eld �s�;q satis�es
the lower estimate ����s�;��(z0)(z; z)��� � c

��� ln d(z;D)
��� (2.2.55)

uniformly for scatterers D 2 Cm, where z0 2 @D is de�ned by the unique repre-
sentation z = z0 + h�(z0). With constants C;E for all z 2 B nD and q 2 
 we
have the upper estimate����s�;q(z; z)��� � C

��� ln d(z;D)
��� + E (2.2.56)

uniformly for D 2 Cm.

Proof. As in (2.2.20) we decompose

�s�;q(�; z) = ��2V ���;q(�; z) (2.2.57)

+ �4V �(I + �2V �)�1V ���;q(�; z):

We have shown in Lemma 2.2.11 that the function V ���;q(�; z) is bounded in
L2(B) uniformly for D 2 Cm. From Theorem 2.2.8 we know that (I +�2V �)�1 is
bounded in L2(B) and that V � is bounded from L2(B) into C(B) uniformly for
D 2 Cm. Thus

�4V �(I + �2V �)�1V ���;q(�; z)
is bounded for z 2 B nD by some constant c uniformly for D 2 Cm.

Since the second term of (2.2.57) is bounded, the statements of Theorem 2.2.12
are a consequence of the estimates (2.2.35) and (2.2.36) of Lemma 2.2.11 for the

function
�
V ��n;q(�; z)

�
(z).

2



2.3 Electromagnetic scattering by a perfect conductor.

We now switch from the Helmholtz equation to Maxwell's equations to investigate
the scattering of electromagnetic waves. As in the case of acoustic scattering we
separately study the cases of impenetrable and penetrable scatterers. Here we
start with the problem of scattering by a perfectly conducting obstacle D in IR3.
We assume the boundary @D of the support of the scatterer D to be of class
C2;�. A time-harmonic incident �eld Ei; H i is a solution to the reduced Maxwell
equations

curl E � i�H = 0; curl H + i�E = 0 (2.3.1)

where the wave number � is a constant given by

�2 =
�
�+

i�

!

�
�!2 (2.3.2)

with the electric permittivity �, the magnetic permeability �, the electric con-
ductivity �, the frequency ! of the time-harmonic wave and the sign of � chosen
such that Im� � 0.

Definition 2.3.1 Given an incident electromagnetic �eld Ei; H i and a domain
D, the direct electromagnetic scattering problem with perfect conductor bound-
ary condition is to �nd a scattered electromagnetic �eld Es; Hs which solves the
reduced Maxwell equations (2.3.1) in IR3 nD and satis�es the Silver-M�uller radi-
ation condition

lim
r!1(E � x+ rH) = 0; r = jxj; (2.3.3)

where the limit is assumed to hold uniformly in all directions x=jxj, such that the
total �eld

E = Ei + Es; H = H i +Hs (2.3.4)

satis�es the perfect conductor boundary condition

� � E = 0 on @D: (2.3.5)

A solution of the reduced Maxwell equations in the exterior of some ball B which
satis�es (2.3.3) is called radiating.

An important tool for the treatment of the direct and inverse scattering prob-
lems will be again Green's �rst and second theorem and a version of Green's
formula for electromagnetic waves. For a radiating solution

E;H 2 C1(IR3 nD) \ C(IR3 nD)
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to Maxwell's equations we have the Stratton-Chu formulas

E(x) = curl
Z
@D
�(y)� E(y)�(x; y) ds(y)

� 1

i�
curl curl

Z
@D
�(y)�H(y)�(x; y) ds(y); x 2 IR3 nD;

(2.3.6)

and

H(x) = curl
Z
@D
�(y)�H(y)�(x; y) ds(y)

+
1

i�
curl curl

Z
@D
�(y)� E(y)�(x; y) ds(y); x 2 IR3 nD:

(2.3.7)

Every radiating solution E;H to the Maxwell equations has the asymptotic form

E(x) =
ei�jxj

jxj
(
E1(x̂) +O

 
1

jxj
!)

; jxj ! 1

H(x) =
ei�jxj

jxj
(
H1(x̂) +O

 
1

jxj
!)

; jxj ! 1
(2.3.8)

uniformly for all directions x̂ = x=jxj. The vector �elds E1 and H1 are de�ned
on the unit sphere 
 and known as the electric and magnetic far �eld pattern,
respectively. They satisfy

H1 = � � E1 and � � E1 = � �H1 = 0: (2.3.9)

Solutions E;H to Maxwells equations are divergence free and satisfy the vector
Helmholtz equation

4E + �2E = 0 and 4H + �2H = 0: (2.3.10)

Passing to the far �elds in (2.3.6) and (2.3.7) we obtain

E1(x) = i� curl
Z
@D
�(y)� E(y)e�i�x̂�y ds(y)

� �

i
curl curl

Z
@D
�(y)�H(y)e�i�x̂�y ds(y); x 2 IR3 nD;

(2.3.11)

and

H1(x) = i� curl
Z
@D
�(y)�H(y)e�i�x̂�y ds(y)

+
�

i
curl curl

Z
@D
�(y)� E(y)e�i�x̂�y ds(y); x 2 IR3 nD:

(2.3.12)
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As for acoustic scattering we will use integral equations to solve the direct
scattering problem and study the properties of the scattered �elds. With the
fundamental solution �(x; y) of the Helmholtz equation we use the magnetic
dipole operator

(Ma)(x) := 2
Z
@D
�(x)� curl x fa(y)�(x; y)g ds(y); x 2 @D (2.3.13)

and the electric dipole operator

(Nb)(x) := 2�(x)� curl curl
Z
@D
�(y)� b(y) �(x; y) ds(y); (2.3.14)

x 2 @D. Further, we de�ne the projection operator P by

(Pb)(x) := (�(x)� b(x))� �(x); x 2 @D: (2.3.15)

Theorem 2.3.2 The direct electromagnetic scattering problem with perfect con-
ductor boundary condition has a unique solution and the solution depends con-
tinuously on the incident �eld in the sense that the mapping of the boundary data
� � Ei onto the scattered �elds is continuous from

T 0;�
d (@D) := fa 2 C0;�(@D);Div a 2 C0;�(@D); � � a = 0g (2.3.16)

into C0;�(IR3 nD)� C0;�(IR3 nD).
In particular, the combined magnetic and electric dipole potential

(PEa)(x) = curl
Z
@D
a(y)�(x; y)ds(y)

+ i curl curl
Z
@D
�(y)� (S2

0a)(y)�(x; y)ds(y); (2.3.17)

(PHa)(x) =
1

i�
curl Es(x); x 2 @D;

with density a 2 T 0;�
d (@D) and S0 de�ned as in (2.1.15) solves the electromagnetic

scattering problem provided the density a solves the integral equation

a+Ma + i NPS2
0a = �2� � Ei: (2.3.18)

The inverse operator (I +M + iNPS2
0)
�1 exists and is bounded in T 0;�

d (@D).

Proof. We refer to Theorem 6.18 and 6.19 of [6].
2
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For the electromagnetic scattering problems we will proceed along the lines
of the acoustic problems. We �rst prove reciprocity relations; i.e. we show that
for electromagnetic scattering the role of source and receiver can be exchanged.

In the followingD is a perfect conductor. Let q 2 
 be a constant vector. The
electric �eld of incident plane waves with polarization q and direction of incidence
d is given by

Ei
pl(x; d; q) = i�(d� q)� d ei�x

_d; H i
pl(x; d; q) = i�d� q ei�x�d: (2.3.19)

The corresponding scattered �elds and far �eld patterns are Es
pl; H

s
pl and E

1
pl ; H

1
pl ,

respectively.
First we formulate reciprocity for the far �eld patterns.

Theorem 2.3.3 (Far �eld reciprocity relation.) For scattering of electro-
magnetic plane waves by a perfect conductor we have the reciprocity relation

q � E1
pl (x̂; d; p) = p � E1

pl (�d;�x̂; q) (2.3.20)

for all x̂; d; p; q 2 
.

Proof. See [6], Theorem 6.28. 2

To obtain a reciprocity relation if either the source or the receiver is in the near
�eld, we consider the electromagnetic �eld of an electric dipole with polarization
p, which is given by

Ei
edp(x; z; p) :=

�1
i�

curl ycurl y
�
p�(x; z)

�
;

H i
edp(x; z; p) := curl y

�
p�(x; z)

� (2.3.21)

for x 6= z. We denote the corresponding scattered �eld by

Es
edp(:; z; p); H

s
edp(:; z; p);

its far �eld pattern by
E1
edp(:; z; p); H

1
edp(:; z; p):

For the total �eld, i.e. the sum of incident and scattered �eld, we use

Eedp(:; z; p); Hedp(:; z; p):

The total �eld for plane waves is denoted by

Epl(:; d; q); Hpl(:; d; q):
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Theorem 2.3.4 (Mixed electromagnetic reciprocity.) For scattering by a
perfect conductor we have

q � E1
edp(x̂; z; p) = 
 p � Es

pl(z;�x̂; q) (2.3.22)

for x̂ 2 
; z 2 IRM nD and p; q 2 
, where 
 = 1
4�
.

Proof. We proceed in two steps. First, from Green's Vector Theorem for
electromagnetic plane waves we derive the equation

0 = curl
Z
@D
�(y)� Ei

pl(y;�x̂; q)�(z; y)ds(y) (2.3.23)

� 1

i�
curl curl

Z
@D
�(y)�H i

pl(y;�x̂; q)�(z; y)ds(y); z 2 IR3 nD:

We add (2.3.23) to the representation formula (Stratton-Chu formula)

Es
pl(z;�x̂; q) = curl

Z
@D
�(y)� Es

pl(y;�x̂; q)�(z; y)ds(y) (2.3.24)

� 1

i�
curl curl

Z
@D
�(y)�Hs

pl(y;�x̂; q)�(z; y)ds(y);

z 2 IR3 nD, and calculate

Es
pl(z;�x̂; q) = curl

Z
@D
�(y)� Epl(y;�x̂; q)�(z; y)ds(y) (2.3.25)

� 1

i�
curl curl

Z
@D
�(y)�Hpl(y;�x̂; q)�(z; y)ds(y)

= � 1

i�
curl curl

Z
@D
�(y)�Hpl(y;�x̂; q)�(z; y)ds(y);

z 2 IR3 n D, where for the last equality we used the boundary condition for a
perfect conductor. By elementary calculations we may verify the equality

p � curl zcurl z(a(y)�(y; z)) = a(y) � curl zcurl z(p�(y; z)): (2.3.26)

Using (2.3.26) we derive from (2.3.25)

p �Es
pl(z;�x̂; q) =

Z
@D
�(y)�Hpl(y;�x̂; q) �Ei

edp(y; z; p) ds(y);

= �
Z
@D
�(y)� Ei

edp(y; z; p) �Hpl(y;�x̂; q) ds(y) (2.3.27)

for z 2 IR3 nD and p; q 2 
.
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Second, from the Stratton-Chu formula (2.3.11) and (2.3.12) for far �eld pat-
terns and the de�nition of the electromagnetic plane waves we get

q � E1
edp(x̂; z; p) = 


Z
@D

n
�(y)� Es

edp(y; z; p) �H i
pl(y;�x̂; q) (2.3.28)

+ �(y)�Hs
edp(y; z; p) � Ei

pl(y;�x̂; q)
o
ds(y)

for x̂ 2 
 and z 2 IR3 nD. Analogously to (2.3.23) we derive the formula

0 = i�
Z
@D

n
�(y)� Es

edp(y; z; p) �Hs
pl(y;�x̂; q) (2.3.29)

+ �(y)�Hs
edp(y; z; p) � Es

pl(y;�x̂; q)
o
ds(y)

from Green's vector formula and the Maxwell equations applied to the scattered
electromagnetic �elds. We multiply (2.3.29) by 
=i� and add it to (2.3.28) to
obtain

q � E1
edp(x̂; z; p) = 


Z
@D

n
�(y)� Es

edp(y; z; p) �Hpl(y;�x̂; q)
+ �(y)�Hs

edp(y; z; p) � Epl(y;�x̂; q)
o
ds(y)

= 

Z
@D
�(y)� Es

edp(y; z; p) �Hpl(y;�x̂; q)ds(y) (2.3.30)

for z 2 IR3 nD and p; q 2 
, where we used the boundary condition for the total
�eld Epl(:;�x̂; q).

Now, (2.3.27) and (2.3.30) and the boundary condition for Eedp(:; z; p) yield
the statement of the theorem.

2

We now discuss appropriate assumptions on the boundary of a perfectly con-
ducting scatterer D. For the electromagnetic scattering problems we will need
slightly more regularity than for the acoustic problems, since we need to work
with the mapping properties of M and N and S0 in appropriate H�older spaces
on the boundary @D of the domain D.

Definition 2.3.5 Given positive constants Re; r0; a0; C0, �e, l = 2 and � 2 (0; 1]
we de�ne the class

Cpc = Cpc(Re; r0; a0; l; �; C0; �e)

of impenetrable perfectly conducting scatterers D as the set of perfect conductors
with scattering domain D 2 A(Re; r0; a0; l; �; C0; �e).
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Clearly, for electromagnetic scatterers of class Cpc the statements of Lemmas
1.2.3 and 1.2.2 remain true. Instead of Lemma 2.1.7 we need the following prop-
erty.

Lemma 2.3.6 Given a sequence (Dj)j2IN of scatterers Dj 2 Cpc and 0 < �0 < �,
there is a subsequence (Djk)k2IN of (Dj)j2IN , for which the sequence of scattering
domains (Djk)k2IN converges in the C2;�0-norm to a domain D � B.

Proof. The proof is analogous to the proof of Lemma 2.1.7, where we now use
the compactness of the imbedding of C2;�(Br0(0)) into C

2;�0(Br0(0)).
2

We need to collect some of the well-known mapping properties of the operators
M and N to use results of [6]. Let CT (@D) be the space of continuous tangential
vector �elds on the boundary @D of the scattererD. CT n;�(@D) are the tangential
vector �elds of Cn;�(@D) for n 2 IN0. The space T 0;�

d (@D) has been de�ned in
(2.3.16). We also need the space

T 0;�
r (@D) :=

n
b 2 CT 0;�(@D); � � b 2 T 0;�

d (@D)
o
: (2.3.31)

For a more detailed study we refer to [6]

Theorem 2.3.7 The operator M is bounded from CT (@D) into CT 0;�(@D),
CT 0;�(@D) into CT 1;�(@D) and Td(@D) into T 0;�

d (@D). The operator N is
bounded from T 0;�

r (@D) into T 0;�
d (@D).

Proof. The �rst statement for M is given by Theorem 3.32 of [5], the second
by Theorem 3.3 of [34], the third by Theorem 6.16 of [6]. The mapping properties
of N are proven in Theorem 6.17 of [6].

2

Since the kernel of N has a strongly singular part, for M + iNPS2
0 it is

more di�cult to obtain continuity statements with respect to the boundary of
the domain than for the weakly singular acoustic potential operators S;K;K� or
T � T0. In the following we use the results of [58] on the Fr�echet di�erentiability
of the operators with respect to the boundary of the domain, which imply the
continuous dependence.
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Theorem 2.3.8 For each 0 < � < 1 the operators

S0 : CT (@D)! C0;�(@D);

S0 : C
0;�(@D)! C1;�(@D)

M : CT (@D)! CT 0;�(@D)

depend continuously on the boundary @D of the scatterer D with respect to the
C2�norm of @D. The operator

N : C1;�(@D)! CT 0;�(@D)

depends continuously on the boundary @D of the scatterer D with respect to the
C2;��norm of @D.

Proof. The proof for the �rst statement for S0 and M is a consequence of
Theorem 3.14 of [58]. The second statement for S0 is given by Theorem 3.18 of
[58]. The statement for N can be found in Corollary 3.15 of [58].

2

Theorem 2.3.9 For 0 < �0 < � the operators

S0 : CT (@D)! C0;�0(@D);

S0 : C
0;�0(@D)! C1;�0(@D)

M : CT (@D)! CT 0;�0(@D)

N : C1;�0(@D)! CT 0;�0(@D)

are bounded uniformly for D 2 Cpc.

Proof. By the compactness of the imbedding C2;�(Bri(0)) into C
2;�0(Bri(0))

for �0 < � the uniform bounds are a consequence of the continuous dependence
given by Theorem 2.3.8.

2

Theorem 2.3.10 For 0 < �0 < � the boundary integral operators

(I +M + iNPS2
0)
�1 : CT (@D)! CT (@D)

and
(I +M + iNPS2

0)
�1 : CT 0;�0(@D)! CT 0;�0(@D)

are bounded by a constant c uniformly for scatterers D 2 Cpc.
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Proof. We �rst prove the invertibility of the integral operator I+M+ iNPS2
0

in CT (@D) and CT 0;�0(@D). Since M and NPS2
0 are compact in CT (@D) and

in CT 0;�0(@D) we have to prove injectivity of the integral operator to obtain

invertibility by the Riesz-Theory for compact operators. Injectivity in T 0;�0

d (@D)
is stated in Theorem 2.3.2. We assume that a is a density in CT (@D) such that

(I +M + iNPS2
0)a = 0:

Then we have a = �Ma � iNPS2
0a. By the mapping properties of M , N and

S2
0 as given by Theorem 2.3.7 we �rst obtain a 2 CT 0;�0(@D), in a second step

a 2 T 0;�0

d (@D). We obtain a = 0 from Theorem 2.3.2, i.e. the integral operator is
injective in CT (@D) and CT 0;�0(@D) and thus continuously invertible.

In CT (@D) and CT 0;�0(@D) for 0 < �0 < � the integral operator depends
continuously on the boundary @D with respect to the C2;�0-norm for the domain.
We use the compactness of the imbedding C2;�(U0)! C2;�0(U0) and the fact that
continuous functions on compact sets are bounded to derive the statement of the
theorem.

2

The preceding theorems enable us to derive bounds for the mapping of the
incident �eld onto the far �eld pattern of the scattered electromagnetic wave
uniformly for scatterers D 2 Cpc.

Theorem 2.3.11 For scattering by a perfect conductor the mapping of the in-
cident electromagnetic �eld Ei; H i in T 0;�

d (@D) onto the far �eld pattern E1 in
C1(
; IR3) of the scattered electric �eld Es is bounded by a constant c1 uniformly
for scatterers D 2 Cpc.

Proof. We use the combined magnetic and electric dipole potential (2.3.17) for
the solution of the scattering problem. Then the far �eld pattern of the electric
�eld is given by

(P1
E a)(x̂) :=

i�

4�
x̂�

Z
@D
a(y)e�i�x̂�y ds(y) (2.3.32)

+ i
�2

4�
x̂�

Z
@D

�
�(y)� (S2

0a)(y)
�
� x̂ e�i�x̂�y ds(y); x̂ 2 
;

with a density a given by (2.3.18). By the now well-known compactness ar-
guments, the mapping (2.3.32) is bounded from T 0;�

d (@D) into C1(
; IR3) uni-
formly for D 2 Cpc. Together with the uniform bound for the integral operator
(I +M + iNPS2

0)
�1 we obtain the statement of the theorem.

2
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We now study the behavior of the scattered �eld for incident electric dipoles.
The following theorem is the basis and main ingredient for the proof of stability
in Section 4 and the convergence properties of the method of singular sources for
the reconstruction of electromagnetic scatterers in Section 6.

