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Introduction

I first realized the importance of solution operators for the differential equa-
tion Au + 2i( - Vu = f which depend in a suitable way on the complex
parameter vector ¢ when I studied the paper [32] by Nachman. He based the
reconstruction of coefficients in a partial differential equation from boundary
measurements on these solution operators. Unfortunately, for the construc-
tion of the solution operators he gives a reference to a paper that has never
been published and a reference to a similar construction in the paper of
Sylvester and Uhlmann [46] where only the special case (-¢ = 0 is examined.
Other authors dealing with parameter identification problems cite these two
papers when they need the solution operators (see [8, 38, 39]).

The proof of Sylvester and Uhlmann uses Fourier transform techniques
in weighted Sobolev spaces and is quite involved as are the proofs of other
authors who prove related results.

Therefore, it was a great simplification when I discovered how to obtain
solution operators with the help of Fourier series in a straightforward and
elementary way. The solution operators became even more attractive when it
turned out that they are not only useful in parameter identification problems
but also in proving unique continuation results which are needed to show
uniqueness for direct scattering problems in an inhomogeneous medium.

This thesis explains the construction of the solution operators via Fourier
series and then applies them to some direct and inverse scattering problems
in inhomogeneous media. We shall examine acoustic, electromagnetic and
elastic scattering problems. In order to give an idea what kind of problems
will occur in the sequel let us now sketch the acoustic scattering problem.
The acoustic scattering problem is a good example for the other problems,
it is probably the one which is known best by the reader, and it needs less
technical and distracting details than the electromagnetic or elastic scattering
problem.



The direct acoustic scattering problem consists in finding the scattered
wave u®, given the wave number x > 0, the refractive index n, and the
incident wave u’. The total wave u = u’ + u® must obey the differential
equation Au + x%nu = 0 in IR® and «® must satisfy a radiation condition at

infinity.
Of course, the first questions to ask are whether there exists a solution
and whether it is unique. Since we assume n(zr) = 1 in the exterior of a

large ball, we can use Rellich’s lemma to obtain u(z) = 0 in the exterior of
that ball, if u is a radiating solution to the above differential equation. The
second step of the uniqueness proof is a unique continuation principle, i.e., a
solution u to Au+ x*nu = 0 in IR*, which has compact support, must vanish
everywhere. At this point our solution operator is very useful because it
allows a short and elementary derivation of the desired unique continuation
principle (see Theorem 1.2).

We establish the existence of a solution via an integral equation which
is known as the Lippmann-Schwinger equation. It is derived by applying
Green’s representation theorem to wu.

The solution u® to the direct scattering problem has the asymptotic be-
havior

ein\x\ 1
u’(x) = (ufx)(i) + O(—)) , |z] = 00,
] ]
with # = |z| 'z denoting the direction of z. u?  is known as the far field or
scattering amplitude of u*.

For the inverse scattering problem we assume that we have measured the
scattering amplitude u$_ for sufficiently many incident waves u’ and that n
is unknown. The task is to reconstruct n from these data. We start with a
more modest result, namely a uniqueness theorem which was first established
by Novikov in [37]: two refractive indices n and 7 producing the same far
field data must coincide. Actually, we prove that all Fourier coefficients of n
and 7 must coincide. To this end we construct for ¢ € C* with ¢ - = &2
solutions of the form

u(z) =" (L+0(|c] ™), I¢] = o0,

to the equation Au+ x?nu = 0. Solutions depending in this way on a param-
eter ¢ had already been considered by Faddeev in connection with quantum
mechanical scattering problems. We refer the reader to [32, p. 536] for a brief
review of their history. Sylvester and Uhlmann used them in [46] to prove
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that the conductivity is uniquely determined by boundary measurements of
voltage and current. We shall construct the special solutions by essentially
replacing in the Lippmann-Schwinger equation the usual fundamental solu-
tion to the Helmholtz equation,

piklz—y|

S (z,y) = TF#Y,

drclx —y|

by a different one,

Ue(z —y) =T Vg (v —y), v #y.

It is immediately seen that, if ¥, is a fundamental solution to the Helmholtz
equation, then g, must be a fundamental solution to the operator (A+2i¢-V),
whence our solution operator comes in.

Next, we turn to the stability of the inverse scattering problem. We
consider the far field patterns u, , originating from a small set of C?-smooth
refractive indices n. We are then able to prove that the inverse mapping
Uoo,n > T 1s continuous when we use a very strong norm on the set of far
field patterns and the maximum norm for the refractive indices. Here, we
shall use the Faddeev-type solutions again in order to estimate the Fourier
coefficients of the difference n — n of two refractive indices. The Fourier
coefficients in turn yield estimates of the difference n — n itself. Alessandrini
[2] proved this result for the problem considered by Sylvester and Uhlmann,
and Stefanov [42] investigated the acoustic case.

Finally, we give a procedure how n can be reconstructed from a knowl-
edge of the far field pattern u., , associated with it. This reconstruction goes
back to Nachman [32]. The main idea is to compute the boundary data of
the Faddeev-type solutions with the help of integral equations whose ker-
nels originate from the fundamental solution ¥, and with the help of the
knowledge of the scattering amplitude. Then, the boundary data are used to
compute the Fourier coefficients of (1 —n). Since all these questions concern-
ing the inverse acoustic problem in an inhomogeneous medium are examined
with the help of the special solutions to the perturbed Helmholtz equation,
our solution operators play an essential role during the analysis.

We carry out the analogous program for the direct and the inverse electro-
magnetic scattering problem in an inhomogeneous medium. For the inverse
elastic scattering problem we omit the reconstruction procedure because a
rigorous examination would have extended the length of this thesis even
more.



Before we proceed with the direct acoustic scattering problem in the first
chapter let us point out that the results concerning the direct scattering prob-
lems have been known for a long time [50, 31, 51, 23, 7]. We have included
those chapters because a good understanding of the direct problems facili-
tates the understanding of the inverse problems. Moreover, a self-contained
presentation of the material may help the reader not to be distracted too of-
ten by searching for references. Finally, since we want to apply our solution
operators during the uniqueness proofs for the direct problems, we have to
deal with the direct problems anyway.

Concerning the inverse scattering problems the results for the elasticity
equation and the stability result for the electromagnetic case seem to be new.
Furthermore, our approach, using Fourier series and carrying out the analysis
in classical function spaces, i.e., spaces of continuous, Holder continuous
or differentiable functions and L2-spaces, is new. Contrary to the papers
mentioned above we have avoided Sobolev spaces throughout. After having
established the existence and the properties of the fundamental solution W,
which differs from ®, by a smooth function, it is possible to use all the
results from classical potential theory. We hope that this way to present the
material simplifies the technical details and contributes to the clarity of the
main ideas.

Of course, there are limits for being self-contained. We assume that the
reader has a good knowledge in analysis and functional analysis (as provided
by many textbooks) and in boundary integral equations (as provided by the
first four chapters in [6] together with [7]). These assumptions reflect the
author’s mathematical education and background.

Nevertheless, we have included proofs for results which can be found in
the monographs [6, 7], if the proofs differ from the ones given there or if they
are important for the understanding of the subject. The above choice of what
is assumed to be known also required a discussion of volume potentials and
of Weyl’s lemma in this thesis although the reader might argue that these
are standard results and can be found in classical monographs. For similar
reasons we have included an appendix dealing with the elastic single-layer
potential though [23] is a standard reference.

The reader can infer from the table of contents the organisation of the
material. We have devoted one chapter to each problem, the direct and the
inverse scattering problem in the acoustic, electromagnetic, and elastic case.

Finally, I want to thank all my relatives, friends, and colleagues who have
helped in some way during my work. Especially, I gratefully acknowledge the



help of Professor Dr. David Colton and of my teacher Professor Dr. Rainer
Krefl. Their research and their books inspired my own research, and the
enthusiasm of the former and the steady encouragement of the latter provided
much support to write this thesis.






Chapter 1

The Direct Acoustic Scattering
Problem

Let us start with a brief physical motivation of the main mathematical prob-
lems we shall examine in this section. We consider an inhomogeneous medium
in IR? and assume that the inhomogeneity is compactly supported. The prop-
agation of time harmonic acoustic waves in the medium is governed by the
equation

Au(z) + k*n(r)u(z) =0, r € R* . (1.1)

u describes the pressure field, x > 0 is the wave number and n is the refractive
index of the medium. x and n(z) are related to the frequency w of the wave
and to the speed of sound of the medium via k = w/cy and n(z) = 3 /*(z).
Here, ¢(x) is the speed of sound at the point = € IR? and ¢ is the speed of
sound in the homogeneous part of the medium (see [7, chapt. 8] or [50]). In
order to model absorbing media, too, we allow I(n(z)) > 0, » € IR>.

In the direct acoustic scattering problem we know the wave number x and
the refractive index n and we are given an incident wave u’ which is scattered
by the inhomogeneity. The task is to find the scattered field u® such that
the total field u := u’ + u® satisfies equation (1.1) and such that u® satisfies
a radiation condition.

In the following sections we shall provide the tools to prove that the direct
scattering problem has a unique solution. Our first aim is the uniqueness
proof. It turns out that solution operators for the differential equation Av +
2i( - Vv = f whose L?-norms depend in a suitable way on the parameter
¢ € €3 are useful during the uniqueness proof. Since these operators also play



a central role when we examine the inverse problem, we introduce them at the
beginning. However, in the next section we shall only prove a result which
is absolutely necessary for the uniqueness proof. When we need stronger
results in later sections we improve our assertions then. Since we employ
Fourier series techniques for the norm estimates of the solution operators, we
start with a brief review about Fourier series in the next section. We proceed
with the norm estimates and prove a unique continuation principle as a first
application of the solution operators.

In the second section we review Green’s formula and then present a ver-
sion of Rellich’s lemma. Both uniqueness theorems for the direct as for the
inverse scattering problems are based on this lemma.

After giving a precise formulation of the direct scattering problem in the
third section we establish its uniqueness. Next, we turn to the existence proof
for the direct scattering problem. We use volume potentials and integral
equation techniques. Thus, we investigate the mapping properties of volume
potentials and finally obtain the unique solvability for the direct scattering
problem.

Although all the results can be found in the literature we have included
this chapter because we want to give a self-contained exposition of the direct
scattering problem. Furthermore, some proofs of well-known results are new
(e.g. the unique continuation principle), and finally the existence proof for
the direct problem will suggest proofs when we examine the inverse problem
in the second chapter.
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1.1 Fourier Series and a Unique Continuation
Principle

The purpose of this section is to give a brief account on Fourier series which
are then used to derive formally a solution operator G’6 for the equation
Au + 2:€ - Vu = f and to estimate its norm. As a first application of the
norm estimate we derive a unique continuation principle.

If D C IR? is an open set we denote by L?(D) the linear space of complex-
valued functions on D which are measurable and square integrable on D with
respect to the Lebesgue measure. We shall tacitly identify functions which
coincide in D except on a set having Lebesgue measure zero. L?(D) endowed
with the scalar product

(f.9) = [ T@)g@)dr , f.9 € L*(D).

is a Hilbert space. ||f|[z2(py = || f||r2 denotes its norm.

For a fixed R > 0 we define the cube C := (—R',R")> C IR®. The
usual orthogonal basis in the space L?(C') are the trigonometric polynomials
e x € C, (R/r)a € Z*. However, for reasons which become obvious in
Theorem 1.1 it is more suitable for us to shift the grid (7/R')Z* and to work
with a slightly modified basis.

We denote by I' the grid

/ / !
= {a = (o, 9, a3) € R Eag 1 eZ, Eal, Eag € Z} ,
s 2 s s
i.e., we have shifted (7/R')Z* by n/(2R') in the direction of the second
coordinate. Furthermore, we define e, (z) := (2R')™*?exp(ia - 1), = € C,
acl.

Straightforward calculations show that we have for o, § € T:

(easep) = 1if o= 3, and (eq, e3) = 0 if a # 3, i.e., the functions e,, a € T,
are an orthonormal system in L?(C).

They are also a complete system. For f € L?(C) the function g(z) :=
e mw/CR) f(1) x € C, satisfies g € L*(C). Hence, by the Weierstrass
approximation theorem for trigonometric polynomials there is a sequence p;,
j € IN, of trigonometric polynomials converging to g, ||p;—g||2 = 0, j — 0.
The functions g;, defined by ¢;(z) := e™2/%®)p(z), z € C, j € IN, belong
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to span{e,:a € I'} and
la = fI: = [ 1/ 00p (@) — e R0 () 2
C

= |lpj—glli» =0, j— o0,

due to |e™2/CE)| =1, x € C.
Then e,, a € T, are an orthonormal basis in L*(C') and for f € L*(C)

we have the Fourier expansion f = Y f(a)ea with Fourier coefficients
acl

f(@) := (eq, f). Moreover, the Fourier coefficients f(«), §(c) satisfy Par-
seval’s identities

S f@F = £z (1.2)

acl

> f(@gle) = (f.9) (1.3)

for f, g € L*(C). By the Riesz-Fischer theorem any sequence c,, o € I, with

> Jea? < oo corresponds to a uniquely defined function f = 3 c.eq €
acl acl’

L2(C) having Fourier coefficients f () = cq.

Let us introduce some more notation. For any set G C IR® we denote by
C(G) the space of continuous functions on G. For a function u defined on
an open set D C IR? we denote by dju = Ou/0z; its partial derivative with
respect to the coordinate ;, j = 1,2,3. Vu := (0yu, Oyu, Ou) is the gradient
of u and Au := 0?u+ d3u+ d3u is the Laplacian of u. C*(D) denotes the set
of functions defined on D having continuous derivatives up to order k£ € IN
in D. C*¥(D) consists of those functions from C*(D) whose derivatives can
be continuously extended to D and C¥(D) is the subspace of functions from
C*(D) having compact support in D.

Let us now turn to the differential equation

Au+2i€-Vu = f (1.4)

in the cube C := (=R, R')®> C IR® where the vector £ € C* is defined as
€ := (s,it,0) with the real parameters s € IR, ¢ > 0. The differential operator
in (1.4) occurs immediately, if one tries to find a solution v of the Poisson
equation Av = g which has the form v(z) = e®u(z), z € C. We shall need
solutions of this form when we study the inverse problem in later sections. At
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the moment we are content in deriving operators Gy which map (formally)
the function f to a solution u of (1.4) such that the operator norms [|G%|| .2
converge to zero as |J(£)| =t — oo. This behavior allows to give a simple
proof for a unique continuation principle which in turn is a basic ingredient
in the uniqueness proof of the direct scattering problem.

In order to obtain Gy let us insert the Fourier expansions of f and u into
equation (1.4), formally reverse the order of differentiation and summation
and compare the Fourier coefficients. We arrive at the equations

—(a-a+2¢-a)i(a) = f(a), a el

hence

f(a)
u = — €q -
O%:F(a-a—l—%-a) “
We do not worry whether and in what sense u is a solution. Instead, we
derive the two properties of the suggested operator G which we need for the
unique continuation principle.

Theorem 1.1 Let s € IR, t > 0 be real numbers and & := (s, it,0) € C.
Then, the operator

~

GeIA(O) = IXC)  Gif == % afiogg e
ael

1s well defined and has the following properties:
R/
(a) NGefllee < =l fllee for all f € L*(C),

(b) Ge(Af+2i-Vf)=f forall fecC§C).

Proof: From (R'/m)as — (1/2) € Z we conclude |as| > 7/(2R') for all € T
and then

-+ 28 af > |S(a-a+ 28 a)| = 2t|ay| > (7t)/R (1.5)
for all & € I'. Note that this is the reason for the shift of the usual grid
((m/R"Z)? when defining T and e,, @ € T'. Then (a-«a+ 2£-«a)~" exists for
all @ € I' and we can estimate

5 i)

= (- a+2¢- )

2

RIZ I~ 2
Sﬂ-2t22|f(a)| <OO,
acl
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for all f € L*(C). Hence, by Parseval’s identity (1.2) G}: L*(C') — L*(C) is
a well defined linear operator which satisfies the norm inequality (a).
For the proof of assertion (b) we use integration by parts and obtain for

fe i)

(Af +2i€-Vf)(a) = (2R)™/? / (Af + 2i€ - Vf)(z)e~ T d

= (2R')%? / f@)(—a-a—2¢6-a)e ™ dr

= —(a-a—i—?f-a)f(a).

Now, part (b) follows from the definition of Gv.
O

Since the differential equation (1.4) has constant coefficients, one might
try to use the Fourier transform for the construction of a solution opera-
tor. Employing formally the Fourier transform F to (1.4) we obtain with
pe(y) = —y-y—26-y,y € IR3, the equation pe(y)(Fu)(y) = (Ff)(y),
y € IR?. Using the inverse Fourier transform we arrive at the solution oper-
ator GYf := F~'((1/p¢)F f). However, contrary to our derivation with the
help of Fourier series we now have pe(y) = 0 for certain y € IR*. This fact
causes difficulties to verify the norm estimate (a) from Theorem 1.1. Several
authors have found ways to deal with this difficulty. We refer the reader to
[46, 40] and [1, 49] where differential operators of the form (1.4) are studied.
In his paper [17] Isakov has pointed out that there is another very general
method to construct fundamental solutions for partial differential operators
with constant coefficients via Fourier transform techniques which is given
in Theorem 7.3.10 in Hérmander’s book [14]. This method also yields the
right behavior for large |3(&)| according to the proof of Theorem 10.3.7 in
[15]. All those proofs need a more advanced machinery than our elementary
considerations in Theorem 1.1.

The second theorem of this section is a unique continuation principle: a
function u € CZ(IR?) satisfying the inequality |Au| < M |u| in IR* must vanish
identically. This is a very weak form of the unique continuation principle and
much better results can be found in the literature ([7, Lemma 8.5], [27, p. 65],
[16, Theorem 17.2.6 and further references therein]). However, it turns out
that our strong assumption u € CZ(IR?) is satisfied in the problems we shall
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consider in the sequel. Moreover, our proof, which is built on the operator
Gy from Theorem 1.1, is quite simple.

Theorem 1.2 If u € CZ(IR?) satisfies |Au(x)| < M|u(z)| for all v € R?
with a constant M, then u vanishes in all of R®. This is also true, if u =
(uy,...,w) is a vector valued function, Au := (Auy, ..., Au;) and |-| denotes
the euclidean norm of a vector in C'.

