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Introduction

I �rst realized the importance of solution operators for the di�erential equa-
tion �u + 2i� � ru = f which depend in a suitable way on the complex
parameter vector � when I studied the paper [32] by Nachman. He based the
reconstruction of coe�cients in a partial di�erential equation from boundary
measurements on these solution operators. Unfortunately, for the construc-
tion of the solution operators he gives a reference to a paper that has never
been published and a reference to a similar construction in the paper of
Sylvester and Uhlmann [46] where only the special case � �� = 0 is examined.
Other authors dealing with parameter identi�cation problems cite these two
papers when they need the solution operators (see [8, 38, 39]).

The proof of Sylvester and Uhlmann uses Fourier transform techniques
in weighted Sobolev spaces and is quite involved as are the proofs of other
authors who prove related results.

Therefore, it was a great simpli�cation when I discovered how to obtain
solution operators with the help of Fourier series in a straightforward and
elementary way. The solution operators became even more attractive when it
turned out that they are not only useful in parameter identi�cation problems
but also in proving unique continuation results which are needed to show
uniqueness for direct scattering problems in an inhomogeneous medium.

This thesis explains the construction of the solution operators via Fourier
series and then applies them to some direct and inverse scattering problems
in inhomogeneous media. We shall examine acoustic, electromagnetic and
elastic scattering problems. In order to give an idea what kind of problems
will occur in the sequel let us now sketch the acoustic scattering problem.
The acoustic scattering problem is a good example for the other problems,
it is probably the one which is known best by the reader, and it needs less
technical and distracting details than the electromagnetic or elastic scattering
problem.
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The direct acoustic scattering problem consists in �nding the scattered
wave us, given the wave number � > 0, the refractive index n, and the
incident wave ui. The total wave u = ui + us must obey the di�erential
equation �u+ �2nu = 0 in IR3 and us must satisfy a radiation condition at
in�nity.

Of course, the �rst questions to ask are whether there exists a solution
and whether it is unique. Since we assume n(x) = 1 in the exterior of a
large ball, we can use Rellich's lemma to obtain u(x) = 0 in the exterior of
that ball, if u is a radiating solution to the above di�erential equation. The
second step of the uniqueness proof is a unique continuation principle, i.e., a
solution u to �u+�2nu = 0 in IR3, which has compact support, must vanish
everywhere. At this point our solution operator is very useful because it
allows a short and elementary derivation of the desired unique continuation
principle (see Theorem 1.2).

We establish the existence of a solution via an integral equation which
is known as the Lippmann-Schwinger equation. It is derived by applying
Green's representation theorem to u.

The solution us to the direct scattering problem has the asymptotic be-
havior

us(x) =
ei�jxj

jxj
�
us1(x̂) +O

� 1

jxj
��

; jxj ! 1 ;

with x̂ = jxj�1x denoting the direction of x. us1 is known as the far �eld or
scattering amplitude of us.

For the inverse scattering problem we assume that we have measured the
scattering amplitude us1 for su�ciently many incident waves ui and that n
is unknown. The task is to reconstruct n from these data. We start with a
more modest result, namely a uniqueness theorem which was �rst established
by Novikov in [37]: two refractive indices n and ~n producing the same far
�eld data must coincide. Actually, we prove that all Fourier coe�cients of n
and ~n must coincide. To this end we construct for � 2 C3 with � � � = �2

solutions of the form

u(x) = ei��x(1 +O(j�j�1) ; j�j ! 1 ;

to the equation �u+�2nu = 0. Solutions depending in this way on a param-
eter � had already been considered by Faddeev in connection with quantum
mechanical scattering problems. We refer the reader to [32, p. 536] for a brief
review of their history. Sylvester and Uhlmann used them in [46] to prove
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that the conductivity is uniquely determined by boundary measurements of
voltage and current. We shall construct the special solutions by essentially
replacing in the Lippmann-Schwinger equation the usual fundamental solu-
tion to the Helmholtz equation,

��(x; y) =
ei�jx�yj

4�jx� yj ; x 6= y ;

by a di�erent one,

	�(x� y) = ei��(x�y)g�(x� y) ; x 6= y :

It is immediately seen that, if 	� is a fundamental solution to the Helmholtz
equation, then g� must be a fundamental solution to the operator (�+2i� �r),
whence our solution operator comes in.

Next, we turn to the stability of the inverse scattering problem. We
consider the far �eld patterns u1;n originating from a small set of C2-smooth
refractive indices n. We are then able to prove that the inverse mapping
u1;n 7! n is continuous when we use a very strong norm on the set of far
�eld patterns and the maximum norm for the refractive indices. Here, we
shall use the Faddeev-type solutions again in order to estimate the Fourier
coe�cients of the di�erence n � ~n of two refractive indices. The Fourier
coe�cients in turn yield estimates of the di�erence n� ~n itself. Alessandrini
[2] proved this result for the problem considered by Sylvester and Uhlmann,
and Stefanov [42] investigated the acoustic case.

Finally, we give a procedure how n can be reconstructed from a knowl-
edge of the far �eld pattern u1;n associated with it. This reconstruction goes
back to Nachman [32]. The main idea is to compute the boundary data of
the Faddeev-type solutions with the help of integral equations whose ker-
nels originate from the fundamental solution 	� and with the help of the
knowledge of the scattering amplitude. Then, the boundary data are used to
compute the Fourier coe�cients of (1�n). Since all these questions concern-
ing the inverse acoustic problem in an inhomogeneous medium are examined
with the help of the special solutions to the perturbed Helmholtz equation,
our solution operators play an essential role during the analysis.

We carry out the analogous program for the direct and the inverse electro-
magnetic scattering problem in an inhomogeneous medium. For the inverse
elastic scattering problem we omit the reconstruction procedure because a
rigorous examination would have extended the length of this thesis even
more.
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Before we proceed with the direct acoustic scattering problem in the �rst
chapter let us point out that the results concerning the direct scattering prob-
lems have been known for a long time [50, 31, 51, 23, 7]. We have included
those chapters because a good understanding of the direct problems facili-
tates the understanding of the inverse problems. Moreover, a self-contained
presentation of the material may help the reader not to be distracted too of-
ten by searching for references. Finally, since we want to apply our solution
operators during the uniqueness proofs for the direct problems, we have to
deal with the direct problems anyway.

Concerning the inverse scattering problems the results for the elasticity
equation and the stability result for the electromagnetic case seem to be new.
Furthermore, our approach, using Fourier series and carrying out the analysis
in classical function spaces, i.e., spaces of continuous, H�older continuous
or di�erentiable functions and L2-spaces, is new. Contrary to the papers
mentioned above we have avoided Sobolev spaces throughout. After having
established the existence and the properties of the fundamental solution 	� ,
which di�ers from �� by a smooth function, it is possible to use all the
results from classical potential theory. We hope that this way to present the
material simpli�es the technical details and contributes to the clarity of the
main ideas.

Of course, there are limits for being self-contained. We assume that the
reader has a good knowledge in analysis and functional analysis (as provided
by many textbooks) and in boundary integral equations (as provided by the
�rst four chapters in [6] together with [7]). These assumptions re
ect the
author's mathematical education and background.

Nevertheless, we have included proofs for results which can be found in
the monographs [6, 7], if the proofs di�er from the ones given there or if they
are important for the understanding of the subject. The above choice of what
is assumed to be known also required a discussion of volume potentials and
of Weyl's lemma in this thesis although the reader might argue that these
are standard results and can be found in classical monographs. For similar
reasons we have included an appendix dealing with the elastic single-layer
potential though [23] is a standard reference.

The reader can infer from the table of contents the organisation of the
material. We have devoted one chapter to each problem, the direct and the
inverse scattering problem in the acoustic, electromagnetic, and elastic case.

Finally, I want to thank all my relatives, friends, and colleagues who have
helped in some way during my work. Especially, I gratefully acknowledge the
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help of Professor Dr. David Colton and of my teacher Professor Dr. Rainer
Kre�. Their research and their books inspired my own research, and the
enthusiasm of the former and the steady encouragement of the latter provided
much support to write this thesis.
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Chapter 1

The Direct Acoustic Scattering

Problem

Let us start with a brief physical motivation of the main mathematical prob-
lems we shall examine in this section. We consider an inhomogeneous medium
in IR3 and assume that the inhomogeneity is compactly supported. The prop-
agation of time harmonic acoustic waves in the medium is governed by the
equation

�u(x) + �2n(x)u(x) = 0 ; x 2 IR3 : (1.1)

u describes the pressure �eld, � > 0 is the wave number and n is the refractive
index of the medium. � and n(x) are related to the frequency ! of the wave
and to the speed of sound of the medium via � = !=c0 and n(x) = c20=c

2(x).
Here, c(x) is the speed of sound at the point x 2 IR3 and c0 is the speed of
sound in the homogeneous part of the medium (see [7, chapt. 8] or [50]). In
order to model absorbing media, too, we allow =(n(x)) � 0, x 2 IR3.

In the direct acoustic scattering problem we know the wave number � and
the refractive index n and we are given an incident wave ui which is scattered
by the inhomogeneity. The task is to �nd the scattered �eld us such that
the total �eld u := ui + us satis�es equation (1.1) and such that us satis�es
a radiation condition.

In the following sections we shall provide the tools to prove that the direct
scattering problem has a unique solution. Our �rst aim is the uniqueness
proof. It turns out that solution operators for the di�erential equation �v+
2i� � rv = f whose L2-norms depend in a suitable way on the parameter
� 2 C3 are useful during the uniqueness proof. Since these operators also play
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a central role when we examine the inverse problem, we introduce them at the
beginning. However, in the next section we shall only prove a result which
is absolutely necessary for the uniqueness proof. When we need stronger
results in later sections we improve our assertions then. Since we employ
Fourier series techniques for the norm estimates of the solution operators, we
start with a brief review about Fourier series in the next section. We proceed
with the norm estimates and prove a unique continuation principle as a �rst
application of the solution operators.

In the second section we review Green's formula and then present a ver-
sion of Rellich's lemma. Both uniqueness theorems for the direct as for the
inverse scattering problems are based on this lemma.

After giving a precise formulation of the direct scattering problem in the
third section we establish its uniqueness. Next, we turn to the existence proof
for the direct scattering problem. We use volume potentials and integral
equation techniques. Thus, we investigate the mapping properties of volume
potentials and �nally obtain the unique solvability for the direct scattering
problem.

Although all the results can be found in the literature we have included
this chapter because we want to give a self-contained exposition of the direct
scattering problem. Furthermore, some proofs of well-known results are new
(e.g. the unique continuation principle), and �nally the existence proof for
the direct problem will suggest proofs when we examine the inverse problem
in the second chapter.
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1.1 Fourier Series and a Unique Continuation

Principle

The purpose of this section is to give a brief account on Fourier series which
are then used to derive formally a solution operator G0

� for the equation
�u + 2i� � ru = f and to estimate its norm. As a �rst application of the
norm estimate we derive a unique continuation principle.

If D � IR3 is an open set we denote by L2(D) the linear space of complex-
valued functions on D which are measurable and square integrable on D with
respect to the Lebesgue measure. We shall tacitly identify functions which
coincide in D except on a set having Lebesgue measure zero. L2(D) endowed
with the scalar product

(f; g) :=
Z
D

f(x)g(x)dx ; f; g 2 L2(D) ;

is a Hilbert space. kfkL2(D) = kfkL2 denotes its norm.
For a �xed R0 > 0 we de�ne the cube C := (�R0; R0)3 � IR3. The

usual orthogonal basis in the space L2(C) are the trigonometric polynomials
ei��x, x 2 C, (R0=�)� 2 ZZ

3. However, for reasons which become obvious in
Theorem 1.1 it is more suitable for us to shift the grid (�=R0)ZZ3 and to work
with a slightly modi�ed basis.

We denote by � the grid

� :=
n
� = (�1; �2; �3) 2 IR3:

R0

�
�2 � 1

2
2 ZZ ;

R0

�
�1;

R0

�
�3 2 ZZ

o
;

i.e., we have shifted (�=R0)ZZ3 by �=(2R0) in the direction of the second
coordinate. Furthermore, we de�ne e�(x) := (2R0)�3=2 exp(i� � x), x 2 C,
� 2 �.

Straightforward calculations show that we have for �, � 2 �:
(e�; e�) = 1 if � = �, and (e�; e�) = 0 if � 6= �, i.e., the functions e�, � 2 �,
are an orthonormal system in L2(C).

They are also a complete system. For f 2 L2(C) the function g(x) :=
e�i�x2=(2R

0)f(x), x 2 C, satis�es g 2 L2(C). Hence, by the Weierstrass
approximation theorem for trigonometric polynomials there is a sequence pj,
j 2 IN, of trigonometric polynomials converging to g, kpj�gkL2 ! 0, j !1.
The functions qj, de�ned by qj(x) := ei�x2=(2R

0)pj(x), x 2 C, j 2 IN, belong
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to spanfe�:� 2 �g and

kqj � fk2L2 =
Z
C

jei�x2=(2R0)pj(x)� ei�x2=(2R
0)g(x)j2dx

= kpj � gk2L2 ! 0 ; j !1 ;

due to jei�x2=(2R0)j = 1, x 2 C.
Then e�, � 2 �, are an orthonormal basis in L2(C) and for f 2 L2(C)

we have the Fourier expansion f =
P
�2�

f̂(�)e� with Fourier coe�cients

f̂(�) := (e�; f). Moreover, the Fourier coe�cients f̂(�), ĝ(�) satisfy Par-
seval's identities

X
�2�

jf̂(�)j2 = kfk2L2 ; (1.2)

X
�2�

f̂(�)ĝ(�) = (f; g) (1.3)

for f , g 2 L2(C). By the Riesz-Fischer theorem any sequence c�, � 2 �, withP
�2�

jc�j2 < 1 corresponds to a uniquely de�ned function f =
P
�2�

c�e� 2
L2(C) having Fourier coe�cients f̂(�) = c�.

Let us introduce some more notation. For any set G � IR3 we denote by
C(G) the space of continuous functions on G. For a function u de�ned on
an open set D � IR3 we denote by @ju = @u=@xj its partial derivative with
respect to the coordinate xj, j = 1; 2; 3. ru := (@1u; @2u; @3u) is the gradient
of u and �u := @21u+@

2
2u+@

2
3u is the Laplacian of u. Ck(D) denotes the set

of functions de�ned on D having continuous derivatives up to order k 2 IN
in D. Ck(D) consists of those functions from Ck(D) whose derivatives can
be continuously extended to D and Ck

0 (D) is the subspace of functions from
Ck(D) having compact support in D.

Let us now turn to the di�erential equation

�u+ 2i� � ru = f (1.4)

in the cube C := (�R0; R0)3 � IR3 where the vector � 2 C3 is de�ned as
� := (s; it; 0) with the real parameters s 2 IR, t > 0. The di�erential operator
in (1.4) occurs immediately, if one tries to �nd a solution v of the Poisson
equation �v = g which has the form v(x) = ei��xu(x), x 2 C. We shall need
solutions of this form when we study the inverse problem in later sections. At
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the moment we are content in deriving operators G0
� which map (formally)

the function f to a solution u of (1.4) such that the operator norms kG0
�kL2

converge to zero as j=(�)j = t ! 1. This behavior allows to give a simple
proof for a unique continuation principle which in turn is a basic ingredient
in the uniqueness proof of the direct scattering problem.

In order to obtain G0
� let us insert the Fourier expansions of f and u into

equation (1.4), formally reverse the order of di�erentiation and summation
and compare the Fourier coe�cients. We arrive at the equations

�(� � � + 2� � �)û(�) = f̂(�); � 2 �;

hence

u = �X
�2�

f̂(�)

(� � � + 2� � �)e� :

We do not worry whether and in what sense u is a solution. Instead, we
derive the two properties of the suggested operator G0

� which we need for the
unique continuation principle.

Theorem 1.1 Let s 2 IR, t > 0 be real numbers and � := (s; it; 0) 2 C3.
Then, the operator

G0
�:L

2(C)! L2(C) G0
�f := �X

�2�

f̂(�)

(� � � + 2� � �)e�

is well de�ned and has the following properties:

(a) kG0
�fkL2 �

R0

�t
kfkL2 for all f 2 L2(C),

(b) G0
�(�f + 2i� � rf) = f for all f 2 C2

0(C):

Proof: From (R0=�)�2 � (1=2) 2 ZZ we conclude j�2j � �=(2R0) for all � 2 �
and then

j� � � + 2� � �j � j=(� � � + 2� � �)j = 2tj�2j � (�t)=R0 (1.5)

for all � 2 �. Note that this is the reason for the shift of the usual grid
((�=R0)ZZ)3 when de�ning � and e�, � 2 �. Then (� ��+ 2� ��)�1 exists for
all � 2 � and we can estimate

X
�2�

����� f̂(�)

(� � � + 2� � �)

�����
2

� R02

�2t2
X
�2�

jf̂(�)j2 <1 ;
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for all f 2 L2(C). Hence, by Parseval's identity (1.2) G0
�:L

2(C)! L2(C) is
a well de�ned linear operator which satis�es the norm inequality (a).

For the proof of assertion (b) we use integration by parts and obtain for
f 2 C2

0(C)

(�f + 2i� � rf )̂ (�) = (2R0)�3=2
Z
C

(�f + 2i� � rf)(x)e�i��xdx

= (2R0)�3=2
Z
C

f(x)(�� � �� 2� � �)e�i��xdx

= �(� � � + 2� � �)f̂(�) :

Now, part (b) follows from the de�nition of G0
�.

2

Since the di�erential equation (1.4) has constant coe�cients, one might
try to use the Fourier transform for the construction of a solution opera-
tor. Employing formally the Fourier transform F to (1.4) we obtain with
p�(y) := �y � y � 2� � y, y 2 IR3, the equation p�(y)(Fu)(y) = (Ff)(y),
y 2 IR3. Using the inverse Fourier transform we arrive at the solution oper-
ator G00

�f := F�1((1=p�)Ff). However, contrary to our derivation with the

help of Fourier series we now have p�(y) = 0 for certain y 2 IR3. This fact
causes di�culties to verify the norm estimate (a) from Theorem 1.1. Several
authors have found ways to deal with this di�culty. We refer the reader to
[46, 40] and [1, 49] where di�erential operators of the form (1.4) are studied.
In his paper [17] Isakov has pointed out that there is another very general
method to construct fundamental solutions for partial di�erential operators
with constant coe�cients via Fourier transform techniques which is given
in Theorem 7.3.10 in H�ormander's book [14]. This method also yields the
right behavior for large j=(�)j according to the proof of Theorem 10.3.7 in
[15]. All those proofs need a more advanced machinery than our elementary
considerations in Theorem 1.1.

The second theorem of this section is a unique continuation principle: a
function u 2 C2

0 (IR
3) satisfying the inequality j�uj � M juj in IR3 must vanish

identically. This is a very weak form of the unique continuation principle and
much better results can be found in the literature ([7, Lemma 8.5], [27, p. 65],
[16, Theorem 17.2.6 and further references therein]). However, it turns out
that our strong assumption u 2 C2

0(IR
3) is satis�ed in the problems we shall
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consider in the sequel. Moreover, our proof, which is built on the operator
G0
� from Theorem 1.1, is quite simple.

Theorem 1.2 If u 2 C2
0 (IR

3) satis�es j�u(x)j � M ju(x)j for all x 2 IR3

with a constant M , then u vanishes in all of IR3. This is also true, if u =
(u1; : : : ; ul) is a vector valued function, �u := (�u1; : : : ;�ul) and j�j denotes
the euclidean norm of a vector in Cl.

Proof: We choose R0 > 0 large enough to ensure supp(u) � C = (�R0; R0)3.
Furthermore, we de�ne t := ((MR0)=�)+1, and � := (t; it; 0) 2 C3. De�ning
v(x) := exp(�i� � x)u(x), x 2 IR3, a simple computation shows

�u(x) = exp(i� � x)(�v + 2i� � rv)(x) ;

whence
j(� + 2i� � r)v(x)j � M jv(x)j for all x 2 IR3 . (1.6)

Moreover, using Theorem 1.1 (b) we obtain for v 2 C2
0 (C)

v = G0
�((� + 2i� � r)v) :

Combining the last equality with (1.6) and Theorem 1.1 (a) we arrive at

kvkL2 � R0

�t
k(� + 2i� � r)vkL2 � MR0

�t
kvkL2 :

Since (MR0)=(�t) < 1, the function v must vanish, and then u must vanish.
If u is a vector valued function, we can use the same reasoning where we

understand that a di�erential operator or the operator G0
� is applied to each

cartesian component of a vector valued function.
2
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1.2 Green's Formula and Rellich's Lemma

Green's formula allows to represent smooth functions in a smooth, bounded
domain by a superposition of certain potentials. In order to give a precise
statement of Green's formula (Green's representation theorem, Helmholtz
representation) we de�ne that a nonempty, bounded, open set D � IR3 with
boundary @D is C2-smooth (or that @D is C2-smooth), if for all x 2 @D there
exist an open ball Br(x) � IR3 and a bijective mapping  :Br(x)! V � IR3

such that  and its inverse  �1 are twice continuously di�erentiable in the
closure of their respective domains of de�nition and such that

 (Br(x) \D) � fy 2 IR3: y3 > 0g ;  (Br(x) \ @D) � fy 2 IR3: y3 = 0g :
For a C2-smooth surface @D we can de�ne the outward unit normal vector

�(x) = (�1(x); �2(x); �3(x)) 2 IR3 to @D at the point x 2 @D. By ds we
indicate the two-dimensional area element in @D.

If D � IR3 is a C2-smooth nonempty, bounded, open set and if w 2
C1(D), then Gauss' theorem (integration by parts) yieldsZ

@D

�j(x)w(x)ds(x) =
Z
D

(@jw)(x)dx ; j = 1; 2; 3 : (1.7)

Applying equation (1.7) to the functions w = u(@lv), l = 1; 2; 3, with
j = l and adding the results yields Green's �rst theorem

Z
@D

u
@v

@�
ds =

Z
D

(ru � rv + u�v)dx (1.8)

for u, v 2 C2(D).
If we interchange u and v in the above formula and subtract, we obtain

Green's second theoremZ
@D

(u
@v

@�
� v

@u

@�
)ds =

Z
D

(u�v � v�u)dx (1.9)

for u, v 2 C2(D).
Note, that the smoothness assumptions on u and v can be relaxed some-

what. In equation (1.8) it su�ces to suppose u, v 2 C1(D), u 2 C2(D) and
�u 2 C(D). For equation (1.9) the assumptions u, v 2 C2(D)\C1(D), and
�u, �v 2 C(D) are su�cient.
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For � 2 C, x, y 2 IR3, x 6= y, we denote by

��(x; y) :=
ei�jx�yj

4�jx� yj

the fundamental solution to the Helmholtz equation �u+�2u = 0. If y 2 IR3

is �xed, ��(�; y) is a solution to the Helmholtz equation with respect to the
variable x in IR3 n fyg and similarly, if x is �xed.

Now, assume D is C2-smooth and bounded, u 2 C2(D) and x 2 D is
�xed. Applying Green's second theorem with v := ��(x; �) in the smooth
open set D nB�(x) and taking �! 0 yields the following representation of u
which is known as Green's formula.

Theorem 1.3 Let D � IR3 be a nonempty, bounded, open set with C2-
smooth boundary. Then, for � 2 C and for a function u 2 C2(D) we have
Green's formula

u(x) =
Z
@D

f@u
@�

(y)��(x; y)� u(y)
@��(x; y)

@�(y)
gds(y)

�
Z
D

(�u(y) + �2u(y))��(x; y)dy ; x 2 D : (1.10)

Green's formula is also true if u only satis�es u 2 C2(D)\C1(D) and �u+
�2u 2 C(D).

A detailed proof can be found in [7, Theorem 2.1].

Note that �� is analytic for x 6= y, i.e., if x0, y0 2 IR3, x0 6= y0, then there
exists an � > 0 such that for all x, y 2 IR3 with jx � x0j + jy � y0j < � the
series expansion

��(x; y) =
X

�;�2IN3

0

a��(x0; y0)(x� x0)
�(y � y0)

�

holds true with certain coe�cients a��(x0; y0) 2 C. The series converges

absolutely and uniformly. Here, we use z� := z�11 z
�2
2 z

�3
3 for a multi-index

� = (�1; �2; �3) 2 IN3
0 and z 2 C3. Hence we can infer from the above

theorem that solutions to the Helmholtz equation �u + �2u = 0 in D are
analytic functions in D.
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��(�; y) and ���(�; y) are both solutions to the Helmholtz equation in
IR3 n fyg which have a di�erent behavior at in�nity. We can therefore guess
that, in order to have a unique solution to our scattering problem, we have to
specify its behavior at in�nity. For � 2 C n IR it is reasonable to expect the
scattered waves being bounded for large x. This excludes ��� if =(�) > 0.
But for � > 0 both ��(�; y) and ���(�; y) are bounded for large x. The
necessary distinction is made by the Sommerfeld radiation condition: let
u 2 C2(IR3 n Br) be a solution of �u + �2u = 0 in IR3 n Br. Then u
satis�es the Sommerfeld radiation condition (u is a radiating solution to the
Helmholtz equation) if

���x̂ � ru(x)� i�u(x)j = o(
1

jxj) ; jxj ! 1 ; (1.11)

uniformly for all directions x̂ := jxj�1x.
Our next aim is a representation formula as in (1.10) for a radiating

solution to the Helmholtz equation in the exterior of a ball. To this end we
�rst prove the following useful lemma.

Lemma 1.4 Let u, v 2 C2(IR3 nBR) be radiating solutions to �u+�2u = 0
in IR3 nBR where � > 0. Then,

Z
jxj=r

(u
@v

@�
� v

@u

@�
)ds = 0

for all r � R.

Proof: We �rst show that there is a constant bounding the integralsZ
jyj=r

ju(y)j2ds(y)

for all r � R from above. From the radiation condition we know

0 = lim
r!1

Z
jxj=r

jx̂ � ru(x)� i�u(x)j2ds

= lim
r!1

( Z
jxj=r

�
jx̂ � ru(x)j2 + �2ju(x)j2

�
ds+ 2<fi�

Z
jxj=r

@u

@�
udsg

)
:

(1.12)
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Applying Green's �rst theorem in the set fR < jxj < rg we have

2<fi�
Z

jxj=r

@u

@�
udsg

= �2�=f
Z

jxj=r

@u

@�
uds�

Z
jxj=R

@u

@�
udsg � 2�=f

Z
jxj=R

@u

@�
udsg

= �2�=f
Z

jxj=R

@u

@�
udsg :

Inserting this into equation (1.12) we can conclude that

lim sup
r!1

Z
jyj=r

ju(y)j2ds(y) <1 :

Of course the same holds true for v.
Employing Green's second theorem in the spherical shell fr � jxj � r0g

we arrive at

0 =
Z

jxj=r

(u
@v

@�
� v

@u

@�
)ds�

Z
jxj=r0

(u
@v

@�
� v

@u

@�
)ds :

The assertion then follows as r0 ! 1 because the radiation condition to-
gether with the Cauchy-Schwarz inequality implies

Z
jxj=r0

(u
@v

@�
� v

@u

@�
)ds

=
Z

jxj=r0

fu(@v
@�

� i�v)� v(
@u

@�
� i�u)gds! 0 ; r0 !1 :

2

Now we can prove that for a radiating solution to the Helmholtz equation
in the exterior of a ball a similar representation as in (1.10) holds true.

Theorem 1.5 Let u 2 C2(IR3 nBR) be a radiating solution to �u+�2u = 0
in IR3 nBR where � > 0.
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(a) For x 2 IR3 nBR the representation

u(x) =
Z

@BR

fu(y)@��(x; y)

@�(y)
� @u

@�
(y)��(x; y)gds(y) (1.13)

is valid.

(b) For x 2 BR we have the relation

0 =
Z

@BR

fu(y)@��(x; y)

@�(y)
� @u

@�
(y)��(x; y)gds(y) : (1.14)

Proof: We �x x 2 IR3 n BR and use Green's formula in the domain fR <
jxj < rg to arrive at

u(x) =
Z

jyj=r

f@u
@�

(y)��(x; y)� u(y)
@��(x; y)

@�(y)
gds(y)

�
Z

jyj=R

f@u
@�

(y)��(x; y)� u(y)
@��(x; y)

@�(y)
gds(y)

Since ��(x; �) is a radiating solution to the Helmholtz equation in the exterior
of Br, the integral over @Br vanishes due to the preceding lemma and we have
proved assertion (a).

For the proof of part (b) we apply the preceding lemma with v = ��(x; �).
2

The last theorem allows to study more precisely the behavior of a radi-
ating solution to the Helmholtz equation. We denote by

S2 := @B1 = fx 2 IR3: jxj = 1g
the unit sphere in IR3.

Lemma 1.6 Let u 2 C2(IR3 n BR) be a radiating solution to �u + �2u = 0
in IR3 nBR where � > 0. Then, there exists a function u1:S

2 ! C such that

u(x) =
ei�jxj

jxj
n
u1(x̂) +O

� 1

jxj
�o

; jxj ! 1 ;

uniformly for all directions x̂ = jxj�1x 2 S2.
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Proof: With the help of

jx� yj =
q
jxj2 � 2x � y + jyj2 = jxj � x̂ � y +O

� 1

jxj
�
; jxj ! 1 ;

which holds uniformly for all y 2 BR, jxj � 2R+1, we obtain the asymptotic
behavior

��(x; y) =
ei�jxj

4�jxj
n
e�i�x̂�y +O

� 1

jxj
�o

; jxj ! 1 ; (1.15)

@��(x; y)

@�(y)
=

ei�jxj

4�jxj
n
�i�x̂ � �(y)e�i�x̂�y +O

� 1

jxj
�o

; jxj ! 1 :

The proof now follows by inserting the above expressions into the represen-
tation (1.13).

2

From u1(x̂) = lim
r!1

re�i�ru(rx̂) we conclude that u1 is uniquely deter-

mined by u and we de�ne that u1 is the far �eld pattern (far �eld, scattering
amplitude) of u.

Now, the natural question arises whether two di�erent radiating solutions
to the Helmholtz equation can have the same far �eld pattern. The next
lemma which is a variant of Rellich's lemma (see [41, 22, 7]) states that this
is not the case, i.e., the far �eld uniquely determines the radiating solution to
the Helmholtz equation. We use stronger assumptions than those employed
in the above references and give a proof whose main idea is due to Miranker
([28]). This proof avoids spherical harmonics and solutions to the spherical
Bessel di�erential equation and is based on Green's formula and the behavior
of the functions ��.

Lemma 1.7 Assume r > 0 and u 2 C2(IR3 n Br) is a solution to �u(x) +
�2u(x) = 0, jxj > r, that satis�es

Z
jxj=r0

ju(x)j2ds(x)! 0 ; r0 !1 ; (1.16)

and the Sommerfeld radiation condition (1.11). Then u = 0 in IR3 n Br.
Especially, any radiating solution to the Helmholtz equation with vanishing
far �eld pattern must vanish identically.
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Proof: The proof consists of three steps. First, we show that u can be
represented as

u(x) =
Z

jyj=r

f@��(x; y)

@�(y)
u(y)� ��(x; y)

@u

@�
(y)gds(y)

=
Z

jyj=r

f@���(x; y)

@�(y)
u(y)� ���(x; y)

@u

@�
(y)gds(y) ; jxj > r :

(1.17)

Next, we de�ne the functions

f+(x̂; t) := e�i�=tu(
1

t
x̂) ; x̂ 2 S2 ; 0 < t < t0 ;

f�(x̂; t) := ei�=tu(
1

t
x̂) ; x̂ 2 S2 ; 0 < t < t0 ;

where t0 > 0 is su�ciently small, and then deduce from the above repre-
sentations that f+ and f� are real analytic in t. In regard of the expansion
theorem for radiating solutions to the Helmholtz equation due to Atkinson
[3] and Wilcox [52, 53],

u(x) =
ei�jxj

jxj
1X
j=0

uj(x̂)

jxjj

that is valid for all su�ciently large jxj, the assertion for f+ immediately
follows by replacing jxj by 1=t. We actually repeat their proof. In the last
step we use the analyticity of f+ and f� to lead the assumption f+ 6= 0 to a
contradiction. This yields the assertion.

In Theorem 1.5 (a) we have proved the �rst equality of (1.17). From
the representation (1.10), which also holds for ��, applied to u in the set
fr < jxj < r0g we have for r < jxj < r0

u(x) =
Z

jyj=r0

f@u
@�

(y)���(x; y)� u(y)
@���(x; y)

@�(y)
gds(y)

�
Z

jyj=r

f@u
@�

(y)���(x; y)� u(y)
@���(x; y)

@�(y)
gds(y) :
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The �rst integral can be written asZ
jyj=r0

f(@u
@�

(y)� i�u(y))���(x; y)

�u(y)(@���(x; y)

@�(y)
� i����(x; y))gds(y) :

Now we use the radiation condition, the condition (1.16) and the estimates
j���(x; y)j+j@���(x; y)=@�(y)j = O(jyj�1), jyj ! 1, and deduce for r0 !1
with the help of the Cauchy-Schwarz inequality the second representation in
(1.17) for u.

From (1.17) we obtain

f+(x̂; t) := e�i�=tu(
1

t
x̂)

=
Z

jyj=r

f@��(
1
t
x̂; y)

@�(y)
e�i�=tu(y)� ��(

1

t
x̂; y)e�i�=t

@u

@�
(y)gds(y) :

(1.18)

Since

j1
t
x̂� yj =

1

t

q
1� 2tx̂ � y + t2jyj2

=
1

t
(1 +

1X
j=1

cj(x̂; y)t
j) ; 0 < t < t0 ;

we can conclude

��(
1

t
x̂; y)e�i�=t =

ei�(j
1

t
x̂�yj� 1

t
)

4�j1
t
x̂� yj

=
1X
j=1

dj(x̂; y)t
j ; 0 < t < t0 ;

where cj, dj denote continuous functions in y 2 @Br, x̂ 2 S2. The conver-
gence is uniform in y, x̂ and t if t0 is su�ciently small. Similarly, we can
obtain a series expansion for e�i�=t@��(

1
t
x̂; y)=@�(y). Inserting these expan-

sions in (1.18) yields the expansion

f+(x̂; t) =
1X
j=1

aj(x̂)t
j ; 0 < t < t0 ; x̂ 2 S2 :
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Analogously, we can derive an expansion for f�.
Now, �x x̂ 2 S2 and assume f+(x̂; �) does not vanish identically in (0; t0).

Then, the quotient f�(x̂; �)=f+(x̂; �) has at most a pole at t = 0. However,
this is a contradiction because f�(x̂; t)=f+(x̂; t) = e2i�=t has an essential sin-
gularity at t = 0. Therefore, we conclude f+(x̂; t) = 0 for all 0 < t < t0,
x̂ 2 S2, hence u(x) = 0 for jxj > 1=t0, and then u = 0 in IR3 n Br because
solutions to the Helmholtz equation are analytic, and we have proved the
�rst assertion of the lemma.

If u is a radiating solution to the Helmholtz equation with vanishing far
�eld pattern, we know that ju(x)j = O(jxj�2), jxj ! 1, hence

Z
jxj=r

ju(x)j2ds(x)! 0 ; r!1 :

Then u vanishes and we have proved the lemma.
2
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1.3 Unique Solvability of the Direct Acoustic

Scattering Problem

In this section we give a precise formulation of the direct acoustic scattering
problem, prove its uniqueness and then turn to its existence proof. Since the
existence proof requires more regularity than continuity for the refractive
index n, we state the problem with the higher regularity assumption on n al-
though the uniqueness proof works for continuous n, too. The existence proof
is based on integral equations containing a volume potential. We therefore
study volume potentials more closely before presenting the existence result.

We need a regularity that is somewhat between continuous and continu-
ously di�erentiable. To this end let us introduce some function spaces.

If G � IR3 is bounded, C(G) is a Banach space with the norm

k'k1 = k'k1;G := sup
x2G

j'(x)j :

A complex-valued function ' de�ned on a set G � IR3 is called uniformly
H�older continuous with H�older exponent 
, 0 < 
 < 1, if there is a positive
constant M such that j'(x) � '(y)j � M jx � yj
 for all x, y 2 G. For
0 < 
 < 1 we denote by C0;
(G) the linear space of bounded and uniformly
H�older continuous functions on G with H�older exponent 
. Equipped with
the norm

k'k0;
 = k'k0;
;G := sup
x2G

j'(x)j+ sup
x;y2G
x6=y

j'(x)� '(y)j
jx� yj


C0;
(G) is a Banach space.
Similarly, we can introduce functions having uniformly H�older continuous

derivatives. If G � IR3 is an open set, we de�ne C1;
(G) to be the Banach
space of all bounded and continuously di�erentiable functions ' on G for
which the gradient r' is a bounded and uniformly H�older continuous vector
�eld on G with exponent 
. The norm in C1;
(G) is

k'k1;
 = k'k1;
;G := sup
x2G

j'(x)j+ sup
x2G

jr'(x)j+ sup
x;y2G
x6=y

jr'(x)�r'(y)j
jx� yj
 :

We de�ne C1;
(@D) and its norm analogously by replacing the gradient by
the surface gradient.
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Let us now formulate our model for the scattering of an incident acoustic
wave ui in an inhomogeneous medium in IR3 with compact inhomogeneity.
Assume � > 0 and n 2 C0;
(IR3), 0 < 
 < 1, are given with supp(1�n) � BR

and =(n) � 0. Moreover, ui 2 C2(IR3) with �ui + �2ui = 0 in IR3 is known.
Then the direct acoustic scattering problem (DAP ) consists in �nding us 2
C2(IR3) such that u := ui + us satis�es

�u(x) + �2n(x)u(x) = 0 ; x 2 IR3 ; (1.19)

and such that us satis�es the Sommerfeld radiation condition (1.11)

���x̂ � rus(x)� i�us(x)
��� = o(

1

jxj) ; jxj ! 1 ;

uniformly for all directions x̂ := jxj�1x.
We regard ui as an incident wave, us as the scattered wave and u as the

total wave.
The �rst theorem states uniqueness for the problem (DAP ).

Theorem 1.8 If us 2 C2(IR3) satis�es �us + �2nus = 0 in IR3 and the
Sommerfeld radiation condition (1.11), then us = 0 in IR3, especially, the
direct acoustic scattering problem has at most one solution.

Proof: As in (1.12) we know from the radiation condition

0 = lim
r!1

n Z
jxj=r

fj@u
s

@�
j2 + �2jusj2gds+ 2<fi�

Z
jxj=r

@us

@�
usdsg

o
; (1.20)

and Green's �rst theorem (1.8) yields

2<fi�
Z

jxj=r

@us

@�
usdsg = �2=f�

Z
Br

fjrusj2 + us�usgdxg

= �2=f�
Z
Br

fjrusj2 � �2njusj2gdxg

= 2�3f
Z
Br

=(n)jusj2dxg � 0 :

Hence, we can infer from equation (1.20) thatZ
jxj=r

jusj2ds! 0 ; r!1 ;
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and Lemma 1.7 yields us(x) = 0 for jxj > R, i.e., u 2 C2
0 (IR

3).
From �us + �2nus = 0 we obtain the inequality j�usj � M jusj in IR3

where M := maxf�2jn(x)j: x 2 IR3g. Now, applying Theorem 1.2 we arrive
at us = 0 in IR3 and have proved the theorem.

2

Now, we are going to show that the direct scattering problem (DAP )
has a solution. To this end assume u = ui + us is the solution to the direct
scattering problem (DAP ). For x 2 IR3 we choose r > jxj + R. Applying
Green's formula (1.10) we arrive at

u(x) =
Z

@Br

f@u
@�

(y)��(x; y)� u(y)
@��(x; y)

@�(y)
gds(y)

��2
Z
Br

(1� n(y))u(y)��(x; y)dy :

Inserting ui + us for u into the integral over @Br and observing that the
contribution from us is zero due to (1.14) whereas the remaining integrals
over @Br represent u

i due to (1.10) we obtain the integral equation

u(x) = ui(x)� �2
Z
BR

(1� n(y))u(y)��(x; y)dy ; x 2 IR3 ; (1.21)

which is known as the Lippmann-Schwinger equation. This is an integral
equation of the second kind in BR for the unknown total �eld u. Our aim
is to show that a solution u of the Lippmann-Schwinger equation yields a
solution us to the scattering problem via us = u � ui. We can then obtain
the solvability of the integral equation by the Riesz theory and the previous
uniqueness theorem. Hence we have proved the existence of a solution to the
scattering problem (DAP ). To this end we have to study the properties of
the volume potential

(V�')(x) :=
Z
BR

��(x; y)'(y)dy ; x 2 IR3 ;

which appears in the above equation. We replace the kernel �� by a more
general kernel because in later sections we shall encounter volume potentials
with di�erent kernels again. In [13, IV 4.1] the reader can �nd the proofs for
volume potentials with a kernel k(x; y) which are not of a convolution type.
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Let us start with an examination of the �rst derivatives of a volume po-
tential and with the proof for the compactness of volume potential operators.

Theorem 1.9 Assume 0 < R1 < R2. Let k 2 C2(B2R2
n f0g) satisfy

jk(x)j �M jxj�1 ; j@jk(x)j �M jxj�2 ; j@j@lk(x)j � M jxj�3 ;
for j, l = 1; 2; 3, 0 < jxj � 2R1, with a suitable constant M . De�ne for a
density ' 2 C(BR1

) the volume potential V ' by

(V ')(x) :=
Z

BR1

k(x� y)'(y)dy ; x 2 BR1
:

Then V ' has the following properties:

(a) For all 
 2 (0; 1) V ' 2 C1;
(BR1
) and there is a suitable constant C


such that kV 'k1;
 � C
k'k1 for all ' 2 C(BR1
).

(b) The derivatives have the form

(@j(V '))(x) =
Z

BR1

(@jk)(x� y)'(y)dy ; x 2 BR1
; j = 1; 2; 3 :

For ' 2 C1
0(BR1

) the relation @j(V ') = V (@j') holds true.

(c) The operators

V : (C(BR1
); k � k1) ! (C(BR1

); k � k1) ;
V : (C(BR1

); k � kL2(BR1
)) ! (C(BR1

); k � kL2(BR1
)) and

V : (C(BR1
); k � kL2(BR1

)) ! (C(BR1
); k � k1)

are compact.

Proof: Due to the weak singularities of k and @jk at x = 0 the integrals in
the assertion exist as improper integrals. We choose a function � 2 C1(IR3)
such that 0 � � � 1, �(x) = 0 for jxj � 1, and �(x) = 1 for jxj � 2. Then
we de�ne

(Vl')(x) :=
Z

BR1

�(l(x� y))k(x� y)'(y)dy ; x 2 BR1
; l 2 IN :
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Since �(l � )k 2 C1(B2R2
), we know Vl' 2 C1(BR1

) and

(@j(Vl'))(x) =
Z

BR1

�(l(x� y))(@jk)(x� y)'(y)dy

+
Z

BR1

l(@j�)(l(x� y))k(x� y)'(y)dy ; x 2 BR1
:

(1.22)

From

jVl'(x)� V '(x)j �
Z

fjy�xj�2=lg

M

jx� yjk'k1dy � cl�2 ; l!1 ;

we know kVl' � V 'k1 ! 0, l ! 1. c denotes various positive constants
during the proof which may vary from inequality to inequality. A similar
estimate shows that the second integral in (1.22) converges uniformly to
zero, whereas the �rst integral in (1.22) converges uniformly toZ

BR1

(@jk)(x� y)'(y)dy :

This implies V ' 2 C1(BR1
) and the �rst formula for the derivative in part

(b). For ' 2 C1
0 (BR1

) integration by parts yields @j(Vl') = Vl(@j'). Passing
to the limit l ! 1 we can derive the second assertion of part (b) by the
previous considerations.

Next, we show the H�older continuity of @j(V ') and the norm estimate.
The inequality

j(V ')(x)j �
Z

BR1

jk(x� y)jk'k1dy

� M
Z

jx�yj�2R1

jx� yj�1dyk'k1 � ck'k1

and a similar estimate for @j(V ') provide bounds for the supremum norms
of V ' and @j(V '). For the H�older continuity we �rst observe that if x, z,
y 2 BR1

with 2jx� zj � jx� yj are given and if x� = x+ t(z � x), t 2 [0; 1],
lies on the line between x and z, then jx� � yj � (1=2)jx� yj because
jx� � yj = jx+ t(z � x)� yj � jx� yj � tjz � xj

� jx� yj � (t=2)jx� yj � (1=2)jx� yj :
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Then we obtain for x, y, z 2 BR1
with 2jx� zj � jx� yj the estimate

j(@jk)(x� y)� (@jk)(z � y)j = j
1Z

0

(x� z) � (r@jk)(x + t(z � x))dtj

� c
jx� zj
jx� yj3 : (1.23)

Finally, we compute for x, z 2 BR1
with � := jx� zj > 0:

j
Z

BR1

((@jk)(x� y)� (@jk)(z � y))'(y)dyj

�
Z

BR1

j(@jk)(x� y)� (@jk)(z � y)jdyk'k1

� k'k1f
Z

BR1
\fjx�yj�2�g

(j(@jk)(x� y)j+ j(@jk)(z � y)j)dy

+
Z

BR1
\fjx�yj�2�g

j(@jk)(x� y)� (@jk)(z � y)jdyg

and bound the �rst integral by

Z
jx�yj�2�

M

jx� yj2dy +
Z

jz�yj�3�

M

jz � yj2dy � c�

and the second with the help of (1.23) by

Z
2��jx�yj�2R1

cjx� zj
jx� yj3dy � cjx� zj log � � cjx� zj


This completes the proof of assertion (a).
Since by the Arzel�a-Ascoli theorem the imbedding (C1;
(BR1

); k�k1;
) into
(C(BR1

); k � k1) is compact, we conclude from part (a) the �rst assertion of
part (c). The Arzel�a-Ascoli theorem also implies that the operators Vl are
compact operators from (C(BR1

); k � kL2(BR1
)) to (C(BR1

); k � k1). Using the
Cauchy-Schwarz inequality we can estimate

jVl'(x)� V '(x)j2 �
h Z
fjy�xj�2=lg

M

jx� yjj'(y)jdy
i2
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�
Z

fjy�xj�2=lg

M2

jx� yj2dy
Z

fjy�xj�2=lg

j'(y)j2dy

c

l
k'k2L2(BR1

)

for all x 2 BR1
, whence

sup
k'kL2=1

kVl'� V 'k1 ! 0 ; l!1 :

Then, V : (C(BR1
); k � kL2(BR1

)) ! (C(BR1
); k � k1) is compact and so is

V : (C(BR1
); k�kL2(BR1

))! (C(BR1
); k�kL2(BR1

)) due to the continuous imbed-

ding of (C(BR1
); k � k1) into (C(BR1

); k � kL2(BR1
)). This ends the proof of

the theorem.
2

The next theorem deals with the second derivatives of a volume potential.

Theorem 1.10 Assume 0 < R1 < R2.

(a) If k 2 C2(B2R2
nf0g) satis�es the assumptions from Theorem 1.9 and if

the density ' 2 C0;
(BR1
), 
 2 (0; 1), is uniformly H�older continuous,

then the volume potential

(V ')(x) :=
Z

BR1

k(x� y)'(y)dy ; x 2 BR1
;

is twice continuously di�erentiable in BR1
and we have

(@l@j(V '))(x) =
Z

BR1

(@l@jk)(x� y)['(y)� '(x)]dy

�'(x)
Z

@BR1

�l(y)(@jk)(x� y)ds(y)

=
Z

BR1

(@l@jk)(x� y)['(y)� '(x)]dy

�'(x)
Z

@BR1

�j(y)(@lk)(x� y)ds(y) :

31



(b) If k has the form k(x) = (1=(4�jxj)) + ~k(x), 0 < jxj < 2R2, where
~k 2 C3(B2R2

n f0g) satis�es
j~k(x)j �M ; j@j~k(x)j �M jxj�1 ;

j@j@l~k(x)j �M jxj�2 ; j@j@l@m~k(x)j �M jxj�3 ;
for j, l, m = 1; 2; 3, 0 < jxj � 2R1, with a suitable constant M , then
V ' 2 C2(BR1

) and

(�(V '))(x) = �'(x) +
Z

BR1

(�~k)(x� y)'(y)dy ; x 2 BR1
:

Proof: We know from Theorem 1.9 that V ' 2 C1(BR1
) and that we have for

a �xed j

v(x) := (@j(V '))(x) =
Z

BR1

(@jk)(x� y)'(y)dy ; x 2 BR1
:

Using the function � from Theorem 1.9 we de�ne

vm(x) :=
Z

BR1

(@jk)(x� y)�(m(x� y))'(y)dy ; x 2 BR1
; m 2 IN :

Proceeding as in the previous theorem we obtain kvm � vk1 ! 0, m !1,
vm 2 C1(BR1

) and

@lvm(x) =
Z

BR1

@

@xl

�
(@jk)(x� y)�(m(x� y))

�
'(y)dy

=
Z

BR1

@

@xl

�
(@jk)(x� y)�(m(x� y))

�
('(y)� '(x))dy

� '(x)
Z

BR1

@

@yl

�
(@jk)(x� y)�(m(x� y))

�
dy

=
Z

BR1

@

@xl

�
(@jk)(x� y)�(m(x� y))

�
('(y)� '(x))dy

� '(x)
Z

@BR1

�l(y)(@jk)(x� y)�(m(x� y))ds(y) ; x 2 BR1
:
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Here, we have used integration by parts in the last step. As m!1, due to
the uniform H�older continuity of ', the �rst integral converges uniformly toZ

BR1

(@l@jk)(x� y)('(y)� '(x))dy ;

whereas the second term converges locally uniformly to

�'(x)
Z

@BR1

�l(y)(@jk)(x� y)ds(y) :

Hence, v 2 C1(BR1
), i.e., V ' 2 C2(BR1

), and

(@l@j(V '))(x) = @lv(x)

=
Z

BR1

(@l@jk)(x� y)('(y)� '(x))dy

�'(x)
Z

@BR1

�l(y)(@jk)(x� y)ds(y) ; x 2 BR1
:

Moreover, from @l@j(V ') = @j@l(V ') we can infer the second formula in
assertion (a) for the derivatives and we have proved part (a).

For assertion (b) we note that ~k and @j~k satisfy the assumptions of The-
orem 1.9. Therefore,

( ~V ')(x) :=
Z

BR1

~k(x� y)'(y)dy ; x 2 BR1
;

is twice continuously di�erentiable in BR1
and integration and di�erentiation

may be interchanged. Hence, it remains to investigate the Newton potential

(V0')(x) :=
Z

BR1

1

4�jx� yj'(y)dy ; x 2 BR1
:

We can conclude from part (a) that V0' is twice continuously di�erentiable
in BR1

and that

�(V ') =
Z

BR1

�x

� 1

4�jx� yj
�
('(y)� '(x))dy

+ '(x)
Z

@BR1

�(y) � (x� y)

4�jx� yj3 ds(y) = �'(x) ; x 2 BR1
:
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In the last step we have used �(1=jxj) = 0, jxj > 0, and the representation
formula (1.10) in BR1

for � = 0 and the function u(x) = 1, x 2 BR1
.

2

Straightforward calculations show that for � 2 C the kernel

k(x) :=
ei�jxj

4�jxj ; jxj > 0 ;

satis�es the assumptions in Theorem 1.9. Furthermore,

~k(x) :=
ei�jxj � 1

4�jxj =
1

4�

1X
j=1

(i�)j

j!
jxjj�1 ; jxj > 0 ; � 2 C ;

satis�es the assumptions of Theorem 1.10. And �nally,

�~k(x) = �
ei�jxj

4�jxj = ��2 e
i�jxj

4�jxj ; jxj > 0 :

Consequently, the following theorem holds true for the volume potential

(V�')(x) :=
Z
BR

��(x; y)'(y)dy ; x 2 IR3 :

Theorem 1.11

(a) If ' 2 C(BR), then V�' 2 C1;
(BR) for all 0 < 
 < 1, the order
of di�erentiation and integration can be interchanged, and kV�'k1;
 �
C
k'k1.

(b) If ' 2 C0;
(BR), then V�' 2 C2(BR) and �(V�') + �2(V�') = �'.
Especially, if ' 2 C0;
(BR) has compact support in BR, then V�' 2
C2(IR3) and �(V�') + �2(V�') = �' in IR3.

(c) If ' 2 C1
0(BR), then @j(V�') = V�(@j').

We are now in a position to prove that a solution to the Lippmann-
Schwinger equation (1.21)

u(x) = ui(x)� �2
Z
BR

(1� n(y))u(y)��(x; y)dy ; x 2 BR :

yields a solution to the direct acoustic scattering problem.
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Lemma 1.12 Let u 2 C(BR) be a solution of the Lippmann-Schwinger equa-
tion (1.21) in BR. Then

us(x) := ��2
Z
BR

(1� n(y))u(y)��(x; y)dy ; x 2 IR3 ; (1.24)

is the solution of the direct acoustic scattering problem (DAP ).

Proof: First, we conclude from the Lippmann-Schwinger equation and the
regularity of the volume potential that u 2 C1(BR) and then us 2 C2(IR3).
Moreover, us is a radiating solution to the Helmholtz equation in the exterior
of BR because �� is. Finally, due to the Lippmann-Schwinger equation, we
can extend u by u := ui + us in IR3 and we compute

�u+ �2u = �us + �2us = �2(1� n)u ;

where we have used Theorem 1.11 again.
2

The existence of a solution to the direct scattering problem (DAP ) is an easy
consequence of the previous lemma and the uniqueness proof.

Theorem 1.13 The direct acoustic scattering problem (DAP ) has a unique
solution us. The total �eld u := ui + us is the unique solution to the
Lippmann-Schwinger equation (1.21) in IR3.

Proof: We have established uniqueness for (DAP ) in Theorem 1.8. Due to
the compact imbedding of C1;
(BR) into C(BR) we can conclude from the
mapping properties of the volume potential that the equation

u(x) = ui(x)� �2
Z
BR

(1� n(y))u(y)��(x; y)dy ; x 2 BR ;

is a Fredholm integral equation of the second kind with a compact integral
operator in C(BR). Consequently, by the Riesz theory it has a unique solution
if it has a trivial nullspace. If u 2 C(BR) is a solution of the integral equation
with ui = 0, we de�ne us as in (1.24) and conclude from Lemma 1.12 that us

is a solution of the homogeneous problem (DAP ). This implies u = us = 0 by
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the uniqueness for (DAP ). Since by Lemma 1.12 a solution of the Lippmann-
Schwinger equation yields a solution to the scattering problem (DAP ), we
have proved the theorem.

2

From the representation

us(x) = ��2
Z
BR

(1� n(y))u(y)��(x; y)dy ; x 2 IR3 ;

and the asymptotic behavior of the fundamental solution (1.15) we obtain

us1(x̂) = ��
2

4�

Z
BR

(1� n(y))u(y)e�i�x̂�ydy ; x̂ 2 S2 : (1.25)

For the incident wave ui(x; d) := ei�x̂�d, x 2 IR3, which represents a plane
wave travelling in direction d 2 S2 we denote by us(�; d) and u1(�; d) the
corresponding scattered wave and far �eld pattern, respectively.

The next chapter is devoted to the question how much information about
the refractive index n can be recovered from u1:S

2 � S2 ! C.
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Chapter 2

The Inverse Acoustic

Scattering Problem

This chapter is devoted to an inverse acoustic scattering problem. We assume
that the refractive index n is unknown. In order to obtain some information
about n we probe the medium with plane incident waves and measure the
corresponding far �eld patterns of the scattered waves. Assuming that the far
�eld patterns at a �xed wave number for all incident directions are available,
i.e., u1:S

2�S2 ! C is known, the task is to reconstruct n from these data.
We follow the historic development and start with a more modest result.

Namely, these data su�ce to determine n uniquely. To this end we have to
construct special solutions to the equation �u + �2nu = 0. The construc-
tion for a very similar case, due to Sylvester and Uhlmann, is worked out in
[46]. We modify their method by using Fourier series techniques instead of
the Fourier transform. The special solutions allow to prove that the Fourier
coe�cients of two refractive indices producing the same far �eld patterns
must coincide (see [20, 37, 40] and [47, 46, for related problems]). Mean-
while, in [44, 35] there are even uniqueness results for more general operators
available, like the Schr�odinger operator in the presence of a magnetic �eld.
However, the proofs require a more elaborate analysis due to the �rst order
perturbations of the Laplacian.

Then, we proceed to the question what norm should be used on the data
set in order to have continuous dependence of n on the data. In a �rst step
we construct certain boundary integral operators Sn from the far �eld be-
longing to n. It turns out that this problem is severely ill-posed and we
have to employ a very strong norm on the data set. In a second step we
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give a logarithmic stability estimate of kn � ~nk1 in terms of kSn � S~nk1
and in terms of the distance of the far �eld patterns. Inspired by the paper
[2] of Alessandrini about the continuous dependence of the conductivity on
boundary measurements Stefanov has investigated the question of stability
for the inverse scattering problem in [42]. Our approach, though built on his
proof, avoids the Dirichlet-to-Neumann map in order to circumvent di�cul-
ties which arise from interior Dirichlet eigenvalues. Moreover, we are able to
obtain the stability result without employing a lemma concerning estimates
of holomorphic functions in C3.

Finally, we shall give a constructive procedure to recover n. Again, we
�rst construct certain boundary integral operators from the far �eld pattern.
Then, we use these operators to compute the Fourier coe�cients of n � 1.
The main ideas of the proof for the second part can be found in Nachman's
paper [32]. Of course, we base our analysis on Fourier series whereas he uses
Fourier transformation techniques. Furthermore, Nachman works with the
Dirichlet-to-Neumann map which is not possible in the presence of interior
Dirichlet eigenvalues. Since we start with the far �eld pattern, we can use a
di�erent map and therefore avoid this problem.