Theorem 2.3.12 Consider scattering of an incident electric dipole Ei
edp; H

i
edp by

a perfect conductor D 2 Cpc. There are constants �; c > 0, such that in the strip
0 < d(z;D) < � the scattered electric �eld Es

edp(z; z; �(z0)), with z0 2 @D de�ned
by the unique representation z = z0 + h�(z0), satis�es the lower estimate���Es

edp(z; z; �(z0))
��� � c

jd(z;D)j3 : (2.3.33)

With a constant C we have for all p 2 
 and z 2 B nD the upper estimate

���Es
edp(z; z; p)

��� � C

jd(z;D)j3 : (2.3.34)

The estimates are satis�ed uniformly for scatterers D 2 Cpc.
Proof. With zh := z0 + h�(z0) and a representation of the scattered electric

�eld by means of the combined potential PE we decompose

Esedp(�; zh; p)
= �2 PE (I +M + iNPS2

0)
�1�� � Ei

edp(�; zh; p)
�

= 2 PE (I +M + iNPS2
0)
�1�� � Ei

edp(�; z�h; p)
�

� 2 PE (I +M + iNPS2
0)
�1�� � nEi

edp(�; zh; p) + Ei
edp(�; z�h; p)

o �
= �Es

edp(�; z�h; p)
� 2 PE

�
� �

n
Ei
edp(�; zh; p) + Ei

edp(�; z�h; p)
o �

+2 PE (I +M + iNPS2
0)
�1(M + iNPS2

0) (2.3.35)�
� �

n
Ei
edp(�; zh; p) + Ei

edp(�; z�h; p)
o �
:

For the �rst term of (2.3.35) we have �Es
edp(�; z�h; p) = Ei

edp(�; z�h; p). By
straightforward di�erentiation with the help of

curl curl = �4+ grad div (2.3.36)

we calculate

Ei
edp(x; z; p) = � c p

jx� zj3 +
3c p � (x� z) (x� z)

jx� zj5 + O(
1

jx� zj2 ): (2.3.37)
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with some constant c. We estimate

Ei
edp(zh; z�h; �(z0)) = O(

1

h2
) +

c

4 h3
�(z0); (2.3.38)

i.e. the �rst term of the right-hand side of (2.3.35) has a singularity of order three
in h. To obtain the statement of the theorem we will show that all other terms
can be estimated by a constant times h�2 uniformly for scatterers D 2 Cpc. We
will proceed in four steps.

1. As a �rst step from (2.3.37) by some lines of computation as in (2.1.64) we
derive the estimate

������� � n
Ei
edp(�; zh; �(z0) + Ei

edp(�; z�h; �(z0))
o ������

C(@D)
= O(

1

h2
) (2.3.39)

uniformly for scatterers D 2 Cpc. Using the bounds of Theorem 2.3.9 we obtain

������ (M + iNPS2
0) (2.3.40)�

� �
n
Ei
edp(�; zh; �(z0) + Ei

edp(�; z�h; �(z0))
o � ������

CT 0;�0 (@D)
= O(

1

h2
)

and from Theorem 2.3.10 we calculate the estimate������ (I +M + iNPS2
0)
�1(M + iNPS2

0) (2.3.41)�
� �

n
Ei
edp(�; zh; �(z0) + Ei

edp(�; z�h; �(z0))
o �������

CT 0;�0(@D)
= O(

1

h2
):

2. We now investigate the potential PE de�ned by (2.3.17). We �rst note that
using

grad x�(x; y) = �grad y�(x; y); (2.3.42)

the relation

grad v = Grad v +
@v

@�
� (2.3.43)

in a neighborhood of @D and the partial integrationZ
@D
vDiv a ds = �

Z
@D

Grad v � a ds (2.3.44)

for continuously di�erentiable functions v and tangential �elds a and for points
x 2 IR3 n @D we obtain

div
Z
@D
a(y)�(x; y) ds(y) =

Z
@D

Div a(y)(�(x; y) ds(y): (2.3.45)
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By an application of (2.3.36) with the help of (2.3.45) we derive

(PEa)(x) = curl
Z
@D
a(y)�(x; y) ds(y)

+ �2
Z
@D
a(y)�(x; y) ds(y) (2.3.46)

+ grad
Z
@D

Div (�(y)� S2
0a(y))�(x; y) ds(y);

x 2 IR3 n @D.
3. We now investigate the behavior of the potential PE for a H�older continuous

density a with jjajjCT 0;�(@D) = O(h�2). Since the gradient of the single-layer
potential with H�older continuous density is bounded (see Theorem 2.17 of [5] for
the boundedness and [58] for the uniformity of the bounds), we obtain���(PEa)(�)��� = O(

1

h2
)

uniformly for scatterers D 2 Cpc, i.e. we obtain the desired estimate for the last
term of (2.3.35).

4. Finally, we investigate the term

PE
�
� �

n
Ei
edp(�; zh; p) + Ei

edp(�; z�h; p)
o�
; (2.3.47)

where no smoothing operators are involved. For the second and third summand
of (2.3.46) appropriate bounds can be found by the same arguments as above.
We will have to explicitly calculate the leading term of the �rst summand of PE,
i.e.Z

@D

�
�(y)�

n
Ei
edp(y; zh; p) + Ei

edp(y; z�h; p)
o �

�rx�(x; y)
���
x=zh

ds(y); (2.3.48)

since for the gradient of the single-layer potential with mere continuous density
we have no general estimates available. Proceeding as in (2.1.64) and (2.3.39) we
derive a bound����(y)� nEi

edp(y; zh; p) + Ei
edp(y; z�h; p)

o ��� � c

jy � z�hjjy � z�hj : (2.3.49)

The leading term of (2.3.48) is thus bounded byZ
@D

C

jy � zhj2jy � z�hjjy � z�hj ds(y) (2.3.50)

with some constant C. We proceed analogously to the part 3 of the proof of
Theorem 2.1.15. With the help of the integralZ R

0

Z 2�

0

rd'dr

(r2 + h2)2
=

1

2h2
1

2(R2 + h2)
(2.3.51)

we obtain O(h�2) for (2.3.50) and the proof is complete. 2
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The inhomogeneity of an inhomogeneous medium for scattering of an electromag-
netic wave is described by the refractive index

n(x) :=
1

�0

 
�(x) + i

�(x)

!

!
; (2.4.1)

where � = �(x) > 0 denotes the electric permittivity, � = �(x) the electric
conductivity of the medium, and where ! is the frequency of the wave. The
magnetic permeability is considered to be a constant � = �0 > 0. We assume the
medium to be bounded, i.e. �(x) = �0 and �(x) = 0 for x 62 D for some domain
D contained in a �xed ball B = BRe(0). Let the domain D have the boundary
@D of class C2;� and n 2 C1;�(IR3) for some 0 < � < 1. The inhomogeneous
electromagnetic scatterer is denoted by D = (D; n) and we use � := 1� n.

Definition 2.4.1 For an incident time-harmonic electromagnetic �eld Ei; H i,

curl Ei � i�H i = 0; curl H i + i�Ei = 0 (2.4.2)

with wave number � = �0�0!
2 and an inhomogeneous penetrable scatterer D, the

electromagnetic inhomogeneous medium scattering problem is to �nd a radiating
scattered �eld Es; Hs 2 C1(IR3), such that the total �eld

E = Ei + Es; H = H i +Hs (2.4.3)

satis�es the time-harmonic Maxwell equations

curl E � i�H = 0; curl H + i�n(x)E = 0 (2.4.4)

in IR3 n @D.

Outside of the support of the scatterer D the scattered �eld Es; Hs solves the
Maxwell equations (2.3.1). Thus the Stratton-Chu formulas (2.3.6) and (2.3.7)
are valid and the scattered �eld has the asymptotic behavior (2.3.8) uniformly
for all directions, i.e. the scattered �elds have a far �eld pattern E1; H1.

To study the properties of the scattered �eld Es; Hs we use a solution of the
direct scattering problem by means of volume integral equations. For a continuous
vector �eld a we de�ne the potential

(Tea)(x) := ��2
Z
D
�(x; y)�(y)a(y) dy

+ grad
Z
D

1

n(y)
grad n(y) � a(y)�(x; y) dy; x 2 IR3:

(2.4.5)

We summarize uniqueness and existence results in the following theorem.
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Theorem 2.4.2 The electromagnetic inhomogeneous medium scattering problem
has a unique solution and the solution depends continuously on the incident �eld
with respect to the maximum norm on D. In particular, the scattered electric �eld
Es can be represented as a potential TeE, where the total electric �eld E satis�es
the integral equation

(I � Te)E = Ei (2.4.6)

on D. The integral operator I � Te is continuously invertible in C(D).

Proof. We refer to Theorems 9.1, 9.2, 9.4 and 9.5 of [6].
2

As for obstacle scattering we denote an incident plane wave with polarization
q 2 
 and direction of incidence d 2 
 by Ei

pl(�; d; q); H i
pl(�; d; q). The correspond-

ing scattered �elds and far �eld patterns are Es
pl; H

s
pl and E

1
pl ; H

1
pl , respectively.

An incident electric dipole Ei
edp; H

i
edp produces the scattered �eld Es

edp; H
s
edp with

far �eld pattern E1
edp; H

1
edp. We obtain electromagnetic reciprocity relations as

follows.

Theorem 2.4.3 (Far �eld reciprocity relation.) The far �eld patterns for
scattering of plane waves by an inhomogeneous medium D satisfy

q � E1
pl (x̂; d; p) = p � E1

pl (�d;�x̂; q) (2.4.7)

for x̂; d; p; q 2 
.

Proof. See [6], Theorem 9.6.
2

Theorem 2.4.4 (Mixed reciprocity relation.) The far �eld patterns for
scattering of plane waves by an inhomogeneous medium D satisfy

q � E1
edp(x̂; z; p) = 
 p � Es

pl(z;�x̂; q) (2.4.8)

for x̂; p; q 2 
 and z 2 IR3 nD, where 
 = 1
4�
.

Proof. The proof is literally the same than for Theorem 2.3.4.
2
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To detect the boundary of an inhomogeneous medium using incident singular
sources, in acoustic scattering we needed a jump in one of the derivatives of n.
For the treatment of electromagnetic inhomogeneous medium scattering by means
of integral equations, to avoid the use of boundary integral terms we will have
to restrict our presentation to a refractive index n 2 C1;�(IR3). Thus the order
of the derivatives of n, where jumps can occur, must be larger or equal to two.
Here we will restrict ourselves to a jump in the second derivative of the refractive
index at the boundary of the inhomogeneous medium. In addition, we need some
smoothness conditions on n to obtain stability estimates.

Definition 2.4.5 Given positive constants Re, r0, a0, C0, �e, Cn, cmin, cmax,
l = 2 and � 2 (0; 1] we de�ne the class Celm of electromagnetic inhomogeneous
medium scatterers D by the following assumptions.

1. The scattering domain D is of class A(Re; r0; a0; l; �; C0; �e).

2. The refractive index n is in C1;�(IR3) and in C2;�(D) with

jjnjjC2;�(D) � Cn: (2.4.9)

3. At the boundary @D the function � = 1 � n has a jump in its second
derivatives uniformly for D 2 Cm in the sense that

0 < cmin � j@
2�

@�2
(x)j � cmax; x 2 D: (2.4.10)

We need to study the mapping properties of the operator Te and (I � Te)
�1

in the spaces of continuous and of L2-integrable functions.

Theorem 2.4.6 For the integral operator (I � Te)
�1 the norms

jj(I � Te)
�1jjC(B) (2.4.11)

are bounded by some constant c uniformly for scatterers D 2 Celm.

Proof. The operator Te as a mapping from C(B) into C(B) depends contin-
uously on the refractive index n 2 C1(B) and the same is true for the inverse
of the operator I � Te. Thus the uniform bound is obtained by a compactness
argument using the imbedding from C1;�(B) into C1(B) as in Theorem 2.2.6.

2
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With the same compactness arguments we derive the following uniform bound
for the scattering map. We leave the straightforward proof to the reader.

Theorem 2.4.7 For scattering of electromagnetic waves from an inhomogeneous
medium the mapping of the incident electric Ei 2 C(D) onto the electric far �eld
patterns E1 2 C1(
) is bounded uniformly for D 2 Celm by a constant c1.

Please note that the singularity of the operator Te is one order stronger than
the singularity of the acoustic volume potential V . Thus the proofs of upper and
lower estimates for Es

edp will be more complicated than in the acoustic case.
The following theorem investigates the behavior of Es

edp(z; z; p), if z tends to
the boundary of an electromagnetic inhomogeneous medium scatterer D 2 Celm.
As a preparation we prove a lemma.

Lemma 2.4.8 For the kernel 	(y; z) we assume

j	(y; z)j � cjy � zj�2; y 2 D; z 2 B; y 6= z (2.4.12)

with some constant c. Then we have

��� Z
D
grad x�(x; y)	(y; z) dy

��� � C

jx� zj ; x; z 2 B; x 6= z; (2.4.13)

with a constant C uniformly for D 2 Celm.

Proof. We need to work out the proof only for the potential theoretic case
� = 0. We split the domain of integration into three parts. For x 2 IR3 n fzg
we de�ne R := jx � zj=2 and use D1 := D \ BR(x), D2 := D \ BR(z) and
D3 := D n (D1 [D2).

1. The integral over D1 can be estimated by

����
Z
D1

rx�(x; y)	(y; z) dy
���� � C R�2

Z R

0
dr � C

R
(2.4.14)

with some constant C.
2. To estimate the integral over D2 we use the decomposition����
Z
D2

rx�(x; y)	(y; z) dy
���� �

����
Z
D2

�
rx�(x; y)�rx�(x; z)

�
	(y; z) dy

����
+
����
Z
D2

rx�(x; z)	(y; z) dy
���� : (2.4.15)
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With
jrx�(x; y)�rx�(x; z)j � c

jx� zj3 jy � zj; jy � zj � R

for some constant c we estimate (2.4.15) by����
Z
D2

rx�(x; y)	(y; z) dy
���� � C

h 1
R3

Z R

0
r dr +

1

R2

Z R

0
dr
i

� C

R
; (2.4.16)

where C is a generic constant; i.e. C may change from line to line.
3. The domain D3 can be decomposed again into the subdomains D4 :=

D nB3R(z) and D5 := D \ (B3R(z) n (BR(x) [BR(z)). We use polar coordinates
with origin z and third axis given by x� z to calculate

jy � xj2 = 4R2 + r2 � 4rR cos(�):

Now the integral over D4 is estimated by a constant timesZ Re

3R

1

4R2 + r2 � 4rR
dr =

�
� 1

r � 2R

�Re
3R
: (2.4.17)

The integral over D5 can be estimated by a constant times

1

R2

Z 3R

R
dr =

2

R
: (2.4.18)

The estimates (2.4.17) and (2.4.18) yield����
Z
D3

rx�(x; y)	(y; z) dy
���� � C

R
(2.4.19)

with some constant C. Now from (2.4.14), (2.4.16) and (2.4.19) we obtain the
estimate (2.4.13). 2

Theorem 2.4.9 Consider scattering of an electric dipole by an inhomogeneous
medium scatterer D 2 Celm. There are constants �; c > 0 such that in the strip
0 < d(z;D) < � the scattered �eld Es

edp(z; z; �(z0)) satis�es the lower estimate���Es
edp(z; z; �(z0))

��� � c

jd(z;D)j ; (2.4.20)

where z0 2 @D is de�ned by the unique representation z = z0 + h�(z0). With a
constant C we hve for all z 2 B nD the upper estimate���Es

edp(z; z; �(z0))
��� � C

jd(z;D)j : (2.4.21)
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Proof. By Theorem 2.4.2 we have a representation of the scattered �eld of an
incident electric dipole by

Es
edp(�; z; p) = Te(I � Te)

�1Ei
edp(�; z; p)

= TeE
i
edp(�; z; p) + Te(I � Te)

�1TeEi
edp(�; z; p)

= TeE
i
edp(�; z; p) + TeTeE

i
edp(�; z; p) (2.4.22)

+ Te(I � Te)
�1TeTeEi

edp(�; z; p);
where we twice inserted the identity operator I = (I � Te) + Te. We �rst give
upper and lower estimates for the singularity of TeE

i
edp(�; z; p), in a second step

prove the boundedness of TeTeE
i
edp(�; z; p) and in a third step derive bounds for

Te(I � Te)
�1TeTeEi

edp(�; z; p) in IR3.
1. We need to investigate the refractive index near the boundary. From

De�nition 2.4.5 as in (2.2.37) we obtain

�(y) =
1

2

@�

@�
(z0)

�
r cos(�)

�2
+ O(r2+�) (2.4.23)

with polar coordinates r = jy � z0j, cos(�) = ��(z0) � (y � z0)=r and

grad n(y) =
@�

@�
(z0) r

8><
>:cos(�)2 �

0
B@ sin(�) cos(')

sin(�) sin(')

cos(�)

1
CA (2.4.24)

� cos(�) sin(�) �
0
B@ cos(�) cos(')

cos(�) sin(')

� sin(�)

1
CA
9>=
>; + O(r1+�)

uniformly for scatterers D 2 Celm.
Consider the operator Te as de�ned by (2.4.5). It consists of two terms, the

�rst one of which is a single-layer potential and the second the gradient of a
single-layer potential. From (2.4.23) we derive����(y)Ei

edp(y; p; z)
��� � c

jy � zj ; y 2 D; (2.4.25)

with some constant c. Thus by standard arguments the potentialZ
D
�(x; y)�(y)Ei

edp(z; p; z) dy

is bounded uniformly for z 2 B n D and for all scatterers D 2 Celm. We now
investigate the second term of Te. We use Lemma 2.4.8 to estimate the integralZ

D
grad x�(x; y)

1

n(y)
grad n(y) � Ei

edp(y; p; z)| {z }
=:	(y;z)

dy (2.4.26)
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and derive the upper estimate

����TeEi
edp(�; z; p)

�
(x)
��� � C

jx� zj ; p 2 
; x; z 2 B; x 6= z; (2.4.27)

with some constant C uniformly for scatterers D 2 Celm.
We now calculate a lower bound for TeE

i
edp(z; z; �(z0)). The leading term of

the potential is given byZ
D

z � y

jz � yj3
1

n(y)
grad n(y) � (2.4.28)(

3c �(z0) � (y � z) (y � z)

jy � zj5 � c �(z0)

jy � zj3
)
dy; z 2 IR3 nD:

We insert (2.4.24) into (2.4.28) and use an argumentation analogous to the deriva-
tion of (2.2.46) and (2.2.48) to derive

TeE
i
edp(z; z; �(z0))

= C
Z 2�

0

Z �0

0

Z R0

d(z;D)= cos(�)

8><
>:cos(�)2

0
B@ sin(�) cos(')

sin(�) sin(')

cos(�)

1
CA� cos(�) sin(�)

0
B@ cos(�) cos(')

cos(�) sin(')

� sin(�)

1
CA
9>=
>;

�
8><
>:3 cos(�)

0
B@ sin(�) cos(')

sin(�) sin(')

cos(�)

1
CA�
0
B@ 0

0

1

1
CA
9>=
>;
0
B@ sin(�) cos(')

sin(�) sin(')

cos(�)

1
CA 1

r2
dr d� d' + O(1)

with a su�ciently small �xed constant R0 and �0 de�ned by R0 cos(�0) = d(z;D).
We expand the products and �rst integrate over ' to obtain zero for the e1 and
e2 components of the vector. Evaluating the integral over r we derive

TeE
i
edp(z; z; �(z0))

=
C

d(z;D)

0
B@ 0

0
1

1
CA Z �0

0
cos3(�)

n
3 cos2(�)� 1

o
d� + O(1)

=
C

d(z;D)

0
B@ 0

0
1

1
CA + O(1); z 2 IR3 nD;

with a generic constant C. This yields

���TeEi
edp(z; z; �(z0))

��� � C

jd(z;D)j ; z 2 IR3 nD; (2.4.29)
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with some constant C uniformly for scatterers D 2 Celm.
2. We need to investigate TeTeE

i
edp(�; z; p). From (2.4.27) we derive

����TeTeEi
edp(�; z; p)

�
(x)
��� � C

Z
D

1

jx� yj2
grad n(y)

jy � zj dy + O(1): (2.4.30)

Since the integral in (2.4.30) can be estimated by a constant, the right-hand side
is bounded. These bounds hold uniformly for D 2 Celm.

3. To complete the proof we collect the estimates (2.4.27), (2.4.29) and
(2.4.30), use the decomposition (2.4.22) and the uniform bounds for (I�Te)�1 in
C(B) as given by Theorem 2.4.6 to derive the upper and lower bounds (2.4.20)
and (2.4.21).

2



3 Uniqueness and stability in inverse scattering.

Uniqueness theorems usually investigate the amount of data necessary to deter-
mine scattering objects uniquely. Clearly, if we do not have uniqueness, we cannot
expect to obtain stable numerical algorithm for the computation of the scattering
objects. Thus uniqueness is a question of practical importance.

In this chapter we �rst investigate the question of uniqueness of the support
of obstacle scatterers, given the far �eld patterns for incident plane waves at
a �xed wave number �. We will show that the shape D of the scatterer D is
uniquely determined by the far �eld patterns u1(�; d) of the scattered �elds for
all incident plane waves ui(�; d) with directions of incidence d 2 
. Uniqueness
for penetrable scatterers will be obtained as a consequence of stability, which is
the second problem of this section.