Proof: We choose R’ > 0 large enough to ensure supp(u) C C' = (—R', R')3.
Furthermore, we define ¢ := (M R')/m)+1, and & := (t,4t,0) € C°. Defining
v(z) := exp(—i - )u(x), z € R?, a simple computation shows

Au(z) = exp(i€ - x)(Av + 2i€ - Vo) (z) ,

whence

(A +2i€ - V)v(z)| < Mv(z)] forallz € R . (1.6)
Moreover, using Theorem 1.1 (b) we obtain for v € CZ(C')
v=G((A+2i-V)v).
Combining the last equality with (1.6) and Theorem 1.1 (a) we arrive at

MR
7t

R .
lollz2 < —[I(A + 2 - V)ol|2 < ol -
Since (MR')/(mt) < 1, the function v must vanish, and then « must vanish.
If u is a vector valued function, we can use the same reasoning where we
understand that a differential operator or the operator G is applied to each
cartesian component of a vector valued function.
O
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1.2 Green’s Formula and Rellich’s Lemma

Green’s formula allows to represent smooth functions in a smooth, bounded
domain by a superposition of certain potentials. In order to give a precise
statement of Green’s formula (Green’s representation theorem, Helmholtz
representation) we define that a nonempty, bounded, open set D C IR* with
boundary 9D is C?-smooth (or that 0D is C*-smooth), if for all z € dD there
exist an open ball B,(r) C IR* and a bijective mapping ¢: B,(r) — V C IR?
such that 1 and its inverse 1! are twice continuously differentiable in the
closure of their respective domains of definition and such that

Y(Bi(x)N D) C {y € R*ys >0}, ¢(B,(z) N9D) C {y € R*y; =0} .

For a C?-smooth surface 0D we can define the outward unit normal vector
v(z) = (1 (), ve(z),v3(x)) € R? to D at the point x € dD. By ds we
indicate the two-dimensional area element in 0D.

If D ¢ R? is a C%-smooth nonempty, bounded, open set and if w €
C*(D), then Gauss’ theorem (integration by parts) yields

/l/j(x)w(x)ds(x) :/(3jw)(x)dx, j=1,2,3. (1.7)

oD D

Applying equation (1.7) to the functions w = u(9w), | = 1,2,3, with

j = [ and adding the results yields Green’s first theorem
ov
ua—ds = /(Vu - Vv + uAv)dx (1.8)
oo D

for u, v € C*(D).

If we interchange u and v in the above formula and subtract, we obtain
Green’s second theorem

/(u@ - v%)ds = /(UAU — vAu)dx (1.9)

for u, v € C*(D).

Note, that the smoothness assumptions on v and v can be relaxed some-
what. In equation (1.8) it suffices to suppose u, v € C'(D), u € C?(D) and
Au € C(D). For equation (1.9) the assumptions u, v € C?(D)NC'(D), and
Au, Av € C(D) are sufficient.

16



For k € C, z, y € IR?,  # y, we denote by

cirlz—y|

D, (, =

the fundamental solution to the Helmholtz equation Au+r?u = 0. If y € IR3
is fixed, ®,(-,y) is a solution to the Helmholtz equation with respect to the
variable x in IR* \ {y} and similarly, if z is fixed.

Now, assume D is C?-smooth and bounded, u € C*(D) and z € D is
fixed. Applying Green’s second theorem with v := ®,(z,-) in the smooth
open set D\ B.(z) and taking ¢ — 0 yields the following representation of u
which is known as Green’s formula.

Theorem 1.3 Let D C R® be a nonempty, bounded, open set with C?-
smooth boundary. Then, for k € € and for a function u € C*(D) we have
Green’s formula

we) = [{Geato) — ol G sty
- [(Auly) + Ku(y) @ule,p)dy , w€ D (110)

Green’s formula is also true if u only satisfies u € C*(D)NCY (D) and Au+
k*u € C(D).

A detailed proof can be found in [7, Theorem 2.1].
Note that ®,. is analytic for x # y, i.e., if 29, yo € IR?, 29 # yo, then there

exists an € > 0 such that for all z, y € R?® with |z — | + |y — yo| < € the
series expansion

Q. (z,y) = Z o (Zo, Yo) (T — o)™ (y — yo)ﬁ
a,ﬁGINg

holds true with certain coefficients aqs(xo,y0) € C. The series converges
absolutely and uniformly. Here, we use 27 := 2720229 for a multi-index
B = (B, B, 3) € IN3 and 2 € C°. Hence we can infer from the above
theorem that solutions to the Helmholtz equation Au + k?>u = 0 in D are
analytic functions in D.
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®,.(-,y) and ®_,(-,y) are both solutions to the Helmholtz equation in
IR*\ {y} which have a different behavior at infinity. We can therefore guess
that, in order to have a unique solution to our scattering problem, we have to
specify its behavior at infinity. For £ € C \ IR it is reasonable to expect the
scattered waves being bounded for large x. This excludes ®_, if J(k) > 0.
But for k > 0 both ®,.(-,y) and ® ,(-,y) are bounded for large x. The
necessary distinction is made by the Sommerfeld radiation condition: let
u € C*IR*\ B,) be a solution of Au + k?>u = 0 in R* \ B,. Then u
satisfies the Sommerfeld radiation condition (u is a radiating solution to the
Helmholtz equation) if
i Valz) — k(@) = o(—) | |#| = 00 | (1.11)

]

uniformly for all directions # := |z| tx.

Our next aim is a representation formula as in (1.10) for a radiating
solution to the Helmholtz equation in the exterior of a ball. To this end we
first prove the following useful lemma.

Lemma 1.4 Let u, v € C*(IR®\ Bg) be radiating solutions to Au+ k?u =0
in R* \ Bg where k > 0. Then,

ov ou
/ (ua — vg)ds =0

|lz|=r

for all r > R.

Proof: We first show that there is a constant bounding the integrals

| ulw)dsty)

ly|=r

for all » > R from above. From the radiation condition we know

0 = lim / |2 Vu(z) — iku(r)|*ds

r—00
|z|=r
ou
— 1 -~ 2, 2 2 , ou__
= rll)rgo{ [ {|x Vu(z)|* + £%|u(z)| }d8+2§R{m[ ayuds}}.

(1.12)
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Applying Green’s first theorem in the set {R < |z| < r} we have

2R{ir / uds}

|z|=r

= —25%{/ %Hds— / —uds}—?m\s{/ —uds}

|lz|=r lz|=R lz|=R

= —2&%{/ ?ﬂds}.
v

lz|=R

Inserting this into equation (1.12) we can conclude that

lim sup lu(y)|?ds(y) < oo .
r—00
ly|=r
Of course the same holds true for v.
Employing Green’s second theorem in the spherical shell {r < |z| < r'}
we arrive at

ov ou ov ou
0= /(u%—vg)ds— /(u%— %)ds

|lz|=r |z|=r"

The assertion then follows as ' — oo because the radiation condition to-
gether with the Cauchy-Schwarz inequality implies

ov ou
[ g v

|z|=r

/ {u——mv)—v(%—mu)}ds%() "= o0
v

|z|=r"

O

Now we can prove that for a radiating solution to the Helmholtz equation
in the exterior of a ball a similar representation as in (1.10) holds true.

Theorem 1.5 Let u € C%(IR?*\ Bg) be a radiating solution to Au+ rk*u = 0
in R*\ Br where k > 0.
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(a) Forxz € R\ By the representation

)= [T - S adst) (13

dBR

18 valid.

(b) For x € Br we have the relation

0= [ ful) 228D e (wpasy) . (114)

dBR v(y)

Proof: We fix z € R? \ By and use Green’s formula in the domain {R <
|z| < r} to arrive at

w0 = [ (Gt - utn s
ly|=r
- [ Grate.n) — ut) TG ast)
ly|=R

Since ®,(x, ) is a radiating solution to the Helmholtz equation in the exterior

of B,, the integral over OB, vanishes due to the preceding lemma and we have
proved assertion (a).

For the proof of part (b) we apply the preceding lemma with v = ®,(z, -).

O

The last theorem allows to study more precisely the behavior of a radi-
ating solution to the Helmholtz equation. We denote by

S?:= 0B, = {zr ¢ R* |z| = 1}
the unit sphere in IR?.

Lemma 1.6 Let u € C*(IR*\ Bg) be a radiating solution to Au + k*u = 0
in IR?\ Br where k > 0. Then, there exists a function us: S* — C such that

m\w\
u(z) = | | {uoo(i)+0(| |)}, lz| = oo,

uniformly for all directions & = |z|'x € S%.
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Proof: With the help of

1

o=yl = Vol =20y lyP = lal = & -y + O

) , |x] — o0,
which holds uniformly for all y € By, |x| > 2R+ 1, we obtain the asymptotic
behavior
e .
®,(z, — —indy 4 o
0Dy (w,y) _ e
ov(y) © 4nal

|3C|)} |z = 00, (1.15)

1
|

{—m:@ cv(y)e Y 4 O( )} . |z] = 00 .

The proof now follows by inserting the above expressions into the represen-
tation (1.13).
|

—iKT

From us (%) = TlLrglO re " u(rz) we conclude that us, is uniquely deter-
mined by u and we define that u., is the far field pattern (far field, scattering
amplitude) of u.

Now, the natural question arises whether two different radiating solutions
to the Helmholtz equation can have the same far field pattern. The next
lemma which is a variant of Rellich’s lemma (see [41, 22, 7]) states that this
is not the case, i.e., the far field uniquely determines the radiating solution to
the Helmholtz equation. We use stronger assumptions than those employed
in the above references and give a proof whose main idea is due to Miranker
([28]). This proof avoids spherical harmonics and solutions to the spherical
Bessel differential equation and is based on Green’s formula and the behavior
of the functions ®,.

Lemma 1.7 Assume r > 0 and u € C*(R?\ B,) is a solution to Au(zx) +
k*u(x) =0, |x| > r, that satisfies

lu(z)|*ds(z) =0, ' — o0, (1.16)
|z|=r!

and the Sommerfeld radiation condition (1.11). Then u = 0 in R* \ B,.
Especially, any radiating solution to the Helmholtz equation with vanishing
far field pattern must vanish identically.
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Proof: The proof consists of three steps. First, we show that u can be
represented as

= L{%u(y)_%(x,y%(y)}ds(y)
- /{%Tgy)y)@) ) D)) o] > 7
(1.17)
Next, we define the functions
folint) = ei”/tu(%:%) GeS, 0<t<ty,
Folit) = em/tu(%i) LGeS, 0<t<to,

where tq > 0 is sufficiently small, and then deduce from the above repre-
sentations that f, and f_ are real analytic in £. In regard of the expansion
theorem for radiating solutions to the Helmholtz equation due to Atkinson
[3] and Wilcox [52, 53],

6in|9[:| 00 u(u%)
u(r) = — Y L=
|| =0 |7

that is valid for all sufficiently large |x|, the assertion for f, immediately
follows by replacing |z| by 1/t. We actually repeat their proof. In the last
step we use the analyticity of f, and f_ to lead the assumption f, # 0 to a
contradiction. This yields the assertion.

In Theorem 1.5 (a) we have proved the first equality of (1.17). From
the representation (1.10), which also holds for —k, applied to u in the set
{r <|z| < r'} we have for r < |z| <71’

we) = [ Grwosten) — u) e ds(0)
ly|=r"

- [ G o)~ uln Pz ()
lyl=r



The first integral can be written as
0
) | G ) — ixu)@-u(z,y)
yl=r'

0P . (x,y

() (TG — vy ) st

Now we use the radiation condition, the condition (1.16) and the estimates
By, )| +H0D_(, ) /()] = O(lyl ), |y] — o, and deduce for 1’ — o0
with the help of the Cauchy-Schwarz inequality the second representation in

(1.17) for w.
From (1.17) we obtain
1
e t) = e"u(=a)
aq)n(%A y) Jt 1 ou
— ) —1iK _ (DH iy —ik/t d
| [ e ) = Bl m)e S )s(y)
y|l=r
(1.18)
Since
1 1
zE -yl = —\/1 — 2t -y + 2|y[?
= —(1+ Zc] ,0<t<t,

1 , pir(|La—yl—1)
(I)n(_-'i'a y)e—m/t _ tl t
|sz“ —y|

= Zd](x,y)tj L 0<t<ty,
j=1

where ¢;, d; denote continuous functions in y € 9B,, & € S?. The conver-
gence is uniform in y,  and ¢t if ¢, is sufﬁciently small. Similarly, we can
obtain a series expansion for e=*/'0®, (1%, y)/0v(y). Inserting these expan-
sions in (1.18) yields the expansion

oo

fo@ 0= a;®R) , 0<t<ty, 2€S5*.

j=1
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Analogously, we can derive an expansion for f .

Now, fix # € S? and assume f (%, ) does not vanish identically in (0, #y).
Then, the quotient f_(%,-)/f.(Z,-) has at most a pole at ¢ = 0. However,
this is a contradiction because f_(#,t)/f,(#,t) = e?*/* has an essential sin-
gularity at ¢ = 0. Therefore, we conclude f,(z,t) = 0 for all 0 < ¢t < ¢,
& € S?, hence u(z) = 0 for |z| > 1/ty, and then v = 0 in R? \ B, because
solutions to the Helmholtz equation are analytic, and we have proved the
first assertion of the lemma.

If u is a radiating solution to the Helmholtz equation with vanishing far
field pattern, we know that |u(z)| = O(|]z|™2?), |z| — oo, hence

/ lu(z)[*ds(z) — 0, r — oo .

|z|=r

Then u vanishes and we have proved the lemma.
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1.3 Unique Solvability of the Direct Acoustic
Scattering Problem

In this section we give a precise formulation of the direct acoustic scattering
problem, prove its uniqueness and then turn to its existence proof. Since the
existence proof requires more regularity than continuity for the refractive
index n, we state the problem with the higher regularity assumption on n al-
though the uniqueness proof works for continuous n, too. The existence proof
is based on integral equations containing a volume potential. We therefore
study volume potentials more closely before presenting the existence result.

We need a regularity that is somewhat between continuous and continu-
ously differentiable. To this end let us introduce some function spaces.

If G ¢ R? is bounded, C(G) is a Banach space with the norm

[ellse = lllloo,c := sup [(z)] .
zeG

A complex-valued function ¢ defined on a set G C IR? is called uniformly
Holder continuous with Holder exponent v, 0 < v < 1, if there is a positive
constant M such that |p(z) — ¢(y)| < M|z — y|” for all z, y € G. For
0 < v < 1 we denote by C%7(G) the linear space of bounded and uniformly
Holder continuous functions on G' with Holder exponent . Equipped with
the norm

pr) — ey
0., °= Sup |p(z)| + sup lelz) = #ly)
zeG a:,y#EG’ |.'L' — y|7
zy

lplloy = lle

C%(@) is a Banach space.

Similarly, we can introduce functions having uniformly Holder continuous
derivatives. If G C IR is an open set, we define C*7(G) to be the Banach
space of all bounded and continuously differentiable functions ¢ on G for
which the gradient V¢ is a bounded and uniformly Hélder continuous vector
field on G with exponent . The norm in C*7(G) is

Vo(z) =V
e = il 1= sup ()] + sup (Vi) |+ smp [TAD =X WL

—ul
””gfff | r—Y |

We define C'»7(0D) and its norm analogously by replacing the gradient by
the surface gradient.

25



Let us now formulate our model for the scattering of an incident acoustic
wave %’ in an inhomogeneous medium in IR* with compact inhomogeneity.
Assume k > 0 and n € C*7(IR?), 0 < v < 1, are given with supp(1—n) C By
and (n) > 0. Moreover, u* € C?(IR?) with Au’ + k?u’ = 0 in IR? is known.
Then the direct acoustic scattering problem (DAP) consists in finding u® €
C?(IR?) such that u := u’ + u® satisfies

Au(z) + k*n(z)u(z) =0, 2 € R? | (1.19)

and such that u® satisfies the Sommerfeld radiation condition (1.11)

& Vu'(zr) — mus(x)‘ = 0(|?1|

), |z] = 0o,

uniformly for all directions # := |z| 'z.

We regard v’ as an incident wave, u° as the scattered wave and u as the
total wave.

The first theorem states uniqueness for the problem (DAP).

Theorem 1.8 If u* € C*(IR?) satisfies Au® + k*nu® = 0 in R® and the
Sommerfeld radiation condition (1.11), then u® = 0 in R3, especially, the
direct acoustic scattering problem has at most one solution.

Proof: As in (1.12) we know from the radiation condition

o . aus 2 2 512 . aus_s
0= rlg(r)lo{l l/ {|E| + k°|u’|“}ds + 2R{ik / 55U ds}} , (1.20)
and Green’s first theorem (1.8) yields

2R{ir /

|lz|=r

Ou usds} = —2%{5/{|Vu5|2 + uSAu’}dx}
14
- —2J{m/{|vu 2 — w2n|u’|?yda}

- 2&3{/ ) Pday > 0 .

Hence, we can infer from equation (1.20) that

u¥lPds = 0, r — o0
|u’| , :

|z|=r
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and Lemma 1.7 yields u*(z) = 0 for |z| > R, i.e., u € CZ(IR?).

From Au® + k?nu® = 0 we obtain the inequality |[Au®| < M|u®| in R?
where M := max{x?|n(z)|:x € R*}. Now, applying Theorem 1.2 we arrive
at ©* = 0 in IR® and have proved the theorem.

|

Now, we are going to show that the direct scattering problem (DAP)
has a solution. To this end assume v = u’ + u° is the solution to the direct
scattering problem (DAP). For x € R* we choose r > |z| + R. Applying
Green’s formula (1.10) we arrive at

we) = [ Gt~ un st
2 [ (1= n(y)u(y) @, y)dy

By

Inserting u’ + v for u into the integral over OB, and observing that the
contribution from u® is zero due to (1.14) whereas the remaining integrals
over OB, represent u’ due to (1.10) we obtain the integral equation

u(z) = u'(z) — K /(1 —n(y))u(y)®u(z,y)dy , v € R?, (1.21)

Br

which is known as the Lippmann-Schwinger equation. This is an integral
equation of the second kind in Bg for the unknown total field u. Our aim
is to show that a solution u of the Lippmann-Schwinger equation yields a
solution u* to the scattering problem via u® = u — u’. We can then obtain
the solvability of the integral equation by the Riesz theory and the previous
uniqueness theorem. Hence we have proved the existence of a solution to the
scattering problem (DAP). To this end we have to study the properties of
the volume potential

(Vep)(@) = [ ®ula,p)e(u)dy , o € R?,

which appears in the above equation. We replace the kernel ®, by a more
general kernel because in later sections we shall encounter volume potentials
with different kernels again. In [13, IV 4.1] the reader can find the proofs for
volume potentials with a kernel k(x, y) which are not of a convolution type.
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Let us start with an examination of the first derivatives of a volume po-
tential and with the proof for the compactness of volume potential operators.