Inspite of the fact that the reconstruction of n implies its uniqueness
we deal with the uniqueness question separately because the reconstruction
procedure grows out of the ideas from the uniqueness proof. Hence, beginning
with uniqueness and then proceeding to the reconstruction seems to be the
less di�cult (but longer) way to understand the reconstruction.
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2.1 Uniqueness for the Inverse Acoustic Scat-

tering Problem

We assume n, ~n 2 C0;
(IR3), 0 < 
 < 1, satisfy =(n) � 0, =(~n) � 0,
supp(1 � n) � BR, and supp(1 � ~n) � BR. For a �xed wave number � > 0
we denote by ui(x; d) := ei�d�x, x 2 IR3, a plane incident wave propagating
into the direction d 2 S2. For the incident wave ui(�; d) we de�ne us(�; d),
~us(�; d) to be the solutions to the direct scattering problem (DAP ) from
page 26 corresponding to the incident wave ui(�; d) and to the refractive
index n, ~n, respectively. Similarly, u(�; d), ~u(�; d), u1(�; d) and ~u1(�; d) are
the total waves and the far �eld patterns of the scattered waves belonging
to the incident wave ui(�; d) and the refractive index n, ~n, respectively. Let
us now assume, that for a �xed wave number � > 0 and for all directions
d 2 S2 the far �eld patterns u1(�; d) and ~u1(�; d) coincide on S2. It is the
aim of this section to prove that then n and ~n must coincide.

Before we start with the proof we want to give a brief outline. The �rst
step is the relation

Z
BR

(n(x)� ~n(x))u(x)~u(x)dx = 0 (2.1)

for all solutions u, ~u to �u + �2nu = 0 and �~u + �2~n~u = 0 in BR1
, re-

spectively, where we choose R1 > R. If u has the special form u(�; d), we
obtain relation (2.1) with the help of Green's theorem from the coincidence
of the far �eld patterns in the next lemma. In order to prove the relation for
general solutions u we show in Lemma 2.3 that an arbitrary solution u can
be approximated by elements from spanfu(�; d): d 2 S2g with respect to the
L2-norm.

We can infer the uniqueness of the refractive index from relation (2.1) if
we know that a function q 2 C(BR) satisfying

R
BR

qu~udx = 0 for all u and ~u

as above must vanish identically. To this end we have to construct special
solutions for the equation �u+ �2nu = 0 which depend in a suitable way on
a parameter � 2 C3. This construction is the second step of the proof and it
will take the largest amount of work in this section. Finally, in Theorem 2.10
by inserting these special solutions for u and ~u we can show that the Fourier
coe�cients of q vanish, whence q is zero.

Let us begin with the relation (2.1) for the special case u = u(�; d).
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Lemma 2.1 Let 0 < R < R1 and let ~u 2 C2(BR1
) be a solution to �~u +

�2~n~u = 0 in BR1
. If for a �xed d 2 S2 the far �eld patterns u1(�; d) and

~u1(�; d) for the refractive indices n, ~n coincide on S2, then we haveZ
BR

(n(x)� ~n(x))u(x; d)~u(x)dx = 0 : (2.2)

Proof: We consider the function u(�; d)� ~u(�; d) = us(�; d)� ~us(�; d) 2 C2(IR3)
which is a radiating solution to the Helmholtz equation in the exterior of
BR with vanishing far �eld pattern due to ~u1(�; d) = u1(�; d). Hence, for
R < R2 < R1, we know from Rellich's lemma (Lemma 1.7) u(�; d)� ~u(�; d) 2
C2
0(BR2

) and therefore u(�; d) = ~u(�; d) and (@u=@�)(�; d) = (@~u=@�)(�; d) on
@BR2

. Using these identities we obtain

0 =
Z

@BR2

�@~u
@�

~u(�; d)� @~u

@�
(�; d)~u

�
ds

=
Z

@BR2

�@~u
@�
u(�; d)� @u

@�
(�; d)~u

�
ds

= �2
Z

BR2

(n� ~n)u(�; d)~udx ;

where in the �rst and in the last equation we have also employed Green's
second theorem together with the partial di�erential equations for ~u, ~u(�; d)
and u(�; d). Since n � ~n vanishes in the exterior of BR, we have proved the
lemma.

2

Remark: We shall show in the appendix to this section that (2.2) is actually
equivalent to the assumption ~u1(�; d) = u1(�; d). In the sequel we work with
equation (2.2).

Our next goal is to replace the function u(�; d) in (2.2) by an arbitrary
solution u 2 C2(BR1

) to �u + �2nu = 0 in BR1
. This can be achieved by

proving that u can be approximated by elements from spanfu(�; d): d 2 S2g
with respect to the L2(BR)-norm. In the next lemma we prove this approx-
imation result for the special case n = 1. From this we derive the general
approximation result with the help of the Lippmann-Schwinger equation. We
essentially follow the proof of [20, Lemma 5.20]. We give a di�erent proof for
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n = 1 with the help of series expansions in the appendix. A third proof can
be found in [21, Lemma 3.2].

Before we prove the completeness of the plane waves in the space of
solutions to the Helmholtz equation we want to give an informal outline of
the main idea. Assume that v0 2 L2(BR) satis�es �v0 + �2v0 = 0 in BR and
that v0 is orthogonal to all plane waves, i.e.,Z

BR

v0(x)e
i�d�xdx = 0 ; d 2 S2 :

De�ning

w(x) =
Z
BR

v0(y)��(x; y)dy ; x 2 IR3 ;

we compute �w+�2w = �v0 and 4�w1(�d) = R
BR

v0(x)e
i�d�xdx = 0, d 2 S2,

i.e., w(x) = 0 for jxj > R. Green's second theorem then implies

�
Z
BR

jv0j2dx =
Z
BR

v0(�w + �2w)dx =
Z
BR

w(�v0 + �2v0)dx = 0 :

Let us now give a rigorous proof of this idea.

Lemma 2.2 Let 0 < R < R2 and let ui 2 C2(BR2
) satisfy �ui+�2ui = 0 in

BR2
. Then, there exists a sequence uij 2 spanfui(�; d): d 2 S2g, j 2 IN, such

that kui � uijkL2(BR) ! 0, j !1.

Proof: We de�ne the linear subspace

X := fvjBR
: v 2 C2(BR2

) and �v + �2v = 0 in BR2
g � L2(BR)

and X to be the completion of X in L2(BR). It su�ces to prove that
spanfui(�; d)jBR

: d 2 S2g � X is dense in X. Since X is a Hilbert space,
this is equivalent to the assertion that any v0 2 X which is orthogonal to
spanfui(�; d)jBR

: d 2 S2g must be zero.
Now let v0 2 X be orthogonal to the plane waves and de�ne

w(x) :=
Z
BR

v0(y)��(x; y)dy ; x 2 IR3 nBR :
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Then, w 2 C2(IR3 nBR) is a radiating solution to the Helmholtz equation in
the exterior of BR and we compute

w1(�d) = 1

4�

Z
BR

v0(y)e
i�d�ydy = 0 ; d 2 S2 :

Rellich's lemma implies w = 0 and especially for R < R3 < R2: wj@BR3
=

(@w=@�)j@BR3
= 0.

Next, we choose a sequence vk 2 C2(BR2
) with �vk + �2vk = 0 in BR2

and kvk � v0kL2(BR) ! 0, k !1. We know from Green's formula (1.10)

vk(x) =
Z

@BR3

�@vk
@�

(y)��(x; y)� vk(y)
@��

@�(y)
(x; y)

�
ds(y) ; x 2 BR :

Inserting this expression for vk and interchanging the orders of integration
we deriveZ

BR

vk(x)v0(x)dx =
Z

@BR3

n@vk
@�

(y)
Z
BR

v0(x)��(x; y)dx

�vk(y) @

@�(y)

Z
BR

v0(x)��(x; y)dx
o
ds(y)

=
Z

@BR3

n
w(y)

@vk
@�

(y)� vk(y)
@w

@�(y)

o
ds(y) = 0 :

Now, taking k !1 implies the desired result v0 = 0.
2

The next lemma uses the Lippmann-Schwinger equation to extend the
result of the preceding lemma to the general case with an arbitrary refractive
index n.

Lemma 2.3 Let 0 < R < R1 and let u 2 C2(BR1
) satisfy �u+ �2nu = 0 in

BR1
. Then, there exists a sequence uj 2 spanfu(�; d): d 2 S2g, j 2 IN, such

that ku� ujkL2(BR) ! 0, j !1.

Proof: We choose R < R2 < R1 and de�ne

ui(x) :=
Z

@BR2

�@u
@�

(y)��(x; y)� u(y)
@��

@�(y)
(x; y)

�
ds(y) ; x 2 BR2

:
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Green's formula (1.10) applied to u in the domain BR2
yields together with

the di�erential equation �u+ �2u = �2(1� n)u the integral equation

u(x) = ui(x)� �2
Z

BR2

(1� n(y))u(y)��(x; y)dy ; x 2 BR ; (2.3)

i.e., u = (I � T )�1ui on BR, where T :C(BR)! C(BR) denotes the integral
operator

(T')(x) := ��2
Z
BR

(1� n(y))'(y)��(x; y)dy ; x 2 BR :

Theorem 1.9 (c) implies that T is a compact linear operator from C(BR)
equipped with the k�kL2-norm into itself, whence (I�T )�1 is bounded in that
space. Due to Lemma 2.2 there is a sequence uij from spanfui(�; d): d 2 S2g
with kuij � uikL2(BR) ! 0, j ! 1. We de�ne uj to be the solution of the
Lippmann-Schwinger equation (2.3) with ui replaced by uij. Then, we have
uj 2 spanfu(�; d): d 2 S2g, j 2 IN, and

ku� ujkL2(BR) = k(I � T )�1(ui � uij)kL2(BR) � ckui � uijk2L2(BR)
;

i.e., ku� ujkL2(BR) ! 0, j !1.

2

If we approximate an arbitrary solution u of �u + �2nu = 0 in BR1
by

elements from spanfu(�; d): d 2 S2g in L2(BR) and use Lemma 2.1, we obtain
the desired relation (2.1) which we state in the next lemma.

Lemma 2.4 Let 0 < R < R1. If the far �eld patterns for the refractive
indices n, ~n coincide on S2 � S2, i.e., u1 = ~u1, then for all solutions
~u 2 C2(BR1

) to �~u+ �2~n~u = 0 in BR1
and for all solutions u 2 C2(BR1

) to
�u+ �2nu = 0 in BR1

the relation

Z
BR

(n(x)� ~n(x))u(x)~u(x)dx = 0 (2.4)

holds true.
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Our next aim is to show that a function q 2 C(BR), satisfying
R
BR

qu~udx =

0 for all u, ~u as in the above lemma, must vanish. This result together with
relation (2.4) implies our desired uniqueness theorem for the inverse acoustic
scattering problem.

In order to motivate the following analysis let us �rst give a proof for the
case that u and ~u are solutions to the Helmholtz equation, i.e., n = ~n = 1,
which goes back to Calder�on [5].

Lemma 2.5 Let q 2 C(BR) satisfyZ
BR

q(x)u(x)~u(x)dx = 0

for all solutions u, ~u 2 C2(IR3) to the Helmholtz equation �v + �2v = 0 in
IR3. Then q = 0.

Proof: We �x R0 > 0 su�ciently large to ensure BR � (�R0; R0)3. Then, for
a �xed vector � 2 � � IR3 we choose d1, d2 2 IR3 such that �, d1 and d2 are
orthogonal and such that jd1j = jd2j = 1. Finally, we de�ne

� := �1

2
� +

ij�j
2
d1 + �d2 ; ~� := �1

2
�� ij�j

2
d1 � �d2 2 C3

and compute � + ~� = ��, � � � = ~� � ~� = �2. Hence, u(x) := ei��x and

~u(x) := ei
~��x, x 2 IR3, are solutions to the Helmholtz equation. Using the

assumption of the lemma this implies

0 =
Z
BR

q(x)u(x)~u(x)dx =
Z
BR

q(x)e�i��xdx :

Consequently, the Fourier coe�cients of q must vanish, i.e., q = 0 by Parse-
val's relation (1.2).

2

We have some freedom in the choice of the vectors � and ~� in the above
lemma, e.g. for any t > � the vectors

� := �1

2
� + i

s
t2 � �2 +

j�j2
4
d1 + td2 2 C3 ;

~� := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 2 C3
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also satisfy � + ~� = ��, � � � = ~� � ~� = �2 and can be used to de�ne u and ~u.
For arbitrary n and ~n we try to imitate the reasoning in Lemma 2.5. We

look for solutions to �u+�2nu = 0 having the form u(x) = ei��x(1+v(x; �)),
x 2 BR, with a suitable function v(�; �) depending on the parameter � 2 C3,
� � � = �2. We shall use the freedom in the choice of � and show that
we can �nd functions v(�; �) such that kv(�; �)kL2(BR) ! 0 as j=(�)j ! 1.
Inserting these solutions and analogous solutions ~u into (2.4) and using the
limit t!1 implies that the Fourier coe�cients of n� ~n must vanish at the
point � 2 �. Since � is arbitrary, we can conclude n = ~n.

Note that in two dimensions the freedom in the choice of the parameters �
and ~� no longer exists. Therefore this proof fails in the two-dimensional case.
To the authors knowledge the question whether u1 uniquely determines n in
two dimensions is still open. It is possible to show uniqueness if u1 is known
for many di�erent frequencies (see [18]) or if some more assumptions on n
are made (see [34]).

Inserting u(x) = ei��x(1+v(x; �)), x 2 BR, into the equation �u+�
2nu =

0 and using � � � = �2 we obtain the di�erential equation

�v(�; �) + 2i� � rv(�; �) = �2(1� n)v(�; �) + �2(1� n)

for the function v(�; �). For special vectors � = (s; it; 0) we had formally
derived solution operators G0

� for the equation �w + 2i� � rw = f in Theo-
rem 1.1, namely

G0
�:L

2(C)! L2(C) G0
�f := �X

�2�

f̂(�)

(� � � + 2� � �)e� :

The L2-norms of those operators converge to zero as t ! 1 which seems
to match the desired behavior of v(�; �). In Theorem 1.1 we did not worry
whether these operators really yield solutions to the di�erential equation.
Since we want to employ them for the construction of v(�; �), we have to
deal with this problem now. The second di�culty is that we have to allow
more general vectors � than those of the special form (s; it; 0). However, it
is easy to reduce the general case to the special one with the help of unitary
transformations.

Inserting f̂(�) =
R
C
f(y)e�(y)dy into the de�nition of G0

� we formally ob-

tain
G0
�f(x) = �

Z
C

g�(x� y)f(y)dy ;
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where the function g� is de�ned by

g� :=
X
�2�

1

(� � � + 2� � �)e� : (2.5)

Our next aim is to show that g� satis�es the assumptions from Theo-
rems 1.9 and 1.10. Then, the results for volume potentials apply to G0

� and
we can work with G0

� the way we did during the proof of Lemma 1.12 with
the operator V�. The basic tool in proving regularity of g� is the following
lemma which is known as Weyl's lemma (see [13, IV 4.2]).

Lemma 2.6 Let D � IR3 be an open set and q 2 C0;
(D), 0 < 
 < 1, be a
uniformly H�older continuous function in D. Furthermore, assume u 2 L2(D)
satis�es Z

D

(�'+ q')udx = 0

for all functions ' 2 C1
0 (D). Then the following assertions hold true:

(a) u 2 C2(D) and �u+ qu = 0 in D.

(b) For any open subset D0 � D such that D0 � D is compact there exists
a constant M depending on D, D0, and kqk1;D, but not on u, such that
kuk1;
;D0 � MkukL2(D). Similarly, there is a constant M 0, depending
on D, D0, and kqk0;
;D such that max

j;l
k@j@luk1;D0 �M 0kukL2(D).

Proof: The �rst step of the proof consists in the construction of appropriate
test functions '. Let B�(x

�) � D, � > 0, be a ball and let � 2 C1
0 (IR) be

a cut-o� function satisfying �(t) = 0, if jtj � �=2, and �(t) = 1, if jtj � �=4.
For a function  2 C1

0 (B�=4(x
�)) we de�ne

'(x) :=
Z
IR3

�(jx� yj)�0(x; y) (y)dy ; x 2 IR3 :

Using the transformation z = x� y we arrive at

'(x) =
Z
IR3

�(jzj) 1

4�jzj (x� z)dz =
Z

B�=2(0)

�(jzj) 1

4�jzj (x� z)dz ; x 2 IR3 ;

whence ' 2 C1(IR3). Moreover, '(x) = 0 for jx�x�j > (3=4)� because then
supp( (x��)) and supp(�(j � j)) = B�=2(0) are disjoint, i.e., ' 2 C1

0 (B�(x
�)).
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De�ning ~k(x) := (�(jxj)� 1)=(4�jxj), x 2 IR3, we know ~k 2 C1(IR3) and
we can conclude from Theorem 1.10

(�' + q')(x) = � (x) +
Z

B�=4(x�)

(�~k)(x� y) (y)dy

+q(x)
Z

B�=4(x�)

�(jx� yj)�0(x; y) (y)dy ; x 2 B�(x
�) :

Reversing the order of integration we thus have

0 =
Z

B�(x�)

(�'+ q')udx

=
Z

B�=4(x�)

 (y)
n
�u(y) +

Z
B�(x�)

(�~k)(x� y)u(x)dx

+
Z

B�(x�)

q(x)�(jx� yj)�0(x; y)u(x)dx
o
dy

for any  2 C1
0 (B�=4(x

�)), whence for almost every y 2 B�=4(x
�)

u(y) =
Z

B�(x�)

(�~k)(x� y)u(x)dx+
Z

B�(x�)

q(x)�(jx� yj)�0(x; y)u(x)dx

(2.6)

holds true.
The Cauchy-Schwarz inequality yields for any function v 2 C1

0 (D)

sup
y2B�=4(x�)

��� Z
B�(x�)

q(x)�(jx� yj)�0(x; y)v(x)dx
���2

� sup
y2B�=4(x�)

Z
B�(x�)

jq(x)�(jx� yj)j2
(4�jx� yj)2 dx kvk2L2(D)

� M2
1 kvk2L2(D) :

Approximating u 2 L2(D) by elements from C1
0 (D) we can conclude that

the second integral on the right hand side of (2.6) is a continuous function on
B�=4(x�) whose maximum norm is bounded by M1kukL2(D). Together with

the fact that �~k is a smooth bounded function in IR3 we can infer from (2.6)

47



that u is continuous in B�=4(x�) and that kuk1;B�=4(x�) � M2kukL2(D) where
the constant M2 depends on � (via �) and on kqk1;D.

Now we replace � by �=4 and repeat the procedure which lead to equation
(2.6) with an adjusted cut-o� function �. We arrive at

u(y) =
Z

B�=4(x�)

(�~k)(x� y)u(x)dx+
Z

B�=4(x�)

q(x)�(jx� yj)�0(x; y)u(x)dx

for y 2 B�=16(x
�). Since we already know u 2 C(B�=4(x�)), we obtain from

Theorem 1.9 that u 2 C1;
(B�=16(x�)) and kuk1;
;B�=16(x�)
�M3kukL2(D).

Repeating the procedure one last time in the ball B�=16(x
�) we �nally

conclude from Theorem 1.10 that u 2 C2(B�=64(x
�)). Since x� 2 D can be

chosen arbitrarily, we have proved u 2 C2(D). Integration by parts immedi-
ately yields for all ' 2 C1

0 (D)

0 =
Z
D

(�'+ q')udx =
Z
D

(�u+ qu)'dx ;

and thus �u+ qu = 0 in D.
For part (b) we cover the compact set D0 by �nitely many balls of the

form B�j=64(xj) where �j is chosen su�ciently small to ensure B�j(xj) � D.
Patching together the above norm estimates for kuk1;
;B�j=16

(xj)
implies the

�rst inequality of assertion (b). In order to bound the second derivatives of
u we use the formula from Theorem 1.10 (a) and relation (2.6) to compute
for y 2 B�=64(x

�)

(@j@lu)(y) =
Z

B�=16(x�)

(�@j@l~k)(x� y)u(x)dx

+
Z

B�=16(x�)

@2

@yj@yl

�
�(jx� yj)�0(x; y)

�
(q(x)u(x)� q(y)u(y))dx

� q(y)u(y)
Z

@B�=16(x�)

�j(x)
@

@yl

�
�(jx� yj)�0(x; y)

�
ds(x) :

Consequently, we can bound

k@j@luk1;B�=64(x�) � M4kuk0;
;B�=16(x�)
�M5kukL2(D) ;
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which implies the second estimate of the assertion (b).

2

We are now in a position to prove that G0
� can be regarded as a volume po-

tential. We de�ne the cube C := (�R0; R0)3, the grid � and the orthonormal
basis e�, � 2 �, as in the �rst chapter and we assume R0 > R > 0.

Lemma 2.7 Assume � = (
p
t2 + �2; it; 0) 2 C3 with � � 0, t > 0. Then,

there exist functions g� 2 C1(B2R0 n f0g), ~g� 2 C1(B2R0) with the following
properties:

(a) (G0
�f)(x) = �

Z
BR

g�(x� y)f(y)dy for almost every x 2 BR and for all

functions f 2 C(BR)

(f is regarded as an element of L2(C) by de�ning it to be zero outside
of BR).

(b) g�(x) =
e�i��xei�jxj

4�jxj + e�i��x~g�(x) ; x 2 B2R0 n f0g :

(c) �~g� + �2~g� = 0 in B2R0.

Proof: We de�ne

g� :=
X
�2�

1

� � � + 2� � �e� :

Since there is a constant M such that j(� � � + 2� � �)�1j � M(1 + � � �)�1
for all � 2 �, we can estimate

X
�2�

��� 1

� � � + 2� � �
���2 <1 ;

and obtain g� 2 L2(C). g� satis�es g�(x1; x2 + 2R0; x3) = �g�(x1; x2; x3),
x 2 IR3, and g� has period 2R0 with respect to the other coordinates, whence
it is square-integrable on each compact subset of IR3.

We prove assertion (a) by showing the coincidence of the Fourier coe�-
cients of the two functions. For y 2 C the function g�(� � y) has the Fourier
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coe�cients

(g�(� � y))̂ (�) =
Z
C

g�(x� y)e�(x)dx

=
Z
C

g�(z)e�(z)dz e�(y) =
e�(y)

� � �+ 2� � � :

If f 2 C(BR) is extended by zero, the function � R
BR

g�(� � y)f(y)dy 2 L2(C)

has the Fourier coe�cients

�
Z
C

n Z
BR

g�(x� y)f(y)dy
o
e�(x)dx = �

Z
C

n Z
C

g�(x� y)e�(x)dx
o
f(y)dy

=
�1

� � � + 2� � �
Z
C

f(y)e�(y)dy

=
�f̂(�)

� � � + 2� � �
= (G0

�f )̂ (�) ; � 2 � :

Hence, � R
BR

g�(��y)f(y)dy and G0
�f coincide almost everywhere in BR � C.

Before we proceed to the remaining assertions let us add one remark: if
f 2 C1

0 (C), then the Fourier coe�cients of f are rapidly decaying. Hence

G0
�f = �X

�2�

f̂(�)

(� � � + 2� � �)e�

not only converges with respect to the L2(C)-norm but is also absolutely
and uniformly convergent. Therefore, G0

�f is a continuous function on C
and it makes sense to evaluate (G0

�f)(x) at a point x 2 C. Similarly, for
f 2 C1

0 (BR0) we have

�
Z

BR0

g�(� � y)f(y)dy = �
Z
IR3

g�(z)f(� � z)dz 2 C(IR3) :

Hence, for f 2 C1
0 (BR0) assertion (a) holds true for all x 2 BR0 .

In order to prove the regularity of g� and ~g� and assertions (b), (c) we
show that ~g�(x) := ei��xg�(x)� ei�jxj=(4�jxj), x 2 B2R0 , satis�esZ

BR0 (x
�)

(�' + �2')(x)~g�(x)dx = 0
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for all x� 2 BR0 and for all ' 2 C1
0 (BR0(x

�)). We can then conclude from
the preceding lemma that ~g� is a C

2(B2R0)-smooth classical solution of the
Helmholtz equation, whence it is a C1-smooth function. This implies the
remaining assertions.

If x� 2 BR0 and ' 2 C1
0 (BR0(x

�)) � C1
0 (B2R0), the representation for-

mula (1.10) from Theorem 1.3 yields

�
Z

B
2R0

(�'+ �2')(x)
ei�jxj

4�jxjdx = '(0) : (2.7)

De�ning  (y) := ei��(x
��y)'(x� � y), y 2 BR0 , we have  2 C1

0 (BR0) and

((� + 2i� � r) )(y) = ei��(x
��y)(�'+ �2')(x� � y) ; y 2 BR0 :

Using this equation, the substitution x = x� � y, part (a), Theorem 1.1 (b),
and the remark after part (a) we compute

Z
B
2R0

(�'+ �2')(x)ei��xg�(x)dx

=
Z

BR0

ei��(x
��y)(�' + �2')(x� � y)g�(x

� � y)dy

=
Z

BR0

g�(x
� � y)(� + 2i� � r )(y)dy

= �(G0
�(� + 2i� � r ))(x�) = � (x�) = �'(0) : (2.8)

Adding the equations (2.7) and (2.8) yields the equation

Z
B
2R0

(�'+ �2')(x)
�
ei��xg�(x)� ei�jxj

4�jxj
�
dx = 0 :

Hence ~g� is a C
2-smooth solution of the Helmholtz equation in BR0(x

�) and
then in B2R0 because x

� 2 BR0 can be chosen arbitrarily. This ends the proof
of the lemma.

2

We are now in a position to de�ne g� for arbitrary vectors � 2 C3, satisfying
� � � = �2 and =(�) 6= 0.
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Assume � � 0 and � 2 C3 satis�es � � � = �2, =(�) 6= 0. This implies
<(�) � =(�) = 0 and <(�) � <(�) � =(�) � =(�) = �2, whence <(�) 6= 0.
We de�ne � := (j<(�)j; ij=(�)j; 0) 2 C3 and choose the uniquely deter-
mined unitary transformation Q of IR3 satisfying Q(<(�)) = (j<(�)j; 0; 0),
Q(=(�)) = (0; j=(�)j; 0) and det(Q) = 1. Then, we have QT (�) = �, where
QT denotes the transpose of Q. Now, we de�ne the function g� by

g� :B2R0 n f0g ! C g�(x) := g�(Qx) ; (2.9)

where

g� =
X
�2�

1

(� � �+ 2� � �)e�

is the function which we examined in the last lemma.

In the next theorem we study some properties of volume potentials G�f
with the kernel g�. Note that these volume potentials are de�ned for functions
on a ball, whereas G0

� is de�ned for functions on a cube. Moreover, compared
to G0

� we have chosen the opposite sign for G� because then the function
	�(x) = ei��xg�(x) inherits all the properties of the fundamental solution
ei�jxj=(4�jxj) later. Nevertheless, it should be clear by the preceding lemma
that G� and G

0
� are closely related.

Theorem 2.8 Assume 0 < R00 < R0, � � 0 and � 2 C3, � � � = �2. De�ne
for f 2 C(BR00) the function G�f by

(G�f)(x) :=
Z

BR00

g�(x� y)f(y)dy ; x 2 BR00 ; (2.10)

with g� from (2.9). Then, the following assertions hold true:

(a) G�f 2 C1;
(BR00) for all 0 < 
 < 1, and kG�fk1;
 � C
;�kfk1.

(b) If f 2 C0;
(BR00), then G�f 2 C2(BR00) and (� + 2i� � r)(G�f) = �f .

(c) If f 2 C1
0(BR00), then @j(G�f) = G�(@jf).

(d) kG�fkL2(BR00 )
� R0

�j=(�)jkfkL2(BR00 )
for all f 2 C(BR00).
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Proof: By the de�nition of g� and by Lemma 2.7 we conclude

g�(x) =
e�i��Qxei�jQxj

4�jQxj + e�i��Qx~g�(Qx)

=
e�i��xei�jxj

4�jxj + e�i��x~g�(Qx) ; x 2 B2R0 n f0g :

Since ~g� is smooth and since the function x 7! e�i��xei�jxj=(4�jxj) satis�es
the assumptions from Theorems 1.9 and 1.10, we may apply these theorems.
Theorem 1.9 immediately yields assertions (a) and (c). Theorem 1.10 states
that G�f 2 C2(BR00) if f 2 C0;
(BR00). Moreover, with the help of

[� + 2i� � r]u(x) = e�i��x(� + �2)(ei��xu(x))

we compute

([� + 2i� � r](G�f))(x)

= e�i��x(� + �2)
Z

BR00

n
��(x; y) + ~g�(Q(x� y))

o
(ei��yf(y))dy

= e�i��x
n
�ei��xf(x) + (� + �2)

Z
BR00

~g�(Q(x� y))(ei��yf(y))dy
o

= �f(x) ; x 2 BR00 ;

where in the last step we have used that ~g�(Q �) is a smooth solution of the
Helmholtz equation in B2R00 . This proves assertion (b).

For part (d) we extend a function f 2 C(BR00) by zero outside of BR00

and observe the relation

(G�f)(Q
Tx) =

Z
BR00

g�(x� y)f(QTy)dy ; x 2 BR00 :

Then we employ the last lemma and the L2-norm estimate from Theorem 1.1
to obtain

kG�fk2L2(BR00 )
=

Z
BR00

j(G�f)(x)j2dx

=
Z

BR00

j(G�f)(Q
Tx)j2dx

53



=
Z

BR00

j(G0
�(f �QT ))(x)j2dx

� kG0
�(f �QT )k2L2(C)

� R02

�2j=(�)j2k(f �Q
T )k2L2(C)

=
R02

�2j=(�)j2kfk
2
L2(BR00 )

:

This ends the proof of the theorem.
2

The last theorem enables us to derive the existence of special solutions to
the equation �u+�2nu = 0 which can be used similarly to ei��x in Lemma 2.5.

Lemma 2.9 Assume � � 0, 0 < R00 < R0 and n 2 C0;
(BR00). Then there
is a constant c > 0, depending only on R00, R0, � and k1 � nk1, with the
following property:

for all � 2 C3 satisfying � � � = �2 and j=(�)j � 2�2(R0=�)k1� nk1 + 1
there exists a function v(�; �) 2 C2(BR00) such that

u(x; �) := ei��x(1 + v(x; �)) ; x 2 BR00 ; (2.11)

is a solution to �u+ �2nu = 0 in BR00, and such that the estimate

kv(�; �)kL2(BR00 )
� c

j=(�)j (2.12)

holds true.

Proof: Inserting (2.11) into �u+ �2nu = 0 yields the di�erential equation

(� + 2i� � r)v(�; �) = �2(1� n)v(�; �) + �2(1� n) (2.13)

for v(�; �). Theorem 2.8 (b) suggests to look for a solution of the integral
equation

v(�; �) = ��2G�((1� n)v(�; �))� �2G�(1� n) (2.14)

and then to proceed similarly to the existence proof of (DAP ).
The mapping T :C(BR00)! C(BR00) de�ned by

T' = ��2G�((1� n)')
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is compact due to Theorem 2.8 (a). Since '� T' = 0, ' 2 C(BR00), implies
together with Theorem 2.8 (d)

k'kL2(BR00 )
= kT'kL2(BR00 )

� �2R0

�j=(�)jk1� nk1k'kL2(BR00 )

� 1

2
k'kL2(BR00 )

;

whence ' = 0, we know from the Riesz theory that (2.14) has a unique
solution v(�; �) 2 C(BR00). Moreover, we can infer from the properties of G�

stated in Theorem 2.8 that v(�; �) 2 C2(BR00) satis�es equation (2.13). Then,
straightforward calculations show that u(�; �) de�ned by (2.11) is a solution
to �u+ �2nu = 0 in BR00 .

In order to obtain the norm estimate we observe that

kv(�; �)kL2(BR00 )
� kTv(�; �)kL2(BR00 )

+ �2kG�(1� n)kL2(BR00 )

� 1

2
kv(�; �)kL2(BR00 )

+
�2R0

�j=(�)jk1� nk1k1kL2(BR00 )
:

Hence, we arrive at

kv(�; �)kL2(BR00 )
� 2

�2R0

�j=(�)jk1� nk1k1kL2(BR00 )

and we have proved the lemma.
2

Remark: Let us point out a di�erent view of the integral equation (2.14).
Multiplying both sides of (2.14) with ei��x and then adding ei��x on both sides
yields

u(x; �) = ei��x(1 + v(x; �))

= ei��x � �2ei��x
Z

BR00

g�(x� y)(1� n)(y)(1 + v(y; �))dy

= ei��x � �2
Z

BR00

ei��(x�y)g�(x� y)(1� n)(y)u(y; �)dy ; x 2 BR00 :

(2.15)
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This is the analogue of the Lippmann-Schwinger equation with an incident
wave ei��x where the fundamental solution ��(x; y) is replaced by the function
ei��(x�y)g�(x� y). But due to the representation

g�(x) =
e�i��Qxei�jQxj

4�jQxj + e�i��Qx~g�(Qx)

=
e�i��xei�jxj

4�jxj + e�i��x~g�(Qx) ; x 2 B2R0 n f0g ;

we know that

ei��(x�y)g�(x� y) = ��(x; y) + ~g�(x� y) ; x; y 2 BR0 ; x 6= y ;

is also a fundamental solution to the Helmholtz equation in BR0 because
~g� := ~g� �Q is a solution to the Helmholtz equation in B2R0 . Hence, we have
solved a Lippmann-Schwinger equation with an unphysical incident wave and
an unphysical fundamental solution in order to obtain the special solutions
u(�; �).

We also want to emphasize that the integral equation (2.15) has a unique
solution if j=(�)j � 2�2(R0=�)k1 � nk1 + 1. This can be seen by de�ning
v(x) := e�i��xu(x), x 2 BR00 , for a solution u of the homogeneous equation
(2.15) and by multiplying this equation by e�i��x. Then, we obtain the ho-
mogeneous equation (2.14) for v, whence v = 0 and u = 0 by the proof of
Lemma 2.9.

Now, we can conclude this section with the uniqueness result for the
inverse scattering problem.

Theorem 2.10 Let � > 0 and assume the refractive indices n and ~n satisfy
the assumptions made at the beginning of this section. If the far �eld patterns
coincide for all incident plane waves, i.e., u1(x̂; d) = ~u1(x̂; d) for all x̂,
d 2 S2, then n = ~n.

Proof: We choose R1 such that R < R1 < R0. We know from Lemma 2.4 that
for all solutions ~u 2 C2(BR1

) to �~u + �2~n~u = 0 in BR1
and for all solutions

u 2 C2(BR1
) to �u+ �2nu = 0 in BR1

the relation

Z
BR

(n(x)� ~n(x))u(x)~u(x)dx = 0 (2.16)
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holds true. Imitating the reasoning in Lemma 2.5 we choose for a �xed vector
� 2 � the unit vectors d1, d2 2 IR3 such that d1 � d2 = d1 �� = d2 � � = 0 and
de�ne

�t := �1

2
� + i

s
t2 � �2 +

j�j2
4
d1 + td2 2 C3 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 2 C3

for t > �. Then, the relations �t + ~�t = ��, �t � �t = ~�t � ~�t = �2 are satis�ed.

With the help of the preceding lemma, for su�ciently large
q
t2 � �2 + j�j2

4
=

j=(�t)j = j=(~�t)j, i.e., for su�ciently large t, we obtain solutions

u(x; �t) = ei�t�x(1 + v(x; �t)) ; x 2 BR1
;

to �u + �2nu = 0 in BR1
with kv(�; �t)kL2 ! 0, t ! 1. Similarly, we have

solutions
~u(x; ~�t) = ei

~�t�x(1 + ~v(x; ~�t)) ; x 2 BR1
;

to �~u+ �2~n~u = 0 in BR1
with k~v(�; ~�t)kL2 ! 0, t!1.

Inserting these solutions into (2.16) we arrive at

0 =
Z
BR

(n(x)� ~n(x))e�i��x(1 + v(x; �t))(1 + ~v(x; ~�t))dx : (2.17)

Taking t ! 1 implies that the Fourier coe�cient (n � ~n)̂ (�) must vanish.
Since � is arbitrary, we know that the Fourier coe�cients of n and ~n coincide,
whence n = ~n. This ends the proof of the theorem.

2

Appendix

This appendix contains a few remarks concerning the preceding section which
would have disturbed the logical order that lead to the uniqueness proof.
First, we prove the equivalence of equation (2.2) and the coincidence of
~u1(�; d) and u1(�; d). Then, we give a second proof for Lemma 2.2, i.e., the
completeness of the plane waves in the space of solutions to the Helmholtz
equation. We also study the completeness of point sources in that space. And
�nally we derive another norm estimate for the operator G� which allows to
state that products of solutions to �u+ �2nu = 0 are complete in L2(BR).
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Theorem 2.11 Suppose 0 < R < R1, d 2 S2 and u(�; d), ~u(�; d) are so-
lutions to (DAP ) for the incident wave ui(x) = ei�d�x, x 2 IR3, and for
the refractive indices n, ~n, respectively. Then the following assertions are
equivalent:

(a) u(x; d) = ~u(x; d) for all x 2 @BR.

(b) u(x; d) = ~u(x; d) and
@u

@�
(x; d) =

@~u

@�
(x; d) for all x 2 @BR.

(c) u1(�; d) = ~u1(�; d) on S2.

(d)
Z
BR

(n(x)� ~n(x))u(x; d)~u(x)dx = 0 for all solutions ~u 2 C2(BR1
) to

�~u+ �2~n~u = 0 in BR1
.

Proof: Assertion (b) follows from assertion (a) by the uniqueness for the
exterior Dirichlet problem for the Helmholtz equation ([7, Theorem 3.7]).

The coincidence of the Cauchy data of u(�; d) and ~u(�; d) on @BR implies
us(�; d) = ~us(�; d) and (@us=@�)(�; d) = (@~us=@�)(�; d) on @BR. With the help
of the representation (1.13) we obtain ~us(�; d) = us(�; d) in the exterior of BR,
whence the coincidence of the far �eld patterns.

Assertion (d) was derived from assertion (c) in Lemma 2.1.
In order to obtain (a) from (d) we observe that v := u(�; d)� ~u(�; d) is a

radiating solution to the Helmholtz equation in IR3 nBR. Moreover, Green's
second theorem yieldsZ

@BR

�
~u(�; d)@~u

@�
� ~u

@~u

@�
(�; d)

�
ds = 0;

whence Z
@BR

�
v
@~u

@�
� ~u

@v

@�

�
ds =

Z
@BR

�
u(�; d)@~u

@�
� ~u

@u

@�
(�; d)

�
ds

= �2
Z
BR

(n� ~n)~uu(�; d)dx = 0 (2.18)

for all solutions ~u 2 C2(BR1
) to �~u+ �2~n~u = 0 in BR1

. For a �xed jxj > R1

we choose ~u to be the solution to the Lippmann-Schwinger equation

~u(z) + �2
Z
BR

��(z; y)(1� ~n(y))~u(y)dy = ��(x; z) ; z 2 BR1
:
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From Theorem 1.5 (b) we know the relation

0 =
Z

@BR

fv(z)@��(y; z)

@�(z)
� @v

@�
(z)��(y; z)gds(z)

for all y 2 BR. Hence, we obtain

0 =
Z

@BR

fv(z) @

@�(z)

Z
BR

��(z; y)(1� ~n(y))~u(y)dy

�@v
@�

(z)
Z
BR

��(z; y)(1� ~n(y))~u(y)dygds(z)

and inserting ~u into (2.18)

0 =
Z

@BR

�
v
@~u

@�
� ~u

@v

@�

�
ds

=
Z

@BR

fv(z) @��

@�(z)
(x; z)� @v

@�
(z)��(x; z)gds(z) = v(x) :

Thus, we know v(x) = 0 for all jxj > R1 and then v = 0 in IR3 n BR and we
have proved the theorem.

2

In order to replace u(�; d) in equation (2.2) by arbitrary solutions to �u+
�2nu = 0 we proved the denseness of span fui(�; d): d 2 S2g in the linear
space of solutions to the Helmholtz equation in Lemma 2.2 and derived an
approximation result for general n with the help of the Lippmann-Schwinger
equation in Lemma 2.3. The next lemma gives another proof for the case
n = 1. We also examine the completeness of f��(�; z): jzj = R1g in the space
of solutions to the Helmholtz equation with respect to L2(BR).

Lemma 2.12 Suppose 0 < R < R2 and let ui 2 C2(BR2
) satisfy �ui +

�2ui = 0 in BR2
.

(a) For R1 > R there exists a sequence uij 2 spanf��(�; z): jzj = R1g,
j 2 IN, such that kui � uijkL2(BR) ! 0, j !1.

(b) There exists a sequence uij 2 spanfui(�; d): d 2 S2g, j 2 IN, such that
kui � uijk1;BR

! 0, j !1.
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Proof: We de�ne the linear subspace X as in the proof of Lemma 2.2 and
assume v0 2 X being orthogonal to span f��(�; z): jzj = R1g. De�ning again

w(x) :=
Z
BR

v0(y)��(x; y)dy ; x 2 IR3 nBR ;

we know that w 2 C2(IR3 n BR) is a radiating solution to the Helmholtz
equation in the exterior of BR and we compute

w(z) =
Z
BR

v0(y)��(z; y)dy = 0 ; jzj = R1 :

Uniqueness for the exterior Dirichlet problem implies w = 0 and we can �nish
the proof of part (a) as in Lemma 2.2.

For part (b) let Y k
l , k = �l; : : : ; l, l 2 IN0, denote a complete system of

spherical harmonics on S2 and let jl, l 2 IN0, denote the spherical Bessel
functions (see [7, sections 2.3 and 2.4] for a concise treatment). Inserting the
addition theorem for the fundamental solution �� ([7, Theorem 2.10]) into
Green's representation theorem for ui in BR1

we obtain the absolutely and
uniformly convergent series expansion

ui(x) =
1X
l=0

lX
k=�l

alkjl(�jxj)Y k
l (x̂) ; x 2 BR ;

with suitable coe�cients alk.
For a given positive � we approximate ui by a partial sum of the above

series better than �=2. Next, using the Funk-Hecke formula ([7, p. 31]), we
replace the terms jl(�jxj)Y k

l (x̂) by

jl(�jxj)Y k
l (x̂) =

il

4�

Z
S2

e�i�x�dY k
l (d)ds(d) ; x 2 BR ;

and obtain ���ui(x)� Z
S2

e�i�x�dg�(d)ds(d)
��� < �

2
; x 2 BR ;

with a continuous function g� on S
2. Finally, we approximate the integral by

a quadrature rule, e.g. a Riemannian sum, better than �=2 uniformly on BR.
This is possible because the integrand is uniformly continuous on BR � S2.
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Hence, it is possible to approximate ui uniformly on BR by a superposition
of plane waves and we have proved the lemma.

2

In Theorem 2.10 we had probed the medium with all incident plane waves
and we had a knowledge of the far �eld patterns. We can infer from the last
lemma that we may replace the set of all plane waves by point sources located
on a sphere. Any set of solutions to the Helmholtz equation in BR which
is complete in the linear space of solutions to the Helmholtz equation with
respect to L2(BR) can be used as incident probing waves because the proof
of Lemma 2.3 applies equally well in this situation, whence equation (2.4)
holds true.

Instead of measuring far �eld patterns, due to Theorem 2.11 we might as
well use the Cauchy data of the total waves on a sphere with radius R, i.e.,
u and @u=@� on @BR, or the near �eld uj@BR

of the total waves.
In a nutshell, the uniqueness theorem for the inverse scattering problem

remains true, if point sources located on a sphere are used as incident waves
and if the Cauchy data (or near �eld data) on a large sphere are measured
instead of far �eld patterns.

The rest of this appendix is devoted to a more functional analytic for-
mulation of our knowledge about the products u~u of solutions to perturbed
Helmholtz equations:

The set

fu~u: u; ~u 2 C2(BR) \ C(BR); �u+ �2nu = 0; �~u+ �2~n~u = 0 in BRg
is complete in L2(BR), i.e., any function q 2 L2(BR) satisfyingZ

BR

q(x)u(x)~u(x)dx = 0

for all functions u, ~u as above must vanish identically.
An inspection of the proof of Theorem 2.10 shows that we have not

proved this result so far, because we only know v(�; �t)~v(�; ~�t) ! 0, t ! 1,
with respect to the L1(BR)-norm in equation (2.17). We have to know
this with respect to the L2(BR)-norm, if we want to use the same rea-
soning as in Theorem 2.10. Therefore, we examine the operators G� more
closely in order to bound kv(�; �t)k1;BR

uniformly in t. Then we obtain
kv(�; �t)~v(�; ~�t)kL2(BR) � kv(�; �t)k1;BR

k~v(�; ~�t)kL2(BR) ! 0, t!1.
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The aim of the next lemma is to bound
P
�2�

j� ��+2� ��j�2 uniformly in

t � 1 where � = (s; it; 0) and � � � = �2. Essentially, we replace the sum by
an integral Z

IR3

[(jxj2 � s2)2 + (�=R0)2t2]�1dx :

Bounding the integral is not di�cult (see part (a) of the next lemma) but
the replacement of the sum by the integral is lengthy.

Lemma 2.13 Let � � 0 and R0 � � be �xed. De�ne 
 := �=R0 and s :=p
t2 + �2, � := (s; it; 0) 2 C3 for t � 1.

(a) There is a constant c1 such that

1Z
0

r2dr

(r2 � s2)2 + 
2t2
� c1

for all t � 1.

(b) There is a constant c2 such that

X
�2�

��� 1

� � � + 2� � �
���2 � c22

for all t � 1.

Proof: For part (a) we use the substitution u = r=s and obtain

1Z
0

r2dr

(r2 � s2)2 + 
2t2

=
1

s

n 2Z
0

u2du

(u2 � 1)2 + 
2(t2=s4)
+

1Z
2

u2du

(u2 � 1)2 + 
2(t2=s4)

o
:

Since u2 � 1 � u2=2 for all u � 2, we can bound the second integral by

1Z
2

u2du

(u2 � 1)2 + 
2(t2=s4)
�

1Z
2

u2du

(u2=2)2
= 2 :
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We estimate the �rst integral with the help of the substitution v = u2� 1 by

2Z
0

u2du

(u2 � 1)2 + 
2(t2=s4)
�

2Z
0

2udu

(u2 � 1)2 + 
2(t2=s4)

�
Z
IR

dv

v2 + 
2(t2=s4)

=
s2�


t
:

For the proof of assertion (b) we observe

j� � � + 2� � �j2
= f(�1 + s)2 + �2

2 + �2
3 � s2g2 + 4t2�2

2

� f(�1 + s)2 + �2
2 + �2

3 � s2g2 + 
2t2 ; � 2 � :

Our �rst aim is to estimate the number of grid points in a spherical shell, to
be more precise we derive the bound card (Ak) � M1k

2 where

Ak := f� 2 �: (k � 1)2 < (�1 + s)2 + �2
2 + �2

3 � k2g ; k 2 IN :

This enables us to reduce the series over all � 2 � to a series over k 2 IN
which in turn can be estimated with the help of Maclaurin's (Cauchy's)
integral test.

We de�ne A0
k to be the grid points contained in a ball with radius k and

center (�s; 0; 0),
A0
k := f� 2 �: (�1 + s)2 + �2

2 + �2
3 � k2g ; k 2 IN :

In order to obtain bounds for card (A0
k) we use the disjoint open cubes C�,

� 2 �, having the center � and having edges of length �=R0 parallel to
the coordinate axes. Since � 2 A0

k implies C� � Bk+2
((�s; 0; 0)), we can
conclude

� �
R0

�3
card (A0

k) = vol

 [
�2A0

k

C�

!
� vol

�
Bk+2
((�s; 0; 0))

�
=

4�

3
(k + 2
)3 :

Since any x 2 Bk�1�2
((�s; 0; 0)), k > 1 + 2
, is lying in some C�, there
is an � 2 � with j�� xj � 2
. Hence, we have

j(�1 + s; �2; �3)j � j(x1 + s; x2; x3)j+ j�� xj � k � 1 ; i.e., � 2 A0
k�1.
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This means
Bk�1�2
((�s; 0; 0)) �

[
�2A0

k�1

C�

and therefore
4�

3
(k � 1� 2
)3 �

� �
R0

�3
card (A0

k�1) :

Then we obtain

card (Ak) = card (A0
k)� card (A0

k�1)

� 
�3
4�

3

�
(k + 2
)3 � (k � 1� 2
)3

�
� M1k

2

for all k > 1+ 2
. By suitably enlarging the constant M1 the last inequality
holds true for all k 2 IN.

Now, we split

X
�2�

��� 1

� � � + 2� � �
���2

=
X

fk2IN:k�sg

X
�2Ak

��� 1

� � � + 2� � �
���2 + X

fk2IN:k�1�sg

X
�2Ak

��� 1

� � �+ 2� � �
���2

+
X

fk2IN:s<k<s+1g

X
�2Ak

��� 1

� � � + 2� � �
���2 : (2.19)

From � 2 Ak and k � s we conclude 0 � s2 � k2 � s2 � j(�1 + s; �2; �3)j2
and therefore��� 1

� � � + 2� � �
���2 =

1

(j(�1 + s; �2; �3)j2 � s2)2 + 4t2�2
2

� 1

(k2 � s2)2 + t2
2
:

Together with the bound on card (Ak) we arrive at the following estimate for
the �rst term on the right hand side of (2.19):

X
fk2IN:k�sg

X
�2Ak

��� 1

� � �+ 2� � �
���2

� X
k�s�1

M1k
2

(k2 � s2)2 + t2
2
+
M1s

2

t2
2
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�
sZ

1

M1r
2dr

(r2 � s2)2 + t2
2
+
M1s

2

t2
2

� M1c1 +M2 �M3 ; (2.20)

with suitable constants Mj and c1 from part (a), where in the third line we

have used the fact that r 7! r2

(r2�s2)2+t2
2
is an increasing function on [1; s] (the

numerator is an increasing function, whereas the denominator is decreasing).

Similarly, for � 2 Ak and k � 1 � s we compute 0 � (k � 1)2 � s2 �
j(�1 + s; �2; �3)j2 � s2,

��� 1

� � � + 2� � �
���2 =

1

(j(�1 + s; �2; �3)j2 � s2)2 + 4t2�2
2

� 1

((k � 1)2 � s2)2 + t2
2
;

and we estimate the second term on the right hand side of (2.19) by

X
fk2IN:k�1�sg

X
�2Ak

��� 1

� � � + 2� � �
���2

� X
k�s+3

M1k
2

((k � 1)2 � s2)2 + t2
2
+ 2

M1(s+ 3)2

t2
2

� X
l�s+2

4M1l
2

(l2 � s2)2 + t2
2
+ 2

M1(s+ 3)2

t2
2

�
1Z

s+1

4M1r
2dr

(r2 � s2)2 + t2
2
+M4

� 4M1c1 +M4 �M5 : (2.21)

Here, we have substituted l = k�1 in third line and employed the inequality
(l + 1)2 � 4l2. Moreover, in the fourth line we have used the fact that

r 7! (r2�s2)+s2

(r2�s2)2+t2
2
is a decreasing function on [s+ 1;1). This can be seen by

observing that � = r2 � s2 > 2s > t
 for r � s + 1, and that the derivative
of the mapping � 7! �

�2+
2t2
is negative if � > t
. (Note that here we have

used the assumption R0 � �, i.e., 
 � 1, in order to have 2s > t � 
t.)
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Finally, we bound the last term in inequality (2.19) by

X
fk2IN:s<k<s+1g

X
�2Ak

��� 1

� � � + 2� � �
���2 � M1(s+ 1)2


2t2
� M6 :

Inserting this inequality together with inequalities (2.20) and (2.21) into
(2.19) yields assertion (b). This ends the proof of the lemma.

2

The preceding lemma easily implies the next results on the operator G�

and on the functions v(�; �) from Lemma 2.9.

Lemma 2.14 Assume � � 0 and � < R00 < R0.

(a) The inequality

kG�fk1;BR00
= sup

x2BR00

��� Z
BR00

g�(x� y)f(y)dy
��� � c2kfkL2(BR00 )

holds true for all f 2 C(BR00) and for all � 2 C3 satisfying � � � = �2,
j=(�)j � 1 where c2 is the constant from the preceding lemma.

(b) There is a constant c uniformly bounding the functions v(�; �) from
Lemma 2.9: kv(�; �)k1;BR00

� c for all � 2 C3 satisfying � � � = �2 and
j=(�)j � 2�2(R0=�)k1� nk1 + 1.

Proof: As in the proof of Theorem 2.8 (d) we have for f 2 C1
0 (BR00)

kG�fk21;BR00
= k(G�f) �QTk21;BR00

= kG0
�(f �QT )k21;BR00

=



X
�2�

(f �QT )̂ (�)

� � � + 2� � �e�



2
1;BR00

� X
�2�

��� 1

� � � + 2� � �
���2 X

�2�

j(f �QT )̂ (�)j2

� c22k(f �QT )k2L2(C)
= c22kfk2L2(BR00 )

:

Approximating an arbitrary continuous function f in BR00 by C1
0 (BR00)-

functions with respect to the L2-norm yields assertion (a).
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We obtain from (2.14) together with part (a)

kv(�; �)k1;BR00
� �2kG�((1� n)(1 + v(�; �))k1;BR00

� ~ck(1� n)(1 + v(�; �))kL2(BR00 )

� c ;

where we also use from Lemma 2.9 that kv(�; �)kL2(BR00 )
� M for all su�-

ciently large j=(�)j. This proves the lemma.
2

Looking again at the proof of the uniqueness theorem for the refractive
indices, we see that u(�; �t)~u(�; ~�t) 2 C(BR00) � L2(BR00) satisfy

ku(�; �t)~u(�; ~�t)� e�i��:kL2(BR00 )

= kv(�; �t) + ~v(�; ~�t) + v(�; �t)~v(�; ~�t)kL2(BR00 )

� kv(�; �t) + ~v(�; ~�t)kL2(BR00 )
+ kv(�; �t)k1k~v(�; ~�t)kL2(BR00 )

! 0 ; t!1 :

Then, the reasoning in the proof of Theorem 2.10 implies that any func-
tion q 2 L2(BR00) which is orthogonal to all products u~u must have vanishing
Fourier coe�cients. This proves the last theorem of this appendix.

Theorem 2.15 Assume n, ~n 2 C0;
(BR00) are uniformly H�older continuous
in BR00 . Then, the set

fu~u: u; ~u 2 C2(BR00) \ C(BR00); �u+ �2nu = 0; �~u+ �2~n~u = 0 in BR00g

is complete in L2(BR00).

Though the last theorem improves our knowledge about the products u~u
it is of no use in proving a uniqueness result for scattering problems when
we only know n 2 L2(BR) instead of n 2 C0;
(BR). This is due to the fact
that our proof of the behavior of the special solutions u(�; �) in Lemma 2.9
essentially uses the boundedness of k1� nk1.

If we want to deal with n 2 L2(BR), we have to improve Lemma 2.13 to
obtain X

�2�

1

j� � � + 2� � �j2 ! 0 ; t = j=(�)j ! 1 : (2.22)
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This estimate can be obtained by using the ideas from the proof of [40,
III.2 Lemma 3, pp. 51{56] together with the techniques which we employed
during the proof of Lemma 2.13. Inequality (2.22) implies the norm estimate
kG�kL2(BR00 )!C(BR00 )

! 0, j=(�)j ! 1. We can then modify the existence
and uniqueness proofs from the �rst chapter to arrive at unique solutions to
(DAP ) with n 2 L2. It is also possible to verify our results for the inverse
problem in this case and to derive uniqueness of n from a knowledge of the
far �eld patterns.
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2.2 Stability of the Inverse Problem

This section is devoted to the continuous dependence of the refractive index n
on the far �eld pattern. We assume throughout this section that the refractive
indices n satisfy n 2 C0;
(IR3), 0 < 
 < 1, =(n) � 0, and supp (1� n) � BR.
For convenience we de�ne ~C(BR) to be the set of these functions.

Let us start with an informal outline of this section. We introduce a very
strong norm k � kF on the far �eld patterns by prescribing a very rapid decay
of the Fourier coe�cients

�l1k1l2k2 :=
Z
S2

Z
S2

u1(x̂; d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ; (2.23)

l1; l2 = 0; 1; : : : ; �l1 � k1 � l1 ; �l2 � k2 � l2 ;

of the far �eld patterns u1. Here, Y
k1
l1
, l1 = 0; 1; : : :, �l1 � k1 � l1, denote

a complete orthonormal system of spherical harmonics on S2. Our aim is to
derive the estimate

kn� ~nk1 � c
h
� ln(ku1;n � u1;~nkF)

i�1=7
with a constant c for all refractive indices n, ~n lying in some small subset O of
~C(BR). The subscript n indicates the dependence of certain quantities on n
if necessary. The estimate implies that the mapping u1;n 7! n is continuous.
It is also a local uniqueness result because u1;n uniquely determines n in
O by the above estimate. The reader should be warned that O is not only
small with respect to the maximum norm but with respect to a C2-norm,
i.e., we need additional information in a stronger norm in order to obtain
the stability result. We also want to emphasize that this result does not
mean that all functions from a small k � kF -neighborhood of u1;n are far
�elds originating from a refractive index. It only allows to conclude that two
refractive indices from O are close together with respect to k � k1, if they
produce far �elds whose di�erence with respect to the k � kF -norm is small.