The question of stability leads right into the center of the di�culties of inverse
problems. How do errors in the measurements a�ect the reconstructions? We
already indicated that inverse scattering problems are ill-posed, because a radi-
ating solution to the Helmholtz equation in the exterior of a ball does not depend
continuously on its far �eld pattern. We also indicated that with appropriate
assumptions on the scatterers under consideration stability can be restored and
stability estimates can be derived.

In this section we will derive stability estimates for the reconstruction of the
domain D of a scatterer D from the far �eld patterns u1(x̂; d) for x̂; d in 
, where
for measurements of the far �eld patterns we will use the practically relevant L2-
norm. A stability estimate consists of a function F : IR+ ! IR+ with the property

F (�)! 0; � ! 0; (3.0.1)

such that the Hausdor� distance d(D1; D2) of two scatterers can be estimated by

d(D1; D2) � F
�
jju11 (�; �)� u12 (�; �)jjL2(
�
)

�
: (3.0.2)

For the convex hulls H(D1) and H(D2) of impenetrable acoustic or arbitrary
electromagnetic scatterers D1 and D2 we will derive a logarithmic estimate, i.e.

F (�) =
C

j ln(�)jc
with constants C > 0 and 0 < c < 1 uniformly for the given classes of scatterers.

Clearly stability inplies uniqueness and thus as a consequence of stability we
obtain uniqueness statements. In particular, this will yield new uniqueness results
for inhomogeneous medium scatterers.
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3.1 Acoustic scattering.

The following uniqueness theorem for the reconstruction of domains in obstacle
scattering was �rst proven in 1993 by Kirsch and Kress [29], simplifying techniques
of Isakav [22]. It will be the starting point for our further considerations, and we
will give an even simpler proof using mixed reciprocity relations.

Theorem 3.1.1 Let D1;D2 be sound-soft or sound-hard scatterers. If the far
�eld patterns u11 (x̂; d) and u

1
2 (x̂; d) for scattering of plane waves coincide for all

x̂; d 2 
, then D1 = D2.

Proof. Let De be the unbounded component of IRm n (D1 [D2). From

u11 (x̂; d) = u11 (x̂; d); x̂; d 2 
;

and the Rellich Lemma we obtain

us1(z; d) = us1(z; d); z 2 De; d 2 
:

We use the mixed reciprocity relation (2.1.4) on both sides to derive for the far
�eld patterns of incident point-sources the equality

�11 (d; z) = �12 (d; z); z 2 De; d 2 
:

Again we use the Rellich lemma to get

�s1(x; z) = �s2(x; z); x; z 2 De: (3.1.1)

From (3.1.1) and Theorem 2.1.15 we derive D1 = D2 in the following way. We
assume that @D1 nD2 6= ; and z0 2 @D1 nD2. Then

1 > �2(z0; z0) = lim
z!z0;z2De

�2(z; z) = lim
z!z0;z2De

�1(z; z) =1

and we obtain a contradiction. In the same way we treat the case z0 2 @D2 nD1.
Thus we obtain D1 = D2 and the proof is complete.

2

Since most further results will hold both for scattering from an impenetrable
and penetrable scatterers, we de�ne the class

C := Cobst [ Cm: (3.1.2)
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We will now focus on the stability question and develop techniques to prove
stability for the reconstruction of the domainD of both impenetrable and penetra-
ble scatterers. Since stability implies uniqueness, we also will obtain uniqueness
statements for D. All further results will use the following two steps.

As the �rst step, we consider approximations of a multipole by a continuous
superposition of plane waves, i.e. by a Herglotz wave function

(Hg)(x) :=
Z


ei�x�dg(d) ds(d); x 2 IRm: (3.1.3)

To obtain these approximations in a uniform way we use the exterior cone con-
dition as follows. With the help of the cone (1.2.10) we de�ne the domain

Gz;p;� := B2Re(z �
p�

cos(�0)
) n co(z � p�

cos(�0)
; p; �0) (3.1.4)

2Re B2Re(z)

D �z
p

co(z; p; �0)

Gz;p;�

Figure 2

for z 2 IRm; p 2 
 and � > 0
as shown in Figure 2. Here, since
the parameter �0 is kept constant
throughout this work, we do not
explicitly note the dependence of
G on �0. From the exterior cone
condition for D � BRe(0) for each
z 2 B n D� we obtain a vector
p 2 
, such that D � Gz;p;�.

We �rst consider the operator H
from L2(
) into L2(@G), where G
denotes a appropriately chosen do-
mainG withG � G0;p;� and 0 62 G.

Lemma 3.1.2 It is possible to choose a domain G � G0;p;� with 0 62 G and
boundary @G of class C2, such that the homogeneous interior Dirichlet problem

�4u = �2u in G; u = 0 on @G (3.1.5)

has only the trivial solution u = 0. In this case the operator H has dense range
in L2(@G).
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Proof. Due to Theorem 4.7 of [44] for the l-th eigenvalue �l of the prob-
lem (3.1.5), where the eigenvalues are ordered according to their magnitude and
multiplicity

�1 � �2 � ::: � �l � : ::;

we have the monotonicity property

G1

6=� G2 ) �1;l > �2;l; l 2 IN: (3.1.6)

Thus, if for a domain
G1 � G0;p;�; 0 62 G1

and l 2 IN we have �1;l = �2, we can choose a domain

G2 � G1; 0 62 G2;

such that �2;l0 6= �2 for all l0 2 IN . Then �2 is not an eigenvalue for the domain
G2 and every solution u of (3.1.5) with G := G2 must vanish identically.

To show denseness for the range of H in L2(@G) we prove injectivity of the
adjoint H� of the operator H. The adjoint H� of H is given by

(H�')(x̂) =
Z
@G
e�i�x̂�y'(y) ds(y); x̂ 2 
:

The function H�' is the far �eld pattern of the single-layer potential

(S')(x) :=
Z
@G

�(x; y)'(y) ds(y); x 2 IRm:

We assume H�' = 0 on 
 for ' 2 L2(@G). Then Rellich's Lemma yields
(S')(x) = 0 for x 2 IRm n G. Now from the jump-relations for L2-densities
Theorem 1.2.4 we get (I � K�)' = 0. We can apply the Fredholm alternative
1.2.6 �rst in the dual systemD

C(@D); L2(@D)
E
; h';  i :=

Z
D
' dy;

and then in the dual systemD
L2(@D); L2(@D)

E
; h';  i :=

Z
D
' dy;

to conclude that the null spaces of I �K� in L2(@G) and C(@G) have the same
�nite dimension. Since C(D) is a subset of L2(D), the null spaces coincide and '
is in C(@G). Now continuity of the single-layer potential with continuous density
implies that S' solves the homogeneous Dirichlet problem in G. From the �rst
part of the lemma we obtain S' = 0 on G. Now the jump relations of Theorem
1.2.4 yield ' = 0 and thus the injectivity of H�. 2
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We now complete the �rst step and show, that in the space Cs(G0;p;�) the
function ��;q(�; 0) can be approximated by a Herglotz wave function.

Lemma 3.1.3 Given �; s 2 IN0, � > 0 and � > 0 there is a �nite set

G = G(�; �; �; s; �0)

of densities g in L2(
), such that for each p; q 2 
 there is a density g 2 G with

��������;q(�; 0)�Hg
������
Cs(G0;p;�)

� �: (3.1.7)

Proof. According to Lemma 3.1.2, given � > 0, we can �nd g 2 L2(
) such
that ��������;q(�; 0)�Hg

������
L2(@G)

� �: (3.1.8)

Let g be the minimum norm solution of (3.1.8), which is unique according to
Theorem 1.2.7. We note that both ��;q and Hg solve an interior Dirichlet prob-
lem for the Helmholtz equation in the domain G and can be represented as the
combined acoustic double- and single-layer potential (2.1.13). Di�erentiating un-
der the integral sign and using the Cauchy-Schwarz inequality we observe that
on compact subsets of G the solution of the interior Dirichlet problem depends
continuously on the boundary values in L2(@G); i.e. from (3.1.8) with � replaced
by �=c with some constant c we obtain (3.1.7).

So far, the density g in (3.1.8) depends on the parameters p; q 2 
. We
observe that for �xed g the norm��������;q(�; 0)�Hg

������
Cs(G0;p;�)

depends continuously on p and q. Thus given p; q 2 
 and g 2 L2(
) such that

��������;q(�; 0)�Hg
������
Cs(G0;p;�)

� �

2
(3.1.9)

is satis�ed, there is a neighborhood U of p and a neighborhood V of q, such that��������;q0(�; 0)�Hg
������
Cs(G0;p0;�)

� � (3.1.10)

is satis�ed for all q0 2 U and all p0 2 V . The compact set 
 is covered by a �nite
number of such domains U and V ; i.e. there is a �nite set G of densities g, such
that for all p; q 2 
 the estimate (3.1.7) is satis�ed with a density g 2 G. 2
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In the second step estimates for the di�erence of the �elds �s1;�;q and �s2;�;q for
scattering of a multipole from two scatterers D1 and D2 will be used to estimate
the Hausdor� di�erence d(D1; D2) of the domains D1 and D2.

We need to consider six di�erent situations according to the physical proper-
ties of the scatterers D1 and D2 in two or three dimensions. For each situation
we need a corresponding choice of the parameter �.

Situation Properties of D1 and D2 �
S1 D1;D2 impenetr. scatterers in IR2 0
S2 D1;D2 impenetr. scatterers in IR3 0
S3 D2 inhom. medium scatterer and

D1 impenetr. scatterer or vice versa in IR2 �0 + 2
S4 D2 inhom. medium scatterer and

D1 impenetr. scatterer or vice versa in IR3 �0 + 1
S5 D1;D2 inhom. medium scatterers in IR2 �0 + 2
S6 D1;D2 inhom. medium scatterers in IR3. �0 + 1

(3.1.11)

For technical reasons we introduce the set

U(D1; D2; �; �0) := fz 2 B n (D1;� [D2;�); (3.1.12)

9p 2 
 such that co(z; p; �0) � IRm n (D1;� [D2;�)g :

Lemma 3.1.4 We consider scattering of acoustic waves by two scatterers D1;D2

in C and choose � 2 IN0 according to the table above . Assume that with param-
eters �; � > 0 the scattered �elds �s1;�;q and �s2;�;q satisfy����s1;�;q(z; z)� �s2;�;q(z; z)

��� � � (3.1.13)

for all q 2 
 and z 2 U(D1; D2; �; �0). Then we conclude

d(D1; D2) � F1(�; �) (3.1.14)

where the function F1 is de�ned according to the situations S1 to S6 by

F1(�; �) :=

8>><
>>:
� +Bb��s S1, S5 and S6 ;
� + C�

c��� S2 ;

� +
�
c
Cb
j ln �j � �

Cb

��1=(�0+m+2)
S3 and S4

(3.1.15)

with constants B; b; s; c and C uniformly for D1;D2 2 C.
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Proof. We split the proof into two parts.
1. We consider the scattered �elds for a point z 2 U(D1; D2; �; �0). From (2.1.48),
(2.1.49) and (3.1.13) we obtain for situation S1 of two impenetrable scatterers in
the two dimensions the estimate

C
��� ln d(z;D1)

��� + E �
����s1;�;�(z0)(z; z)���

�
����s2;�;�(z0)(z; z)���� � (3.1.16)

� c
��� ln d(z;D2)

���� �;

which can be transformed into

d(z;D1) � B b� d(z;D2)
s (3.1.17)

with constants B = eE=C ; b = e1=C and 1 > s = c=C > 0. In the same way
for scattering by impenetrable scatterers in three dimensions (situation S2) we
obtain from (2.1.50), (2.1.51) and (3.1.13)

C

d(z;D1)
� c

d(z;D2)
� � (3.1.18)

and transform it into

d(z;D1) � Cd(z;D2)

c� �d(z;D2)
: (3.1.19)

Consider an inhomogeneous medium scatterer D2 and an impenetrable scatterer
D1; i.e. the situations S3 and S4. From the de�nition of the multipoles and the
choice of � we derive ��������;q(�; z)������

C1(D1)
� Cd(z;D1)

��0�3 (3.1.20)

with some constant C. The scattering map ui 7! us from C1(D1) intoC(BnD1;�)is
bounded by b=�m�1 with some constant b uniformly for D 2 Cobst. Thus we obtain����s�;q(z; z)��� � C b jd(z;D1)j��0�m�2: (3.1.21)

Now from the lower estimate (2.2.55) we derive

C b jd(z;D1)j��0�m�2 � c j lnd(z;D2)j � � (3.1.22)

with constants c; C; b > 0, which yields

d(z;D1) �
� c

Cb
j lnd(z;D2)j � �

Cb

�� 1
�0+m+2 (3.1.23)
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If D2 is an impenetrable scatterer and D1 an inhomogeneous medium, the esti-
mates can be obtained as in (3.1.17) and (3.1.19). Since the functions are dom-
inated by (3.1.23), a bound is again given by (3.1.23). For two inhomogeneous
medium scatterers D1 and D2 we derive from (2.2.55), (2.2.56) and (3.1.13) the
bound (3.1.17)

2. We now come to the second step of the proof. According to the cases S1
to S6 we choose � := F1(�; �) with F1 de�ned in (3.1.15).

First, we consider a point z0 2 @D2, such that for z0 := z0 + ��(z0) we have
z0 2 U(D1; D2; �; �0). From the triangle inequality, � = d(z0; D2) and the �rst
part of the proof we obtain

d(z0; D1) � d(z0; z
0) + d(z0; D1)

� F1(�; �) = �: (3.1.24)

Second, we investigate an arbitrary cone

co(z; p; �0) � IRm nD1;�: (3.1.25)

To show
co(z; p; �0) \D2 = ; (3.1.26)

by contradiction, we assume that

co(z; p; �0) \D2 6= ;: (3.1.27)

Then we have

r1 := inf
n
r > 0;

�
D2 \ co(z; p; �0)

�
�

�
Br(x) \ co(z; p; �e)

� o
> 0;

and we can �nd a point z1 2 @D2 \ @Br1(x) \ co(z; p; �). On the line

L = fz1 + tp; t 2 (0;1)g
there is a point z0 with d(z0; D2) = �. Then we have z0 = z0 + ��(z0) for some
point z0 2 @D2 and z0 2 U(D1; D2; �; �0). Now, the estimate (3.1.24) yields
d(z0; D1) � �. But from (3.1.25) we obtain � < d(z0; D1) and thus a contradiction
i.e. the assumption (3.1.27) is wrong and (3.1.26) is shown.

Finally, we note that for D1 2 C and � su�ciently small the open exterior of
D1;� can be covered by cones co(z; p; �0) with z 2 IRm nD1;� and p 2 
; i.e. from
(3.1.26) we obtain D2 � D1;�. Since we can go through all arguments with D1

and D2 exchanged, we obtain (3.1.14).
2
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We will de�ne and study an operator Q, which is built to approximate the
scattered �elds of multipoles by a superposition of the far �eld patterns of the
scattered �elds of plane waves. To this end we need some further preparations.

a) Consider scattering of an incident �eld given by a superposition Hg of
plane waves (3.1.3) with density g 2 L2(
). Using the scattered �eld us(�; d) and
the far �eld pattern u1(�; d) for the scattering of plane waves, by linearity and
boundedness of the scattering maps ui 7! us and ui 7! u1 the scattered �eld and
far �eld pattern can be expressed by

(Hsg)(x) =
Z


us(x; d)g(d) ds(d); x 2 IRm nD (3.1.28)

and
(H1g)(x) =

Z


u1(x̂; d)g(d) ds(d); x̂ 2 
; (3.1.29)

respectively.

b) Lemma 3.1.3 states the possibility of approximations of multipoles with
source-point x = 0 on a domain G0;p;� by a superposition of plane waves. To ap-
proximate a multipole with source-point x 6= 0 on Gx;p;� we consider translations
of both the multipole and the Herglotz wave function.

Translations of a Herglotz wave function Hg0 with a translation vector x
can be performed by multiplication of the density g0(d) with the complex factor
e�i�x�d. Clearly, the density

g(x; d) := e�i�x�dg0(d) (3.1.30)

of the translated Herglotz wave function has the same norm as the original density
g0. From (3.1.7) by translation we derive��������;q(�; x)�Hg(x; �)

������
Cs(Gx;p;�)

� �: (3.1.31)

c) The density g de�ned by (3.1.30) and Lemma 3.1.3 is a function

g = g(x; d; p; q; �; �; �; s; �0):

We will need the density g with two di�erent sets of values for x; d; � and � and
for vectors p and q depending on x. We use the abbreviation

g� (x; d) := g
�
x; d; p(x); q(x); �; �; �; s; �0

�
(3.1.32)

d) To estimate the error of the approximations we need the bound

b�;�;�;s;�0 := max
n
jjgjjL2(
); g 2 G(�; �; �; s; �0)

o
(3.1.33)
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with the set G(�; �; �; s; �0) of densities given by Lemma 3.1.3. We use the ab-
breviation

b� = b�;�;�;s;�0

or
b�;� = b�;�;�;s;�0;

if the dependence on �; �; s; �0 or on �; s; �0 is not needed. For the set G we will
write

G� := G(�; �; �; s; �0)
e) For a scatterer D 2 C and a point x 2 BnD�, according to the boundedness

of D and the exterior cone condition we can �nd p 2 
 with

D � Gx;p;�: (3.1.34)

Thus it is possible to de�ne a function p : B ! 
, such that with p = p(x)
the condition (3.1.34) is satis�ed for all x 2 B n D�. The condition (3.1.34)
will be needed to estimate the approximation of �s�;q(x; z) by Qu1. Later we
will work with two di�erent domains D1 and D2. Then for a �xed functions p
only at points x 2 B, for which (3.1.34) is satis�ed for both D1 and D2, the
approximation properties of the corresponding operator Q will be valid for both
scattered �elds �s1;�;q and �s2;�;q.

We are now ready to formulate the de�nition of the operator Q and to investi-
gate its approximation properties.

Definition 3.1.5 Given a set of parameters � 2 IN0, s = 1, �; � > 0 and
functions p; q : B ! 
 with the help of

g� (x; d) = g(x; d; p(x); q(x); �; �; 0; s; �0)

and
g�(z; ~d) = g(z; ~d; p(z); q(z); �; �; �; s; �0)

we de�ne the operator
Q : L2(
� 
)! L1(B)

by

(Qw)(x; z) :=
1


m

Z



Z



n
g� (x; ~d)g�(z; d)

o
w(�d; ~d) ds(d)ds( ~d); x; z 2 B:

(3.1.35)
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Theorem 3.1.6 Consider scattering by a sound-soft, sound-hard or inhomo-
geneous medium scatterer D 2 C. The error for the approximation of �s�;q(x; z)
by Qu1 is estimated by����s�;q(x; z)� (Qu1) (x; z)

��� � c
�

�(m�1)
+ C b�;�;�;s;�0 � (3.1.36)

for all x; z 2 B n D�, for which (3.1.34) is satis�ed for p = p(x) or p = p(z),
respectively. The constants c and C depend on �, but not on D 2 C.

Remark. For an appropriate choice of � and � the error in (3.1.36) can be
made arbitrary small. Given � > 0 we �rst choose � = ��(m�1)=(2c) and then
� = �=(2Cb�) to obtain����s�;q(x; z)� (Qu1) (x; z)

��� � �; x; z 2 B nD�: (3.1.37)

Proof. First, for g�(z; �) by de�nition we have��������;q(�; z)�Hg�(z; �)
������
C1(D)

� �: (3.1.38)

The scattering map ui 7! us is bounded from C1(D) into C(B n D�). We use
the solutions of the scattering problems as given in Section 2 and estimate the
scattered �eld us with the help of the Cauchy-Schwarz inequality to obtain�������s�;q(�; z)�Hsg�(z; �)

������
C(BnD�)

� c
�

�m�1
(3.1.39)

for all z 2 B n D�, for which (3.1.34) is satis�ed, with some constant c not
depending on � or D 2 C. In the same way for g� (x; �) we derive�������1(�; x)�H1g� (x; �)

������
C(
)

� c � (3.1.40)

for all x 2 B nD�, for which (3.1.34) is satis�ed, with some constant c uniformly
for D 2 C. We use the mixed reciprocity relations (2.1.4) and (2.2.4) to transform
(3.1.40) into ���us(x; d)� 1


m

�
H1g� (x; �)

�
(�d)

��� � c


m
� (3.1.41)

for all d 2 
. Using the Cauchy-Schwarz inequality from (3.1.41) we obtain the
estimate����Hsg�(z; �)

�
(x)�

�
Qu1

�
(x; z)

���
=
��� Z




 
us(x; d)� 1


m

Z


u1(�d; ~d) g� (x; ~d) ds( ~d)

!
g�(z; d) ds(d)

���
� C

������g�(z; �)������
L2(
)

� (3.1.42)
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with some constant C. Now from (3.1.42) and (3.1.39) we derive����s�;q(x; z)� �Qu1�(x; z)��� �
����s(x; z)� �

Hsg�(z; �)
�
(x)
���

+
����Hsg�(z; �)

�
(x) �

�
Qu1

�
(x; z)

���
� c

�

�m�1
+ C

������g�(z; �)������
L2(
)

� (3.1.43)

with constants c; C > 0, which yields (3.1.36).
2

The operator Q is a bounded operator from L2(
� 
) into L1(B). We will
exploit the behavior of the bounds to derive stability estimates for the recon-
struction of the scattered �eld �s�;q and use these estimates to obtain stability
estimates for the reconstruction of the shape D of a scatterer D.