Theorem 1.9 Assume 0 < Ry < Ry. Let k € C*(Bag, \ {0}) satisfy
|k(z)| < Mlz| ™", |0;k(z)| < Mlz|™* , [0;0k(z)| < Mlz|*,

for j, 1 =1,2,3, 0 < |z| < 2Ry, with a suitable constant M. Define for a
density ¢ € C(Bg,) the volume potential Vi by

(Vo)) i= [ kw—y)ol)dy , =€ Br,
BRl
Then V¢ has the following properties:

(a) For ally € (0,1) Vi € CY(Bg,) and there is a suitable constant C,
such that ||Vo||1,, < C,ll¢lle for all ¢ € C(Bg,).

(b) The derivatives have the form

0,(Ve) @) = [ @k = y)elydy . x€ Br, , j=1,23.

Br,

For ¢ € Cy(Bg,) the relation 9;(V) = V(9;¢) holds true.

(¢) The operators

Vi(CBi) Il ll) = (CBr) |- ll) .
Vi(CBr)l zxsay) = (CBr).ll- llseoa,)  and
Vi (CB)s |l resny) = (CBr)s I loo)

are compact.

Proof: Due to the weak singularities of k£ and 0;k at z = 0 the integrals in
the assertion exist as improper integrals. We choose a function y € C'(IR?)
such that 0 < x <1, x(z) = 0 for |x| <1, and x(x) =1 for |z| > 2. Then
we define

(Vie)a) == [ x(U(a = y)k(e —y)e(u)dy , € Br, , 1€ N

Br,

28



Since x(I-)k € C'(Bag,), we know Vip € C'(Bg,) and

@;Vie)@) = [ xUl@ =)@k - v)e)dy

+ [ 10500 = y)k(x — y)ew)dy , = € Br,

Bpg,

(1.22)

From

Vige) = V(o) < o

{ly—=[<2/1}

o]l cody < ™, 1= o0,

we know [|Vip — V|l — 0, I — 00. ¢ denotes various positive constants
during the proof which may vary from inequality to inequality. A similar
estimate shows that the second integral in (1.22) converges uniformly to
zero, whereas the first integral in (1.22) converges uniformly to

/ (0;k) (x — y)ply)dy .

Br,

This implies Vi € C'(Bg,) and the first formula for the derivative in part
(b). For ¢ € Cj(Bp,) integration by parts yields 9;(Vi¢) = Vi(9;¢). Passing
to the limit [ — oo we can derive the second assertion of part (b) by the
previous considerations.

Next, we show the Holder continuity of 0;(V¢) and the norm estimate.
The inequality

V)@l < [ 1k = p)llelody

Bpg,
< M [ =y dylele < el
[z—y|<2R:

and a similar estimate for 0,;(V¢) provide bounds for the supremum norms
of Vi and 0;(V). For the Holder continuity we first observe that if z, z,
y € Bg, with 2|z — z| < |z — y| are given and if 2* =z +t(z — z), t € [0, 1],
lies on the line between z and z, then |z* — y| > (1/2)|z — y| because
2" =yl =le+i(z—x) =yl > |z—y|—tlz -]
> oyl - (¢/2)z -yl > (1/2)—y] .
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Then we obtain for z, y, 2 € Bg, with 2|z — 2| < |z — y| the estimate

1

(0jk)(x —y) — (9;k)(z — y)| = |/($ —2) - (VOik)(z + t(z — x))di|
ﬂ:__?jL . (1.23)

Finally, we compute for x, z € Bg, with ¢ := |z — z| > 0:

| [ (@)@ = 9) = @k)(= — y)ply)dy]

< /|akx— ~ (Ok)(z = w)ldyll ¢l
< ellel [ (@R @ = )| +1@k) ~ )y

Br, N{lz—y|<20}

[ @R E )~ @R - y)ldy)

Bp, N{|z—y|>20}
and bound the first integral by
/ | |2 dy + / |2dy < ¢
|lz—y|<2d \<35 —Y
and the second with the help of (1.23) by

clr — 2|
lz —y?

dy < c|lr — z|logd < clx — 2|
20<|a—y|<2R,

This completes the proof of assertion (a).

Since by the Arzela-Ascoli theorem the imbedding (C'(Bg, ), || ||1,,) into
(C(Bg,), || - llso) is compact, we conclude from part (a) the first assertion of
part (c). The Arzela-Ascoli theorem also implies that the operators V are
compact operators from (C'(Bg,), || - [[z2(8g,)) t0 (C(Br,), || - lx). Using the
Cauchy-Schwarz inequality we can estimate

M 2
HVP@)W?A

Vip@) —Vo@)? < |

{ly—=[<2/1}
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M2
S e L
{ly—z|<2/1} {ly—z|<2/1}

c
7”90“%2(331)
for all x € Bg,, whence

sup [[Vig = V¢llw =0, I =00
lell2=1

Then, V:(C(Bg,), || - llz2(8r,)) — (C(Bry); |l - [lso) is compact and so is
V:(C(Br,); I-ll2(8r,)) = (C(Br,), ||l22(8s,)) due to the continuous imbed-

ding of (C(Bg,), || - llo) into (C(Bgy), || - lz2(8g,))- This ends the proof of
the theorem.

O
The next theorem deals with the second derivatives of a volume potential.

Theorem 1.10 Assume 0 < R; < R,.

(a) If k € C?(Bag,\{0}) satisfies the assumptions from Theorem 1.9 and if
the density ¢ € C*V(Bg,), v € (0,1), is uniformly Hélder continuous,
then the volume potential

(Vo) @) i= [ k= p)eu)dy , o€ Ba,

Br,

is twice continuously differentiable in Bg, and we have

(20;(V))(x) = /(3zajk)(x—y)[¢(y)—w(x)]dy

Br,

~¢(x) [ ny)Ok)(@ = y)ds(y)

= [ @)~ pliply) ~ pl)dy
—p(a) [ wil)@k) (@ = y)ds(y)
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(b) If k has the form k(x) = (1/(4n|z])) + k(z), 0 < |z| < 2R,, where
k € C?(Bag, \ {0}) satisfies
[k(2)] < M, |9;k(z)| < Mlz|™",
00k (x)| < Mlz| ™2, |0;000mk ()] < Mla| ™,

forj, I, m=1,2,3, 0 < |z| < 2Ry, with a suitable constant M, then
Vi € C?*(Bg,) and

(AVE)(@) = =) + [ (Mb)@ =y)e(y)dy . @ € Br, .

Br,

Proof: We know from Theorem 1.9 that Vi € C'(Bg,) and that we have for
a fixed j

v(@) = (V) (@) = [ (k) (@~ y)e(y)dy , © € B, .
Using the function y from Theorem 1.9 we define
o) == [ (@F)@ = y)x(m(z = )¢y , v € Br, , meN.
BRI

Proceeding as in the previous theorem we obtain ||v,, — v|[ec — 0, m — o0,
vy € C1(Bg,) and

Oin(s) = [ (O~ 9)x(m(z — )2y

Br,

-/ a%((ajm(x —y)x(m(z = y))) (p(y) — @())dy

Ry

~ (o) [ 5 (@H) = wximle - )dy
= [ 5 (@k) — pxtme — 1) (ol0) = ol

Ry

o) [ nw)@k) (@~ y)x(m(s —y)ds(y) , v € Ba,

9Br,
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Here, we have used integration by parts in the last step. As m — oo, due to
the uniform Holder continuity of ¢, the first integral converges uniformly to

| @03k = y)(ey) = ()
whereas the second term converges locally uniformly to
o) [ n)@k) = y)ds(y)
Hence, v € C'(Bg,), i.e., Vi € C?(Bg,), and
(00;(Ve))(x) = Ow(x)
= [ @)@ - 1)(e(y) ~ o)y

Br,

~p(x) [ n)@k) (@ —y)ds(y) , = € Br, .

dBr,

Moreover, from 0,0;(Vy) = 0;0,(V¢) we can infer the second formula in
assertion (a) for the derivatives and we have proved part (a).

For assertion (b) we note that k and 0; k satisfy the assumptions of The-
orem 1.9. Therefore,

(vwmazt/%u—yw@My,era,

is twice continuously differentiable in By, and integration and differentiation
may be interchanged. Hence, it remains to investigate the Newton potential

(Vo) (@ / #ly)dy , © € Bn, .
4ﬂ$—m

We can conclude from part (a) that Vpp is twice continuously differentiable
in Bg, and that

AVe) = [ A=) el) — el
woto) [ D) = —pto) v € B
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In the last step we have used A(1/|z]) =0, |z| > 0, and the representation
formula (1.10) in Bg, for kK = 0 and the function u(z) = 1, x € Bg,.
|

Straightforward calculations show that for x € C the kernel
iKk|z|
e

k = — >0
(@) i= 1oy« Jal >0,

satisfies the assumptions in Theorem 1.9. Furthermore,

- irlz] _q 1 = (k) .
z) =5 = (ir) iz, 2| >0, keC,
47|z dm = !

satisfies the assumptions of Theorem 1.10. And finally,

5 ein\x\ 6i/~a|:1:|

Ak(z) = A = -k’ >0.
) = A = ™ e !

Consequently, the following theorem holds true for the volume potential

(Vi) (z) == /q’n(x,y)w(y)dy , v €R?.

Theorem 1.11

(a) If ¢ € C(Bg), then Voo € CY(Bg) for all 0 < v < 1, the order
of differentiation and integration can be interchanged, and ||Vipl|1, <
el

(b) If ¢ € C%(Bg), then Voo € C*(Bg) and A(Vip) + k2(Vip) = —¢.
Especially, if ¢ € C%(Bg) has compact support in Bp, then Voo €
CR?) and A(Vep) + k2(Vep) = —¢p in R,

(¢) If ¢ € C5(Bg), then 9;(Vip) = Vi(9;p).

We are now in a position to prove that a solution to the Lippmann-
Schwinger equation (1.21)

u(z) = u'(r) — K /(1 —n(y)u(y)Pu(z,y)dy , © € Bg .

Br

yields a solution to the direct acoustic scattering problem.
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Lemma 1.12 Letu € C(Bg) be a solution of the Lippmann-Schwinger equa-
tion (1.21) in Bg. Then

w(z) = — k2 /(1 @) u(y)®u(z,y)dy , w € R, (1.24)

Br

is the solution of the direct acoustic scattering problem (DAP).

Proof: First, we conclude from the Lippmann-Schwinger equation and the
regularity of the volume potential that u € C'(Bg) and then u® € C?(IR?).
Moreover, u* is a radiating solution to the Helmholtz equation in the exterior
of Br because ®, is. Finally, due to the Lippmann-Schwinger equation, we
can extend u by u := v’ 4+ u* in IR* and we compute

Au+ k*u = Au® + k*u® = k*(1 — n)u,

where we have used Theorem 1.11 again.
O

The existence of a solution to the direct scattering problem (DAP) is an easy
consequence of the previous lemma and the uniqueness proof.

Theorem 1.13 The direct acoustic scattering problem (DAP) has a unique
solution u®. The total field u = u' + u® is the unique solution to the
Lippmann-Schwinger equation (1.21) in IR,

Proof: We have established uniqueness for (DAP) in Theorem 1.8. Due to
the compact imbedding of C'7(Bg) into C(Bg) we can conclude from the
mapping properties of the volume potential that the equation

u(w) = u'(2) = #* [ (1= n(y))uly) @l y)dy , v € B,

Br

is a Fredholm integral equation of the second kind with a compact integral
operator in C'(Bpg). Consequently, by the Riesz theory it has a unique solution
if it has a trivial nullspace. If u € C'(Bg) is a solution of the integral equation
with u’ = 0, we define u® as in (1.24) and conclude from Lemma 1.12 that u®
is a solution of the homogeneous problem (DAP). This implies u = u® = 0 by
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the uniqueness for (DAP). Since by Lemma 1.12 a solution of the Lippmann-
Schwinger equation yields a solution to the scattering problem (DAP), we
have proved the theorem.

a

From the representation
w'@) == [ (1=n(y)uy)®uzy)dy , v € R,
Br

and the asymptotic behavior of the fundamental solution (1.15) we obtain

2

ul (%) = —Z— / (1= n(y))uly)e ™™dy | & e S? . (1.25)
™
For the incident wave u'(x,d) := ¢"®4 z € IR® which represents a plane

wave travelling in direction d € S? we denote by u®(:,d) and us(,d) the
corresponding scattered wave and far field pattern, respectively.

The next chapter is devoted to the question how much information about
the refractive index n can be recovered from u..: S? x S? — C.
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Chapter 2

The Inverse Acoustic
Scattering Problem

This chapter is devoted to an inverse acoustic scattering problem. We assume
that the refractive index n is unknown. In order to obtain some information
about n we probe the medium with plane incident waves and measure the
corresponding far field patterns of the scattered waves. Assuming that the far
field patterns at a fixed wave number for all incident directions are available,
i.e., Use: S% x S? — C is known, the task is to reconstruct n from these data.

We follow the historic development and start with a more modest result.
Namely, these data suffice to determine n uniquely. To this end we have to
construct special solutions to the equation Au + x?nu = 0. The construc-
tion for a very similar case, due to Sylvester and Uhlmann, is worked out in
[46]. We modify their method by using Fourier series techniques instead of
the Fourier transform. The special solutions allow to prove that the Fourier
coefficients of two refractive indices producing the same far field patterns
must coincide (see [20, 37, 40] and [47, 46, for related problems]). Mean-
while, in [44, 35] there are even uniqueness results for more general operators
available, like the Schrodinger operator in the presence of a magnetic field.
However, the proofs require a more elaborate analysis due to the first order
perturbations of the Laplacian.

Then, we proceed to the question what norm should be used on the data
set in order to have continuous dependence of n on the data. In a first step
we construct certain boundary integral operators S, from the far field be-
longing to n. It turns out that this problem is severely ill-posed and we
have to employ a very strong norm on the data set. In a second step we
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give a logarithmic stability estimate of ||n — 7i]|o in terms of ||S, — Si|ls
and in terms of the distance of the far field patterns. Inspired by the paper
[2] of Alessandrini about the continuous dependence of the conductivity on
boundary measurements Stefanov has investigated the question of stability
for the inverse scattering problem in [42]. Our approach, though built on his
proof, avoids the Dirichlet-to-Neumann map in order to circumvent difficul-
ties which arise from interior Dirichlet eigenvalues. Moreover, we are able to
obtain the stability result without employing a lemma concerning estimates
of holomorphic functions in C?.

Finally, we shall give a constructive procedure to recover n. Again, we
first construct certain boundary integral operators from the far field pattern.
Then, we use these operators to compute the Fourier coefficients of n — 1.
The main ideas of the proof for the second part can be found in Nachman’s
paper [32]. Of course, we base our analysis on Fourier series whereas he uses
Fourier transformation techniques. Furthermore, Nachman works with the
Dirichlet-to-Neumann map which is not possible in the presence of interior
Dirichlet eigenvalues. Since we start with the far field pattern, we can use a
different map and therefore avoid this problem.

Inspite of the fact that the reconstruction of n implies its uniqueness
we deal with the uniqueness question separately because the reconstruction
procedure grows out of the ideas from the uniqueness proof. Hence, beginning
with uniqueness and then proceeding to the reconstruction seems to be the
less difficult (but longer) way to understand the reconstruction.
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2.1 Uniqueness for the Inverse Acoustic Scat-
tering Problem

We assume n, 7 € C*(IR?), 0 < v < 1, satisfy S(n) > 0, S(R) > 0,
supp(l — n) C Bg, and supp(l — n) C Bg. For a fixed wave number £ > 0
we denote by u'(z,d) := e¥* x € IR? a plane incident wave propagating
into the direction d € S?. For the incident wave u'(-,d) we define u*(-,d),
@°(-,d) to be the solutions to the direct scattering problem (DAP) from
page 26 corresponding to the incident wave u'(-,d) and to the refractive
index n, n, respectively. Similarly, u(-,d), @(-,d), ts(+,d) and (-, d) are
the total waves and the far field patterns of the scattered waves belonging
to the incident wave u'(-,d) and the refractive index n, 71, respectively. Let
us now assume, that for a fixed wave number x > 0 and for all directions
d € S? the far field patterns uq(,d) and @y (-, d) coincide on S?. Tt is the
aim of this section to prove that then n and n must coincide.

Before we start with the proof we want to give a brief outline. The first
step is the relation

/ (n(z) — A(z))u(z)a(z)ds = 0 (2.1)

Br

for all solutions u, @ to Au + s?nu = 0 and Aa + x*na = 0 in Bp,, re-
spectively, where we choose R; > R. If u has the special form u(-,d), we
obtain relation (2.1) with the help of Green’s theorem from the coincidence
of the far field patterns in the next lemma. In order to prove the relation for
general solutions v we show in Lemma 2.3 that an arbitrary solution u can
be approximated by elements from span{u(-,d):d € S?} with respect to the
L?-norm.

We can infer the uniqueness of the refractive index from relation (2.1) if
we know that a function ¢ € C'(Bg) satisfying [ quidz = 0 for all u and @

Br

as above must vanish identically. To this end we have to construct special
solutions for the equation Au + x?nu = 0 which depend in a suitable way on
a parameter ¢ € C3. This construction is the second step of the proof and it
will take the largest amount of work in this section. Finally, in Theorem 2.10
by inserting these special solutions for u and @ we can show that the Fourier
coefficients of ¢ vanish, whence ¢ is zero.

Let us begin with the relation (2.1) for the special case u = u(-, d).
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Lemma 2.1 Let 0 < R < Ry and let 4 € C*(Bg,) be a solution to At +
k*na = 0 in Bg,. If for a fived d € S? the far field patterns us(-,d) and
loo (¢, d) for the refractive indices n, n coincide on S*, then we have

/ (n(z) — 7(z))u(z, d)i(z)dz = 0 . (2.2)

Br

Proof: We consider the function u(-, d) — (-, d) = u*(-,d) —a*(-,d) € C*(IR?)
which is a radiating solution to the Helmholtz equation in the exterior of
Bpr with vanishing far field pattern due to (-, d) = ux(+,d). Hence, for
R < Ry < Ry, we know from Rellich’s lemma (Lemma 1.7) u(-,d) — a(-,d) €
CZ2(Bg,) and therefore u(-,d) = u(-,d) and (Ou/0v)(-,d) = (0u/0v)(-,d) on
0Bpg,. Using these identities we obtain

0 = 63/ (%ﬂ(-,d)—%(-,d)a)ds
- /(%u(-,d)—%(-,d)ﬂ)ds
= K /(n—ﬁ)u(-,d)ﬂdm,

where in the first and in the last equation we have also employed Green’s
second theorem together with the partial differential equations for a, (-, d)
and u(-,d). Since n — n vanishes in the exterior of By, we have proved the
lemma.