Our reasoning follows the main ideas from the paper [42] of Stefanov and
can be divided into three steps. In the �rst three lemmas we examine the
decay of the Fourier coe�cients, show that the norm k � kF is well de�ned
and prove that the mapping n 7! u1;n is continuous.

In the second step we reconstruct the Green's function sn(x; y) for jxj =
jyj = R2 > R, x 6= y, with the help of a series expansion involving the
Fourier coe�cients �l1k1l2k2 belonging to u1;n. By the Green's function sn
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we mean the kernel sn(x; y), x, y 2 IR3, x 6= y, having the property that
u = � R

IR3

sn(�; y)f(y)dy is the radiating solution to �u + �2nu = f in IR3.

Hence, we know the single-layer operator

(Sn')(x) = 2
Z

@BR2

sn(x; y)'(y)ds(y) ; x 2 @BR2
:

Actually, we construct Sn directly without using sn and prove later that Sn is
an integral operator whose kernel sn can be computed from u1;n. Although
we never prove that sn is the Green's function the idea behind Sn is easier
to explain with the help of sn.

We discuss the dependence of Sn on n and on u1;n. It turns out that due
to the very strong norm k�kF the mapping u1;n 7! Sn is linear and bounded.
However, in practice the k � kF -norm is not appropriate for measured far
�eld patterns. Hence, the transfer of information from in�nity (the far �eld
pattern) to the sphere of radius R2 is severely ill-posed.

In the last step we investigate the dependence of n on Sn, insert our result
from the previous step on the dependence of Sn on u1;n and arrive at our
main estimate.

In [42] Stefanov uses the relation �n��1 = 2S�1n �2S�11 (see [32]) between
the Dirichlet-to-Neumann maps �n, �1, and the inverses to the single-layer
operators to estimate the operator norms k�n � �~nk in some suitable norm
by the far �eld norms ku1;n � u1;~nkF . Then he can employ the ideas of
Alessandrini in [2] who has studied the dependence of n on �n for refractive
indices n having a special form. Alessandrini's main idea is to estimate
the Fourier transform of n � ~n with the help of the special solutions from
Lemma 2.9 and with considerations similar to those that lead to equation
(2.2). Stefanov encounters di�culties because the Dirichlet-to-Neumannmap
is not de�ned for interior Dirichlet eigenvalues. We use a di�erent relation
on @BR2

in order to avoid these di�culties. We are also able to avoid the
technical Lemma 4.2 from [42] (Lemma 3 in [2]).

After this outline let us begin with the �rst step. In the �rst lemma we
prove estimates about spherical Bessel functions and about spherical Hankel
functions of the �rst kind which we will need later. The spherical Bessel
function jl of order l 2 IN0 is de�ned by

jl(t) :=
1X
p=0

(�1)ptl+2p

2pp! 1 � 3 � � � (2l + 2p+ 1)
; t 2 IR :
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With the help of the spherical Neumann function yl of order l 2 IN0 which
is de�ned by

yl(t) := �(2l)!

2ll!

1X
p=0

(�1)pt2p�l�1
2pp!(�2l + 1)(�2l + 3) � � � (�2l + 2p� 1)

; t > 0 ;

we can de�ne the spherical Hankel functions h
(1)
l of the �rst kind of order

l 2 IN0:
h
(1)
l (t) := jl(t) + iyl(t) ; t > 0 :

Lemma 2.16 Assume � > 0.

(a) Given R1 > 0 there is a constant M1 > 0 such that

jjl(�r)j �M1

� e�r

2l + 1

�l 1

2l + 1
; 0 � r � R1 ; l 2 IN0 :

(b) For 0 < R < R2 there is a constant M2 > 0 such that

jh(1)l (�r)j � M2

�2l + 1

e�r

�l
and

j(h(1)l )0(�r)j � M2(2l + 1)
�2l + 1

e�r

�l
; R � r � R2 ; l 2 IN0 :

Proof: The de�nition of jl yields

jl(t) =
tl

1 � 3 � � � (2l + 1)

�
1 +

1X
p=1

(�1)pt2p
2pp!(2l + 3) � � � (2l + 2p+ 1)

�
:

Comparing the series with the exponential series we obtain the estimate

jjl(t)j �M3
tl

1 � 3 � � � (2l + 1)
=M3

tl

2l + 1

2ll!

(2l)!
; 0 � t � �R1 ; l 2 IN0 :

This certainly implies the assertion for l = 0. From Stirling's formula we
know

M4l
le�l

p
2�l < l! < M5l

le�l
p
2�l ; l 2 IN ;

with suitable positive constants M4, M5. Inserting these inequalities into the
above estimate and using the fact that (2l+1

2l
)l, l 2 IN, is a bounded sequence

we arrive at

jjl(�r)j �M1

� e�r

2l + 1

�l 1

2l + 1
; 0 � r � R1 ; l 2 IN :
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This completes the proof of part (a).
Part (b) follows similarly with the help of

h
(1)
l (t) = �(2l)!

2ll!
t�l�1

n
�tl+1 2

ll!

(2l)!
jl(t)

+i
�
1 +

1X
p=1

(�1)pt2p
2pp!(�2l + 1)(�2l + 3) � � � (�2l + 2p� 1)

�o

because the series and the �rst term in the curly brackets remain uniformly
bounded in l 2 IN0 and �R � t � �R2. Di�erentiating the last equation with
respect to t and using the same techniques as before also yields the second
part of assertion (b).

2

The previous lemma enables us to study the decay of the Fourier coe�-
cients �l1k1l2k2 of a far �eld pattern. The decay determines the smoothness
of u1 and vice versa. In [30] and [31, Theorems 17,18] M�uller has examined
the smoothness of the scattering amplitude of a radiating solution to the
Helmholtz equation. However, he expresses the regularity of the scattering
amplitude by the growth at in�nity of an entire harmonic function which
coincides with the scattering amplitude on S2. Therefore, his results are not
directly applicable to our needs. We follow the ideas of Stefanov in [42] (see
[7, Theorems 2.15,2.16] for related rsults) but give weaker estimates because
we are not interested in optimal results.

To simplify notation we abbreviate

X
l1;k1;l2;k2

for
1X
l1=0

l1X
k1=�l1

1X
l2=0

l2X
k2=�l2

and we de�ne

Tn:C(BR)! C(BR) (Tn')(x) := �2
Z
BR

(1�n(y))��(x; y)'(y)dy ; x 2 BR :

Lemma 2.17 Assume the far �eld pattern u1:S
2�S2 ! C originates from

the refractive index n 2 ~C(BR) satisfying supp (1 � n) � BR1
for some 0 <

R1 < R. Let �l1k1l2k2 denote the Fourier coe�cients of u1 as de�ned in
(2.23). Then, there is a constant c depending on u1 such that

j�l1k1l2k2 j2 � c
� e�R1

2l1 + 1

�2l1+3� e�R1

2l2 + 1

�2l2+3
:
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Furthermore

X
l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3j�l1k1l2k2 j2 <1 :

Proof: According to (1.25) the far �eld pattern corresponding to the refractive
index n 2 ~C(BR) with supp (1� n) � BR1

, 0 < R1 < R, is given by

u1(x̂; d) = ��
2

4�

Z
BR1

(1� n(y))u(y; d)e�i�x̂�ydy ; x̂; d 2 S2 : (2.24)

The Lippmann-Schwinger equation yields

u(x; d) = �[Tn(u(�; d))](x) + ei�d�x ; x 2 BR ; d 2 S2 ; (2.25)

whence u depends continuously on x and d, since ei�d�x depends continuously
on d with respect to k � k1;BR

and (I + Tn)
�1 is continuous in C(BR). Then,

we may interchange the order of integration and we obtain

�l1k1l2k2 =
Z
S2

Z
S2

u1(x̂; d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d)

= ��
2

4�

Z
BR1

(1� n(y))
Z
S2

u(y; d)Y k2
l2
(d)ds(d)

Z
S2

e�i�x̂�yY k1
l1
(x̂)ds(x̂)dy :

Applying the Cauchy-Schwarz inequality we conclude

j�l1k1l2k2 j2 � c







Z
S2

u(�; d)Y k2
l2
(d)ds(d)







2

L2(BR1
)

�

�






Z
S2

e�i�d�xY k1
l1
(d)ds(d)







2

L2(BR1
)

: (2.26)

Note that c will denote di�erent constants during the proof.
With the help of the Funk-Hecke formula (see [7, (2.44)]) we compute

vl1k1(y) :=
Z
S2

e�i�x̂�yY k1
l1
(x̂)ds(x̂) =

4�

il1
jl1(�jyj)Y k1

l1
(ŷ) ; y 2 IR3 ;
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whence with Lemma 2.16 (a)

kvl1k1k2L2(BR1
) = 64�3

R1Z
0

jjl1(�r)j2r2dr

� c
� e�R1

2l1 + 1

�2l1+3
: (2.27)

Reversing the order of integration and employing the Funk-Hecke formula
again we obtain from (2.25)

Z
S2

u(x; d)Y k2
l2
(d)ds(d) = �

"
Tn
�Z
S2

u(�; d)Y k2
l2
(d)ds(d)

�#
(x) + (�1)l2vl2k2(x) ;

i.e., Z
S2

u(x; d)Y k2
l2
(d)ds(d) = (�1)l2 [(I + Tn)

�1vl2k2](x) : (2.28)

With the help of Theorem 1.9 (c) we can conclude that the operator Tn is
compact in (C(BR); k � kL2), whence (I + Tn)

�1 is bounded with respect to
the L2(BR)-norm. Then, inserting (2.27) and






Z
S2

u(�; d)Y k2
l2
(d)ds(d)







2

L2(BR1
)

� ckvl2k2k2L2(BR1
)

� c
� e�R1

2l2 + 1

�2l2+3

into (2.26) we arrive at

j�l1k1l2k2 j2 � c
� e�R1

2l1 + 1

�2l1+3� e�R1

2l2 + 1

�2l2+3
:

Finally, we estimate

X
l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3j�l1k1l2k2 j2

� c
X

l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3� e�R1

2l1 + 1

�2l1+3� e�R1

2l2 + 1

�2l2+3

= c
X
l1;l2

(2l1 + 1)(2l2 + 1)
�R1

R

�2l1+3�R1

R

�2l2+3

< 1
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by the ratio test.
2

The last lemma asserts that the norm ku1;nkF de�ned by

ku1;nk2F :=
X

l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3j�l1k1l2k2j2

is well de�ned, if n 2 ~C(BR) because supp (1 � n) � BR implies that there
is a radius R1 < R with supp (1� n) � BR1

.
Next we study the continuous dependence of u1;n on n. In the end we

are interested in the reverse result but we will need the dependence of u1;n

on n in order to obtain the small set in which n depends continuously on
u1;n.

Lemma 2.18 Let n0 2 ~C(BR1
), R1 < R, be given. Then, there are positive

constants M and � such that ku1;n � u1;n0kF � Mkn � n0k1 for all n 2
~C(BR1

) satisfying kn� n0k1 < �.

Proof: Similarly to the previous lemma we start with

u1;n(x̂; d)� u1;n0(x̂; d)

= ��
2

4�

Z
BR1

(1� n(y))un(y; d)e
�i�x̂�ydy

+
�2

4�

Z
BR1

(1� n0(y))un0(y; d)e
�i�x̂�ydy

=
�2

4�

Z
BR1

(n(y)� n0(y))un0(y; d)e
�i�x̂�ydy

+
�2

4�

Z
BR1

(1� n(y))(un0(y; d)� un(y; d))e
�i�x̂�ydy ; x̂; d 2 S2 :

(2.29)

Multiplying by Y k1
l1
(x̂)Y k2

l2
(d) and integrating we can use the reasoning in

Lemma 2.17 and bound the term originating from the �rst integral on the
right hand side by

M1kn� n0k1
� e�R1

2l1 + 1

�(2l1+3)=2� e�R1

2l2 + 1

�(2l2+3)=2
:
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For the term originating from the second integral on the right hand side
we observe that there is a constant M2 such that for all n 2 ~C(BR1

) the
inequality kTn� Tn0kL2(BR) � M2kn� n0k1 holds true. Thus we can choose
� > 0 su�ciently small to ensure kTn � Tn0kL2(BR) � 1=(2k(I + Tn0)

�1kL2)
for all kn� n0k1 < � and, with the help of a Neumann series argument, we
obtain k(I + Tn)

�1kL2 � 2k(I + Tn0)
�1kL2 for those n. UsingZ

S2

un(x; d)Y
k2
l2
(d)ds(d) = (I + Tn)

�1
Z
S2

ei�d�xY k2
l2
(d)ds(d)

and

(I + Tn)
�1 � (I + Tn0)

�1 = (I + Tn)
�1(Tn0 � Tn)(I + Tn0)

�1

this yields




Z
S2

(un(�; d)� un0(�; d))Y k2
l2
(d)ds(d)





L2

=







h
(I + Tn)

�1 � (I + Tn0)
�1
i Z
S2

ei�d�xY k2
l2
(d)ds(d)







L2

�



(I + Tn)

�1 � (I + Tn0)
�1




L2




Z
S2

ei�d�xY k2
l2
(d)ds(d)





L2

� M3kn� n0k1



Z
S2

ei�d�xY k2
l2
(d)ds(d)





L2
:

Now, the term originating from the second integral in (2.29) can be bounded
similarly to the preceding lemma and we arrive at

���Z
S2

(u1;n(x̂; d)� u1;n0(x̂; d))Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d)

���2

� M4kn� n0k21
� e�R1

2l1 + 1

�2l1+3� e�R1

2l2 + 1

�2l2+3
:

This implies as in Lemma 2.17 that

ku1;n � u1;n0kF �Mkn� n0k1
for n 2 ~C(BR1

) with kn� n0k1 < � and we have proved the lemma. 2
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Although we used the Green's function sn during the motivation at the
beginning, contrary to Stefanov we avoid working explicitly with it because
then we circumvent proving its existence and its properties. We observe
s1(x; y) = ��(x; y) in the case n = 1. In view of the regularity properties
and jump relations of the single-layer potential with kernel ��(x; y), and
since we expect that the single-layer potential

2
Z

@BR2

sn(x; y)f(y)ds(y) ; x 2 IR3 ;

satis�es analogous regularity properties and jump relations, we guess that it
is a solution of the following boundary value problem (BV P ):

Suppose R2 > R. Given � > 0, n 2 ~C(BR) and f 2 C(@BR2
), �nd

u 2 C(IR3) such that u is C2-smooth in BR2
and in IR3 n BR2

, such that
u satis�es the Sommerfeld radiation condition and such that u satis�es the
following requirements:

�u+ �2nu = 0 in IR3 n @BR2
,

@u+
@�

(x) := lim
t!0;t>0

�(x) � ru(x+ t�(x))

and
@u�
@�

(x) := lim
t!0;t>0

�(x) � ru(x� t�(x))

exist uniformly for x 2 @BR2
and

@u�
@�

� @u+
@�

= 2f on @BR2
.

Here, � denotes the unit normal vector on @BR2
directed into the exterior of

BR2
.

Lemma 2.19 For all f 2 C(@BR2
) the boundary value problem (BV P ) has

a unique solution u. u is given by

u(x) := 2
Z

@BR2

��(x; y)f(y)ds(y)� �2
Z
BR

(1� n(y))��(x; y)'(y)dy ; x 2 IR3 ;

(2.30)
where ' 2 C(BR) is the unique solution to the Lippmann-Schwinger equation

('+ Tn')(x) = 2
Z

@BR2

��(x; y)f(y)ds(y) ; x 2 BR :
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Proof: In order to prove that (BV P ) has at most one solution we assume
that u is a solution of (BV P ) with f = 0. Then we can follow the �rst
part of the reasoning in Theorem 1.8 and we obtain u = 0 in the exterior of
BR2

, whence u = @u�
@�

= 0 on @BR2
. Now, Green's representation formula

(1.10) implies that u is a solution of the homogeneous Lippmann-Schwinger
equation. Thus, we also have u = 0 in BR2

.
It is immediately seen that u de�ned as in (2.30) is a solution to �u +

�2u = 0 in the exterior of BR2
. Moreover, the properties of volume potentials

(see Theorem 1.11) show ' 2 C0;
(BR), whence u 2 C2(BR2
) and

(�u+ �2u)(x) = �2(1� n(x))'(x)

= �2(1� n(x))
�
2
Z

@BR2

��(x; y)f(y)ds(y)

��2
Z
BR

(1� n(y))��(x; y)'(y)dy
�

= �2(1� n(x))u(x) ; x 2 BR2
:

Finally, we can conclude from the regularity properties of the single-
layer potential with kernel �� (see [6]) and of the volume potential (see
Theorem 1.11) that u as de�ned in (2.30) satis�es the boundary conditions.
Hence it is a solution of (BV P ).

2

Now, we de�ne the operator Sn by

Sn:C(@BR2
)! C(@BR2

) (Snf)(x) := u(x) ; x 2 @BR2
;

with u being de�ned as in (2.30). Note, that S1 is the single-layer operator
de�ned in [6, 7].

We need some properties of Sn which we derive in the following lemma.

Lemma 2.20 The linear operators Sn satisfy:

(a) Sn:C(@BR2
)! C(@BR2

) and Sn:C
0;
(@BR2

)! C1;
(@BR2
) are

bounded (0 < 
 < 1).

(b)
Z

@BR2

f(Sng)ds =
Z

@BR2

(Snf)gds for all f , g 2 C(@BR2
).
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(c) The mapping n 7! Sn, from ( ~C(BR); k � k1) to the space of linear and
bounded operators in C(@BR2

) equipped with the k � k1-operator norm,
is continuous.

Proof: From the continuity of (I + Tn)
�1 in C(BR) and from the properties

of the single-layer operator S1 we can conclude that Sn is a bounded linear
operator in C(@BR2

) and similarly a bounded operator from C0;
(@BR2
) to

C1;
(@BR2
).

For assertion (b) we de�ne u as in (2.30) and v analogously where we
replace f by g. Then we compute

Z
@BR2

ff(Sng)� (Snf)ggds

=
1

2

Z
@BR2

n
(
@u�
@�

� @u+
@�

)(Sng)� (Snf)(
@v�
@�

� @v+
@�

)
o
ds

=
1

2

Z
@BR2

f@u�
@�

v� � u�
@v�
@�

gds� 1

2

Z
@BR2

f@u+
@�

v+ � u+
@v+
@�

gds :

Since the �rst integral on the right hand side vanishes due to Green's second
theorem and the second integral due to Lemma 1.4, we have proved part (b).

The proof of assertion (c) is very similar to the proof of Lemma 2.18. We
�x n0 2 ~C(BR), observe that the inequality kTn� Tn0k1;BR

� M1kn� n0k1
holds for all n 2 ~C(BR) with a suitable constant M1 and derive that k(I +
Tn)

�1k1;BR
is uniformly bounded in a suitable set fn 2 ~C(BR): kn�n0k1 <

�g. This yields the inequality

k(I + Tn)
�1 � (I + Tn0)

�1k1 �M2kn� n0k1
for all n from the above set.

De�ning for f 2 C(@BR2
)

w(x) := 2
Z

@BR2

��(x; y)f(y)ds(y) ; x 2 BR2
;

we compute

kSnf � Sn0fk1;@BR2
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= �2






Z
BR

(1� n(y))��(�; y)
h
(I + Tn)

�1w
i
(y)dy

�
Z
BR

(1� n0(y))��(�; y)
h
(I + Tn0)

�1w
i
(y)dy







1;@BR2

� �2






Z
BR

(1� n0(y))��(�; y)
h
(I + Tn)

�1w � (I + Tn0)
�1w

i
(y)dy







1;@BR2

+ �2






Z
BR

(n(y)� n0(y))��(�; y)
h
(I + Tn)

�1w
i
(y)dy







1;@BR2

� M3kn� n0k1kwk1;BR

� M4kn� n0k1kfk1;@BR2

for all kn�n0k1 < �, i.e., kSn�Sn0k1 �M4kn�n0k1, and we have proved
the lemma.

2

Next, we study the relation between the Fourier coe�cients �l1k1l2k2 of
the far �eld pattern u1;n and the Fourier coe�cients of the far �eld pattern
belonging to the function u de�ned by (2.30) for the special functions f(x) =

Y k2
l2

�
x
jxj

�
, x 2 @BR2

. This allows to reconstruct Sn from u1;n and to derive
continuous dependence of Sn on u1;n.

Lemma 2.21 Assume the far �eld pattern u1;n:S
2 � S2 ! C originates

from the refractive index n 2 ~C(BR) and has the Fourier coe�cients �l1k1l2k2.
Furthermore, de�ne for x, y 2 @BR2

, x 6= y, the function

sn(x; y) := ��(x; y)

� �2

4�

X
l1;k1;l2;k2

il1�l2�l1k1l2k2h
(1)
l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj) :

(2.31)

(a) For all f 2 C(@BR2
) there holds

(Snf)(x) = 2
Z

@BR2

sn(x; y)f(y)ds(y) ; x 2 @BR2
:
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(b) The mapping u1;n 7! Sn is continuous, to be more precise: there is
a constant M such that kSn � S~nk1 � Mku1;n � u1;~nkF for all n,
~n 2 ~C(BR).

Proof: From [7, Theorem 2.8] we infer the estimate kY k
l k21 � 2l + 1 for

the spherical harmonics Y k
l . Applying the Cauchy-Schwarz inequality to the

series in (2.31) and using the rapid decay of the Fourier coe�cients from

Lemma 2.17 together with the estimate for jh(1)l (�R2)j from Lemma 2.16 we
see that the series is absolutely and uniformly convergent on @BR2

� @BR2
.

Hence it represents a continuous function there and sn is well de�ned.

We prove assertion (a) for the special functions f(y) = Y k2
l2
( y
jyj
), y 2 @BR2

.

Since the linear span of these functions is dense in C(@BR2
) and since Sn and

the integral operator with kernel sn are bounded in C(@BR2
), this su�ces to

prove part (a).
First, we compute for x 2 @BR2

2
Z

@BR2

sn(x; y)Y
k2
l2
(
y

jyj)ds(y)

= S1(Y
k2
l2
(
�
j � j))(x)�

�2R2
2

2�

X
l1;k1

il1�l2�l1k1l2k2h
(1)
l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj) :

Then we turn to Sn(Y
k2
l2
( �
j�j
)). To this end we de�ne the functions w, ',

and u by

w(x) := 2
Z

@BR2

��(x; y)Y
k2
l2
(
y

jyj)ds(y) ; x 2 IR3 ;

' := (I + Tn)
�1w in BR , and

u(x) := w(x)� �2
Z
BR

(1� n(y))��(x; y)'(y)dy ; x 2 IR3 :

From [7, Theorem 2.10] together with the Funk-Hecke formula ([7, (2.44)])
for jxj < R2 we obtain the relationZ
@BR2

��(x; y)Y
k2
l2
(
y

jyj)ds(y) = i�R2
2h

(1)
l2
(�R2)jl2(�jxj)Y k2

l2
(x̂)

= i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

Z
S2

ei�x�dY k2
l2
(d)ds(d) :

(2.32)
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Similarly to the derivation of (2.28) we compute

' = (I + Tn)
�1w

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

(I + Tn)
�1
�Z
S2

ei�d�xY k2
l2
(d)ds(d)

�

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

Z
S2

u(�; d)Y k2
l2
(d)ds(d) :

Now, for the function v := u�w , the de�nition of u and the relation (2.24)
yield the far �eld pattern

v1(x̂) = ��
2

4�

Z
BR

(1� n(y))'(y)e�i�x̂�ydy

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

Z
S2

u1;n(x̂; d)Y
k2
l2
(d)ds(d) ;

i.e., Z
S2

v1(x̂)Y
k1
l1
(x̂)ds(x̂) = 2i�R2

2h
(1)
l2
(�R2)

(�i)l2
4�

�l1k1l2k2 : (2.33)

Since v is a radiating solution of the Helmholtz equation in the exterior of
BR1

if supp (1� n) � BR1
, R1 < R, according to [7, Theorem 2.14] it has an

expansion

v(x) =
1X
l1=0

l1X
k1=�l1

al1k1h
(1)
l1
(�jxj)Y k1

l1
(x̂)

which converges absolutely and uniformly on compact subsets of fjxj � Rg.
Therorem 2.15 in [7] states that the Fourier coe�cients of the far �eld pattern
of v satisfy Z

S2

v1(x̂)Y
k1
l1
(x̂)ds(x̂) =

1

�il1+1
al1k1 :

Comparing with (2.33) we arrive at

al1k1 = �2�2R2
2

il1�l2

4�
h
(1)
l2
(�R2)�l1k1l2k2 :
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This implies for jxj = R2

u(x)� w(x)

= �2�2R2
2

1X
l1=0

l1X
k1=�l1

il1�l2

4�
�l1k1l2k2h

(1)
l2
(�R2)h

(1)
l1
(�R2)Y

k1
l1
(
x

jxj) ;

whence

Sn(Y
k2
l2
(
�
j � j)) = uj@BR2

= 2
Z

@BR2

sn(�; y)Y k2
l2
(
y

jyj)ds(y) :

This completes the proof of assertion (a).
Finally, we can conclude for two refractive indices n, ~n 2 ~C(BR) with

Fourier coe�cients �l1k1l2k2, ~�l1k1l2k2 :

k(Sn � S~n)fk21;@BR2

=



 Z
@BR2

(sn(�; y)� s~n(�; y))f(y)ds(y)



2
1;@BR2

� M1kfk21 �
�
� X

l1k1l2k2

j�l1k1l2k2 � ~�l1k1l2k2jjh(1)l2
(�R2)h

(1)
l1
(�R2)jkY k1

l1
k1kY k2

l2
k1
�2

� M2kfk21
X

l1k1l2k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3j�l1k1l2k2 � ~�l1k1l2k2j2 �

� X
l1k1l2k2

� e�R

2l1 + 1

�2l1+2� e�R

2l2 + 1

�2l2+2jh(1)l2
(�R2)h

(1)
l1
(�R2)j2

� M3kfk21ku1;n � u1;~nk2F :

This ends the proof of the lemma.
2

Let us add a remark concerning the relation (2.31) between sn and the
Fourier coe�cients of the far �eld pattern. In [33, (3.10)] Nachman derives
for all g 2 L2(S2) and for all x̂ 2 S2 the relation

�
FSnF�

�g
�
(x̂) =

1

2�

Z
S2

�
u1;n(x̂; d)� u1;DP (x̂; d)

�
g(d)ds(d) : (2.34)
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Here, F :C(@BR2
) ! C(S2), f 7! us1, denotes the operator which maps

the Dirichlet boundary values f = usj@BR2
of a radiating solution us to the

Helmholtz equation onto its far �eld pattern us1. If, for d 2 S2, uDP (�; d) 2
C2(IR3nBR2

)\C(IR3nBR2
) satis�es uDP (y; d) = 0, y 2 @BR2

, and uDP (�; d)�
ui(�; d) is a radiating solution to the Helmholtz equation, i.e., uDP (�; d) is the
total �eld to the exterior Dirichlet problem with incident wave ui(�d), then
F can be written as

(Ff)(x̂) =
Z

@BR2

@uDP (y;�x̂)
@�(y)

f(y)ds(y) ; x̂ 2 S2 :

F�
�:C(S

2)! C(@BR2
) is de�ned by

(F�
�g)(y) =

Z
@BR2

@uDP (y; d)

@�(y)
g(d)ds(d) ; y 2 @BR2

:

Finally, u1;DP (x̂; d) is the far �eld pattern which corresponds to the scat-
tering at the obstacle BR2

assuming Dirichlet boundary conditions on @BR2
.

Using the relations

F
�
Y k
l

� �
j � j

��
=

1

�il+1h
(1)
l (�R2)

Y k
l ; F�

�(Y
k
l ) =

(�1)l
R2

2�il+1h
(1)
l (�R2)

Y k
l

� �
j � j

�
;

it can be seen that (2.31) implies (2.34) and vice versa. Nachman's relation
(2.34) is also true, if the ball BR2

is replaced by a di�erent obstacle, whereas
a de�nition of sn in the spirit of (2.31) is not possible on an arbitrary surface
surrounding the support of (1� n) because it is not at all clear whether the
series is convergent on such a surface.

Let us now turn to the third step of the stability result, namely the
continuous dependence of n on Sn and the continuous dependence of n on
u1;n. The idea is to estimate the Fourier coe�cients j(n� ~n)̂ (�)j in order to
bound kn� ~nk1. From the proof of the Uniqueness Theorem 2.10 we know
that (n� ~n)̂ (�) can be computed with the help of special solutions u, ~u to
the perturbed Helmholtz equation and with the help of the integrals

Z
BR

(n� ~n)u~udx :
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Hence, we need a relation connecting these integrals and kSn�S~nk1;@BR2
to

derive the dependence of kn� ~nk1 on kSn�S~nk1;@BR2
. We obtain this rela-

tion in the following lemma in which we employ the operator K:C(@BR2
)!

C(@BR2
) which is de�ned by

(K')(x) := 2
Z

@BR2

@��(x; y)

@�(y)
'(y)ds(y) ; x 2 @BR2

:

Lemma 2.22 Assume R < R2 < R00 and c1 > 0 are positive constants.
Then, there exists a positive constant c such that for all n, ~n 2 ~C(BR)
with knk1, k~nk1 � c1, and for all solutions u, ~u 2 C2(BR00) \ L2(BR00) to
�u+ �2nu = 0, �~u+ �2~n~u = 0 in BR00 the estimate���Z

BR

(n� ~n)u~udx
��� � ckSn � S~nk1;@BR2

kukL2(BR00 )
k~ukL2(BR00 )

(2.35)

holds true.

Proof: We �rst extend u outside of BR2
to a radiating solution w to the

Helmholtz equation with uj@BR2
= wj@BR2

on @BR2
. Then, ujBR2

together
with w is a solution of (BV P ) with a certain f . This allows to connect
uj@BR2

and the operator Sn. We de�ne

w(x) :=

8><
>:

u(x) ; x 2 BR2

2
R

@BR2

�
@��(x;y)
@�(y)

+ i��(x; y)
�
'(y)ds(y) ; x 2 IR3 nBR2

;

with ' = (I+K+ iS1)
�1uj@BR2

. The existence of (I+K+ iS1)
�1 is proved in

[7, p. 47]. The jump relations and regularity properties of surface layers imply
w 2 C(IR3), w 2 C2(BR2

)\C1(BR2
) and w 2 C2(IR3 nBR2

)\C1(IR3 nBR2
).

Furthermore, w satis�es the Sommerfeld radiation condition. Hence, we
know from Lemma 2.19 that

w =
1

2
Sn
�@w�
@�

� @w+

@�

�

on @BR2
. Finally, we can conclude from the regularity properties of sur-

face potentials and from Lemma 2.6 (b) that there are constants c2 and c3,
independent of u and n, such that




@w�
@�

� @w+

@�





1;@BR2

� c2kuk1;
;BR2
� c3kukL2(BR00 )

: (2.36)
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We can proceed analogously and de�ne a function ~w for ~u 2 C2(BR00) \
L2(BR00).

Then, we use Lemma 2.20 (b) and Green's theorem to compute

1

2

Z
@BR2

�@w�
@�

� @w+

@�

�
(Sn � S~n)

�@ ~w�
@�

� @ ~w+

@�

�
ds

=
1

2

Z
@BR2

h
Sn(

@w�
@�

� @w+

@�
)
i�@ ~w�

@�
� @ ~w+

@�

�
ds

�1

2

Z
@BR2

(
@w�
@�

� @w+

@�
)
h
S~n(

@ ~w�
@�

� @ ~w+

@�
)
i
ds

=
Z

@BR2

n
w
�@ ~w�
@�

� @ ~w+

@�

�
� ~w(

@w�
@�

� @w+

@�
)
o
ds

=
Z

@BR2

fw@ ~w�
@�

� ~w
@w�
@�

gds

=
Z

BR2

fw� ~w � ~w�wgdx

= �2
Z
BR

(n� ~n)u~udx ; (2.37)

where the terms Z
@BR2

fw@ ~w+

@�
� ~w

@w+

@�
gds = 0

vanish in the �fth line because w and ~w are radiating solutions to the
Helmholtz equation in the exterior of BR2

.

Finally, we conclude from (2.36) and (2.37)

���Z
BR

(n� ~n)u~udx
��� =

��� 1

2�2

Z
@BR2

�@w�
@�

� @w+

@�

�
(Sn � S~n)

�@ ~w�
@�

� @ ~w+

@�

�
ds
���

� ckSn � S~nk1;@BR2
kukL2(BR00 )

k~ukL2(BR00 )
;

and we have proved the lemma.
2
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We are now in a position to prove the desired stability results. By

k'kC2 := k'k1;BR
+ sup

x2BR

jr'(x)j+max
j;k

sup
x2BR

j@j@k'(x)j

we denote the C2-maximum norm of a function ' in BR having bounded
derivatives up to order two.

Theorem 2.23 Let n0 2 ~C(BR)\C2(BR) be given. Then, there are a neigh-
borhood O of n0 of the form

O := fn 2 ~C(BR) \ C2(BR): kn� n0kC2 < �g ;

and a positive constant c, such that for all n, ~n 2 O the estimate

kn� ~nk1;BR
� c[� ln(kSn � S~nk1;@BR2

)]�1=7

holds true.

Proof: The main idea is to use the previous lemma and the special solutions
u(�; �), ~u(�; ~�) from the uniqueness proof of the preceding section to derive
estimates for the Fourier coe�cients (n� ~n)̂ (�), � 2 �.

Assume R < R2 < R00 < R0 < 2R2. We have for n, ~n 2 ~C(BR) \ C2(BR)
and any � � 2

kn� ~nk1 =



X
�2�

(n� ~n)̂ (�)e�




1

� (2R0)�3=2
X

�����2

j(n� ~n)̂ (�)j+ (2R0)�3=2
X

���>�2

j(n� ~n)̂ (�)j :

(2.38)

The Cauchy-Schwarz inequality implies

X
���>�2

j(n� ~n)̂ (�)j

�
� X
���>�2

(1 + � � �)2j(n� ~n)̂ (�)j2
�1=2� X

���>�2

1

(1 + � � �)2
�1=2

� Mp
�
: (2.39)
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Here, with the help of Parseval's relation (1.2) we have bounded the �rst
factor by k(��+1)(~n�n)kL2(C) which in turn can be estimated by a constant
which is valid for all n, ~n with kn� n0kC2 � 1 and k~n� n0kC2 � 1. For the
second we have employed the inequality

X
���>�2

1

(1 + � � �)2 �
X
k>�

X
(k�1)2<����k2

1

(1 + (k � 1)2)2
�M

X
�<k

1

k2
� 2M

�

(see the proof of Lemma 2.13 (b)). Note, that we use the same letter M for
di�erent constants during the proof.

Now, we turn to the �rst sum
P

�����2
in (2.38). We will insert the solutions

u(�; �t) and ~u(�; ~�t) from Theorem 2.10 into (2.35) in order to estimate j(n�
~n)̂ (�)j.

To this end we choose t0 := 2�2(R0=�)fk1 � n0k1 + 1g + 2� + 20 and
0 < �1 < 1=2 su�ciently small to ensure (�3 ln(2�1))=(7(4R2+1)) > t0. Due
to the continuous dependence of Sn on n (Lemma 2.20 (c)) we can �nd �
with 0 < � < �1 such that

kSn � S~nk1;@BR2
� kSn � Sn0k1;@BR2

+ kS~n � Sn0k1;@BR2
� 2�1

for all
n; ~n 2 O := fn 2 ~C(BR) \ C2(BR): kn� n0kC2 < �g :

For a vector � 2 � with � � � � �2 and a real number t � t0, we choose
as in Theorem 2.10

�t := �1

2
� + i

s
t2 � �2 +

j�j2
4
d1 + td2 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 :

Then, we have for all n 2 O that j=(�t)j � t � � � t=2 and j=(�t)j �
t�� � 2�2(R0=�)k1�nk1+1, whence by Lemma 2.9 there exist the special
solutions u(x; �t) = ei�t�x(1+v(x; �t)) and the L

2(BR00)-norms of the functions
v(�; �t) can be bounded by M=t uniformly in n 2 O, t � t0 and � 2 �. The

analogous assertions apply to ~v(�; ~�t) and ~u(x; ~�t) = ei
~�t�x(1 + ~v(x; ~�t)).

Using (2.35) we estimate

j(~n� n)̂ (�)j
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= (2R0)�3=2
���Z
C

(~n� n)(x)e�i��xdx
���

= (2R0)�3=2
��� Z
BR2

(~n� n)(x)u(x; �t)~u(x; ~�t)dx

�
Z

BR2

(~n� n)(x)e�i��x(v(x; �t) + ~v(x; ~�t) + v(x; �t)~v(x; ~�t))dx
���

� MkSn � S~nk1ku(�; �t)kL2(BR00 )
k~u(�; ~�t)kL2(BR00 )

+
M

t

� M(e4R2(t+j�j)kSn � S~nk1 +
1

t
) ; (2.40)

where we have used the fact that

ku(�; �t)kL2(BR00 )
= kei�t�x (1 + v(�; �t))kL2(BR00 )

� kei�t�xk1;B2R2
k1 + v(�; �t)kL2(BR00 )

� Me2R2(t+j�j)

for all t � t0, n 2 O, and � 2 �, since j=(�t)j � t+ j�j.
Inequality (2.40) implies

X
�����2

j(~n� n)̂ (�)j � M
X

�����2

(e4R2(t+j�j)kSn � S~nk1 +
1

t
)

� Mfe4R2te4R2��3kSn � S~nk1 +
�3

t
g

� Mfe(4R2+1)(t+�)kSn � S~nk1 +
�3

t
g ;

because of �3 � 6e�. If we �x � := t2=7, for t � t0 our condition � � 2 is
satis�ed and we obtain from (2.38), (2.39) and our last estimate

kn� ~nk1 � Mfe(4R2+1)(t+�)kSn � S~nk1 +
�3

t
+

1p
�
g

� Mfe(8R2+2)tkSn � S~nk1 +
2

t1=7
g ; (2.41)

since � = t2=7 � t.
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Finally, we choose t := � 3
7(4R2+1)

lnkSn � S~nk1. Then, the inequalities

kSn � S~nk1 < 1 and t � t0 are satis�ed for all n, ~n 2 O by the de�nition of
� and inequality (2.41) reads

kn� ~nk1 � M
n
(kSn � S~nk1)1=7 + (� ln kSn � S~nk1)�1=7

o
� c(� ln kSn � S~nk1)�1=7

for all n, ~n 2 O because

� ln(x) =

1Z
x

dy

y
� 1

x
(1� x) � 1

x

implies x � (� ln(x))�1 for 0 < x < 1, and we have proved the theorem.
2

Theorem 2.24 Let n0 2 ~C(BR1
) \ C2(BR) with R1 < R be given. Then,

there are a neighborhood O of n0 of the form

O := fn 2 ~C(BR1
) \ C2(BR): kn� n0kC2 < �g ;

and a positive constant c, such that for all n, ~n 2 O the estimate

kn� ~nk1;BR
� c[� ln(ku1;n � u1;~nkF)]�1=7

holds true.

Proof: We know from Lemma 2.18 that the mapping n 7! u1;n is continuous
from ~C(BR1

) to the far �eld patterns equipped with the norm k � kF . Then,
in the proof of Theorem 2.23 we can choose � > 0 su�ciently small to satisfy
the additional requirements

(1 +M)ku1;n � u1;~nkF � 2�1 and Mku1;n � u1;~nkF � ku1;n � u1;~nk1=2F

for all n, ~n 2 O, too, where M denotes the constant from Lemma 2.21 (b).
Inserting the estimate

kSn � S~nk1 �Mku1;n � u1;~nkF
from Lemma 2.21 (b) into Theorem 2.23 we arrive at the assertion of the
theorem.

2
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2.3 The Reconstruction of the Refractive In-

dex

This section is devoted to a procedure to reconstruct the refractive index n
from u1;n, to be more precise: we compute the Fourier coe�cients (n�1)̂ (�),
� 2 �.

In the �rst step (Theorem 2.27) we prove that the Robin-to-Dirichlet map
�n:C

0;
(@BR2
)! C1;
(@BR2

), given by f = @u=@�� iu 7! uj@BR2
where u is

a solution to �u + �2nu = 0 in BR2
, is well de�ned, and we examine how it

can be computed from u1;n, i.e., from the Fourier coe�cients �l1k1l2k2 of u1;n.
This can be established by essentially constructing the Green's function sn
for the di�erential equation �u+�2nu = f and using a single-layer approach
with kernel sn. We used a similar approach when we examined the stability in
the preceding section. However, we do not only need the operator Sn but also
the operator K 0

n which arises from the normal derivative of the single-layer
potential with kernel sn. We study its properties in Lemma 2.25. As in the
previous section we avoid working with sn directly. We also avoid working
with the Dirichlet-to-Neumann map as in [32] because then we would have
to worry about Dirichlet eigenvalues. Since the Robin problem has no real
eigenvalues (Lemma 2.26), it is more suitable for our purposes. Nevertheless,
this whole section is largely in
uenced by Nachman's paper [32].

In the second step we derive a uniquely solvable equation of the form

(I � An;�)(
@u

@�
(�; �)� iu(�; �)) = @ei��:

@�
� iei��: on @BR2

for the Robin data @u(�; �)=@�� iu(�; �) of the special solutions u(�; �) which
we constructed in Lemma 2.9. Here, An;� is a compact operator in C0;
(@BR2

)
which is composed of �n and integral operators having kernels originating
from the unphysical fundamental solution 	� := ei�j�j=(4�j�j)+~g�. 	� already
occured in section 2.1 after Lemma 2.9 and is the composition of a Fourier
series, a unitary transformation and a multiplication by ei��x, whence it is
known. This means that An;� can be computed from u1;n and �. In a
nutshell, given u1;n, we can compute the Robin data @u(�; �)=@� � iu(�; �)
and the Dirichlet data u(�; �) = �n(@u(�; �)=@� � iu(�; �)) on @BR2

.
In the last step we apply Green's second theorem inBR2

with the functions

ei
~��x and u(x; �) = ei��x(1+v(x; �)) from Lemma 2.9. Here, � = �t and ~� = ~�t

are chosen as in the Uniqueness Theorem 2.10 for a �xed � 2 �. We then
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obtain

Z
@BR2

n
(
@ei

~��x

@�
� iei

~��x)[�n(
@u(�; �)
@�

� iu(�; �))](x)

�ei~��x(@u(x; �)
@�

� iu(x; �))
o
ds(x)

=
Z

@BR2

n@ei~��x
@�

u(x; �)� ei
~��x@u(x; �)

@�

o
ds(x)

= �2
Z
BR

(n(x)� 1)ei
~��xu(x; �)dx

= �2
Z
BR

(n(x)� 1)e�i��x(1 + v(x; �))dx : (2.42)

The left hand side of this equation can be computed from u1;n according to
our preceding considerations. The right hand side converges to �2(2R0)3=2(n�
1)̂ (�) for t!1, i.e., j=(�)j ! 1, because kv(�; �)kL2 ! 0 for j=(�)j ! 1
by Lemma 2.9. Finally, having calculated all Fourier coe�cients (n� 1)̂ (�),
� 2 �, we obtain n in BR2

as the L2-limit of the series

n = 1 +
X
�2�

(n� 1)̂ (�)e� :

After this outline let us start with the operator �n. In order to motivate
the following analysis we brie
y sketch how to analyze �1. In the case n = 1
uniqueness of a solution to the Robin boundary value problem �u+�2u = 0
in BR2

, @u=@� � iu = f on @BR2
, can be easily inferred from Green's �rst

theorem. Existence can be established with the help of a single-layer ansatz

u(x) = 2
Z

@BR2

��(x; y) (y)ds(y) ; x 2 BR2
:

If  is a solution to (I + K 0
1 � iS1) = f , then u de�ned as above solves

the Robin problem. Here, K 0
1:C

0;
(@BR2
)! C0;
(@BR2

) denotes the integral
operator

(K 0
1 )(x) = 2

Z
@BR2

@��(x; y)

@�(x)
 (y)ds(y) ; x 2 @BR2

: (2.43)
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The existence of a solution to this integral equation is then derived via the
Riesz theory and one arrives at �1 = S1(I +K 0

1 � iS1)
�1.

For arbitrary n we want to replace the Green's function �� by sn and use
the same procedure to establish the existence of a solution. Hence we need the
boundary integral operators corresponding to S1 and K

0
1. In the preceding

section we have de�ned the operator Sn with the help of the functions u
given by (2.30). Lemma 2.21 states that Sn can be computed from u1;n. We
would like to do the same for the operator K 0

n, i.e., for the operator having
the normal derivative ~kn(x; y) := @sn(x; y)=@�(x) of the Green's function sn
as kernel. To this end, analogously to (2.30), we de�ne for f 2 C0;
(@BR2

):

(K 0
nf)(x) := (K 0

1f)(x)� �2
Z
BR

@��(x; y)

@�(x)
(1� n(y))'(y)dy ; x 2 @BR2

;

(2.44)

where ' 2 C(BR) is the unique solution to the Lippmann-Schwinger equation

('+ Tn')(x) = 2
Z

@BR2

��(x; y)f(y)ds(y) ; x 2 BR :

Note, that if u is de�ned as in (2.30), that is

u(x) = 2
Z

@BR2

��(x; y)f(y)ds(y)� �2
Z
BR

��(x; y)(1� n(y))'(y)dy ; x 2 IR3 ;

(2.45)
then we can infer from the properties of the single-layer potential with kernel
��:

ujBR2
2 C1;
(BR2

), ujIR3nBR2
2 C1;
(IR3 nBR2

),

and @u�=@� = K 0
nf + f , @u+=@� = K 0

nf � f .

In the following lemma we show that K 0
n is compact and how it can be

computed from a knowledge of u1;n.

Lemma 2.25 Assume the far �eld pattern u1;n:S
2 � S2 ! C originates

from the refractive index n 2 ~C(BR) and has the Fourier coe�cients �l1k1l2k2.
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Furthermore, de�ne for x, y 2 @BR2
, x 6= y, the function

~kn(x; y) :=
@��(x; y)

@�(x)

� �3

4�

X
l1;k1;l2;k2

il1�l2�l1k1l2k2
�dh(1)l1

dt

�
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj) :

(2.46)

(a) K 0
n:C

0;
(@BR2
)! C0;
(@BR2

) is compact (0 < 
 < 1).

(b) For all  2 C(@BR2
) there holds

(K 0
n )(x) = 2

Z
@BR2

~kn(x; y) (y)ds(y) ; x 2 @BR2
:

Proof: As in Lemma 2.21 we can conclude that the series in the de�nition
of ~kn is absolutely and uniformly convergent on @BR2

� @BR2
, whence ~kn is

well de�ned.
For assertion (a) we observe that the mapping

 7! w := 2
Z

@BR2

��(�; y) (y)ds(y)

from C0;
(@BR2
) to C(BR) is compact due to the properties of the single-layer

with kernel ��. Taking into account the continuity of (I + Tn)
�1 in C(BR)

and the regularity of the volume potential we obtain that the mapping

 7! ��2
Z
BR

@��(�; y)
@�(�) (1� n(y))[(I + Tn)

�1w](y)dy

is compact in C0;
(@BR2
). Together with the compactness of K 0

1 this proves
part (a).

The proof of part (b) closely follows the proof of Lemma 2.21 (a). It

su�ces to show the assertion for the functions  (y) = Y k2
l2
( y
jyj
), y 2 @BR2

.
We compute

2
Z

@BR2

~kn(x; y)Y
k2
l2
(
y

jyj)ds(y) = K 0
1(Y

k2
l2
(
�
j � j))(x)

� �3R2
2

2�

X
l1;k1

il1�l2�l1k1l2k2(
dh

(1)
l1

dt
)(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj) ; x 2 @BR2
:
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Furthermore,

v := ��2
Z
BR

��(�; y)(1� n(y))'(y)dy

has an absolutely and uniformly convergent series expansion in compact sub-
sets of fjxj > Rg:

v(x) =
1X
l1=0

l1X
k1=�l1

al1k1h
(1)
l1
(�jxj)Y k1

l1
(x̂) :

The series may be di�erentiated termwise with respect to jxj because the
derivatives are also absolutely and uniformly convergent. Hence, we obtain
for x 2 @BR2

@v

@�
(x) = �

1X
l1=0

l1X
k1=�l1

al1k1
�dh(1)l1

dt

�
(�jxj)Y k1

l1
(x̂) :

As in the proof of Lemma 2.21 we also have the relation

al1k1 = �2�2R2
2

il1�l2

4�
h(1)l2

(�R2)�l1k1l2k2 :

Inserting this in the above series yields the assertion.
2

Our next aim is to prove that the following Robin boundary value problem
(RP ) has a unique solution:

given � > 0, n 2 C0;
(IR3) with supp (1 � n) � BR and =(n) � 0, and
given f 2 C0;
(@BR2

),
�nd u 2 C2(BR2

) \ C1(BR2
) such that u satis�es �u + �2nu = 0 in BR2

and the Robin boundary condition @u
@�
� iu = f on @BR2

. (� is directed into
the exterior of BR2

)
We imitate the proof for the case n = 1 and start with uniqueness.

Lemma 2.26 If u is a solution to (RP ) with f = 0, then u = 0 in BR2
.

Proof: Applying Green's �rst theorem to a solution u of the homogeneous
boundary value problem (RP ) yields

i
Z

@BR2

juj2ds =
Z

@BR2

@u

@�
uds =

Z
BR2

(jruj2 � �2njuj2)dx :
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Taking the imaginary part we arrive at

Z
@BR2

juj2ds = ��2
Z

BR2

=(n)juj2dx � 0 ;

whence u = @u=@� = 0 on @BR2
. Now, Green's representation theorem for u

in BR2
implies that u is a solution to the homogeneous Lippmann-Schwinger

equation in BR2
, thus u = 0.

2

Theorem 2.27 For any given f 2 C0;
(@BR2
) there is a unique solution

u to (RP ). The mapping �n:C
0;
(@BR2

) ! C1;
(@BR2
) de�ned by �nf =

uj@BR2
is well de�ned and can be computed from u1;n. The linear operator

P :C0;
(@BR2
)! C(BR2

) de�ned by Pf = u is compact.

Proof: From the considerations before Lemma 2.25 we see that, if  2
C0;
(@BR2

) is a solution to

(I +K 0
n � iSn) = f ; (2.47)

then ujBR2
with u de�ned by

u(x) = 2
Z

@BR2

��(x; y) (y)ds(y)� �2
Z
BR

��(x; y)(1� n(y))'(y)dy ; x 2 IR3 ;

and ' 2 C(BR) being the solution to

'+ Tn' = 2
Z

@BR2

��(�; y) (y)ds(y) ;

is a solution to (RP ). As in the proof of Lemma 2.19 the di�erential equation
is veri�ed by applying (� + �2) to the de�nition of u.

Since the operators Sn and K 0
n are compact in C0;
(@BR2

), it su�ces to
prove that the integral equation (2.47) has a trivial nullspace.

Let  2 C0;
(@BR2
) be a solution to (I + K 0

n � iSn) = 0 and de�ne u
as above. Then, the uniqueness result for (RP ) implies ujBR2

= 0, whence
uj@BR2

= 0 and then ujIR3nBR2
= 0 because the exterior Dirichlet problem for
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the Helmholtz equation is uniquely solvable. Now, we use the jump relations
as indicated before Lemma 2.25 and conclude 2 = @u�=@� � @u+=@� = 0.

From our above considerations we have the relation �n = Sn(I + K 0
n �

iSn)
�1, i.e., �n:C

0;
(@BR2
)! C1;
(@BR2

) is well de�ned and it can be com-
puted from u1;n because the kernels of the integral operators Sn and K

0
n can

be computed from the Fourier coe�cients of u1;n.
Finally, the boundedness of (I + K 0

n � iSn)
�1 in C0;
(@BR2

) together
with the boundedness of (I + Tn)

�1 in C(BR2
) and the compactness of the

single-layer potential with kernel �� from C0;
(@BR2
) to C(BR2

) imply the
compactness of P .

2

Our next task is to construct the Robin data @u(�; �)=@� � iu(�; �) of
the special solutions used in the Uniqueness Theorem 2.10. We will derive
a uniquely solvable equation for the Robin data which only contains �n

and integral operators built on the special fundamental solution ei��xg�(x)
for the Helmholtz equation. These unphysical fundamental solutions were
introduced after Lemma 2.9.

Our reasoning after Lemma 2.9 implies that for � 2 C3 with =(�) 6= 0
and � � � = �2 the relation

ei��(x�y)g�(x� y) = ��(x; y) + ~g�(x� y) ; x; y 2 BR0 ; x 6= y ;

holds true where ~g� 2 C2(B2R0) satis�es �~g� + �2~g� = 0 in B2R0 . To simplify
notation we de�ne

	�(x) := ei��xg�(x) =
ei�jxj

4�jxj + ~g�(x) ; 0 < jxj < 2R0 :

We choose R < R2 < R00 < R0. Equation (2.15) tells us that for su�-
ciently large j=(�)j the special solutions u(�; �) are the unique solutions to

u(x; �) = ei��x � �2
Z

BR00

	�(x� y)(1� n)(y)u(y; �)dy ; x 2 BR00 : (2.48)

The following lemma states Green's representation theorem for u(�; �) in
the spherical shell R2 < jxj < R00 with the fundamental solution �� replaced
by 	� .
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Lemma 2.28 Assume � > 0 and � 2 C3 satis�es =(�) 6= 0 and � � � = �2.
Furthermore, let u(�; �) 2 C(BR00) be a solution to the modi�ed Lippmann-
Schwinger equation (2.48). Then, for R2 < jxj < R00 u(�; �) admits the
representation

u(x; �) = ei��x+
Z

@BR2

�@	�(x� y)

@�(y)
u(y; �)�	�(x� y)@u(y; �)

@�

�
ds(y) : (2.49)

Proof: Taking into account the regularity properties of volume potentials
and the fact that 	�(x � y) = ��(x; y) + ~g�(x � y) with a smooth function
~g� satisfying �~g� + �2~g� = 0 we conclude for the solution u(�; �) of the
modi�ed Lippmann-Schwinger equation (2.48) that u(�; �) 2 C2(BR00) and
�u(�; �)+�2nu(�; �) = 0 in BR00 . Since for a �xed x 2 IR3 with R2 < jxj < R00

the function 	�(x� �) 2 C2(BR2
) is a solution to the Helmholtz equation in

BR2
, we obtain from Green's second theorem

Z
@BR2

�@	�(x� y)

@�(y)
u(y; �)� 	�(x� y)

@u(y; �)

@�

�
ds(y)

= ��2
Z

BR2

	�(x� y)(1� n)(y)u(y; �)dy ;

whence the assertion.
2

We now intend to consider the limit x ! x0 2 @BR2
in (2.49) in order

to arrive at the desired boundary integral equation for the Robin data. To
this end we de�ne the operators S� , K� , K0

� and T� analogously to the known
operators in classical potential theory:

S� :C0;
(@BR2
)! C1;
(@BR2

) (S�f)(x) := 2
Z

@BR2

	�(x� y)f(y)ds(y);

K�:C
1;
(@BR2

)! C1;
(@BR2
) (K�f)(x) := 2

Z
@BR2

@	�(x� y)

@�(y)
f(y)ds(y);

K0
�:C

0;
(@BR2
)! C0;
(@BR2

) (K0
�f)(x) := 2

Z
@BR2

@	�(x� y)

@�(x)
f(y)ds(y)
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for x 2 @BR2
and T� :C1;
(@BR2

)! C0;
(@BR2
)

(T�f)(x) := 2
@

@�(x)

Z
@BR2

@	�(x� y)

@�(y)
f(y)ds(y) ; x 2 @BR2

:

Since 	� and e
i�j�j=(4�j � j) only di�er by a smooth function, the above bound-

ary operators inherit the properties of the analogous ones with kernel �� (see
[6, Chapter 2]). Similarly, the jump relations and mapping properties of sin-
gle and double-layer potentials and their derivatives de�ned with the kernel
	� are the same as those with the kernel ��.

Lemma 2.29 Assume � > 0 and � 2 C3 satis�es =(�) 6= 0 and � � � = �2.
Furthermore, let u(�; �) 2 C(BR00) be a solution to the modi�ed Lippmann-
Schwinger equation (2.48). Then, the Robin data f = @u(�; �)=@� � iu(�; �)
on @BR2

are a solution to

f(x) = (
@ei��x

@�
� iei��x)

+
1

2
f(T� � iK0

�)�nf � (K0
� � I)f � i(K� � iS�)�nf + iS�fg(x)

(2.50)

on @BR2
.

Proof: In order to have a representation of u(�; �) containing f = @u=@�� iu
and u = �n(@u=@� � iu) we reformulate equation (2.49) as

u(x; �) = ei��x +
Z

@BR2

n
(
@	�(x� y)

@�(y)
� i	�(x� y))u(y; �)

�	�(x� y)(
@u(y; �)

@�
� iu(y; �))

o
ds(y) ; R2 < jxj < R00 :

From this we can infer together with the jump relations

2u(x; �) = 2ei��x +
n
(K� � iS� + I)�nf � S�f

o
(x) ;

2
@u(x; �)

@�
= 2

@ei��x

@�
+
n
(T� � i(K0

� � I))�nf � (K0
� � I)f

o
(x)
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on @BR2
. Multiplying the �rst equation by i and subtracting the result from

the second one we �nally obtain for the Robin data f of the function u(�; �)
the equation

f(x) = (
@ei��x

@�
� iei��x)

+
1

2
f(T� � i(K0

� � I))�nf � (K0
� � I)f

�i(K� � iS� + I)�nf + iS�fg(x)
on @BR2

and we have proved the lemma.
2

Next, we examine the operator

An;�:C
0;
(@BR2

)! C0;
(@BR2
) ;

de�ned by

An;�f :=
1

2
f(T� � iK0

�)�nf � (K0
� � I)f � i(K� � iS�)�nf + iS�fg ;

which occurs in (2.50).