Lemma 3.1.7 Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far �eld patterns for

scattering of acoustic plane waves two from scatterers D1;D2 2 C. If for some
parameter � > 0 the far �eld patterns satisfy������u11 � u12

������
L2(
�
) � �; (3.1.44)

then the �elds �s1;�;q and �s2;�;q, � 2 IN0, for scattering of multipoles by D1 and
D2, respectively, satisfy the estimate

����s1;�;q(x; z)� �s2;�;q(x; z)
��� � 2c

�

�m�1
+ 2C b� � +

1


m
b�b� � (3.1.45)

for all q 2 
, �; �; � > 0 and all points x; z 2 U de�ned by (3.1.12), where the
constants c; C are given by Theorem 3.1.6. .

Proof. We de�ne the function p : B ! 
 such that the condition (3.1.34) for
both scatterers D1 and D2 is satis�ed in x 2 U . Then for the operator Q given
by (3.1.35) we use (3.1.36) for each scatterer D1 and D2 and the Cauchy-Schwarz
inequality applied to Q(u11;�;q � u12;�;q) to derive from����s1;�;q(x; z)� �s2;�;q(x; z)

��� � ����s1;�;q(x; z)� �
Qu11

�
(x; z)

��� (3.1.46)���Q�u11 � u12
�
(x; z)

��� + ����Qu11 �(x; z)� �s2;�;q(x; z)
���

the estimate (3.1.45). 2
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It is now possible to use Lemma 3.1.4 to obtain estimates for the Hausdor�
distance d(D1; D2) between the two scatterers D1 and D2 and derive stability
estimates for the reconstruction of the shape of scatterers. For positive parameter
�, � , � and � let the function F2 be given by

F2(�; �; �; �) := 2c
�

�m�1
+ 2C b�;� � +

1


m
b�;�b�;� �; (3.1.47)

where the bounds b�;� and b�;� are de�ned by (3.1.33) and the constants c and C
are chosen according to Theorem 3.1.6. We de�ne

F (�) := inf
n
F1(�; F2(�; �; �; �)); �; �; � > 0

o
(3.1.48)

with F1 given by (3.1.15).

The following lemma and corollary will be needed to study the behavior of
the function F . For a function f : (0; �0)� (0; �0)! IR we de�ne

f �(s; t) := sup
�2[t;�0)

f(s; �); (3.1.49)

i.e. we build the supremum in the second coordinate.

Lemma 3.1.8 For every function f : (0; �0)! IR with f(t)!1 for t! 0 there
exists a function g : (0; �0)! (0; �0) with

f �(g(�)) � ! 0 and g(�)! 0 for � ! 0: (3.1.50)

Proof. Let f 0 be a strictly monotone function with f 0(t) � f(t). On (a;1)
with a := f 0(�0) there is an inverse function

(f 0)�1 : (a;1)! (0; �0)

with (f 0)�1(f 0(s)) = s and f 0((f 0)�1(t)) = t for all s 2 (0; �0) and t 2 (a;1).
Then for the function

g : (0; �0)! (0; �0); g(�) := (f 0)�1(
1p
�
);

with �0 de�ned by (f 0)�1(1=
p
�0) = �0 we obtain the behavior (3.1.50).

2
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Corollary 3.1.9 For every function f : (0; �0)� (0; �0)! IR with f(t; s)!1
for (t; s) ! 0 there exists a function g : (0; �0) ! (0; �0) � (0; �0), g = (g1; g2)
which satis�es

f �(g(�)) � ! 0; g(�)! 0 and
g1(�)

g2(�)m�1
! 0 for � ! 0: (3.1.51)

Proof. Use the preceding Lemma for ~f(t) := f �(t2; t1=(m�1)) to obtain a func-
tion ~g and de�ne g by g1(�) := ~g(�)2 and g2(�) := ~g(�)1=(m�1).

2

After these preparations we investigate the behavior of the function F .

Lemma 3.1.10 The function F de�ned by (3.1.48) satis�es

F (�)! 0; � ! 0: (3.1.52)

Proof. The function F (�) is dominated by

F1

�
h1(�); F2(h1(�); h2(�); h3(�))

�
with arbitrary positive functions h1, h2 and h3 on (0; �0). We will show, that we
can choose h1, h2 and h3 such that

F1

�
h1(�); F2(h1(�); h2(�); h3(�))

�
! 0; � ! 0: (3.1.53)

The function F2 can be decomposed into the sum and product

F2(�; �; �; �) = 2c
�

�m�1
+ b�;�

�
2C � +

1


m
b�;� �

�
:

By an application of Corollary 3.1.9 to f(s; t) := bs;t we obtain functions h4 and
h5 with

h4(�)! 0; � ! 0;

and

h5(�)! 0; � ! 0; (3.1.54)

such that the functions

h6(�) := 2C h4(�) +
1


m
b�h4;h5(�) �
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and

h7(�) := 2c
h4(�)

h5(�)m�1
+ b�h4(�);h5(�) �

with b� de�ned in (3.1.49) satisfy

h6(�) ! 0; � ! 0;

and
h7(�)! 0; � ! 0:

For

h1(�) := maxfh5(�); h5(h6(�))g;
h2(�) := h4(�);

h3(�) := h4(h6(�))

we obtain

F2(h1(�); h2(�); h3(�); �)� (3.1.55)

= 2c
h3(�)

h1(�)m�1
+ bh3(�);h1(�)

�
2Ch2(�) +

1


m
bh2(�);h1(�)�

�

� 2c
h4(h6(�))

h5(h6(�))m�1
+ b�h4(h6(�));h5(h6(�))

�
2Ch4(�) +

1


m
b�h4(�);h5(�)�

�

! 0; � ! 0:

Thus we have

F1

�
h1(�); F2(h1(�); h2(�); h3(�); �)

�
! 0; � ! 0 (3.1.56)

and the proof is complete. 2

We now put all previous steps together to obtain the main stability result.

Theorem 3.1.11 Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far �eld patterns

for scattering of acoustic plane waves two from scatterers D1;D2 2 C. We assume
that with a nonnegative parameter � the di�erence between the far �eld patterns
satis�es ������u11 � u12

������
L2(
�
) � �: (3.1.57)

Then with the function F de�ned by (3.1.48) the Hausdor� distance d(D1; D2) of
the two scatterers D1;D2 2 C can be estimated by

d(D1; D2) � F (�) (3.1.58)
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Proof. With F2 de�ned by (3.1.47) we use Lemma 3.1.7 to derive����s1;�;q(x; z)� �s2;�;q(x; z)
��� � F2(�; �; �; �) (3.1.59)

for all q 2 
, �; �; � > 0 and all points x; z 2 U with U de�ned by (3.1.12). We
can now apply Lemma 3.1.4 to derive

d(D1; D2) � F1(�; F2(�; �; �; �)) (3.1.60)

for every choice of parameters �; �; � > 0. With the de�nition (3.1.48) for F from
(3.1.60) we obtain (3.1.58). 2

Lemma 3.1.10 shows that the estimate (3.1.58) in fact is a stability estimate for
the reconstruction of D from the far �eld patterns for scattering of plane waves.
The function F can be calculated or estimated according to the a-priori knowledge
about the unknown scatterers as given by the class C de�ned in De�nitions 2.1.5
and 2.2.5.

The natural problem is the investigation of the dependence of F (�) on �.
Unfortunately, for general angles �0 we were not yet able to estimate explicitly
the behavior of F , but for �0 =

�
2
and for impenetrable domains we will now use

the asymptotics of Bessel and Hankel functions to derive a logarithmic bound.
More general, we will explicitly estimate the dependence of the function F (�) on
� for the estimate

d
�
H(D1);H(D2)

�
� F (�) (3.1.61)

for the convex hulls H(D1) and H(D2) of two scatterers D1;D2 2 Cobst.
Theorem 3.1.12 Let D1;D2 2 Cobst be impenetrable scatterers with scattering
data u11 (x̂; d) and u

1
2 (x̂; d), x̂; d 2 
. If������u11 � u12

������
L2(
�
) � �; (3.1.62)

then we have

d
�
H(D1);H(D2)

�
� C

j ln �jc (3.1.63)

with constants C > 0 and 0 < c < 1 uniformly for all D 2 Cobst.
Proof. We consider the three-dimensional problem. Let z0 2 @D2 \ @H(D2)

be a point, such that for z = z0+�(z0)� we can choose a domain of approximation
G(z;p;�), p 2 
, with the angle �e = �=2 and

Dj � Gz;p;�; j = 1; 2:
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Then we can use Lemma 3.1.7 and proceed along the lines of the proof of Lemma
3.1.4 to obtain

d(z0; D1) � F1

�
�; F2(�; �; �; �

�
(3.1.64)

for every choice of parameters �; �; � > 0 with the functions F1 de�ned by (3.1.15)
and F2 de�ned by (3.1.47). For the special choice

� = j ln �j� c1
2 ; � = e�j ln �j

c2 and � = e�j ln �j
c3 (3.1.65)

with 0 < c1 < c2 < 1, c1 + c2 < 1 and 0 < c3 < c2 � c1 we will derive

jF2(�; �; �; �)j � C (3.1.66)

for all su�ciently small � > 0. Then from (3.1.64), (3.1.65) and (3.1.66) we obtain
the explicit stability estimate (3.1.63).

To prove (3.1.66) we proceed in six steps.

o
�=2

R 2Re

Gz;p;�

x0 z|{z}
�=2

BR(x0)

Figure 3

1. We explicitly construct the domain G of
Lemma 3.1.2. Consider the domain Gz;p;�

and de�ne G := BR(x0) by

R2 = (R� �=4)2 + (2Re + �=2)2;
x0 := z � (�

4
+R)p;

(3.1.67)
where the �rst equation yields

R :=
5�

8
+
2(2Re)

2

�
+ 2Re (3.1.68)

Then, by straightforward geometric argu-
ments with the help of Figure 2 we derive

Gz;p;� � BR(x0); d(z; BR(x0)) =
�

4

and
d(Gz;p;�;
R(x0)) � �

2

for su�ciently small �.

2. We need to estimate the bounds b� de�ned in (3.1.33). To this end we
investigate special solutions of the interior Dirichlet problem for the Helmholtz
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equation in the domain BR(x0). We choose a coordinate system centered at
x0 = 0 and de�ne the special functions

un(x) :=
nX
k=0

kX
l=�k

alk jk(�jxj) Y �l
k (x̂); x 2 IR3 (3.1.69)

with coe�cients alk := i�h
(1)
k (�jzj)Y l

k(ẑ) for k = 0; :::; n, l = �k; :::; k. From the
expansion

�(x; z) = i�
1X
k=0

kX
l=�k

h
(1)
k (�jzj)Y l

k(ẑ)jk(�jxj)Y �l
k (x̂); (3.1.70)

=
1X
k=0

kX
l=�k

alk jk(�jxj)Y �l
k (x̂) (3.1.71)

of �(x; z) for jxj < jzj with respect to the spherical harmonics, the addition
theorem

kX
m=�k

Y l
k(ẑ) Y

�l
k (x̂) =

2k + 1

4�
Pk(cos(�)) (3.1.72)

with the Legendre Polynomial Pk, where � denotes the angle between ẑ and x̂,
the asymptotic behavior (1.2.36) and (1.2.37) of the Hankel and Bessel functions
and jPk(t)j � 1 for t 2 [�1; 1] we obtain
�������(�; z)� un

������
L2(
R(x0))

=
������� 1X

k=n+1

kX
m=�k

h
(1)
k (�jzj) Y l

k(ẑ) jk(�R) Y
�l
k (x̂)

������
L2(
)

=
������� 1X

k=n+1

h
(1)
k (�jzj) jk(�R) 2k + 1

4�
Pk(cos(�))

������
L2(
)

� c0
jzj

1X
k=n+1

qk =
c0
jzj

qn+1

1� q
(3.1.73)

with q := R=jzj < 1 and a constant c0 not depending on R, jzj or n. Since for
compact subsets Gz;p;� of BR(x0) the solution of the interior Dirichlet problem
in BR(x0) with L2-boundary data on 
R(x0) de�nes a bounded mapping from
L2(
R(x0)) into C(Gz;p;�), we get a factor � such that�������(�; z)� un

������
C(Gz;p;�)

� �
�������(�; z)� un

������
L2(
R(x0))

(3.1.74)

� �c0
jzj

qn+1

1� q
: (3.1.75)

The factor � is a function of z, R and �.
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3. To evaluate the dependence of � on � let u be a solution to the interior
Dirichlet problem for the Helmholtz equation in BR(x0). We will show

���u(x)��� � C

�2
jjujjL2(
R(x0)) (3.1.76)

for x 2 BR��=2(x0), i.e. � � C��2 with some constant C. We present a proof
by means of spherical harmonics and Bessel functions. Again using a coordinate
system centered at x0 = 0, from Green's formula and the expansion (3.1.70) we
observe that

u(x) =
1X
k=0

kX
l=�k

alkjk(�jxj)Y l
k(x̂); x 2 BR(x0); (3.1.77)

where the sum (3.1.77) converges uniformly on compact subsets ofBR(x0). We use
the Cauchy-Schwarz inequality to calculate for ju(x)j with x = rx̂ 2 BR��=2(x0)
the estimate

ju(x)j2 =
��� 1X
k=0

kX
l=�k

amk jk(�jxj) Y l
k(x̂)

���2

�
0
@ 1X
k=0

kX
l=�k

���alk jk(�R)���2
1
A
0
@ 1X
k=0

kX
l=�k

���Y l
k(x̂)

jk(�r)

jk(�R)

���2
1
A : (3.1.78)

For the �rst term of (3.1.78) we observe that

1X
k=0

kX
l=�k

���alk jk(�R)���2 = jj u jj2L2(
R)
< 1: (3.1.79)

For the second term of (3.1.78) we use the estimate���Y l
k(x̂)

��� � C k1=2jjY l
k jjL2(
); x̂ 2 
; (3.1.80)

for spherical harmonics of order k 2 IN (see Chapter X, Lemma 6.1 of [46]) and
the asymptotic behavior of the spherical Bessel functions to derive

1X
k=1

kX
l=�k

���Y l
k(x̂)

jk(�r)

jk(�R)

���2 (3.1.81)

�
1X
k=0

kX
l=�k

jkj
��� jk(�r)
jk(�R)

���2 � c
1X
k=0

k q2k � c
1X
k=0

(2k + 1) q2k

= c
d

dq

1X
k=0

q2k+1 = c
d

dq

 
q

1� q2

!
= c

 
1

1� q2
+

2q2

(1� q2)2

!
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with q := r
R
and a constant c. From (3.1.68) and 0 � r � R� � we obtain

c�2 � 1� q � 1; j ln qj � B�2 (3.1.82)

for su�ciently small � > 0 with constants c; C and B. We now use 1 � q2 =
(1� q)(1 + q) and 1 + q � 1 to estimate (3.1.81) by c��4 with a constant c. We
take the square root of (3.1.78) to obtain (3.1.76), i.e. we have proven � � C��2

with a constant C not depending on �.

4. For the function

gn(x̂) =
nX
k=0

kX
l=�k

1

4�ik
alk Y

�l
k (x̂); x̂ 2 
: (3.1.83)

we calculate un = Hgn. With n chosen as

n :=

2
4 ln(� (1�q)jzj

�c0
)

ln(q)

3
5� 1; (3.1.84)

where [a] denotes the smallest integer larger than a 2 IR, by straightforward
calculation from the estimate (3.1.75) we derive

�������(�; z)�Hgn
������
C1(Gz;p;�))

� �: (3.1.85)

With the help of (3.1.82) and � � c��2 we derive for n the estimate

n � C
j ln(c��3)j

�2
(3.1.86)

with constants C; c.

5. We now estimate the norm of the function gn with n given by (3.1.84). We
calculate

������gn������2
L2(
)

=
� 1

4�

�2 nX
k=0

kX
l=�k

jalkj2

� c1
nX
k=0

(2k + 1)
� 2k

e�jzj
�2k

� c1 (2n+ 1)(n+ 1)
� 2n

e�jzj
�2n

(3.1.87)
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with a constant c1. We insert (3.1.84) into (3.1.87) to obtain

������gn������
L2(
)

� C

 j ln(c��3)j
�2

!2  
Cj ln(c��3)j

�

!C j ln(c��3)j

�2

(3.1.88)

with constants c and C not depending on �.

6. We need to investigate the set of densities G which we constructed in
Lemma 3.1.3. Since we chose g 2 G to be minimum norm solutions of (3.1.8), the
norm jjgnjjL2(
) is an upper bound for b� .

Finally, the bound (3.1.66) for jF2(�; �; �; �)j can be obtained by straight-
forward (but lengthy) calculation from de�nition (3.1.47) of F2, the choice of
parameters (3.1.65) and the estimate (3.1.88) for the bounds b� and b�.

The proof in two dimensions can be worked out in the same way with obvious
modi�cations. 2

From stability as a corollary we obtain uniqueness of the support of penetrable
or impenetrable scatterers.

Corollary 3.1.13 For acoustic scatterers D 2 C the domain D is uniquely
determined by the far �eld pattern for scattering of all plane waves.



3.2 Electromagnetic scattering.

In this section we will prove stability estimates for inverse electromagnetic scat-
tering. Consider the electromagnetic Herglotz pair

(V g)(x; p) :=
Z



i

�
(p � rx)rxe

i�x�dg(d) ds(d);
1

i�
curl V g (3.2.1)

with a density g 2 L2(
). With the aid of

r�r� (pw) = (p � r)r w; p 2 
; (3.2.2)

for solutions w of the Helmholtz equation and

Ei
pl(x; d; p) = i�(d� p)� dei�x�d =

i

�
rx �rx � (pei�x�d) (3.2.3)

we derive
(V g)(x; p) =

Z


Ei
pl(x; d; p)g(d)ds(d); x 2 IR3: (3.2.4)

By linearity and continuity of the direct scattering problem the incident electro-
magnetic wave

Ei := V g; H i :=
1

i�
curl V g

has the scattered �eld

(V sg)(x; p) :=
Z


Es
pl(x; d; p)g(d)ds(d);

1

i�
curl (V sg)(�; p) (3.2.5)

and far �eld pattern

(V 1g)(x; p) :=
Z


E1
pl (x; d; p)g(d)ds(d); � � (V 1g)(�; p): (3.2.6)

For �xed � > 0 we will construct an approximation

Ei
edp(x; z; p) � (V g(z; �))(x; p); x 2 D; (3.2.7)

for an electric dipole uniformly for z 2 B n D�. Since both plane waves and
multipoles in acoustic and electromagnetic are strongly related to each other, we
will be able to use the results of the acoustic parts. From Lemma 3.1.3 we �rst
derive the following lemma.
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Lemma 3.2.1 Given �; � > 0 there exists a density g 2 L2(
), such that for each
p; q 2 
 there is an orthogonal matrix M with������Ei

edp(�; 0; q)�
�
V g(M�1�)

�
(�; q)

������
C2(G0;p;�)

� �: (3.2.8)

Proof. We use Lemma 3.1.3 for s = 4 and � = 0. For the special case
� = 0 the multipole �0;q = � has rotational symmetry. Thus for p 2 
 we
obtain the approximation of �(�; 0) by Hg on G0;p;� from the approximation on
G0;e1;�, e1 = (1; 0; 0), by a simple rotation of the Herglotz wave function. The
domain of approximation G0;p;� is obtained from the domain of approximation
G0;e1;� by rotation with an orthogonal matrix M satisfying p = Me1. Clearly,
the rotated Herglotz wave function v(x) := (Hg)(M�1x) approximates the point-
source �(�; 0) on G0;p;�. We calculate

v(x) =
Z


ei�M

�1x�dg(d) ds(d)

=
Z


ei�x�Mdg(d) ds(d)

=
Z


ei�x�

~dg(M�1 ~d) ds(d): (3.2.9)

To obtain the statement of the lemma we now apply the di�erential operator
i
�
(q � r)r to both �(�; 0) and Hg(M�1�).