O

Remark: We shall show in the appendix to this section that (2.2) is actually
equivalent to the assumption @y (-, d) = U (-, d). In the sequel we work with
equation (2.2).

Our next goal is to replace the function u(-,d) in (2.2) by an arbitrary
solution u € C?(Bg,) to Au + *nu = 0 in Bg,. This can be achieved by
proving that u can be approximated by elements from span{u(-,d):d € S?}
with respect to the L?(Bg)-norm. In the next lemma we prove this approx-
imation result for the special case n = 1. From this we derive the general
approximation result with the help of the Lippmann-Schwinger equation. We
essentially follow the proof of [20, Lemma 5.20]. We give a different proof for
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n = 1 with the help of series expansions in the appendix. A third proof can
be found in [21, Lemma 3.2].

Before we prove the completeness of the plane waves in the space of
solutions to the Helmholtz equation we want to give an informal outline of
the main idea. Assume that vy € L?(Bpg) satisfies Avg + £%vp = 0 in Bg and
that vy is orthogonal to all plane waves, i.e.,

/Ug(x)emd"”dx =0,deS”.

Br
Defining
w(@) = [ W)z, p)dy , v € R?,
Br
we compute Aw + k2w = —vy and 4nwe (—d) = [ vo(x)e* ¥ *dx =0, d € S?,
Br

i.e., w(z) =0 for |z| > R. Green’s second theorem then implies
- / lvo|*dx = / vo(Aw + K*w)dr = / w(Avg + K*vg)dr =0 .
BR BR BR

Let us now give a rigorous proof of this idea.

Lemma 2.2 Let 0 < R < Ry and let u* € C*(Bg,) satisfy Au'+ k*u’ =0 in
Br,. Then, there exists a sequence u; € span{u’(-,d):d € S*}, j € IN, such
that [|u" — ub||2(pg) — 0, j — 0.

Proof: We define the linear subspace
X = {v|p,:v € C*(Bg,) and Av + x’v =0 in Bg,} C L*(Bg)

and X to be the completion of X in L?(Bg). It suffices to prove that
span{u’(-,d)|p,:d € S?} C X is dense in X. Since X is a Hilbert space,
this is equivalent to the assertion that any vy € X which is orthogonal to
span{u’(-,d)|p,: d € S?} must be zero.

Now let vy € X be orthogonal to the plane waves and define

w(z) = /W@n(x,y)dy , € R*\ By .

Br
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Then, w € C?(IR*\ Bg) is a radiating solution to the Helmholtz equation in
the exterior of By and we compute

1 -
wsel=d) = o [ wlp)e"rdy =0, d e 5*.
Br

Rellich’s lemma implies w = 0 and especially for R < R3 < Rj: w|aBR3 =
(Ow/0v)|opg, = 0.

Next, we choose a sequence v, € C?(Bpg,) with Avy, + x*v; = 0 in By,
and ||vg — vo||r2(s,) — 0, k — co. We know from Green’s formula (1.10)

0P,
ov(y

wl@) = [ (GE@Blr ) - uly)

0B,

)(x,y))ds(y) , * € By .

Inserting this expression for v, and interchanging the orders of integration
we derive

/vk(x)vo(x)dx = / {%(y)/mq)ﬁ(x,y)dx

Br 8B, Br

= /{w(y)%(y)—vk(y) Ju bs(y) =0

dBr,

Now, taking £ — oo implies the desired result vy = 0.

The next lemma uses the Lippmann-Schwinger equation to extend the
result of the preceding lemma to the general case with an arbitrary refractive
index n.

Lemma 2.3 Let 0 < R < Ry and let u € C*(Bg,) satisfy Au+ k*nu =0 in
Bpg,. Then, there exists a sequence u; € span{u(-,d):d € S*}, j € IN, such
that ||u — ujl|z2(py) — 0, j — o0.

Proof: We choose R < Ry < Ry and define
w(e) = [ (S0l y) —uly)

OB,
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Green’s formula (1.10) applied to u in the domain Bpg, yields together with
the differential equation Au + k?u = k*(1 — n)u the integral equation

u(z) = u'(r) — K / (1 —n(y)u(y)®x(z,y)dy , © € Bg (2.3)

Br,

i.e., u= (I —T)""u! on Bp, where T:C(Bg) — C(Bg) denotes the integral
operator

(T)(@) == [ (1=n(y)p(y)@ulz,y)dy , 7 € Br

Br

Theorem 1.9 (c) implies that T is a compact linear operator from C(Bg)
equipped with the ||-||2-norm into itself, whence (I —T)~! is bounded in that
space. Due to Lemma 2.2 there is a sequence u} from span{u’(-,d):d € S*}
with [Juf — u'l|2(8z) — 0, j — oo. We define u; to be the solution of the
Lippmann-Schwinger equation (2.3) with u’ replaced by uj. Then, we have
u; € span{u(-,d):d € S?}, j € IN, and

lu = wjll oy = 1 = T)7H(u' = u) |2y < ellu’ = wjllia sy

Le., ||lu—ujl|r2(r) — 0, 5 — o0.
O

If we approximate an arbitrary solution u of Au + x?nu = 0 in By, by
elements from span{u(-,d):d € S?} in L?(Bg) and use Lemma 2.1, we obtain
the desired relation (2.1) which we state in the next lemma.

Lemma 2.4 Let 0 < R < Ry. If the far field patterns for the refractive
indices n, 1 coincide on S? X S?%, i.e., Us = o, then for all solutions
4 € C?*(Bg,) to Au+ k*na =0 in Bg, and for all solutions u € C*(Bg,) to
Au + k*nu = 0 in Bg, the relation

/ (n(z) — A(z))u(z)i(z)de = 0 (2.4)

holds true.
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Our next aim is to show that a function ¢ € C'(Bpg), satisfying [ quidz =
Br

0 for all u, u as in the above lemma, must vanish. This result together with
relation (2.4) implies our desired uniqueness theorem for the inverse acoustic
scattering problem.

In order to motivate the following analysis let us first give a proof for the
case that v and @ are solutions to the Helmholtz equation, i.e., n =n =1,
which goes back to Calderén [5].

Lemma 2.5 Let q € C(Bg) satisfy

for all solutions u, @ € C*(IR*) to the Helmholtz equation Av + k*v = 0 in
R3. Then q = 0.

Proof: We fix R’ > 0 sufficiently large to ensure B C (—R', R')3. Then, for
a fixed vector « € I' C IR® we choose d;, ds € IR? such that a, d; and d, are
orthogonal and such that |d;| = |dy] = 1. Finally, we define

1 1|l 5 1 1|l
CI: —§Oé+%d1+/ﬁ}d2 , CZZ —§a—%d1—ﬁd2 € @3
and compute (+(=—a, (- ¢ =C-¢ = kK% Hence, u(z) := <" and
i(z) = € x € R?, are solutions to the Helmholtz equation. Using the

assumption of the lemma this implies
0= / q(z)u(z)i(x)dx = / q(z)e ™ dx .
Bgr Br

Consequently, the Fourier coefficients of ¢ must vanish, i.e., ¢ = 0 by Parse-
val’s relation (1.2).
(I

We have some freedom in the choice of the vectors ¢ and f in the above
lemma, e.g. for any ¢ > k the vectors

1 : |af? 3
C = —§Oé+l tZ—/ﬁ}2+Td1+td26® ,

- 1 2
¢ = —§a—i\/t2—n2+%d1—td2 e
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also satisfy ¢+ = —a, (- = (- = k2 and can be used to define u and 4.

For arbitrary n and n we try to imitate the reasoning in Lemma 2.5. We
look for solutions to Au+ k?nu = 0 having the form u(z) = ¢*“*(1+v(z,()),
x € By, with a suitable function v(-, () depending on the parameter ( € C?,
¢ - ¢ = k2 We shall use the freedom in the choice of ¢ and show that
we can find functions v(-, ¢) such that ||v(-,()||r2sg) — 0 as [3(¢)] = oo.
Inserting these solutions and analogous solutions @ into (2.4) and using the
limit £ — oo implies that the Fourier coefficients of n — n must vanish at the
point a € I'. Since « is arbitrary, we can conclude n = n.

Note that in two dimensions the freedom in the choice of the parameters ¢
and ¢ no longer exists. Therefore this proof fails in the two-dimensional case.
To the authors knowledge the question whether u., uniquely determines n in
two dimensions is still open. It is possible to show uniqueness if u, is known
for many different frequencies (see [18]) or if some more assumptions on n
are made (see [34]).

Inserting u(z) = e*(1+wv(x,()), v € Bg, into the equation Au+x*nu =
0 and using ¢ - ¢ = k% we obtain the differential equation

AU('a C) + 2i¢ - V'U('a C) = HZ(1 - n)v('a C) + 52(1 - TL)

for the function v(-, (). For special vectors £ = (s,it,0) we had formally
derived solution operators G for the equation Aw + 2i§ - Vw = f in Theo-
rem 1.1, namely

GuL*(C) = LX(C)  Guf ==Y (a-afq(LQQ){-a)ea'

The L2-norms of those operators converge to zero as t — oo which seems
to match the desired behavior of v(-,¢). In Theorem 1.1 we did not worry
whether these operators really yield solutions to the differential equation.
Since we want to employ them for the construction of v(-,(), we have to
deal with this problem now. The second difficulty is that we have to allow
more general vectors ¢ than those of the special form (s,it,0). However, it
is easy to reduce the general case to the special one with the help of unitary
transformations.

Inserting f(a) = gf(y)T(y)dy into the definition of G} we formally ob-

tain

@) == [gela =y fmay.

45



where the function g¢ is defined by

1
ge =

Hla-a+2-a)

Ca - (2.5)

Our next aim is to show that g¢ satisfies the assumptions from Theo-
rems 1.9 and 1.10. Then, the results for volume potentials apply to G and
we can work with G} the way we did during the proof of Lemma 1.12 with
the operator V.. The basic tool in proving regularity of g¢ is the following
lemma which is known as Weyl’s lemma (see [13, IV 4.2]).

Lemma 2.6 Let D C IR? be an open set and ¢ € C*"(D), 0 < v < 1, be a
uniformly Holder continuous function in D. Furthermore, assume u € L*(D)
satisfies

/(Agp + qp)udr =0

D
for all functions ¢ € C§°(D). Then the following assertions hold true:

(a) u € C*(D) and Au+ qu =0 in D.

(b) For any open subset D' C D such that D' C D is compact there exists
a constant M depending on D, D', and ||q||, 5, but not on u, such that
lull,, 57 < Mllul|r2(p). Similarly, there is a constant M', depending
on D, D', and ||q||,, 5 such that max 10;0u]| 57 < M'||ul|L2(Dy-

Proof: The first step of the proof consists in the construction of appropriate
test functions . Let B.(z*) C D, € > 0, be a ball and let x € C§°(IR) be
a cut-off function satisfying x(t) = 0, if |t| > €/2, and x(¢t) = 1, if || < ¢/4.
For a function ¢ € C§°(Be/4(x*)) we define

o(@) = [ x(z =y o, y)b(y)dy , v € R
IR3
Using the transformation z = x — y we arrive at
1 1 3
o) = [ Mle) e = s = [ x(la) o= 2)de, s € R,

47| z|
IR?) BE/2(0)

whence ¢ € C®(IR?). Moreover, ¢(x) = 0 for |z —2*| > (3/4)¢ because then
supp(¢(z —-)) and supp(x([-[)) = Bej2(0) are disjoint, i.e., ¢ € C5°(Be(z")).
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Defining k(z) := (x(|z]) — 1)/ (47|z|), z € R?, we know k € C*(IR?) and
we can conclude from Theorem 1.10

(Be+ap)@) = —v@+ [ (AR -ybm)dy

+a@) [ xlle =yl y)e(w)dy , @ € B(a") .

Be/4(x*)

Reversing the order of integration we thus have

0 = / (Ap + gp)udz
Be(z*)
= [ v+ [ @He-yu@)d
B.a(a*) Be (")
+ [ a@le = )@l y)u(e)dsfdy
Be(z*)

for any 1 € C§°(B./a(z*)), whence for almost every y € B,j4(z*)

uly) = [ @R@-pu@de+ [ a@x(z - y)@ole,yule)ds
Be(z*) Be(z*)
(2.6)

holds true.
The Cauchy-Schwarz inequality yields for any function v € C§°(D)

‘ 2

sup | [ a(@)x(o = y) ol y)v(a)da
YEB 4(z*) Be(z*)
lq(@)x(Jz —y])|? 9
< s da ||o]|2
yeBe/4($*)B (47r|x - y|)2 LAD)

€

< M |vl|Z2py -

Approximating u € L?(D) by elements from C§°(D) we can conclude that
the second integral on the right hand side of (2.6) is a continuous function on
B/4(x*) whose maximum norm is bounded by M;||u||2p). Together with

the fact that Ak is a smooth bounded function in IR?® we can infer from (2.6)
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that u is continuous in Be/y(z*) and that ||ulle,p, ) < Ma||ul/r2(p) Where
the constant A, depends on € (via x) and on ||¢||ec,p-

Now we replace € by €¢/4 and repeat the procedure which lead to equation
(2.6) with an adjusted cut-off function y. We arrive at

aly) = [ (@R - u()de+ / Xl = ) o, y)u()da

Be/4(‘1"*)

for y € B./16(2*). Since we already know u € C(B4(x*)), we obtain from
Theorem 1.9 that u € "7 (B/i6(2*)) and [[ul], 3 < Ms||ul| 2y

1Bejio(z*) —

Repeating the procedure one last time in the /ball Beji6(x*) we finally
conclude from Theorem 1.10 that u € C*(B,ss(x*)). Since z* € D can be
chosen arbitrarily, we have proved v € C?(D). Integration by parts immedi-
ately yields for all ¢ € C§°(D)

0= /(Agp + qp)udr = /(Au + qu)pdz |

D D

and thus Au+qu =0 in D.

For part (b) we cover the compact set D' by finitely many balls of the
form B, js4(7;) where ¢; is chosen sufficiently small to ensure B, (v;) C D.
Patching together the above norm estimates for ||u||mm implies the

first inequality of assertion (b). In order to bound the second derivatives of
u we use the formula from Theorem 1.10 (a) and relation (2.6) to compute
for Yy € BE/64(ZU*)

o)) = [ (M908 - yu()da
B/16(z*)

g (1 = ) %of.) a(a)ue) = a4

e/lﬁ(x*)

au) [ v (xlle - )ale))ds(a)

6BE/16(:E*)
Consequently, we can bound

10;01t]loc, B ja(av) < Mallully, 5@y < Msllull2o)
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which implies the second estimate of the assertion (b).
|

We are now in a position to prove that G’§ can be regarded as a volume po-
tential. We define the cube C' := (— R/, R’)?, the grid I and the orthonormal
basis e,, a € I', as in the first chapter and we assume R > R > 0.

Lemma 2.7 Assume & = (V12 + k2,it,0) € C* with k > 0, t > 0. Then,
there exist functions ge € C*°(Bag \ {0}), g € C°°(Bag) with the following
properties:

(a) ( éf)(x) = — /gg(x —y)f(y)dy for almost every x € Br and for all
Br

functions f € C(Bg)

(f is regarded as an element of L*(C) by defining it to be zero outside
of Bg).

efiﬁ-mein|m| e
+e % “Ge(x) , ® € Bop \ {0} .

(0) g¢(z) =
(C) A§§ + l€2§§ =01 BQRI.

Proof: We define
1

a-a+2§-a€

ge =3

acl

o -

Since there is a constant M such that |(a-a+2¢-a) | < M1+ a-a)!
for all o € I', we can estimate

S| <,

lara+28-a
and obtain g € L*(C). g¢ satisfies ge(w1, 29 + 2R, x3) = —ge(21, 22, 73),
z € IR?, and ge has period 2R’ with respect to the other coordinates, whence
it is square-integrable on each compact subset of IR?.

We prove assertion (a) by showing the coincidence of the Fourier coeffi-
cients of the two functions. For y € C' the function g¢(- — y) has the Fourier
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coefficients

(9:(- =) (@) = / gelw = y)ea(w)da

€a(y)
a-a+2-a

= /96 z)dz eq(y) =

If f € C(Bg) is extended by zero, the function — [ g¢(- —y)f(y)dy € L*(O)
Br

has the Fourier coefficients

_/ /gf 7= ) fW)dyfeal@)ds = —/{/gf(x — y)eal@)dr} f(y)dy

-1
a-a—i—%-a/f(y)e
C
—f(e)
a-a+2 -«
= (Gef) (@), el
Hence, — [ g¢(- —y)f(y)dy and G f coincide almost everywhere in By C C.
Br

Before we proceed to the remaining assertions let us add one remark: if
f € C§°(C), then the Fourier coefficients of f are rapidly decaying. Hence

~

fla)
G, - — €a
ef (;F(a-a+2§-a)
not only converges with respect to the L?(C)-norm but is also absolutely
and uniformly convergent. Therefore, Gf is a continuous function on C
and it makes sense to evaluate (G;f)(z) at a point x € C. Similarly, for
f € C§°(Br) we have

~ [ el =) flw)y = - /gg (- - 2)dz € C(R?) .

Bpi

Hence, for f € C§°(Bpg/) assertion (a) holds true for all z € Bp.
In order to prove the regularity of g and g and assertions (b), (c) we
show that ¢ () := e%ge(x) — ™7l /(47 |2]), € Bopr, satisfies

| (8¢ + k) @)ge(@)dz = 0
Bpgi(z*)
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for all z* € Bg and for all ¢ € C§°(Bgr/(z*)). We can then conclude from
the preceding lemma that g¢ is a C?(Bag/)-smooth classical solution of the
Helmholtz equation, whence it is a C'°°-smooth function. This implies the
remaining assertions.