Lemma 2.30 An;� :C
0;
(@BR2

)! C0;
(@BR2
) is compact.

Proof: We de�ne v := Pf to be the solution of �v + �2nv = 0 in BR2
and

@v=@��iv = f on @BR2
(see Theorem 2.27). Green's representation theorem

applied to v in BR2
reads

v(x) =
Z

@BR2

f��(x; y)
@v

@�
(y)� @��(x; y)

@�(y)
v(y)gds(y)

��2
Z

BR2

��(x; y)(1� n)(y)v(y)dy ; x 2 BR2
:

From Green's second theorem applied to v and ~g�(x� �) we conclude

0 =
Z

@BR2

f~g�(x� y)
@v

@�
(y)� @~g�(x� y)

@�(y)
v(y)gds(y)

��2
Z

BR2

~g�(x� y)(1� n)(y)v(y)dy ; x 2 BR2
:
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Then, we add the two equations and arrive at

v(x) =
Z

@BR2

f	�(x� y)
@v

@�
(y)� @	�(x� y)

@�(y)
v(y)gds(y)

��2
Z

BR2

	�(x� y)(1� n)(y)v(y)dy ; x 2 BR2
: (2.51)

Reordering terms we obtain

v(x) =
Z

@BR2

n
	�(x� y)f(y)� (

@	�(x� y)

@�(y)
� i	�(x� y))(�nf)(y)

o
ds(y)

��2
Z

BR2

	�(x� y)(1� n)(y)v(y)dy ; x 2 BR2
:

This yields

2f = 2
@v

@�
� 2iv

= f(K0
� + I)f � (T� � i(K0

� + I))�nf � iS�f + i(K� � iS� � I)�nfg
�2�2

Z
BR2

(
@	�(� � y)

@�(�) � i	�(� � y))(1� n)(y)v(y)dy

on @BR2
. Finally, subtracting on both sides the term in curly brackets and

dividing by two we have

An;�f = ��2
Z

BR2

(
@	�(� � y)

@�(�) � i	�(� � y))(1� n)(y)(Pf)(y)dy :

The compactness then follows from the compactness of P and the mapping
properties of volume potentials.

2

Now, we would like to prove that the integral equation (2.50) has a trivial
nullspace. To this end we state and prove a helpful assertion in the following
lemma.

Lemma 2.31 Assume R2 < R00 < R0.
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(a) For all x, z 2 BR00 the relation

Z
@BR00

(
@	�(y � z)

@�(y)
	�(x� y)� 	�(y � z)

@	�(x� y)

@�(y)
)ds(y) = 0

holds true.

(b) If v is de�ned by

v(y) =
Z

@BR2

	�(y � z)f(z)ds(z) ; R2 � jyj � R00 ;

with f 2 C0;
(@BR2
), then for all jxj < R00 the relation

Z
@BR00

(	�(x� y)
@v

@�
(y)� @	�(x� y)

@�(y)
v(y))ds(y) = 0

holds true. This is also true, if v is de�ned by

v(y) =
Z

@BR2

@	�(y � z)

@�(z)
f(z)ds(z) ; R2 < jyj � R00 ;

with f 2 C1;
(@BR2
).

(c) A function v de�ned as in part (b) admits for R2 < jxj < R00 the
representation

v(x) =
Z

@BR2

(
@	�(x� y)

@�(y)
v(y)�	�(x� y)

@v

@�
(y))ds(y) :

Proof: Since for jzj; jxj < R00 ��(�; z) and ��(x; �) are radiating solutions to
the Helmholtz equation in IR3 nBR00 , we have from Lemma 1.4 that

Z
@BR00

(
@��(y; z)

@�(y)
��(x; y)� ��(y; z)

@��(x; y)

@�(y)
)ds(y) = 0 :

Green's second theorem applied with ~g�(� � z) and ~g�(x� �) in BR00 yieldsZ
@BR00

(
@~g�(y � z)

@�(y)
~g�(x� y)� ~g�(y � z)

@~g�(x� y)

@�(y)
)ds(y) = 0 :
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Finally, we know from Green's representation theorem

Z
@BR00

(
@��(y; z)

@�(y)
~g�(x� y)� ��(y; z)

@~g(x� y)

@�(y)
)ds(y) = �~g�(x� z)

and

Z
@BR00

(
@~g�(y � z)

@�(y)
��(x; y)� ~g�(y � z)

@��(x; y)

@�(y)
)ds(y) = ~g�(x� z) :

Adding the last four equalities we arrive at assertion (a).
If we insert the de�nition of the single-layer v, de�ned as in assertion (b),

into the integral over @BR00 , reverse the order of integration, and use part (a),
we can conclude that the integral over @BR00 vanishes for all jxj < R00. For
the double-layer v we apply �(z) �rz to the relation from part (a) and arrive
at

Z
@BR00

(
@

@�(y)

@	�(y � z)

@�(z)
	�(x� y)� @	�(y � z)

@�(z)

@	�(x� y)

@�(y)
)ds(y) = 0

for jzj = R2 and jxj < R00. Now, we can proceed analogously as for the
single-layer and we have proved part (b) of the lemma.

For part (c) we observe that v, de�ned as in assertion (b), is a solution
to the Helmholtz equation in R2 < jxj < R00. Hence, it can be represented as

v(x) =
Z

@BR2

(
@	�(x� y)

@�(y)
v(y)� 	�(x� y)

@v

@�
(y))ds(y)

+
Z

@BR00

(	�(x� y)
@v

@�
(y)� @	�(x� y)

@�(y)
v(y))ds(y) :

This can be seen by inserting 	�(x � y) = ��(x; y) + ~g�(x � y) and using
Green's representation theorem for the intgrals containing �� and Green's
second theorem for the remaining integrals. (Note that on both spheres � is
directed into the exterior, i.e., to in�nity)

Since the integral over @BR00 vanishes due to part (b), we have completed
the proof of the lemma.

2
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We are now in a position to prove that the operator I � An;� is injective
for su�ciently large j=(�)j. As with the normal derivatives, for a function
v de�ned in BR2

we denote by v� the uniform limit v(� � h�(�)) for h ! 0,
h > 0, on @BR2

. And we de�ne analogously the limit v+ from the exterior if
v is de�ned outside of BR2

. We summarize our results about the Robin data
of the special solutions u(�; �) in the following theorem.

Theorem 2.32 Let n 2 C0;
(IR3) with supp (1 � n) � BR, =(n) � 0, and
R < R2 < R00 < R0 be given. Assume � > 0 and � 2 C3 satis�es � � � = �2

and j=(�)j � 2�2(R0=�)k1 � nk1 + 1. Furthermore, let �n be the Robin-
to-Dirichlet map and let u(�; �) 2 C(BR00) be the solution to the modi�ed
Lippmann-Schwinger equation (2.48).

Then, the Robin boundary values f := @u(�; �)=@��iu(�; �) are the unique
solution to the equation (2.50), i.e.,

f(x) = (
@ei��x

@�
� iei��x) + (An;�f)(x) ; x 2 @BR2

:

Moreover, An;� is a compact operator in C0;
(@BR2
).

Proof: The remark after Lemma 2.9 implies that the modi�ed Lippmann-
Schwinger equation (2.48) has a unique solution. Lemmas 2.29 and 2.30
show that f is in fact a solution of (2.50) and that An;� is compact.

It remains to prove the injectivity of equation (2.50). To this end assume
f 2 C0;
(@BR2

) is a solution to f = An;�f . We de�ne v in BR2
to be the

solution of �v+ �2nv = 0 in BR2
which has the Robin data @v=@� � iv = f .

For R2 < jxj � R00 we de�ne

v(x) :=
Z

@BR2

n
(
@	�(x� y)

@�(y)
� i	�(x� y))(�nf)(y)� 	�(x� y)f(y)

o
ds(y) :

(2.52)
From the jump relations we conclude

@v+
@�

� iv+

=
1

2
f(T� � i(K0

� � I))�nf � (K0
� � I)f � i(K� � iS� + I)�nf + iS�fg

= An;�f

= f : (2.53)
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Our next aim is to show that v+ = v�. Lemma 2.31 (c) together with
(2.53) implies for R2 < jxj � R00

v(x) =
Z

@BR2

(
@	�(x� y)

@�(y)
v+(y)� 	�(x� y)

@v+
@�

(y))ds(y)

=
Z

@BR2

n
(
@	�(x� y)

@�(y)
� i	�(x� y))v+(y)� 	�(x� y)f(y)

o
ds(y) :

We compute the di�erence of (2.52) and the last equation and we obtain for
g := �nf � v+ and

w(x) :=
Z

@BR2

(
@	�(x� y)

@�(y)
� i	�(x� y))g(y)ds(y) ; x 2 BR00 n @BR2

;

that w(x) = 0 for R2 < jxj < R00. From the jump relations we conclude
�w� = w+ � w� = g, �@w�=@� = @w+=@� � @w�=@� = ig and we arrive
with Green's �rst theorem at

i
Z

@BR2

jgj2ds =
Z

@BR2

@w�
@�

w�ds =
Z

BR2

(jrwj2 � �2jwj2)dx :

Taking the imaginary part yields g = 0, whence v+ = �nf = v�. Together
with (2.53), i.e., @v�=@� � iv� = f = @v+=@� � iv+, we now know v+ = v�
and @v�=@� = @v+=@�. Then, as in (2.51), we can represent v with the help
of the fundamental solution 	� :

v(x) =
Z

@BR2

(	�(x� y)
@v+
@�

(y)� @	�(x� y)

@�(y)
v+(y))ds(y)

��2
Z

BR2

	�(x� y)(1� n)(y)v(y)dy ; x 2 BR2
:

Moreover, with Green's second theorem and Lemma 2.31 (b) we computeZ
@BR2

(	�(x� y)
@v+
@�

(y)� @	�(x� y)

@�(y)
v+(y))ds(y)

=
Z

@BR00

(	�(x� y)
@v

@�
(y)� @	�(x� y)

@�(y)
v(y))ds(y)

= 0 ; x 2 BR2
:
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Hence, v is a solution to the homogeneous modi�ed Lippmann-Schwinger
equation

v(x) = ��2
Z

BR2

	�(x� y)(1� n)(y)v(y)dy ; x 2 BR2
;

and must vanish in BR2
due to the remark after Lemma 2.9. This �nally

implies f = @v�=@� � iv� = 0.
2

The last step of the reconstruction of (n�1)̂ (�) is summarized in the next
theorem. As in the Uniqueness Theorem 2.10 we choose for a �xed vector
� 2 � the unit vectors d1, d2 2 IR3 such that d1 � d2 = d1 � � = d2 �� = 0 and
de�ne

�t := �1

2
�+ i

s
t2 � �2 +

j�j2
4
d1 + td2 2 C3 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 2 C3

for t > 2�2(R0=�)k1� nk1 + 1 + �.

Theorem 2.33 Let the notation and assumptions of Theorem 2.32 be given.
Moreover, de�ne for a �xed � 2 � and for t > 2�2(R0=�)k1� nk1 + 1 + �
the vectors �t, ~�t as above and let ft 2 C0;
(@BR2

) be the unique solution to

ft(x) = (
@ei�t�x

@�
� iei�t�x) + (An;�tft)(x) ; x 2 @BR2

:

Then,

lim
t!1

Z
@BR2

f(@e
i~�t�x

@�
� iei

~�t�x)(�nft)(x)� ei
~�t�xft(x)gds(x)

= �2(2R0)3=2(n� 1)̂ (�) :

Proof: Following our considerations in (2.42) we apply Green's second the-

orem in BR2
with the functions ei

~�t�x and u(x; �t) = ei�t�x(1 + v(x; �t)) from
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Lemma 2.9 and we arrive atZ
@BR2

f(@e
i~�t�x

@�
� iei

~�t�x)(�nft)(x)� ei
~�t�xft(x)gds(x)

=
Z

@BR2

n@ei~�t�x
@�

u(x; �t)� ei
~�t�x
@u(x; �t)

@�

o
ds(x)

= �2
Z
BR

(n(x)� 1)ei
~�t�xu(x; �t)dx

= �2
Z
BR

(n(x)� 1)e�i��x(1 + v(x; �t))dx :

The theorem now follows because kv(�; �t)kL2 ! 0 as t ! 1 according to
Lemma 2.9.

2

Let us conclude this chapter by summarizing the reconstruction procedure
assuming that the far �eld pattern u1;n:S

2 � S2 ! C originating from a
refractive index n 2 ~C(BR) is exactly known. We wish to emphasize that it
is a theoretical reconstruction procedure. In view of the fact that at present
no quadrature rules are available for surfaces in IR3 which are comparable
in quality to their counterparts for arcs in IR2, it is not possible to solve
integral equations on such surfaces with a comparable amount of work and a
comparable accuracy. In addition, the kernels of our integral equation have
to be computed with the help of a series expansion and show an oscillating
behavior, especially for large �. This strongly indicates that at present one
will encounter serious di�culties when attempting a numerical reconstruction
of n according to this procedure.

� Compute the Fourier coe�cients

�l1k1l2k2 :=
Z
S2

Z
S2

u1;n(x̂; d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) :

� Compute for x, y 2 @BR2
the kernels

sn(x; y) := ��(x; y)

� �2

4�

X
l1;k1;l2;k2

il1�l2�l1k1l2k2h
(1)
l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj)
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and

~kn(x; y) :=
@��(x; y)

@�(x)

� �3

4�

X
l1;k1;l2;k2

il1�l2�l1k1l2k2
�dh(1)l1

dt

�
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj)

(see (2.31) and (2.46)).

De�ne the integral operators

(Snf)(x) = 2
Z

@BR2

sn(x; y)f(y)ds(y) ; x 2 @BR2
;

(K 0
nf)(x) = 2

Z
@BR2

~kn(x; y)f(y)ds(y) ; x 2 @BR2
;

and �n = Sn(I +K 0
n � iSn)

�1 (see Theorem 2.27).

� Fix � 2 � and choose � = �t, ~� = ~�t as before Theorem 2.33; compute

An;� :=
1

2
f(T� � iK0

�)�n � (K0
� � I)� i(K� � iS�)�n + iS�g ;

where the operators S� , K�, K0
� and T� are de�ned on page 99.

� Solve the equation

f(x) = (
@ei��x

@�
� iei��x) + (An;�f)(x) ; x 2 @BR2

:

(It has a unique solution due to Theorem 2.32)

� Insert the solution f into

Z
@BR2

f(@e
i~� �x

@�
� iei

~��x)(�nf)(x)� ei
~��xf(x)gds(x) ;

and calculate the limit as t ! 1. Divide the limit by �2(2R0)3=2 and
set the result to (n� 1)̂ (�).

� Repeat the last three items for all � 2 �.

�
n = 1 +

X
�2�

(n� 1)̂ (�)e� in L2(BR2
).
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Chapter 3

The Direct Electromagnetic

Scattering Problem

The propagation of electromagnetic waves in an inhomogeneous isotropic
medium is governed by the Maxwell equations

r^ E + �0
@H
@t

= 0 ; r ^H� �
@E
@t

= J :

Here, the electric �eld E and the magnetic �eld H are mappings from space
and time, IR3 � IR, into IR3. The magnetic permeability �0 is a positive
constant, whereas the electric permittivity � = �(x) > 0 is assumed to be
a positive function of the space variables. Finally, we assume that Ohm's
law, J(x; t) = �(x)E(x; t), relates the current density J to the electric �eld
E where the conductivity � � 0 is a nonnegative function.

Since we want to consider a medium whose inhomogeneity is compactly
supported and which is a dielectric outside a large ball, we have �(x) = 0
and �(x) = �0 > 0 with a constant �0 for all jxj > R.

Suppose now that the electromagnetic wave is time-harmonic with fre-
quency ! > 0 having the form

E(x; t) = <
� 1p

�0
E(x)e�i!t

�
; H(x; t) = <

� 1p
�0
H(x)e�i!t

�
:

Then, the �elds E and H must satisfy the equations

r ^ E � i�H = 0 ; r^H + i�nE = 0 in IR3, (3.1)
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where � := !
p
�0�0 is the wave number and

n(x) :=
1

�0

�
�(x) + i

�(x)

!

�
; x 2 IR3 ;

is the refractive index of the medium. Henceforth we will refer to (3.1) as
the perturbed Maxwell equations and to (3.1) in the special case n = 1 as
the Maxwell equations.

The main subject of this chapter is the following direct electromagnetic
scattering problem: given �, n and an incident wave Ei, H i, i.e., a solution
to the Maxwell equations, �nd the scattered �elds Es and Hs such that the
total �elds E := Ei + Es, H := H i + Hs satisfy the perturbed Maxwell
equations and such that Es, Hs satisfy a radiation condition.

In section 3.2 we establish the existence of a unique solution to this prob-
lem. As in the acoustic case, in the next section we start with a vector Green's
theorem and representation theorems because these results are basic tools in
our analysis of the direct and inverse scattering problem. Since solutions to
the Maxwell equations are also solutions to the Helmholtz equation, some
results from the acoustic case, especially Rellich's lemma, are also useful in
the electromagnetic case. Uniqueness for the direct electromagnetic scat-
tering problem is proved via Green's theorem, Rellich's lemma, and unique
continuation. In order to prove existence of a solution we derive a Fredholm
integral equation for the electric �eld E with the help of the representation
theorem. We then show that this integral equation has a unique solution.

We shall employ the special unique continuation principle formulated in
Theorem 1.2. Otherwise our analysis follows the treatment in [7]. The as-
sumption that �0 is a constant is a good approximation for many materials.
It also simpli�es the analysis of the direct scattering problem and even more
of the inverse scattering problem. The reader who is interested in direct
scattering problems with a variable � should consult [31, section 22] or [51],
where the authors also employ integral equation techniques. By coupling
integral equation techniques and variational methods Leis is dealing with
anisotropic inhomogeneous media in [26].

110



3.1 Representation Formulas for the Maxwell

Equations

As in the acoustic case we �rst review Green's theorems for vector valued
functions and proceed to representation formulas for solutions to the Maxwell
equations via the Stratton-Chu representation of vector �elds. The Silver-
M�uller radiation condition, which is the analogue of the Sommerfeld radiation
condition, allows to represent solutions to the Maxwell equations in exterior
domains with the help of surface layers, too. Finally, we discuss the far �eld
pattern of a radiating solution to the Maxwell equations.

We have included this section in order to refer to its results later. Since
the proofs of the assertions are worked out in [7, Sections 6.1, 6.2], we omit
the proofs.

If E, F :D ! C3 denote C1(D)-smooth vector �elds in a C2-smooth,
bounded, open set D � IR3, thenZ

@D

(� ^ E) � Fds =
Z
D

f(r^ E) � F � E � (r^ F )gdx : (3.2)

This follows from the identities (� ^ E) � F = � � (E ^ F ) and r � (E ^ F ) =
(r^E) �F �E � (r^F ) together with Gauss' theorem. Here, we use r^E
for the curl and r � E for the divergence of a vector �eld E. a ^ b denotes
the vector product of two vectors a, b 2 C3.

The regularity assumptions on E and F can be weakened. E, F 2
C1(D) \ C(D) and r^ E, r^ F 2 C(D) are su�cient for (3.2).

If we have four vector �elds E, H and E 0, H 0 as above and use equation
(3.2), we arrive atZ

@D

f(� ^ E) �H 0 � (� ^ E 0) �Hgds

=
Z
D

f(r^ E � i�H) �H 0 + (r^H + i�E) � E 0gdx

�
Z
D

f(r^ E 0 � i�H 0) �H + (r^H 0 + i�E 0) � Egdx ; (3.3)

where � 2 C is an arbitrary constant.
The following representation theorem for vector �elds due to Stratton and

Chu [43] will be very useful in later sections.
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Theorem 3.1 Let D � IR3 be a bounded, open, C2-smooth set with exterior
unit normal vector �. For vector �elds E, H 2 C1(D) the Stratton-Chu
formula

E(x) = �r ^
Z
@D

�(y) ^ E(y)��(x; y)ds(y)

+r
Z
@D

�(y) � E(y)��(x; y)ds(y)

�i�
Z
@D

�(y) ^H(y)��(x; y)ds(y)

+r^
Z
D

fr ^ E(y)� i�H(y)g��(x; y)dy

�r
Z
D

r �E(y)��(x; y)dy

+i�
Z
D

fr ^H(y) + i�E(y)g��(x; y)dy ; x 2 D : (3.4)

A similar formula holds with the roles of E and H interchanged.

If E and H are a solution to the Maxwell equations

r^ E � i�H = 0 ; r^H + i�E = 0 ; (3.5)

the Stratton-Chu formula can be reformulated.

Theorem 3.2 If D satis�es the assumptions of Theorem 3.1 and if E, H 2
C1(D) \ C(D) are a solution to (3.5) in D, then we have

E(x) = �r ^
Z
@D

�(y) ^ E(y)��(x; y)ds(y)

+
1

i�
r^r ^

Z
@D

�(y) ^H(y)��(x; y)ds(y) ; x 2 D ; (3.6)

and

H(x) = �r ^
Z
@D

�(y) ^H(y)��(x; y)ds(y)

� 1

i�
r^r ^

Z
@D

�(y) ^ E(y)��(x; y)ds(y) ; x 2 D : (3.7)
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A consequence of the last representation is the analyticity of solutions to
the Maxwell equations. Hence, we may take the divergence and the curl of the
Maxwell equations (3.5) and arrive at r�E = r�H = 0 and �E+�2E = 0,
�H + �2H = 0 in D, if E and H are solutions to the Maxwell equations in
D. Here, we have used the identity r^r^ = ��+rr�.

In order to have the analogous representation to Theorem 3.2 for solutions
to the Maxwell equations in exterior domains we have to impose the Silver-
M�uller radiation condition on the solutions.

Let E, H 2 C1(IR3 n BR) be a solution to the Maxwell equations in
IR3 n BR. E, H satisfy the Silver-M�uller radiation condition (E, H are a
radiating solution) if

lim
jxj!1

(H(x) ^ x� jxjE(x)) = 0 (3.8)

where the limit holds uniformly in all directions jxj�1x.
Similarly to Lemma 1.4 it is possible to derive from the Silver-M�uller

radiation condition Z
jyj=r

jE(y)j2ds(y) �M

for all r � R (see the �rst part of the proof of Theorem 6.6 in [7]). This
implies for radiating solutions E, H and ~E, ~H to the Maxwell equations
which are de�ned in the exterior of a ball BR:Z

jyj=r

f(� ^ E) � ~H � (� ^ ~E) �Hgds = 0 ; r > R : (3.9)

For a proof use the vector Green's theorem (3.3) in the spherical shell fr <
jxj < r0g, i.e.,
0 = �

Z
jyj=r

f(� ^E) � ~H � (� ^ ~E) �Hgds+
Z

jyj=r0

f(� ^E) � ~H � (� ^ ~E) �Hgds ;

writeZ
jyj=r0

f(�^E)� ~H�(�^ ~E)�Hgds =
Z

jyj=r0

fE �(( ~H^�)� ~E)� ~E �((H^�)�E)gds ;

and observe that this integral converges to 0 as r0 !1 due to the Cauchy-
Schwarz inequality and the radiation condition.

For a radiating solution to the Maxwell equations in the exterior of a ball
Theorem 3.2 takes the form (see [6, Theorem 4.5]):
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Theorem 3.3 Let E, H 2 C1(IR3 n BR) be a radiating solution to (3.5) in
IR3 nBR.

(a) Then we have

E(x) = r^
Z

@BR

�(y) ^ E(y)��(x; y)ds(y)

� 1

i�
r^r ^

Z
@BR

�(y) ^H(y)��(x; y)ds(y) ; jxj > R ;

(3.10)

and

H(x) = r^
Z

@BR

�(y) ^H(y)��(x; y)ds(y)

+
1

i�
r^r ^

Z
@BR

�(y) ^ E(y)��(x; y)ds(y) ; jxj > R :

(3.11)

(b) For x 2 BR the right hand sides of (3.10) and (3.11) vanish.

We can infer from (3.10) and (3.11) that each cartesian component of E
and H is a radiating solution to the Helmholtz equation, i.e., it satis�es the
Sommerfeld radiation condition. It is also possible to show the converse: so-
lutions to the Maxwell equations for which each cartesian component satis�es
the Sommerfeld radiation condition also satisfy the Silver-M�uller radiation
condition.

We are now in a position to de�ne the far �elds E1 and H1 as

E1(x̂) = lim
r!1

re�i�rE(rx̂) ; H1(x̂) = lim
r!1

re�i�rH(rx̂) ; x̂ 2 S2 :

Again Rellich's lemma, Lemma 1.7, implies that the far �eld E1 uniquely
determines E. Hence, by H = (i�)�1r ^ E it also determines H. Analo-
gously H1 determines E and H. A closer examination with respect to the
asymptotics jxj ! 1 in (3.10) and (3.11) shows H1(x̂) = x̂ ^ E1(x̂) and
x̂ �E1(x̂) = x̂ �H1(x̂) = 0, i.e., E1 and H1 are tangential �elds on the unit
sphere.
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In the last lemma of this section we establish a transformation mapping
solutions to the perturbed Maxwell equations to solutions of a perturbed
Helmholtz equation. This transformation, due to Colton and P�aiv�arinta ([8]),
is a basic ingredient in the uniqueness proof of the direct scattering problem
and in the analysis of the inverse problem because it allows to employ the
results from previous chapters.

Lemma 3.4 Assume n 2 C2;
(BR), =(n) � 0, <(n) > 0, supp (1�n) � BR,
and let E, H 2 C1(BR) satisfy

r^ E � i�H = 0 ; r^H + i�nE = 0

in the ball BR. Then, E, H 2 C2(BR) and E 0 := n1=2E, H 0 := H are a
solution to

(� + �2)

 
E 0

H 0

!
= Q

 
E 0

H 0

!
; (3.12)

where the operator Q is de�ned by

Q
 
E 0

H 0

!
:=

 
�2(1� n)E 0 � i�n�1=2rn ^H 0 � (E 0 � r)

�
1
n
rn

�
+ (n�1=2�n1=2)E 0

i�n�1=2rn ^ E 0 + �2(1� n)H 0

!
:

(3.13)

Proof: First, we examine the regularity of E and H. To this end we compute
for any ' 2 C1

0 (BR) with the help of the second perturbed Maxwell equation
and Gauss' theorem:Z

BR

'r � (nE)dx = �
Z
BR

(r') � (nE)dx

=
1

i�

Z
BR

(r') � (r^H)dx

=
1

i�

Z
BR

[r ^ (r')] �Hdx

= 0 :
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This implies r � (nE) = 0, i.e., r � E = �(1=n)rn � E. Now, we insert the
last relation and r ^ H + i�E = i�(1 � n)E into the representation (3.4).
The equality

r
Z
BR

1

n(y)
rn(y) � E(y)��(x; y)dy =

Z
BR

��(x; y)r
h1
n
rn � E

i
(y)dy

from Theorem 1.9 (b) and the regularity properties of volume potentials im-
ply E 2 C1;
(BR). Applying the smoothing properties of a volume potential
once more we have E 2 C2(BR). Computing H = (i�)�1r ^ E from the
representation of E a similar reasoning yields H 2 C2(BR).

Next, we apply the operator (r�) to the �rst Maxwell equation and arrive
at r �H = 0. Taking the curl of the perturbed Maxwell equations and using
the identities

r ^r ^ F = ��F +rr � F ;

r(A � F ) = A ^ (r^ F ) + F ^ (r^ A) + (A � r)F + (F � r)A
for vector �elds A, F we obtain

�H + �2H = i�n�1=2rn ^ (n1=2E) + �2(1� n)H (3.14)

and

�E = ��2nE �r
�1
n
rn � E

�

= ��2nE � 1

n
rn ^ (r^ E)� (

1

n
rn � r)E � (E � r)

� 1
n
rn

�
;

where we have also used r ^ f(1=n)rng = 0. From the last equation we
derive

�(n1=2E) = n1=2f�E + (
1

n
rn � r)Eg+ (�n1=2)E

= ��2n(n1=2E)� i�n1=2
1

n
rn ^H � ((n1=2E) � r)

�1
n
rn

�
+(n�1=2�n1=2)(n1=2E) : (3.15)

From (3.15) and (3.14) we can deduce

(� + �2)

 
E 0

H 0

!
= Q

 
E 0

H 0

!
:
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This ends the proof of the lemma.
2

Note that we can associate to any x 2 IR3 a matrix Q(x) 2 C6�6 such
that �

Q
 
U1

U2

!�
(x) = Q(x)

� U1

U2

!
(x)
�

holds true for all vector �elds (U1; U2): IR
3 ! C6. Each entry of Q is a

uniformly 
-H�older continuous function in IR3 having compact support in
BR.
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3.2 Existence and Uniqueness for the Direct

Electromagnetic Scattering Problem

Our considerations at the beginning of this chapter lead us to the following
direct electromagnetic scattering problem (DEP ):

Given the wave number � > 0, the refractive index n 2 C2;
(IR3) with
<(n) > 0, =(n) � 0 and supp (1 � n) � BR, and the incoming wave Ei,
H i 2 C1(IR3) satisfying

r^ Ei � i�H i = 0 ; r^H i + i�Ei = 0 in IR3,

�nd the �elds E, H 2 C1(IR3) which are a solution to the perturbed
Maxwell equations

r^ E � i�H = 0 ; r^H + i�nE = 0 in IR3 (3.16)

such that the scattered �elds Es := E�Ei, Hs := H�H i satisfy the Silver-
M�uller radiation condition lim

jxj!1
(Hs(x)^ x� jxjEs(x)) = 0 uniformly for all

directions x̂ := (1=jxj)x 2 S2.

First, we want to establish uniqueness for (DEP ). As in the acoustic
case we use Green's theorem and Rellich's lemma to arrive at E = 0 in the
exterior of BR. Then we apply the unique continuation principle.

Theorem 3.5 If E, H 2 C1(IR3) are a solution to the perturbed Maxwell
equations (3.16) in IR3 and satisfy the Silver-M�uller radiation condition, then
E = H = 0 in IR3, especially, the direct electromagnetic scattering problem
(DEP ) has at most one solution.

Proof: The radiation condition implies

0 = lim
r!1

Z
jxj=r

jH(x) ^ �(x)� E(x)j2ds(x)

= lim
r!1

( Z
jxj=r

fj� ^Hj2 + jEj2gds� 2<
n Z
jxj=r

(� ^ E) �Hds
o)

:

(3.17)
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Since we also know from Green's theorem (3.2) together with the perturbed
Maxwell equations (3.16) that

�<
n Z
jxj=r

(� ^ E) �Hds
o

= �<
nZ
Br

f(r^ E) �H � E � (r^H)gdx
o

= �<
nZ
Br

f�i�jHj2 + i�njEj2gdx
o

= �
Z
Br

=(n)jEj2dx � 0 ;

we obtain with (3.17)

Z
jxj=r

jEj2ds! 0 ; r!1 :

Then, Rellich's lemma yields E = H = 0 in IR3 n BR because the cartesian
components of E are radiating solutions to the Helmholtz equation in the
exterior of BR.

According to Lemma 3.4 E 0 := n1=2E, H 0 := H 2 C2
0 (IR

3) satisfy the
inequality ����

 
E 0

H 0

!��� = �����2
 
E 0

H 0

!
+Q

 
E 0

H 0

!��� �M
���
 
E 0

H 0

!���
in IR3 with a suitable constant M . Therefore, we can conclude E 0 = H 0 = 0
in BR by Theorem 1.2, whence E = H = 0 in IR3.

2

Before we proceed let us point out that we made stronger regularity as-
sumptions on n than necessary. We need C2;
-smoothness of n in order to
obtain C2-smoothness of E and H, whence of E 0 = n1=2E and H 0 = H. With
the help of a better unique continuation principle than our Theorem 1.2 it
is possible to prove the existence of a unique solution to (DEP ) under the
weaker assumption n 2 C1;
(IR3) (see [7, Chapter 9]). However, when we
study the inverse electromagnetic problem we shall need C2;
-regularity of n,
hence it is reasonable to work with this smoothness from the beginning.

In order to prove existence of a solution we derive a Fredholm integral
equation for E with the help of the representation from Theorem 3.1. We
show that a solution of the integral equation is a solution to (DEP ) and that

119



the integral equation has a trivial nullspace. By the Riesz-Fredholm theory
this implies the existence of a solution to (DEP ).

Let E = Ei + Es, H = H i +Hs be a solution to (DEP ). The equation
r ^ H + i�nE = 0 yields r ^ H + i�E = i�(1 � n)E and, by taking the
divergence, r � E = � 1

n
rn � E. If we insert these expressions together with

r^ E � i�H = 0 into the representation formula (3.4) for E in the ball Br,
r > R, we obtain

E(x) = �r ^
Z

@Br

�(y) ^ E(y)��(x; y)ds(y)

+r
Z

@Br

�(y) � E(y)��(x; y)ds(y)

�i�
Z

@Br

�(y) ^H(y)��(x; y)ds(y)

��2
Z
BR

��(x; y)(1� n(y))E(y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) � E(y)dy ; x 2 Br :

Next, we want to show that the sum of the boundary integrals is Ei(x). We
have Z

@Br

�(y) � ry ^ fH(y)��(x; y)gds(y) = 0

due to Stokes' theorem. Then, using

rx � f�(y) ^H(y)��(x; y)g
= �(y) �

h
ry ^ fH(y)��(x; y)g

i
� ��(x; y)�(y) �

h
r ^H(y)

i

and r^H(y) = �i�E(y), jyj = r, we arrive at

r �
Z

@Br

�(y) ^H(y)��(x; y)ds(y) = i�
Z

@Br

�(y) � E(y)��(x; y)ds(y) :

Our considerations so far imply that

�r ^
Z

@Br

�(y) ^ E(y)��(x; y)ds(y)
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+
1

i�
r^r ^

Z
@Br

�(y) ^H(y)��(x; y)ds(y)

= �r ^
Z

@Br

�(y) ^ E(y)��(x; y)ds(y)

+r
Z

@Br

�(y) �E(y)��(x; y)ds(y)

�i�
Z

@Br

�(y) ^H(y)��(x; y)ds(y) : (3.18)

Finally, we insert E = Ei + Es, H = H i +Hs into the left hand side of the
last equation and use Theorems 3.2 and 3.3 (b) to see that it coincides with
Ei(x).

Observing that r can be chosen arbitrarily we obtain the integral equation

E(x) = Ei(x)� �2
Z
BR

��(x; y)(1� n(y))E(y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) � E(y)dy ; x 2 IR3 ; (3.19)

for the unknown �eld E. This is the analogue of the Lippmann-Schwinger
equation in the acoustic case.

Lemma 3.6 Let � and n be given as in (DEP ). Moreover, assume Ei, H i 2
C1(IR3) are a solution to the Maxwell equations (3.5) in IR3 and E 2 C(BR)
is a solution to (3.19) in BR. Then,

E(x) := Ei(x)� �2
Z
BR

��(x; y)(1� n(y))E(y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) � E(y)dy ; x 2 IR3 ;

and H(x) := (i�)�1r ^ E(x), x 2 IR3, are the solution to (DEP ) for the
incident wave Ei, H i.

Proof: First note that there is no ambiguity in the de�nition of E in BR

because E is a solution of the integral equation. Moreover, the smoothing
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properties of the volume potential and the analyticity of Ei, H i imply that
E 2 C2(IR3), H 2 C1(IR3).

Our next aim is to show r � (nE) = 0, i.e., r � E = �(1=n)rn � E. To
this end we take the divergence of both sides of the integral equation (3.19),
observe (1=n)r � (nE) = r �E + (1=n)rn � E, reorder terms and arrive at

1

n(x)
r � (nE)(x) = ��2

Z
Br

(1� n(y))��(x; y)
1

n(y)
r � (nE)(y)dy ; x 2 IR3 :

Hence, (1=n)r � (nE) = 0, because the homogeneous Lippmann-Schwinger
equation has only the trivial solution due to the proof of Theorem 1.13.

Now, we compute

H(x) =
1

i�
r^ E(x)

= H i(x) + i�r^
Z
BR

��(x; y)(1� n(y))E(y)dy ; x 2 IR3 ;

and

r^H(x) + i�E(x) = i�

(
r^r ^

Z
BR

��(x; y)(1� n(y))E(y)dy

��2
Z
BR

��(x; y)(1� n(y))E(y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) �E(y)dy

)

= �i�(� + �2)
Z
BR

��(x; y)(1� n(y))E(y)dy

+i�r
Z
BR

��(x; y)r � f(1� n)Eg(y)dy

+i�r
Z
BR

��(x; y)
1

n(y)
rn(y) � E(y)dy

= i�(1� n(x))E(x) ; x 2 IR3 ;

where we have used

r � f(1� n)Eg+ 1

n
rn �E = r � f(1� n)Eg � r �E
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= �r � (nE)
= 0

for the last equation. Hence, E and H are a solution to the perturbed
Maxwell equations.

For the radiation condition we use the relationEs = E�Ei = �(i�)�1r^
(H �H i) in the exterior of BR to derive Hs(x) ^ x̂ � Es(x) = Hs(x) ^ x̂ +
(i�)�1r^Hs(x) for jxj > R. From

Hs(x) = i�r ^
Z
BR

��(x; y)(1� n(y))E(y)dy ; x 2 IR3 ;

and ���(rx ^ fp��(x; y)g) ^ x̂+ 1

i�
rx ^rx ^ fp��(x; y)g

��� �M
jpj
jxj2

for all p 2 C3, jyj � R and jxj � 2R + 1 with a suitable constant M we can
see that Es, Hs satisfy the Silver-M�uller radiation condition. This completes
the proof of the lemma.

2

We are now in a position to prove the main result of this section, namely
that (DEP ) has a unique solution.

Theorem 3.7 The integral equation (3.19) has a unique solution. The direct
electromagnetic scattering problem (DEP ) has a unique solution which is also
the solution to the integral equation (3.19).

Proof: The mapping properties of volume potentials imply that the integral
operators from equation (3.19) are compact operators in C(BR). Hence, it
su�ces to show that (3.19) has a trivial nullspace in order to obtain the
existence of a unique solution. Assuming that E 2 C(BR) is a solution
to the homogeneous equation (3.19), i.e., with Ei = 0, we know from the
preceding lemma that E de�ned in IR3 by the right hand side of (3.19)
and H := (i�)�1r ^ E are a solution to the homogeneous problem (DEP ),
whence vanish identically by Theorem 3.5. This proves that (3.19) has a
unique solution.

Since the solution of equation (3.19) yields a solution of (DEP ) by the
last lemma, we have also proved the existence of a solution to (DEP ), which
is unique by Theorem 3.5.

2
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Chapter 4

The Inverse Electromagnetic

Scattering Problem

We are now turning to the inverse electromagnetic scattering problem. We
assume that we know the far �elds of the scattered �elds Es for su�ciently
many incident plane waves (all angles of propagation, all polarizations) at a
�xed wave number. The task is to reconstruct the refractive index n from
these data.

As in the second chapter we start with a uniqueness result, i.e., two refrac-
tive indices producing the same far �eld patterns must coincide. Uniqueness
for this inverse scattering problem was �rst proved in [8] by Colton and
P�aiv�arinta. The main di�culty lies in the fact that for the Maxwell equa-
tions special solutions cannot be obtained by simply imitating the acoustic
case. This is due to the terms containing derivatives in the electromagnetic
Lippmann-Schwinger equation. Colton and P�aiv�arinta were able to trans-
form solutions to the perturbed Maxwell equations into solutions of a per-
turbed Helmholtz equation which in turn could be used to construct special
solutions.

Compared to the paper [8] our analysis is based on the fundamental
solutions 	� and g�, i.e., on Fourier series, whereas Colton and P�aiv�arinta use
results from [32, 46] which are derived via Fourier transforms. Moreover, we
give a proof for the completeness of total �elds originating from plane incident
waves in the space of all solutions to the perturbed Maxwell equations which
is di�erent from the proof of Lemma 2.1 in [8]. The latter seems to have a
gap. Our proof is based on the idea of [20, Lemma 5.20] which we already
employed in the acoustic case.
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Then, we proceed to the question of stability. So far this has not been
examined in the literature for the electromagnetic problem. Starting from the
far �eld pattern belonging to the refractive index n we �rst construct integral
operators Nn on a sphere surrounding the inhomogeneity. This construction
is severely ill-posed. Then, we derive a logarithmic stability estimate for
kn � ~nk1 in terms of kNn � N~nk1 and in terms of the di�erence of the far
�eld patterns. As in the acoustic case it is a local result and we have to
assume some a priori knowledge on the smoothness of the refractive indices.

Finally, we show how to recover n from its far �eld pattern. To this end
we derive a uniquely solvable integral equation of the second kind for certain
boundary data belonging to the special solutions of the perturbed Maxwell
equations. The operators and the right hand side of this integral equation
are known or can be computed from the far �eld pattern. These boundary
data together with Green's theorem admit to compute the Fourier coe�cients
(n� 1)̂ (�), � 2 �.

As in the previous chapter we assume the magnetic permeability � to be
a constant. The reader who is interested in an inhomogeneous � is referred
to the two papers [38, 39] where the authors examine the reconstruction
of the material parameters �, � and � from boundary measurements of the
electric and magnetic �eld. They obtain the Fourier transform of the right
hand side of a system of semilinear elliptic equations for the searched-for
parameters. This di�culty does not arise in our case because we assume �
to be a constant. However, we have to construct boundary integral operators
from the far �eld pattern, whereas they already start with the impedance map
on the boundary.

As in the acoustic case we have included a separate proof for the unique-
ness of the inverse problem, though the construction implies uniqueness,
because then the procedure is easier to understand.

Many technical details can be worked out similarly to the acoustic case.
Occasionally, we therefore brie
y mention the analogous proofs for the acous-
tic case and do not repeat the entire analysis. Consequently, the reader
should be warned that it is necessary to know the second chapter in order to
read this chapter.
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4.1 Uniqueness for the Inverse Electromag-

netic Scattering Problem

The aim of this section is to prove that the far �eld pattern uniquely de-
termines the refractive index. To this end we �rst de�ne what is meant
by the notion far �eld pattern. In the acoustic case a plane incident wave
ui(x; d) = eid�x was essentially given by its direction of propagation d 2 S2.
In the electromagnetic case an incident plane wave

Ei(x; d; p) := d ^ (p ^ d) exp(i�d � x) ; H i(x; d; p) := (i�)�1rx ^ Ei(x; d; p) ;

x 2 IR3, is determined by its direction of propagation, d 2 S2, and by the
vector p 2 C3 controlling its polarization. Ei(�; d; p), H i(�; d; p) are a solution
to the Maxwell equations. Hence, given the wave number � > 0, the refractive
index n 2 C2;
(IR3) with supp (1�n) � BR, <(n) > 0 and =(n) � 0, and the
incident wave Ei(�; d; p), H i(�; d; p), there exists a unique solution E(�; d; p),
H(�; d; p) to the direct electromagnetic scattering problem (DEP ) from the
preceding chapter. Each cartesian component of the scattered electric �eld
Es(�; d; p) := E(�; d; p) � Ei(�; d; p) is a radiating solution to the Helmholtz
equation. Consequently, Es(�; d; p) satis�es for x̂ 2 S2

Es(rx̂; d; p) =
ei�r

r
fE1(x̂; d; p) + o(1)g ; r !1 :

We de�ne

E1:S
2 � S2 � C3 ! C3 (x̂; d; p) 7! E1(x̂; d; p)

to be the far �eld pattern corresponding to the refractive index n.
For convenience we denote by ~C(BR) the set of refractive indices we are

interested in:

~C(BR) := fn 2 C2;
(IR3): supp (1� n) � BR ; <(n) > 0 ; =(n) � 0g :
Let the wave number � > 0 be �xed. If ~n 2 ~C(BR) is another refractive

index producing the far �eld pattern ~E1 and if ~E1 = E1, then we want to
show n = ~n.

The main steps of the proof closely follow the acoustic case. We �rst
derive the relation Z

BR

(n� ~n)E � ~Edx = 0 (4.1)
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for all solutions E, H to the perturbed Maxwell equations

r^ E � i�H = 0 ; r^H + i�nE = 0 in BR1
,

and for all solutions ~E, ~H to the perturbed Maxwell equations

r^ ~E � i� ~H = 0 ; r^ ~H + i�~n ~E = 0 in BR1
, (4.2)

where R1 > R.
In the case E = E(�; d; p) equation (4.1) follows from the coincidence of

the far �eld patterns with the help of Green's theorem. In order to show
that (4.1) holds true for a general E we approximate E by elements from
span fE(�; d; p): d 2 S2 ; p 2 C3g with respect to the L2(BR)-norm.

The second step consists in the construction of special solutions to the
perturbed Maxwell equations which depend on parameters �, � 2 C3. Al-
though we already derived the right fundamental solutions 	� for this task
in the acoustic case, we still need some more ideas because the Lippmann-
Schwinger equation (3.19) contains derivatives of the volume potential. These
derivatives do not allow a straightforward treatment along the lines of the
acoustic case.

But in the end, for a �xed � 2 �, we arrive at special solutions such
that E(x) � ~E(x) converges to e�i��x with respect to the L1(BR)-norm as
j=(�)j ! 1. Equation (4.1) then implies that the Fourier coe�cients of n
and ~n coincide, i.e., n = ~n.

After this outline of the section let us start with relation (4.1) for E =
E(�; d; p).

Lemma 4.1 Let 0 < R < R1 and n, ~n 2 ~C(BR). Furthermore, assume ~E,
~H are a solution to (4.2) in BR1

. If for �xed p 2 C3, d 2 S2 the far �eld
patterns E1(�; d; p) and ~E1(�; d; p) coincide on S2, i.e.,

E1(x̂; d; p) = ~E1(x̂; d; p) for all x̂ 2 S2,

then the relation Z
BR

(n(x)� ~n(x))E(x; d; p) � ~E(x)dx = 0

holds true.
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Proof: We de�ne E 0(x) := E(x; d; p) � ~E(x; d; p) = Es(x; d; p) � ~Es(x; d; p)
and H 0(x) := H(x; d; p)� ~H(x; d; p), x 2 IR3. From E1(�; d; p) = ~E1(�; d; p)
and Rellich's lemma we conclude E 0(x) = H 0(x) = 0, jxj > R. Moreover, we
compute

r^E 0� i�H 0 = 0 ; r^H 0+ i�E 0 = i�f(1� n)E(�; d; p)� (1� ~n) ~E(�; d; p)g

and

r^ ~E � i� ~H = 0 ; r^ ~H + i� ~E = i�(1� ~n) ~E

in IR3. Then, Green's theorem (3.3) applied with ~E, ~H and E 0, H 0 in the
ball BR1

yields

0 =
Z

@BR1

f(� ^ ~E) �H 0 � (� ^ E 0) � ~Hgds

= i�
Z

BR1

f(1� ~n) ~E � (E(�; d; p)� ~E(�; d; p))

�((1� n)E(�; d; p)� (1� ~n) ~E(�; d; p)) � ~Egdx
= i�

Z
BR1

(n� ~n)E(�; d; p) � ~Edx ;

and we have proved the lemma.

2

Our next aim is to approximate the electric �eld of a solution to the
perturbed Maxwell equations by elements from span fE(�; d; p): d 2 S2 ; p 2
C3g with respect to the L2(BR)-norm. We start with the special case n = 1
which is treated similarly to Lemma 2.2, i.e., in the spirit of [20, Lemma
5.20].

Lemma 4.2 Assume 0 < R < R2 and let Ei, H i 2 C1(BR2
) satisfy the

Maxwell equations in BR2
. Then, there exists a sequence

(Ei
j; H

i
j) 2 span f(Ei(�; d; p); H i(�; d; p)): d 2 S2 ; p 2 C3g ; j 2 IN ;

such that kEi � Ei
jk2L2(BR)

+ kH i �H i
jk2L2(BR)

! 0, j !1.
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Proof: We de�ne

X := f(EjBR
; HjBR

):E;H 2 C1(BR2
)

are a solution to the Maxwell equations in BR2
g � L2(BR)

and X to be the completion of X in L2(BR). It su�ces to show that any
(E0; H0) 2 X which is orthogonal to all Ei(�; d; p), H i(�; d; p), i.e.,

Z
BR

fE0(x) � Ei(x; d; p) +H0(x) �H i(x; d; p)gdx = 0 (4.3)

for all d 2 S2, p 2 C3, must vanish in L2(BR).

If (E0; H0) 2 X satis�es (4.3), we de�ne for jxj > R

V (x) := r^r ^
Z
BR

��(x; y)E0(y)dy � i�r ^
Z
BR

��(x; y)H0(y)dy

W (x) := �i�r ^
Z
BR

��(x; y)E0(y)dy �r ^r ^
Z
BR

��(x; y)H0(y)dy :

Then, V ,W 2 C1(IR3nBR) are a radiating solution to the Maxwell equations
in IR3 n BR. Furthermore, the asymptotic behavior of the derivatives of
��(x; y) for large jxj (see [7, formulas (6.25),(6.26)]) implies for any vector
p 2 C3 and any d 2 S2:

4�p � V1(�d)
= p �

Z
BR

�2ei�d�yd ^ (E0(y) ^ d)dy � �2p �
Z
BR

ei�d�yd ^H0(y)dy

= �2
Z
BR

fE0(y) � Ei(y; d; p) +H0(y) �H i(y; d; p)gdy

= 0 :

Hence, we know that the far �eld V1 of V vanishes and thus V (x) =W (x) =
0 for all jxj > R.

Next, we choose a sequence (El; Hl) 2 X, l 2 IN, approximating (E0; H0),

kEl � E0k2L2(BR)
+ kHl �H0k2L2(BR)

! 0 ; l!1 :
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The representation formulas (3.6) and (3.7) read

El(x) = �r ^
Z

@BR3

�(y) ^ El(y)��(x; y)ds(y)

+
1

i�
r^r ^

Z
@BR3

�(y) ^Hl(y)��(x; y)ds(y) ; x 2 BR ;

and

Hl(x) = �r ^
Z

@BR3

�(y) ^Hl(y)��(x; y)ds(y)

� 1

i�
r^r ^

Z
@BR3

�(y) ^ El(y)��(x; y)ds(y) ; x 2 BR ;

where R3 satis�es R < R3 < R2.
Now, we insert these expressions for El and Hl inZ

BR

fEl(x) � E0(x) +Hl(x) �H0(x)gdx ;

interchange the order of integration, and arrive atZ
BR

fEl(x) �E0(x) +Hl(x) �H0(x)gdx

=
1

i�

Z
@BR3

f(�(y) ^ El(y)) �W (y) + (�(y) ^Hl(y)) � V (y)gds(y)

= 0 ; l 2 IN ;

because V and W vanish on @BR3
. The limit l !1 yields E0 = H0 = 0 in

L2(BR) and we have proved the assertion.
2

In order to obtain this approximation result for general n we want to use
the Lippmann-Schwinger equation (3.19). For convenience, if n 2 ~C(BR)
and U is a vector �eld, we de�ne the integral operator Tn:C(BR)! C(BR),

(TnU)(x) := �2
Z
BR

��(x; y)(1� n(y))U(y)dy

�r
Z
BR

��(x; y)
1

n(y)
rn(y) � U(y)dy ; x 2 BR : (4.4)
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Then, the Lippmann-Schwinger equation reads (I + Tn)E = Ei in BR. We
already know that (I+Tn)

�1 is a bounded operator in C(BR) equipped with
the maximum norm. However, we need the boundedness of (I + Tn)

�1 with
respect to the L2(BR)-norm. In the second chapter, a simple application of
the Cauchy-Schwarz inequality implied that the analogous acoustic operator
Tn is compact in C(BR) with respect to the L2(BR)-norm. This allowed
to conclude that (I + Tn)

�1 is bounded in (C(BR); k � kL2(BR)). Due to the
stronger singularity of the kernel of Tn in the electromagnetic case we have
to work harder now. We use a functional analytic tool provided by Lax in
[25] which allows to infer the boundedness in (C(BR); k � kL2(BR)) from the
boundedness in (C(BR); k � k1) (see also [7, Theorem 3.5]). Lax's theorem
states for a linear operator A:C(BR)! C(BR) which is bounded with respect
to k � k1 and symmetric with respect to the L2(BR)-scalar product, that A
is also bounded in (C(BR); k � kL2(BR)) and that kAkL2(BR) � kAk1.

Lemma 4.3 If Tn:C(BR) ! C(BR) is de�ned as in (4.4), then (I + Tn)
�1

is bounded in C(BR) equipped with the L2(BR)-norm.

Proof: The operator T �
n :C(BR)! C(BR), de�ned by

(T �
nV )(y) := �2(1� n(y))

Z
BR

��(x; y)V (x)dx

+r �
Z
BR

��(x; y)V (x)dx
1

n(y)
rn(y) ; y 2 BR ;

is the adjoint operator to Tn with respect to the L2(BR)-scalar product. By
the mapping properties of the volume potential T �

n is a compact operator
in (C(BR); k � k1), hence, due to the Fredholm alternative theorem and the
injectivity of I+Tn, (I+T

�
n)

�1 exists and is bounded in (C(BR); k�k1). Then,
the symmetric operator (I + T �

n)
�1(I + Tn)

�1 is bounded in (C(BR); k � k1)
and we can conclude from Lax's theorem that

k(I+Tn)�1k2L2(BR)
= k(I+T �

n)
�1(I+Tn)

�1kL2(BR) � k(I+T �
n)

�1(I+Tn)
�1k1 :

2

We can now prove the approximation result for general n.
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Lemma 4.4 Assume 0 < R < R1 and let E, H 2 C1(BR1
) satisfy the

perturbed Maxwell equations (3.16) in BR1
. Then, there exists a sequence

Ej 2 span fE(�; d; p): d 2 S2 ; p 2 C3g ; j 2 IN ;

such that kE � EjkL2(BR) ! 0, j !1.

Proof: We �x R < R2 < R1 and de�ne

Ei(x) := �r ^
Z

@BR2

�(y) ^ E(y)��(x; y)ds(y)

+
1

i�
r ^r ^

Z
@BR2

�(y) ^H(y)��(x; y)ds(y)

and H i(x) := (i�)�1r ^ Ei(x) for x 2 BR2
. Then, Ei, H i are a solution to

the Maxwell equations in BR2
.

Starting from the representation formula (3.4) for E in BR2
and follow-

ing the considerations that lead to (3.18) and (3.19) we obtain the integral
equation

E(x) = Ei(x)� �2
Z
BR

��(x; y)(1� n(y))E(y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) � E(y)dy ; x 2 BR2

; (4.5)

for the �eld E, i.e., E = (I + Tn)
�1Ei in BR.

Now, according to Lemma 4.2, we choose a sequence (Ei
j; H

i
j), j 2 IN, from

span f(Ei(�; d; p); H i(�; d; p)): d 2 S2; p 2 C3g which approximates (Ei; H i) in
L2(BR), and we set Ej to be the solution to the Lippmann-Schwinger equa-
tion (4.5) with incident �eld Ei

j. Hence, we have Ej 2 span fE(�; d; p): d 2
S2; p 2 C3g and

Ej � E = (I + Tn)
�1(Ei

j � Ei) in BR,

whence

kEj � EkL2(BR) � k(I + Tn)
�1kL2(BR)kEi

j � EikL2(BR) ! 0 ; j !1 :

2
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Finally, if we approximate the electric �eld of an an arbitrary solution to
the perturbed Maxwell equations in BR1

by elements from

span fE(�; d; p): d 2 S2 ; p 2 C3g
with respect to the L2(BR)-norm and use Lemma 4.1, we obtain relation
(4.1). This is stated in the next lemma.

Lemma 4.5 Assume 0 < R < R1 and that the far �eld patterns for the
refractive indices n, ~n 2 ~C(BR) coincide on S2 � S2 � C3, i.e., E1 = ~E1.
If E, H 2 C1(BR1

) are a solution to

r^ E � i�H = 0 ; r^H + i�nH = 0 in BR1
,

and if ~E, ~H 2 C1(BR1
) are a solution to

r^ ~E � i� ~H = 0 ; r^ ~H + i�~n ~H = 0 in BR1
,

then we have the relationZ
BR

(n(x)� ~n(x))E(x) � ~E(x)dx = 0 :

Our next task is the construction of special solutions to the perturbed
Maxwell equations. For a given � 2 � we are looking for solutions E(�; �; �),
H(�; �; �) and ~E(�; ~�; ~�), ~H(�; ~�; ~�) to the perturbed Maxwell equations which
depend in such a way on the parameters �, �, ~�, ~� 2 C3 that

E(x; �; �)) � ~E(x; ~�; ~�)! e�i��x

with respect to the L1(BR)-norm for an appropriately chosen sequence of the
parameters.

Our knowledge from the acoustic case suggests to use an incident �eld
Ei(x) = �ei��x where � 2 C3 satis�es � � � = �2 and j=(�)j is su�ciently
large, and where � � � = 0. The conditions on � and � imply that Ei and
H i := (i�)�1r ^ Ei are a solution to the Maxwell equations. Furthermore,
the physical fundamental solution �� should be replaced by the nonphysical
	� in the Lippmann-Schwinger equation (3.19).

We remind the reader that 	�(x) = (ei�jxj=4�jxj) + ~g�(x) was de�ned
on page 97 and that ~g is a solution to the Helmholtz equation in B2R0 .
Moreover, the properties of the volume potentialG� having kernel g�(x�y) =
e�i��(x�y)	�(x� y) were investigated in Theorem 2.8.