2

Given the density g of the preceding lemma and an orthogonal matrix function
M on B we de�ne the translated and rotated density by

g(x; d;M; �; �; �0) := e�i�x�dg(M�1(x)d); d 2 
: (3.2.10)

We use the abbreviations

g� (x; d) = g(x; d;M; �; �; �0);

b�;� := jjg�(x; �)jjL2(
);

and

b� = b�;�;

where b�;� is well de�ned, since the norm of g� (x; �) is independent of x 2 IR3.
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Definition 3.2.2 Given a set of parameters � 2 IN0, s = 4, �; �; � > 0, 
 = 1
4�

and an orthogonal matrix function M on B with the help of

g� (x; d) = g(x; d;M; �; �; 0; s; �0)

and
g�(z; ~d) = g(z; ~d;M; �; �; �; s; �0)

we de�ne the operator

Q : L2(
� 
; IR3)! L1(B; IR3) (3.2.11)

by

(Qw)(x; z) :=
1




Z



Z



n
g� (x; d)g�(z; ~d)

o
w(�d; ~d) ds(d)ds( ~d); x; z 2 B

(3.2.12)

The Operator (3.2.12) is basically the operator given by (3.1.35), but now
applied to vector-valued functions. It can be used to construct Es

edp from the
knowledge of E1

pl . Again, we observe the strong relationship between acoustic
and electromagnetic scattering. We use the class C of electromagnetic scatterers
de�ned by

C := Cpc [ Celm: (3.2.13)

Theorem 3.2.3 Consider electromagnetic scattering by a perfect conductor or
an inhomogeneous medium scatterer D 2 C. The error for the approximation of
Es
edp by QE

1
pl satis�es

���~q � Es
edp(x; z; q)� (q �QE1

pl (�; �; ~q))(x; z)
��� � c

�

�3
+ Cb�;�� (3.2.14)

for all q; ~q 2 
 and all points x; z 2 B nD�, for which (3.1.34) is satis�ed with
p = M(x)e1 or p = M(z)e1, respectively. The constants c and C hold uniformly
for D 2 C.

Proof. For � > 0 and q 2 
 by de�nition of the kernel g� we have������Ei
edp(�; z; q)�

�
V g�(z; �)

�
(�; q)

������
C2(D)

� � (3.2.15)

for all z 2 B nD�, for which (3.1.34) is satis�ed with p =M(z)e1.
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For the perfect conductor we use the boundedness of the integral operator
(I +M + iNPS2

0)
�1, the singularity of the kernels of the potential PE and the

Cauchy-Schwartz inequality to estimate the corresponding scattered �elds by

������Es
edp(�; z; q)�

�
V sg�(z; �)

�
(�; q)

������
C(BnD�)

� c
�

�3
(3.2.16)

with some constant c not depending on � or D 2 C. If the scatterer is an
inhomogeneous medium we obtain an analogous estimate by consideration of the
volume integral equation and the potential Te.

In the same way for a second independent parameter � , ~q 2 
 and all points
x 2 B nD�, for which (3.1.34) is satis�ed with p =M(x)e1, we derive������E1

edp(�; x; ~q)�
�
V1g� (x; �)

�
(�; ~q)

������
C(
)

� c � (3.2.17)

with some constant c. With the help of the mixed reciprocity relations Theorems
2.3.4 and 2.4.4 we transform (3.2.17) into

���~q � Es
pl(x;�d; q) �

�
q � 1



V 1g� (x; �)

�
(d; ~q)

��� � c



� (3.2.18)

with some constant c. We use (3.2.18) to estimate

����~q � V sg�(z; �)
�
(x; q) �

�
q �QE1(�; �; ~q)

�
(x; z)

���
=
��� Z




 
~q �Es

pl(x; d; q)�
1




Z


q �E1(�d; ~d; ~q)g� (x; ~d) ds( ~d)

!
g�(z; d) ds(d)

���
� C

������g�(z; �)������
L2(
)

� (3.2.19)

with some constant C. Now from (3.2.19) and (3.2.16) we derive

���~q � Es
edp(x; z; q)�

�
q �QE1(�; �; ~q)

�
(x; z)

��� � c
�

�3
+ C

������g�(z; �)������
L2(
)

�

with constants c; C > 0, and the proof is complete.
2

We will use the preceding theorem to estimate the di�erence between the
scattered �elds of electric dipoles for two scatterers D1 and D2 in C.
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Lemma 3.2.4 Let E1
pl;1(x̂; d; q) and E1

pl;2(x̂; d; q) for x̂; d; q 2 
 be the far �eld
patterns for scattering of electromagnetic plane waves from two scatterers D1;D2

in C. If for some parameter � > 0 the far �eld patterns satisfy������E1
pl;1(�; �; p)� E1

pl;2(�; �; p)
������
L2(
�
) � �; p 2 
; (3.2.20)

then with the constants c; C given by Theorem 3.2.3 we have���Es
edp;1(x; z; q)� Es

edp;2(x; z; q)
��� (3.2.21)

� 2c
�

�3
+ 2Cb�;� � +

1



b�;� b�;� �

for all q 2 
, �; �; � > 0 and all points x; z 2 U , where U is de�ned by (3.1.12).

Proof. Let M be an orthogonal matrix function on B, such that for all x 2 U
with p =M(x)e1 the condition (3.1.34) is satis�ed for both scatterers D1 and D2.
We use (3.2.14) for each scatterer D1 and D2. Then as in (3.1.46) the estimate
(3.2.21) is obtained with the help of the Cauchy-Schwarz inequality.

2

We now prove the electromagnetic counterpart of Lemma 3.1.4. From esti-
mates for the di�erence of Es

edp;1 and Es
edp;2 for scattering by two scatterers D1

and D2 we derive estimates for the Hausdor� distance d(D1; D2) of the scatterers.
Again we have to consider di�erent situations according to the physical properties
of the scatterers D1 and D2.

Situation Properties of D1 and D2

S1 D1;D2 are impenetrable scatterers
S2 D2 is an inhomogeneous medium scatterer and

D1 is an impenetrable scatterer or vice versa
S3 D1;D2 are inhomogeneous medium scatterers.

(3.2.22)

Lemma 3.2.5 We consider scattering of electromagnetic waves by two scatterers
D1;D2 2 C. Assume that with parameters �; � > 0 the scattered �elds Es

edp;1 and
Es
edp;2 for scattering of electric dipoles by D1 or D2, respectively, satisfy���Es

edp;1(z; z; q)� Es
edp;2(z; z; q)

��� � � (3.2.23)
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for all q 2 
 and for points z 2 B n (D1;� [D2;�), for which a cone co(z; pz; �0),
pz 2 
, in the exterior of D1;� [D2;� exists. Then we conclude

d(D1; D2) � F1(�; �); (3.2.24)

where the function F1 is de�ned according to the situations S1 to S3 by

F1(�; �) :=

8>>><
>>>:
� + C�

(c���3)1=3 ; S1;

� +
�

C�
c���

�1=3
; S2;

� + C�
c��� ; S3

(3.2.25)

with constants c and C not depending on the scatterers D1;D2 2 C.
Proof. We split the proof in two parts. First, consider the scattered �elds at

a special point z in B n (D1 [D2), such that z = z0 + ��(z0) with z0 2 @D2 and
� = d(z;D2) su�ciently small and there exists a cone

co(z; p; �0) � IRm n (D1;� [D2;�); p 2 
:

Then from (2.3.33), (2.3.34) and (3.2.23) for situation S1 of two impenetrable
scatterers we obtain the estimate

C

jd(z;D1)j3 �
���Es

edp;1(z; z; p)
���

�
���Es

edp;1(z; z; p)
���� � (3.2.26)

� c

jd(z;D2)j3 � �; (3.2.27)

which can be transformed into

d(z;D1) � Cd(z;D2)�
c� �d(z;D2)3

�1=3 (3.2.28)

with constants C and c. In the same way for situation S2 we we use (2.3.33),
(2.3.34), (2.4.20) and (2.4.21) to derive

d(z;D1) �
 

Cd(z;D2)

c� �d(z;D2)

!1
3

: (3.2.29)

For situation S3 we estimate

d(z;D1) � Cd(z;D2)

c� �d(z;D2)
: (3.2.30)

The second part of the proof is literally the same as in Lemma 3.1.4 and thus
from the estimates (3.2.28), (3.2.29) and (3.2.30) we obtain Lemma 3.2.5. 2
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Let the function F2 be given by

F2(�; �; �; �) := 2c
�

�3
+ 2Cb�;�� +

1



b�;� b�;� � (3.2.31)

for �; �; �; � > 0, where the constants c; C are chosen according to Theorem 3.2.3.
Then we de�ne the function

F (�) := inf
n
F1(�; F2(�; �; �; �)); �; �; � > 0

o
(3.2.32)

with F1 given by (3.2.25). The functions F for acoustic and electromagnetic
scattering di�er by constants and by the de�nitions of the function F1(�; �). The
proof and statement of Lemma 3.1.10 is literally the same for the electromagnetic
case (3.2.32), i.e. we have

F (�)! 0; � ! 0: (3.2.33)

We now collect all previous results to obtain the main stability result for electro-
magnetic scattering by a perfect conductor or an inhomogeneous electromagnetic
medium.

Theorem 3.2.6 (Stability estimate.) Let E1
pl;1(x̂; d; p) and E1

pl;2(x̂; d; p) for
x̂; d; p 2 
 be the far �eld patterns for scattering of electromagnetic plane waves
from two scatterers D1;D2 2 C. We assume that with a nonnegative parameter �
the di�erence between the far �eld patterns satis�es������E1

pl;1(�; �; p)� E1
pl;2(�; �; p)

������
L2(
�
) � � (3.2.34)

for all p 2 
. Then with the function F de�ned by (3.2.32) the Hausdor� distance
d(D1; D2) of the domains D1 and D2 can be estimated by

d(D1; D2) � F (�) (3.2.35)

Proof. With F2 de�ned by (3.2.31) we use Lemma 3.2.4 to derive���Es
edp;1(x; z; p)� Es

edp;2(x; z; p)
��� � F2(�; �; �; �) (3.2.36)

for all p 2 
, �; �; � > 0 and all points x; z 2 U with U de�ned by (3.1.12). We
now apply Lemma 3.2.5 to derive (3.2.35). 2

We would like to explicitly estimate the behavior of the function F (�) for
� ! 0. For the convex hulls we will now derive an logarithmic estimate both for
a perfect conductor and an inhomogeneous electromagnetic medium.
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Theorem 3.2.7 (Explicit stability estimate.) Let D1;D2 2 C be two electro-
magnetic scatterers with scattering data E1

pl;1(x̂; d; p) and E
1
pl;2(x̂; d; p), x̂; d; p 2 
.

Then ������E1
pl;1(�; �; p)� E1

pl;2(�; �; p)
������
L2(
�
) � � (3.2.37)

for all p 2 
 yields

d
�
H(D1);H(D2)

�
� C

j ln �jc (3.2.38)

with constants C > 0 and 0 < c < 1.

Proof. The theorem can be proven analogously to Theorem 3.1.12. Here we
paraphrase the proof and point out the places where changes have to be made.

The explicit estimate (3.1.63) is obtained by explicitly estimating the behavior
of the functions F2(�; �; �; �), and F1(�; �). To this end the domain of approxi-
mation Gz;p;� is placed in a ball BR(x0). In the ball BR(x0) an expansion of both
the point-source �(�; z) and the incident Herglotz wave function with respect to
spherical harmonics and (spherical) Bessel functions is used. With the help of the
asymptotic behavior of the spherical Bessel functions, the norm of the minimum
norm solution g with discrepancy � of

(Hg)(x) = �(x; z); x 2 
R(x0);

with H : L2(
)! L2(
R(x0) is estimated in (3.1.88).

For the electromagnetic cases we �rst note that the incident electric dipole is
obtained by

Ei
edp(x; z; p) =

i

�
(p � rx)rx�(x; z) (3.2.39)

as a second derivative of the acoustic point-source and that the electric �eld

(V g)(x; p) =
i

�
(p � rx)rx

Z


ei�x�dg(d) ds(d) (3.2.40)

of the electromagnetic Herglotz pair is obtained by an application of the same
di�erential operator to the acoustic Herglotz wave function Hg. Thus to obtain
an approximation of Ei

edp by V g instead of equation (3.1.74) we have to derive
the estimate�������(�; z)� un

������
C4(Gz;p;�)

� �
�������(�; z)� un

������
L2(
R(x0))

(3.2.41)

and investigate the behavior of the corresponding constant � with respect to
variations of �. Instead of a singularity of second order here we obtain � � C��6.
Then we use the special choice (3.1.65) to derive (3.2.38) in the same way as in
Theorem 3.1.12. 2
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From stability as a corollary we obtain uniqueness of the support of penetrable
or impenetrable scatterers.

Corollary 3.2.8 For electromagnetic scatterers D 2 C the domainD is unique-
ly determined by the far �eld pattern for scattering of all plane waves.



4 The case of �nite data.

In this chapter we will investigate uniqueness and stability of inverse problems
in the case where only a �nite number of measurements of the far �eld patterns
u1(�; d) are given for a �nite number of incident plane waves.

Since we search for domains in a space of in�nite dimension, in this case in
general we will not obtain a full uniqueness or stability result. We introduce
a concept to treat the situation appropriately, which we call �-uniqueness or �-
stability, respectively.

First, we show that for given � > 0 there are integers ni; no in IN , such that,
if for ni incident plane waves the far �eld patterns for two scatterers D1 and D2

coincide for no observation directions, the Hausdor� distance d(D1; D2) of the
domains D1 and D2 satis�es

d(D1; D2) � �:

The distance d(D1; D2) tends to zero, if ni and no tend to in�nity. This is a kind of
continuity statement: with more measurements we obtain better reconstructions,
and in the limit ni; no ! 1 we obtain precise reconstructions. We call the
concept �-uniqueness in analogy to the �-�-formulation of continuity.

We would like to point out the di�erence of �-uniqueness and stability. Sta-
bility investigates the continuity of the mapping from the data space into the
space of domains. Stability implies full uniqueness. In contrast to stability,
�-uniqueness investigates a sequence of �nite data-spaces for which uniqueness is
not necessarily satis�ed.

Second, we will investigate stability for the case of �nitely many measurements
and for a �nite number of incident plane waves. In this case, where we do not
have uniqueness, it cannot be possible to obtain full stability results. We develop
a concept of �-stability as follows. Given � > 0 it is possible to �nd no; ni 2 IN
and a function F(n0;ni) : IR

+ ! IR+ with the behavior

lim sup
�!0

F(n0;ni)(�) � � (4.0.1)

such that the Hausdor� distance d(D1; D2) of the domains D1 and D2 of the
scatterers D1 and D2 can be estimated by

d(D1; D2) � F(n0;ni)

�
jju11 (�; �)� u12 (�; �)jjL2(
ni�
no)

�
: (4.0.2)

Clearly, each function F(n0;ni) with (4.0.1) and (4.0.2) provides an �-stability es-
timate for the reconstruction of the shapes of scatterers.



4.1 Acoustic scattering.

The proof of the uniqueness theorem 3.1.1 is based on the application of Rellich's
lemma and it cannot be applied to the case where the far �eld pattern is known
only for a �nite number of observation points and incident waves. Since Rellich's
lemma includes an analyticity argument, it is not possible to use approximations
to treat a �nite data set. We now develop modi�ed techniques to derive the results
of �-uniqueness, which in the limit-case � ! 0 also yield the above uniqueness
results.

We will replace the role of Rellich's lemma by an operator Q(no;ni) for the
approximate reconstruction of point-sources �s(x; z) and, more general, the scat-
tered �eld �s�;q(x; z) of multipoles. We will obtain

�sq;�(x; z) �
�
Q(no;ni)u

1
(no;ni)

�
(x; z); x; z 2 B nD�;

on a set B nD� with � > 0, where for dj; dk 2 


u1(no;ni) :=
�
u1(dj; dk)

�
j=1;:::;no;k=1;:::;ni

2 ICno�ni (4.1.1)

denotes a �nite set of measured far �eld patterns. We consider subsets of the unit
sphere


n := fdj; j = 1; :::ng � 
 (4.1.2)

with di 6= dj for i 6= j, di; dj 2 
n. For simplicity, for the sequence (
n)n2IN we
demand the denseness property

d(x̂;
n)! 0; n!1 (4.1.3)

for all x̂ 2 
, the symmetry property

d 2 
n ) �d 2 
n (4.1.4)

if n is even and the monotonicity property


n0 � 
n for n > n0: (4.1.5)

The function space L2(
n) is de�ned as the space of functions

w : 
n ! IC

equipped with the norm

jjwjjL2(
n) :=

 
cm
n

nX
k=1

jw(dk)j2
! 1

2

;
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where cm is given by

cm =

8><
>:

2� m = 2

4� m = 3
: (4.1.6)

The mapping
� : w 7! (w(dk))k=1;:::;n 2 ICn

is a norm isomorphism from the space L2(
n) onto the space ICn equipped with
the norm

jjajjL2(ICn) :=
 
cm
n

nX
k=1

jakj2
! 1

2

: (4.1.7)

In the same way L2(
no � 
ni) with the norm

jjwjjL2(
no�
ni) :=
0
@cm
no

cm
ni

noX
k=1

niX
j=1

jw(dk; dj)j2
1
A

1
2

:

is de�ned and shown to be isomorphic to ICno�ni equipped with the norm (4.1.7),
where cm has to be replaced by c2m. Usually, we will identify the two spaces and
treat u1(no;ni) (de�ned in (4.1.1)) as an element of L2(
no�
ni). By ~A := ��1�A��
Operators A : ICn ! Y can be considered as operators

~A : L2(
no � 
ni)! Y:

We will usually identify A and ~A.

To construct the approximation operator Q(no;ni) in principle we have two
possibilities. First, we may discretize the continuous operator Q. Second, we may
approximate point-sources by a �nite superposition of plane waves and proceed
analogously to the derivation of the operator Q. Here, we will choose the second
approach.

A �nite superposition of plane waves is given by the �nite Herglotz wave
function

(Hna)(x) :=
cm
n

nX
j=1

ei�x�djaj; x 2 IRm (4.1.8)

with density vector a 2 ICn and cm given by (4.1.6). For scattering of the functions
Hna from a scatterer D we can exploit the linearity of the scattering problem. If
Hna is the incident �eld, the corresponding scattered �eld and its far �eld pattern
are given by

(Hs
na)(x) =

cm
n

nX
j=1

us(x; dj)aj; x 2 IRm nD; (4.1.9)
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and

(H1
n a)(x̂) =

cm
n

nX
j=1

u1(x; dj)aj; x̂ 2 
: (4.1.10)

In the next two lemmas we investigate the approximation of a multipole ��;q
of order � by a �nite superposition of plane waves Hng on the domains Gz;p;�

introduced in (3.1.4).

Lemma 4.1.1 For �xed �; s 2 IN0 and � > 0 the error

E(n) := sup
p;q2


inf
a2ICn

��������;q(�; z)�Hna
������
Cs(Gz;p;�)

(4.1.11)

for an proximation of the multipole of order � by a �nite superposition of plane
waves is independent of z 2 IRm and satis�es

lim
n!1E(n) = 0: (4.1.12)

De�ne

b(�; n) := sup
p;q2


inf
a2ICn

n
jjajjL2(
n)

��� jj��;q(�; z)�HnajjCs(Gz;p;�) � �
o

(4.1.13)

if n
a 2 ICn

��� jj��;q(�; z)�HnajjCs(Gz;p;�) � �
o

6= ; 8p; q 2 


and b(�; n) := 0 otherwise. For �xed � > 0 the function b(�; �) is bounded.
Proof. As for the continuous case we use the fact that Gz;p;� is obtained from

G0;p;� by translation. If we translate a �nite Herglotz wave function (4.1.8) by
z 2 IRm, the result is again a �nite Herglotz wave function with density vector

~aj := e�i�z�djaj; j = 1; ::; n: (4.1.14)

Hence, an approximation of �(�; z) on D � Gz;q;� can be derived from an approx-
imation of �(�; 0) on G0;q;�.