If * € Bp and ¢ € C§°(Bg(x*)) C C§°(Bsr'), the representation for-
mula (1.10) from Theorem 1.3 yields

6in|3{:|
-/ (A + %) (@) Lde = 9(0) (2.7)

Bypr

Defining 1) (y) 1= e* " Yp(z* —y), y € B, we have ¢ € C§°(Bp) and
(A +2i€ - V)i)(y) = T (Ap + w9)(a" —y) , y € B .

Using this equation, the substitution z = z* — y, part (a), Theorem 1.1 (b),
and the remark after part (a) we compute

| (@0 + k) @) ge(x)da

Bypr

- / S (A + K2p) (27 — y)ge(a* — y)dy

By
= [ gel" —p)(av +2ig - Vi) (v)dy
By
= —(Ge(Ay +2i¢ - Vi))(z") = —(z") = —(0) . (2.8)
Adding the equations (2.7) and (2.8) yields the equation
) iKk|z|
[ (A + k20) (@) (€€ ge() ;'x')dx = 0.

Bypr

Hence ¢ is a C?-smooth solution of the Helmholtz equation in Bg (z*) and
then in Byp because 2* € Bg can be chosen arbitrarily. This ends the proof
of the lemma.

(]

We are now in a position to define g, for arbitrary vectors ¢ € €3, satisfying

¢-¢=k*and 3(¢) # 0.
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Assume k > 0 and ¢ € €3 satisfies ¢ - ¢ = &2, (C) # 0. This implies
R(C) - S(¢) = 0 and R(¢) - R(C) — I(¢) - S(¢) = %, whence R(¢) # 0.
We define ¢ := (|R(¢)],i|3(¢)],0) € C€* and choose the uniquely deter-
mined unitary transformation @ of ]R3 satisfying Q(R(C)) = (|R(¢)],0,0),
Q(3(¢)) = (0,]3(¢)],0) and det(Q) = 1. Then, we have QT (£) = ¢, where
Q" denotes the transpose of ). Now, we define the function g, by

gc: Bop \ {0} = C gc(x) == ge(Qx) (2.9)
where .
gﬁ:%(a-oﬁ%-a)ea

is the function which we examined in the last lemma.

In the next theorem we study some properties of volume potentials G f
with the kernel g.. Note that these volume potentials are defined for functions
on a ball, whereas G is defined for functions on a cube. Moreover, compared
to G we have chosen the opposite sign for G¢ because then the function
Uo(z) = €“?g;(z) inherits all the properties of the fundamental solution
e™lel /(47| x|) later. Nevertheless, it should be clear by the preceding lemma
that G and G} are closely related.

Theorem 2.8 Assume 0 < R < R, k>0 and ¢ € C3, (- ¢ = K%, Define
for f € C(Bgr) the function G¢f by

Geh)l@) = [ gela =i W)y, @€ B | (2.10)

Bgn
with g¢ from (2.9). Then, the following assertions hold true:

(a) Gef € CY(Bge) for all 0 <y <1, and ||G¢f

1y < C%C”f”oo-
(b) If f € C®(Bgu), then Gof € C*(Bgr) and (A +2i¢ - V)(Gef) = —F.
(c) If f € C5(Brr), then 0;(G¢f) = G¢(9;f).

RI

d) ||G > < —
() NGcflle2Bgn < SO

|lls205,0) for all f € C(Br).
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Proof: By the definition of g, and by Lemma 2.7 we conclude

e*ig-QCEeilﬂQiﬂ .
gc(x) = im0 ¢ 9¢(Q)
e 23(Qu) , € Bow \ {0}
= € T T / .
47T|1'| gf ) 2R

Since g¢ is smooth and since the function z — e ¢%¢™l#l/(47|x|) satisfies
the assumptions from Theorems 1.9 and 1.10, we may apply these theorems.
Theorem 1.9 immediately yields assertions (a) and (c). Theorem 1.10 states
that G¢f € C*(Bgn) if f € C%7(Bgn). Moreover, with the help of

[A +2i¢ - V]u(z) = e “7(A + k) (e u(z))
we compute

(JA + 2i¢ - V](Ge f)) ()
= At [ {Duly) + 36(Q — ) S )y

— e*ig.m{—e’f'mf(x) + (A + K?) / 9¢(Q(z — y))(eig'yf(y))dy}
= —f(x), v €Bgr, R

where in the last step we have used that g¢(@ ) is a smooth solution of the
Helmholtz equation in Bsg». This proves assertion (b).

For part (d) we extend a function f € C(Bgv) by zero outside of Bgr
and observe the relation

(GNQ") = [ gela—y)f(Q"y)dy , v € Bpr .

Bgn

Then we employ the last lemma and the L?-norm estimate from Theorem 1.1
to obtain

G flomgy = [ (Gef)a)Pdr
Bpn
= [ (G @) d

Bpn

53



= [ 1Gf o QM) (@) da
By

< IGE(S 2 Q") ey

- R/Z oo

S W“UOQ )||L2(C)

R*
ﬁ”f“%z(BRu) '
2SO

This ends the proof of the theorem.
(I

The last theorem enables us to derive the existence of special solutions to
the equation Au+x2nu = 0 which can be used similarly to ¥ in Lemma 2.5.

Lemma 2.9 Assume £ >0, 0 < R" < R' and n € C*'(Bgr). Then there
is a constant ¢ > 0, depending only on R", R', k and |1 — n||s, with the
following property:

for all ¢ € C* satisfying ¢ - ¢ = k? and |I(C)] > 2k%(R'/7)||1 — 1o + 1
there exists a function v(-,() € C*(Bg) such that

u(z,¢) = e“*“(1 +v(x,()) , * € Bgn , (2.11)

is a solution to Au + k?nu = 0 in Bgr, and such that the estimate

C

SO

lo( Oll 2 < (2.12)

holds true.

Proof: Tnserting (2.11) into Au + x*nu = 0 yields the differential equation
(A +2iC- V)u(-,¢) = £*(L = n)v(-,¢) + K*(L = n) (2.13)

for v(-,(). Theorem 2.8 (b) suggests to look for a solution of the integral
equation

v(+,¢) = —K*G((1 = n)v(-,Q)) = *G¢(1 —n) (2.14)
and then to proceed similarly to the existence proof of (DAP).

The mapping T: C(Bg) — C(Bgr) defined by
Tp = —r"Ge((1-n)p)
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is compact due to Theorem 2.8 (a). Since ¢ — T'p =0, ¢ € C(Bg»), implies
together with Theorem 2.8 (d)

ol = 1Tellr2Bam)

K2R’

o A\ 1_ oo "

7T|%(<)||| n” ||90||L2(BR)
1

< §||<P||L2(BR,,),

<

whence ¢ = 0, we know from the Riesz theory that (2.14) has a unique
solution v(-, () € C(Bgr). Moreover, we can infer from the properties of G
stated in Theorem 2.8 that v(-, () € C?(Bgw) satisfies equation (2.13). Then,
straightforward calculations show that (-, () defined by (2.11) is a solution
to Au+ k?nu =0 in Bpn.

In order to obtain the norm estimate we observe that

(s Olleamn < 1700 Olleasn + B2 1G(1 = n)ll2(3,)
1 K2R
— 5”’0(.7 C)“LZ(BR//) + 7T|%(C)| ||]‘ - n||00||1||L2(BR”) *

N

Hence, we arrive at

Kk2R!
WIH — nlool| Ll z2(B )

7|

[0, Oll 228, <2

and we have proved the lemma.
O

Remark: Let us point out a different view of the integral equation (2.14).
Multiplying both sides of (2.14) with ¢ and then adding € on both sides
yields

u(w, () = T (1+v(,0)

= e w2 [ g(e =y (1= m))(1+ (. C)dy

_ w2 / e gz —y) (1 —n)(y)uly,C)dy , © € B .
Bgn
(2.15)
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This is the analogue of the Lippmann-Schwinger equation with an incident
wave ¢¢ where the fundamental solution @, (x, y) is replaced by the function
e (@ g.(x — y). But due to the representation

=it Qu ik|Qal

gc(r) = W+e—i§-Qx§§(Qx)

efig-mein\w\ it
e Tm—i_e C gg(QfL'), xEBQRI\{O},

we know that

ezc(x—y)gg(x — y) = @ﬁ(l‘,y) —|—§<(.'L' — y) , T,Y S BR’ , & 7é Yy,

is also a fundamental solution to the Helmholtz equation in Bg because
gc = ge © Q) is a solution to the Helmholtz equation in Byp. Hence, we have
solved a Lippmann-Schwinger equation with an unphysical incident wave and
an unphysical fundamental solution in order to obtain the special solutions

We also want to emphasize that the integral equation (2.15) has a unique
solution if |(C)| > 2k*(R'/7)||1 — n|lc + 1. This can be seen by defining
v(z) = e “®u(x), v € Bgr, for a solution u of the homogeneous equation
(2.15) and by multiplying this equation by e . Then, we obtain the ho-
mogeneous equation (2.14) for v, whence v = 0 and u = 0 by the proof of
Lemma 2.9.

Now, we can conclude this section with the uniqueness result for the
inverse scattering problem.

Theorem 2.10 Let k > 0 and assume the refractive indices n and n satisfy
the assumptions made at the beginning of this section. If the far field patterns
coincide for all incident plane waves, i.e., Ux(Z,d) = U (Z,d) for all z,
d € S?%, thenn = n.

Proof: We choose R, such that R < Ry < R'. We know from Lemma 2.4 that
for all solutions @ € C?(Bg,) to At + k?*na = 0 in Bg, and for all solutions
u € C?(Bg,) to Au + k*nu = 0 in Bp, the relation

/ (n(z) — A(z))u(z)a(z)de = 0 (2.16)

Br
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holds true. Imitating the reasoning in Lemma 2.5 we choose for a fixed vector
a € I the unit vectors dy, dy € R® such that dy -do = d; - = dy - @ = 0 and
define

1 : |af? 3
G = —§Oé—|—2 t2—I€2+Td1+td2€® ,
~ 1 2

for t > k. Then, the relations ¢, + { = —a, G - G = ( - ¢ = &2 are satisfied.

With the help of the preceding lemma, for sufficiently large /12 — k% + % =
13(¢)| = [S(&)], ie., for sufficiently large ¢, we obtain solutions

U(%Ct) = eigt.w(l +U($7Ct)) y L € BR1 )

to Au + k*nu = 0 in Bp, with |[v(-, )|z — 0, ¢ — oo. Similarly, we have
solutions . - .
ﬂ(l‘, Ct) = elgt'l'(]_ + 6(1‘7 Ct)) y T E BRl )

to At + k2 = 0 in Bg, with ||(-,G)||z2 = 0, t = co.
Inserting these solutions into (2.16) we arrive at

0= /(n(x) —n(x)e” (1 +v(x, )1 + 0(x, §))dz . (2.17)

Br

Taking t — oo implies that the Fourier coefficient (n — 72)"(«) must vanish.
Since « is arbitrary, we know that the Fourier coefficients of n and n coincide,
whence n = n. This ends the proof of the theorem.

O

Appendix

This appendix contains a few remarks concerning the preceding section which
would have disturbed the logical order that lead to the uniqueness proof.
First, we prove the equivalence of equation (2.2) and the coincidence of
loo(+, d) and uy (-, d). Then, we give a second proof for Lemma 2.2, i.e., the
completeness of the plane waves in the space of solutions to the Helmholtz
equation. We also study the completeness of point sources in that space. And
finally we derive another norm estimate for the operator G which allows to
state that products of solutions to Au + r?nu = 0 are complete in L?*(Bg).
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Theorem 2.11 Suppose 0 < R < Ry, d € S* and u(-,d), u(-,d) are so-
lutions to (DAP) for the incident wave u'(x) = €*4* x € IR*, and for
the refractive indices n, n, respectively. Then the following assertions are
equivalent:

(a) u(z,d) = u(x,d) for all x € OBg.
ou ou

(b) u(z,d) = u(x,d) and g(x,d) = a(x,d) for all x € OBg.

(¢) Uso(+,d) = Too(-,d) on S?.
(d) /(n(x) — n(z))u(z, d)a(z)dz = 0 for all solutions u € C*(Bg,) to
At + k*ni = 0 in Bg,.

Proof: Assertion (b) follows from assertion (a) by the uniqueness for the
exterior Dirichlet problem for the Helmholtz equation ([7, Theorem 3.7]).

The coincidence of the Cauchy data of u(-,d) and @(-,d) on 0Bg implies
u(-,d) = u°(-,d) and (Ou®/0v)(-,d) = (0u*/0v)(-,d) on 0Bg. With the help
of the representation (1.13) we obtain 4°(-, d) = u®(-,d) in the exterior of B,
whence the coincidence of the far field patterns.

Assertion (d) was derived from assertion (c) in Lemma 2.1.

In order to obtain (a) from (d) we observe that v := u(-,d) — a(-,d) is a
radiating solution to the Helmholtz equation in R? \ Br. Moreover, Green’s
second theorem yields

N ou _0u
aB/R (8 d) 5 = 5= (- d))ds = 0,
whence
/ (U% —ﬂ%)ds = / (u(,d)% —ﬂ%(-,d))ds
OBR OBR
_—— /(n — A)au(-, d)dz = 0 (2.18)
Br

for all solutions & € C*(Bg,) to At + £?nt = 0 in Bg,. For a fixed |z| > R,
we choose u to be the solution to the Lippmann-Schwinger equation

i(2) + 52 [ @u(z,0)(1 = Ay)aly)dy = Pu(a,2) , = € B, -
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From Theorem 1.5 (b) we know the relation

0= [ T - T2t

dBR

for all y € Bgr. Hence, we obtain

o= [ ot 822)3/ @,(2.9)(1 = A(9)iy)dy
—%@)B/ D, (2, 9)(1 = (0 () dy}ds(2)

0 = /(v@—ﬁ@)ds

oi ov ov
= [ (5 ) = G b D) = vlo)

Thus, we know v(z) = 0 for all |z| > R; and then v = 0 in IR* \ Bg and we
have proved the theorem.
(]

In order to replace u(-, d) in equation (2.2) by arbitrary solutions to Au+
k*nu = 0 we proved the denseness of span {u‘(-,d):d € S?} in the linear
space of solutions to the Helmholtz equation in Lemma 2.2 and derived an
approximation result for general n with the help of the Lippmann-Schwinger
equation in Lemma 2.3. The next lemma gives another proof for the case
n = 1. We also examine the completeness of {®,(-,2): |z2| = R;} in the space

of solutions to the Helmholtz equation with respect to L?(Bg).

Lemma 2.12 Suppose 0 < R < Ry and let u' € C?(Bg,) satisfy Au® +
k*u' =0 in Bg,.

(a) For Ry > R there exists a sequence u} € span{®.(-,2):|z| = Ry},

j € IN, such that ||u’ — u}||L2(p,) — 0, j — c0.

ere exists a sequence u: € span{u‘(-,d):d € , j € IN, such tha
b) Th .St ; i(.,d):d € S? N h that
|u’ = v 0,8z — 0, § — 0.
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Proof: We define the linear subspace X as in the proof of Lemma 2.2 and
assume vy € X being orthogonal to span {®,(, 2): |z| = R, }. Defining again

w(x) = /m@ﬁ(x,y)dy , v € R*\ By,

Br

we know that w € C?(IR® \ Bg) is a radiating solution to the Helmholtz
equation in the exterior of Bi and we compute

w(z) = /W@H(z,y)dy =0, |2| =R, .

Br

Uniqueness for the exterior Dirichlet problem implies w = 0 and we can finish
the proof of part (a) as in Lemma 2.2.

For part (b) let Y*, k = —I,...,1, 1 € INy, denote a complete system of
spherical harmonics on S? and let j;, [ € INy, denote the spherical Bessel
functions (see [7, sections 2.3 and 2.4] for a concise treatment). Inserting the
addition theorem for the fundamental solution @, ([7, Theorem 2.10]) into
Green’s representation theorem for u’ in Bg, we obtain the absolutely and
uniformly convergent series expansion

00 [

u'(w) =3 Y awiilklz)Y (@) , « € Br,
1=0 k=—1

with suitable coefficients ay.

For a given positive ¢ we approximate u’ by a partial sum of the above
series better than €/2. Next, using the Funk-Hecke formula ([7, p. 31]), we
replace the terms j;(x|z|)Y}*(2) by

. R it . —
ilkla) (@) = [ e ™ (d)ds(d) , @ € Br,
5'2

and obtain
, x € By ,

ui(z) — / el (d)ds(d)] <

S2

[NNINe

with a continuous function g, on S2. Finally, we approximate the integral by
a quadrature rule, e.g. a Riemannian sum, better than €/2 uniformly on Bpg.
This is possible because the integrand is uniformly continuous on Bp x S2.
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Hence, it is possible to approximate v’ uniformly on By by a superposition
of plane waves and we have proved the lemma.
O

In Theorem 2.10 we had probed the medium with all incident plane waves
and we had a knowledge of the far field patterns. We can infer from the last
lemma that we may replace the set of all plane waves by point sources located
on a sphere. Any set of solutions to the Helmholtz equation in Br which
is complete in the linear space of solutions to the Helmholtz equation with
respect to L?(Bg) can be used as incident probing waves because the proof
of Lemma 2.3 applies equally well in this situation, whence equation (2.4)
holds true.

Instead of measuring far field patterns, due to Theorem 2.11 we might as
well use the Cauchy data of the total waves on a sphere with radius R, i.e.,
u and Ou/0v on OBp, or the near field u|gp, of the total waves.

In a nutshell, the uniqueness theorem for the inverse scattering problem
remains true, if point sources located on a sphere are used as incident waves
and if the Cauchy data (or near field data) on a large sphere are measured
instead of far field patterns.

The rest of this appendix is devoted to a more functional analytic for-
mulation of our knowledge about the products uu of solutions to perturbed
Helmholtz equations:

The set

{uii:u, @ € C*(Bg) N C(Bg), Au + k*nu = 0, At + £*hii = 0 in Bg}

is complete in L?(Bg), i.e., any function ¢ € L*(Bg) satisfying

/ q(z)u(z)a(x)dx =0

Br

for all functions u, 4 as above must vanish identically.

An inspection of the proof of Theorem 2.10 shows that we have not
proved this result so far, because we only know wv(-, (;)o(-, ft) — 0, t — o0,
with respect to the L'(Bg)-norm in equation (2.17). We have to know
this with respect to the L?*(Bg)-norm, if we want to use the same rea-
soning as in Theorem 2.10. Therefore, we examine the operators G'¢ more
closely in order to bound |[[v(-,()||c,B, uniformly in ¢. Then we obtain

lo(, TG, Cllzaza) < N0(s G lloo, 819G, G| 2By — 05 ¢ — 0.
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The aim of the next lemma is to bound Y |-« + 2 - /™2 uniformly in
acl’

t > 1 where £ = (s,1t,0) and & - £ = k%, Essentially, we replace the sum by
an integral

(a2 = 272 + (/R

Bounding the integral is not difficult (see part (a) of the next lemma) but
the replacement of the sum by the integral is lengthy.