We �rst prove the analogue to Lemma 3.6.
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Lemma 4.6 Suppose 0 < R < R00 < R0 and �, � 2 C3 satisfy � � � = �2,
j=(�)j � 2�2(R0=�)k1�nk1+1 and � � � = 0. Furthermore, de�ne Ei(x) :=
�ei��x, H i(x) := (i�)�1r ^ Ei(x), x 2 IR3, and assume E 2 C(BR00) is a
solution to

E(x) = Ei(x)� �2
Z
BR

	�(x� y)(1� n(y))E(y)dy

+r
Z
BR

	�(x� y)
1

n(y)
rn(y) � E(y)dy ; x 2 BR00 : (4.6)

Then, E 2 C2(BR00), and E, H := (i�)�1r^E satisfy the perturbed Maxwell
equations in BR00.

Proof: We conclude from the smoothing properties of the volume potential
and the analyticity of Ei, H i that E 2 C2(BR00) and H 2 C1(BR00).

Taking the divergence of both sides of the integral equation (4.6), multi-
plying by e�i��x and de�ning u := (1=n)r � (nE) = r � E + (1=n)rn � E, we
arrive at

e�i��xu(x) = ��2
h
G�((1� n)(e�i��xu))

i
(x) in BR00 .

Since the linear mapping v 7! �2G�((1� n)v) has an L2-norm less than one,
we obtain e�i��xu(x) = 0, x 2 BR00 , i.e.,

r � E = � 1

n
rn � E :

Now, we compute as in the proof of Lemma 3.6

H(x) =
1

i�
r^ E(x)

= H i(x) + i�r ^
Z
BR

	�(x� y)(1� n(y))E(y)dy ; x 2 BR00 ;

(4.7)

and

r ^H(x) + i�E(x) = i�

(
r^r ^

Z
BR

	�(x� y)(1� n(y))E(y)dy
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��2
Z
BR

	�(x� y)(1� n(y))E(y)dy

+r
Z
BR

	�(x� y)
1

n(y)
rn(y) � E(y)dy

)

= �i�(� + �2)
Z
BR

	�(x� y)(1� n(y))E(y)dy

+i�r
Z
BR

	�(x� y)r � f(1� n)Eg(y)dy

+i�r
Z
BR

	�(x� y)
1

n(y)
rn(y) � E(y)dy

= i�(1� n(x))E(x) ; x 2 BR00 :

This ends the proof of the lemma.
2

Equation (4.6) is a Fredholm integral equation of the second kind. Thus,
analogously to Theorem 3.7, we would like to show that it has a trivial
nullspace in order to ensure its unique solvability. However, we cannot pro-
ceed as in the direct electromagnetic scattering problem because E�Ei and
H�H i from the above lemma are not radiating solutions. Hence, we cannot
apply the Silver-M�uller radiation condition which implied uniqueness of E in
the preceding chapter. Our reasoning from the acoustic case is not directly
applicable either. If we multiply equation (4.6) by e�i��x, we obtain one term
G�((1� n)(e�i��xE)) and a second term

(r+ i�)G�

�1
n
rn � (e�i��xE)

�
:

This second operator does not converge to zero with respect to L2(BR00).
Furthermore, this term causes di�culties to obtain the asymptotic behavior
of e�i��x(E � Ei)(x) for j=(�)j ! 1 from (4.6). The unique solvability
can be achieved, if kn � 1kC1 is su�ciently small, but the derivation of the
asymptotic behavior still needs hard work which is done in [45].

The following trick to overcome these di�culties is due to Colton and
P�aiv�arinta (see [8]). They derive an integral equation with kernel g� for
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e�i��xn1=2(E � Ei), e�i��x(H � H i) where they make use of the fact that
E 0 := n1=2E, H 0 := H satisfy a Helmholtz type di�erential equation. We
already used their idea in the proof of Lemma 3.4.

Lemma 4.7 With the assumptions as in the preceding lemma suppose E
is a solution of (4.6). Then E 00(x) := e�i��x n1=2(x)(E � Ei)(x), H 00(x) :=
e�i��x(H �H i)(x), x 2 BR00, are a solution of the equation

 
E 00

H 00

!
= �G�Q

 
E 00

H 00

!
+

 
F1(�; �; �)
F2(�; �; �)

!
(4.8)

where Q is the operator de�ned in (3.13) and

 
F1(�; �; �)
F2(�; �; �)

!
:= �G�

 
(�in�1=2� � rn��n1=2)�

0

!
�G�Q

 
n1=2�

��1� ^ �
!

:

Proof: We �rst establish the equality

 
n1=2(E � Ei)

H �H i

!
= �

Z
BR

	�(� � y)(� + �2)

 
n1=2(E � Ei)

H �H i

!
(y)dy : (4.9)

To this end we note that due to (4.7) and Theorem 1.9 (b) H � H i can be
written as

H(x)�H i(x) =
Z
BR

	�(x� y)U(y)dy ; x 2 BR00 ;

with a vector �eld U . This implies

H(x)�H i(x) =
Z

@BR00

�@(H �H i)

@�
(y)	�(x� y)

�@	�(x� y)

@�(y)
(H �H i)(y)

�
ds(y)

�
Z

BR00

((� + �2)(H �H i))(y)	�(x� y)dy

= �
Z

BR00

((� + �2)(H �H i))(y)	�(x� y)dy ; x 2 BR00 :
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Here, the �rst equality follows from Green's representation formula (1.10) by
inserting 	�(x � y) = ��(x; y) + ~g�(x � y) and using the identity (1.9) for
the terms with ~g� . For the second equality we observe that the boundary
terms vanish due to Lemma 2.31 (a) (see the proof of Lemma 2.31 (b) where
surface potentials are examined instead of a volume potential). This proves
the lower line of (4.9).

Due to (4.6), the same reasoning yields the analogous representation for
E�Ei. Finally, (n1=2�1)(E�Ei) 2 C2

0(BR00) also admits this representation
because the boundary terms vanish due to the compact support of (n1=2 �
1)(E � Ei). Adding the representations for (n1=2 � 1)(E � Ei) and E � Ei

we obtain the upper line of (4.9).
Finally, we compute with the help of Lemma 3.4

(� + �2)

 
n1=2(E � Ei)

H �H i

!

= Q
 
n1=2(E � Ei)

H �H i

!
+Q

 
n1=2Ei

H i

!
� (� + �2)

 
n1=2Ei

H i

!
;

and insert the result into (4.9). Multiplying both sides of the equation by
e�i��x completes the proof of the assertion.

2

Now we are in a position to prove the existence of a unique solution
to (4.6), if j=(�)j is su�ciently large. We can also obtain the asymptotic
behavior of the solution E as j=(�)j ! 1.

If A: C6 ! C6 is a linear operator, we de�ne

kAk2 := max
jpj=1

jApj :

Moreover, we denote by t0 the positive number

t0 := 2
R0

�
fmax
x2BR

kQ(x)k2 + �2k1� nk1g+ 1 ; (4.10)

which only depends on �, R0, the C2-norm of 1� n and k1=nk1 .

Theorem 4.8 Suppose the assumptions of Lemma 4.6 hold true. Further-
more, let � satisfy the additional requirement j=(�)j � t0, where t0 is de�ned
in (4.10).
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(a) Then, the integral equations (4.6) and (4.8) both have a unique solution.

(b) There is a positive constant M (depending only on �, R0, k1=nk1 +
k1� nkC2), such that the solution E to (4.6) satis�es

E(x) = E(x; �; �) = ei��xf� + f(x; �; �)� + V (x; �; �)g ; x 2 BR00 ;

where the L2-norms of the vector �elds V (�; �; �) and of the functions
f(�; �; �) can be estimated by

kV (�; �; �)kL2(BR00 )
+ kf(�; �; �)kL2(BR00 )

� M j�j
j=(�)j :

Proof: Since we can estimate




Q
 
E 00

H 00

!



L2(BR00 )

� max
x2BR

kQ(x)k2




 
E 00

H 00

!



L2(BR00 )

;

we have for j=(�)j � t0 and for any solution (E 00; H 00) of the homogeneous
equation (4.8):





 
E 00

H 00

!



L2(BR00 )

�



G�Q

 
E 00

H 00

!



L2(BR00 )

� 1

2





 
E 00

H 00

!



L2(BR00 )

:

Therefore, equation (4.8) has a trivial nullspace and thus a unique solution
by the Riesz-Fredholm theory.

With the help of Lemma 4.7 we see that any solution E to the homoge-
neous integral equation (4.6) yields an element (e�i��x n1=2E; (i�)�1r^E) in
the nullspace of (4.8). Hence, the nullspace of (4.6) is also trivial and equa-
tion (4.6) has a unique solution by the Riesz-Fredholm theory. This proves
part (a) of the lemma.

For part (b) we note that E(x) = Ei(x) + ei��xn�1=2(x)E 00(x) by the
de�nition of E 00 and that (E 00; H 00) is a solution to (4.8), i.e., 

E 00

H 00

!
= �G�

�
Q
 
E 00

H 00

!�
+

 
F1(�; �; �)
F2(�; �; �)

!
:

The equation j�j2 = j<(�)j2+ j=(�)j2 = 2j=(�)j2+ �2 allows to bound j�j
by j=(�)j. Hence, by Theorem 2.8 there is a constant M1 such that

k(F1(�; �; �); F2(�; �; �))kL2(BR00 )
� M1j�j :
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Then, we can infer from the integral equation (4.8) that k(E 00; H 00)kL2(BR00 )
�

M2j�j for all j=(�)j � t0 with a suitable constant M2.
Now, we write down the equation for E 00 from (4.8), de�ne E 0 := n1=2�+

E 00, reorder terms, and obtain

E 00 =
n
�G�(�in�1=2� � rn �)�G�(�in�1=2rn ^ (� ^ �))

o
+
�
�G�

h
�2(1� n)E 0 � i�n�1=2rn ^H 00 � (E 0 � r)

�1
n
rn

�

+(n�1=2�n1=2)E 0
i
�G�(��n1=2�)

�
:

With the help of

in�1=2� � rn � + in�1=2rn ^ (� ^ �) = in�1=2rn � � �

we arrive at
E 00 = G�(in

�1=2rn � �)� + V 0(�; �; �) ;
where V 0 denotes the term in large square brackets from the previous formula
for E 00. Finally, we de�ne

f(�; �; �) := n�1=2G�(in
�1=2rn � �) ;

V (�; �; �) := n�1=2V 0(�; �; �) ;

and use the decay of kG�kL2 for large j=(�)j in order to obtain assertion (b)
of the theorem.

2

With the help of these special solutions we can prove the desired unique-
ness theorem for the inverse electromagnetic scattering problem similarly to
the inverse acoustic scattering problem.

Theorem 4.9 Assume � > 0 is �xed. If the far �eld patterns correspond-
ing to the refractive indices n, ~n 2 ~C(BR) coincide, i.e., E1(x̂; d; p) =
~E1(x̂; d; p) for all (x̂; d; p) 2 S2 � S2 � C3, then n = ~n.

Proof: With R < R1 < R0 we know from Lemma 4.5 thatZ
BR

(n(x)� ~n(x))E(x) � ~E(x)dx = 0 (4.11)
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whenever E, H 2 C1(BR1
) are a solution to

r ^ E � i�H = 0 ; r^H + i�nE = 0 in BR1
,

and ~E, ~H 2 C1(BR1
) are a solution to

r ^ ~E � i� ~H = 0 ; r^ ~H + i�~n ~E = 0 in BR1
.

Now, we �x a vector � 2 � and choose the unit vectors d1, d2 2 IR3 such
that �, d1 and d2 are orthogonal. Next we de�ne for su�ciently large t > 0
the vectors

�t := �1

2
� + i

s
t2 � �2 +

j�j2
4
d1 + td2 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 ;

�t :=
1

j�j� +
j�j
2t
d2 ;

~�t :=
1

j�j��
j�j
2t
d2 :

Note that j�j 6= 0 for � 2 �. Straightforward computations show �t � �t =
~�t � ~�t = �2, ~�t � ~�t = �t � �t = 0 and j�tj = j~�tj �M� for all su�ciently large t.
Therefore, from the preceding theorem we can infer the existence of special
solutions E(�; �t; �t), H(�; �t; �t) and ~E(�; ~�t; ~�t), ~H(�; ~�t; ~�t) to the perturbed
Maxwell equations with refractive index n, ~n, resp., such that

E(x; �t; �t) = ei�t�xf�t + f(x; �t; �t)�t + V (x; �t; �t)g ; x 2 BR1
;

~E(x; ~�t; ~�t) = ei
~�t�xf~�t + ~f(x; ~�t; ~�t)~�t + ~V (x; ~�t; ~�t)g ; x 2 BR1

;

and

kV (�; �t; �t)kL2(BR) + k ~V (�; ~�t; ~�t)kL2(BR)

+kf(�; �t; �t)kL2(BR) + k ~f(�; ~�t; ~�t)kL2(BR) �
M 0

�

j=(�t)j : (4.12)

Using ei�t�xei
~�t�x = e�i��x, �t � ~�t = 1 � (j�j2=4t2), �t � ~�t = �j�j = ~�t � �t,

�t � ~�t = (j�j2=2)� �2 together with (4.12) we arrive at

E(x; �t; �t) � ~E(x; ~�t; ~�t) = e�i��x(1 + h(x; t))
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with Z
BR

jh(x; t)jdx! 0 ; t!1 :

Hence, inserting the special solutions into (4.11) implies (n� ~n)̂ (�) = 0 as
t !1. Proceeding as above for all � 2 � we �nally arrive with the help of
(1.2) at

kn� ~nk2L2(BR)
=
X
�2�

j(n� ~n)̂ (�)j2 = 0 ;

whence n = ~n. This ends the proof of the theorem.
2

Let us close this section with two remarks. As in the acoustic case it
is possible to replace the plane incident waves by any set of solutions to
the Maxwell equations which is complete in the space of all solutions to the
Maxwell equations with respect to L2(BR). Second, instead of measuring far
�eld data one might also use near �eld data like the tangential components
of the electric or magnetic �eld on a large sphere because these data uniquely
determine a radiating solution to the Maxwell equations.
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4.2 Stability of the Inverse Electromagnetic

Problem

We will now examine the continuous dependence of the refractive index n on
the far �eld pattern. We assume throughout this section that the refractive
indices n satisfy n 2 ~C(BR), i.e., n 2 C2;
(IR3), 0 < 
 < 1, <(n) > 0,
=(n) � 0, and supp (1� n) � BR.

If x̂, d 2 S2 are �xed, the mapping

p 2 C3 7! E1(x̂; d; p) 2 C3

is linear. Therefore, we regard the far �eld pattern as a matrix valued map-
ping

e1:S
2 � S2 ! C3�3 :

e1(x̂; d) has the vector E1(x̂; d; dk) as its kth column where d1, d2, d3 denote
the usual cartesian unit vectors.

Analogously to the acoustic case we use a very strong norm k � kF on the
far �eld patterns by prescribing a very rapid decay of the Fourier coe�cients

�l1k1l2k2 :=
Z
S2

Z
S2

e1(x̂; d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ; (4.13)

l1; l2 = 0; 1; : : : ; �l1 � k1 � l1 ; �l2 � k2 � l2 ;

of the far �eld patterns e1. Here, the integral over a matrix valued function
is de�ned by computing the integral for each entry of the matrix valued
function. Hence, the Fourier coe�cients �l1k1l2k2 2 C3�3 are matrices, too.
Furthermore, we denote for a matrix A = (ajk) 2 C3�3 by

kAkF :=
� 3X
j;k=1

jajkj2
�1=2

the Frobenius norm.
We want to derive the estimate

kn� ~nk1 � c
h
� ln(ke1;n � e1;~nkF)

i�1=15
with a constant c for all refractive indices n, ~n lying in some small subset
O of ~C(BR). This means that the mapping e1;n 7! n is continuous and
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that a local uniqueness result holds. Having the acoustic case in mind we
expect that O is not only small with respect to the maximum norm but with
respect to a C2-norm, i.e., we need additional information in a stronger norm
in order to obtain the stability result.

Imitating the reasoning in the acoustic case we start by studying the decay
of the Fourier coe�cients and proving continuity of the mapping n 7! e1;n.

Next, we reconstruct the kernel of a certain boundary integral operatorNn

with the help of a series expansion involving the Fourier coe�cients �l1k1l2k2 .
Nn depends continuously on e1;n. However, since the k � kF -norm is a very
strong norm, which is not appropriate for measured far �eld patterns, this
mapping is severely ill-posed.

Finally, we investigate the dependence of n on Nn with the help of the
special solutions from the last section and arrive at our main estimate.

For convenience we de�ne as in (4.4) the operator Tn:C(BR) ! C(BR)
by

(TnU)(x) := �2
Z
BR

��(x; y)(1� n(y))U(y)dy

�r
Z
BR

��(x; y)
1

n(y)
rn(y) � U(y)dy ; x 2 BR :

Lemma 4.10 Assume the far �eld pattern e1:S
2 � S2 ! C3�3 originates

from the refractive index n 2 ~C(BR) satisfying supp (1� n) � BR1
for some

0 < R1 < R. Let �l1k1l2k2 denote the Fourier coe�cients of e1 as de�ned in
(4.13). Furthermore, de�ne R3 := (1=2)(R+R1). Then, there is a constant
c depending on e1 such that

k�l1k1l2k2k2F � c
� e�R3

2l1 + 1

�2l1+3� e�R3

2l2 + 1

�2l2+3
:

We also haveX
l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3k�l1k1l2k2k2F <1 :

Proof: Using the Lippmann-Schwinger equation (3.19) and the asymptotic
behavior of �� for large jxj we can compute the columns of e1 as

E1(x̂; d; dk) = ��
2

4�

Z
BR1

(1� n(y))E(y; d; dk)e
�i�x̂�ydy
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+
i�

4�

Z
BR1

1

n(y)
rn(y) � E(y; d; dk)e�i�x̂�ydy x̂ ;

x̂; d 2 S2 ; k = 1; 2; 3 : (4.14)

Interchanging the order of integration we obtainZ
S2

Z
S2

E1(x̂; d; dk)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d)

= ��
2

4�

Z
BR1

(1� n(y))
Z
S2

E(y; d; dk)Y
k2
l2
(d)ds(d)

Z
S2

e�i�x̂�yY k1
l1
(x̂)ds(x̂)dy

� 1

4�

Z
BR1

n 1

n(y)
rn(y) �

�
Z
S2

E(y; d; dk)Y
k2
l2
(d)ds(d)r

Z
S2

e�i�x̂�yY k1
l1
(x̂)ds(x̂)

o
dy ;

and then by the Cauchy-Schwarz inequality

k�l1k1l2k2k2F =
3X

k=1

�����
Z
S2

Z
S2

E1(x̂; d; dk)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d)

�����
2

� c
3X

k=1







Z
S2

E(�; d; dk)Y k2
l2
(d)ds(d)







2

L2(BR1
)

�

�
"





Z
S2

e�i�d�xY k1
l1
(d)ds(d)







2

L2(BR1
)

+






 r
Z
S2

e�i�d�xY k1
l1
(d)ds(d)







2

L2(BR1
)

#
:

(4.15)

c will denote various constants during the proof.
In formula (2.27) we have bounded the �rst term in [: : :] by a multiple of�

e�R1

2l1+1

�2l1+3
.

For the �rst factor and for the second term in [: : :] we note that by
Lemma 2.6 (b) there is a constant c such that the inequalityZ

BR1

jruj2dx+
3X

l;m=1

Z
BR1

j @2u

@xl@xm
j2dx � c

Z
BR3

juj2dx

145



holds true for all u 2 C2(IR3) satisfying �u + �2u = 0 in IR3. We can then
estimate




 r

Z
S2

e�i�d�xY k1
l1
(d)ds(d)







2

L2(BR1
)

� c







Z
S2

e�i�d�xY k1
l1
(d)ds(d)







2

L2(BR3
)

� c
� e�R3

2l1 + 1

�2l1+3
;

where, in the second line, we have used the analogous estimate to (2.27)
again. Moreover, we have







Z
S2

Ei(�; d; dk)Y k2
l2
(d)ds(d)







2

L2(BR1
)

=






 1�2r^r ^
Z
S2

ei�d�x Y k2
l2
(d)dkds(d)







2

L2(BR1
)

� c



Z
S2

ei�d�x Y k2
l2
(d)ds(d)




2
L2(BR3

)

� c
� e�R3

2l2 + 1

�2l2+3
;

and �nally by the boundedness of (I + Tn)
�1 in L2(BR1

) (see Lemma 4.3):







Z
S2

E(�; d; dk)Y k2
l2
(d)ds(d)







2

L2(BR1
)

=






 (I + Tn)
�1
Z
S2

Ei(�; d; dk)Y k2
l2
(d)ds(d)







2

L2(BR1
)

� c
� e�R3

2l2 + 1

�2l2+3
:

Now, we can complete the proof analogously to Lemma 2.17.
2

By this lemma we know that the norm ke1;nkF de�ned by

ke1;nk2F :=
X

l1;k1;l2;k2

�2l1 + 1

e�R

�2l1+3�2l2 + 1

e�R

�2l2+3k�l1k1l2k2k2F

146



is well de�ned if n 2 ~C(BR) because supp (1� n) � BR implies that there is
a radius R1 < R with supp (1� n) � BR1

.
Proceeding similarly to the proof of Lemma 2.18 we can prove the con-

tinuous dependence of e1;n on n.

Lemma 4.11 Let n0 2 ~C(BR1
), R1 < R, be given. Then, there are positive

constants c and � such that ke1;n�e1;n0kF � cfkn�n0k1+krn�rn0k1g
for all n 2 ~C(BR1

) satisfying kn� n0k1 + krn�rn0k1 < �.

Our next aim is to introduce a certain boundary integral operator Nn

which is the electromagnetic analogue of the operator Sn in the acoustic
case. To this end we must introduce some spaces of tangential �elds on the
sphere @BR2

. We denote by T (@BR2
) the continuous, tangential vector �elds

a on @BR2
, i.e., which satisfy x � a(x) = 0, x 2 @BR2

, and by T 0;
(@BR2
) the

space of uniformly 
-H�older continuous vector �elds a on @BR2
which are

tangential to @BR2
. By Grad we mean the surface gradient of a function

 2 C1(@BR2
). If for a 2 T 0;
(@BR2

) there exists a function ' 2 C0;
(@BR2
)

such that Z
@BR2

Grad � ads = �
Z

@BR2

 'ds

holds true for all  2 C1(@BR2
), we de�ne Div a := ' to be the surface

divergence of a. The reader can �nd more details in [7, p. 161]. The space
of all tangential �elds from T 0;
(@BR2

) possessing a 
-H�older continuous
surface divergence is denoted by T 0;


d (@BR2
). Moreover, we introduce the

norm kakT 0;

d

:= kak0;
 + kDiv ak0;
 for a 2 T 0;

d (@BR2

).

In [7, Theorem 6.17] the authors prove that the operator

N1:T
0;

d (@BR2

)! T 0;

d (@BR2

)

de�ned by

(N1a)(x) := 2�(x) ^
n
r^r ^

Z
@BR2

��(x; y)a(y)ds(y)
o
; x 2 @BR2

;

is bounded with respect to k � kT 0;

d
. At this point we slightly deviate from

the notation in [7] where the authors de�ne Na := N1(� ^ a). N1a is the
tangential component on @BR2

of the vector potential

E(x) := 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y) ; x 2 IR3 n @BR2
; (4.16)
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i.e., �^E+ = �^E� = N1a on @BR2
. The subscripts, + and �, indicate that

we approach the boundary @BR2
from the exterior and interior, respectively.

Furthermore, the �elds E andH := (i�)�1r^E are a solution to the Maxwell
equations in IR3 n @BR2

, satisfy the Silver-M�uller radiation condition and
� ^ (H+ �H�) = �2i�a on @BR2

.
In order to de�ne an analogous operator Nn we proceed as in the acoustic

case and consider the following boundary value problem (BV P ):
Given R2 > R, � > 0, n 2 ~C(BR), and a 2 T 0;


d (@BR2
), �nd E, H de�ned

in IR3 n @BR2
satisfying the following requirements:

EjBR2
, HjBR2

2 C1(BR2
) \ C(BR2

),

EjIR3nBR2
, HjIR3nBR2

2 C1(IR3 nBR2
) \ C(IR3 nBR2

),

r ^ E � i�H = 0 ; r^H + i�nE = 0 in IR3 n @BR2
,

E, H satisfy the Silver-M�uller radiation condition,

� ^ (E+ � E�) = 0, � ^ (H+ �H�) = �2i�a on @BR2
.

Lemma 4.12 For all a 2 T 0;

d (@BR2

) the boundary value problem (BV P )
has a unique solution E, H. E, H are given by

E(x) := 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y)

��2
Z
BR

(1� n(y))��(x; y)U(y)dy

+r
Z
BR

1

n(y)
rn(y) � U(y)��(x; y)dy ; x 2 IR3 n @BR2

;

(4.17)

and H := (i�)�1r ^ E, where U 2 C(BR) is the unique solution to the
Lippmann-Schwinger equation

(U + TnU)(x) = 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y) ; x 2 BR :
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Proof: If we assume that E, H are a solution to (BV P ) with a = 0, the �rst
part of the reasoning in Theorem 3.5 implies E = H = 0 in the exterior of
BR2

, whence � ^ E� = � ^H� = 0 on @BR2
.

Now, starting from the Stratton-Chu formula (3.4) for E in BR2
and

following the considerations which lead to (3.18) and (3.19), we see that E is
a solution of the homogeneous Lippmann-Schwinger equation. Thus, we also
have E = H = 0 in BR2

. This completes the uniqueness proof for (BV P ).

In order to prove that E, H de�ned as in the assertion are a solution to
(BV P ) for an arbitrary vector �eld a, we imitate the proof of Lemma 3.6.
Taking the divergence of both sides of the Lippmann-Schwinger equation for
U impliesr�(nU) = 0 in BR. Then, computations as in Lemma 3.6 show that
E, H are a radiating solution to the perturbed Maxwell equations. Finally,
the properties of the vector potential (4.16) and of the volume potential yield
that E, H satisfy the boundary conditions.

2

We are now in a position to de�ne

Nn:T
0;

d (@BR2

)! T 0;

d (@BR2

) (Nna)(x) := �(x) ^ E+(x) ; x 2 @BR2
;

(4.18)
E, H being the solution to (BV P ). Since the last two terms in the def-
inition (4.17) are C2-smooth in IR3, the linear operator Nn is well de�ned
and bounded. Furthermore, we also have Nna = � ^ E� on @BR2

. Finally,
we note that the de�nition of U is possible for any continuous vector �eld
a 2 C(@BR2

), whence the last two integrals on the right hand side of (4.17)
are still well de�ned for a 2 C(@BR2

). This allows to regard (Nn �N1) as a
linear and bounded operator in the spaces C(@BR2

) or T (@BR2
).

The following lemma states some properties of Nn.

Lemma 4.13 The linear operators Nn satisfy:

(a)
Z

@BR2

(Nna) � (b ^ �)ds =
Z

@BR2

(a ^ �) � (Nnb)ds for all a, b 2 T 0;

d (@BR2

).

(b) The mapping n 7! (Nn�N1), from ( ~C(BR); k�kC1) to the space of linear
and bounded operators in T (@BR2

) equipped with the k � k1-operator
norm, is continuous.
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Proof: For a, b 2 T 0;

d (@BR2

) we de�ne E as in (4.17), H := (i�)�1r ^ E,
and E 0, H 0 analogously where we replace a by b. Then we use the formulas
(3.3) and (3.9) to computeZ

@BR2

f(Nna) � (b ^ �)� (a ^ �) � (Nnb)gds

= � 1

2i�

Z
@BR2

f(� ^ E) � ([� ^ (H 0
+ �H 0

�)] ^ �)

�([� ^ (H+ �H�)] ^ �) � (� ^ E 0)gds

= � 1

2i�

Z
@BR2

f((� ^ E) �H 0
+ � (� ^ E 0) �H+)

�((� ^ E) �H 0
� � (� ^ E 0) �H�)gds

= 0 :

This proves part (a).
Assertion (b) can be established along the lines of Lemma 2.20 (c).

2

Now, we examine how to compute the operator Nn from a knowledge of
the Fourier coe�cients �l1k1l2k2 of e1;n. This also allows to derive continuous
dependence of Nn on e1;n. We remind the reader that Nn�N1 is well de�ned
in T (@BR2

), hence it makes sense to examine kNn �N~nk1 = k(Nn �N1)�
(N~n �N1)k1.
Lemma 4.14 Let the far �eld pattern e1;n:S

2 � S2 ! C3�3 with Fourier
coe�cients �l1k1l2k2 originate from the refractive index n 2 ~C(BR). For x,
y 2 @BR2

we de�ne the matrix

kn(x; y) := ��
4

4�

X
l1;k1;l2;k2

il1�l2h
(1)
l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj)�l1k1l2k2 :
(4.19)

(a) For all a 2 T 0;

d (@BR2

) there holds

(Nna)(x)� (N1a)(x) = 2�(x) ^
Z

@BR2

kn(x; y)a(y)ds(y) ; x 2 @BR2
:
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(b) There is a constant c such that for all n, ~n 2 ~C(BR) the inequality
kNn �N~nk1 � cke1;n � e1;~nkF holds true.

Proof: As in the proof of Lemma 2.21 (a) we can use the Cauchy-Schwarz
inequality for the series in (4.19) together with the rapid decay of the Fourier

coe�cients (Lemma 4.10) and the estimate for jh(1)l (�R2)j (Lemma 2.16) in
order to see that the series is absolutely and uniformly convergent on @BR2

�
@BR2

. Therefore, kn is a well de�ned continuous matrix valued function.
From the de�nition of Nn in (4.18) we know that for a 2 T 0;


d (@BR2
) the

di�erence Nna�N1a has the form

(Nna�N1a)(x)

= ��2�(x) ^
Z
BR

(1� n(y))��(x; y)U(y)dy

+�(x) ^r
Z
BR

1

n(y)
rn(y) � U(y)��(x; y)dy ; x 2 @BR2

;

(4.20)

where U 2 C(BR) is the solution to

(U + TnU)(x) = 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y) ; x 2 BR :

The right hand sides of the last equation and of (4.20) are well de�ned for any
continuous vector �eld a 2 C(@BR2

) and represent bounded linear operators
with respect to the maximum norm. Since T 0;


d (@BR2
) � C(@BR2

), it su�ces
to prove that the right hand side of (4.20) and

2�(x) ^
Z

@BR2

kn(x; y)a(y)ds(y)

coincide for all x 2 @BR2
and for all a 2 C(@BR2

). As

span
n
Y k
l (

�
j � j)dm:m = 1; 2; 3; l = 0; 1; : : : ;�l � k � l

o

is dense in C(@BR2
), we establish the desired equality only for the �elds

Y k
l (

�
j�j
)dm. Here, d1, d2, d3 denote the usual cartesian unit vectors in IR3.
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First, we compute for x 2 @BR2

2
Z

@BR2

kn(x; y)Y
k2
l2
(
y

jyj)dmds(y)

= ��
4R2

2

2�

X
l1;k1

il1�l2h
(1)
l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)�l1k1l2k2dm :

For the computation of the right hand side of (4.20) we proceed similarly
to the proof of Lemma 2.21 (a) and compute

2r^r ^
Z

@BR2

��(x; y)Y
k2
l2
(
y

jyj)dm ds(y)

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

r^r ^
Z
S2

ei�x�dY k2
l2
(d)dm ds(d)

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

�2
Z
S2

Ei(x; d; dm)Y
k2
l2
(d)ds(d) ; x 2 BR ;

and

U = 2(I + Tn)
�1fr ^ r ^

Z
@BR2

��(�; y)Y k2
l2
(
y

jyj)dm ds(y)g

= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

�2
Z
S2

E(�; d; dm)Y k2
l2
(d)ds(d) :

De�ning

V (x) := ��2
Z
BR

(1� n(y))��(x; y)U(y)dy

+r
Z
BR

1

n(y)
rn(y) � U(y)��(x; y)dy ; jxj � R ;

we obtain with the help of (4.14)

V1(x̂) = ��
2

4�

Z
BR

(1� n(y))e�i�x̂�yU(y)dy

+
i�

4�

Z
BR

1

n(y)
rn(y) � U(y)e�i�x̂�ydy x̂
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= 2i�R2
2h

(1)
l2
(�R2)

(�i)l2
4�

�2
Z
S2

E1(x̂; d; dm)Y
k2
l2
(d)ds(d) ; x̂ 2 S2 ;

whenceZ
S2

V1(x̂)Y
k1
l1
(x̂)ds(x̂) = 2i�R2

2h
(1)
l2
(�R2)

(�i)l2
4�

�2�l1k1l2k2dm : (4.21)

Since V is a radiating solution to the Helmholtz equation in the exterior of
BR1

if supp (1� n) � BR1
, R1 < R, according to [7, Theorem 2.14] it has an

expansion

V (x) =
1X
l1=0

l1X
k1=�l1

al1k1h
(1)
l1
(�jxj)Y k1

l1
(x̂)

which converges absolutely and uniformly on compact subsets of fjxj � Rg.
Here, the coe�cients al1k1 are vectors in C3. Now, comparing the Fourier
coe�cients for the far �eld of the above series expansion with (4.21) we can
�nish the proof of assertion (a) as in Lemma 2.21 (a).

The analogous estimates to the proof of Lemma 2.21 (b) yield part (b) of
the lemma.

2

As in the acoustic case we need a connection between the integrals���Z
BR

(n� ~n)E � ~Edx
���

and the quantity kNn � N~nk1 which is established in the following lemma.
During the proof of the lemma we employ two more boundary integral opera-
tors, namely L0:T

0;

d (@BR2

)! T 0;

d (@BR2

) andM :T 0;

d (@BR2

)! T 0;

d (@BR2

)
which are de�ned by

(L0a)(x) := 4�(x) ^
Z

@BR2

�0(x; y)
n Z
@BR2

�0(y; z)a(z)ds(z)
o
ds(y) ;

(4.22)

(Ma)(x) := 2
Z

@BR2

�(x) ^rx ^ f��(x; y)a(y)gds(y) ; x 2 @BR2
:

The proof of Theorem 6.19 in [7] shows that the operator I +M + iN1L0

has a continuous inverse in T 0;

d (@BR2

). Moreover, given a tangential �eld
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b 2 T 0;

d (@BR2

) and de�ning a := 2(I +M + iN1L0)
�1b 2 T 0;


d (@BR2
) the

�elds

V (x) := r^
Z

@BR2

��(x; y)a(y)ds(y)

+ir ^r ^
Z

@BR2

��(x; y)(L0a)(y)ds(y) ;

W (x) :=
1

i�
r^ V (x) ; jxj > R2 ;

are a radiating solution to the Maxwell equations in IR3nBR2
with �^V+ = b

on @BR2
, i.e., we can solve the exterior Dirichlet problem for the Maxwell

equations. Finally, Theorem 6.20 in [7] states that k� ^W+kT 0;

d
� ckbkT 0;


d

for a suitable constant c which is independent of b.

Lemma 4.15 Assume R < R2 < R00 and c1 > 0 are positive constants.
Then, there exists a positive constant c such that for all n, ~n 2 ~C(BR)
with knkC2, k~nkC2, k1=nk1, k1=~nk1 � c1, and for all solutions E, H 2
C1(BR00) \ L2(BR00) to r^E � i�H = 0, r^H + i�nE = 0 in BR00 and all
solutions ~E, ~H 2 C1(BR00)\L2(BR00) to r^ ~E� i� ~H = 0, r^ ~H+ i�~n ~E = 0
in BR00 the estimate���Z

BR

(n� ~n)E � ~Edx
��� � ckNn �N~nk1;@BR2

kEkL2(BR00 )
k ~EkL2(BR00 )

(4.23)

holds true.

Proof: As in the acoustic case we extend E, H outside of BR2
to radiating

solutions V , W to the Maxwell equations such that � ^ E� = � ^ V+. This
allows to connect (� ^ E�)j@BR2

and the operator Nn. We de�ne V (x) :=
E(x), x 2 BR2

, and

V (x) := 2r^
Z

@BR2

��(x; y)a(y)ds(y)

+2ir^r ^
Z

@BR2

��(x; y)(L0a)(y)ds(y) ; x 2 IR3 nBR2
;

with a := (I+M+iN1L0)
�1(�^E�)j@BR2

. Moreover, we setW := (i�)�1r^E
in IR3 n @BR2

. Then, we know V jBR2
, W jBR2

2 C1(BR2
) \ C(BR2

), and

154



V jIR3nBR2
, W jIR3nBR2

2 C1(IR3 n BR2
) \ C(IR3 n BR2

). Furthermore, V , W

satisfy the Silver-M�uller radiation condition and � ^ (V+ � V�) = 0. Hence,
we know from Lemma 4.12 that

� ^ V� =
1

2i�
Nn(� ^ (W� �W+))

on @BR2
. From the remarks preceding this lemma we can conclude k� ^

(W� �W+)k1 � c2kEk1;
;BR2
. kEk1;
;BR2

can be bounded by a multiple of

kn1=2Ek1;
;BR2
. Since (n1=2E;H) are a solution to a perturbed Helmholtz

equation (Lemma 3.4), we obtain from Lemma 2.6 (b) that there are con-
stants c3, c4 independent of E, H and n (but dependent on c1, R2 and R

00)
such that

k� ^ (W� �W+)k1 � c3kn1=2EkL2(BR00 )
� c4kEkL2(BR00 )

: (4.24)

We can proceed analogously and de�ne vector �elds ~V , ~W starting with
~E, ~H 2 C1(BR00) \ L2(BR00).

Then, we use Lemma 4.13 (a), (3.9) and (3.3) to compute

1

2i�

Z
@BR2

�
[� ^ (W� �W+)] ^ �

�
� (Nn �N~n)

�
� ^ ( ~W� � ~W+)

�
ds

=
1

2i�

Z
@BR2

h
Nn(� ^ (W� �W+))

i
�
�
[� ^ ( ~W� � ~W+)] ^ �

�
ds

� 1

2i�

Z
@BR2

�
[� ^ (W� �W+)] ^ �

�
�N~n

�
� ^ ( ~W� � ~W+)

�
ds

=
Z

@BR2

n
(� ^ V�) � ( ~W� � ~W+)� (� ^ ~V�) � (W� �W+)

o
ds

=
Z

@BR2

f(� ^ V�) � ~W� � (� ^ ~V�) �W�

o
ds

= �i�
Z
BR

(n� ~n)E � ~Edx : (4.25)

Finally, we conclude from (4.24) and (4.25)���Z
BR

(n� ~n)E ~Edx
���
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=
��� 1

2�2

Z
@BR2

�
[� ^ (W� �W+)] ^ �

�
� (Nn �N~n)

�
� ^ ( ~W� � ~W+)

�
ds
���

� ckNn �N~nk1;@BR2
kEkL2(BR00 )

k ~EkL2(BR00 )
;

and we have proved the lemma.
2

We are now in a position to prove our main estimate which implies the
continuous dependence of n on Nn or e1;n.

Theorem 4.16 Let n0 2 ~C(BR) be given. Then, there are a neighborhood
O of n0 of the form

O := fn 2 ~C(BR): kn� n0kC2 < �g ;
and a positive constant c, such that for all n, ~n 2 O the estimate

kn� ~nk1;BR
� c[� ln(kNn �N~nk1;@BR2

)]�1=15

holds true.

Proof: We choose R < R2 < R00 < R0 < 2R2. Furthermore, with Qn0 de�ned
as in (3.13) for the refractive index n0 we set

t1 := 2
R0

�
fmax
x2BR

kQn0(x)k2 + �2k1� n0k1 + 1g+ 2�+ 200 ;

and choose 0 < �1 < 1=2 su�ciently small to ensure

�7
15(4R2 + 1)

ln(2�1) > t1 :

Due to the continuous dependence of Qn and of (Nn � N1) on n (Lem-
ma 4.13 (b)) we can �nd � with 0 < � < �1 such that

max
x2BR

kQn0(x)�Qn(x)k2 + �2kn� n0k1 � 1

and
kNn �N~nk1;@BR2

� 2�1

for all
n; ~n 2 O := fn 2 ~C(BR): kn� n0kC2 < �g :
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From (2.38) and (2.39) we know that for n, ~n 2 O and any � � 2 the
estimate

kn� ~nk1 � (2R0)�3=2
X

�����2

j(n� ~n)̂ (�)j+ cp
�

(4.26)

holds true. c may denote various constants during the proof.
As in the proof of Theorem 2.23 we have to pick a suitable �, depending

on kNn�N~nk1;@BR2
, in order to estimate the right hand side of (4.26). The

Fourier coe�cients j(n � ~n)̂ (�)j, � � � � �2, can be bounded by using the
preceding lemma and the special solutions from the uniqueness proof for the
inverse problem.

We choose t := � 7
15(4R2+1)

ln kNn � N~nk1 and � := t2=15. Then, the

inequalities kNn �N~nk1 < 1 and t � t1 are satis�ed for all n, ~n 2 O by the
de�nition of � and we also have � � 2.

For a vector � 2 � with � � � � �2 we choose as in Theorem 4.9

�t := �1

2
� + i

s
t2 � �2 +

j�j2
4
d1 + td2 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 ;

�t :=
1

j�j� +
j�j
2t
d2 ;

~�t :=
1

j�j��
j�j
2t
d2 :

Then, we have j=(�t)j � t � � � t=2, j�tj=j=(�t)j � 2, and j=(�t)j �
t � � � t0 for all n 2 O (t0 as in (4.10)), whence by Theorem 4.8 there
exist the special solutions E(x; �t; �t) = ei�t�x(�t + f(x; �t; �t) + V (x; �t; �t))
and the L2(BR00)-norms kf(�; �t; �t)kL2 + kV (�; �t; �t)kL2 can be bounded by
(j�tjc)=j=(�t)j uniformly in n 2 O, t � t1. The analogous assertions apply to
~E(x; ~�t; ~�t) = ei

~�t�x(~�t + ~f(x; ~�t; ~�t) + ~V (x; ~�t; ~�t)).
Now, we estimate with the help of the preceding lemma

j(~n� n)̂ (�)j
= (2R0)�3=2

���Z
C

(~n� n)(x)e�i��xdx
���

= (2R0)�3=2
���Z
BR

(~n� n)(x)E(x; �t; �t) � ~E(x; ~�t; ~�t)dx
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+
Z
BR

(~n� n)(x)e�i��x
n j�j2
4t2

+ j�j(f(x; �t; �t) + ~f(x; ~�t; ~�t))

�( j�j
2

2
� �2)f(x; �t; �t) ~f(x; ~�t; ~�t)� V (x; �t; �t) � ~V (x; ~�t; ~�t)

�(�t + f(x; �t; �t)�t) � ~V (x; ~�t; ~�t)
�(~�t + ~f(x; ~�t; ~�t)~�t) � V (x; �t; �t)

o
dx
���

� ckNn �N~nk1kE(�; �t; �t)kL2(BR00 )
k ~E(�; ~�t; ~�t)kL2(BR00 )

+
cj�j4
t

� c(j�j2e4R2(t+j�j)kNn �N~nk1 +
j�j4
t
) ; (4.27)

where we have used the fact that

kE(�; �t; �t)kL2(BR00 )
� kei�t�xk1;B2R2

k�t + f(�; �t; �t)�t + V (�; �t; �t)kL2(BR00 )

� cj�je2R2(t+j�j)

for all t � t1, n 2 O, and � 2 � because j=(�t)j � t+j�j. Note that the terms
in (4.6) originating from the integral containing derivatives of the modi�ed
fundamental solution contribute j�j2 in formula (4.27) and so does our choice
of �t and of ~�t. These powers of j�j, which did not occur in the acoustic case,
imply the di�erent exponent �1=15 in the assertion when compared to the
exponent �1=7 in the acoustic case.

Inequality (4.27) implies

X
�����2

j(~n� n)̂ (�)j � c
X

�����2

(j�j2e4R2(t+j�j)kNn �N~nk1 +
j�j4
t
)

� cfe4R2te4R2��5kNn �N~nk1 +
�7

t
g

� cfe(4R2+1)(t+�)kNn �N~nk1 +
�7

t
g ;

because of �5 � 5!e�.
Finally, we obtain from (4.26), our last estimate, � = t2=15 � t, and the

de�nition of t

kn� ~nk1 � cfe(4R2+1)(t+�)kNn �N~nk1 +
�7

t
+

1p
�
g
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� cfe(8R2+2)tkNn �N~nk1 +
2

t1=15
g

� c
n
(kNn �N~nk1)1=15 + (� ln kNn �N~nk1)�1=15

o
� c(� ln kNn �N~nk1)�1=15

for all n, ~n 2 O because x � (� ln(x))�1 for 0 < x < 1, and we have proved
the theorem.

2

Theorem 4.17 Let n0 2 ~C(BR1
) with R1 < R be given. Then, there are a

neighborhood O of n0 of the form

O := fn 2 ~C(BR1
): kn� n0kC2 < �g ;

and a positive constant c, such that for all n, ~n 2 O the estimate

kn� ~nk1;BR
� c[� ln(ke1;n � e1;~nkF)]�1=15

holds true.

Proof: We know from Lemma 4.11 that the mapping n 7! e1;n is continuous
from ~C(BR1

) to the far �eld patterns equipped with the norm k � kF . Then,
in the proof of Theorem 4.16 we can choose � > 0 su�ciently small to satisfy
the additional requirements

(1 + c0)ke1;n � e1;~nkF � 2�1 and c0ke1;n � e1;~nkF � ke1;n � e1;~nk1=2F

for all n, ~n 2 O, too, where c0 denotes the constant c from Lemma 4.14 (b).
Inserting the estimate

kNn �N~nk1 � c0ke1;n � e1;~nkF
from Lemma 4.14 (b) into Theorem 4.16 we arrive at the assertion of the
theorem.

2
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4.3 The Reconstruction of the Refractive In-

dex

In this section we derive a method to reconstruct the refractive index n from a
knowledge of the far �eld pattern e1;n. We shall give a procedure to compute
the Fourier coe�cients (n� 1)̂ (�), if the Fourier coe�cients �l1k1l2k2 of e1;n

are known. However, although our method is theoretically satisfying it is
certainly not appropriate for practical computations because we never take
care of the severe ill-posedness of the problem.

The main ideas from the acoustic case are also applicable to the elec-
tromagnetic problem. There are some additional technical di�culties be-
cause replacing the Robin boundary value problem from section 2.3 by an
impedance boundary value problem for the Maxwell equations leads to more
complicated integral equations, even for n = 1, than those encountered in the
acoustic case (see [7, section 9.5] and references given there). The impedance
map which is considered in [45, 38, 39] can only be employed, if � is not an
eigenvalue in BR2

.
Therefore, we choose an unphysical boundary value problem for the per-

turbed Maxwell equations by prescribing �^H�L0(�^E) on @BR2
where the

operator L0 is de�ned in (4.22). We prove that the map �n:T
0;

d (@BR2

) !
T 0;

d (@BR2

), given by � ^H�L0(� ^E) 7! � ^E, is well de�ned for all � > 0
and can be computed from the Fourier coe�cients �l1k1l2k2 of e1;n.

In the second step we derive a uniquely solvable equation of the form

(I � An;�)b�;� = � ^H i
�;� � L0(� ^ Ei

�;�) on @BR2

for the boundary values b�;� = � ^H(�; �; �)�L0(� ^E(�; �; �)) of the special
solutions E(�; �; �), H(�; �; �) from Theorem 4.8. Here Ei

�;�(x) = � � ei��x,
H i

�;�(x) = (i�)�1r ^ Ei
�;�(x) are known. An;� is a compact operator, which

can be computed with the help of �n and integral operators having kernels
originating from the unphysical fundamental solution 	� . Hence, given e1;n,
we can obtain � ^H(�; �; �)� L0(� ^ E(�; �; �)) and � ^ E(�; �; �) on @BR2

.
In the last step, similarly to the Uniqueness Theorem 4.9, we obtain the

Fourier coe�cients (n� 1)̂ (�) from the above boundary data.

Our �rst aim is the de�nition of the operator �n. To this end we have to
prove that the following boundary value problem (RP ) has a unique solution:

Given 0 < R < R2, � > 0, n 2 ~C(BR) and b 2 T 0;

d (@BR2

),
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�nd E, H 2 C1(BR2
) \ C(BR2

) satisfying the perturbed Maxwell equa-
tions

r^ E � i�H = 0 ; r^H + i�nE = 0 in BR2
,

and

� ^H � L0(� ^ E) = b on @BR2
.

We would like to prove that the vector �elds E, de�ned in (4.17), together
withH := (i�)�1r^E are a solution to (RP ), if the density a 2 T 0;


d (@BR2
) is

chosen appropriately. We already know from the preceding section � ^E� =
Nna. Since we also need � ^ H�, we must study the boundary values of H
more closely. To this end we de�ne Mn:T

0;

d (@BR2

)! T 0;

d (@BR2

) by

(Mna)(x) := 2
Z

@BR2

�(x) ^ [rx ^ f��(x; y)a(y)g]ds(y)

��(x) ^r ^
Z
BR

(1� n(y))��(x; y)U(y)dy ; x 2 @BR2
;

(4.28)

where U 2 C(BR) is the unique solution to

U + TnU = 2r^r ^
Z

@BR2

��(�; y)a(y)ds(y) in BR.

Regarding the kernel kn from (4.19) as being de�ned in a neighborhood of
@BR2

, Mn � M1 corresponds to an integral operator having as kernel the
matrix valued function k̂n(x; y), where the mth column of k̂n(x; y) is given
by k̂n(x; y)dm = 2��2�(x) ^ rx ^ fkn(x; y)dmg. Hence, the relation between
Nn and Mn is similar to the one between Sn and K 0

n in the acoustic case.
The mapping properties of volume potentials imply that Tn is a compact

operator in C1;
(BR). Hence, by the Riesz-Fredholm theory (I + Tn)
�1 is

bounded in C1;
(BR) and U 2 C1;
(BR). Then, the mapping properties of
the volume potential and of the vector potential also imply that Mn is a
linear and bounded operator.

If E is de�ned as in (4.17), i.e.,

E(x) := 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y)
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��2
Z
BR

(1� n(y))��(x; y)U(y)dy

+r
Z
BR

1

n(y)
rn(y) � U(y)��(x; y)dy ; x 2 IR3 n @BR2

;

with U as above, we have

H(x) :=
1

i�
r^ E(x)

= �2i�r ^
Z

@BR2

��(x; y)a(y)ds(y)

+i�r^
Z
BR

(1� n(y))��(x; y)U(y)dy ; x 2 IR3 n @BR2
;

whence by the jump relations

� ^H� = �i�(Mn � I)a and � ^H+ = �i�(Mn + I)a on @BR2
.

The regularity properties of volume potentials and of the boundary layer
potential also imply E, H 2 C1(BR2

) \C(BR2
) and E, H 2 C1(IR3 nBR2

) \
C(IR3 nBR2

).
In the following lemma we show that Mn is compact and how it can be

computed from a knowledge of e1;n.

Lemma 4.18 Assume the far �eld pattern e1;n:S
2 � S2 ! C3�3 originates

from the refractive index n 2 ~C(BR) and has the Fourier coe�cients �l1k1l2k2.
Furthermore, de�ne the matrix valued function ~kn: @BR2

� @BR2
! C3�3

which has as its mth column the vector

~kn(x; y)dm

:= � �2

4�R2

X
l1;k1;l2;k2

il1�l2h
(1)
l2
(�R2)Y

k2
l2
(
y

jyj)
n
�
�dh(1)l1

dt

�
(�R2)Y

k1
l1
(
x

jxj)x

+h
(1)
l1
(�R2)(GradY

k1
l1
)(
x

jxj)
o
^ (�l1k1l2k2dm) ; x; y 2 @BR2

(4.29)

(d1, d2, d3 denoting the cartesian unit vectors).

(a) The operator Mn:T
0;

d (@BR2

) ! T 0;

d (@BR2

) de�ned in (4.28) is com-
pact (0 < 
 < 1).
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(b) For all a 2 T 0;

d (@BR2

) there holds

(Mna)(x) = (Ma)(x) + 2�(x) ^
Z

@BR2

~kn(x; y)a(y)ds(y) ; x 2 @BR2
;

where M =M1 is de�ned in (4.22).

Proof: The series expansion in (4.29) is absolutely and uniformly conver-
gent on @BR2

� @BR2
. Hence ~kn is a well de�ned, continuous matrix valued

function.
For assertion (a) we observe that the operator M from (4.22) is compact

([7, Theorem 6.16]) and that the mapping T 0;

d (@BR2

) ! C(BR), a 7! U ,
is compact. Since �� is a smooth function for x 2 @BR2

, y 2 BR, we can
conclude that Mn �M is compact, whence Mn is compact.

Assertion (b) is proved along the lines of Lemma 4.14 (a) by checking for

a = Y k2
l2
( �
j�j
) dm the coincidence of

2� ^
Z

@BR2

~kn(�; y)a(y)ds(y)

and the term originating from the volume potential in the de�nition of Mn.
The latter can be represented as ��2�(x)^ [r^V (x)], x 2 @BR2

, with V
de�ned as in the proof of Lemma 4.14 (a). Applying ��2r ^ � to the series
expansion of V given in the proof of Lemma 4.14 (a) yields the assertion.

2

Before turning to the boundary value problem (RP ) let us de�ne

(S0a)(x) := 2
Z

@BR2

�0(x; y)a(y)ds(y) ; x 2 @BR2
;

for a vector �eld a 2 C(@BR2
). S0 is an injective operator (see the proof

of Theorem 3.10 in [7]) and can be regarded as a bounded operator from
C(@BR2

) to C0;
(@BR2
) or as a bounded operator between C0;
(@BR2

) and
C1;
(@BR2

). Moreover, S0 is symmetric with respect to the L2(@BR2
)-scalar

product. Note that the operator L0 from (4.22) has the form L0a = �^S0S0a.
The identity Div(� ^E) = �� � (r^E) on @BR2

for smooth vector �elds E
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in BR2
([7, (6.38)]) together with the jump relation for the �rst derivatives

of the single-layer potential ([7, Theorem 6.12]) implies the relation

(Div(L0a))(x) = �2
Z

@BR2

�(x) � rx ^ f�0(x; y)(S0a)(y)gds(y) ; x 2 @BR2
;

the integral being a Cauchy principal value. Hence, L0 is a bounded operator
from T (@BR2

) to T 0;

d (@BR2

).
We are now in a position to prove that (RP ) has a unique solution. We

start with uniqueness.

Lemma 4.19 If E, H are a solution to (RP ) with b = 0, then E = H = 0
in BR2

.

Proof: If E, H are a solution to the homogeneous problem (RP ), we computeZ
@BR2

jS0(� ^ E)j2ds =
Z

@BR2

(� ^ E) � S2
0(� ^ E)ds

= �
Z

@BR2

E � L0(� ^ E)ds

= �
Z

@BR2

E � (� ^H)ds

=
Z

BR2

f(r^ E) �H � E � (r^H)gdx

= �i�
Z

BR2

fjHj2 � njEj2gdx :

Taking the real part of this equation we can conclude S0(� ^E) = 0, whence
� ^H = 0 by the boundary condition and � ^E = 0 by the injectivity of S0.
Now, the Stratton-Chu formula for E yields via (3.18) that E is a solution to
the homogeneous Lippmann-Schwinger equation and therefore must vanish
identically.

2

Theorem 4.20 For any given b 2 T 0;

d (@BR2

) there is a unique solution E,
H to (RP ). The mapping �n:T

0;

d (@BR2

)! T 0;

d (@BR2

), �nb := �^E, is well
de�ned and can be computed from e1;n. The linear operator P :T

0;

d (@BR2

)!
C1;
(BR) de�ned by Pb = EjBR

is compact.
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Proof: Our reasoning before Lemma 4.18 implies that E de�ned as in (4.17)
and H := (i�)�1r ^ E satisfy the boundary conditions of (RP ), if a 2
T 0;

d (@BR2

) is a solution to

[�i�(Mn � I)� L0Nn]a = b : (4.30)

As in the proof of Lemma 4.12 E and H also satisfy the di�erential equations.
Since Nn is bounded in T 0;


d (@BR2
) (see (4.18)), since the imbedding

T 0;

d (@BR2

) � T (@BR2
) is compact, and since L0:T (@BR2

) ! T 0;

d (@BR2

)
is bounded (see the remark before Lemma 4.19), the operator L0Nn is a
compact operator in T 0;


d (@BR2
). Due to the compactness of the operator

Mn (Lemma 4.18 (a)) in T 0;

d (@BR2

) it su�ces to prove that equation (4.30)
has a trivial nullspace.

If a 2 T 0;

d (@BR2

) is a solution to the homogeneous equation (4.30), we
de�ne E as in (4.17) andH := (i�)�1r^E in IR3n@BR2

. From the uniqueness
of (RP ) we can conclude EjBR2

= HjBR2
= 0. Since E, H are a radiating

solution to the Maxwell equations in the exterior of BR2
with � ^ E+ =

� ^ E� = 0, the uniqueness of the exterior Maxwell problem also implies
E = H = 0 in the exterior of BR2

([7, Theorem 6.18]). We can now complete
the existence proof by observing 0 = � ^ (H+ �H�) = �2i�a.

The proof of the unique solvability of (RP ) implies that

�n = Nn[�i�(Mn � I)� L0Nn]
�1 ;

i.e., �n:T
0;

d (@BR2

)! T 0;

d (@BR2

) is well de�ned, bounded, and can be com-
puted from e1;n because the kernels of the integral operatorsMn and Nn can
be computed from the Fourier coe�cients of e1;n.