Because of (4.1.14) the error E(n) is independent of z and we can restrict our
investigation to the case z = 0. We will use an approximation argument to derive
the statements from the continuous case.

For � > 0 consider the �nite set G(�=3; �; �; s; �0) given by Lemma 3.1.3. By
the de�nition of L2 a function g 2 G � L2(
) can be approximated by a function
~g 2 C1(
) such that ������Hg �H~g

������
Cs(G0;p;�)

� �

3
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For the density ~g 2 C1(
) we can apply the standard convergence theorems for
quadrature rules to approximate the integral H~g by a �nite sum Hna with error������H~g �Hna

������
Cs(G0;p;�)

� �

3
;

where a 2 ICn is given by aj := �(n)
j ~g(dj), j = 1; :::; n, with appropriate weights

�
(n)
j . For the weights we assume j�(n)

j j � c, j = 1; :::; n, n 2 IN with some constant
c, which is valid for example for the approximate computation of integrals by
Riemann sums. Hence, given � > 0 we can �nd n 2 IN , such that for every pair
p; q 2 
 there is a 2 ICn with��������;q(�; 0)�Hna

������
Cs(G0;p;�)

�
��������;q(�; 0)�Hg

������
Cs(G0;p;�)

(4.1.15)

+
������Hg �H~g

������
Cs(G0;p;�)

+
������H~g �Hna

������
Cs(G0;p;�)

� �;

where g 2 G(�=3; �; �; s; �0) has to be chosen appropriately. Clearly, the function
on the left-hand side of (4.1.15) is an upper bound for the function E(n) de�ned
in (4.1.11). By (4.1.5) the function E is monotonous. Thus we obtain E(n)! 0
for n!1. For the norm of a we estimate for su�ciently large n

jjajj2L2(
n) =
cm
n

nX
j=1

j�(n)
j ~g(dj)j2 (4.1.16)

� c
cm
n

nX
j=1

j�(n)
j j j~g(dj)j2 ! c jjgjj2L2(
); n!1;

i.e. the norm of a is bounded uniformly for n 2 IN . Thus we obtain the bound-
edness of b(�; �) and the proof of Lemma 4.1.1 is complete. 2

For �; s 2 IN0 and �; � > 0 according to the behavior (4.1.12) of E(n) there
is an even integer n 2 IN such that

sup
p;q2


inf
a2ICn

n��������;q(�; 0)�Hna
������
Cs(G0;p;�)

o
� �

2
(4.1.17)

is satis�ed.

Lemma 4.1.2 Given �; s 2 IN0, �; � > 0 and an even integers n 2 IN such that
(4.1.17) is satis�ed, there is a �nite set

G = G(n; �; �; �; s; �0) � ICn
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such that for each p; q 2 
 there is a vector a 2 G with��������;q(�; 0)�Hna
������
Cs(G0;p;�)

� �: (4.1.18)

If for �; s; �; � and n the condition (4.1.17) is not satis�ed, we de�ne

G(n; �; �; �; s; �0) := f0g:
Proof. Consider p; q 2 
 and a 2 ICn with��������;q(�; 0)�Hna

������
Cs(G0;p;�)

� �

2
: (4.1.19)

Since for �xed a 2 ICn the function on the left-hand side of (4.1.19) depends
continuously on p and q, by compactness of 
 as in the proof of Lemma 3.1.3 we
obtain a �nite set G of vectors a 2 ICn, such that for p; q 2 
 there is a vector
a 2 G which satis�es the estimate (4.1.21). 2

As shown in (4.1.14), an approximation of ��;q(�; 0) on G0;p;� yields an approx-
imation of ��;q(�; x) on Gx;p;�. For a vector a in ICn we de�ne the vector function
a(�) : B ! ICn by

aj(x) = e�i�x�djaj; j = 1; :::; n; x 2 B; (4.1.20)

where dj is given by (4.1.2). From (4.1.18) by translation we derive��������;q(�; x)�Hna(x)
������
Cs(x;p;�)

� �: (4.1.21)

Following Lemma 4.1.2 and (4.1.20) the vector a is a function

a = a(x; p; q; �; �; �; s; �0): (4.1.22)

We will need the vector with two di�erent sets of values for x; � and � and with
vectors p; q depending on x. To indicate the dependence we will use the notation

a� (x) = a(x; p(x); q(x); �; �; �; s; �0): (4.1.23)

The j-th component of a� (x) 2 ICn is denoted by

a�;j(x):

For the set G we write as in the continuous case

G� = G(n; �; �; �; s; �0): (4.1.24)

We are now prepared to de�ne the operator Q(no;ni).
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Definition 4.1.3 Given a set of parameters � 2 IN0, s = 1, �; �; � > 0, even
integers no; ni 2 IN , for which (4.1.17) is satis�ed for (0; �; no), (�; �; ni), and
functions

p; q : B ! 


with the help of

a� (x) = a(x; p(x); q(x); �; �; 0; s; �0):

and

a�(z) = a(z; p(z); q(z); �; �; �; s; �0):

we de�ne the operator

Q(no;ni) : L
2(
no � 
ni)! L1(B)

by

(Q(no;ni)w)(x; z) :=
1


m

cm
no

cm
ni

noX
j=1

niX
k=1

a�;j(x)a�;k(z)w(�dk; dj) (4.1.25)

for x; z 2 B.

Theorem 4.1.4 Consider scattering by a sound-soft, sound-hard or inhomoge-
neous medium scatterer D 2 C. For all x; z 2 B n D�, for which (3.1.34) is
satis�ed for p = p(x) or p = p(z), respectively, the error for the approximation of
�s�;q(x; z) by Q(no;ni)u

1
(no;ni)

is estimated by

����s�;q(x; z)� �Q(no;ni)u
1
(no;ni)

�
(x; z)

��� � c
�

�m�1
+ C

������a�(z)������
L2(
ni )

� (4.1.26)

uniformly for D 2 C with constants c and C depending on �.

Proof. We start with the estimate��������;q(�; z)�Hnia�(z)
������
C1(D)

� � (4.1.27)

derived from (4.1.21). The scattering map ui 7! us is bounded from C1(D) into
C(B nD�). Estimating the combined single- and double-layer potential with the
help of the Cauchy-Schwarz inequality we derive a constant c, such that (4.1.27)
yields �������s�;q(�; z)�Hs

ni
a�(z)

������
C(BnD�)

� c

�m�1
� (4.1.28)
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uniformly for all scatterers D 2 C. We exploit the estimate (4.1.21) a second
time, now for �; no and � = 0, to obtain a constant c with�������1(�; x)�H1

noa� (x)
������
C(
)

� c � (4.1.29)

uniformly for all scatterers D 2 C. We use the mixed reciprocity relation (2.1.4)
to transform (4.1.29) into

���us(x; d)� 1


m

�
H1
noa� (x)

�
(�d)

��� � c


m
� (4.1.30)

for all d 2 
. We now insert the approximation (4.1.30) for us(x;�d) into
�
Hs
ni
a�(z)

�
(x) =

cm
ni

niX
k=1

us(x; dk)a�;k(z):

From the Cauchy-Schwarz inequality we obtain the estimate����Hs
ni
a�(z)

�
(x)�

�
Q(no;ni)u

1
(no;ni)

�
(x; z)

���
=

������
cm
ni

niX
j=k

0
@us(x; dk) � cm


mno

n0X
j=1

u1(�dk; dj)a�;j(x)
1
A a�;k(z)

������
� C

������a�(z)������
L2(
ni )

� (4.1.31)

with some constant C uniformly for scatterers D 2 C. We can now use (4.1.31)
and (4.1.28) to estimate the distance between �sn;q and Q(no;ni)u

1
(no;ni)

. We calcu-
late ����s�;q(x; z)� �

Q(no;ni)u
1
(no;ni)

�
(x; z)

��� (4.1.32)

�
����s�;q(x; z)� �Hs

na�(z)
�
(x)
���

+
����Hs

na�(z)
�
(x)�

�
Q(no;ni)u

1
(no;ni)

�
(x; z)

���
� c

�m�1
� + C

������a�(z)������
L2(
ni )

� (4.1.33)

with constants c and C uniformly for scatterers D 2 C.
2

In the �nite data case it is of interest to explicitly formulate the approximation
properties of Q(no;ni) in a corollary.
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Corollary 4.1.5 For scattering by a sound-soft, sound-hard or inhomogeneous
medium scatterer D 2 C we consider the approximation of �s�;q by Q(no;ni)u

1
(no;ni)

.
Given � 2 IN0, �; � > 0 and functions p; q : B ! 
 there are parameter �; � > 0
and even integers ni; no 2 IN , such that����s�;q(x; z)� �

Q(no;ni)u
1
(no;ni)

�
(x; z)

��� � �; (4.1.34)

for all x; z 2 B n D�, for which (3.1.34) is satis�ed for p = p(x) or p = p(z),
respectively.

Proof. Given �; � > 0 for � = �=(2c) we use Lemma 4.1.2 and �rst obtain
ni 2 IN such that (4.1.17) is satis�ed with (�; n) replaced by (�; ni). We then
construct the function a�(�) as in (4.1.23). In the same way for � = �=(2Cjja�(x)jj)
and � = 0 we get no 2 IN to obtain the estimate (4.1.17) with n replaced by no.
Now an application of Theorem 4.1.4 yields (4.1.34). 2

We can use the Operator Q(no;ni) to obtain estimates for the di�erence of
the scattered �elds �s1;�;q or �

s
2;�;q by scatterers D1 or D2, respectively, from the

knowledge of a �nite data set of far �eld patterns for scattering of plane waves.

Lemma 4.1.6 Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far �eld patterns for

scattering of acoustic plane waves from scatterers D1;D2 2 C. Given � 2 IN0,
� > 0 and � > 0 there are even integers ni; no 2 IN , such that

u11 (x̂; d) = u12 (x̂; d); x̂ 2 
no; d 2 
ni ; (4.1.35)

yields ����s1;�;q(x; z)� �s2;�;q(x; z)
��� � � (4.1.36)

for all q 2 
 and all points x; z 2 U , where U is de�ned by (3.1.12).

Proof. First we remark, that we can choose a function p : B ! 
 such that
(3.1.34) is satis�ed for both scatterers D1 and D2 and for all x 2 U . We choose
an arbitrary constant function q(�) : B ! 
. With Q(no;ni) given by (4.1.25) we
estimate ����s1;�;q(x; z)� �s2;�;q(x; z)

���
�

����s1;�;q(x; z)� �
Q(no;ni)u

1
1;(no;ni)

�
(x; z)

���
+
����Q(no;ni)u

1
1;(no;ni)

�
(x; z)�

�
Q(no;ni)u

1
2;(no;ni)

�
(x; z)

���
+
����Q(no;ni)u

1
2;(no;ni)

�
(x; z)� �s2;�;q(x; z)

���: (4.1.37)
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According to Corollary 4.1.5 given �=2 we obtain �; � > 0, no; ni 2 IN , such that
the �rst and the last term of (4.1.37) are bounded by �=2 for all points x; z 2 U ,
where according to Lemma 4.1.2 we may choose ni; no and �; � uniformly for
q 2 
. From (4.1.35) we derive that the central term of (4.1.37) is zero, thus we
obtain the estimate (4.1.36).

2

We are now prepared to formulate the main theorem on �-uniqueness for the
reconstruction of the shape of a sound-soft, a sound-hard or an inhomogeneous
medium scatterer D 2 C from a �nite data set u1(no;ni) of scattered plane waves.

Theorem 4.1.7 (�-uniqueness) Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far

�eld patterns for scattering of plane waves from two acoustic scatterers D1;D2 in
C. Given � > 0 there is no; ni 2 IN , such that

u11 (x̂; d) = u12 (x̂; d); x̂ 2 
no; d 2 
ni ; (4.1.38)

yields the estimate
d(D1; D2) � � (4.1.39)

for the Hausdor� distance d(D1; D2) of D1 and D2.

Proof. Consider one of the situations S1 to S6. Given � > 0 we choose � and �
such that � = F1(�; �) with F1 given by (3.1.15). We use Lemma 4.1.6 to obtain
integers ni and no such that����s1;�;q(z; z)� �s2;�;q(z; z)

��� � � (4.1.40)

is satis�ed for all q 2 
 and for all points z 2 U with U de�ned by (3.1.12). Then
the estimate (4.1.39) for the chosen situation is given by (3.1.14) of Lemma 3.1.4.
To obtain the statement (4.1.39) for arbitrary situations we take the maximum
of all ni; no for S1 to S6. 2

We have shown that a su�ciently large �nite number of measurements of the
far �eld patterns determine the boundary of an acoustic scatterer up to a given
error � in the Hausdor� distance. This is independent of the physical properties of
the scatterer, i.e. the scatterer may be an impenetrable sound-soft or sound-hard
obstacle or an inhomogeneous medium scatterer.

If more information about the physical properties of the scatterer is known,
we may obtain better estimates for the dependence of no and ni on �; i.e. less
measurements are necessary to determine the boundary up to an error �. This
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is due to the fact that we do not have to build a maximum of all bounds for
the di�erent possible situations S1 to S6. The observation indicates, that the
ill-posedness of an inverse problem is in
uenced by the amount of information
given for reconstructions.

As a simple consequence of �-uniqueness we obtain the uniqueness statements
of Corollary 3.1.13 for the support of either impenetrable or inhomogeneous
medium scatterers D 2 C.

The second theme of this section is stability in the case of �nite data. In
this case we do not have uniqueness and thus it cannot be possible to obtain full
stability statements. We will show that it is still possible to derive statements
close to stability which we refer to as �-stability.

The concept of �-stability is closely related both to full stability and to
�-uniqueness as introduced in Section 3. To emphasize and enlighten the con-
nections we will give two proofs for the main theorem on �-stability. The �rst
approach does not build on stability estimates, but derives the statements of �-
stability in a way close to �-uniqueness. The second approach shows how the
statements of �-stability can be derived from full stability.

The main tool of the �rst approach is the operator Q(n0;ni) de�ned in (4.1.25).
We need some further preparations. To estimate the norm of Q(n0;ni) we use the
bound

bn;�;� := max
n
jjajjL2(ICn); a 2 G(n; �; �; �; s; �0)

o
(4.1.41)

where the norm jj � jjL2(ICn) is given by (4.1.7) and the set G(n; �; �; �; s; �0) by
(4.1.24). In Lemma 4.1.1 it has been shown, that for �xed �; � > 0 the constant
bn;�;� is bounded uniformly for no; ni 2 IN . We de�ne

F2(no; ni; �; �; �; �) := 2c
�

�m�1
+ 2C bni;�;� � (4.1.42)

+
1


m
bni;�;�bno;�;� �

and

F(no;ni)(�) := inf
n
F1

�
�; F2(no; ni; �; �; �; �)

���� �; �; � > 0 (4.1.43)

for which (4.1.17) is satis�ed for (�; �; ni) and (0; �; no)
o

with the function F1 given by (3.1.15) according to the situations S1 to S6. We
�rst study the behavior of F(no;ni)(�) for � ! 0.



134 4. The case of �nite data.

Lemma 4.1.8 Given � > 0 there is no; ni 2 IN , such that the function F(no;ni)

de�ned by (4.1.43) satis�es

lim sup
�!0

F(no;ni)(�) � �: (4.1.44)

Proof. For no; ni 2 IN the function F(no;ni)(�) is dominated by

F1

�
�0; F2(no; ni; �0; �0; �0; �)

�
for all positive parameters �0, �0 and �0, for which the condition (4.1.17) is sat-
is�ed. We show that for � > 0 we can �nd no; ni 2 IN and parameters �0, �0 and
�0, such that

lim sup
�!0

F1

�
�0; F2(no; ni; �0; �0; �0; �)

�
� � (4.1.45)

and (4.1.17) is satis�ed for (�; �0; ni), (0; �0; no) and �0. We proceed in two steps.

1. The function F2 can be decomposed into the sum and product

F2(no; ni; �; �; �; �) = 2c
�

�m�1
+ bni;�;�

�
2C � +

1


m
bno;�;� �

�

Since for �xed �; � > 0 the constant bno;�;� is bounded independently of no 2 IN ,
by an application of Corollary 3.1.9 to f(t; s) := supn2INbn;t;s we obtain functions
h4 and h5 with

h4(�)! 0; � ! 0;

and
h5(�)! 0; � ! 0; (4.1.46)

such that the functions

h6(�) := 2C h4(�) +
1


m
b�no;h4;h5(�) �

and

h7(�) := 2c
h4(�)

h5(�)m�1
+ b�ni;h4(�);h5(�) �

with b� de�ned in (3.1.49) satisfy

h6(�) ! 0; � ! 0;

and
h7(�)! 0; � ! 0;
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uniformly for ni; no 2 IN . For

h1(�) := maxfh5(�); h5(h6(�))g;
h2(�) := h4(�)

h3(�) := h4(h6(�))

we obtain

F2(no; ni; h1(�); h2(�); h3(�); �)� (4.1.47)

= 2c
h3(�)

h1(�)m�1
+ bni;h3(�);h1(�)

�
2Ch2(�) +

1


m
bno;h2(�);h1(�)�

�

� 2c
h4(h6(�))

h5(h6(�))m�1
+ b�ni;h4(h6(�));h5(h6(�))

�
2Ch4(�) +

1


m
b�no;h4(�);h5(�)�

�

! 0; � ! 0:

Thus we have

F1

�
h1(�); F2(no; ni; h1(�); h2(�); h3(�); �)

�
! 0; � ! 0; (4.1.48)

uniformly for all no; ni 2 IN .