Lemma 2.13 Let k > 0 and R' > w be fizred. Define v := n/R' and s :=
V2 + K2, €= (s,it,0) € C° fort > 1.

(a) There is a constant ¢; such that

/ <Cl
242 =

, +7t

for allt > 1.

(b) There is a constant co such that

>

acl

2
Q- 04—1-25 a‘
for allt > 1.

Proof: For part (a) we use the substitution v = r/s and obtain

o0
/ 242
) —i—fyt

1] 2du
;{0/ (= 1+ 25

w?du

(v = 1)2 + 72(t2/84)} '

Since u? — 1 > wu?/2 for all u > 2, we can bound the second integral by

i udu 7 uldu
2/ (u? — 1)2 + 2(t2/s%) < 2/ (@?/2)? =2.
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We estimate the first integral with the help of the substitution v = u% — 1 by

; ; 2udu,
[ = T | w=tr e
dv
< e

For the proof of assertion (b) we observe

- a4 2¢ - af?
= {(a; +35)* +a5+ a3 — s*}? + 4t?as
> {(oag+s)+aj+a; -+, ael .

Our first aim is to estimate the number of grid points in a spherical shell, to
be more precise we derive the bound card (A;) < M;k* where

Ay ={aeT:(k-12< (o +s8)?+a5+a; <k’}, ke N.

This enables us to reduce the series over all @ € I' to a series over £ € IN
which in turn can be estimated with the help of Maclaurin’s (Cauchy’s)
integral test.

We define A}, to be the grid points contained in a ball with radius k& and
center (—s,0,0),

Ay ={a el (g +s)’+as+a; <k}, keN.

In order to obtain bounds for card (A}) we use the disjoint open cubes C,,
«a € T, having the center o and having edges of length w/R' parallel to
the coordinate axes. Since o € A}, implies C, C Byy2,((—s,0,0)), we can
conclude

(%) card (A}) = vol( U c ) < vol(Bk+27((—s,0,0))) = %(k+27)3
a€A)

Since any x € Bj_1-2,((—s,0,0)), k > 1 + 27, is lying in some C,,, there
is an a € I' with |a — x| < 27. Hence, we have

(a1 + 5,00, 03)| < [(x1 + 5,29, 23)| + | —2x| < k-1, ie,a€ A} |
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This means

and therefore

?(k —1-29)°< (1)3card (Al_y) -

Then we obtain
card (Ay) = card (A}) — card (4},_,)
4
-3 3 3
v ((k+20)° (k= 1-27)°)
< Mk

IN

for all £ > 1+ 2v. By suitably enlarging the constant AM; the last inequality
holds true for all £ € IN.
Now, we split
Yleermal
a-a+ 25 Q

acl

- Z Z‘Oz Oz+2§ Q

{keIN:k<s} a€Ay,

+ Z Z‘a a+2§ Q

{k€N:s<k<s+1} a€Ag

\2 > Ylaaveal
(keNh—1>s} aca, O Q1 5 Q
2
| (2.19)
From o € Ay and k < s we conclude 0 < s? — k% < 5% — |(ay + s, g, a3)]?
and therefore
‘ 1 ‘2 - 1
a-a+28-a (I(ar + s, 00, 03) 2 — s%)% + 4203
1
<
= 2= 2)2 4 122

Together with the bound on card (Ay) we arrive at the following estimate for
the first term on the right hand side of (2.19):

Z Z‘a oz+2§ «

{kEIN:k<s} Q€A

I

k<s—1

‘ 2

M1k2 n M182
82)2 + tZ’YQ tZ’)/Z
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S

/ Myr2dr N M, s?
/ (7“2 82)2 + t2,-)/2 t2’}/2
S M1C1 + M2 S M3 y (220)

with suitable constants Af; and ¢; from part (a), where in the third line we
have used the fact that r — 0"27523722%272 is an increasing function on [1, s (the
numerator is an increasing function, whereas the denominator is decreasing).

Similarly, for « € Ay and k — 1 > s we compute 0 < (k — 1)? — s* <

|(O[1 + S, (g, O[3)|2 - 827

1 2 1
‘a-a—i—?f-a‘ ((a1 + s, a2, a3)|? — $2)? + 41203
< 1 ,
S

and we estimate the second term on the right hand side of (2.19) by

> X

2
(keN:k—1>s} acA, & a+2§ O“

M, k? M 3)?
< > 2 : 2 a2 T2 l(it )
k25+3((l‘7_1) — 5%)% + 12y ty
- AM, 12 M (s + 3)?

S &, (12— 2)2 + {22 122

o0

AMr3dr
M
s+/1 (r2 _ 32)2 + 1242 + My

S 4M1C1 + M4 S M5 . (221)

Here, we have substituted [ = k£ —1 in third line and employed the inequality
(I +1)* < 4I?. Moreover, in the fourth line we have used the fact that

r— % is a decreasing function on [s + 1,00). This can be seen by

observing that p = r? — 52 > 25 > ty for r > s + 1, and that the derivative
of the mapping p — P + —5 is negative if p > tr. (Note that here we have
used the assumption R’ > 7, i.e., v < 1, in order to have 2s >t > ~t.)
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Finally, we bound the last term in inequality (2.19) by

Z Z‘Oz 04—1—25 a

{keN:s<k<s+1} €Ay

2
‘2 < M1(8—|— 1)

< Ms

Inserting this inequality together with inequalities (2.20) and (2.21) into
(2.19) yields assertion (b). This ends the proof of the lemma.
|

The preceding lemma, easily implies the next results on the operator G
and on the functions v(-, () from Lemma 2.9.

Lemma 2.14 Assume xk >0 and m < R" < R'.

(a) The inequality

|Gel e = 510 | [ gcle =) @)y < all o

R”
RN

holds true for all f € C(Bgn) and for all ¢ € C* satisfying ¢ - ¢ = K2,
|(C)| > 1 where ¢y is the constant from the preceding lemma.

(b) There is a constant ¢ uniformly bounding the functions v(-,() from
Lemma 2.9: ||[v(-,()|oo,B,, < ¢ for all { € C? satisfying ¢ - ¢ = k? and
()] = 262(R /)11 = n|o + 1.

Proof: As in the proof of Theorem 2.8 (d) we have for f € C§°(Bgn)
G f 112,50 (Gef) o QM I1% 5,

= [|G(fe QT)HOOBR,,
= |5 el

— ¢ _Ca
Q- 04—1-25 «

OO,BRH

< Xloarea el > (fo@ (P
AN 0 Q")x(cy

C%Hf”%Z(BRH) .

Approximating an arbitrary continuous function f in Bgrs by C§°(Bpgr)-
functions with respect to the L?-norm yields assertion (a).
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We obtain from (2.14) together with part (a)

(s Olloopar < KNG =n)(1+ 0, O))lloo B
< el =n) (140l O)lleasam
S ¢,

where we also use from Lemma 2.9 that |lv(-,()||z2s,,) < M for all suffi-
ciently large |3(¢)|. This proves the lemma.
|

Looking again at the proof of the uniqueness theorem for the refractive
indices, we see that u(-,¢,)u(-,(;) € C(Bgr) C L?(Bgr) satisfy

D)+ 00 B0 L2 ()

Dz + 100, oo llo(, Gl =0 = 00

Then, the reasoning in the proof of Theorem 2.10 implies that any func-
tion ¢ € L?(Bgr) which is orthogonal to all products u@ must have vanishing
Fourier coefficients. This proves the last theorem of this appendix.

Theorem 2.15 Assume n, i € C%(Bgv) are uniformly Hélder continuous
in Bgr. Then, the set

{uti:u, @ € C*(Bgs) N C(Bgr), Au+ &*nu = 0, At + k*iti = 0 in Bpo}

is complete in L?(Bpgy).

Though the last theorem improves our knowledge about the products uu
it is of no use in proving a uniqueness result for scattering problems when
we only know n € L?(Bg) instead of n € C%7(Bg). This is due to the fact
that our proof of the behavior of the special solutions u(-, () in Lemma 2.9
essentially uses the boundedness of ||1 — n||n.

If we want to deal with n € L?(Bg), we have to improve Lemma 2.13 to
obtain

T ! S0, = [3(6)] - 0o (2.22)

= la- v+ 26 - o)
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This estimate can be obtained by using the ideas from the proof of [40,
[11.2 Lemma 3, pp. 51-56] together with the techniques which we employed
during the proof of Lemma 2.13. Inequality (2.22) implies the norm estimate
1Gellr2(B )o@y — 0, [S(C)] = co. We can then modify the existence
and uniqueness proofs from the first chapter to arrive at unique solutions to
(DAP) with n € L?. Tt is also possible to verify our results for the inverse
problem in this case and to derive uniqueness of n from a knowledge of the
far field patterns.
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2.2 Stability of the Inverse Problem

This section is devoted to the continuous dependence of the refractive index n
on the far field pattern. We assume throughout this section that the refractive
indices n satisfy n € C%(IR?), 0 <~ < 1, $(n) > 0, and supp (1 —n) C Bs.
For convenience we define C'(Bg) to be the set of these functions.

Let us start with an informal outline of this section. We introduce a very

strong norm || - || on the far field patterns by prescribing a very rapid decay
of the Fourier coefficients
s = [ [ oo V(@)Y (d)ds(@)ds(d) (2.23)
S? 52
lilo=0,1,..., =ly <k <1, —lo <hky <y,
of the far field patterns u.,. Here, Yl’fl, L =0,1,..., —l; <k <, denote

a complete orthonormal system of spherical harmonics on S%. Our aim is to
derive the estimate

- —1/7
I = 7illoo < e[~ In(l|toon — tioc,nll )]

with a constant c for all refractive indices n, n lying in some small subset O of
C(Bg). The subscript n indicates the dependence of certain quantities on n
if necessary. The estimate implies that the mapping u, , — 1 is continuous.
It is also a local uniqueness result because u,, uniquely determines n in
O by the above estimate. The reader should be warned that O is not only
small with respect to the maximum norm but with respect to a C?-norm,
i.e., we need additional information in a stronger norm in order to obtain
the stability result. We also want to emphasize that this result does not
mean that all functions from a small || - ||z-neighborhood of us, are far
fields originating from a refractive index. It only allows to conclude that two
refractive indices from O are close together with respect to || - ||oo, if they
produce far fields whose difference with respect to the || - || z-norm is small.

Our reasoning follows the main ideas from the paper [42] of Stefanov and
can be divided into three steps. In the first three lemmas we examine the
decay of the Fourier coefficients, show that the norm || - || is well defined
and prove that the mapping n — us , is continuous.

In the second step we reconstruct the Green’s function s, (z,y) for |z| =
lyl = Ry > R, x # y, with the help of a series expansion involving the
Fourier coefficients 4, ,1,6, belonging to v ,. By the Green’s function s,
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we mean the kernel s,(z,y), 2, y € R?,  # y, having the property that
uw = — [ su(-,y)f(y)dy is the radiating solution to Au + k?nu = f in IR’
RS

Hence, we know the single-layer operator

(Sue)@) =2 [ sulw.p)e(u)dsly) , v € 0Bn,

9B,

Actually, we construct S,, directly without using s,, and prove later that S, is
an integral operator whose kernel s, can be computed from u, . Although
we never prove that s, is the Green’s function the idea behind S, is easier
to explain with the help of s,,.

We discuss the dependence of S;, on n and on ua, . It turns out that due
to the very strong norm || - || the mapping vy, — Sy, is linear and bounded.
However, in practice the || - ||#-norm is not appropriate for measured far
field patterns. Hence, the transfer of information from infinity (the far field
pattern) to the sphere of radius Ry is severely ill-posed.

In the last step we investigate the dependence of n on \S,,, insert our result
from the previous step on the dependence of S, on u. , and arrive at our
main estimate.

In [42] Stefanov uses the relation A,,—A; = 257125, ! (see [32]) between
the Dirichlet-to-Neumann maps A,, A, and the inverses to the single-layer
operators to estimate the operator norms ||A, — Az|| in some suitable norm
by the far field norms ||, — Usonl/7. Then he can employ the ideas of
Alessandrini in [2] who has studied the dependence of n on A,, for refractive
indices n having a special form. Alessandrini’s main idea is to estimate
the Fourier transform of n — n with the help of the special solutions from
Lemma 2.9 and with considerations similar to those that lead to equation
(2.2). Stefanov encounters difficulties because the Dirichlet-to-Neumann map
is not defined for interior Dirichlet eigenvalues. We use a different relation
on 0Bpg, in order to avoid these difficulties. We are also able to avoid the
technical Lemma 4.2 from [42] (Lemma 3 in [2]).

After this outline let us begin with the first step. In the first lemma we
prove estimates about spherical Bessel functions and about spherical Hankel
functions of the first kind which we will need later. The spherical Bessel
function j; of order [ € INj is defined by

) (_1)ptl+2p
(1) ,teR.
Ji(t) ;}2pp!1.3...(21+2p+1)
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With the help of the spherical Neumann function ¥, of order [ € INg which
is defined by

201 & (—1)pg2e—t-t
—or 2 wpl(—20 4+ 1) (=20 + 3) - (=21 + 2p — 1)

p=0

y(t) == , >0,

we can define the spherical Hankel functions h;l) of the first kind of order
[ e H\Igl
1 . :
W () = Gi(t) +in(t) , t>0.

Lemma 2.16 Assume x > 0.

(a) Given Ry > 0 there is a constant My > 0 such that

1
20417

ERT

()| < M, (57 )

<r< leN, .
20+ 1 Osr<fi,lely

(b) For 0 < R < Ry there is a constant My > 0 such that

20+1
eRT

(B (k)] < Mp(20+ 1) (

!
) and
20+1
exr

h{V (k)] < My

l
) R<r<Ry, leN,.

Proof: The definition of j; yields

i) = t (—1)Pt% )) |

1+
1-3---(21+—1)( SEEQPpKQZ%— ) (20 +2p+1
Comparing the series with the exponential series we obtain the estimate

t tho 2l

= M. 0<t< kR [ N, .
I S LE R

(1) < M.
(0] < My
This certainly implies the assertion for [ = 0. From Stirling’s formula we
know

Mylle '"N2rl < 1! < Mslle 'V2rl , 1 € N,

with suitable positive constants My, Ms. Inserting these inequalities into the
above estimate and using the fact that (QZQ—JZFI)Z, [ € IN, is a bounded sequence
we arrive at

11
) 0<r<R,,lcN.

Ji(kr)] < M1(2l+1 2l—+1 )
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This completes the proof of part (a).
Part (b) follows similarly with the help of

hl(l)(t) _ _(2_1).!tl 1{ il (le;j(t)

(e
_H(l_'_ZQPp( A+ 1)(—2013)-- (—2[+2p—1))}

because the series and the first term in the curly brackets remain uniformly
bounded in [ € INy and kR <t < kRy. Differentiating the last equation with
respect to ¢ and using the same techniques as before also yields the second
part of assertion (b).

O

The previous lemma enables us to study the decay of the Fourier coeffi-
cients 4, k,1,k, Of a far field pattern. The decay determines the smoothness
of uy and wvice versa. In [30] and [31, Theorems 17,18] Miiller has examined
the smoothness of the scattering amplitude of a radiating solution to the
Helmholtz equation. However, he expresses the regularity of the scattering
amplitude by the growth at infinity of an entire harmonic function which
coincides with the scattering amplitude on S?. Therefore, his results are not
directly applicable to our needs. We follow the ideas of Stefanov in [42] (see
[7, Theorems 2.15,2.16] for related rsults) but give weaker estimates because
we are not interested in optimal results.

To simplify notation we abbreviate

o L oo I
>, for > > > X
I1,k1,l2 k2 11 =0 ki =—l1 la=0 ka=—I>

and we define

T,.:C(Bg) = C(Br) (Tup)(x) = &’ /(1 —n(y))2x(z,y)e(y)dy , v € Bg .

Br

Lemma 2.17 Assume the far field pattern us: S* x S? — C originates from
the refractive index n € C(Bg) satisfying supp (1 —n) C By, for some 0 <
Ry, < R. Let pyg,1,k, denote the Fourier coefficients of us as defined in
(2.23). Then, there is a constant ¢ depending on uy, such that

( exly )211+3( exy )2l2+3

2
Huakatoks | < (5= 20y + 1

72



Furthermore

|l’Ll1kll2k2|2 <00 .

2l + 1)2l1+3(212 + 1)212+3

l17k17l27k2 QK;R QK;R

Proof: According to (1.25) the far field pattern corresponding to the refractive
index n € C(Bpg) with supp (1 —n) C Bg,, 0 < R; < R, is given by

oo (i, d) = — = / (1—n@y))uly, de"®dy | ,de S2.  (2.24)

The Lippmann-Schwinger equation yields
u(z,d) = — [T, (u(-,d)|(z) + " | 2 € Bg , de S*, (2.25)
whence u depends continuously on x and d, since e*?® depends continuously

on d with respect to || - ||so,5, and (I +7,,)" is continuous in C'(Bg). Then,
we may interchange the order of integration and we obtain

prspsts = | [ ueol d)YE ()Y (d)ds () ds(d)

=~ [ (=) [ul. dVE@ds(d) [ ey (@) ds(@)dy

Applying the Cauchy-Schwarz inequality we conclude

2

[l Y (dyds(a)

|/‘Ll1k1l2k2|2 < c

L2 (BRI)
- 2
/ e—md-xYllfl (d)ds(d)

5'2

(2.26)

L2(BR1)

Note that ¢ will denote different constants during the proof.
With the help of the Funk-Hecke formula (see [7, (2.44)]) we compute

I dm TR
v (9) = [ €Y @)ds(@) = S (Y)Y @) oy € TR
S2

73



whence with Lemma 2.16 (a)

Ry
ooy = 647 [ L (e rdr
0

(2.27)

R
C<2§f+11)2l1+3 '

Reversing the order of integration and employing the Funk-Hecke formula
again we obtain from (2.25)

| e OVE st = = [ 1, f e OEs0) | 01+ (1) o).
s s
ie.,
/“(ffad)YzfQ(d)dS(d) = (=1)"[(] + Tn) " vians] () - (2.28)
S2
With the help of Theorem 1.9 (¢) we can conclude that the operator T, is
compact in (C(Bg), || - [|12), whence (I +T,)" is bounded with respect to
the L?(Bg)-norm. Then, inserting (2.27) and

2

[ . Y (@)ds(a)

S2

< CHUlzsz%?(BRl)
L2(Bg,)

R
C(;Z +11 )2l2+3

into (2.26) we arrive at

exRy )2l1+3( ek Ry )2l2+3

2
<
|Ml1k1l2k2| = 6(211 +1 2[2 +1

Finally, we estimate

Z (2l1 + 1)2l1+3(2l2 + 1)2lz+3|lullkll2k2 |2

Lobidaks - CRIT exR
201 + 1\20+3 (2ly + 1\20243 , ek Ry 2043, ek 2l2+3
S Ch,klz’l:%k)z elﬁjR ) ( eK/R ) (2ll+1) (2l2+1)
= ¢ (2 +1)(2l + 1)(%)”1+3(%)zzz+3
l1,l2
< o0
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by the ratio test.