Finally, the boundedness of [�i�(Mn � I) � L0Nn]
�1 in T 0;


d (@BR2
) to-

gether with the boundedness of (I +Tn)
�1 in C1;
(BR) and the compactness

of the mapping T 0;

d (@BR2

)� C1;
(BR)! C1;
(BR)

(a; U) 7! 2r^r ^
Z

@BR2

��(x; y)a(y)ds(y)

��2
Z
BR

(1� n(y))��(x; y)U(y)dy

+r
Z
BR

1

n(y)
rn(y) � U(y)��(x; y)dy ; x 2 BR ;
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imply the compactness of P .
2

Our next aim is to compute the boundary data b�;� = � ^ H(�; �; �) �
L0(�^E(�; �; �)) of the special solutions used in the Uniqueness Theorem 4.9
assuming that e1;n, � and � are known. To this end we use a uniquely
solvable Fredholm equation of the second kind for b�;�, which only contains
�n and integral operators having 	� and its derivatives as kernels.

We choose R < R2 < R00 < R0. First, we need an analogous represen-
tation to Theorem 3.3 for the special solutions E(�; �; �), H(�; �; �) in the
spherical shell R2 < jxj < R00 where the fundamental solution �� is replaced
by 	�.

Lemma 4.21 Assume � > 0, n 2 ~C(BR), and �, � 2 C3 satisfy j=(�)j �
2�2(R0=�)k1 � nk1 + 1, � � � = 0, and � � � = �2. Furthermore, de�ne
Ei
�;�(x) := �ei��x, H i

�;�(x) := (i�)�1r^Ei
�;�(x) in IR3. If E(�; �; �) 2 C(BR00)

is a solution to the modi�ed Lippmann-Schwinger equation

E(x; �; �) = Ei
�;�(x)� �2

Z
BR

	�(x� y)(1� n(y))E(y; �; �)dy

+r
Z
BR

	�(x� y)
1

n(y)
rn(y) � E(y; �; �)dy ; x 2 BR00 ;

(4.31)

and H(�; �; �) := (i�)�1r^E(�; �; �), then for R2 < jxj < R00 the representa-
tion

E(x; �; �) = Ei
�;�(x) +r ^

Z
@BR2

�(y) ^ E(y; �; �)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

�(y) ^H(y; �; �)	�(x� y)ds(y)

(4.32)

holds true.

Proof: According to Lemma 4.6 E(�; �; �) is C2-smooth and the vector �elds
E(�; �; �), H(�; �; �) satisfy the perturbed Maxwell equations in BR00 , in par-
ticular

r � f(1� n)E(�; �; �)g = r � E(�; �; �) = �(1=n)rn � E(�; �; �) :
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For �xed vectors p 2 C3, R2 < jxj < R00, the vector �elds

E 0(y) := � 1

i�
ry^ry^f	�(x�y)pg ; H 0(y) := ry^f	�(x�y)pg ; y 2 BR2

;

are a solution to the Maxwell equations. Now we use (3.3) to compute

p �
n
r ^

Z
@BR2

�(y) ^ E(y; �; �)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

�(y) ^H(y; �; �)	�(x� y)ds(y)
o

=
Z

@BR2

f(� ^ E(�; �; �)) �H 0 � (� ^ E 0) �H(�; �; �)gds

= �
Z

BR2

(1� n)E(y; �; �) � frx ^rx ^ (	�(x� y)p)gdy

= p �
n
��2

Z
BR2

	�(x� y)(1� n(y))E(y; �; �)dy

+r
Z

BR2

1

n(y)
rn(y) � E(y; �; �)	�(x� y)dy

o
: (4.33)

Since p and x are arbitrary, the integrals on the right hand side of (4.32) and
the integrals in (4.31) coincide and we have proved the lemma.

2

Analogously to the acoustic case we need boundary integral operators
containing the fundamental solution 	� instead of ��. To this end we de�ne
the operators M� and N�:T

0;

d (@BR2

)! T 0;

d (@BR2

) by

(M�a)(x) := 2
Z

@BR2

�(x) ^ rx ^ f	�(x� y)a(y)gds(y);

(N�a)(x) := 2�(x) ^
n
r^r ^

Z
@BR2

	�(x� y)a(y)ds(y)
o
; x 2 @BR2

:

Since the di�erence of 	� and e
i�j�j=(4�j � j) is an analytic function, boundary

potentials with kernel 	� inherit the mapping properties and jump relations
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from those de�ned with ��, which can be found in [6, chapter 2] and [7,
section 6.3]. Let us note again that our de�nition of N� and the de�nition of
N in the above references slightly di�er.

We are now in a position to derive the desired equation for the boundary
data b�;� = � ^H(�; �; �)�L0(� ^E(�; �; �)) of the special solutions E(�; �; �),
H(�; �; �) from Theorem 4.8.

Lemma 4.22 With E(�; �; �), H(�; �; �) being de�ned as in Lemma 4.21 the
boundary data b�;� = � ^H(�; �; �)�L0(� ^E(�; �; �)) on @BR2

are a solution
to

b�;� = � ^H i
�;� � L0(� ^ Ei

�;�)

+
1

2

n
M�fb�;� + L0�nb�;�g+ b�;� +

1

i�
N��nb�;�

�L0

h
M��nb�;� � 1

i�
N�fb�;� + L0�nb�;�g

io
(4.34)

on @BR2
.

Proof: With the help of � ^ E(�; �; �) = �nb�;� we rewrite the representation
(4.32) as

E(x; �; �) = Ei
�;�(x) +r^

Z
@BR2

(�nb�;�)(y)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

fb�;� + L0�nb�;�g(y)	�(x� y)ds(y)

for R2 < jxj < R00. Applying (i�)�1r^ � yields

H(x; �; �) = H i
�;�(x) +r^

Z
@BR2

fb�;� + L0�nb�;�g(y)	�(x� y)ds(y)

+
1

i�
r^r ^

Z
@BR2

(�nb�;�)(y)	�(x� y)ds(y) :

Then, we obtain from the jump relations

b�;� = � ^H+(�; �; �)� L0(� ^ E+(�; �; �))
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= � ^H i
�;� � L0(� ^ Ei

�;�)

+
1

2

n
(M� + I)fb�;� + L0�nb�;�g+ 1

i�
N��nb�;�

�L0

h
(M� + I)�nb�;� � 1

i�
N�fb�;� + L0�nb�;�g

io

and we have proved the lemma.
2

Next, we prove that the operator An;�:T
0;

d (@BR2

)! T 0;

d (@BR2

),

An;� :=
1

2

n
M�(I + L0�n) + I +

1

i�
N��n � L0

h
M��n � 1

i�
N�(I + L0�n)

io
;

which occurs in (4.34), is compact.

Lemma 4.23 The operator An;�:T
0;

d (@BR2

)! T 0;

d (@BR2

) is compact.

Proof: For a given tangential �eld b 2 T 0;

d (@BR2

) let V , W be the solution
to (RP ) having the boundary data � ^W �L0(� ^V ) = b, i.e., � ^V = �nb.

By the Stratton-Chu formula for V together with (3.18) we know

V (x) = �r ^
Z

@BR2

�(y) ^ V (y)��(x; y)ds(y)

+
1

i�
r^r ^

Z
@BR2

�(y) ^W (y)��(x; y)ds(y)

��2
Z
BR

��(x; y)(1� n(y))V (y)dy

+r
Z
BR

��(x; y)
1

n(y)
rn(y) � V (y)dy ; x 2 BR2

:

The analogous reasoning as in (4.33) yields

0 = �r ^
Z

@BR2

�(y) ^ V (y)~g�(x� y)ds(y)

+
1

i�
r^r ^

Z
@BR2

�(y) ^W (y)~g�(x� y)ds(y)
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��2
Z
BR

~g�(x� y)(1� n(y))V (y)dy

+r
Z
BR

~g�(x� y)
1

n(y)
rn(y) � V (y)dy ; x 2 BR2

:

If we add these two equations, we get

V (x) = �r ^
Z

@BR2

(�nb)(y)	�(x� y)ds(y)

+
1

i�
r^r ^

Z
@BR2

fb + L0�nbg(y)	�(x� y)ds(y)

��2
Z
BR

	�(x� y)(1� n(y))V (y)dy

+r
Z
BR

	�(x� y)
1

n(y)
rn(y) � V (y)dy ; x 2 BR2

;

(4.35)

and after applying (i�)�1r^ � to both sides

W (x) = �r ^
Z

@BR2

fb+ L0�nbg(y)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

(�nb)(y)	�(x� y)ds(y)

+i�r^
Z
BR

	�(x� y)(1� n(y))V (y)dy ; x 2 BR2
:

The jump relations now imply

b = � ^W� � L0(� ^ V�)
= �1

2

n
(M� � I)fb+ L0�nbg+ 1

i�
N��nb

�L0

h
(M� � I)�nb� 1

i�
N�fb+ L0�nbg

io

+i�� ^ r ^
Z
BR

	�(� � y)(1� n(y))V (y)dy
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+L0

�
� ^

n
�2
Z
BR

	�(� � y)(1� n(y))V (y)dy

�r
Z
BR

	�(� � y)
1

n(y)
rn(y) � V (y)dy

o�
;

whence, reordering terms and inserting V jBR
= Pb, P being the solution

operator from Theorem 4.20,

An;�b = i�� ^r ^
Z
BR

	�(� � y)(1� n(y))(Pb)(y)dy

+L0

�
� ^

n
�2
Z
BR

	�(� � y)(1� n(y))(Pb)(y)dy

�r
Z
BR

	�(� � y)
1

n(y)
rn(y) � (Pb)(y)dy

o�
:

The compactness of An;� now follows from the compactness of P (Theo-
rem 4.20) together with the mapping properties of the volume potential. 2

The previous lemma admits to apply the Riesz theory in order to estab-
lish the existence of a unique solution to (4.34). Hence, our next aim is to
establish the injectivity of the operator I �An;� . The following lemma is the
electromagnetic analogue to Lemma 2.31 and is needed during the injectivity
proof for I � An;�.

Lemma 4.24 Assume R2 < R00 < R0.

(a) For all x, z 2 BR00 and p 2 C3 the relation

0 = rx ^
Z

@BR00

�(y) ^
�
ry ^ f	�(y � z)pg

�
	�(x� y)ds(y)

� 1

i�
rx ^ rx ^Z
@BR00

�(y) ^
�
1

i�
ry ^ ry ^ f	�(y � z)pg

�
	�(x� y)ds(y)

(4.36)

holds true.
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(b) If E, H are de�ned by

E(y) := ry ^
Z

@BR2

	�(y � z)a(z)ds(z) ; R2 < jyj � R00 ;

H := (i�)�1r ^ E with a 2 T 0;

d (@BR2

), then for all jxj < R00 the
relation

0 = rx ^
Z

@BR00

�(y) ^ E(y)	�(x� y)ds(y)

� 1

i�
rx ^rx ^

Z
@BR00

�(y) ^H(y)	�(x� y)ds(y)

holds true. This is also true, if E, H are de�ned by

E(y) := ry ^ ry ^
Z

@BR2

	�(y � z)a(z)ds(z) ; R2 < jyj � R00 ;

H := (i�)�1r ^ E with a 2 T 0;

d (@BR2

).

(c) If vector �elds E, H are de�ned as in part (b), then for R2 < jxj < R00

we have the formula

E(x) = r^
Z

@BR2

�(y) ^ E(y)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

�(y) ^H(y)	�(x� y)ds(y) :

Proof: For part (a) let q 2 C3 be an arbitrary vector. De�ning

E(y) := ry ^ f��(y; z)pg ; H(y) :=
1

i�
ry ^ E(y) ; y 2 IR3 n fzg;

and

E 0(y) := � 1

i�
ry ^ry ^f��(x; y)qg ; H 0(y) :=

1

i�
ry ^E 0(y) ; y 2 IR3 n fxg;
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we compute with the help of (3.9)

q �
 
rx ^

Z
@BR00

�(y) ^
�
ry ^ f��(y; z)pg

�
��(x; y)ds(y)

� 1

i�
rx ^rx ^Z
@BR00

�(y) ^
�
1

i�
ry ^ry ^ f��(y; z)pg

�
��(x; y)ds(y)

!

=
Z

@BR00

�
(� ^ E) �H 0 � (� ^ E 0) �H

�
ds

= 0 :

Replacing �� by ~g� in the above computation and using (3.3) yields

q �
 
rx ^

Z
@BR00

�(y) ^
�
ry ^ f~g�(y � z)pg

�
~g�(x� y)ds(y)

� 1

i�
rx ^ rx ^Z
@BR00

�(y) ^
�
1

i�
ry ^ ry ^ f~g�(y � z)pg

�
~g�(x� y)ds(y)

!

= 0 : (4.37)

From the representation in Theorem 3.2 applied to the �eld ry^f~g�(y�z)pg,
y 2 BR00 , we have

q �
 
rx ^

Z
@BR00

�(y) ^
�
ry ^ f~g�(y � z)pg

�
��(x; y)ds(y)

� 1

i�
rx ^ rx ^Z
@BR00

�(y) ^
�
1

i�
ry ^ ry ^ f~g�(y � z)pg

�
��(x; y)ds(y)

!

= �q �
h
rx ^ f~g�(x� z)pg

i
= �(rx~g�(x� z) ^ p) � q :
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Finally, Theorem 3.2 also implies

q �
 
rx ^

Z
@BR00

�(y) ^
�
ry ^ f��(y; z)pg

�
~g�(x� y)ds(y)

� 1

i�
rx ^ rx ^Z
@BR00

�(y) ^
�
1

i�
ry ^ ry ^ f��(y; z)pg

�
~g�(x� y)ds(y)

!

= �p �
 
rz ^

Z
@BR00

�(y) ^
�
ry ^ f~g�(x� y)qg

�
��(z; y)ds(y)

� 1

i�
rz ^ rz ^Z
@BR00

�(y) ^
�
1

i�
ry ^ ry ^ f~g�(x� y)qg

�
��(z; y)ds(y)

!

= p � (rz ^ f~g�(x� z)qg)
= (rx~g�(x� z) ^ p) � q :

Adding the last four equations we arrive at assertion (a) because q 2 C3 is
arbitrary.

For part (b) we insert the de�nition of E and H in the assertion, inter-
change the order of integration, and apply part (a). The second assertion of
part (b) is obtained similarly with the help of

0 = rx ^
Z

@BR00

�(y) ^
�
ry ^ ry ^ f	�(y � z)pg

�
	�(x� y)ds(y)

� 1

i�
rx ^ rx ^Z
@BR00

�(y) ^
�
(�i�)ry ^ f	�(y � z)pg

�
	�(x� y)ds(y) ;

which is the result of applying r^ � to (4.36).
Finally, for part (c) we use (3.3) and establish analogously to (4.37) for

R2 < jxj < R00 the relation

0 = �rx ^
Z

@(BR00nBR2
)

�(y) ^ E(y)~g�(x� y)ds(y)
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+
1

i�
rx ^ rx ^

Z
@(BR00nBR2

)

�(y) ^H(y)~g�(x� y)ds(y) :

If we add the representation from Theorem 3.2 applied to the �eld E in
fR2 < jxj < R00g, we have

E(x) = �rx ^
Z

@(BR00nBR2
)

�(y) ^ E(y)	�(x� y)ds(y)

+
1

i�
rx ^rx ^

Z
@(BR00nBR2

)

�(y) ^H(y)	�(x� y)ds(y) :

Here, � is directed into the exterior of fR2 < jxj < R00g. Since the integrals
over @BR00 cancel due to part (b), assertion (c) follows.

2

The next theorem states the injectivity of I � An;� and summarizes our
knowledge about the boundary data b�;� = � ^H(�; �; �)� L0(� ^ E(�; �; �))
of the special solutions E(�; �; �), H(�; �; �) from Theorem 4.8.

Theorem 4.25 Let n 2 C2;
(IR3) with supp (1�n) � BR, <(n) > 0, =(n) �
0, and R < R2 < R00 < R0 be given. Assume � > 0 and �, � 2 C3 satisfy
� � � = �2, � � � = 0,

j=(�)j � 2
R0

�
fmax
x2BR

kQ(x)k2 + �2k1� nk1g+ 1 ;

Q being de�ned in (3.13). Furthermore, �n denotes the map � ^H �L0(� ^
E) 7! � ^ E from Theorem 4.20, E(�; �; �) is the solution to (4.31), and
H(�; �; �) := (i�)�1r^ E(�; �; �).

Then, the boundary values b�;� := � ^H(�; �; �)�L0(�^E(�; �; �)) are the
unique solution to the equation (4.34), i.e.,

b�;�(x) =
ei��x

�
�(x)^ (� ^�)�

�
L0

�
ei��x�^�

��
(x)+

h
An;�b�;�

i
(x) ; x 2 @BR2

:

Moreover, An;� is a compact operator in T 0;

d (@BR2

).

Proof: Due to Theorem 4.8 equation (4.31) has a unique C2-smooth solu-
tion, whence E(�; �; �), H(�; �; �) are well de�ned. Then, Lemma 4.22 states
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that b�;� is a solution to (4.34). The compactness of An;� was proved in
Lemma 4.23.

It remains to show the injectivity of equation (4.34). To this end assume
b 2 T 0;


d (@BR2
) is a solution to b = An;�b. In BR2

we de�ne E, H to be
the solution to (RP ) having boundary data � ^H � L0(� ^ E) = b and for
R2 < jxj < R00 we set

E(x) := r^
Z

@BR2

(�nb)(y)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

fb + L0�nbg(y)	�(x� y)ds(y) ;

(4.38)

H(x) := (i�)�1r ^ E(x)
= r^

Z
@BR2

fb+ L0�nbg(y)	�(x� y)ds(y)

+
1

i�
r^r ^

Z
@BR2

(�nb)(y)	�(x� y)ds(y) :

Using the jump relations we arrive at

� ^H+ � L0(� ^ E+) = An;�b = b = � ^H� � L0(� ^ E�) : (4.39)

Now, we want to show that � ^ E+ = � ^ E�. To this end we employ
Lemma 4.24 (c) together with (4.39) and represent E for R2 < jxj � R00 by

E(x) = r^
Z

@BR2

(� ^ E+)(y)	�(x� y)ds(y)

� 1

i�
r^r ^

Z
@BR2

fb+ L0(� ^ E+)g(y)	�(x� y)ds(y) :

Computing the di�erence of (4.38) and the last equation we obtain for

a := �nb� � ^ E+ ;

V (x) := r ^
Z

@BR2

a(y)	�(x� y)ds(y)
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� 1

i�
r^r ^

Z
@BR2

(L0a)(y)	�(x� y)ds(y) ; x 2 BR00 n @BR2
;

W := (i�)�1r ^ V ;

that V (x) = 0 for R2 < jxj < R00.
From the jump relations we conclude �� ^ V� = � ^ (V+ � V�) = a,

�� ^W� = � ^ (W+ �W�) = L0a, and the vector Green's theorem (3.2)
yields Z

@BR2

jS0aj2ds =
Z

@BR2

a � [(� ^ S2
0a) ^ �]ds

=
Z

@BR2

(� ^ V�) �W�ds

= �i�
Z

BR2

(jW j2 � njV j2)dx :

From the real part of this equation we see S0a = 0, whence a = 0 and
�^E+ = �nb = �^E�. Together with (4.39) this also implies �^H+ = �^H�.

Then, as in (4.35), we can represent E with the help of the fundamental
solution 	�:

E(x) = �r ^
Z

@BR2

(� ^ E+)(y)	�(x� y)ds(y)

+
1

i�
r^r ^

Z
@BR2

(� ^H+)(y)	�(x� y)ds(y)

��2
Z
BR

	�(x� y)(1� n(y))E(y)dy

+r
Z
BR

	�(x� y)
1

n(y)
rn(y) �E(y)dy ; x 2 BR2

:

Furthermore, with formula (3.3) and Lemma 4.24 (b) we compute for all
p 2 C3

p �
"
�r ^

Z
@BR2

(� ^ E+)(y)	�(x� y)ds(y)
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+
1

i�
r ^r ^

Z
@BR2

(� ^H+)(y)	�(x� y)ds(y)

#

= p �
"
�r ^

Z
@BR00

(� ^ E)(y)	�(x� y)ds(y)

+
1

i�
r ^r ^

Z
@BR00

(� ^H)(y)	�(x� y)ds(y)

#

= 0 ; x 2 BR2
:

Hence, E is a solution to the homogeneous modi�ed Lippmann-Schwinger
equation (4.31) and must vanish in BR2

according to Theorem 4.8. This
�nally implies b = � ^H� � L0(� ^ E�) = 0.

2

By our considerations so far we know that, given the far �eld pattern
e1;n, it is possible to compute the operator �n and the boundary values
�^H(�; �; �)�L0(�^E(�; �; �)), �^E(�; �; �) of the special solutions E(�; �; �),
H(�; �; �) from Theorem 4.8. Hence, we know the Cauchy data � ^ E(�; �; �)
and � ^H(�; �; �) of these solutions provided j=(�)j is su�ciently large. The
�nal theorem of this section shows how to compute (n � 1)̂ (�) from this
information.

As in the Uniqueness Theorem 4.9 we choose for a �xed vector � 2 � the
unit vectors d1, d2 2 IR3 such that d1 � d2 = d1 �� = d2 �� = 0, and de�ne for
t � 2R

0

�
fmax
x2BR

kQ(x)k2 + �2k1� nk1g+ 1 + �

�t := �1

2
�+ i

s
t2 � �2 +

j�j2
4
d1 + td2 ;

~�t := �1

2
�� i

s
t2 � �2 +

j�j2
4
d1 � td2 ;

�t :=
1

j�j� +
j�j
2t
d2 ;

~�t :=
1

j�j��
j�j
2t
d2 :

178



Theorem 4.26 With the notation and assumptions of Theorem 4.25 de�ne
for a �xed � 2 � and for

t � 2
R0

�
fmax
x2BR

kQ(x)k2 + �2k1� nk1g+ 1 + �

the vectors �t, ~�t, �t, ~�t as above, and let bt 2 T 0;

d (@BR2

) be the unique
solution to

bt(x) =
ei�t�x

�
�(x)^(�t^�t)�

�
L0

�
ei�t�x �^�t

��
(x)+

h
An;�tbt

i
(x) ; x 2 @BR2

:

(4.40)

Finally, let ~Et, ~Ht denote the vector �elds ~Et(x) := ei
~�t�x~�t, x 2 IR3, ~Ht :=

(i�)�1r^ ~Et.
Then, � ^E(�; �t; �t) = �nbt, � ^H(�; �t; �t) = bt+L0�nbt are the Cauchy

data of the special solutions from Theorem 4.8 and

lim
t!1

Z
@BR2

f(� ^ ~Et) �H(�; �t; �t)� (� ^ E(�; �t; �t)) � ~Htgds

= i�(2R0)3=2(n� 1)̂ (�) :

Proof: Since j=(�t)j � 2R
0

�
fmax
x2BR

kQ(x)k2+�2k1�nk1g+1, by the preceding

theorem equation (4.40) has a unique solution which concides with the bound-
ary data �^H(�; �t; �t)�L0(�^E(�; �t; �t)) of the special solutions from The-
orem 4.8. Hence, we have �^E(�; �t; �t) = �nbt, �^H(�; �t; �t) = bt+L0�nbt.

Relation (3.3) immediately yields

Z
@BR2

f(� ^ ~Et) �H(�; �t; �t)� (� ^ E(�; �t; �t)) � ~Htgds

= i�
Z

BR2

(n� 1) ~Et �E(�; �t; �t)dx

= i�
Z

BR2

(n� 1)(x)e�i��x
�
1 +

+
n
�j�j

2

4t2
� f(x; �t; �t)j�j+ ~�t � V (x; �t; �t)

o�
dx ;
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where we have also used �t � ~�t = 1� (j�j2=4t2) and �t � ~�t = �j�j in the last
line.

According to Theorem 4.8 the L2-norm of the terms in curly brackets
in the last line converges to 0 as t ! 1. This completes the proof of the
reconstruction procedure.

2

Let us close this section with a summary of the reconstruction procedure.
We assume that the far �eld e1;n originating from the refractive index n 2
~C(BR) is exactly known.

� Compute the Fourier coe�cients

�l1k1l2k2 :=
Z
S2

Z
S2

e1;n(x̂; d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) :

� Compute for x, y 2 @BR2
the matrices

kn(x; y)

:= ��
4

4�

X
l1;k1;l2;k2

il1�l2h(1)l1
(�R2)h

(1)
l2
(�R2)Y

k1
l1
(
x

jxj)Y
k2
l2
(
y

jyj)�l1k1l2k2

and ~kn(x; y) which has as its mth column the vector

~kn(x; y)dm

:= � �2

4�R2

X
l1;k1;l2;k2

il1�l2h
(1)
l2
(�R2)Y

k2
l2
(
y

jyj)
n
�
�dh(1)l1

dt

�
(�R2)Y

k1
l1
(
x

jxj)x

+h
(1)
l1
(�R2)(GradY

k1
l1
)(
x

jxj)
o
^ (�l1k1l2k2dm) ;

dm being the mth cartesian unit vector (see (4.19) and (4.29)).

De�ne the operators Nn, Mn and �n:T
0;

d (@BR2

)! T 0;

d (@BR2

) by

(Nna)(x) := 2�(x) ^r ^ r ^
Z

@BR2

��(x; y)a(y)ds(y)

+2�(x) ^
Z

@BR2

kn(x; y)a(y)ds(y) ; x 2 @BR2
;
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(Mna)(x) := 2
Z

@BR2

�(x) ^ rx ^ f��(x; y)a(y)gds(y)

+2�(x) ^
Z

@BR2

~kn(x; y)a(y)ds(y) ; x 2 @BR2
;

�n := Nn[�i�(Mn � I)� L0Nn]
�1

(see Theorem 4.20 for �n; the smoothing operator L0, de�ned in (4.22),
is known).

� Fix � 2 � and choose � = �t, ~� = ~�t, � = �t, ~� = ~�t as before
Theorem 4.26; compute

An;� :=
1

2

n
M�fI + L0�ng+ I +

1

i�
N��n

�L0

h
M��n � 1

i�
N�fI + L0�ng

io
;

where the operators M� and N� are de�ned on page 167.

� Solve the equation

b�;�(x) =
ei��x

�
�(x) ^ (� ^ �)�

�
L0

�
ei��x� ^ �

��
(x) +

h
An;�b�;�

i
(x)

on @BR2
. (It has a unique solution due to Theorem 4.25)

� De�ne a�;� := �nb�;�, c�;� := b�;� + L0a�;� (a�;� and c�;� are the Cauchy
data � ^ E(�; �; �) and � ^H(�; �; �) of the special solutions).

� Insert a�;� and c�;� intoZ
@BR2

fei~��x (�(x) ^ ~�) � (c�;� ^ �)(x)� a�;�(x) � (��1~� ^ ~�)ei
~��xgds(x)

and calculate the limit as t ! 1. Divide the limit by i�(2R0)3=2 and
set the result to (n� 1)̂ (�).

� Repeat the last four items for all � 2 �.

�
n = 1 +

X
�2�

(n� 1)̂ (�)e� in BR2
.
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Chapter 5

The Direct Scattering Problem

in Elasticity

In linear elasticity theory the displacement vector

u(x; t) = (u1(x; t); u2(x; t); u3(x; t)) ; x 2 IR3 ; t 2 IR ;

obeys the law

�(x)
@2

@t2
uj(x; t) =

3X
k=1

@

@xk
Sjk(x; t) ; j = 1; 2; 3 ; x 2 IR3 ; t 2 IR ;

if there are no body forces acting in the medium occupying IR3. Here, (Sjk)
denotes the stress tensor and � is the mass density of the medium. In addi-
tion, one assumes a linear relation between the stress tensor and the linear
strain tensor (�lm) (Hooke's law)

Sjk =
3X

l;m=1

Cjklm�lm ; j; k = 1; 2; 3 ;

where the linear strain tensor is de�ned by

�lm =
1

2

� @ul
@xm

+
@um
@xl

�
; l; m = 1; 2; 3 :

We will assume throughout that the medium is isotropic. Then, we can
describe the medium by the two Lam�e coe�cients � and �, which determine
all the coe�cients Cjklm, and Hooke's law reads

Sjk = 2��jk + �(�11 + �22 + �33)�jk ; j; k = 1; 2; 3 ;
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�jk denoting the Kronecker delta. The reader can �nd a more detailed de-
scription in [9]. We simplify the discussion further by supposing that � and
� are constants satisfying � > 0 and 2�+ � > 0.

We want to consider a medium having an inhomogeneous mass density �
which satis�es �(x) = 1 in the exterior of a large ball. Moreover, we examine
time-harmonic waves, i.e., we assume u(x; t) = <fU(x)e�i!tg with a �xed
frequency ! > 0. Then, the vector �eld U : IR3 ! C3 must obey

��U + !2�U = 0 in IR3. (5.1)

The operator �� is de�ned by

[��U ]j =
3X

k=1

@

@xk

n
�
�@Uj

@xk
+
@Uk

@xj

�o
+

@

@xj
[�r � U ]

= ��Uj + (�+ �)
@

@xj
[r � U ]

= ��[r ^r ^ U ]j + (�+ 2�)
@

@xj
[r � U ] ; j = 1; 2; 3 :

Henceforth, we will refer to (5.1) as the elasticity equation.
Assuming �(x) = 1 in IR3 and applying r ^ � or r� to (5.1) we see that

the quantities r � U and r^ U satisfy the Helmholtz equations

�(r � U) + !2

2�+ �
(r � U) = 0 ;

�(r ^ U) + !2

�
(r^ U) = 0 :

Hence, we de�ne for a given frequency ! > 0 and given Lam�e constants �, �
the wave numbers

�s :=
!p
�
; �p :=

!p
2�+ �

:

In this chapter we are interested in the following direct elastic scattering
problem: given �, �, !, � and an incident wave U i, i.e., a solution to ��U i+
!2U i = 0 in IR3,

�nd the scattered �eld U s, such that the total �eld U := U i + U s is a
solution to (5.1) and such that U s satis�es a radiation condition.
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In the next section we start as usual with Green's theorems (called Betti
formulas for the elasticity equation in [23]) and representation formulas. In
view of the above Helmholtz equations we expect to see the fundamental
solutions ��s and ��p to appear in the fundamental solution for the elasticity
equation. However, despite our knowledge about �� from previous chapters
this section is longer than the former analogous ones because we prove some
theorems for the elastic case which we accepted as proven in the acoustic and
electromagnetic case.

The second section deals with uniqueness and existence for the direct
elastic scattering problem. The key words for uniqueness are again Green's
theorem, Rellich's lemma and unique continuation. For the elasticity equa-
tion the proof of the unique continuation principle uses the same idea as
in the acoustic case. Nevertheless, it is more involved because it not only
requires estimates of the L2-norms kG�fkL2 but also of kr(G�f)kL2. Ex-
istence of a solution is derived with the help of the representation theorem
which leads to a Fredholm integral equation of Lippmann-Schwinger type for
the displacement vector U . Although the elastic scattering problem itself is
not studied in the books [23, 24] the reader can �nd there a rather exhaus-
tive treatment of boundary value problems in linear elasticity by potential
methods and our approach is in the spirit of these methods.
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5.1 The Fundamental Solution

From now on we suppose that the given real constants !, � and � satisfy

! > 0 ; � > 0 ; 2�+ � > 0 :

Moreover, we de�ne �s := !=
p
�, �p := !=

p
2�+ �, and, for a smooth vector

�eld U , ��U := ��U + (� + �)r(r � U). If � 2 C3 is a vector and U is
a smooth vector �eld in a neighborhood of a point x 2 IR3, we denote by
[T (U; �)](x) the vector

[T (U; �)](x) := (�1 + �)
@U

@�
(x) + �2(r � U)(x)�(x) + �1�(x) ^ [r^ U(x)] :

Here, �1, �2 2 IR are arbitrary constants satisfying �1 + �2 = � + �. Our
notation does not indicate the dependence of T on �1 and �2 because large
parts of the subsequent analysis are independent of a special choice of these
parameters. Let us note that, for �1 = � and �2 = �, [T (U; �)](x) is the
traction vector on a surface containing x with normal vector � at x, whence
it has a physical meaning. When we need a special choice of �1 and �2 in
later sections, we indicate this choice. Moreover, we shall often suppress
the dependence of T on �, too. When we integrate on a surface having the
normal vector �, we simply write (TU)(x) instead of [T (U; �(x))](x).

If D � IR3 is a C2-smooth, bounded, open set and if U , V :D ! C3

denote C2(D)-smooth vector �elds, then Gauss' theorem implies

Z
@D

(TU) � V ds

=
Z
D

(�1 + �)
�
�U � V +

3X
j;k=1

@Uj

@xk

@Vj
@xk

�
dx

+
Z
D

�2[r(r � U) � V + (r � U)(r � V )]dx

+
Z
D

�1[(r^r ^ U) � V � (r^ U) � (r^ V )]dx

=
Z
D

n
(�1 + �)

3X
j;k=1

@Uj

@xk

@Vj
@xk

+ �2(r � U)(r � V )

��1(r ^ U) � (r^ V )
o
dx
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+
Z
D

(��U) � V dx ; (5.2)

which we call the �rst Betti formula.
It is possible to weaken the regularity assumptions on U and V . U ,

V 2 C1(D) \ C2(D) and ��U 2 C(D) are su�cient for (5.2).
Interchanging the roles of U and V in (5.2) and subtracting yields the

second Betti formulaZ
@D

f(TU) � V � (TV ) � Ugds

=
Z
D

f(��U + !2U) � V � (��V + !2V ) � Ugdx ; (5.3)

for any ! > 0.
In order to state representation theorems we need a fundamental solution

for the operator ��+!2I. This will be a matrix valued function �: IR3nf0g !
C3�3. Denoting by d1, d2, d3 the cartesian unit vectors in IR3 we de�ne for
x 2 IR3, x 6= 0, the jth column of �(x) by

�(x)dj :=
ei�sjxj

4��jxjdj +
1

!2
rr �

nei�sjxj � ei�pjxj

4�jxj dj
o
; j = 1; 2; 3 :

This matrix is called Kupradze's matrix in [24]. We denote its entry in the
jth row and kth column by �jk. From its de�nition we can infer that it
is an even function of x satisfying �(x) = �(x)T , i.e., it coincides with its
transpose. In addition, we see with the help of r ^ r ^ � = �� +r(r � :)
that

�(x)dj =
1

!2
r^r ^

nei�sjxj
4�jxjdj

o
� 1

!2
rr �

nei�pjxj
4�jxjdj

o
; j = 1; 2; 3 : (5.4)

We have to study some more properties of �, especially its behavior for
jxj ! 0. To this end we expand ei�jxj=(4�jxj) in a power series and obtain

ei�jxj

4�jxj =
cos(�jxj)
4�jxj + i

sin(�jxj)
4�jxj

=
1

4�jxj �
�2

8�
jxj+ �4jxj3f1(�2jxj2) + i�f2(�

2jxj2) (5.5)
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with two entire functions f1 and f2. Inserting these expressions in the
de�nition of �, collecting the terms having a 1=jxj-singularity, and using
(�2p � �2s)=!

2 = �(�+ �)=[�(2�+ �)] motivates the de�nition of

�
(0)
jk (x) :=

�jk
4��jxj �

�+ �

8��(2�+ �)

@2jxj
@xj@xk

; j; k = 1; 2; 3 ;

and of the matrix �(0)(x) := (�
(0)
jk (x)) for x 6= 0. For the ��-operator

Kelvin's matrix �(0) has the same role that 1=(4�j � j) has for the �-operator.

Lemma 5.1 � and �(0) satisfy:

(a) ��(�(x)dj) + !2((�(x)dj) = 0 , ��(�(0)(x)dj) = 0 in IR3 n f0g.

(b) For any constant c1 there exists a constant c2 such that for all 0 <
jxj � c1 and all j; k = 1; 2; 3, l1; l2; l3 = 1; 2; 3, the estimates

j�jk(x)� �
(0)
jk (x)j � c2 ;

��� @
@xl1

(�jk(x)� �
(0)
jk (x))

��� � c2
jxj ;

��� @2

@xl1@xl2
(�jk(x)� �

(0)
jk (x))

��� � c2
jxj2 ;

��� @3

@xl1@xl2@xl3
(�jk(x)� �

(0)
jk (x))

��� � c2
jxj3

hold true.

(c) For any constant c1 there exists a constant c2 such that for all 0 <
jxj � c1 and all j; k = 1; 2; 3, l1; l2 = 1; 2; 3, the estimates

j�jk(x)j � c2
jxj ;

��� @
@xl1

�jk(x)
��� � c2

jxj2 ;

��� @2

@xl1@xl2
�jk(x)

��� � c2
jxj3

hold true. The same estimates are valid, if � is replaced by �(0).
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Proof: For � part (a) follows by straightforward calculations using (5.4) and
�� = ��r^r ^ �+ (�+ 2�)r(r � :). For �(0) we compute

��(�(0)(x)dj)

= (��+ (�+ �)r(r � :))
h 1

4��jxjdj
i

� �+ �

8��(2�+ �)
(��r^r ^ �+ (�+ 2�)r(r � :))

h
r(r � (jxjdj))

i

=
�+ �

4��

h
r(r � (jxj�1dj))

i
� �+ �

8��

h
r(r � ([�jxj]dj))

i
= 0 :

For part (b) we insert the expansion (5.5) into the de�nition of �jk(x)
and we arrive at

�jk(x)��
(0)
jk (x) = jxjfjk(jxj2)+ ~fjk(jxj2)+ @2

@xj@xk

n
jxj3gjk(jxj2)+hjk(jxj2)

o

with entire functions fjk, ~fjk, gjk, hjk. Observing for any odd integer l the
relation @jxjl=@xm = lxmjxjl�2, assertion (b) follows by di�erentiating the
above expression.

The estimates for �(0) in assertion (c) are also a consequence of the above
observation. Together with part (b) the assertions are valid for �, too, and
we have proved the lemma.

2

Before we state and prove the representation theorem for the elasticity
equation we want to prove separately one technical ingredient for the repre-
sentation theorem.

Lemma 5.2 Let U be a continuous vector �eld in a neighborhood of x 2 IR3.
Then, we have

�Uj(x) = lim
�!0

Z
@B�(x)

U(y) � Ty(�(x� y)dj)ds(y)

= lim
�!0

Z
@B�(x)

U(y) � Ty(�(0)(x� y)dj)ds(y) :
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Proof: We will prove the identityZ
@B�(x)

[Ty(�
(0)(x� y)dj)]lds(y) = ��jl ; � > 0 ; (5.6)

[Ty(�
(0)(x� y)dj)]l being the lth component of the vector Ty(�

(0)(x� y)dj).

Then, using the inequalities for the �rst derivatives of �
(0)
jk from Lem-

ma 5.1, we can conclude

��� Z
@B�(x)

[U(y)� U(x)] � Ty(�(0)(x� y)dj)ds(y)
���

� max
y2@B�(x)

jU(y)� U(x)j
Z

@B�(x)

c��2ds(y)! 0 ; �! 0 ;

whence Z
@B�(x)

U(y) � Ty(�(0)(x� y)dj)ds(y)

=
Z

@B�(x)

U(x) � Ty(�(0)(x� y)dj)ds(y)

+
Z

@B�(x)

[U(y)� U(x)] � Ty(�(0)(x� y)dj)ds(y)

! �Uj(x) ; �! 0 :

Note that we use the same letter c for various constants during the proof.
Moreover, the inequalities

��� @
@yl

�jk(x� y)� @

@yl
�

(0)
jk (x� y)

��� � c

jx� yj
from Lemma 5.1 (b) imply

���Ty(f�(x� y)� �(0)(x� y)gdj)
��� � c��1 ; y 2 @B�(x) ;

whence

lim
�!0

Z
@B�(x)

U(y) � Ty(f�(x� y)� �(0)(x� y)gdj)ds(y) = 0
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and

lim
�!0

Z
@B�(x)

U(y) � Ty(�(x� y)dj)ds(y)

= �Uj(x) + lim
�!0

Z
@B�(x)

U(y) � Ty(f�(x� y)� �(0)(x� y)gdj)ds(y)

= �Uj(x) :

Let us now turn to the proof of (5.6). Without loss of generality we
assume x = 0, whence �(y) = ��1y for y 2 @B�(0). We start with the
calculation of [Ty((4��jyj)�1dj)]l. To this end we use �1 + �2 = �+ � and

[� ^ (r^ U)]l = �@Ul

@�
+

3X
k=1

�k
@Uk

@xl
(5.7)

to arrive ath
Ty
� 1

4��jyjdj
�i

l
= (�1 + �)

@

@�

� �jl
4��jyj

�
+ �2

@

@yj

� 1

4��jyj
�
�l

+�1
h
� @

@�

� �jl
4��jyj

�
+

3X
k=1

�k
@

@yl

� �jk
4��jyj

�i

= � �jl
4��2

� �+ �

4��4�
yjyl :

Next, we compute

h
Ty
�
r yj
jyj
�i

l
= (�1 + �)

3X
k=1

�k
@

@yk

��jl
jyj �

yjyl
jyj3

�
+ �2�

� yj
jyj
�
�l

= �(�1 + �)
�jl
�2

+ (�1 + �)
yjyl
�4

� 2�2
yjyl
�4

:

With the help of the last two equations we �nally arrive at

[Ty(�
(0)(y)dj)]l = � �jl

4��2
� �+ �

4��4�
yjyl

� �+ �

8��(2�+ �)

h
�(�1 + �)

�jl
�2

+ (�1 + �)
yjyl
�4

� 2�2
yjyl
�4

i

= � �jl
4��2

h
1� (�+ �)(�1 + �)

2�(2�+ �)

i

� yjyl
4��4

�+ �

�

�
1 +

�1 � 2�2 + �

2(2�+ �)

�
:
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From Gauss' theorem we know

Z
@B�(0)

yjyl
4��4

ds =
1

4��3

Z
@B�(0)

yj�lds =
1

4��3

Z
B�(0)

@yj
@yl

dy =
�jl
3
;

whence Z
@B�(0)

[Ty(�
(0)(y)dj)]lds

= ��jl
h
1� (�+ �)(�1 + �)

2�(2�+ �)
+
1

3

�+ �

�

�
1 +

�1 � 2�2 + �

2(2�+ �)

�i
= ��jl ;

and we have proved the lemma.
2

With the help of the preceding lemma we can now prove representation
theorems. To this end we also need the analogues of the double-layer poten-
tials and we de�ne for a vector � 2 C3 the matrix valued functions � and
�(0) by

�(x; y; �)Tdj := Ty(�(x� y)dj; �) ; x; y 2 IR3 ; x 6= y ;

�(0)(x; y; �)Tdj := Ty(�
(0)(x� y)dj; �) ; x; y 2 IR3 ; x 6= y ;

i.e., the jth row of �(x; y; �) consists of the pseudostress vector of the jth
column of � and similarly for �(0). Since in the sequel � is always the unit
normal vector at a point y lying on a surface, we omit the dependence on �
and write �(x; y) instead of �(x; y; �(y)) and similarly for �(0).

Theorem 5.3 Let D � IR3 be a bounded, open, C2-smooth set with exterior
unit normal vector �. For a vector �eld U 2 C1(D) \ C2(D) with ��U 2
C(D) we have the representation formulas

U(x) =
Z
@D

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds(y)

�
Z
D

�(x� y)(��U + !2U)(y)dy ; x 2 D : (5.8)
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and

U(x) =
Z
@D

n
�(0)(x� y)(TU)(y)� �(0)(x; y)U(y)

o
ds(y)

�
Z
D

�(0)(x� y)(��U)(y)dy ; x 2 D : (5.9)

Proof: For a given x 2 D we choose � > 0 su�ciently small to ensure
B�(x) � D and apply the second Betti formula in D� := D n B�(x) with
V := �(x � �)dj. With the normal vector � on @B�(x) being directed into
the exterior of B�(x) we obtainZ

@D

dj �
n
�(x; y)U(y)� �(x� y)(TU)(y)

o
ds(y)

�
Z

@B�(x)

dj �
n
�(x; y)U(y)� �(x� y)(TU)(y)

o
ds(y)

= �
Z
D�

dj � �(x� y)(��U + !2U)(y)dy :

Since the entries of �(x � y) are of magnitude ��1 on @B�(x), these terms
vanish as �! 0. According to the previous lemma the terms

�
Z

@B�(x)

dj � �(x; y)U(y)ds(y)

converge to Uj(x) as � ! 0. Hence, the limit � ! 0 reveals the jth row of
equation (5.8).

Equation (5.9) is proved analogously.
2

The above representation formulas imply that solutions to ��U+!2U = 0
or ��U = 0 are analytic.

Our next aim is the derivation of the corresponding representation for-
mula, if U is a solution to ��U + !2U = 0 in an exterior domain. To this
end we have to impose an additional requirement on U , namely a radia-
tion condition. The radiation condition and the fundamental solution must
match. There are two ways to obtain a radiation condition. One can study
the behavior of the fundamental solution for large jxj and then formulate a
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radiation condition accordingly. This is done in [23, 24]. A second possibility
is to require an integral relation which corresponds to (1.14). We choose the
latter approach now.

Let U 2 C2(IR3 n BR) be a solution to ��U + !2U = 0. U is a radiating
solution, if for all r > R and for all jxj < r the identity

Z
jyj=r

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds(y) = 0 (5.10)

holds true.
The radiation condition and the representation formula (5.8) applied in

the spherical shell fR < jxj < rg to a radiating solution U to ��U+!2U = 0
immediately yields the following theorem.

Theorem 5.4 Let U 2 C2(IR3nBR) be a radiating solution to ��U+!2U =
0 in IR3 nBR. Then we have

U(x) =
Z

@BR

n
�(x; y)U(y)� �(x� y)(TU)(y)

o
ds(y) ; jxj > R : (5.11)

We next check whether the columns of the fundamental solution �(y�z)
regarded as vector �elds of the variable y are radiating solutions.

Lemma 5.5 Fix z 2 IR3, k 2 f1; 2; 3g, and R > jzj. Then, U := �(� � z)dk
is a radiating solution to ��U + !2U = 0 in IR3 n fzg.

Proof: Suppose r > R, jxj < r, and x 6= z, and de�ne the vector

I(x) :=
Z

jyj=r

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds(y) :

Writing for a su�ciently small � > 0

I(x) =
� Z
jyj=r

n
:::
o
ds�

Z
@B�(x)

n
:::
o
ds�

Z
@B�(z)

n
:::
o
ds
�

+
Z

@B�(x)

n
:::
o
ds+

Z
@B�(z)

n
:::
o
ds ;
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we can conclude from the second Betti formula applied in Brn(B�(z)[B�(x))
that the components dj � [: : :], j = 1; 2; 3, of the terms in square brackets
vanish. Moreover, the representation (5.8) applied to U in B�(x) implies

dj �
Z

@B�(x)

n
:::
o
ds = Uj(x) = dj � �(x� z)dk ; j = 1; 2; 3 :

Finally, using that � is an even function and (5.8) again we compute

dj �
Z

@B�(z)

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds

= �
Z

@B�(z)

n
[�(z � y)dk] � [Ty(�(x� y)dj)]

�[Ty(�(z � y)dk)] � [�(x� y)dj]
o
ds

= �dj � �(z � x)dk :

Hence, we know I(x) = 0 for all jxj < r, x 6= z. Since the de�nition of
I reveals that I is continuous in jxj < r, we have proved I(x) = 0 for all
jxj < r, i.e., the columns of �(� � z) satisfy the radiation condition.

2

We conclude this section by studying the mapping properties of a volume
potential with kernel �(x � y). Lemma 5.1 (c) together with Theorem 1.9
yield that

(V')(x) :=
Z
BR

�(x� y)'(y)dy ; x 2 IR3 ;

is a uniformly 
-H�older continuous di�erentiable vector �eld on each compact
subset of IR3, if ' 2 C(BR) is a continuous vector �eld (0 < 
 < 1). Fur-
thermore, we have kV'k1;
;Br � ck'k1;BR

with a suitable constant c = c(r)
and the derivatives can be computed by

(@j(V'))(x) =
Z
BR

(@j�)(x� y)'(y)dy ; x 2 IR3 ; j = 1; 2; 3 :

(@j�) denotes the matrix obtained by taking the jth derivative of each entry
of �. In addition we have for ' 2 C1

0(BR) the identity @j(V') = V(@j'). Of
course, the same is true, if � is replaced by �(0). Furthermore, the behavior

195



of � � �(0) at x = 0 stated in Lemma 5.1 (b) allows to conclude that even
the �rst derivatives ofZ

BR

f�(x� y)� �(0)(x� y)g'(y)dy ; x 2 IR3 ;

can be treated as above. Therefore, in order to study the second derivatives
of the volume potential with kernel �(x�y) it su�ces to examine the volume
potential with kernel �(0)(x� y).

Theorem 5.6 Assume R > 0 and de�ne for a vector �eld ' 2 C0;
(BR),

 2 (0; 1), the volume potential

(V')(x) :=
Z
BR

�(x� y)'(y)dy ; x 2 BR :

Then V' 2 C2(BR) and

(��(V'))(x) + !2(V')(x) = �'(x) ; x 2 BR :

An analogous assertion holds true, if � is replaced by �(0).

Proof: Lemma 5.1 together with Theorem 1.10 (a) imply V' 2 C2(BR).
Moreover, for  2 C0;
(BR) the second derivatives of

u(x) =
Z
BR

�
(0)
l1l2

(x� y) (y)dy ; x 2 BR ;

are given by

@l@ju(x) =
Z
BR

�
@l@j�

(0)
l1l2

)(x� y)
�
( (y)�  (x))dy

�  (x)
Z

@BR

�l(y)(@j�
(0)
l1l2

)(x� y)ds(y) ; x 2 BR :

Now, for a vector �eld ' =  dk we compute with the help of the above
formulah
��(V')

i
(x) =

h
(�+ �1)�(V') + �2rr � (V') + �1r^r ^ (V')

i
(x)
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=
Z
BR

��
x

�
�(0)(x� y)dk

�
( (y)�  (x))dy

+  (x)
Z

@BR

n
(�+ �1)

@

@�(y)
[�(0)(x� y)dk]

+�2
3X

m=1

@

@ym
[�(0)(x� y)dk]m�(y)

+�1�(y) ^ ry ^ [�(0)(x� y)dk]
o
ds(y)

=  (x)
Z

@BR

Ty(�
(0)(x� y)dk)ds(y)

= � (x)dk ; x 2 BR :

The last equality follows by applying the representation formula (5.9) to an
arbitrary constant vector �eld U(x) = p 2 C3, x 2 IR3, which yields

p = �
Z

@BR

�(0)(x; y)pds(y) ; x 2 BR ;

and thus

dk � p = �
Z

@BR

n
[�(0)(x; y)]Tdk

o
� pds(y)

= �
Z

@BR

Ty(�
(0)(x� y)dk)ds(y) � p ; x 2 BR :

Since any vector �eld ' = ('1; '2; '3) can be decomposed into ' =P
'kdk, we have proved the assertions for the kernel �(0).
Due to the behavior of � � �(0) near x = 0 (Lemma 5.1 (b)) and due

to the relation ��
n
[�(x)� �(0)(x)]dk

o
= �!2�(x)dk, x 6= 0, our results are

also true for the volume potential with kernel �(x� y) by Theorem 1.9.
2
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5.2 Unique Solvability of the Direct Elastic

Scattering Problem

This section is devoted to the following scattering problem for elastic waves:
Given real constants !, � and � satisfying ! > 0, � > 0, �+2� > 0, and

given a real valued function � 2 C1;
(IR3) (0 < 
 < 1) with supp (1��) � BR,
and given an incident wave U i, i.e., the vector �eld U i 2 C2(IR3) is a solution
to ��U i + !2U i = 0 in IR3,

�nd the vector �eld U s 2 C2(IR3) such that the total �eld U := U i + U s

satis�es ��U + !2�U = 0 in IR3, and such that U s satis�es the radiation
condition (5.10).

We start by proving that a solution of the above scattering problem is also
a solution to a Lippmann-Schwinger type integral equation and vice versa.

Lemma 5.7 If U s 2 C2(IR3) is a solution to the above elastic scattering
problem, then U = U i + U s is a solution to

U(x) = U i(x)� !2
Z
BR

(1� �(y))�(x� y)U(y)dy ; x 2 IR3 : (5.12)

If ' 2 C(BR) is a solution to (5.12) in BR and if U s is de�ned by

U s(x) := �!2
Z
BR

(1� �(y))�(x� y)'(y)dy ; x 2 IR3 ;

then, U s is a solution to the elastic scattering problem with incident wave U i.

Proof: Let U s be a solution to the elastic scattering problem with incident
wave U i. Applying the representation formula (5.8) to U := U i + U s in the
ball Br, r > R, we get

U(x) =
Z

@Br

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds(y)

�
Z
Br

�(x� y)(��U + !2U)(y)dy

=
Z

@Br

n
�(x� y)(TU i)(y)� �(x; y)U i(y)

o
ds(y)
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+
Z

@Br

n
�(x� y)(TU s)(y)� �(x; y)U s(y)

o
ds(y)

�!2
Z
Br

(1� �(y))�(x� y)U(y)dy ; x 2 Br :

The radiation condition states that the integrals on @Br containing U
s vanish,

whereas the integrals on @Br containing U
i can be replaced by U i(x) due to

Theorem 5.3 applied to U i. This proves the �rst part of the lemma.
Suppose now that ' 2 C(BR) is a solution to

'(x) = U i(x)� !2
Z
BR

(1� �(y))�(x� y)'(y)dy ; x 2 BR :

Applying the smoothing properties of volume potentials we obtain ' 2
C1;
(BR), whence (1� �)' 2 C1

0(BR) and U
s 2 C2(IR3). Since the columns

of �(x � y), considered as a function of x, satisfy the radiation condition
by Lemma 5.5, U s satis�es the radiation condition. Finally, we compute for
U = U i + U s: U jBR

= ' by the integral equation and

��U + !2U

= �!2(�� + !2)
Z
BR

(1� �(y))�(� � y)U(y)dy

= !2(1� �)U

by Theorem 5.6. This completes the proof of the lemma.
2

Since the integral operator in (5.12) is compact, it now su�ces to prove
that the elastic scattering problem has at most one solution in order to
establish the existence of a unique solution. Although the main ideas for
the uniqueness proof are the same as for the previous scattering problems,
it becomes longer than the former ones due to some additional technical
di�culties.

The �rst part of the uniqueness proof is the following lemma. We show
that a radiating solution U 2 C2(IR3 n BR) to ��U + !2U = 0 must vanish
in the exterior of BR, if an additional condition on the sign of

=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�
; R1 > R ;
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is satis�ed. Note that the integrand is equal to U �TU with the special choice
�1 = ��, �2 = � + 2�. The idea is to apply Rellich's lemma to r � U and
r^ U which are both solutions to a Helmholtz equation in IR3 nBR. Then,
we can infer from the di�erential equation

��r^r ^ U + (�+ 2�)r(r � U) + !2U = 0 in IR3 nBR

that

U =
�

!2
r^r ^ U � �+ 2�

!2
r(r � U) ; (5.13)

whence U = 0.

Lemma 5.8 If U 2 C2(IR3 n BR) satis�es �
�U + !2U = 0 in IR3 n BR, the

radiation condition (5.10), and

=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�
� 0 ;

for a �xed R1 > R, then U(x) = 0 for all jxj > R.

Proof: We choose a function � 2 C1
0 (IR3 n BR) such that �(x) = 1 for

all jxj � (R + R1)=2 and de�ne U 0 := �U 2 C1(IR3). U 0 is a solution to
��U 0 + !2U 0 = !2F in IR3 with a vector �eld F 2 C1

0 (BR1
) depending on

� and U . U 0 coincides with U in the exterior of BR1
, whence it is also a

radiating solution and we know from the representation (5.8), the radiation
condition (5.10), and by (5.4)

U(x) = U 0(x) = �!2
Z

BR1

�(x� y)F (y)dy

= �r ^r ^
Z

BR1

��s(x; y)F (y)dy

+rr �
Z

BR1

��p(x; y)F (y)dy ; x 2 IR3 nBR1
:

Hence,

r � U(x) = ��2pr �
Z

BR1

��p(x; y)F (y)dy

= ��2p
Z

BR1

��p(x; y)r � F (y)dy ; x 2 IR3 nBR1
;
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and

r^ U(x) = ��2sr^
Z

BR1

��s(x; y)F (y)dy

= ��2s
Z

BR1

��s(x; y)r^ F (y)dy ; x 2 IR3 nBR1
;

are radiating solutions to a Helmholtz equation with wave number �p, �s,
respectively. This implies for large jxj and x̂ := jxj�1x the estimate

jr � U(x)j + jr ^ U(x)j � c

jxj ; (5.14)

and the radiation conditions

jx̂ � r(r � U)(x)� i�p(r � U)(x)j � c

jxj2 ; (5.15)

j(r^r ^ U)(x) ^ x̂� i�s(r^ U)(x)j � c

jxj2 : (5.16)

Furthermore, the behavior

rx��p(x; y) ^ x̂ = O
� 1

jxj2
�
;
�
rx ^ f��s(x; y)qg

�
� x̂ = O

� jqj
jxj2

�
;

for large jxj, uniformly in y 2 BR1
, reveals

jr(r � U)(x) ^ x̂j+ j(r^r ^ U(x)) � x̂j � c

jxj2 :

Hence, we obtain from (5.13)

(r ^r ^ U)(x) ^ x̂ =
!2

�
U(x) ^ x̂ +O

� 1

jxj2
�
; jxj ! 1 ; (5.17)

r(r � U)(x) � x̂ = � !2

2�+ �
U(x) � x̂ +O

� 1

jxj2
�
; jxj ! 1 : (5.18)

Employing the inequalities (5.15), (5.16) we compute

0 = lim
r!1

Z
@Br

�
�2

�s

���(r^r ^ U) ^ � � i�sr^ U
���2
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+
(2�+ �)2

�p

��� @
@�

(r � U)� i�p(r � U)
���2�ds

= lim
r!1

� Z
@Br

n�2
�s
j(r^r ^ U) ^ �j2 + �2�sjr ^ U j2

+
(2�+ �)2

�p
j @
@�

(r � U)j2 + (2�+ �)2�pjr � U j2
o
ds

+2<
�
i�2

Z
@Br

f(r^r ^ U) ^ �g � fr ^ Ugds

+i(2�+ �)2
Z

@Br

@

@�
(r � U)(r � U)ds

��
:

(5.19)

We will now show that lim inf
r!1

<(: : :) � 0. Then, we can conclude from (5.19)

that Z
@Br

jr ^ U j2ds+
Z

@Br

jr � U j2ds! 0 ; r!1 ;

whence, by Rellich's lemma, r^U = 0 and r�U = 0 in the exterior of BR1
.