2. For � > 0 from (4.1.48) with the explicit form of F2 and F1 we get param-
eters �0; �0; �0 > 0 and some constant C, such that we have

sup
no;ni2IN

F2(no; ni; �0; �0; �0; �) � C

and
F1(�0; �) � �

for all � su�ciently small and 0 < � � C. This yields

lim sup
�!0

sup
no;ni2IN

F1

�
�0; F2(no; ni; �0; �0; �0; �)

�
� �:

We now explicitly take into account the condition (4.1.17). For �0; �0 and �0
following Lemma 4.1.1 we choose no; ni 2 IN such that (4.1.17) is satis�ed for
(�; �0; ni) and (0; �0; n0). Then we obtain (4.1.45) and thus (4.1.44). 2

To prove the following Theorem on �-stability we will use the approximation
of the �elds �s by the operator Q(n0;ni) applied to

u1(no;ni) =
�
u1(dj; dk)

�
j=1;::;n0;k=1;:::;ni

2 L2(
no � 
ni)

to derive an estimate for the Hausdor� distance d(D1; D2) between the domains
of two scatterers D1 and D2 in C.
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Theorem 4.1.9 (�-stability) Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far

�eld patterns for scattering of acoustic plane waves from two scatterers D1;D2 in
C. Given � > 0 there are even integers no; ni 2 IN such that, if for a nonnegative
parameter � the far �eld patterns satisfy������u11(no;ni) � u12(no;ni)

������
L2(
no�
ni)

� �; (4.1.49)

the Hausdor� distance d(D1; D2) of the two scatterers can be estimated by

d(D1; D2) � F(no;ni)(�): (4.1.50)

Proof. Let � 2 IN0 be given according to the situations S1 to S6 de�ned in
(3.1.11). For � > 0 following Lemma 4.1.8 there are even integers no; ni 2 IN , such
that the function F(no;ni) satis�es (4.1.44). We now keep ni; no �xed and apply
Theorem 4.1.2 to each choice of �; �; � > 0, for which the conditions (4.1.17) and
(4.1.17) are satis�ed. Then for a function p : B ! 
 and q 2 
 an application of
Theorem 4.1.4 to the scatterer Dj, j = 1; 2, yields����sj;�;q(x; z)� �

Q(no;ni)u
1
j;(no;ni)

�
(x; z)

��� � c
�

�m�1
+ C bni;�;� � (4.1.51)

for all x; z 2 B, for which (3.1.34) is satis�ed. We use (4.1.51) for D1 and D2 and
the Cauchy-Schwarz inequality applied to

Q(u11;�;q � u12;�;q)

to derive from����s1;�;q(x; z)� �s2;�;q(x; z)
��� � ����s1;�;q(x; z)� �

Qu11
�
(x; z)

��� (4.1.52)

+
���Q�u11 � u12

�
(x; z)

��� + ����Qu11 �(x; z)� �s2;�;q(x; z)
���

the estimate ����s1;�;q(x; z)� �s2;�;q(x; z)
��� � F2(no; ni; �; �; �; �) (4.1.53)

for all q 2 
 and all points x; z 2 B n
�
D1;� [D2;�

�
, for which cones co(x; px; �0)

and co(z; pz; �0), px; pz 2 
, in the exterior of D1;� [ D2;� exist. Now we apply
Lemma 3.1.4 to obtain

d(D1; D2) � F1(�; F2(no; ni; �; �; �; �)): (4.1.54)

Since this is valid for each choice of the parameters �; �; � satisfying (4.1.17) and
(4.1.17), we obtain the estimate (4.1.50).
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2

We now come to the second approach to prove the estimates of �-stability.
For 
n given by (4.1.2) we know that

�(n) := max
x2


min
j=1;::;n

d(x; dj) ! 0; n!1: (4.1.55)

We will prove Theorem 4.1.9 with the function F(no;ni) replaced by

F(no;ni)(�) := F
�
16�2(4�C1(�(no) + �(ni)) + �)

�
; � � 0; (4.1.56)

where F is given by (3.1.48).
From Theorem 2.1.14 for impenetrable scatterers and Theorem 2.2.7 for the

inhomogeneous medium scatterer we obtain that the set of far �eld patterns
u1(�; d) 2 C1(
) is bounded uniformly for d 2 
 and scatterers D 2 C. By the
same arguments this can be seen to be true for the surface gradient Gradd u

1(�; d).
Thus the functions u1(�; �) are bounded in C1(
�
) by a constant C1 uniformly
for all scatterers D 2 C. Using the mean value theorem we have for no; ni 2 IN
and j = 1; 2���u1j (x̂; ŷ)� u1j (dl; dk)

��� � 2�jju1j jjC1(
�
)
�
d(x̂; dl) + d(ŷ; dk)

�
: (4.1.57)

From (4.1.49) and (4.1.57) we obtain���u11 (x̂; ŷ)� u12 (x̂; ŷ)
��� �

���u11 (x̂; ŷ)� u11 (dl; dk)
���

+
���u11 (dl; dk)� u12 (dl; dk)

���
+
���u12 (dl; dk)� u12 (x̂; ŷ)

���
� 4�C1

�
d(x̂; dl) + d(ŷ; dk)

�
+ �: (4.1.58)

By integration of ju11 � u12 j2 with the help of (4.1.55) we now derive������u11 � u12
������
L2(
�
) � 16�2

�
4�C1(�(no) + �(ni)) + �

�
: (4.1.59)

Given � > 0 because of (4.1.55) and the behavior (3.1.52) of F it is possible to
choose no; ni 2 IN such that

F
�
64�3C1(�(no) + �(ni))

�
� �:

Then for F(n0;ni) de�ned by (4.1.56) we calculate (4.1.44). Finally, from (4.1.59)
and Theorem 3.1.11 we derive (4.1.50) with F(no;ni) de�ned by (4.1.56).
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It is an important question to explicitly determine the behavior of F(no;ni)(�)
for � ! 0 and for ni; n0 !1. For the reconstruction of the convec hull H(D) of
a scatterer D 2 D we will now answer this question.

Theorem 4.1.10 Let u11 (x̂; d) and u
1
2 (x̂; d), x̂; d 2 
, be the far �eld patterns

for scattering of acoustic plane waves two from scatterers D1;D2 2 C. Given
� > 0 there is no; ni 2 IN such that, if for a nonnegative parameter � the far �eld
patterns satisfy ������u11(no;ni) � u12(no;ni)

������
L2(
no�
ni)

� �; (4.1.60)

the Hausdor� distance d(H(D1);H(D2)) of the convex hulls of two scatterers
D1;D2 2 C can be estimated by

d(H(D1);H(D2)) � C��� ln h16�2�4�C1(�(no) + �(ni)) + �
�i ���c (4.1.61)

with constants C > 0, 0 < c < 1 and C1.

Proof. We proceed analogously to the second proof of Theorem 4.1.9, where
the role of Theorem 3.1.11 has to be replaced by Theorem 3.1.12.

2



4.2 Electromagnetic scattering.

For electromagnetic scattering to obtain uniqueness and �-uniqueness in principle
we can proceed in the same way as for acoustic scattering. For diversity here we
use a second approach to �-uniqueness via the results of stability. The following
theorem includes scattering from a perfect conductor or from an inhomogeneous
electromagnetic medium.

Theorem 4.2.1 (�-uniqueness) Let E1
pl;1(x̂; d; q) and E

1
pl;2(x̂; d; q) be the elec-

tric far �eld patterns for scattering of plane waves from two electromagnetic scat-
terers D1;D2 2 C. Given � > 0 there is no; ni; npol 2 IN , such that

E1
pl;1(x̂; d; q) = E1

pl;2(x̂; d; q); x̂ 2 
no; d 2 
ni ; q 2 
npol (4.2.1)

yields the estimate
d(D1; D2) � � (4.2.2)

for the Hausdor� distance d(D1; D2) of D1 and D2.

Proof. We base our proof on the stability estimates. A stability estimate
consists of a function F : IR+ ! IR+

F (�)! 0; � ! 0; (4.2.3)

such that for two scatterers D1 and D2 in C with electric far �eld patterns
E1
pl;1(x̂; d; q) and E

1
pl;2(x̂; d; q), respectively, the estimate������E1
pl;1(�; �; q)� E1

pl;2(�; �; q)
������
L2(
�
) � �; q 2 
; (4.2.4)

yields
d(D1; D2) � F (�): (4.2.5)

From Theorem 2.3.11 for the perfect conductor and Theorem 2.4.7 for the inho-
mogeneous electromagnetic medium we obtain bounds for the far �eld patterns
E1
pl;j(�; �; �), j = 1; 2, in C1(
 � 
 � 
) uniformly for scatterers Dj 2 C. Thus

given � > 0 and � with F (�) = �, we can �nd no; ni and npol in IN such that

E1
pl;1(x̂; d; q) = E1

pl;2(x̂; d; q); x̂ 2 
no; d 2 
ni ; q 2 
npol (4.2.6)

yields ������E1
pl;1(�; �; q)� E1

pl;2(�; �; q)
������
L2(
�
) � � (4.2.7)

for all q 2 
. Now from (4.2.7) and (4.2.5) we obtain (4.2.2) and the proof is
complete. 2
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The brevity of the preceding proof compared to the lengthy estimates for the
acoustic case may be surprising at a �rst glance. Of course, the main work to
obtain estimates has to be done at some place. Here it is hidden in the stability
estimate (4.2.5), proven in the preceding chapter.

In a similar way it is possible to derive the results of �-stability for the above
inverse electromagnetic scattering problems. To avoid repetitions we omit the
presentation.



5 A point-source method in inverse scattering.

In the preceding sections we used point-sources to obtain uniqueness and stability
results for inverse scattering problems. We will now investigate the reconstruction
of the domain D of scatterers D from the algorithmical and numerical viewpoint.

As a starting point we develop a point-source method to reconstruct the scat-
tered �eld us(z; d) in the exterior of a scatterer D 2 C. More explicitly, given a
scatterer D 2 C and �; � > 0 we will construct a kernel

g� (z; x̂); z 2 B; x̂ 2 
;

such that the reconstruction of the scattered �eld us(z; d) by

(Au1(�; d))(z) :=
Z


g� (z; x̂)u

1(x̂; d)ds(x̂); z 2 B nD�:

satis�es the error estimate������us(�; d)� Au1(�; d)
������
L1(BnD�)

� �: (5.0.1)

Analogous estimates will be derived for electromagnetic scattering from a
perfect conductor or an inhomogeneous electromagnetic medium. We will prove
the convergence of the point-source method to reconstruct us, i.e. given a family
of measured far �eld patterns u1� ; � 2 (0; 1); with

jju1(�; d)� u1� jjL2(
) � �

we will show that we can choose � = �(�) such that������us(�; d)� Au1�
������
L1(BnD�)

! 0; � ! 0:

The operator A is a kind of backprojection operator as used for the Backus-Gilbert
or molli�er methods, see [35], [12] and [45].

In a second step we will use the scattered �eld us, the known incident �eld ui

and the boundary conditions of an impenetrable scatterer D for reconstructions
of the domain D of D. Numerical examples are provided for acoustic scattering
in three dimensions.

A di�erent approach to the point-source method, which does not use the
reciprocity relations, has been developed in [61], [62] and [63].



5.1 Acoustic obstacle scattering.

For the construction of the operator A we need to investigate the approximation
of point-sources by a superposition of plane waves as in Section 3.

Definition 5.1.1 For � = 0; s = 1, �; � > 0 and a function p : B ! 
 let the
density g� (z; �) be given by (3.1.32). We de�ne the operator

A : L2(
)! L1(B)

by

(Aw)(z) :=
1


m

Z


g� (z; d)w(�d) ds(d); z 2 B: (5.1.1)

The error for the reconstruction of a scattered �eld us(�; d) from its far �eld
pattern u1(�; d) is estimated in the following theorem.

Theorem 5.1.2 Consider scattering by a sound-soft, sound-hard or inhomoge-
neous medium scatterer D 2 C. For � = 0; s = 1, �; � > 0 and a vector �eld
p : B ! 
 with

D � Gx;p(x);�; x 2 B nD�; (5.1.2)

let the operator A be given by (5.1.1). Then for �xed d 2 
 and a measured far
�eld pattern u1� (�; d) with

������u1(�; d)� u1� (�; d)
������
L2(
)

� � (5.1.3)

the error for the approximation of us(�; d) by Au1� (�; d) satis�es
���us(z; d)� (Au1� (�; d))(z)

��� � c� + Cb�;� �; z 2 B nD�; (5.1.4)

with the constant b�;� de�ned by (3.1.33) and constants c; C > 0 uniformly for
scatterers D 2 C.

Remark. The elements of the following proof have already been used to in-
vestigate the reconstruction properties of the operator Q.
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Proof. First, for � > 0 and z 2 B nD� by de�nition of g we have

��������;q(�; z)�Hg�(z; �)
������
C1(D)

� �: (5.1.5)

The scattering map maps the incident �eld in C1(D) boundedly onto the far �eld
pattern of the scattered �eld in L2(
). Thus we obtain a constant c such that

�������1(�; z)�H1g� (z; �)
������
C(
)

� c � (5.1.6)

We use the mixed reciprocity relations (2.1.4) and (2.2.4) to transform (5.1.6)
into ���us(z; d)� 1


m

�
H1g� (z; �)

�
(�d)

��� � c


m
� (5.1.7)

for all d 2 
. From the decomposition

���us(z; d)� �Au1� (�; d)�(z)��� �
���us(z; d)� 1


m

�
H1g� (z; �)

�
(�d)

��� (5.1.8)

+
��� 1

m

Z


g� (z; ~d)

n
u1(� ~d; d)� u1� (� ~d; d)

o
ds( ~d)

���
with the help of the Cauchy-Schwarz inequality we derive (5.1.4).

2

We use the operator A to reconstruct the �eld us(�; d) from a measured far
�eld pattern u1� . Given the error � in the measurements, the error of the re-
constructions is given by (5.1.4). For a family of measurements u1� , � 2 (0; 1),
with

jju1� � u1(�; d)jjL2(
) ! 0; � ! 0;

by an application of Lemma 3.1.8 there is a function h with

h(�)! 0; � ! 0;

such that A de�ned with � = h(�) satis�es

������us(�; d) � Au1�
������
C(BnD�)

! 0; � ! 0:

We have proven the convergence of the point-source method for the reconstruction
of the scattered �eld us(�; d).
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The kernel g� (z; �) of the operator A can be calculated according to the a-priori
knowledge about the unknown scatterers D given by the class C of scatterers (see
De�nitions 2.1.5 and 2.2.5). In a �rst step the set of densities G has to be
computed according to Lemma 3.1.3 . Then g� (z; �) is given by (3.1.30). Clearly
the computation of the function g0 2 L2(
) with

�������(�; 0)�Hg0
������
Cs(G0;p;�)

� � (5.1.9)

for each p 2 
 and s = 1 is not e�ective from a computational point of view.
We now describe a possibility to obtain g�(z; �) by the computation of only one
solution g0 2 L2(
) of (5.1.9).

Lemma 5.1.3 For a vector p0 2 
 let g0 be a solution of (5.1.9) and let p1 2 

be given. Then the minimum norm solution g1 for (5.1.9) with p0 replaced by p1
can be obtained from g0 by rotation

g1(d) := g0(M
�1d) (5.1.10)

with an orthogonal matrix M which satis�es p1 =Mp0.

Proof. The proof is obtained by a simple rotation of the domain of approxi-
mation and the Herglotz wave function from the fact that the rotated Herglotz
wave function Z



ei�M

�1x�dg(d)ds(d) =
Z


ei�x�Mdg(d)ds(d)

=
Z


ei�x�

~dg(M�1 ~d)ds( ~d) (5.1.11)

is again a Herglotz wave function with the the rotated density g(M�1d). 2

We now investigate the reconstruction of an unknown impenetrable scatterer
D from the knowledge of the far �eld pattern for scattering of a plane wave. As
described in Theorem 5.1.2 it is possible to use the operator A to reconstruct
us(�; d) in the exterior of D.

We �rst consider the reconstruction of a sound-soft scatterer. In this case
we can use the boundary condition (2.1.4) to �nd the unknown scatterer as a
minimum curve of the total �eld

us(�; d) + ui(�; d): (5.1.12)
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But so far the construction of the operator A to compute an approximation for
us is built on the knowledge of D. The construction of the kernel g� (z; �) of A to
obtain the approximation (5.1.4) assumes the knowledge of adequate directions
p = p(z) such that

D � Gz;p(z);�; z 2 B nD�; (5.1.13)

is satis�ed, i.e. it assumes the knowledge of the unknown scatterer. Clearly we
do not know the scatterer and a knowledge for the choice of p(z) is not available,
when we start the algorithm. This gives rise to di�erent strategies to choose p(z)
in a multistep procedure.

We now describe one simple strategy to reconstruct us and p in several steps.
We start with a number of �xed directions p(z) = p� for � = 1; :::; N , compute
the corresponding operators A� and the �elds�

A�u
1
�

�
(z) + ui(z; d): (5.1.14)

For each � = 1; :::; N we search for parts of the unknown boundary @D of the
domainD as the minimum curve of (5.1.14) and obtain a �rst approximation @D1

to the boundary @D. In each further step we adapt the choice of p(z) according
to the reconstruction @Dn of the n-th step to achieve the condition (5.1.13) for
further points z 2 B and obtain an approximation @Dn+1. A stopping criterion
is provided by the condition (5.1.13), which has to be satis�ed for the current
choice of p and the current reconstruction Dn. E�cient adaptive algorithms for
the choice of p will have to be part of further research (see also [14]).

For the sound-hard scatterer we have to modify the approach according to the
di�erent boundary condition

@

@�

�
us(�; d) + ui(�; d)

�
= 0: (5.1.15)

So far, we described the reconstruction of us. But to use the normal derivative
in (5.1.15) the reconstruction of rus is needed.

As a consequence of the linearity and boundedness of the scattering operator
S : ui 7! u1 for scattering of point-sources �(�; z) the operator S and the di�er-
entiation rz with respect to the source point can be exchanged. This is a simple
consequence of the linearity and boundedness of S. Thus we have

rz�
1(�d; z) = rzS

�
�(�; z)

�
(�d)

= S
�
rz�(�; z)

�
(�d): (5.1.16)

= �S
�
r�(�; z)

�
(�d):



146 5. A point-source method in inverse scattering.

Due to Lemma 3.1.3 there is an approximation of r�(�; z) by a Herglotz wave
function

ry

Z


ei�y�dg� (z; d) ds(d) =

Z


i�d ei�y�dg�(z; d) ds(d): y 2 B nD�; (5.1.17)

We de�ne

(A0w)(z) :=
1


m

Z


(�i�d) g� (z; d) w(�d) ds(d); z 2 B nD� (5.1.18)

and obtain an approximation of rus(�; d) by A0u1(�; d) with the error estimate

���rzu
s(z; d)� (A0u1� (�; d))(z)

��� � c� + Cb�;� �; (5.1.19)

analogous to (5.1.4). For the reconstruction of a scatterer D with sound-hard
boundary condition we can now proceed analogously to the sound-soft case, where
the sound-soft boundary condition (5.1.12) has to be replaced by the sound-hard
condition (5.1.15).

Before we present numerical results, let us compare the design of the above
point-source method to the reconstruction of the unknown scatterer with a related
method of Kirsch and Kress [6].

First, Kirsch and Kress search for the unknown scattered �eld us(�; d) as a
single-layer potential S' on a curve � with has to be in the interior of the unknown
scatterer D. Thus the method needs to know some apriori-knowledge about the
location of the scatterer. In contrast to this, the point-source method does need
to know only a rough bound on the size of the scatterer but no information about
its location. Also the point-source method allows the reconstruction of scatterers,
which consist of an unknown number of separated components.

Second, for the reconstruction of us(�; d) by a single-layer potential without
the simultaneous reconstruction of the full domain we do not obtain convergence
of the reconstructions, if the data error tends to zero. Even if the exact far
�eld pattern u1 of a scattered �eld us is given, in general we will not observe
convergence of the approximations to us. This is due to the ill-posedness of this
inverse problem and the fact that in general the far �eld pattern u1 is not in
the range of the single-layer potential operator. Using the single-layer potential
we cannot control the regularization error, which due to (5.1.4) and (5.1.19) is
possible for the point-source method.
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To obtain convergence, Kirsch and Kress had to combine the solution of the
far �eld equation

S' = u1

and the minimization problem

min
@D

jjui + S'jjL2(@D)

to �nd the unknown boundary @D from the approximation uapprox for the total
�eld u into one nonlinear optimization problem. Thus convergence needs the
reconstruction of the full scatterer.

With the point-source method it is possible to reconstruct the scattered �eld
us(�; d) on arbitrary subsets of the exterior of D. It is possible to obtain recon-
structions of parts of @D without consideration of other parts. The method still
involves optimization problems for the reconstructions, that is the search of parts
of the unknown boundary as a minimum curve from the reconstruction uapprox
of the total �eld u. But the reconstruction of u is given by an application of
the integral operator A and the search for parts of @D can be performed locally,
thus we may split the problem into a series of optimization problems and the
dimension of each of these optimization problems can be chosen arbitrarily small.
Especially in three dimensions this reduces the reconstruction time considerably.

In the following we show numerical results by Giebermann and Potthast [14],
who used the point-source method for the reconstruction of scatterers in three
dimensions. The measured data consist of the far �eld patterns for six di�erent
incident plane waves at 256 observation points.
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Figure 5.2 shows a cut of the reconstruction in the x-z-plane in the second
second step of the reconstruction algorithm. The �rst step is given by Figure 5.3
to Figure 5.8, i.e. the minimum curves for di�erent waves and orientations of the
domain of approximation. With the direction of incidence d and p = �d we show
the minimum curves of juapproxj for d = (0; 0;�1) in Figure 5.3, d = (0; 0; 1) in
Figure 5.4, d = (0; 1; 0) in Figure 5.5, d = (�1; 0; 0) in Figure 5.6, d = (0;�1; 0)
in Figure 5.7 and d = (0; 0; 1) in Figure 5.8.
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Instead of a further minimization here we built the union of the minimum
points and then removed those points from the union, which according to the
orientation of the domain of approximation in comparison with the union of min-
imum points for the six steps could not be part of the boundary of the scatterer.
The union of the minimum points and the result of the removal-step can be seen
in Figure 5.9, 5.10 and 5.2.
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Figure 5.9 Figure 5.10 Figure 5.2 (see above)
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In a second example we want to show, that we can reconstruct obstacles which
consist out of several separate components. Figure 5.11 shows two balls which
are reconstructed with the point-source method. Here we again use six di�erent
waves and show the second step, i.e. the union of the minimum points, which
are this time shown in a full three-dimensional plot in Figure 5.12 without an
application of a removal-step.
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5.2 Electromagnetic scattering by a perfect conductor.

The operator A de�ned by (5.1.1) for the reconstruction of the scattered acoustic
�elds can be used also for the reconstruction of the scattered electromagnetic
�eld Es

pl(z; d; p), z 2 B nD�, from its far �eld pattern E1
pl (�; d; p). For the electro-

magnetic case we have to choose the kernel g� (z; �) such that the estimates (3.1.31)
or (5.1.9), respectively, are satis�ed with s = 4. The following theorem investi-
gates not only the perfect conductor, but also an inhomogeneous electromagnetic
medium.