The last lemma asserts that the norm ||ue |7 defined by

201 + 1\201+3 2]y + 1\ 20243
2 . 1 2 2
luoealle = 3 (Tog) o) e

is well defined, if n € C(Bg) because supp (1 — n) C By implies that there
is a radius Ry < R with supp (1 —n) C Bg,.

Next we study the continuous dependence of u , on n. In the end we
are interested in the reverse result but we will need the dependence of 1y,
on n in order to obtain the small set in which n depends continuously on

Uso,n-

Lemma 2.18 Let ny € C’(BRI), R, < R, be given. Then, there are positive
constants M and € such that ||usen — Usonollr < M|In — nglle for all n €

C(Bg,) satisfying ||n — nol|leo < €.
Proof: Similarly to the previous lemma we start with

uoo,n (i.a d) - uoo,no (i‘, d)
2

— K —iKTY
=~ | A= ny))ualy,d)e ™ dy
Br,
Ly d)e= "V
[ = n0(y))uny, d)e" vy
Bpr,
K2 -
)= 0l 0
Bpr,
I{)Z N
1 [ (=) gy, d) = waly, ))e *Vdy , dyd € 5*.
Br,

(2.29)

Multiplying by Yl’fl (fc)Ylf?(d) and integrating we can use the reasoning in
Lemma 2.17 and bound the term originating from the first integral on the
right hand side by

ekl )(211+3)/2( ekl )(2z2+3)/2

Ml“”_"()”“(m 2, + 1
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For the term originating from the second integral on the right hand side
we observe that there is a constant M, such that for all n € C(Bpg,) the
inequality [|75, — T, ll22(Br) < M2||n — ngl[oo holds true. Thus we can choose
e > 0 sufficiently small to ensure ||, — T, llr2(,) < /@I + Tag) 'l22)
for all ||n — ngl|ec < € and, with the help of a Neumann series argument, we
obtain ||(I 4+ T,,) "1 < 2||(I + Tyy) Y| z2 for those n. Using

[l Y@ ds(d) = (1 +T) " [ ey (d)ds(a)

and
([ + Tn)_l - (I + Tno)_1 = ([ + Tn)_l(Tno - Tn)([ + Tno)_1

this yields

L2

H/(“n(" d) — iy (-, d)) Y2 (d) ds(d)

= e m e ng ] e s

L2

< @+ - @+ 1)

L2 L2

/ ety F2 (d)ds (d)

< M3||n—n0||ooH/ 4TV R () ds(d)

2’

Now, the term originating from the second integral in (2.29) can be bounded
similarly to the preceding lemma and we arrive at
‘2

[ (oo, d) = oy (2, )Y ()Y (d) () s ()

R R
R

This implies as in Lemma 2.17 that
[thoo,n = Uoomoll 7 < M| — 10|00

for n € C(Bg,) with ||n — ng||es < € and we have proved the lemma. 0
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Although we used the Green’s function s,, during the motivation at the
beginning, contrary to Stefanov we avoid working explicitly with it because
then we circumvent proving its existence and its properties. We observe
s1(x,y) = ®x(z,y) in the case n = 1. In view of the regularity properties
and jump relations of the single-layer potential with kernel ®,(x,y), and
since we expect that the single-layer potential

2 [ su@n)f)dsty) , v € R

dBr,

satisfies analogous regularity properties and jump relations, we guess that it
is a solution of the following boundary value problem (BV P):

Suppose Ry > R. Given k > 0, n € C(Bg) and f € C(9Bp,), find
u € C(IR?) such that u is C%-smooth in Bg, and in IR® \ Bg,, such that
u satisfies the Sommerfeld radiation condition and such that w satisfies the
following requirements:

Au+ k*nu =0 in R?\ OBg,,

8U+ .
W(x) = Hl%)r,go v(z) - Vu(z + tv(x))
and 5
U_— .
W(x) = Hl%)r’go v(z) - Vu(zr — tv(z))
exist uniformly for z € 0Bg, and
ou_ 8U+
s S Bh,.
ov v f on 9Br,

Here, v denotes the unit normal vector on 0Bp, directed into the exterior of
Bpg,.

Lemma 2.19 For all f € C(0Bg,) the boundary value problem (BV P) has
a unique solution u. wu is given by

(@) =2 [ Sulwn) fdsy) = [ (1= n(m)eslw,p)e(y)dy , v € R,
OBg, Br
(2.30)
where ¢ € C(Bg) is the unique solution to the Lippmann-Schwinger equation
(o + Thp)(z —2/ (y)ds(y) , © € Bg .
0Bg,
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Proof: In order to prove that (BV P) has at most one solution we assume
that u is a solution of (BVP) with f = 0. Then we can follow the first
part of the reasoning in Theorem 1.8 and we obtain u = 0 in the exterior of
Bpg,, whence u = 3;‘—; = 0 on 0Bpg,. Now, Green’s representation formula
(1.10) implies that u is a solution of the homogeneous Lippmann-Schwinger
equation. Thus, we also have u = 0 in Bp,.

It is immediately seen that u defined as in (2.30) is a solution to Au +
k*u = 0 in the exterior of Bg,. Moreover, the properties of volume potentials
(see Theorem 1.11) show ¢ € C%7(Bg), whence u € C*(Bg,) and

(Au+ r*u)(z) = K1 —n(z))p(z)
= R0 -n@){2 [ eulw ) f@)sy)

— [[(1=n()0u (@ )pl)dy
= k*(1 —n(x))u(z), v € Bg, .

Finally, we can conclude from the regularity properties of the single-
layer potential with kernel ®, (see [6]) and of the volume potential (see
Theorem 1.11) that u as defined in (2.30) satisfies the boundary conditions.

Hence it is a solution of (BV P).
O

Now, we define the operator S, by
Sp: C(0Bg,) — C(0Bg,) (Spf)(z) :=wu(z) , v € OB, ,

with u being defined as in (2.30). Note, that S; is the single-layer operator
defined in [6, 7].
We need some properties of S,, which we derive in the following lemma.

Lemma 2.20 The linear operators S, satisfy:

(a) S,:C(0Bg,) — C(0Bg,) and S,: C®"(0Bg,) — C'7(0Bg,) are
bounded (0 < v < 1).

() [ F(Sug)ds = [ (Suf)gds for all f, g € C(OBr,).

dBr, dBp,
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(¢) The mapping n — Sy, from (C(Bg),|| - ||se) to the space of linear and
bounded operators in C(0Bg,) equipped with the || - || -operator norm,
18 continuous.

Proof: From the continuity of (I + 7,,) ! in C(Bg) and from the properties
of the single-layer operator S; we can conclude that S, is a bounded linear
operator in C'(0Bg,) and similarly a bounded operator from C%7(9Bg,) to
C’l’"’(@BRz).

For assertion (b) we define u as in (2.30) and v analogously where we
replace f by ¢g. Then we compute

/ [£(5:9) = (Suf)g}ds

dBr,
B 8u_ Ouy ov_  Ovy
= 5 [ {5~ 3,)(5u9) = (Suf) (75~ — 5.1) s
(‘9BR2
. ou_ ov_ au_,_ 8U+
= 23/ {—v, - u,a—}ds - —8/ {—v; — u+g}ds :

Since the first integral on the right hand side vanishes due to Green’s second
theorem and the second integral due to Lemma 1.4, we have proved part (b).
The proof of assertion (c) is very similar to the proof of Lemma 2.18. We
fix ng € C(Bg), observe that the inequality || T}, — Tholloo.8x < Mi||7 — 10]|o
holds for all n € C'(Bg) with a suitable constant M; and derive that ||(T +
1)~ |oo, B, 18 uniformly bounded in a suitable set {n € C(Bg):||n —nol|so <
e¢}. This yields the inequality

1T+ Ta) ™ = (T + Tg) ™ oo < Malln — 1ol

for all n from the above set.
Defining for f € C'(0Bg,)

w@) =2 [ ®ule,y)f()ds(y) , @€ Br,

9Bk,
we compute
||Snf - Snof”oo,(?BR2
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Br 00,0BR,
< | [0 )[04 T e 1+ ) o))
Br 00,0BR,,
| [ ) = a2 [+ ) o] )]
Br 00,0BR,,
< Milln - ol ol
< Milln = ol o,

for all ||n —npl|lee < €, 1.0y ||Sn = Snolloo < Myl —ngl|oo, and we have proved
the lemma.
O

Next, we study the relation between the Fourier coefficients i, x,1,%, Of
the far field pattern uo,, and the Fourier coefficients of the far field pattern
belonging to the function u defined by (2.30) for the special functions f(z) =

Yk (\x\) x € 0Bg,. This allows to reconstruct S, from u,, and to derive
continuous dependence of S,, on Us p.

Lemma 2.21 Assume the far field pattern teop: S? x S% — € originates
from the refractive index n € C'(Bgr) and has the Fourier coefficients pi, g, ik, -
Furthermore, define for x, y € 0Bg,, © # vy, the function

$n (T,

Q. (z,y)
S kD (kR D (kR Y (=

y) =
[
A l1,k1,l2,k2 | |

V()

(2.31)

|y

(a) For all f € C(0Bg,) there holds

1) =2 [ sul@y)f()ds(y) , x € OBr,

9B,
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(b) The mapping o, — Sy is conlinuous, to be more precise: there is
a constant M such that ||S, — Sillee < M|[teen — Uooallz for all n,
n € C(Bg).

Proof: From [7, Theorem 2.8] we infer the estimate ||Y}*||2, < 2[ + 1 for
the spherical harmonics Y}*. Applying the Cauchy-Schwarz inequality to the
series in (2.31) and using the rapid decay of the Fourier coefficients from
Lemma 2.17 together with the estimate for |h§1)(/<cR2)| from Lemma 2.16 we
see that the series is absolutely and uniformly convergent on 0Bpg, x 0Bp,.
Hence it represents a continuous function there and s, is well defined.

We prove assertion (a) for the special functions f(y) = Yk?(| ‘) Yy € OBg,.
Since the linear span of these functions is dense in C'(0Bg,) and since S,, and
the integral operator with kernel s,, are bounded in C'(0Bpg,), this suffices to
prove part (a).

First, we compute for x € 0Bg,

2 [ salw Vi )dst)

9B,

kag KRS 1 ki

= 51(3/122(7))(93) 5 > i ol (KR, (nRZ)th(H).
l1,k1

Then we turn to S, (Yk2(|'|)). To this end we define the functions w, ¢,
and u by

w(z) ;:2334 ®,(z, )Y’”(| |) s(y), v € R®,
o= (I+T,) 'w in By, and
ulw) i=w(e) = & [ (1= n(u)Bu(z v)plv)dy , v € R

From [7, Theorem 2.10] together with the Funk-Hecke formula ([7, (2.44)])
for |z| < Ry we obtain the relation

Y . . -
| @ulo Vi (ds(y) = iwB3RY (Ra)ju (sl DV (@

oD, Y]
_ s RZh(l) (_i)l2 mw dvrka [
= RN (Ry) 2 [ €Y (d)ds(d)

m
52
(2.32)
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Similarly to the derivation of (2.28) we compute

p = (I+T)  w

_ N\l ) -
- 2@'533/@5;)(%32)( 4’72 (I + 7)Y / ety E (d)ds(d))
S2
= N 27 (1) (_i)l2 k2
= 2ikR3Ny,’ (kRy) ym u(-, d)Y,?(d)ds(d) .

52

Now, for the function v := v — w , the definition of u and the relation (2.24)
yield the far field pattern

A _ _’Li_ o —iKT-Y
ve(@) = 1 [ nly)ey)e " dy
Br
= 2ikR2h\" (kR )(_i)h (&, d) Y (d)ds(d)
= 21, ) 47‘(‘ uoo,n Z, Is S ,
52
ie.,
NTE g e e b2 (1) (=)
UOO(‘T)YL (ZL‘)dS(iU) - 22%R2hl2 (HRZ)?:U’hkllﬂQ : (233)

52

Since v is a radiating solution of the Helmholtz equation in the exterior of
Bpg, if supp (1 —n) C Bg,, Ri < R, according to [7, Theorem 2.14] it has an
expansion

00 I

1 L (A
o@) =3 3 an i) (el )Yy (@)
11=0ki1=-11
which converges absolutely and uniformly on compact subsets of {|z| > R}.
Therorem 2.15 in [7] states that the Fourier coefficients of the far field pattern
of v satisfy

. A . 1
/Uoo(x)yzlfl (#)ds (%) = i1 Mk -
S2
Comparing with (2.33) we arrive at
2 2l " (1)
Alyky = —2K R2 A h12 (HRZ):U’llkllﬂ@ .

82



This implies for |z| = Ry

u(z) — w(z)

x
= —26'R} ) Z thllmhb (K Ra)hi, (“R2)Ylf1(?|) )
11=0k1=—11

whence

ko = Ul9B,. = Sp (- kzis .
S (V2 (7)) = wlos, 2/ ()Y ds(0)

This completes the proof of assertion (a).
Finally, we can conclude for two refractive indices n, n € C(Bpg) with
Fourier coefficients fi,k,1,k55 [k loks:

1S = Sa) FI% o5,
2
- H [ Gulsw) = sl fwdsw
0B, o
< M||fll%
- 1 1 2
(X Irkitaks — Ak (KRB (KR IV | o1V | )
lhikiloko
20 + 120143 21y + 1\ 212+3 -
< M||f|I? — 2
< 2||f”°°m§kz( R ) R ) tkatoks = sk
ek \2u42, exR \2+2
h h R
llczl:k 211+1) (2524—1) I, (R 2)h, (5Re)
1R12R2

< Myl f % lusom — tsoll% -

This ends the proof of the lemma.
|

Let us add a remark concerning the relation (2.31) between s, and the
Fourier coefficients of the far field pattern. In [33, (3.10)] Nachman derives
for all g € L?(S?) and for all & € S? the relation

(FS.F2g) (@) = 5- / (oo () — oo, pp (@, ) ) g(d)ds(d) . (2.34)
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Here, F:C(0Bg,) — C(S?), f — u’,, denotes the operator which maps
the Dirichlet boundary values f = u5|3BR2 of a radiating solution u* to the
Helmholtz equation onto its far field pattern ué . If, for d € S? upp(,d) €
C?*(IR*\ Bg,)NC(IR*\ Bg,) satisfies upp(y,d) = 0, y € 0Bg,, and upp(-,d) —
u'(+,d) is a radiating solution to the Helmholtz equation, i.e., upp(-, d) is the
total field to the exterior Dirichlet problem with incident wave u'(-d), then
F can be written as

@ = [ P fas)  ae st

F*:C(S?) — C(0Bg,) is defined by

(F2g)(y) = / &Lgfiéy)’(i)g(d)dsw) , § € OB, .

Finally, % pp(Z,d) is the far field pattern which corresponds to the scat-
tering at the obstacle Bg, assuming Dirichlet boundary conditions on 0Bkg,.
Using the relations

_1)l
Yk , f‘j Yk — ( k{_ ,
: (&7) R%K/il+1h§1)(l€R2) : (| ' |)

: 1
f(YEk (ﬁ)) - IiilJrlh,gl)(IiRg)

it can be seen that (2.31) implies (2.34) and wvice versa. Nachman’s relation
(2.34) is also true, if the ball By, is replaced by a different obstacle, whereas
a definition of s,, in the spirit of (2.31) is not possible on an arbitrary surface
surrounding the support of (1 — n) because it is not at all clear whether the
series is convergent on such a surface.

Let us now turn to the third step of the stability result, namely the
continuous dependence of n on S, and the continuous dependence of n on
Uoon- The idea is to estimate the Fourier coefficients |(n —n)"(cv)| in order to
bound ||n — 7||s. From the proof of the Uniqueness Theorem 2.10 we know
that (n — 1) (a) can be computed with the help of special solutions u, @ to
the perturbed Helmholtz equation and with the help of the integrals

/(n — n)uidzx .

Br
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Hence, we need a relation connecting these integrals and |[|.S,, — Sﬁ||00733R2 to
derive the dependence of ||n —7i|o on [|.Sy, — Sillcc,08,,- We obtain this rela-
tion in the following lemma in which we employ the operator K: C(0Bg,) —
C(0Bg,) which is defined by

(K —2/ o(y)ds(y) , © € OBk, .

O0BR,

Lemma 2.22 Assume R < Ry < R" and ¢, > 0 are positive constants.
Then, there exists a positive constant ¢ such that for all n, n € C(Bg)
with ||n]|so, |7l < 1, and for all solutions u, @ € C*(Bgs) N L*(Bgr) to

Au+ k2nu = 0, At + x*0@ = 0 in Bgr the estimate

| [ (n = Ayuiida] < ellSy = Sallsoome, lulzzmn lillizm,y — (2:35)
Br

holds true.