Finally, formula (5.13) shows U = 0 in the exterior of BR1
and then U = 0

in the exterior of BR by the analyticity of U .
In order to compute <(: : :) we insert the right hand side of (5.17) for

(r^r^U)^� and the right hand side of (5.18) for (@=@�)(r�U) = x̂�r(r�U).
With the help of inequality (5.14) we thus arrive at

<
�
: : :
�

= !2<
�
i�
Z

@Br

(U ^ �) � (r^ U)ds� i(2�+ �)
Z

@Br

(� � U)(r � U)ds
�

+O
�1
r

�

= !2=
� Z
@(BrnBR1

)

U � f��� ^ r ^ U + (�+ 2�)(r � U)�gds
�

+!2=
� Z
@BR1

U � f��� ^ r ^ U + (�+ 2�)(r � U)�gds
�
+O

�1
r

�

= !2=
�
�

Z
BrnBR1

jr ^ U j2dx� �
Z

BrnBR1

U � (r^r ^ U)dx
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+(2�+ �)
Z

BrnBR1

jr � U j2dx+ (2�+ �)
Z

BrnBR1

U � r(r � U)dx
�

+!2=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�
+O

�1
r

�

= !2=
� Z
BrnBR1

U ���Udx
�

+!2=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�
+O

�1
r

�

= !2=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�
+O

�1
r

�

which completes the proof of the lemma.
2

The next step of the uniqueness proof is a unique continuation result
which allows to conclude U = 0 in BR. Unique continuation principles for
the elasticity equation are proved in [19, 48]. However, we stay with our
way to prove a weak form of a unique continuation result by employing the
solution operator G�. To this end we examine the L2-norms of the �rst
derivatives of G�' in the next lemma.

Lemma 5.9 Suppose � � 0, 0 < R < R0 and � 2 C3 satis�es � � � = �2,
j=(�)j � 1 + �. Then, there exists a constant c > 0 such that




r Z
BR

g�(� � y)'(y)dy




L2(BR)

� ck'kL2(BR)

for all ' 2 C0(BR). Here, g� denotes the function de�ned in (2.9).

Proof: Let Q be the unitary transformation with Q(<(�)) = (j<(�)j; 0; 0),
Q(=(�)) = (0; j=(�)j; 0) and de�ne � := (j<(�)j; ij=(�)j; 0). For a function
' 2 C1

0 (BR) we have  := ' �QT 2 C1
0 (BR), hence the Fourier coe�cients

 ̂(�), � 2 �, are rapidly decaying. Moreover, we know fom the de�nition of
g� thatZ

BR

���r Z
BR

g�(x� y)'(y)dy
���2dx =

Z
BR

���r Z
BR

g�(Q
Tx� y)'(y)dy

���2dx
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=
Z
BR

���r Z
BR

g�(x� y) (y)dy
���2dx :

Now, we conclude from Lemma 2.7 (a) that

Z
BR

g�(x� y) (y)dy =
X
�2�

 ̂(�)

� � � + 2� � �e�(x)

and

r
Z
BR

g�(x� y) (y)dy =
X
�2�

i�
 ̂(�)

� � � + 2� � �e�(x)

in BR where both series are absolutely and uniformly convergent due to the
rapid decay of the  ̂(�). Therefore, we arrive at




r Z
BR

g�(� � y)'(y)dy



2
L2(BR)

� X
�2�

� � �
j� � � + 2� � �j2 j ̂(�)j

2

� sup
�2�

� � �
j� � �+ 2� � �j2k'k

2
L2(BR)

:

Estimating for � 2 �, j�j � 5j=(�)j,

j� � � + 2� � �j � j=(� � � + 2� � �)j
= 2j�2jj=(�)j
� �

5R0
j�j ;

and for � 2 �, j�j � 5j=(�)j,

j� � � + 2� � �j � j<(� � � + 2� � �)j
� j�j(j�j � 4j=(�)j)
� j�j ;

we see that
sup
�2�

� � �
j� � � + 2� � �j2 � c2 (5.20)

for a suitable constant c. This proves the assertion for densities ' 2 C1
0 (BR).

The lemma also holds for a general density ' 2 C0(BR) because ' can be
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approximated by C1
0 (BR)-functions with respect to the k � k1-norm and

because the volume potential with kernel g�(x � y) is bounded from C(BR)
to C1;
(BR).

2

We are now in a position to establish the existence of a unique solution
to the elastic scattering problem.

Theorem 5.10 For any incident wave U i 2 C2(IR3), i.e., ��U i + !2U i = 0
in IR3, the integral equation (5.12) and the direct elastic scattering problem
both have the same unique solution.

Proof: The equivalence of the scattering problem and the integral equation
(5.12) stated in Lemma 5.7 implies that it su�ces to show that the scattering
problem has at most one solution in order to establish the existence of a
solution.

Let U be a solution to the scattering problem with incident wave U i = 0.
We pick R1 > R and compute

=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�

= =
� Z
BR1

U ���Udx +
Z

BR1

f�jr ^ U j2 + (�+ 2�)jr � U j2gdx
�

= 0

Hence, U vanishes in the exterior of BR by Lemma 5.8.
By Lemma 5.7 we can represent U as

U(x) = �!2
Z
BR

(1� �(y))�(x� y)U(y)dy ; x 2 IR3 :

Then, the mapping properties of the volume potential imply that U is C3-
smooth, i.e., U 2 C3

0 (BR). Next, we de�ne v := r � U 2 C2
0(BR) and we

obtain the following system of di�erential equations for U and v:

�U +
�+ �

�
rv + �2s�U = 0 ;

�v + �2p�v + �2pr� � U = 0 :
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The �rst equation is the elasticity equation ��U+(�+�)r(r�U)+!2�U =
0 and the second one arises when taking the divergence of the elasticity
equation.

Hence, there is a constant c1 such that

j�U(x)j � c1
�
jU(x)j2 + jrv(x)j2

�1=2
;

j�v(x)j � c1
�
jU(x)j2 + jv(x)j2

�1=2
; x 2 IR3 :

We choose R0 > R and t � 1 su�ciently large to ensure

c21R
02

�2t2

h
2c2c21 + 4

c21R
02

�2
+ 2

i
< 1 : (5.21)

Here, c denotes the constant from the previous lemma. Furthermore, we
de�ne � := (t; it; 0) 2 C3 and

V (x) = (V1(x); V2(x); V3(x); V4(x))

= e�i��x(U1(x); U2(x); U3(x); v(x)) ; x 2 C := (�R0; R0)3 :

If we are able to show V = 0, we can conclude U(x) = 0, x 2 C, whence U
vanishes identically in IR3.

Now, we estimate

3X
j=1

j(� + 2i� � r)Vj(x)j2

= je�i��x�U(x)j2

� c21
� 3X
j=1

jVj(x)j2 + je�i��xrv(x)j2
�

� c21
� 3X
j=1

jVj(x)j2 + 2jrV4(x)j2 + 4t2jV4(x)j2
�
; (5.22)

where we have used e�i��xrv(x) = rV4(x) + iV4(x)� in the last line, and
similarly

j(� + 2i� � r)V4(x)j2 = je�i��x�v(x)j2 � c21
� 4X
j=1

jVj(x)j2
�
: (5.23)
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Theorem 1.1 (b) applied to V4 2 C2
0(C) reveals V4 = �G�((� + 2i� � r)V4),

whence by (5.23) and Theorem 2.8 (d) (or Theorem 1.1 (a))

kV4k2L2 �
c21R

02

�2t2

4X
j=1

kVjk2L2 : (5.24)

Due to the preceding lemma we also know

krV4k2L2 � c2c21

4X
j=1

kVjk2L2 : (5.25)

The same reasoning applied to V1, V2, V3 2 C2
0 (C) leads to

3X
j=1

kVjk2L2

=
3X

j=1

kG�((� + 2i� � r)Vj)k2L2

� c21R
02

�2t2

� 3X
j=1

kVjk2L2 + 2krV4k2L2 + 4t2kV4k2L2
�

� c21R
02

�2t2

� 3X
j=1

kVjk2L2 + 2c2c21

4X
j=1

kVjk2L2 + 4t2
c21R

02

�2t2

4X
j=1

kVjk2L2
�

� c21R
02

�2t2

�h
2c2c21 + 4

c21R
02

�2
+ 1

i 4X
j=1

kVjk2L2
�
: (5.26)

Here, we have used (5.22) in the third line and we have inserted (5.24), (5.25)
in the fourth line. Adding (5.24) and (5.26) �nally yields the inequality

4X
j=1

kVjk2L2 �
c21R

02

�2t2

h
2c2c21 + 4

c21R
02

�2
+ 2

i 4X
j=1

kVjk2L2 ;

whence V = 0 because of (5.21).

This means that the scattering problem with U i = 0 only has the trivial
solution and the proof of the theorem is complete.

2
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We conclude this section with a discussion of the asymptotic behavior of
U s. Since the solution U s of the elastic scattering problem has the form

U s(x) = �!2
Z
BR

(1� �(y))�(x� y)U(y)dy

= �r ^r ^
Z
BR

��s(x; y)(1� �(y))U(y)dy

+rr �
Z
BR

��p(x; y)(1� �(y))U(y)dy ;

we obtain from the asymptotic behavior of �� that

U s(x) = ��
2
se

i�sjxj

4�jxj
Z
BR

e�i�sx̂�y(1� �(y))x̂ ^ (U(y) ^ x̂)dy

��
2
pe

i�pjxj

4�jxj
Z
BR

e�i�px̂�y(1� �(y))x̂ � U(y)dy x̂

+O
� 1

jxj2
�
; jxj ! 1 : (5.27)

Hence, we know

U s(x) =
ei�sjxj

jxj a(x̂) +
ei�pjxj

jxj u(x̂) x̂+O
� 1

jxj2
�
; jxj ! 1 ;

with a smooth function u and a smooth tangential vector �eld a on S2. We
call U s

1(x̂) := a(x̂) + u(x̂) x̂, x̂ 2 S2, the far �eld of U s.
The formulas

r^ U s(x) = ��2sr^
Z
BR

��s(x; y)(1� �(y))U(y)dy ;

r � U s(x) = ��2pr �
Z
BR

��p(x; y)(1� �(y))U(y)dy ;

show that r ^ U s and r � U s are both radiating solutions to a Helmholtz
equation in the exterior of BR. Furthermore, using the asymptotic behavior
of �� again, we can compute their far �eld patterns and compare them with
(5.27). This yields [r ^ U s]1(x̂) = i�sx̂ ^ a(x̂) and (r � U)1(x̂) = i�pu(x̂),
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x̂ 2 S2. We can now infer from the one-to-one correspondence between far
�eld patterns and radiating solutions to the Helmholtz equation, i.e., from
Rellich's lemma, that any solution U s to the elastic scattering problem, which
has a vanishing far �eld U s

1 = 0, must vanish identically in the exterior
of BR. This follows immediately from (r � U s)1(x̂) = i�px̂ � U s

1(x̂) = 0,
[r ^ U s]1(x̂) = i�sx̂ ^ U s

1(x̂) = 0, whence r ^ U s = 0 and r � U s = 0 in
IR3 nBR. Relation (5.13)

U s =
�

!2
r ^r ^ U s � �+ 2�

!2
r(r � U s)

now implies U s = 0. Let us summarize this one-to-one correspondence be-
tween radiating solutions which are the scattered part of a solution to the
elastic scattering problem and its far �eld patterns in the following theorem.

Theorem 5.11 Let U s be the scattered part of a solution U = U i+U s to the
elastic scattering problem. Then, the far �eld U s

1 of U s uniquely determines
U s in the exterior of BR.

In elastic scattering a plane incident wave is de�ned by

U i(x; d; p) = � 1

!2
rx(rx � [pei�pd�x]) + 1

!2
rx ^ rx ^ [pei�sd�x] ; x 2 IR3 ;

where d 2 S2 is its direction of propagation and p 2 C3 controls its polar-
ization. Straightforward calculations show that U i is a solution to ��U i +
!2U i = 0. Note, that for d � p = 0 the �rst term vanishes and we have a pure
shear wave, whereas for d ^ p = 0 the second term vanishes and we have a
pure pressure wave.

Denoting by U s(�; d; p), U(�; d; p) the scattered wave and the total wave
belonging to the elastic scattering problem with incident wave U i(�; d; p), we
de�ne the far �eld pattern belonging to the density � to be the matrix valued
function U1:S

2 � S2 ! C3�3, having as its jth column

U1(x̂; d)dj = [U s(�; d; dj)]1(x̂) ; j = 1; 2; 3 ; x̂; d 2 S2 :

Our considerations from above imply that

U1(x̂; d)dj = ��
2
s

4�

Z
BR

e�i�sx̂�y(1� �(y))x̂ ^ (U(y; d; dj) ^ x̂)dy

��
2
p

4�

Z
BR

e�i�px̂�y(1� �(y))x̂ � U(y; d; dj)dy x̂ : (5.28)
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Chapter 6

The Inverse Elastic Scattering

Problem

The last chapter of this thesis deals with the inverse elastic scattering prob-
lem. We assume the far �eld pattern corresponding to the density � to be
known and we want to obtain information about � from this data. Deviating
from our results of the acoustic and the electromagnetic case we shall only
give a uniqueness proof in the �rst section and a stability result in the second
section.

In [10] uniqueness is proved, if the far �eld pattern is known for an in-
terval of frequencies. We will improve this result by only using the far �eld
pattern at one �xed frequency ! as data. The main idea is the same as for
the previous scattering problems. The coincidence of two far �eld patterns
originating from two densities allows to prove an analogous orthogonality
relation to (2.1) or to (4.1). Then, we construct solutions to the elasticity
equation which depend in an appropriate way on parameters � and �, insert
these solutions into the orthogonality relation, and can conclude that the
Fourier coe�cients of the densities coincide, hence that the densities must
coincide. The reader who is interested in a global uniqueness theorem for the
(nonconstant) Lam�e coe�cients should consult the paper [36] by Nakamura
and Uhlmann.

As in the acoustic case the special solutions to the elasticity equation
can be used to obtain bounds for the Fourier coe�cients of the di�erence
of two densities j(~� � �)̂ (�)j, which in turn allow to estimate k~� � �k1 by
the di�erence of certain boundary integral operators or by the di�erence of
the far �eld patterns belonging to the densities � and ~�. To this end, in the
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acoustic case, we had to solve certain boundary value problems. We used
boundary integral operators whose properties are investigated in [6]. The
analogous integral operators for the elastic case are examined in [23, 24].
However, since our aim is to keep this thesis as self-contained as possible, we
have included an analysis of the elastic single-layer potential in an appendix
to the second section where we only take results from [6] for granted. Never-
theless, in this chapter we sometimes brie
y refer to the analogous acoustic
or electromagnetic results instead of repeating a technical proof.

A reconstruction proof, which follows the lines of the reconstruction in the
acoustic case, would require an analysis of the elastic double-layer potential,
too, and we consider this to be beyond the scope of this thesis. We have thus
omitted the reconstruction procedure of the density from the far �eld pattern
although we believe that a treatment as in the acoustic case is possible.
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6.1 Uniqueness for the Inverse Elastic Scat-

tering Problem

We assume two densities �, ~� 2 ~C(BR) are given, where we denote again by

~C(BR) := f� 2 C1;
(IR3) : supp (1� �) � BR ; � real valuedg

the set of densities we are interested in.
Moreover, we suppose that the frequency ! > 0 and the Lam�e constants

� > 0 and � with 2� + � > 0 are �xed and known. It is our aim to prove
that the coincidence of the far �eld patterns U1 and ~U1 belonging to � and
~�, respectively, imply the equality � = ~�.

Following the reasoning of the acoustic and electromagnetic case we start
with the relation Z

BR

(�� ~�)U � ~Udx = 0 (6.1)

for all solutions U , ~U to the elasticity equations

��U + !2�U = 0 ; �� ~U + !2~� ~U = 0 in BR1
,

respectively, where R1 > R. This relation will be established �rst in the case
U = U(�; d; p) and then via an approximation argument for a general U .

Lemma 6.1 Assume 0 < R < R1 and �, ~� 2 ~C(BR). Furthermore, assume
~U is a solution to �� ~U + !2~� ~U = 0 in BR1

. If the far �eld patterns U1 and
~U1 coincide on S2 � S2, i.e.,

h
U s(�; d; p)

i
1
(x̂) =

h
~U s(�; d; p)

i
1
(x̂) for all x̂, d 2 S2, p 2 C3,

then the relation Z
BR

(�(x)� ~�(x))U(x; d; p) � ~U(x)dx = 0

holds true for all d 2 S2, p 2 C3.

Proof: For �xed d 2 S2, p 2 C3 we have U(x; d; p) = ~U(x; d; p), jxj � R, by
the coincidence of the far �elds and the one-to-one relation between far �elds
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and scattering solutions to the elasticity equation, which we derived at the
end of the last chapter. Then the second Betti formula (5.3) implies

0 =
Z

@BR

n
[T (U(�; d; p)� ~U(�; d; p))] � ~U � (T ~U) � (U(�; d; p)� ~U(�; d; p))

o
ds

= !2
Z
BR

(h
(1� �(x))U(x; d; p)� (1� ~�(x)) ~U(x; d; p)

i
� ~U(x)

�(1� ~�(x)) ~U(x) � (U(x; d; p)� ~U(x; d; p))

)
dx

= !2
Z
BR

(~�(x)� �(x))U(x; d; p) � ~U(x)dx ;

and we have proved the lemma.
2

Next we turn to the approximation of a solution to the elasticity equation
in BR1

, R1 > R, by elements from span fU(�; d; p): d 2 S2 ; p 2 C3g with
respect to the L2(BR)-norm. Once more we �rst use the idea from [20,
Lemma 5.20] for the special case � = 1.

Lemma 6.2 Assume 0 < R < R2 and let U i 2 C2(BR2
) satisfy ��U i +

!2U i = 0 in BR2
. Then, there exists a sequence

U i
j 2 span fU i(�; d; p): d 2 S2 ; p 2 C3g ; j 2 IN ;

such that kU i � U i
jk2L2(BR)

! 0, j !1.

Proof: With

X := fU jBR
:U 2 C2(BR2

) and ��U i + !2U i = 0 in BR2
g � L2(BR)

and X being the completion of X in L2(BR) we assume that U0 2 X satis�es

Z
BR

U0(x) � U i(x; d; p)dx = 0

for all d 2 S2, p 2 C3. Then, we must show that U0 vanishes in L
2(BR).
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For jxj > R we de�ne

W (x) :=
Z
BR

�(x� y)U0(y)dy :

W 2 C2(IR3nBR) is a radiating solution to the elasticity equation in IR
3nBR.

Using the asymptotic behavior of the derivatives of ��(x; y) for large jxj (see
[7, formulas (6.25),(6.26)]) we compute for any vector p 2 C3 and any d 2 S2:

4�p �W1(�d) = ��2sp �
Z
BR

ei�sd�yd ^ (U0(y) ^ d)dy

��2pp � d
Z
BR

ei�pd�yd � U0(y)dy

= �!2
Z
BR

U0(y) � U i(y; d; p)dy

= 0 :

Hence, the far �eld W1 of W vanishes and W (x) = 0 for all jxj > R.
Now, let Ul 2 X, l 2 IN, be a sequence approximating U0,

kUl � U0k2L2(BR)
! 0 ; l!1 :

By the representation formula (5.8) we can write Ul, l 2 IN, as

Ul(x) =
Z

@BR3

n
�(x� y)(TUl)(y)� �(x; y)Ul(y)

o
ds(y) ; x 2 BR ;

where R3 satis�es R < R3 < R2.
Inserting this representation for Ul and interchanging the order of inte-

gration we concludeZ
BR

Ul(x) � U0(x)dx

=
Z

@BR3

(TUl)(y) �
Z
BR

�(x� y)TU0(x)dx ds(y)

�
Z

@BR3

Ul(y) �
Z
BR

�(x; y)TU0(x)dx ds(y)

=
Z

@BR3

f(TUl)(y) �W (y)� (TW )(y) � Ul(y)gds(y)

= 0 ; l 2 IN ;
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since W vanishes on @BR3
. As l!1 we arrive at U0 = 0 in L2(BR) and we

have proved the assertion.
2

The approximation result for a general � can now be derived with the
help of the Lippmann-Schwinger equation (5.12). For convenience we de�ne
the operator V�:C(BR)! C(BR) by

(V�U)(x) := !2
Z
BR

(1� �(y))�(x� y)U(y)dy ; x 2 BR :

Lemma 6.3 Assume 0 < R < R1 and let U 2 C2(BR1
) satisfy ��U +

!2�U = 0 in BR1
. Then, there exists a sequence

Uj 2 span fU(�; d; p): d 2 S2 ; p 2 C3g ; j 2 IN ;

such that kU � UjkL2(BR) ! 0, j !1.

Proof: We �x R < R2 < R1 and de�ne

U i(x) :=
Z

@BR2

n
�(x� y)(TU)(y)� �(x; y)U(y)

o
ds(y) ; x 2 BR2

:

The representation formula (5.8) together with the elasticity equation imply
the integral equation

U(x) = U i(x)� !2
Z
BR

(1� �(y))�(x� y)U(y)dy ; x 2 BR2
; (6.2)

for the �eld U , i.e., U = (I + V�)�1U i. U i is a solution to ��U i + !2U i = 0
in BR2

. This can be seen by applying �� + !2I to both sides of (6.2).
(At �rst sight it seems reasonable to obtain ��U i+!2U i = 0 directly from the
de�nition of U i. But this requires an examination of the elastic double-layer
potential, and it is not obvious (as in the acoustic case) why the double-layer
potential is a solution to ��U + !2U = 0.)

Now, according to Lemma 6.2, there exists a sequence U i
j , j 2 IN, from

span fU i(�; d; p): d 2 S2; p 2 C3g approximating U i in L2(BR), and we set Uj

to be the solution to the Lippmann-Schwinger equation (6.2) with incident
�eld U i

j . This implies Uj 2 span fU(�; d; p): d 2 S2; p 2 C3g and
Uj � U = (I + V�)�1(U i

j � U i) in BR.
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Since V�: (C(BR); k � kL2(BR))! (C(BR); k � kL2(BR)) is a compact operator by
Lemma 5.1 (c) and Theorem 1.9 (c), we �nally employ the Riesz theory to
conclude

kUj � UkL2(BR) � k(I + V�)�1kL2(BR)kU i
j � U ikL2(BR) ! 0 ; j !1 :

This ends the proof of the lemma.
2

We are now in a position to prove relation (6.1) by approximating an
arbitrary solution to ��U + !2�U = 0 in BR1

by elements from

span fU(�; d; p): d 2 S2 ; p 2 C3g

with respect to the L2(BR)-norm and by using Lemma 6.1. This is stated in
the next lemma.

Lemma 6.4 Assume 0 < R < R1 and that the far �eld patterns for the
densities �, ~� 2 ~C(BR) coincide on S

2�S2, i.e., U1 = ~U1. If U 2 C2(BR1
)

is a solution to ��U + !2�U = 0 and ~U 2 C2(BR1
) is a solution to �� ~U +

!2~� ~U = 0 in BR1
, then we have the relation

Z
BR

(�(x)� ~�(x))U(x) � ~U(x)dx = 0 :

Next, we want to exploit the above relation for the proof that all Fourier
coe�cients of ~� and � must coincide. To this end we have to construct
special solutions to the elasticity equation. For a given � 2 � the solutions
U(�; �s; �) and ~U(�; ~�s; ~�) should depend in such a way on the parameters �s,
�, ~�s, ~� 2 C3 that

U(x; �s; �)) � ~U(x; ~�s; ~�)! e�i��x

with respect to L1(BR) for an appropriately chosen sequence of the parame-
ters.

Of course we will imitate the procedure used in the acoustic and the
electromagnetic case, i.e., we use an incident �eld U i(x) = �ei�s�x, where
�s 2 C3 satis�es �s � �s = �2s, and where � � �s = 0. These conditions on �s
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and � imply that U i is a solution to ��U i + !2U i = 0. Moreover, in the
Lippmann-Schwinger equation (5.12) we replace the fundamental solutions
��s , ��p , which occur in the de�nition of �, by 	�s and 	�p .

The reader can �nd the de�nition of 	�(x) = (ei�jxj=4�jxj) + ~g�(x) on
page 97. ~g� is a solution to the Helmholtz equation in B2R0 . The properties of
the volume potential operatorG� having kernel g�(x�y) = e�i��(x�y)	�(x�y)
were investigated in Theorem 2.8.

We still have some freedom in the choice of the parameter �p 2 C3. It
turns out that �p with �p � �p = �2p, =(�p) = =(�s) and <(�p) being a positive
multiple of <(�s) is appropriate for our purpose.

Let us �rst introduce some notation. If �s 2 C3 is a vector satisfying �s �
�s = �2s and j=(�s)j > 0, we denote by Q 2 IR3�3 the unitary transformation
with det(Q) = 1, which maps �s to �s := (j<(�s)j; ij=(�s)j; 0), i.e., Q�s = �s.

Note, that �s � �s = �2s implies j<(�s)j =
q
j=(�s)j2 + �2s. Next, we de�ne

�p := (
q
j=(�s)j2 + �2p; ij=(�s)j; 0) and �p := QT �p. Hence, we have Q�p = �p.

Finally, we de�ne the modi�ed fundamental solution 
�s , which replaces
the fundamental solution �, by


�s(x)dj :=
1

�
	�s(x)dj +

1

!2
rr �

n
(	�s � 	�p)dj

o
(x) ; jxj > 0 ; j = 1; 2; 3;

where d1, d2, d3 denote the cartesian unit vectors, i.e., 
�s : IR
3 n f0g ! C3�3

is a matrix valued function. Inserting 	� = (ei�j�j=4�j � j) + ~g� into this
de�nition, we see that 
�s = � + ~
�s where the columns of the matrix ~
�s

are analytic solutions to ��U + !2U = 0 in B2R0 .
We start with the assertion that a solution to a modi�ed Lippmann-

Schwinger equation is also a solution to the elasticity equation.

Lemma 6.5 Suppose 0 < R < R00 < R0, and �, �s 2 C3 satisfy �s � �s = �2s,
j=(�s)j > 0, and � � �s = 0. Let �p 2 C3 be de�ned as above. Furthermore,
de�ne U i(x) := �ei�s�x, x 2 IR3, and assume U 2 C(BR00) is a solution to

U(x) = U i(x)� !2
Z
BR

(1� �(y))
�s(x� y)U(y)dy ; x 2 BR00 : (6.3)

Then, U 2 C2(BR00) is a solution to ��U + !2�U = 0 in BR00 .

The proof follows immediately by applying �� + !2I to equation (6.3)
and observing that ��U i + !2U i = 0,

(�� + !2)
Z
BR

(1� �(y))�(� � y)U(y)dy = �(1� �)U ;
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(�� + !2)
Z
BR

(1� �(y))~
�s(� � y)U(y)dy = 0 :

Equation (6.3) is a Fredholm integral equation of the second kind. Thus,
we have to inspect its nullspace. Furthermore, we need the asymptotic be-
havior of its solutions as j=(�s)j ! 1. The next remarks and the next lemma
prepare this inspection which will be carried out in Theorem 6.7.

We rewrite the jth column of 
�s as


�s(x)dj =
1

!2
r^r^

n
	�s(x)dj

o
� 1

!2
rr�

n
	�p(x)dj

o
; jxj > 0 ; j = 1; 2; 3 ;

take the divergence of (6.3), and use integration by parts to arrive at

(r � U)(x) = ��2p
Z
BR

	�p(x� y)f(1� �)r � U �r� � Ug(y)dy ; x 2 BR00 :

Moreover, using the de�nition of 
�s and integration by parts we �nd from
(6.3) for x 2 BR00

U(x) = U i(x)� !2

�

Z
BR

(1� �(y))	�s(x� y)U(y)dy

�r
Z
BR

(	�s � 	�p)(x� y)f(1� �)r � U �r� � Ug(y)dy :

Now, we de�ne W (x) := e�i�s�xU(x), w(x) := e�i�s�x(r � U)(x), x 2 BR00 .
Multiplying both sides of the last two equations by e�i�s�x we �nally obtain

w(x) = ��2p
Z
BR

g�p(x� y)ei(�p��s)�(x�y)f(1� �)w �r� �Wg(y)dy ; x 2 BR00 ;

(6.4)
and

W (x) = � � !2

�

Z
BR

(1� �(y))g�s(x� y)W (y)dy

�(r+ i�s)
Z
BR

(g�s(x� y)� ei(�p��s)�(x�y)g�p(x� y))

f(1� �)w �r� �Wg(y)dy ; x 2 BR00 :

(6.5)
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If we can show that W = 0 for � = 0, we have proved injectivity of
the integral equation (6.3). Moreover, if we know the behavior of W for
j=(�s)j ! 1, we also know the behavior of U . To this end we study more
closely the operator A�s :C(BR00)! C(BR00),

(A�s')(x) := (r+ i�s)
Z

BR00

(g�s(x� y)� ei(�p��s)�(x�y)g�p(x� y))'(y)dy

which occurs as the second integral in (6.5).

Lemma 6.6 There is a constant c depending on R00, R0, �s, and �p such
that the inequality

kA�s'kL2(BR00 )
� c

j=(�s)jk'kL2(BR00 )

holds true for all ' 2 C0(BR00) and for all j=(�s)j � 1 + �p + �s.

Proof: We denote by Q the unitary transformation with det(Q) = 1 mapping
�s to �s := (j<(�s)j; ij=(�s)j; 0). �p and �p are de�ned as on page 218. A simple
computation shows that

j�p � �sj =
���qj=(�s)j2 + �2p �

q
j=(�s)j2 + �2s

���
=

j�2p � �2sjq
j=(�s)j2 + �2p +

q
j=(�s)j2 + �2s

� c1
j=(�s)j : (6.6)

We split the integrand in the de�nition of A�s into

(g�s(x� y)� ei(�p��s)�(x�y)g�p(x� y))'(y)

= (g�s(x� y)� g�p(x� y))'(y)

+(1� ei(�p��s)�(x�y))g�p(x� y)'(y)

and proceed as in the proof of Lemma 5.9, i.e., we show the assertion for
' 2 C1

0 (BR00) and de�ne  := ' � QT 2 C1
0 (BR00). The de�nition of g�
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yields Z
BR00

��� Z
BR00

(g�s(x� y)� g�p(x� y))'(y)dy
���2dx

=
Z

BR00

��� Z
BR00

(g�s � g�p)(Q
Tx� y)'(y)dy

���2dx
=

Z
BR00

��� Z
BR00

(g�s � g�p)(x� y) (y)dy
���2dx

� X
�2�

���� 1

� � �+ 2�s � � �
1

� � �+ 2�p � �
����2j ̂(�)j2

=
X
�2�

���� 2(�p � �s) � �
(� � �+ 2�s � �)(� � � + 2�p � �)

����2j ̂(�)j2

� X
�2�

4j�p � �sj2
j� � � + 2�s � �j2

j�j2
j� � � + 2�p � �j2 j ̂(�)j

2

� c2
j=(�s)j4 k'k

2
L2(BR00 )

:

Here we have used the estimate (6.6), and (1.5), (5.20) from the proofs of
Theorem 1.1 and Lemma 5.9.

Moreover, a reasoning as above and as in the proof of Lemma 5.9 implies


r Z
BR00

(g�s � g�p)(� � y)'(y)dy



2
L2(BR00 )

� c3
j=(�s)j2k'k

2
L2(BR00 )

:

Together with the inequality j�sj � 2j=(�s)j for �s � �s = �2s with j=(�s)j � �s
we arrive at


(r+ i�s)

Z
BR00

(g�s � g�p)(� � y)'(y)dy



2
L2(BR00 )

� c4
j=(�s)j2k'k

2
L2(BR00 )

:

Hence, it remains to estimate

(r+ i�s)
Z

BR00

(1� ei(�p��s)�(x�y))g�p(x� y)'(y)dy :

Splitting

(1� ei(�p��s)�(x�y))g�p(x� y)'(y)

= g�p(x� y)(1� e�i(�p��s)�y)'(y)

+(1� ei(�p��s)�x)g�p(x� y)e�i(�p��s)�y'(y)
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we note that

sup
y2BR00

j1� e�i(�p��s)�yj � c5
j=(�s)j

and obtain with the help of Theorem 2.8 and Lemma 5.9 that




(r+ i�s)
Z

BR00

g�p(��y)(1� e�i(�p��s)�y)'(y)dy



2
L2(BR00 )

� c6
j=(�s)j2k'k

2
L2(BR00 )

:

Finally, the uniform boundedness of je�i(�p��s)�yj in BR00 and an analogous
reasoning as above leads to




(r+ i�s)
Z

BR00

(1� ei(�p��s)�x)g�p(x� y)e�i(�p��s)�y'(y)dy



2
L2(BR00 )

� c7
j=(�s)j2k'k

2
L2(BR00 )

:

Plugging all estimates together we have proved the assertion of the lemma.

2

We are now in a position to prove that the modi�ed Lippmann-Schwinger
equation (6.3) has a unique solution, provided j=(�s)j is su�ciently large, and
to discuss its behavior.

Theorem 6.7 There is a constant t0, depending only on R00, R0, !, �s, �p
and k1 � �k1;
, such that the modi�ed Lippmann-Schwinger equation (6.3)
has a unique solution if j=(�s)j � t0.

Furthermore, there is a positive constant c (depending only on R0, R00, !,
�s, �p and k1� �k1;
) such that the solution U to (6.3) satis�es

U(x) = U(x; �s; �) = ei�s�xf� + F (x; �s; �)g ; x 2 BR00 ;

where the L2-norms of the vector �elds F (�; �s; �) can be estimated by

kF (�; �s; �)kL2(BR00 )
� cj�j
j=(�s)j

for all j=(�s)j � t0.
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Proof: In order to prove that equation (6.3) has a trivial nullspace we set
W (x) := e�i�s�xU(x), w(x) := e�i�s�x(r � U)(x), x 2 BR00 , for a solution U of
the homogeneous equation. The reasoning before (6.4) and (6.5) now leads
to the equations

W (x) = �!
2

�

Z
BR

(1� �(y))g�s(x� y)W (y)dy�
h
A�s

�
(1� �)w �r� �W

�i
(x)

and

w(x) = ��2p
Z
BR

g�p(x� y)ei(�p��s)�(x�y)f(1� �)w �r� �Wg(y)dy ; x 2 BR00 :

This is a �xed point equation in C(BR00)�C(BR00). We equip this linear space
with the norm k(W;w)k2 := kWk2L2 + kwk2L2. By the last lemma and our
knowledge about G�s we know that the linear mapping in this space which is
de�ned by the right hand sides of the above equations has an operator norm
bounded by ~c=j=(�s)j, i.e., for a su�ciently large t0 > 0 the operator norm is
bounded by 1=2 provided j=(�s)j � t0. Hence, Banach's �xed point theorem
states W = 0, w = 0, and therefore U = 0. The Riesz theory now implies
that equation (6.3) has a unique solution for all right hand sides U i.

An analogous reasoning to the scalar case immediately gives the asymp-
totic behavior

U(x; �s; �) = ei�s�xf� + F (x; �s; �)g ; x 2 BR00 ;

with kF (�; �s; �)kL2(BR00 )
� cj�j=j=(�s)j.

2

The uniqueness proof for the inverse elastic scattering problem is now
an easy consequence of these special solutions and the orthogonality relation
stated in Lemma 6.4.

Theorem 6.8 Let the Lam�e constants � and � of the elasticity equation be
given and let ! > 0 be �xed. If the far �eld patterns corresponding to the
densities �, ~� 2 ~C(BR) coincide, i.e., U1(x̂; d) = ~U1(x̂; d) for all (x̂; d) 2
S2 � S2, then � = ~�.
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Proof: We �x R1 with R < R1 < R0. Then, for a vector � 2 � we choose
the unit vectors d1, d2 2 IR3 such that �, d1, and d2 are orthogonal, and we
de�ne for su�ciently large t > 0 the vectors

�s(t) := �1

2
� + i

s
t2 � �2s +

j�j2
4
d1 + td2 ;

~�s(t) := �1

2
�� i

s
t2 � �2s +

j�j2
4
d1 � td2 ;

�(t) :=
1

j�j� +
j�j
2t
d2 ;

~�(t) :=
1

j�j��
j�j
2t
d2 :

This is possible because j�j 6= 0 for � 2 �. As in the proof of Theorem 4.9
we have �s(t) � �s(t) = ~�s(t) � ~�s(t) = �2s,

~�s(t) � ~�(t) = �s(t) � �(t) = 0 and
j�(t)j = j~�(t)j � c� for all su�ciently large t. Therefore, by the preceding
theorem there exist special solutions U(�; �s(t); �(t)) and ~U(�; ~�s(t); ~�(t)) to
the elasticity equations with densities �, ~�, resp., such that

U(x; �s(t); �(t)) = ei�s(t)�xf�(t) + F (x; �s(t); �(t))g ; x 2 BR1
;

~U(x; ~�s(t); ~�(t)) = ei
~�s(t)�xf~�(t) + ~F (x; ~�s(t); ~�(t))g ; x 2 BR1

;

and

kF (�; �s(t); �(t))kL2(BR) + k ~F (�; ~�s(t); ~�(t))kL2(BR) �
c0�

j=(�s(t))j :

Using ei�s(t)�xei
~�s(t)�x = e�i��x and �(t) � ~�(t) = 1� (j�j2=4t2), we arrive at

U(x; �s(t); �(t)) � ~U(x; ~�s(t); ~�(t)) = e�i��x(1 + h(x; t))

with Z
BR

jh(x; t)jdx! 0 ; t!1 :

We insert these special solutions into the orthogonality relation from Lem-
ma 6.4 and obtain (�� ~�)̂ (�) = 0 as t!1. The coincidence of the Fourier
coe�cients yields the desired coincidence of the densities and we have proved
the theorem. 2
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As usual we remark that it is possible to replace the plane incident waves
by any set of solutions to ��U+!2U = 0 which is complete in the space of all
solutions to this equation with respect to L2(BR). Second, instead of mea-
suring far �eld data one might also use near �eld data like the displacement
vector on a large sphere because these data uniquely determine a radiating
solution to ��U + !2U = 0.
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6.2 Stability of the Inverse Elastic Problem

In this section we want to establish a result which essentially states that on a
su�ciently small set the densities depend continuously on their corresponding
far �eld patterns. We assume throughout this section that the real valued
densities � satisfy � 2 ~C(BR), i.e., � 2 C1;
(IR3), 0 < 
 < 1, and supp (1 �
�) � BR.

For �xed x̂, d 2 S2 the mapping

p 2 C3 7!
h
U s(�; d; p)

i
1
(x̂) 2 C3

is linear. Therefore, as at the end of chapter 5 we regard the far �eld pattern
as a matrix valued mapping

U1:S
2 � S2 ! C3�3 :

U1(x̂; d) has the vector U1(x̂; d; dk) as its kth column where d1, d2, d3 denote
the usual cartesian unit vectors.

As usual we employ a very strong norm k � kF on the far �eld patterns.
Due to the two wave numbers �p and �s corresponding to pure pressure waves
and pure shear waves we split the far �eld U1 into four parts, namely the
normal and the tangential components of the far �eld corresponding to a
pure incident plane pressure wave and to a pure incident plane shear wave.
We de�ne a plane incident pressure wave by

U i;press(x; d; p) := � 1

!2
r(r � [pei�pd�x]) ; x 2 IR3 ;

and a plane incident shear wave by

U i;shear(x; d; p) :=
1

!2
r^r ^ [pei�sd�x] ; x 2 IR3 :

The waves are propagating into the direction d 2 S2, whereas p 2 C3 controls
their amplitude and polarization. By Upress(�; d; p) we denote the total �eld
corresponding to the incident wave U i;press(�; d; p) and by Upress

1 (x̂; d; p), x̂ 2
S2, we mean the far �eld of the scattered wave corresponding to the incident
wave U i;press(�; d; p). Due to the linearity of the map p 7! Upress

1 (x̂; d; p) there
is a matrix Upress

1 (x̂; d) 2 C3�3 such that Upress
1 (x̂; d; p) = Upress

1 (x̂; d)p for
all p 2 C3. We use the analogous notation U shear(�; d; p), U shear

1 (x̂; d; p) and
U shear
1 (x̂; d), if the incident wave U i;press(�; d; p) is replaced by U i;shear(�; d; p).
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Furthermore, let A(x̂) 2 IR3�3 denote the matrix having the entry x̂jx̂k
in the jth row and kth column where x̂ 2 S2 is a unit vector . Then the
relation

U i;press(x; d; p) = U i(x; d; (p � d)d) = U i(x; d; A(d)p)

yields Upress
1 (x̂; d) = U1(x̂; d)A(d). The normal component of the far �eld

Upress
1 (�; d; p) on S2 is given by A(x̂)Upress

1 (x̂; d; p), x̂ 2 S2, whereas the tan-
gential components are given by (I � A(x̂))Upress

1 (x̂; d; p), x̂ 2 S2, where
I 2 C3�3 is the identity matrix. Similarly, we can compute U i;shear(x; d; p) =
U i(x; d; (I � A(d))p), whence U shear

1 (x̂; d) = U1(x̂; d)(I � A(d)), and then
split U shear

1 (x̂; d) into its normal and tangential part.
Summarizing we can write

U1(x̂; d) = (I � A(x̂))U1(x̂; d)(I � A(d)) + A(x̂)U1(x̂; d)(I � A(d))

+(I � A(x̂))U1(x̂; d)A(d) + A(x̂)U1(x̂; d)A(d) ; x̂; d 2 S2 :

(6.7)

Especially, the knowledge of U1 allows to compute the normal and tangential
components of the far �elds from pure incident plane shear and pressure
waves.

We need this splitting because the Fourier coe�cients of the above terms
show a di�erent behavior. We de�ne these Fourier coe�cients by

�
(1)
l1k1l2k2

:=
Z
S2

Z
S2

(I � A(x̂))U1(x̂; d)(I � A(d))Y k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ;

�
(2)
l1k1l2k2

:=
Z
S2

Z
S2

A(x̂)U1(x̂; d)(I � A(d))Y k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ;

�
(3)
l1k1l2k2

:=
Z
S2

Z
S2

(I � A(x̂))U1(x̂; d)A(d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ;

�
(4)
l1k1l2k2

:=
Z
S2

Z
S2

A(x̂)U1(x̂; d)A(d)Y
k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d) ;

l1; l2 = 0; 1; : : : ; �l1 � k1 � l1 ; �l2 � k2 � l2 : (6.8)

Note, that the Fourier coe�cients �
(m)
l1k1l2k2

2 C3�3 are matrices.
The norm k � kF on the far �elds will be de�ned by prescribing a rapid

decay for each of the Fourier coe�cients �
(m)
l1k1l2k2

, m = 1; : : : ; 4.
The main estimate of this section reads

k�� ~�k1 � c
���ln(kU1;� � U1;~�kF)

����1=11
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with a constant c for all densities �, ~� lying in some small subset O of ~C(BR).
Hence, the mapping U1;� 7! � is continuous and we have local uniqueness.
Of course, O is not only small with respect to the maximum norm but with
respect to a C2-norm, i.e., stability is only obtained with the help of an a
priori information.

Imitating the reasoning in the acoustic case we begin with the decay of
the Fourier coe�cients and prove continuity of the mapping � 7! U1;�.

Then, we show how to reconstruct the kernel of the Green's operator for
the elasticity equation on a large sphere with the help of a series expansion
involving the Fourier coe�cients which originate from U1 . Since the k � kF -
norm is a very strong norm, which is not appropriate for measured far �eld
patterns, this mapping is severely ill-posed.

Finally, employing the special solutions from the last section, we inves-
tigate the dependence of � on the Green's operator and arrive at our main
estimate.

We remind the reader that

kAkF :=
� 3X
j;k=1

jajkj2
�1=2

denotes the Frobenius norm for a matrix A = (ajk) 2 C3�3.
Furthermore, for convenience we de�ne the operator V�:C(BR)! C(BR)

by

(V�U)(x) := !2
Z
BR

(1� �(y))�(x� y)U(y)dy ; x 2 BR :

Lemma 6.9 Assume the far �eld pattern U1:S
2 � S2 ! C3�3 originates

from the density � 2 ~C(BR) satisfying supp (1 � �) � BR1
for some 0 <

R1 < R. Let �
(m)
l1k1l2k2

, m = 1; : : : ; 4, denote the Fourier coe�cients of U1 as
de�ned in (6.8). Furthermore, de�ne R3 := (R + R1)=2. Then, there is a
constant c depending on U1 such that

k�(1)l1k1l2k2
k2F � c

� e�sR3

2l1 + 1

�2l1+3� e�sR3

2l2 + 1

�2l2+3
;

k�(2)l1k1l2k2
k2F � c

� e�pR3

2l1 + 1

�2l1+3� e�sR3

2l2 + 1

�2l2+3
;

k�(3)l1k1l2k2
k2F � c

� e�sR3

2l1 + 1

�2l1+3� e�pR3

2l2 + 1

�2l2+3
;
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k�(4)l1k1l2k2
k2F � c

� e�pR3

2l1 + 1

�2l1+3� e�pR3

2l2 + 1

�2l2+3
:

Furthermore, we have

X
l1;k1;l2;k2

�2l1 + 1

e�sR

�2l1+3�2l2 + 1

e�sR

�2l2+3k�(1)l1k1l2k2
k2F <1 ;

and analogous inequalities are true for the other Fourier coe�cients �
(m)
l1k1l2k2

,
m = 2; 3; 4.

Proof: Let us examine the behavior of �
(2)
l1k1l2k2

. The other Fourier coe�cients

�
(j)
l1k1l2k2

can be estimated analogously.
From the far �eld representation (5.28) and our considerations that lead

to the splitting of the far �eld we obtain

A(x̂)U1(x̂; d)(I �A(d))dj = ��
2
p

4�

Z
BR

e�i�px̂�y(1� �(y))x̂ �U shear(y; d; dj)dy x̂ ;

for the jth column of A(x̂)U1(x̂; d)(I � A(d)) = A(x̂)U shear
1 (x̂; d). Inter-

changing the order of integration we obtain

�
(2)
l1k1l2k2

dj =
Z
S2

Z
S2

A(x̂)U shear
1 (x̂; d; dj)Y

k1
l1
(x̂)Y k2

l2
(d)ds(x̂)ds(d)

= ��
2
p

4�

Z
BR

(
(1� �(y))

Z
S2

e�i�px̂�yY k1
l1
(x̂)A(x̂)ds(x̂)

Z
S2

U shear(y; d; dj)Y
k2
l2
(d)ds(d)

)
dy :

Now, the Cauchy-Schwarz inequality and an analogous reasoning to the proof
of Lemma 4.10 complete the proof of the lemma.

2

By this lemma we know that the norm kU1;�kF de�ned by

kU1;�k2F :=
X

l1;k1;l2;k2

�2l1 + 1

e�sR

�2l1+3�2l2 + 1

e�sR

�2l2+3k�(1)l1k1l2k2
k2F
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+
X

l1;k1;l2;k2

�2l1 + 1

e�pR

�2l1+3�2l2 + 1

e�sR

�2l2+3k�(2)l1k1l2k2
k2F

+
X

l1;k1;l2;k2

�2l1 + 1

e�sR

�2l1+3�2l2 + 1

e�pR

�2l2+3k�(3)l1k1l2k2
k2F

+
X

l1;k1;l2;k2

�2l1 + 1

e�pR

�2l1+3�2l2 + 1

e�pR

�2l2+3k�(4)l1k1l2k2
k2F

is well de�ned, if � 2 ~C(BR) because supp (1� �) � BR implies that there is
a radius R1 < R with supp (1� �) � BR1

.
Proceeding similarly to the proof of Lemma 2.18 we can prove the con-

tinuous dependence of U1;� on �.

Lemma 6.10 Let �0 2 ~C(BR1
), R1 < R, be given. Then, there are positive

constants c and � such that kU1;��U1;�0kF � ck���0k1 for all � 2 ~C(BR1
)

satisfying k�� �0k1 < �.

Now, we want to study the Green's operator for the elasticity equation,
i.e., an integral operator having a matrix valued kernel �� such that for
any smooth, compactly supported vector �eld F the vector �eld U(x) =R
��(x; y)F (y)dy, x 2 IR3, satis�es ��U + !2�U = �F and the radiation

condition. For � = 1 we know this operator because then we have �1(x; y) =
�(x � y). Since we are merely interested in the operator S�:C

0;
(@BR2
) !

C0;
(@BR2
)

(S�')(x) := 2
Z

@BR2

��(x; y)'(y)ds(y) ; x 2 @BR2
;

we deduce its properties from S1 with the help of the Lippmann-Schwinger
equation without ever studying the kernel ��. The properties of S1 corre-
spond to the single-layer in the acoustic case. The reader can �nd the nec-
essary regularity results in the appendix of this chapter (see Theorem 6.23
and Lemma 6.24):
S1:C

0;
(@BR2
)! C1;
(@BR2

) is bounded. The potential

U(x) := 2
Z

@BR2

�(x� y)'(y)ds(y) ; x 2 IR3 n @BR2
; (6.9)
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with density ' 2 C0;
(@BR2
) satis�es

U jBR2
2 C1;
(BR2

), U jIR3nBR2
2 C1;
(IR3 nBR2

),

U+ = U� = S1' and TU� � TU+ = 2' on @BR2
(here, T can be de�ned

with any choice of �1, �2 2 IR, �1 + �2 = �+ �).
As usual the subscripts, + and �, indicate whether we approach the

boundary @BR2
from the exterior and interior, respectively. Furthermore,

the �eld U satis�es ��U+!2U = 0 in IR3n@BR2
and the radiation condition.

Now we de�ne the operator S� with the help of the following boundary
value problem (BV P ):

Given R2 > R, ! > 0, � > 0, � 2 IR (2� + � > 0), � 2 ~C(BR) and ' 2
C0;
(@BR2

), �nd U 2 C2(IR3 n @BR2
) satisfying the following requirements:

U� = U jBR2
2 C1(BR2

), U+ = U jIR3nBR2
2 C1(IR3 nBR2

),

��U + !2�U = 0 in IR3 n @BR2
,

U satis�es the radiation condition,

U� � U+ = 0 and

��� ^ r ^ [U� � U+] + (�+ 2�)(r � [U� � U+])� = 2' on @BR2
.

Note that the last requirement means TU� � TU+ = 2', where the traction
operator T is de�ned with �1 = ��, �2 = 2�+ �.

Lemma 6.11 For all ' 2 C0;
(@BR2
) the boundary value problem (BV P )

has a unique solution U . U is given by

U(x) := 2
Z

@BR2

�(x� y)'(y)ds(y)

�!2
Z
BR

(1� �(y))�(x� y)W (y)dy ; x 2 IR3 ;

(6.10)

where W 2 C(BR) denotes the unique solution to the Lippmann-Schwinger
equation

(W + V�W )(x) = 2
Z

@BR2

�(x� y)'(y)ds(y) ; x 2 BR :
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Proof: Assuming U is a solution to (BV P ) with ' = 0 we choose R1 > R2

and compute with Betti's �rst formula (5.2) (�1 = ��, �2 = �+ 2�)

=
� Z
@BR1

U � f��� ^r ^ U + (�+ 2�)(r � U)�gds
�

= =
� Z
@BR2

U+ � f��� ^ r ^ U+ + (�+ 2�)(r � U+)�gds
�

= =
� Z
@BR2

U� � f��� ^ r ^ U� + (�+ 2�)(r � U�)�gds
�

= =
� Z
BR2

U� ���U�dx
�

= 0 :

Then, we can conclude from Lemma 5.8 that U vanishes in IR3 nBR2
, whence

U� = 0 and���^r^U�+(�+2�)(r�U�)� = 0 on @BR2
. The representation

formula from Theorem 5.3 (�1 = ��, �2 = �+2�) applied to U� implies that
U� is a solution of the homogeneous Lippmann-Schwinger equation (5.12).
Thus U� must vanish, too, and we have proved uniqueness for (BV P ).

In order to show that U de�ned as in (6.10) is a solution to (BV P ) we
follow the proof of the second part of Lemma 5.7 to obtain that U satis�es
the elasticity equation, due to the Lippmann-Schwinger equation for W , and
the radiation condition. For the boundary conditions we observe that the
volume potential in the de�nition of U is a C2-smooth vector �eld in IR3 and
that the single-layer potential satis�es the needed regularity conditions and
jump relations at the boundary.

2

We are now in a position to de�ne

S�:C
0;
(@BR2

)! C1;
(@BR2
) (S�')(x) := U+(x) ; x 2 @BR2

; (6.11)

where U is the unique solution to (BV P ). S� is well de�ned, bounded, and
S�' = U� on @BR2

. Note, that the de�nition of S�' makes sense, too, if
we suppose ' to be continuous instead of H�older continuous. We need more
properties of S�.

Lemma 6.12 The linear operators S� satisfy:
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(a)
Z

@BR2

(S�') �  ds =
Z

@BR2

' � (S� )ds for all ',  2 C0;
(@BR2
).

(b) The mapping � 7! S�, from ( ~C(BR); k � k1) to the space of linear and
bounded operators in C(@BR2

) equipped with the k � k1-operator norm,
is continuous.

Proof: For ',  2 C0;
(@BR2
) we de�ne U as in (6.10) and U 0 analogously,

where we replace ' by  . Then we computeZ
@BR2

f(S�') �  � ' � (S� )gds

=
1

2

Z
@BR2

fU � (TU 0
� � TU 0

+)� (TU� � TU+) � U 0gds

= 0

because the integrals containing TU� and TU 0
� vanish by the second Betti

formula. Moreover, the integrals involving TU+ and TU 0
+ can be seen to be

zero by the radiation condition after replacing the integral over @BR2
by an

integral over @Br, r > R2, inserting the de�nition of U , and interchanging
the order of integration. This proves part (a).

The proof of assertion (b) follows the proof of Lemma 2.20 (c).
2

Our next goal is the computation of the operator S� from a knowledge of

the Fourier coe�cients �
(m)
l1k1l2k2

of U1;�. A consequence of this computation
is the continuous dependence of S� on U1;�.

Lemma 6.13 Let the far �eld pattern U1;�:S
2 � S2 ! C3�3 originate from

the density � 2 ~C(BR). Let �
(m)
l1k1l2k2

, m = 1; : : : ; 4, denote the Fourier coe�-
cients as de�ned in (6.8).

For x, y 2 @BR2
, x 6= y, we de�ne the matrix

s�(x; y) := �(x� y)

� X
l1k1l2k2

il1�l2

4�

n
�2sR

2
2h

(1)
l1
(�sR2)h

(1)
l2
(�sR2)Y

k1
l1

� x
jxj
�
Y k2
l2

� y
jyj
�
�(1)l1k1l2k2

+�p�sR
2
2h

(1)
l1
(�sR2)h

(1)
l2
(�pR2)Y

k1
l1

� x
jxj
�
Y k2
l2

� y
jyj
�
�
(3)
l1k1l2k2

o
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�X
l1k1

il1�l2

4�

n
�s�pR

2
2h

(1)
l1
(�pR2)h

(1)
l2
(�sR2)Y

k1
l1

� x
jxj
�
Y k2
l2

� y
jyj
�
�
(2)
l1k1l2k2

+�2pR
2
2h

(1)
l1
(�pR2)h

(1)
l2
(�pR2)Y

k1
l1

� x
jxj
�
Y k2
l2

� y
jyj
�
�
(4)
l1k1l2k2

o
:

(6.12)

(a) For all ' 2 C(@BR2
) there holds

(S�')(x) = 2
Z

@BR2

s�(x; y)'(y)ds(y) ; x 2 @BR2
:

(b) There is a constant c such that for all �, ~� 2 ~C(BR) the inequality
kS� � S~�k1 � ckU1;� � U1;~�kF holds true.

Proof: The Cauchy-Schwarz inequality, the rapid decay of the Fourier coe�-
cients (Lemma 6.9), and the estimate for jh(1)l (�R2)j (Lemma 2.16) imply that
the series in (6.12) are absolutely and uniformly convergent on @BR2

�@BR2
.

Therefore, s� is a well de�ned continuous, matrix valued function for x 6= y.
From the de�nition of S� in (6.11) we see that for ' 2 C(@BR2

) the
di�erence S�'� S1' has the form

(S�'� S1')(x)

= �r ^r ^
Z
BR

(1� �(y))��s(x; y)W (y)dy

+rr �
Z
BR

(1� �(y))��p(x; y)W (y)dy ; x 2 @BR2
;

(6.13)

W 2 C(BR) being the solution to

(W + V�W )(x) = 2
Z

@BR2

�(x� y)'(y)ds(y) ; x 2 BR :

It su�ces to prove that the right hand side of (6.13) and

2
Z

@BR2

(s�(x; y)� �(x� y))'(y)ds(y)
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coincide for all x 2 @BR2
and for all ' 2 C(@BR2

) having the special form

' = Y k
l (

�
j�j
)dm. Here, d1, d2, d3 denote the usual cartesian unit vectors in IR

3.