Theorem 5.2.1 Consider the scattering of electromagnetic waves by a perfect
conductor or an inhomogeneous medium scatterer D 2 C. For � = 0; s = 4,
�; � > 0 and a vector �eld p : B ! 
 satisfying (5.1.2) the operator A is de�ned
by (5.1.1). Let the measured far �eld pattern E1

� satisfy the data error estimate������E1
pl (�; d; p) � E1

�

������
L2(
;IR3)

� �: (5.2.1)

Then the error for the approximation of Es
pl(�; d; p) by AE1

� is estimated by���Es(z; d; p) �
�
AE1

�

�
(z)
��� � c� + Cjjg0jjL2(
)�; z 2 B nD�; (5.2.2)

with constants c; C > 0 and g0 de�ned by Lemma 5.1.3.

Proof. Given �; � > 0 and z 2 B nD� by the de�nition of g� we have������Ei
edp(�; z; q)�

Z


Ei
pl(�; ~d; p)g�(z; ~d) ds( ~d)

������
C2(D)

=
������(q � r)r�

�(�; z)�
Z


ei�:�

~dg� (z; ~d) ds( ~d)
� ������

C2(D)

�
�������(�; z)� Z



ei�:�

~dg� (z; ~d) ds( ~d)
������
C4(D)

� � (5.2.3)

for all q 2 
. The mapping of the incident electric �eld in C2(D) onto the far �eld
pattern of the scattered electric �eld in C1(
) is bounded uniformly for scatterers
D 2 C. Thus there is a constant c such that������E1

edp(�; z; q)�
Z


E1
pl (�; ~d; p)g� (z; ~d) ds( ~d)

������
C1(
)

� c �: (5.2.4)

With the help of the reciprocity relations (2.3.20), (2.3.22), (2.4.7) and (2.4.8)
from (5.2.4) we obtain the estimate���Es

pl(z; d; q)�
1




Z


E1
pl (� ~d; d; p)g�(z; ~d) ds( ~d)

���
C1(
)

� c



� (5.2.5)
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for z 2 B n D�. Using the Cauchy-Schwarz inequality we calculate the norm of
the operator A and estimate���Es(z; d; p) �

�
AE1

�

�
(z)
��� �

���Es(z; d; p) �
�
AE1

pl (�; d; p)
�
(z)
���

+
���A�E1

pl (�; d; p) � E1
�

�
(z)
���

� c



� +

4�



jjg0jjL2(
)�: (5.2.6)

This completes the proof.
2

We can use the preceding theorem to formulate a point-source method for the
reconstruction of a perfect conductor D from the knowledge of a measured far
�eld pattern E1

� for an incident plane wave Ei
pl(�; d; p). According to (5.2.2) for

an appropriate choice of the parameters �; � and the function p : B ! 
 the
function AE1

� approximates the scattered �eld Es
pl(�; d; p) on B nD�. We can use

the boundary condition (2.3.5) to search for parts � of the unknown boundary
@D of the scatterer D as a surface where�����(�)� �Ei

pl(�; d; p) + AE1
�

����
is small. Here �� is a function B ! 
, which coincides with the normal vector �
to � on �.

We face similar problems as for the reconstruction of sound-hard acoustic
scatterers. First, the choice of g� (z; �) involves the orientation p 2 
 of the
domain of approximation Gz;p;�, which has to be chosen such that the unknown
scatterer D is in the interior of Gz;p(z);�. Second, the boundary condition involves
the normal vector to the unknown surface.

For the reconstruction of a perfect conductor in principle the strategy, which
we suggested for the acoustic inverse scattering problems, can be used to overcome
the problems and reconstruct the scatterer in a multistep procedure.





6 Singular sources and shape reconstruction.

The methods discussed in the preceding Section 5 need to know the boundary
condition to reconstruct the unknown scatterer. But in many practical situations
the physical properties of the scatterer are not known and these methods are not
applicable. It is therefore of practical interest to develop reconstruction methods
which do not need to know the boundary condition or the physical properties of
a scatterer.

We will develop a method of singular sources for the reconstruction of a scat-
tering object when the physical properties of the scatterer are not known. In a
�rst step we will consider a sound-soft or sound-hard impenetrable scatterer and
show in a second step how the results can be extended to the reconstruction of
the shape of an unknown inhomogeneous medium scatterer.

6.1 Acoustic scattering.

The main idea of the method of singular sources is the use of the �eld �s(z; z) to
reconstruct the shape of the scattering object. In a �rst part of this section we use
the operatorQ given by (3.1.35) for the reconstruction of �s(z; z) for scattering by
impenetrable scatterers. We estimate the error for the reconstruction of �s(z; z)
by (Qu1)(z; z) in the following theorem.

Theorem 6.1.1 Consider the far �eld patterns u1(�; d) for scattering of plane
waves ui(�; d), d 2 
, by a sound-soft or sound-hard scatterer D 2 C. Let the
function p : B ! 
 be chosen such that (5.1.2) is satis�ed. Given � = 0; s = 1,
�; �; � > 0 and a measured far �eld pattern u1� with data error

������u1� � u1
������
L2(
�
) � �; (6.1.1)

the error for the approximation of �s(x; z) by Qu1� is estimated by

����s(x; z)� (Qu1� ) (x; z)
��� � c

�

�m�1
+ C b�;� � +

1


m
b�;�b�;� �; (6.1.2)

for x; z 2 B n D� with the constants b�;� de�ned by (3.1.33) and constants c; C
uniformly for domains D 2 C.
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Proof. We use Theorem 3.1.6 and the Cauchy-Schwarz inequality applied to
the �rst and second term of the right-hand side of the decomposition����s(x; z)� (Qu1� ) (x; z)

��� �
����s(x; z)� (Qu1) (x; z)

���
+
����Q (u1 � u1� )

�
(x; z)

���
to obtain (6.1.2).

2

According to Theorem 6.1.1 we can use the operator Q to reconstruct �s from
the knowledge of the far �eld patterns u1(�; d) of the scattered �elds us(�; d) of
incident plane waves for all directions of incidence d 2 
. Given the error � in
the measurements, the error for the reconstruction of �s from u1� is estimated
by (6.1.2). The density functions g�(x; �) and g�(z; �) used to de�ne Q can be
computed according to some apriori-knowledge on the unknown scatterer D as
given by the class C of scatterers de�ned in De�nition 2.1.5 and De�nition 2.2.5.

The operator Q is strongly related to the operator A de�ned by (5.1.1) to set
up the point-source method. We can use Lemma 5.1.3 to e�ciently compute the
densities g� and g� using rotations and translations. The computation of g� for
di�erent p 2 
 is reduced to the computation of one density function g� of (5.1.9)
with p = p0 2 
 and discrepancy � and another density function g� of (5.1.9)
with p = p0 2 
 and discrepancy �.

Given an approximating function a(z) for �s(z; z); z 2 B nD�, we may follow
Theorem 2.1.15 and search for the boundary of the unknown scatterer D as the
set of points z where a(z) is larger than a constant C > 0. We call this the
method of singular sources, since the main reason for the behavior of �s is the
singularity of the source �(�; z). The constant C plays the role of a regularization
parameter and has to be chosen according to the other regularization parameters
of the reconstruction, i.e. depending on �; � and �.

The method of singular sources has some features, which are similar to the
point-source method. The choice of the orientations p(z) of the domain of approxi-
mation needs a knowledge about the unknown scatterer. The following multistep
procedure describes a method to successively construct both the scatterer and an
appropriate function p(z).

� As a �rst step compute for a number of �xed orientations p�, � = 1; ::; N

approximations a
(1)
� (z) for the �eld �s(z; z) using the operator Q, where

Q is depending on p� via the densities g� (x; �) and g�(z; �). Search an ap-
proximation D1 for the shape D of the unknown scatterer D as the set
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D1 :=
n
z 2 B; ja(1)� (z)j > C for � = 1; :::; N

o
of the points where all approximations a

(1)
� (z) are larger than C.

� Adapt in each further step n > 1 the orientation pn(z) of the domain of ap-
proximation to the knowledge about the unknown scatterer of the previous
steps 1; :::; n � 1 and repeat the procedure to compute an approximation
a(n)(z) to �s(z; z) and to search an approximation Dn for D according to

Dn :=
n
z 2 B; ja(n)(z)j > C

o
:

A background of this procedure is the observation, that the values of a�(z) in
general are very large, if the unknown scatterer D is not contained in the domain
of approximation Gz;p�;�0. Thus we obtain large values of a�(z), if z is in the
interior of the unknown scatterer and we can replace the search for @D by the
search for D.

An obvious advantage of the method of singular sources is the fact, that we
do not need to take into account the boundary condition of the impenetrable
scatterer. In contrast to the point-source method, for the method of singular
sources the reconstruction algorithm is the same for the sound-soft and sound-
hard boundary condition, i.e. the boundary condition does not need to be known
for the algorism. This feature is one of the main reasons which leads to the
distinction of category II and III of reconstruction methods. The method of
singular sources thus belongs to the third category.

One of the prices paid for the advantage of the method of singular sources is
the amount of data necessary for reconstructions. The method of singular sources
needs the far �eld pattern for a large number of incident plane waves, whereas
with the point-source method we obtain reconstructions even for one or a small
number of measured far �eld patterns.

Another price, which has to be paid to be independent of the boundary con-
dition, is the ill-posedness of the reconstruction operator Q. The norm of Q is
given by

jjg�(z; �)jjL2(
) � jjg�(z; �)jjL2(
)

with the densities g� and g�, which form the kernel of Q. For the point-source
method the norm of the operator A is equal to jjg� (z; �)jjL2(
). This is only the
square root of the norm of Q. We will observe below, that the ill-posedness of the
problem is becoming even worse, if we consider at the same time impenetrable
and penetrable scatterers.
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Figure 6.1 shows a surface plot of the approximation a(z) and the boundary
@D of the unknown sound-soft scatterer for � = 2 in the second step of the recon-
struction algorithm. Here the orientation p(z) of the domain of approximation is
chosen as p(z) = z=jzj.
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Figure 6.2

Figure 6.2 shows a contour plots of a(z) in step 2 of the algorithm for one or
two sound-soft domains, � = 3 and p(z) = z=jzj. Here we used the same set of
regularization parameters for the di�erent data sets for one or two obstacles.
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Figure 6.3

Figure 6.3 shows density plots of a(z) in the second step of the reconstruction
algorithm for one or two sound-soft domains and one or two sound-hard domains,
� = 4 and p(z) = z=jzj. We used the same set of regularization parameters for
all four images.

We now investigate the reconstruction of the shape of an object, which may
be either an impenetrable or an inhomogeneous medium scatterer D 2 C. From
the sections on uniqueness and stability we know that the shape of the scatterer is
uniquely determined by the far �eld patterns for all incident plane waves and that
the shape depends stable on the far �eld patterns with respect to the data error
in L2(
�
). Results on �-uniqueness and �-stability for a large �nite number of
measurements investigate the practical situation, where only a �nite number of
measurements of the far �eld pattern for a �nite number of incident plane waves
are possible.

For the reconstruction of the shape D of an inhomogeneous medium scatterer
D we will use Theorem 2.2.12 and the operator Q de�ned by (3.1.35). We have
to adapt the order � of the multipole to the behavior of the refractive index n
at the boundary of the unknown scatterer according to the situation S5 or S6 in
(3.1.11) and De�nition 2.2.5. In the same way as Theorem 6.1.1 we obtain

Theorem 6.1.2 Consider the far �eld patterns u1(�; d) for scattering of plane
waves ui(�; d), d 2 
, by a sound-soft, sound-hard or inhomogeneous medium
scatterer D 2 C. For a measured far �eld pattern u1� with data error������u1� � u1

������
L2(
�
) � �; (6.1.3)

the error for the approximation of �s�;q(x; z) by Qu
1
� is estimated by

����s�;q(x; z)� (Qu1� ) (x; z)
��� � c

�

�m�1
+ C b�;� � +

1


m
b�;�b�;� �; (6.1.4)
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x; z 2 B nD�, with b�;� de�ned by (3.1.33) depending on �, � > 0 and � > 0 and
constants c and C uniformly for D 2 C.

Following Theorem 6.1.2 we can use the operator Q to reconstruct

�s�;��(z0)(z; z) (6.1.5)

from the knowledge of the far �eld patterns u1(�; d) of the scattered �elds us(�; d)
for all directions of incidence d 2 
. Given the error � in the measurements, the
error for the reconstruction of (6.1.5) from u1� is estimated by (6.1.4).

With these preparations we can formulate a method of singular sources for the
reconstruction of the shape of an object, which may be either an impenetrable
or an inhomogeneous medium scatterer. Due to Theorems 2.2.12 and 2.1.16 the
singular behavior of (6.1.5) can be used to �nd the support of the unknown scat-
terer as the set of points where the approximation a(z) for (6.1.5) is su�ciently
large. A corresponding constant C has to be chosen according to the other pa-
rameters of the reconstruction, i.e. depending on �; � and �. We have to use a
strategy to adapt the orientation p = p(z) of the domain of approximation and
the polarization q = q(z) of the multipole to the knowledge about the scatterer
in each step of a multistep procedure.

At this point we have to realize a di�erence between the cases � = 0 and � > 0.
For � = 0 the multipole has a rotational symmetry. In this case we can work
with rotations and do not need to compute di�erent densities for di�erent vectors
q or �(z0) 2 
, respectively. For the cases � > 0 we need to compute di�erent
densities for the reconstruction of (6.1.5), if the angle between the orientation
p of the domain of approximation and the polarization q of the approximated
multipole changes. From a practical point of view this problem is not as serious
as it �rst seems, since usually a small number of di�erent angles is su�cient to
obtain a reasonable reconstruction of the shape of the unknown scatterer.

We close with a remark on the ill-posedness of the method of singular sources.
If it is not known whether the unknown scatterer is penetrable or impenetrable,
we have to work with multipoles of order � for reconstructions. Since the ill-
posedness of the reconstruction of D is mainly in
uenced by the norm of the
densities g� and g�, and since these norms increase with �, the ill-posedness for
the general problem is considerably larger than the ill-posedness for the recon-
struction of arbitrary impenetrable scatterers or the ill-posedness for the case of
a given boundary condition of an impenetrable scatterer.



6.2 Electromagnetic scattering.

In Theorems 2.3.12 and 2.4.9 of Section 2 the behavior of the scattered �eld
Es
edp(z; z; p) for points near a scatterer D is estimated. The boundary @D of the

scatterer D is the set of points, for which���Es
edp(z; z; �(z0))

���
becomes in�nite, where in a neighborhood of the boundary z0 2 @D is given by
the unique representation

z = z0 + h�(z0):

In Section 4, Theorem 3.2.3, we constructed the operator Q for the reconstruction
of Es

edp from the far �eld patterns E1
pl (�; �; q), q 2 
. For a measured far �eld

patterns E1
� the error for the reconstruction of Es

edp by QE
1
� is estimated in the

following theorem.

Theorem 6.2.1 We consider the scattering of electromagnetic plane waves
Ei
pl(�; d; p) for d; p 2 
 by a scatterer D 2 C. Given a measured far �eld pat-

tern E1
� with data error���E1

pl (�; �; p) � E1
� (�; �; p)

���
L2(
�
) � �; p 2 
; (6.2.1)

the error for the approximation of Es
edp(x; z; p) by QE

1
� is estimated by

���q �Es
edp(x; z; p)� (p �QE1

� (�; �; q))(x; z)
��� (6.2.2)

� c
�

�3
+ Cjjg�jjL2(
)� +

1



jjg� jjL2(
)jjg�jjL2(
) �;

x; z 2 B nD�, with constants c and C uniformly for D 2 C and functions g� and
g� depending on �, � and �.

Proof. The estimate can be obtained from (3.2.14) with the help of���q � Es
edp(x; z; p)� (p �QE1

� (�; �; q))(x; z)
���

�
���q �Es

edp(x; z; p)� (p �QE1
pl (�; �; q))(x; z)

���
+
��� np �Q�E1

pl (�; �; q)� E1
� (�; �; q)

�o
(x; z)

��� (6.2.3)

and the Cauchy-Schwarz inequality.
2
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A reconstruction of the boundary of a scatterer D 2 C with the help of the
singular scattered �eld Es

edp(z; z; p) can be formulated in analogy to the acoustic
case. As a di�erence to the acoustic case both for the reconstruction of a perfect
conductor and the reconstruction of the shape of an inhomogeneous medium we
can use the scattered �eld of electric dipoles. For inverse scattering from an
acoustic inhomogeneous medium we had to use multipoles of higher order even
for the simplest case of a medium with a jump at the boundary @D.
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S single-layer operator, 38
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� point-source, 11, 30, 38
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�s scattered �eld for �, 11, 38, 60
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�0 point-source for � = 0, 47
��;q multipole, 65
� mapping of Cobst into X, 44
	 singular function, 88
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	h help function, 53
� H�older coe�cient, 22, 23
� regularization parameter, 34
�0 opening angle, 26
�e opening angle, 24
� reduced refractive index, 59, 85
co(x; p; �0) cone, 24
� data error, 11, 142, 150, 153, 157
�-uniqueness, 12
��stability, 14
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 multi-index, 22

m constants, 40, 60
� wave number, 6, 7, 37, 73
� factor, 110
� order of multipoles, 67
�0 constant, 61
�(x) exterior unit normal vector, 6,
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� distance parameter, 14
�0 distance constant, 26
'� regularized solution, 35
a(z) approximating function, 154
a0 parameter for local coordinates, 23
b�;� bound for densities, 102, 115
b� bound for densities, 102, 115
bn;�;� bound for density vectors, 133
cm constant, 125
d(D1; D2) Hausdor� distance, 13
d(x;M) distance, 10
f function, 46
f �(s; t) function derived from f(s; t),
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f1;� function, 46
f2;� function, 46
g� (x; d) density function, 101
h(1;2)n spherical Hankel functions, 29
jn spherical Bessel functions, 29
l order of smoothness, 23
n refractive index, 6, 7, 36, 59, 85
r0 parameter for local coordinates, 23
ri parameter for local coordinates, 24
u total acoustic �eld, 6, 37, 41, 59
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ui incident acoustic �eld, 6, 8, 38, 59
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yn spherical Neumann functions, 29
zh point near the boundary, 52
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C class of scatterers, 94, 116
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scatterers, 87
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F function space, 12
G set of densities, 97, 102
H(D) convex hull of D, 13
M set of refractive indices, 62
S scattering operator, 9
jj � jjF strong norm, 13

a-posteriori strategy, 35
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scattering problem, 59
addition theorem, 28
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Bessel function, 30
boundary integral equations of the
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boundary-layer approach, 31
boundedness condition, 23
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data error, 11, 142, 150, 153, 157
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Dirichlet boundary condition, 6, 37
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double-layer operator, 38
double-layer potential, 32



170 Index

dual systems, 33

electric permittivity, 7, 73
electromagnetic Herglotz pair, 114
electromagnetic inhomogeneous me-

dium scattering problem, 85
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Funk-Hecke formula, 30
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functions, 22
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Helmholtz equation, 6, 37, 59, 74
Herglotz wave function, 19, 125
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inverse scattering problems, 8

Jacobi-Anger expansion, 30, 31
jump relations, 32

Legendre polynomials, 28
linear sampling method, 18
Lippmann-Schwinger equation, 60

local coordinates, 23
logarithmic continuity, 14

magnetic permeability, 7, 73
Maxwell equations, 7, 73, 85
method of singular sources, 20, 153
minimum norm solutions, 35
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layer potential, 39, 52
molli�er methods, 18, 141
monotonicity property, 124
Morozov's discrepancy principle, 19
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Neumann boundary condition, 6, 37
Neumann function, 30

perfect conductor boundary
condition, 7, 73
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point-source method, 17, 141

quadrupole, 30

radiating, 37, 73
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reconstruction methods, 16, 141, 153
refractive index, 6, 7, 36, 59, 85
regularization operators, 34, 142, 157
regularization parameter, 34, 154
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Rellich's Lemma, 11
Riesz Theorem, 33

scattering amplitude, 8
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shape reconstruction, 8, 153
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single-layer operator, 38
single-layer potential, 31
smoothness condition, 23
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condition, 6, 37
sound-hard boundary

condition, 6, 37
sound-soft boundary

condition, 6, 37
spherical Bessel functions, 29
spherical Hankel functions, 29
spherical Neumann functions, 29
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Stirlings formula, 29
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symmetry property, 124

Tikhonov regularization scheme, 35
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