First, we compute for x 2 @BR2

2
Z

@BR2

(s�(x; y)� �(x� y))Y k2
l2
(
y

jyj)dmds(y)

= �2X
l1k1

n
�2sR

2
2h

(1)
l2
(�sR2)h

(1)
l1
(�sR2)

il1�l2

4�
�
(1)
l1k1l2k2

dm

+�p�sR
2
2h

(1)
l2
(�pR2)h

(1)
l1
(�sR2)

il1�l2

4�
�
(3)
l1k1l2k2

dm
o
Y k1
l1

� x
jxj
�

�2X
l1k1

n
�s�pR

2
2h

(1)
l2
(�sR2)h

(1)
l1
(�pR2)

il1�l2

4�
�
(2)
l1k1l2k2

dm

+�2pR
2
2h

(1)
l2
(�pR2)h

(1)
l1
(�pR2)

il1�l2

4�
�
(4)
l1k1l2k2

dm
o
Y k1
l1

� x
jxj
�
:

(6.14)

In order to compute the right hand side of (6.13) we proceed similarly to
the proof of Lemma 2.21 (a) and obtain

2
Z

@BR2

�(x� y)Y k2
l2

� y
jyj
�
dm ds(y)

= 2i�sR
2
2h

(1)
l2
(�sR2)

(�i)l2
4�

Z
S2

U i;shear(x; d; dm)Y
k2
l2
(d)ds(d)

+2i�pR
2
2h

(1)
l2
(�pR2)

(�i)l2
4�

Z
S2

U i;press(x; d; dm)Y
k2
l2
(d)ds(d) ; x 2 BR ;

and

W (x) = 2i�sR
2
2h

(1)
l2
(�sR2)

(�i)l2
4�

Z
S2

U shear(x; d; dm)Y
k2
l2
(d)ds(d)

+2i�pR
2
2h

(1)
l2
(�pR2)

(�i)l2
4�

Z
S2

Upress(x; d; dm)Y
k2
l2
(d)ds(d)

for x 2 BR.
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Now, we compute the normal and the tangential components of the far
�eld of

W 0(x) := �r ^r ^
Z
BR

(1� �(y))��s(x; y)W (y)dy

+rr �
Z
BR

(1� �(y))��p(x; y)W (y)dy ; jxj � R ;

(note that W 0j@BR2
is the right hand side of (6.13)): the tangential compo-

nents originate from the vector �eld

�r ^r ^
Z
BR

(1� �(y))��s(x; y)W (y)dy ; jxj � R ;

which is a solution to the Helmholtz equation with wave number �s, and has
the far �eld pattern

(I � A(x̂))W 0
1(x̂)

= ��
2
s

4�

Z
BR

(1� �(y))e�i�sx̂�yx̂ ^ (W (y) ^ x̂)dy

= 2i�sR
2
2h

(1)
l2
(�sR2)

(�i)l2
4�

Z
S2

(I � A(x̂))U shear
1 (x̂; d; dm)Y

k2
l2
(d)ds(d)

+2i�pR
2
2h

(1)
l2
(�pR2)

(�i)l2
4�

Z
S2

(I � A(x̂))Upress
1 (x̂; d; dm)Y

k2
l2
(d)ds(d) :

Thus we haveZ
S2

(I � A(x̂))W 0
1(x̂)Y

k1
l1
(x̂)ds(x̂) = 2i�sR

2
2h

(1)
l2
(�sR2)

(�i)l2
4�

�
(1)
l1k1l2k2

dm

+2i�pR
2
2h

(1)
l2
(�pR2)

(�i)l2
4�

�
(3)
l1k1l2k2

dm :

(6.15)

On the other hand according to [7, Theorems 2.14 and 2.15] we have for
jxj > R a series expansion

�r ^r ^
Z
BR

(1� �(y))��s(x; y)W (y)dy =
X
l1k1

al1k1h
(1)
l1
(�sjxj)Y k1

l1

� x
jxj
�
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which converges absolutely and uniformly on @BR2
. The coe�cients al1k1 are

vectors in C3 and the Fourier coe�cients of the far �eld of this series are
given by

1

�s

1

il1+1
al1k1 :

Comparing this expression with the equation for the Fourier coe�cients de-
rived in (6.15) yields

al1k1 = �2�2sR2
2h

(1)
l2
(�sR2)

il1�l2

4�
�
(1)
l1k1l2k2

dm

�2�p�sR2
2h

(1)
l2
(�pR2)

il1�l2

4�
�
(3)
l1k1l2k2

dm :

Similarly, the normal components of W 0
1 which originate from

rr �
Z
BR

(1� �(y))��p(x; y)W (y)dy ; jxj � R ;

a vector valued solution to the Helmholtz equation with wave number �p,
have the Fourier coe�cients

Z
S2

A(x̂)W 0
1(x̂)Y

k1
l1
(x̂)ds(x̂) = 2i�sR

2
2h

(1)
l2
(�sR2)

(�i)l2
4�

�
(2)
l1k1l2k2

dm

+2i�pR
2
2h

(1)
l2
(�pR2)

(�i)l2
4�

�
(4)
l1k1l2k2

dm :

(6.16)

A series expansion of the above vector �eld as

X
l1k1

bl1k1h
(1)
l1
(�pjxj)Y k1

l1

� x
jxj
�
;

computing the Fourier coe�cients of its far �eld, and comparing them with
(6.16) then yields

bl1k1 = �2�s�pR2
2h

(1)
l2
(�sR2)

il1�l2

4�
�
(2)
l1k1l2k2

dm

�2�2pR2
2h

(1)
l2
(�pR2)

il1�l2

4�
�
(4)
l1k1l2k2

dm :
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Therefore, on @BR2
we have the expansion

W 0(x) = �2X
l1k1

n
�2sR

2
2h

(1)
l2
(�sR2)h

(1)
l1
(�sR2)

il1�l2

4�
�
(1)
l1k1l2k2

dm

+�p�sR
2
2h

(1)
l2
(�pR2)h

(1)
l1
(�sR2)

il1�l2

4�
�
(3)
l1k1l2k2

dm
o
Y k1
l1

� x
jxj
�

�2X
l1k1

n
�s�pR

2
2h

(1)
l2
(�sR2)h

(1)
l1
(�pR2)

il1�l2

4�
�
(2)
l1k1l2k2

dm

+�2pR
2
2h

(1)
l2
(�pR2)h

(1)
l1
(�pR2)

il1�l2

4�
�
(4)
l1k1l2k2

dm
o
Y k1
l1

� x
jxj
�
:

Since this coincides with (6.14), we have proved assertion (a).
The analogous estimates to the proof of Lemma 2.21 (b) yield part (b) of

the lemma.
2

Next, we wish to establish the estimate

���Z
BR

(�� ~�)U � ~Udx
��� � ckS� � S~�k1;@BR2

kUkL2(BR00 )
k ~UkL2(BR00 )

(6.17)

for solutions U , ~U 2 C2(BR00)\L2(BR00) to the elasticity equation (R < R2 <
R00).

In the acoustic case the proof needed two ingredients. For a given solution
u to the perturbed Helmholtz equation in BR00 we constructed a radiating
solution to the Helmholtz equation in the exterior of BR2

, whose Dirichlet
boundary values coincided with the values of u on @BR2

. This allowed to
represent u as a single-layer having the Green's function sn as kernel. The
second ingredient was the estimate kuk1;
;BR2

� ckukL2(BR00 )
.

Since the solution to the exterior Dirichlet problem requires a thorough
analysis of the elastic double-layer potential [23, 24, 12] (a task that we want
to avoid), we use a di�erent approach in order to represent a solution U to
the elasticity equation as a single-layer with the Green's kernel s�, namely
we solve a Robin boundary value problem in the following lemma.

For the second ingredient, the a priori estimate, we use the analogous
approach to the proof of Weyl's lemma, Lemma 2.6. Finally, we establish
the desired estimate (6.17) in Lemma 6.16 .
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During the proof of the following lemma we shall use the boundary inte-
gral operator K 0

�:C
0;
(@BR2

)! C0;
(@BR2
)

(K 0
�')(x) := 2

Z
@BR2

Tx[�(x� y)'(y)]ds(y) ;

�!2
Z
BR

(1� �(y))Tx[�(x� y)W (y)]dy ; x 2 @BR2
:

Here, W is de�ned as the unique solution to

(I + V�)W = 2
Z

@BR2

�(� � y)'(y)ds(y)

in BR, and Tx is the unphysical traction operator de�ned with the parameters

�1 =
�(�+ �)

�+ 3�
; �2 =

(�+ �)(�+ 2�)

�+ 3�
: (6.18)

The choice of the constants �1 and �2 is now important because it yields a
compact operator K 0

1 with a weakly singular kernel (see Lemma 6.25 in the
appendix). Therefore, K 0

� is a compact operator.
Note, that in linear elasticity the traction operator Tx corresponds to the

the operator @=@�(x) in acoustic scattering. We have therefore chosen the
same name K 0 for the normal derivative of the acoustic single-layer and the
traction of the elastic single-layer.

The jump relations for the single-layer with kernel � and the properties
of the volume potential imply for the vector �eld U de�ned in (6.10): TU�+
iU� = (I + K 0

� + iS�)' on @BR2
. This motivates to consider the following

boundary value problem with Robin data (RBV P ):
Given R2 > R, ! > 0, � > 0, � 2 IR (2� + � > 0), � 2 ~C(BR) and

F 2 C0;
(@BR2
),

�nd U 2 C2(BR2
) \ C1(BR2

) satisfying ��U + !2�U = 0 in BR2
and

TU� + iU� = F on @BR2
. Here, the parameters �1 and �2 in the de�nition

of T are chosen according to (6.18).

Lemma 6.14

(a) (RBV P ) has at most one solution.
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(b) For all F 2 C0;
(@BR2
) the equation (I + K 0

� + iS�)' = F has a
unique solution ' 2 C0;
(@BR2

) depending continuously on F . If ' is
a solution to this equation, then, the vector �eld U de�ned in (6.10) is
the unique solution to (RBV P ).

Proof: For assertion (a) we compute with Betti's �rst formula, the homoge-
neous boundary condition, and the elasticity equation

�i
Z

@BR2

jU j2ds

=
Z

@BR2

U � TUds

= �
Z

BR2

U � (!2�U)dx

+
Z

BR2

n
(�1 + �)

3X
k=1

j@kU j2 + �2jr � U j2 � �1jr ^ U j2
o
dx :

Hence, taking the imaginary part we have U j@BR2
= 0, and TU = 0 on

@BR2
by the boundary condition. Now, the representation formula from

Theorem 5.3 applied to U implies that U is a solution to the homogeneous
Lippmann-Schwinger equation (5.12). Thus U must vanish and we have
proved uniqueness for (RBV P ).

For part (b) we note that, if ' is a solution to the equation (I + K 0
� +

iS�)' = F , and if U is de�ned by

U(x) := 2
Z

@BR2

�(x� y)'(y)ds(y)

�!2
Z
BR

(1� �(y))�(x� y)W (y)dy ; x 2 IR3 ;

W 2 C(BR) being the unique solution to the Lippmann-Schwinger equation

(W + V�W )(x) = 2
Z

@BR2

�(x� y)'(y)ds(y) ; x 2 BR;
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then U is a solution to the boundary value problem (RBV P ). The di�erential
equation follows from the Lippmann-Schwinger equation for W , whereas the
boundary behavior of U is a consequence of the elastic single-layer.

If ' is a solution for F = 0, we know from part (a) that U vanishes
in BR2

. Furthermore, U is a radiating solution to ��U + !2U = 0 in the
exterior of BR2

with vanishing Dirichlet boundary values and we can compute
for R1 > R2 with Betti's �rst formula (5.2) (now �1 = ��, �2 = �+ 2�)

=
� Z
@BR1

U � f��� ^ r ^ U + (�+ 2�)(r � U)�gds
�

= =
� Z
@BR2

U+ � f��� ^r ^ U+ + (�+ 2�)(r � U+)�gds
�

= 0 :

Lemma 5.8 then implies that U vanishes in IR3 n BR2
, whence 2' = TU� �

TU+ = 0 on @BR2
. Since the operators in the integral equation are compact,

existence and continuous dependence of a solution follows by the Riesz theory.
This completes the proof of the lemma.

2

Now we prove the a priori estimate which corresponds to Weyl's lemma.

Lemma 6.15 Assume 0 < R2 < R00 and c1 > 0 are constants. Then, there
is a constant c2 > 0 such that for all � 2 C(BR00) with k�k1 � c1 and for
all U 2 C2(BR00) \ L2(BR00) satisfying ��U + �U = 0 in BR00 the inequality
kUk1;
;BR2

� c2kUkL2(BR00 )
holds true.

Proof: We �rst construct suitable test vector �elds ' 2 C1
0 (BR00). Let

B�(x
�) � BR00 , � > 0, be a ball and let � 2 C1

0 (IR) be a cut-o� function
satisfying �(t) = 0, if jtj � �=2, and �(t) = 1, if jtj � �=4. For a vector �eld
 2 C1

0 (B�=4(x
�)) we de�ne

'(x) :=
Z
IR3

�(jx� yj)�(0)(x� y) (y)dy ; x 2 IR3 :

As in Lemma 2.6 we have ' 2 C1
0 (B�(x

�)).
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The matrix valued function ~k(x) := (�(jxj)� 1)�(0)(x), x 2 IR3, satis�es
~k 2 C1(IR3) and we obtain with the help of Theorem 5.6 in B�(x

�)

(��'+ �')(x) = � (x) +
Z

B�=4(x�)

��
x(
~k(x� y) (y))dy

+�(x)
Z

B�=4(x�)

�(jx� yj)�(0)(x� y) (y)dy :

We denote by ~M : IR3 ! C3�3 the C1-smooth matrix valued function sat-
isfying ��

x(
~k(x � y) (y)) = ~M(x � y) (y). Using integration by parts and

reversing the order of integration we arrive at

0 =
Z

B�(x�)

' � (��U + �U)dx

=
Z

B�(x�)

(��'+ �') � Udx

=
Z

B�=4(x�)

 (y) �
n
�U(y) +

Z
B�(x�)

~MT (x� y)U(x)dx

+
Z

B�(x�)

�(x)�(jx� yj)�(0)(x� y)U(x)dx
o
dy

for any  2 C1
0 (B�=4(x

�)). Hence, we have for all y 2 B�=4(x
�)

U(y) =
Z

B�(x�)

~MT (x� y)U(x)dx

+
Z

B�(x�)

�(x)�(jx� yj)�(0)(x� y)U(x)dx : (6.19)

The Cauchy-Schwarz inequality yields kUk1;B�=4(x�) � ckUkL2(BR00 )
, with

a constant c depending on � (via �) and k�k1;BR00
.

Replacing � by �=4 and repeating the procedure, which lead to equation
(6.19), with an adjusted cut-o� function � we obtain

U(y) =
Z

B�=4(x�)

~MT (x� y)U(x)dx

+
Z

B�=4(x�)

�(x)�(jx� yj)�(0)(x� y)U(x)dx
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for all y 2 B�=16(x
�). Now, the estimates from Theorem 1.9 imply

kUk1;
;B�=16(x�)
� ckUkL2(BR00 )

.

Finally, we complete the proof by covering the compact set BR2
by �nitely

many balls of the form B�j=32(xj), where �j is chosen su�ciently small to
ensure B�j(xj) � BR00 , and by patching together the above norm estimates
for kUk1;
;B�j=16

(xj)
.

2

The desired estimate (6.17) is now a consequence of the two previous
lemmas and Betti's second formula.

Lemma 6.16 Assume R < R2 < R00 and !, c1 > 0 are positive constants.
Then, there exists a positive constant c such that for all �, ~� 2 ~C(BR) with
k�k1;
;IR3, k~�k1;
;IR3 � c1, and for all solutions U 2 C2(BR00) \ L2(BR00) to

��U +!2�U = 0 in BR00 and all solutions ~U 2 C2(BR00)\L2(BR00) to �� ~U +
!2~� ~U = 0 in BR00 the estimate

���Z
BR

(�� ~�)U � ~Udx
��� � ckS� � S~�k1;@BR2

kUkL2(BR00 )
k ~UkL2(BR00 )

(6.20)

holds true.

Proof: Let U satisfy the assumptions of the assertion. Due to Lemma 6.14 we
have a representation of U jBR2

as in (6.10), where the density ' 2 C0;
(@BR2
)

satis�es the integral equation

(I +K 0
� + iS�)' = TU� + iU� on @BR2

.

Hence, we know
k'k1 � k'k0;
 � ckUk1;
;BR2

: (6.21)

The above inequality used the fact that (I + K 0
� + iS�)

�1 is bounded in
C0;
(@BR2

). In order to have the same inequality with a constant c, which
holds uniformly for all densities � as in the assertion, we have to prove that
the bound can be chosen uniformly for all � 2 ~C(BR) with k�k1;
;IR3 � c1.
This can be seen by the following reasoning:

We choose R2 > R1 > R and assume that �j 2 ~C(BR), j 2 IN, is a
sequence with k�jk1;
;IR3 � c1 and k(I + K 0

�j
+ iS�j )

�1kC0;
 ! 1, j ! 1.

Since the imbedding C1;
(BR1
) � C1;
0(BR1

) is compact for 0 < 
0 < 
, we
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assume without loss of generality that k�j � �0k1;
0;IR3 ! 0, j ! 1, for a

suitable real valued function �0 2 C1;
0(IR3) with supp(1 � �0) � BR1
. Due

to the continuous dependence of the mapping � 7! (I +K 0
� + iS�)

�1 from

f� 2 C1;
0(IR3): supp(1� �) � BR1
g

to the space of bounded linear operators on @BR2
(the volume potentials in

the de�nitions of S� and K
0
� depend continuously on �, see Lemma 6.12 (b))

we obtain the contradiction

k(I +K 0
�j
+ iS�j )

�1kC0;
 ! k(I +K 0
�0
+ iS�0)

�1kC0;
 <1 :

Of course, we can apply the analogous reasoning to ~U , whence we have
represented U and ~U as a combination of a single-layer potential and a volume
potential. This representation is also de�ned in IR3 n BR2

. We thus have a
continuous continuation of U and ~U as radiating solutions to ��W+!2W = 0
in the exterior of BR2

.
Then, we use Lemma 6.12 (a), the jump relation, and (5.3) to computeZ

@BR2

' � (S~� � S�) ~'ds

=
1

2

Z
@BR2

�
(TU� � TU+) � ~U � (T ~U� � T ~U+) � U

�
ds

=
1

2

Z
@BR2

(TU� � ~U � T ~U� � U
�
ds

=
!2

2

Z
BR

(~�� �)U � ~Udx ; (6.22)

because, as in the proof of Lemma 6.12 (a), the integrals involving TU+ and
T ~U+ vanish.

Using Lemma 6.15, (6.22), and (6.21) we complete the proof of the lemma
and estimate���Z

BR

(�� ~�)U ~Udx
���

=
��� 2
!2

Z
@BR2

' � (S~� � S�) ~'ds
���

� ckS� � S~�k1;@BR2
kUkL2(BR00 )

k ~UkL2(BR00 )
: 2
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Finally, we prove the main estimate, which implies the continuous depen-
dence of � on S� or on U1;�.

Theorem 6.17 Let �0 2 ~C(BR)\C2(IR3) be given. Then, there are a neigh-
borhood O of �0,

O := f� 2 ~C(BR) \ C2(IR3): k�� �0kC2 < �g ;
and a positive constant c, such that for all �, ~� 2 O the estimate

k�� ~�k1;BR
� c[� ln(kS� � S~�k1;@BR2

)]�1=11

holds true.

Proof: We choose R < R2 < R00 < R0 < 2R2. Furthermore, we choose
t0 > 0 from Theorem 6.7 su�ciently large to ensure the existence of the
special solutions and the estimates stated for them in this theorem holding
uniformly for all k�� �0kC2 � 1 and for all j=(�s)j � t0. Then, we set

t1 := t0 + 2�s + 100 :

Finally, we choose 0 < �1 < 1=2 su�ciently small to have

�5
11(4R2 + 1)

ln(2�1) > t1 :

Due to the continuous dependence of S� on � (Lemma 6.12 (b)) we can
�nd � with 0 < � < �1 such that

kS� � S~�k1;@BR2
� 2�1

for all
�; ~� 2 O := f� 2 ~C(BR) \ C2(IR3): k�� �0kC2 < �g :

The inequalities (2.38) and (2.39) imply

k�� ~�k1 � c
X

�����2

j(�� ~�)̂ (�)j+ cp
�

(6.23)

for �, ~� 2 O and any � � 2.
As in the proof of Theorem 2.23 we wish to pick a suitable �, depending

on kS� � S~�k1;@BR2
, in order to estimate the right hand side of (6.23). We
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bound the Fourier coe�cients j(�� ~�)̂ (�)j, � � � � �2, with the help of the
preceding lemma and the special solutions from Theorem 6.8.

To this end we set t := � 5
11(4R2+1)

ln kS� � S~�k1 and � := t2=11. By the

de�nition of �, the inequalities kS� � S~�k1 < 1 and t � t1 are satis�ed for
all �, ~� 2 O, and we also have � � 2.

For a vector � 2 � with � � � � �2 we choose as in Theorem 6.8

�s(t) := �1

2
� + i

s
t2 � �2s +

j�j2
4
d1 + td2 ;

~�s(t) := �1

2
�� i

s
t2 � �2s +

j�j2
4
d1 � td2 ;

�(t) :=
1

j�j� +
j�j
2t
d2 ;

~�(t) :=
1

j�j��
j�j
2t
d2 :

Then, we have j=(�s(t))j � t � �s � t=2, j�s(t)j=j=(�s(t))j � 2, and
j=(�s(t))j � t��s � t0 for all � 2 O, whence by Theorem 6.7 there exist the
special solutions U(x; �s(t); �(t)) = ei�s(t)�x[�(t) + F (x; �s(t); �(t))] satisfying
the inequality kF (�; �s(t); �(t))kL2 � (cj�(t)j)=j=(�s(t))j uniformly in � 2 O,
t � t1. The analogous assertion applies to ~U(x; ~�s(t); ~�(t)) = ei

~�s(t)�x[~�(t) +
~F (x; ~�s(t); ~�(t))].

With the help of the preceding lemma we compute

j(~�� �)̂ (�)j
= (2R0)�3=2

���Z
C

(~�� �)(x)e�i��xdx
���

= (2R0)�3=2
����
Z
BR

(~�� �)(x)U(x; �s(t); �(t)) � ~U(x; ~�s(t); ~�(t))dx

+
Z
BR

(~�� �)(x)e�i��x
n j�j2
4t2

� ~�(t) � F (x; �s(t); �(t))

��(t) � ~F (x; ~�s(t); ~�(t))
�F (x; �s(t); �(t)) � ~F (x; ~�s(t); ~�(t))

o
dx
����

� ckS� � S~�k1kU(�; �s(t); �(t))kL2(BR00 )
k ~U(�; ~�s(t); ~�(t))kL2(BR00 )

+
cj�j2
t
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� c(j�j2e4R2(t+j�j)kS� � S~�k1 +
j�j2
t
) ; (6.24)

where we have used the fact that

kU(�; �s(t); �(t))kL2(BR00 )
� kei�s(t)�xk1;B2R2

k�(t) + F (�; �s(t); �(t))kL2(BR00 )

� cj�je2R2(t+j�j)

for all t � t1, � 2 O, and � 2 � because j=(�s(t))j � t + j�j.
Note that contrary to the acoustic case we have a factor j�j2 from our

choice of �(t), ~�(t), which can only be bounded by cj�j. These terms j�j2 are
responsible for the di�erent exponents occurring in the elastic and acoustic
stability estimates.

Inequality (6.24) implies

X
�����2

j(~�� �)̂ (�)j � c
X

�����2

(j�j2e4R2(t+j�j)kS� � S~�k1 +
j�j2
t
)

� cfe4R2te4R2��5kS� � S~�k1 +
�5

t
g

� cfe(4R2+1)(t+�)kS� � S~�k1 +
�5

t
g ;

because of �5 � 5!e�.
Finally, we obtain from (6.23), our last estimate, � = t2=11 � t, and the

de�nition of t

k�� ~�k1 � cfe(4R2+1)(t+�)kS� � S~�k1 +
�5

t
+

1p
�
g

� cfe(8R2+2)tkS� � S~�k1 +
2

t1=11
g

� c
n
(kS� � S~�k1)1=11 + (� ln kS� � S~�k1)�1=11

o
� c(� ln kS� � S~�k1)�1=11

for all �, ~� 2 O because x � (� ln(x))�1 for 0 < x < 1, and we have proved
the theorem.

2

Replacing kS� � S~�k by kU1;� � U1;~�kF we obtain the �nal estimate.
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Theorem 6.18 Let �0 2 ~C(BR1
) \ C2(IR3) with R1 < R be given. Then,

there are a neighborhood

O := f� 2 ~C(BR1
) \ C2(IR3): k�� �0kC2 < �g ;

and a positive constant c, such that for all �, ~� 2 O the estimate

k�� ~�k1;BR
� c[� ln(kU1;� � U1;~�kF)]�1=11

holds true.

Proof: We know from Lemma 6.10 that the mapping � 7! U1;� is continuous
from ~C(BR1

) to the far �eld patterns equipped with the norm k � kF . We
choose � > 0 su�ciently small in the proof of Theorem 6.17 such that

(1 + c)kU1;� � U1;~�kF � 2�1 and ckU1;� � U1;~�kF � kU1;� � U1;~�k1=2F

are satis�ed for all �, ~� 2 O, too (here c denotes the constant from Lem-
ma 6.13 (b)). Inserting the estimate

kS� � S~�k1 � ckU1;� � U1;~�kF
from Lemma 6.13 (b) into Theorem 6.17 we complete the proof of the theo-
rem.

2
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6.3 Appendix: The Elastic Single-Layer Po-

tential

This appendix contains the regularity results and the jump relations for the
single-layer potential

U(x) =
Z
@D

�(x� y)'(y)ds(y) ; x 2 IR3 n @D ;

where D is a C2-smooth bounded domain in IR3, ' is a uniformly H�older con-
tinuous vector �eld on @D, and �: IR3nf0g ! C3�3 denotes the fundamental
solution to the operator (�� + !2I) from section 5.1.

We closely follow the reasoning in [6, chapter 2] for the acoustic single-
layer potential and we base our analysis on the next two theorems whose
proofs can be found in [6, Theorem 2.7, Remark 2.8, Lemma 2.10, Re-
mark 2.11].

Theorem 6.19 Let D � IR3 be a C2-smooth, bounded, open set, and suppose
G is a closed domain containing @D in its interior. Assume the function K
is de�ned and continuous for all x 2 G, y 2 @D, x 6= y, and assume there
exists a positive constant M such that for all x 2 G, y 2 @D, x 6= y, we have

jK(x; y)j �M jx� yj�1 : (6.25)

Assume further that there exists m 2 IN such that

jK(x1; y)�K(x2; y)j �M
mX
j=1

jx1 � yj�1�jjx1 � x2jj (6.26)

for all x1, x2 2 G, y 2 @D with 2jx1 � x2j � jx1 � yj. Then the generalized
potential u de�ned by

u(x) :=
Z
@D

K(x; y)'(y)ds(y) ; x 2 G ;

with density ' 2 C(@D) belongs to the H�older space C0;
(G) for all 
 2 (0; 1)
and

kuk0;
;G � C
k'k1;@D

for some constant C
 depending on 
.
The analogous assertion holds true, if G is replaced by @D, i.e., the kernel

K is only de�ned for x, y 2 @D, x 6= y, and u(x) is only de�ned for x 2 @D.
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Remark: If a function K de�ned for x 2 BR, y 2 @D, x 6= y, has
�rst partial derivatives with respect to x for all y 2 @D, and if these par-
tial derivatives are continuous functions in x for each �xed y and satisfy
jrxK(x; y)j �M jx�yj�m for all x 6= y for some m 2 IN, then the inequality
(compare (6.26))

jK(x1; y)�K(x2; y)j � 2mM jx1 � yj�mjx1 � x2j
is satis�ed for all x1, x2 2 BR, y 2 @D with 2jx1 � x2j � jx1� yj, y 6= x1; x2.

This can be inferred from

jK(x2; y)�K(x1; y)j =
����
1Z
0

[rxK(x1 + t(x2 � x1); y)] � (x2 � x1)dt
����

� sup
t2[0;1]

jrxK(x1 + t(x2 � x1); y)jjx2 � x1j

� M

(jx1 � yj=2)m jx2 � x1j

because jx1+ t(x2�x1)�yj � jx1�yj�jx2�x1j � jx1�yj=2 for all t 2 [0; 1],
if 2jx1 � x2j � jx1 � yj.

In regard of Theorem 6.19, the above remark, and the estimates from
Lemma 5.1 (b) we know that the vector �eld

U(x) =
Z
@D

(�(x� y)� �(0)(x� y))'(y)ds(y) ; x 2 IR3 ;

belongs to C1;
(IR3), if ' 2 C(@D) is a continuous vector �eld. Moreover,
we have kUk1;
;IR3 � C
k'k1 and

@

@xj
U(x) =

Z
@D

h @
@xj

(�(x� y)� �(0)(x� y))
i
'(y)ds(y) ; x 2 IR3 :

It is therefore su�cient to carry out the analysis for the single-layer potential
having Kelvin's matrix �(0) as kernel.

Theorem 6.19 together with the estimates from Lemma 5.1 (c) immedi-
ately imply that the single-layer potential

U(x) =
Z
@D

�(0)(x� y)'(y)ds(y) ; x 2 IR3 ; (6.27)
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with a continuous density ' is uniformly H�older continuous in IR3 and that
kUk
;IR3 � C
k'k1. Especially, this implies that S1:C(@D) ! C0;
(@D) is
bounded and S1:C

0;
(@D) ! C0;
(@D) is compact. Here, S1 denotes the
operator de�ned by

(S1')(x) = 2
Z
@D

�(x� y)'(y)ds(y) ; x 2 @D ;

which occurred in the previous section.
Hence, it remains to study the �rst derivatives of the potential in (6.27).

To this end another result [6, Lemma 2.10] is useful. In order to understand
its notation we note the following facts:

For a C2-smooth domain D there is number h0 > 0 such that to each
point x from the closed neighborhood

Dh0 := fx = z + h�(z): z 2 @D ; jhj � h0 g
of @D there corresponds a unique point z 2 @D such that x = z + h�(z).
Moreover, there is a small constant R > 0 such that for all z1, z2 2 @D,
x1 = z1 + h�(z1), x2 = z2 + h�(z2) 2 Dh0 with 0 < jx1 � x2j < R=4 the
estimates

1

2
jx1 � x2j � jz1 � z2j � 2jx1 � x2j ; jx1 � z2j2 � jz1 � z2j2 + h2

2
(6.28)

hold true. We also assume R su�ciently small to ensure the following two
requirements:

Sz;R := fy 2 @D: jy � zj < Rg
is connected for each z 2 @D; �(z) � �(y) � 1=2 for all z, y 2 @D with
jz � yj � R.

Theorem 6.20 Let D � IR3 be a C2-smooth, bounded, open set. Assume
the function K to be de�ned and continuous for all x 2 Dh0, y 2 @D, x 6= y,
and assume that there exists a positive constant M such that for all x 2 Dh0,
y 2 @D, x 6= y, we have

jK(x; y)j �M jx� yj�2 : (6.29)

Furthermore, assume there exists m 2 IN such that

jK(x1; y)�K(x2; y)j �M
mX
j=1

jx1 � yj�2�jjx1 � x2jj (6.30)
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for all x1, x2 2 Dh0, y 2 @D with 2jx1 � x2j � jx1 � yj, and that����
Z

@DnSz;r

K(x; y)ds(y)
���� �M (6.31)

for all z 2 @D and x = z + h�(z) 2 Dh0 and all 0 < r < R. Now de�ne

u(x) :=
Z
@D

K(x; y)['(y)� '(z)]ds(y) ; x 2 Dh0 ;

with density ' 2 C0;
(@D), 0 < 
 < 1. Then u belongs to C0;
(Dh0) and

kuk0;
;Dh0
� Ck'k0;
;@D

for some constant C.
The analogous assertion holds true, if Dh0 is replaced by @D, i.e., the

kernel K is only de�ned for x, y 2 @D, x 6= y, and u(x) is only de�ned for
x 2 @D.

These two theorems are employed by the authors in [6, Theorems 2.12
and 2.17] to analyze the potential with kernel

K(x; y) =
1

4�jx� yj ; x 6= y :

They obtain that, if ' 2 C(@D) is continuous, then

u(x) =
Z
@D

1

4�jx� yj'(y)ds(y) ; x 2 IR3 ;

is uniformly H�older continuous in IR3 and

kuk0;
;IR3 � C
k'k1;@D

for all 0 < 
 < 1 and some constant C
 depending on @D and 
. Moreover,
if ' 2 C0;
(@D), 0 < 
 < 1, is uniformly H�older continuous, then the
�rst derivatives of the potential u can be uniformly extended in a H�older
continuous fashion from IR3 nD into IR3 nD and from D into D with limiting
values

ru�(x) =
Z
@D

rx

� 1

4�jx� yj
�
'(y)ds(y)� 1

2
'(x)�(x) ; x 2 @D ; (6.32)
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where the integral exists as a Cauchy principal value. They also have the
estimates

kruk0;
;IR3nD � C
k'k0;
;@D ;

kruk0;
;D � C
k'k0;
;@D (6.33)

for some constant C
 depending on @D and 
.
Since Kelvin's matrix �(0) has the entries

�
(0)
jk (x) :=

�jk
4��jxj �

�+ �

8��(2�+ �)

@2jxj
@xj@xk

; x 6= 0 ; j; k = 1; 2; 3 ;

in view of the above results it remains to show the analogous results for the
second term in the de�nition of �

(0)
jk (x), i.e., for the kernels

K(x; y) =
@2jx� yj
@xj@xk

; x 6= y ; j; k = 1; 2; 3 :

We will pursue the same strategy that is used in [6] for the harmonic single-
layer potential. Therefore, our �rst aim is to extend in a H�older continuous
fashion the �rst derivatives of the potential with constant density

u(x) =
Z
@D

@2jx� yj
@xj@xk

ds(y) ; x 2 IR3 ;

from D into D and from IR3 nD into IR3 nD. To this end we split

ru(x) = �
Z
@D

Grady
@2jx� yj
@xj@xk

ds(y)

�
Z
@D

@

@�(y)

@2jx� yj
@xj@xk

�(y)ds(y) ; x 2 IR3 n @D ; (6.34)

where Grad denotes the surface gradient on @D. We are thus lead to consider
potentials with kernel

K(x; y) :=
@

@�(y)

@2jx� yj
@xj@xk

; y 2 @D ; x 2 IR3 ; x 6= y ; (6.35)

and with H�older continuous density.
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Lemma 6.21 Assume j, k 2 f1; 2; 3g to be �xed and de�neK(x; y), y 2 @D,
x 2 IR3, x 6= y, as in (6.35). Then, the generalized potential

u(x) :=
Z
@D

K(x; y)'(y)ds(y) ; x 2 IR3 n @D ;

with H�older continuous density ' 2 C0;
(@D) (0 < 
 < 1) can be extended
in a H�older continuous fashion from IR3 nD into IR3 nD and from D into D
with limiting values

u�(x) =
Z
@D

K(x; y)'(y)ds(y)� 4�'(x)�k(x)�j(x) ; x 2 @D ; (6.36)

where the integral exists as a Cauchy principal value. Furthermore, the esti-
mates

kuk0;
;IR3nD � C
k'k0;
;@D ;

kuk0;
;D � C
k'k0;
;@D (6.37)

hold true for some constant C
 depending on @D and 
.

Proof: We �rst prove the assertion for the density ' = 1, i.e., we examine

w(x) :=
Z
@D

@

@�(y)

@2

@xj@xk
jx� yjds(y) ; x 2 IR3 n @D :

For x 2 D we choose � > 0 su�ciently small to ensure B�(x) � D. Then we
apply Green's second theorem (1.9) and Gauss' theorem (1.7) in D n B�(x),
use �yjx� yj = 2=jx� yj, and obtain

w(x) =
Z

jy�xj=�

@

@�(y)

@2

@xj@xk
jx� yjds(y) + 2

Z
DnB�(x)

@2

@xj@xk

1

jx� yjdy

=
Z

jy�xj=�

@

@�(y)

@2

@xj@xk
jx� yjds(y) + 2

Z
@D

�j(y)
@

@yk

1

jx� yjds(y)

�2
Z

jy�xj=�

�j(y)
@

@yk

1

jx� yjds(y) :

(6.38)
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We calculate

@

@�(y)

@2

@xj@xk
jx� yj

=
@

@�(y)

�
�jk

jx� yj �
(xk � yk)(xj � yj)

jx� yj3
�

=
@

@�(y)

�jk
jx� yj +

�k(y)(xj � yj)

jx� yj3

+
�j(y)(xk � yk)

jx� yj3 � 3
(xk � yk)(xj � yj)f�(y) � (x� y)g

jx� yj5 ;

and note

�k(y)(xj � yj)

jx� yj3 +
�j(y)(xk � yk)

jx� yj3 = 2�j(y)
@

@yk

1

jx� yj
on @B�(x) due to �(y) = (y � x)=jx� yj. Moreover, we have

Z
jy�xj=�

@

@�(y)

�jk
jx� yjds(y) = �

Z
jy�xj=�

�jk
�2
ds(y) = �4��jk

and

�3
Z

jy�xj=�

(xk � yk)(xj � yj)f�(y) � (x� y)g
jx� yj5 ds(y)

=
3

�3

Z
@B�(0)

yk�j(y)ds(y)

= 4��jk :

Hence, (6.38) reads

w(x) = �2 @

@xk

Z
@D

�j(y)

jx� yjds(y) ; x 2 D :

For x 2 IR3 n D it is not necessary to cut out the ball B�(x) and a similar
reasoning yields

w(x) = �2 @

@xk

Z
@D

�j(y)

jx� yjds(y) :
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Finally, for x 2 @D, we obtain in an analogous manner thatZ
@DnSx;�

K(x; y)ds(y)

=
Z

@(DnB�(x))

K(x; y)ds(y) +
Z

@B�(x)\D

K(x; y)ds(y)

= �2 @

@xk

Z
@(DnB�(x))

�j(y)

jx� yjds(y) +
Z

@B�(x)\D

K(x; y)ds(y)

! �2 @

@xk

Z
@D

�j(y)

jx� yjds(y) ; �! 0 ;

uniformly for all x 2 @D, where the integral is to be understood as a Cauchy
principal value. In the limit the integrals over @B�(x) \D of

@

@�(y)

�jk
jx� yj and � 3

(xk � yk)(xj � yj)f�(y) � (x� y)g
jx� yj5

can be replaced by integrals over @B�(x) \ fy 2 IR3: (y � x) � �(x) � 0g. By
symmetry the integrals over the half sphere can be evaluated as one half of
the corresponding integrals over the entire sphere, whence they cancel each
other as they did in the case x 2 D.

Using the jump relations for the derivatives of the harmonic single-layer
potential we have proved the assertion for ' = 1.

Our computation of K(x; y) reveals that K satis�es assumption (6.29).
Condition (6.30) can be veri�ed with the help of the remark after Theo-
rem 6.19. In order to verify condition (6.31) we choose x = z� h�(z) 2 Dh0 ,
z 2 @D, h � 0. If x = z + h�(z), we work in the domain D n B�(z), if
x = z� h�(z), we work in the domain D[B�(z). Then we proceed as above
for the case x 2 @D. With the help of the estimate

jz + h�(z)� yj2 � min
y2@B�(z)\@D

fjz � yj2 + h2 + 2h�(z) � (y � z)g
= min

y2@B�(z)\@D
jz + h�(z) � yj2

� 1

2
�2

for all y 2 @B�(z) \D, where we have used (6.28) for the second inequality,
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we can bound����
Z

@DnSz;�

K(x; y)ds(y)
����

�
����

Z
@(DnB�(z))

K(x; y)ds(y)
����+

Z
@B�(z)\D

jK(x; y)jds(y)

�
����2 @

@xj

Z
@(DnB�(z))

�j(y)

jx� yjds(y)
����+

Z
@B�(z)

c

�2
ds(y)

� M ;

and similarly for x = z � h�(z).
If we now have an arbitrary uniformly H�older continuous density ', we

can split

u(x) =
Z
@D

K(x; y)'(y)ds(y)

=
Z
@D

K(x; y)('(y)� '(z))ds(y) + w(x)'(z) ; x 2 Dh0 ;

where z 2 @D is the point with x = z + h�(z). Since K satis�es the con-
ditions of Theorem 6.20, the integral is uniformly H�older continuous in Dh0,
whereas the behavior of the second term and the jump relation follow from
our reasoning for ' = 1. This ends the proof of the lemma.

2

Next, we turn to the �rst integral that appeared in (6.34).

Lemma 6.22 Assume j, k 2 f1; 2; 3g to be �xed and de�ne the vector �eld

U(x) :=
Z
@D

Grady
@2

@xj@xk
jx� yjds(y) ; x 2 IR3 n @D :

Then, U can be extended in a H�older continuous fashion into IR3 with limiting
values

U(x) =
Z
@D

Grady
@2

@xj@xk
jx� yjds(y) ; x 2 @D ; (6.39)

where the integral exists as a Cauchy principal value.
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Proof: Integration by parts (compare [6, Theorem 2.1]) reveals

U(x) = �2
Z
@D

@2

@xj@xk
jx� yjH(y)�(y)ds(y) ; x 2 IR3 n @D ;

where H(y) denotes the mean curvature of @D at the point y 2 @D. Since
the kernel

@2

@xj@xk
jx� yj = �jk

jx� yj �
(xk � yk)(xj � yj)

jx� yj3 ; x; y 2 IR3 ; x 6= y ;

satis�es the assumptions of Theorem 6.19, we infer that U can be extended
in a uniformly H�older continuous fashion into IR3 with limiting values

U(x) = �2
Z
@D

@2

@xj@xk
jx� yjH(y)�(y)ds(y) ; x 2 @D ;

and it remains to prove for x 2 @D that

lim
�!0

Z
@DnSx;�

Grady
@2

@xj@xk
jx� yjds(y) = �2

Z
@D

@2

@xj@xk
jx� yjH(y)�(y)ds(y) :

This can be achieved by using integration by parts again [6, Theorem 2.1],

Z
@DnSx;�

Grady
@2jx� yj
@xj@xk

ds(y) = �2
Z

@DnSx;�

@2jx� yj
@xj@xk

H(y)�(y)ds(y)

�
Z

@D\@B�(x)

@2jx� yj
@xj@xk

�0(y)dt(y) :

Here, �0(y) denotes the unit normal vector to the curve @D\@B�(x) which is
orthogonal to the normal �(y) of @D and which is directed into the exterior
of B�(x), and dt is the line element. Next we compute

Z
@D\@B�(x)

@2jx� yj
@xj@xk

�0(y)dt(y)

=
�jk
�

Z
@D\@B�(x)

�0(y)dt(y)� 1

�3

Z
@D\@B�(x)

(xk � yk)(xj � yj)�0(y)dt(y)
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= 2
�jk
�

Z
Sx;�

H(y)�(y)ds(y)� 1

�3

Z
Sx;�

2(xk � yk)(xj � yj)H(y)�(y)ds(y)

� 1

�3

Z
Sx;�

Grady[(xk � yk)(xj � yj)]ds(y)

= O(�)� 1

�3

Z
Sx;�

Grady[(xk � yk)(xj � yj)]ds(y) ;

where we made use of the estimatesZ
Sx;�

jx� yjmds(y) � c�m+2

for a suitable constant c depending only on @D. From

Grady[(xk � yk)(xj � yj)]

= (1� �(y)�(y)T )ry[(xk � yk)(xj � yj)]

= (1� �(x)�(x)T )ry[(xk � yk)(xj � yj)] +O(jx� yj2)
we conclude that the last term behaves like

1

�3

Z
Sx;�

(1� �(x)�(x)T )ry[(xk � yk)(xj � yj)]ds(y) +O(�)

=
1

�3

Z
Ex;�

(1� �(x)�(x)T )ry[(xk � yk)(xj � yj)]ds(y) +O(�)

=
1

�3

Z
B�(x)\E

(1� �(x)�(x)T )ry[(xk � yk)(xj � yj)]ds(y) +O(�)

= O(�) ; �! 0 :

Here, E denotes the tangential plane at x 2 @D, and Ex;� is the orthogonal
projection of Sx;� into E. The integral over B�(x)\E vanishes by symmetry
because linear functions like z = (z1; z2; z3) 2 IR3 7! zk are integrated over a
two-dimensional disk centered at the origin. This completes the proof of the
lemma.

2

We are now prepared to study the single-layer potential having Kelvin's
matrix or Kupradze's matrix as kernel.
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Theorem 6.23 Let ' = ('1; '2; '3) 2 C0;
(@D) (0 < 
 < 1) be a uniformly
H�older continuous vector �eld. Then, the single-layer potential

U(x) :=
Z
@D

�(0)(x� y)'(y)ds(y) ; x 2 IR3 n @D ;

is uniformly H�older continuous in IR3. The �rst derivatives of the components
Uj can be extended in a H�older continuous fashion from D into D and from
IR3 nD into IR3 nD with limiting values

@lUj�(x) = dj �
Z
@D

(@l�
(0))(x� y)'(y)ds(y)

� 1

2�

n
�l(x)'j(x)� �+ �

2�+ �
[�(x) � '(x)]�l(x)�j(x)

o
(6.40)

for x 2 @D, j, l = 1; 2; 3, where the integral exists as a Cauchy principal
value. d1, d2, d3 denote the usual cartesian unit vectors. Furthermore, the
estimates

kUk1;
;IR3nD � C
k'k0;
;@D ;

kUk1;
;D � C
k'k0;
;@D (6.41)

hold true for some constant C
 depending on @D and 
. The analogous
assertion is true, if �(0) is replaced by �.

Proof: We already observed before Theorem 6.20 that it su�ces to carry
out the analysis for Kelvin's matrix because the di�erence of Kelvin's and
Kupradze's matrix is su�ciently regular to apply Theorem 6.19. This theo-
rem also implied the H�older continuity of U . Moreover, since the single-layer
potential for the Laplace equation and its derivatives are rigorously analyzed
in [6] (see the remarks after Theorem 6.20), we con�ne ourselves to the �rst
derivatives of the functions

u(x) =
Z
@D

@2jx� yj
@xj@xk

 (y)ds(y) ; x 2 IR3 n @D ;

with a uniformly H�older continuous density  and j, k �xed. To this end we
split in Dh0

@lu(x) =
Z
@D

@3jx� yj
@xj@xk@xl

( (y)�  (z))ds(y)
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+ (z)
@

@xl

Z
@D

@2jx� yj
@xj@xk

ds(y) ; x 2 Dh0 n @D ;

with x = z + h�(z).

Our reasoning during the proofs of the two previous lemmas implies that
the kernel

K(x; y) =
@3jx� yj
@xj@xk@xl

satis�es the assumption (6.31). It also satis�es the other assumptions of The-
orem 6.20, whence the �rst integral represents a uniformly H�older continuous
function in Dh0 . Our analysis of the second term during the previous lemmas
implies the H�older continuity of this term in IR3 nD and in D. Furthermore,
the H�older norms of @lujD and of @lujIR3nD depend continuously on k k0;
;@D.
Finally, the relations (6.36) and (6.39) from Lemmas 6.21 and 6.22 allow to
compute the values on the boundary:

@lu�(x) =
Z
@D

@3jx� yj
@xj@xk@xl

 (y)ds(y)� 4��j(x)�k(x)�l(x) (x) ; x 2 @D ;

the integral being a Cauchy principal value.
Now, the regularity result and the jump relation for derivatives of the

harmonic single-layer potential (6.32) together with

�
(0)
jk (x) :=

�jk
4��jxj �

�+ �

8��(2�+ �)

@2jxj
@xj@xk

; x 6= 0 ; j; k = 1; 2; 3 ;

imply the assertion of the theorem.

2

We needed the above regularity result during the derivation of the stabil-
ity result for the inverse elastic scattering problem, but we did not use the
values of @jUl of the single-layer potential U on the boundary @D in general.
However, we had to know the values of a certain linear combination of the
values @jUl on @D, namely the values of the traction of U . We remind the
reader that the traction was de�ned as

[T (U; �)](x) := (�1 + �)
@U

@�
(x) + �2(r � U)(x)�(x) + �1�(x) ^ (r^ U(x))
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for x 2 @D, where the real constants �1, �2 satisfy �1+�2 = �+�. Relation
(5.7) allows to rewrite the lth component of the above vector as

[T (U; �)]l(x) = �
@Ul

@�
(x) + �2(r �U)(x)�l(x) + �1

3X
m=1

�m(x)
@Um

@xl
(x) : (6.42)

This relation, together with the jump relation of the preceding theorem
allows to derive the following jump relation for the traction of the elastic
single-layer potential. By �(y; x)T we denote the matrix having as columns

�(y; x)Tdj = Tx(�(x� y)dj; �(x)) ; x; y 2 @D ;

i.e., the jth column of this matrix consists of the traction (with respect to
x) applied to the jth column of the fundamental solution �(x � y). This
actually is the transpose of the matrix �(x; y) de�ned in section 5.1 with its
arguments x and y interchanged.

Lemma 6.24 Let ' 2 C0;
(@D) (0 < 
 < 1) be a uniformly H�older con-
tinuous vector �eld. Then, the traction from the interior and exterior of the
single-layer potential

U(x) :=
Z
@D

�(x� y)'(y)ds(y) ; x 2 IR3 n @D ;

can be computed on @D as the uniformly H�older continuous vector �elds

TU�(x) =
Z
@D

�T (y; x)'(y)ds(y)� 1

2
'(x) ; x 2 @D ; (6.43)

where the integral exists as a Cauchy principal value. The analogous assertion
is true, if � is replaced by �(0).

Our last result states that the integral operator appearing in (6.43) is
compact in C0;
(@D) provided �1 and �2 are chosen in a special way.

Lemma 6.25 For

�1 :=
�(�+ �)

�+ 3�
; �2 :=

(�+ �)(�+ 2�)

�+ 3�
(6.44)
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the operator K 0
1:C

0;
(@D)! C0;
(@D)

(K 0
1')(x) := 2

Z
@D

�T (y; x)'(y)ds(y) ; x 2 @D ; (6.45)

has a weakly singular kernel and is a compact operator. The analogous as-
sertion is true, if � is replaced by �(0).

Proof: Theorem 6.19 and the estimates from Lemma 5.1 (b) imply that the
operator

' 7! 2
Z
@D

(�T (y; �)� [�(0)(y; �)]T )'(y)ds(y)

is bounded and linear from C(@D) to C0;
(@D) for each choice of �1 and �2.
Hence, we have to analyze the entries of the matrix [�(0)(y; x)]T , if �1 and �2
are chosen as in (6.44), i.e., we have to compute the kth entry of the vector
Tx(�

(0)(x� y)dj; �(x)). In regard of relation (6.42) we start with

�
Tx
� 1

2��jx� yjdj; �(x)
��

k

= ��jk
2�

�(x) � (x� y)

jx� yj3 � �2
2��

xj � yj
jx� yj3�k(x)�

�1
2��

xk � yk
jx� yj3�j(x) :

(6.46)

In order to compute the traction of r@jjx� yj we use the original de�nition
of the traction operator, the relation �xjx � yj = 2=jx � yj, and obtain for
the kth entry

�
Tx
�
rx

@

@xj
jx� yj; �(x)

��
k

= (�1 + �)
� @

@�(x)

@2

@xj@xk
jx� yj

�
k
� 2�2

xj � yj
jx� yj3�k(x)

= (�1 + �)
�
��jk �(x) � (x� y)

jx� yj3 � xj � yj
jx� yj3�k(x)�

xk � yk
jx� yj3�j(x)

+3
(xk � yk)(xj � yj)[�(x) � (x� y)]

jx� yj5
�

�2�2 xj � yj
jx� yj3�k(x) : (6.47)
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Multiplying (6.47) by �(�+�)=f4��(2�+�)g and adding the result to (6.46)
�nally yields

2
�
Tx
�
�(0)(x� y)dj; �(x)

��
k

= ��jk
2�

h
1� (�1 + �)(�+ �)

2�(2�+ �)

i�(x) � (x� y)

jx� yj3

�3(�1 + �)(�+ �)

4��(2�+ �)

(xk � yk)(xj � yj)[�(x) � (x� y)]

jx� yj5

+
h
� �2
2��

+
2�2(�+ �)

4��(2�+ �)
+
(�1 + �)(�+ �)

4��(2�+ �)

i xj � yj
jx� yj3�k(x)

+
h
� �1
2��

+
(�1 + �)(�+ �)

4��(2�+ �)

i xk � yk
jx� yj3�j(x)

= �jkc1
�(x) � (x� y)

jx� yj3 + c2
(xk � yk)(xj � yj)[�(x) � (x� y)]

jx� yj5
(6.48)

with two constants c1 and c2 because the coe�cients in front of the strongly
singular terms �k(x)(xj � yj)=jx� yj3 and �j(x)(xk � yk)=jx� yj3 vanish due
to the special choice of �1 and �2.

The integral operator with kernel �(x)�(x�y)=(2�jx�yj3) is studied in [6,
Theorem 2.30] and is seen to be compact inC0;
(@D) in view of Theorem 6.19.
Let us point out that the estimates (see [6, Theorem 2.2])

j�(x) � (x� y)j � cjx� yj2 ; x; y 2 @D ;

j�(x)� �(y)j � cjx� yj ; x; y 2 @D ; (6.49)

for a C2-smooth boundary @D are crucial in order to verify the assumptions
of Theorem 6.19. We proceed analogously for the kernel

K(x; y) =
(xk � yk)(xj � yj)[�(x) � (x� y)]

jx� yj5 ; x; y 2 @D ; x 6= y :

It is weakly singular due to (6.49). Moreover, due to (6.49) we have the
inequality ����(x) � (x� y)� �(z) � (z � y)

���
�

���(�(x)� �(z)) � (x� y)
���+ ����(z) � (x� z)

���
� cjx� yjjx� zj + cjx� zj2 ; x; y; z 2 @D ;
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which together with the remark after Theorem 6.19 immediately yields as-
sumption (6.26) for K with m = 2. This completes the proof of the lemma.

2
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Basic Notation

ZZ integers

IN positive integers

IN0 nonnegative integers

IR real numbers

C complex numbers, i :=
p�1, z = x + iy, x; y 2 IR, z := x � iy

complex conjugate

IR3 threedimensional Euclidean space with points x = (x1; x2; x3), xj 2
IR, jxj := (

P3
j=1 x

2
j)

1=2

C3 := f(z1; z2; z3): zj 2 Cg, jzj := (
P3

j=1 jzjj2)1=2

a � b := P3
j=1 ajbj for a; b 2 C3 bilinear form

a^b := (a2b3�a3b2; a3b1�a1b3; a1b2�a2b1) vector product for a; b 2 C3

D closure of a set D � IR3, @D boundary of D

@D smooth, �(y) unit normal at y 2 @D (if D is bounded �(y) is
directed into the exterior of D), ds 2-dimensional area element in @D
p. 16

D nD0 := fx 2 D: x =2 D0g
Br(x

�) := fx 2 IR3: jx � x�j < rg open ball with center x� 2 IR3 and
radius r > 0, Br := Br(0)

S2 := fx 2 IR3: jxj = 1g

@ju =
@u

@xj
= @u=@xj partial derivative of the function u

ru := (@1u; @2u; @3u) gradient of u

�u := @21u+ @22u+ @23u Laplacian of u

r�U := @1U1+@2U2+@3U3 divergence of a vector �eld U = (U1; U2; U3)
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r^U := (@2U3� @3U2; @3U1 � @1U3; @1U2 � @2U1) curl of a vector �eld
U = (U1; U2; U3)

��U := ��U + (� + �)rr � U elasticity operator applied to a vector
�eld U = (U1; U2; U3), �, � are the Lam�e constants

Function spaces
D � IR3

C(D), C(D) set of continuous functions on D, D p. 12

C0;
(D) set of bounded and uniformly H�older continuous functions on
D with exponent 0 < 
 < 1 p. 25

D � IR3 open

Ck(D) set of functions on D having all derivatives up to order k 2 IN
continuous in D p. 12

C1(D) :=
1T
k=1

Ck(D)

Ck(D) set of functions in Ck(D) all of whose derivatives up to order
k 2 IN have continuous extensions to D p. 12

C1;
(D) p. 25

C1;
(@D) p. 25

supp(u) support of a function u, closure of the set fx: u(x) 6= 0g
Ck
0 (D) set of functions in Ck(D) with compact support in D (k 2 IN

or k =1 ) p. 12

L2(D) set of functions onD which are measurable and square-integrable
on D with respect to the Lebesgue measure p. 11

T 0;
(@BR2
) set of 
-H�older continuous tangential �elds on @BR2

p. 147

T 0;

d (@BR2

) set of 
-H�older continuous tangential �elds on @BR2
posess-

ing a 
-H�older continuous surface divergence p. 147

Note: If E = (E1; E2; E3):D ! C3 is a vector-valued function we write
E 2 C(D) for E1; E2; E3 2 C(D), and similarly for all other function spaces
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� grid in IR3 p. 11

� = (s; it; 0) 2 C3, s 2 IR, t > 0 p. 12

�� , 	� fundamental solutions of the Helmholtz equation p. 17, p. 97

g� fundamental solution of �+2i� �r p. 52 , G� corresponding solution
operator p. 52
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