Proof: We first extend u outside of Bg, to a radiating solution w to the
Helmholtz equation with u|sp,, = w|ss,, on 0Bg,. Then, u|g, together
with w is a solution of (BV P) with a certain f. This allows to connect
u|33er and the operator S,,. We define

u(z) x € Bg,

w(w) =92 | (280 1 b, (2,y))e(y)ds(y) , =€ R\ B, ,
OBr,

with ¢ = (I+ K +iS1) 'ulyp,,. The existence of (I + K +iS;)~" is proved in
[7, p- 47]. The jump relations and regularity properties of surface layers imply
w € C(R?), w € C?(Bg,) NC'(Bg,) and w € C?(IR*\ Bg,) NC*(IR?\ Bg,).
Furthermore, w satisfies the Sommerfeld radiation condition. Hence, we
know from Lemma 2.19 that

_ S (6w, 8w+ )

ov ov

on 0Bg,. Finally, we can conclude from the regularity properties of sur-
face potentials and from Lemma 2.6 (b) that there are constants ¢y and cs,
independent of u and n, such that

8w_ 8w+ H

00,0Br, — CZ”“”L%B—R2 < csllullLeB ) - (2.36)
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We can proceed analogously and define a function w for & € C*(Bgv) N
L*(Bgn).
Then, we use Lemma 2.20 (b) and Green’s theorem to compute

2 / aw, aw+)(5n - Sﬁ)(% - a&)ds

ov ov
8332
. aW+ a’Uh}, 31D+
) / )](81/ £y )ds
0Bn,
]_ aw_ 3111_,_ aUNJ_ 817)_1_
2 | Gy~ 18G5l
OB,
B ow_ 0wy _,0w_  Owy
=[G -5 -G, - 50
OB,
ow_ _Ow_
= [ w0 M
OB,
= /{wAu? wAw}dz
= K’ /(n— n)utdz (2.37)
Br
where the terms . 5
Oy _ Owsy,
/ {w ov ov bds
OB,

vanish in the fifth line because w and w are radiating solutions to the
Helmholtz equation in the exterior of Bp,.
Finally, we conclude from (2.36) and (2.37)

o ow_ 0 ow_ 0w
‘/(n—n)uudx‘ = ‘2%%23/ ( au; - 51;/+)(Sn_sﬁ)( g,]/ g;j)ds‘
Br,

S CHSn - SﬁHOO,aBRQ ||u||L2(BRH)||ﬂ‘||L2(BRN) )

and we have proved the lemma.
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We are now in a position to prove the desired stability results. By

Iellez = lilloe,pr + sup [Vip(z)] + max sup |9;0:(z)|
TEDR

’ r€BRr

we denote the C*-maximum norm of a function ¢ in By having bounded
derivatives up to order two.

Theorem 2.23 Let ng € C(Br)NC?(By) be given. Then, there are a neigh-
borhood O of ny of the form

O := {n € C(Bgr) N C*(Bg):||n — ng||c2 < €} ,

and a positive constant ¢, such that for all n, n € O the estimate

- ~1/7
I = 7illoc,za < el=1n([[Sn = Salloo,o8a,)]

holds true.

Proof: The main idea is to use the previous lemma and the special solutions
u(-, C), 11(,5) from the uniqueness proof of the preceding section to derive
estimates for the Fourier coefficients (n — n)"(«), o € T.

Assume R < Ry < R" < R' < 2R,. We have for n, i € C(Bg) N C%(Bg)

and any p > 2

In=ills = [ X (n =) (a)ea]

acl’ o
< @2R) Y [(n—a)(a)|+ 2R Y |(n—a)(a)] .
a-a<p? a-a>p?
(2.38)
The Cauchy-Schwarz inequality implies
> l(n—n)(a)]
a-a>p?

< (T tra-apn-ay@f) (L ——0)"

a-a>p? a-a>p? (1 +o- a)Z

M

N
—~
o
w
e
~
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Here, with the help of Parseval’s relation (1.2) we have bounded the first
factor by ||(=A+1)(n—n)||z2(c) which in turn can be estimated by a constant
which is valid for all n, n with ||n — ngl|c2 < 1 and || — ng||c2 < 1. For the
second we have employed the inequality

1 2M
S e L B TG TS S,

a-a>p? k>p (k—1)2<a-a<k? p<k P

(see the proof of Lemma 2.13 (b)). Note, that we use the same letter M for
different constants during the proof.

Now, we turn to the first sum Y in (2.38). We will insert the solutions
a-agp?

u(-,¢;) and @(-,G) from Theorem 2.10 into (2.35) in order to estimate |(n —
)" (@)]-

To this end we choose ty := 2x*(R'/m){||]1 — no||leo + 1} + 2K + 20 and
0 < €; < 1/2 sufficiently small to ensure (—31n(2¢;))/(7(4R2+1)) > t5. Due
to the continuous dependence of S,, on n (Lemma 2.20 (c)) we can find €
with 0 < € < ¢; such that

||Sn - Sﬁ“OO,aBRQ < ||Sn - Sn0||00,3BR2 + ||Sﬁ - Sn0||00,3BR2 < 2¢

for all
n,in € O :={n € C(Bg) N C*Bg): ||n — nollc> < €} .

For a vector € I' with o - @ < p? and a real number t > t,, we choose
as in Theorem 2.10

|of?

1
Ct = —§OZ+Z t2—/€2+Td1+td2 s
~ 1 ) ) | 2
Ct = —504—7/ 2 — kK +Td1_td2 .

Then, we have for all n € O that |3(¢;)| > t — Kk > t/2 and |I(¢)| >

t—k > 26%(R'/7)||1 — n|| + 1, whence by Lemma 2.9 there exist the special

solutions u(zx, ¢;) = (1 +wv(x,(;)) and the L?(Bg»)-norms of the functions

v(+, () can be bounded by M/t uniformly in n € O, t >ty and « € I'. The

analogous assertions apply to 7(, ft) and a(z, Et) =%t (1 + o(x, ft))
Using (2.35) we estimate

(72 = n)" ()]
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C
= R [ (- m)@)ue, C)alw, &)do
Br,
- / (7 —mn) (x)eim'w(v(% G) + 0(x, Et) +v(w, G)o(x Et))dx‘
B,
-~ = M
< M||Sy = Salloollu(c, )l 2B |E(- Co) | 2By + s
1
< M(eMeltrlel) s — 5o + 2) , (2.40)
where we have used the fact that
Jul, 2 Bey = 197 (L4 0( )2y

< 1€ oo, 11+ 0, GOl L2(B )
M e2R2(t+lal)

IN

for all t > ¢y, n € O, and « € T, since ()| <t + |a.
Inequality (2.40) implies

™
=
|
G
e
=2
VAN

o 1
MY (DS, = S+ 7)

a-a<p? a-a<p?

3
< M{™'e 20 |S, — Syl + )
3

< M{ARtDe) g gl g P
< Mfe || oo+ 53

because of p? < 6e”. If we fix p := t*/7, for t > t, our condition p > 2 is
satisfied and we obtain from (2.38), (2.39) and our last estimate

3
1
n—ille < M{e@F2tDte) Sn_SﬁOO+p_+—
In—lle < M{ || oo+ 5+ 75
2

< M{e(8R2+2)t||Sn - Sﬁ“oo + m} ,

(2.41)
since p = t*/7 < t.
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Finally, we choose t := —m In||S, — Sillco- Then, the inequalities

I1Sn — Silleo < 1 and t > ¢, are satisfied for all n, 7 € O by the definition of
¢ and inequality (2.41) reads

In = ille < M{(ISn = Sallso)""" + (—1n[|Sy = Salle) "}
< o(—In IS, = Sillo) 7"

for all n, n € O because
; d 1 1
Y
n(zx) x( z) < -

Y

T

implies z < (—In(z))™! for 0 < z < 1, and we have proved the theorem.
|

Theorem 2.24 Let ng € C(Bg,) N C*(Bg) with Ry < R be given. Then,
there are a neighborhood O of ny of the form

O:={ne C’(BRI) NC?*(Bg):||In — nolle> < €},

and a positive constant ¢, such that for all n, n € O the estimate

I = il < el= (o0 = )

holds true.

Proof: We know from Lemma 2.18 that the mapping n — 1. is continuous
from C(Bg,) to the far field patterns equipped with the norm || - ||#. Then,
in the proof of Theorem 2.23 we can choose € > 0 sufficiently small to satisfy
the additional requirements

(1 + M)“uoo,n - Uoo,ﬁ“]: S 261 and M“uoo,n - uoo,ﬁ“]: S ||uoo,n - uoo,ﬁ||_17-‘/2

for all n, 7 € O, too, where M denotes the constant from Lemma 2.21 (b).
Inserting the estimate

from Lemma 2.21 (b) into Theorem 2.23 we arrive at the assertion of the
theorem.
O
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2.3 The Reconstruction of the Refractive In-
dex

This section is devoted to a procedure to reconstruct the refractive index n
from s, to be more precise: we compute the Fourier coefficients (n—1)"(«),
acl.

In the first step (Theorem 2.27) we prove that the Robin-to-Dirichlet map
Ap: C¥Y(0Bg,) — C'(0Bg,), given by f = 0u/0v —iu = ulyp,, where u is
a solution to Au + k*nu = 0 in Bg,, is well defined, and we examine how it
can be computed from uy, 5, i.e., from the Fourier coefficients 14, 1,4, 0f oo n-
This can be established by essentially constructing the Green’s function s,
for the differential equation Au+k?nu = f and using a single-layer approach
with kernel s,,. We used a similar approach when we examined the stability in
the preceding section. However, we do not only need the operator S,, but also
the operator K, which arises from the normal derivative of the single-layer
potential with kernel s,. We study its properties in Lemma 2.25. As in the
previous section we avoid working with s, directly. We also avoid working
with the Dirichlet-to-Neumann map as in [32] because then we would have
to worry about Dirichlet eigenvalues. Since the Robin problem has no real
eigenvalues (Lemma 2.26), it is more suitable for our purposes. Nevertheless,
this whole section is largely influenced by Nachman’s paper [32].

In the second step we derive a uniquely solvable equation of the form

ic-.
(1= (20— in.0) = 27 i on 0By,

for the Robin data du(-,()/dv —iu(-, () of the special solutions u(-, () which
we constructed in Lemma 2.9. Here, A,, ¢ is a compact operator in C%? (9B,
which is composed of A, and integral operators having kernels originating
from the unphysical fundamental solution ¥, := e/ (4x|.|)+g;. ¥, already
occured in section 2.1 after Lemma 2.9 and is the composition of a Fourier
series, a unitary transformation and a multiplication by €%, whence it is
known. This means that A, . can be computed from u., and (. In a
nutshell, given v, ,, we can compute the Robin data du(-,()/ov — iu(-, ()

and the Dirichlet data u(-,() = A, (Ou(-,¢)/0v — iu(-,()) on OBg,.
In the last step we apply Green’s second theorem in By, with the functions
e and u(x, ¢) = e <%(1+v(x,¢)) from Lemma 2.9. Here, ¢ = ¢, and ¢ = ¢
are chosen as in the Uniqueness Theorem 2.10 for a fixed @ € I'. We then

91



obtain

2 iiw s Ou(, € .
e ) e, ) Jas(a)
eite = Ou(x
— / {aay u(x,C)—elC'wL (81/, C)}ds(x)
= K /(n(m) - 1)eic~'$u(x,C)dx
> / (n(z) — Ve (1 + v(x, ())dx . (2.42)

The left hand side of this equation can be computed from ., according to
our preceding considerations. The right hand side converges to x2(2R')*/?(n—
1)"(«) for t — o0, i.e., |I(C)| = o0, because ||v(-,()||r2 — 0 for |¥(¢)] — oo
by Lemma 2.9. Finally, having calculated all Fourier coefficients (n —1)"(«),
a € T', we obtain n in Bg, as the L2-limit of the series

n=1+Y (n—1)(a)e, .

ael

After this outline let us start with the operator A,,. In order to motivate
the following analysis we briefly sketch how to analyze A;. In the case n =1
uniqueness of a solution to the Robin boundary value problem Au + x?u = 0
in Bg,, Ou/0v —iu = f on 0Bg,, can be easily inferred from Green’s first
theorem. Existence can be established with the help of a single-layer ansatz

u(@) =2 [ @ule,y)bW)ds(y) , v € B, .

9B,

If ¢ is a solution to (I + K| — iS1)y = f, then u defined as above solves
the Robin problem. Here, K{: C%7(0Bg,) — C*7(0Bg,) denotes the integral
operator

0P, (z,y)

(K@ =2 [ =

9B,

Y(y)ds(y) , x € OBpg, - (2.43)
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The existence of a solution to this integral equation is then derived via the
Riesz theory and one arrives at Ay = S;(I + K] —iS;) !

For arbitrary n we want to replace the Green’s function ®, by s, and use
the same procedure to establish the existence of a solution. Hence we need the
boundary integral operators corresponding to S; and Kj. In the preceding
section we have defined the operator S, with the help of the functions
given by (2.30). Lemma 2.21 states that S, can be computed from uq,,,. We
would like to do the same for the operator K, i.e., for the operator having
the normal derivative &, (z,7) := 9s,(z,y)/0v(x) of the Green’s function s,
as kernel. To this end, analogously to (2.30), we define for f € C%7(0Bg,):

OPu:9) (1 (y))oly)dy , x € OB, |

(K, f)(z) = (Kif)(z)— K T(a:)

(2.44)

where ¢ € C(Bp) is the unique solution to the Lippmann-Schwinger equation

(o + Thp)(x —2/ (y)ds(y) , © € Bg .
9Br,

Note, that if u is defined as in (2.30), that is

u@) =2 [ @ule,n)f ()ds(y) —n/@ (5,9)(1 = n(y)pu)dy , » € R,
0Bg,
(2.45)
then we can infer from the properties of the single-layer potential with kernel
d,.:

ulga € € (Bm), ulgoysy, € CV/(RP\ B,
and Ou_/Oov =K f+ f,0u,Jov=K|f— f.

In the following lemma we show that K is compact and how it can be
computed from a knowledge of uq 5.

Lemma 2.25 Assume the far field pattern usp,: S* x S* — € originates

from the refractive indexn € C(Bg) and has the Fourier coefficients fu, g, i,k -
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Furthermore, define for x, y € 0Bg,, © # y, the function

kn(w,y) == L;';(é’)y)
— g lhk%:z,kz ill_l2ﬂl1k1lzkz(d2; ))( Rg)h (/<;R2)Yl’fl(| |)Y’“z(|y|)
(2.46)
(a) K!:C%(0Bg,) — C*7(dBg,) is compact (0 < v < 1).
(b) For all ¢ € C(0Bg,) there holds
(K" _2/ (y)ds(y) , © € OB, .

9B,

Proof: As in Lemma 2.21 we can conclude that the series in the definition
of l%n is absolutely and uniformly convergent on 0Bpg, x 0Bg,, whence l}n is
well defined.

For assertion (a) we observe that the mapping

Y w =2 / P, (-, )Y (y)ds(y)

9B,

from C%7(0Bg,) to C(Bg) is compact due to the properties of the single-layer
with kernel ®,. Taking into account the continuity of (I + T;,) ! in C(Bg)
and the regularity of the volume potential we obtain that the mapping

wrs = [ S )+ 1)y

Br
is compact in C%7(0Bg,). Together with the compactness of K] this proves

part (a).
The proof of part (b) closely follows the proof of Lemma 2.21 (a). It

suffices to show the assertion for the functions ¢ (y) = Y’”(‘ ), Y € OBg,.
We compute

2 [ ey Ddsty) = Ki( () @)

T |

K3 R2 dh(l) T
= Y e () (RRo)AE (R Vi (-

) x € aBR .
e |.’L'| ) 2
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Furthermore,

= —n / Pul ) (1 = n(y))p(y)dy

has an absolutely and unlformly convergent series expansion in compact sub-
sets of {|z| > R}:

o0 ll
=3 S aunhP (w2 (@) .

11=0ki1=—11

The series may be differentiated termwise with respect to || because the
derivatives are also absolutely and uniformly convergent. Hence, we obtain
for x € 0Bp,

% )= n 3 3 o () el )
11=0 ky=—11

As in the proof of Lemma 2.21 we also have the relation

Il

4m

Inserting this in the above series yields the assertion.

Al = 2’%2R2 hz(;)("fRﬂHhkllez :

O

Our next aim is to prove that the following Robin boundary value problem
(RP) has a unique solution:

given k > 0, n € C%(IR?) with supp (1 — n) C Bg and (n) > 0, and
given f € C"(0Bg,),

find u € C%(Bg,) N C'(Bg,) such that u satisfies Au + x*nu = 0 in Bg,
and the Robin boundary condition % —iu = f on OBg,. (v is directed into
the exterior of Bg,)

We imitate the proof for the case n = 1 and start with uniqueness.

Lemma 2.26 [f u is a solution to (RP) with f =0, then u =0 in Bp,.

Proof: Applying Green’s first theorem to a solution u of the homogeneous
boundary value problem (RP) yields

/ lu|?ds = —uds = / (|Vul* = k*n|ul?)dz

dBr, dBp, Bhr,
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Taking the imaginary part we arrive at

/ lu|?ds = —kK? / S(n)|ulPdz <0,

dBr, Br,

whence u = 0u/0dv = 0 on 0Bg,. Now, Green’s representation theorem for u
in Bg, implies that u is a solution to the homogeneous Lippmann-Schwinger
equation in Bpg,, thus u = 0.

O

Theorem 2.27 For any given f € C°7(0Bg,) there is a unique solution
u to (RP). The mapping A,: C%7(0Bg,) — CY(0Bg,) defined by A,f =
u|33R2 is well defined and can be computed from us,. The linear operator

P:C%(0Bg,) — C(Bg,) defined by Pf = u is compact.

Proof: From the considerations before Lemma 2.25 we see that, if ¢ €
C%(0Bg,) is a solution to

I+ K, —iSy)y=1f, (2.47)

then u|p,, with u defined by

uw)=2 [ @, w<-f/@ (,9)(1 = n(y))p(W)dy , = € R?

dBr,

and o € C(Bg) being the solution to

p+Tup=2 [ Ouly)u(v)ds(y) .

OB,

is a solution to (RP). Asin the proof of Lemma 2.19 the differential equation
is verified by applying (A + £?) to the definition of u.

Since the operators S,, and K are compact in C%?(9Bg,), it suffices to
prove that the integral equation (2.47) has a trivial nullspace.

Let 1 € C%7(0Bg,) be a solution to (I + K| —iS,)1 = 0 and define u
as above. Then, the uniqueness result for (RP) implies u|p,, = 0, whence
ulopg, = 0 and then u|gs p, =0 because the exterior Dirichlet problem for
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the Helmholtz equation is uniquely solvable. Now, we use the jump relations
as indicated before Lemma 2.25 and conclude 29 = du_/0v — duy /Ov = 0.

From our above considerations we have the relation A,, = S, (I + K], —
iS,)7 !, ie., A,: C®7(OBg,) — C(0Bg,) is well defined and it can be com-
puted from u,, because the kernels of the integral operators S,, and K, can
be computed from the Fourier coefficients of uq .

Finally, the boundedness of (I + K! — iS,)™" in C%7(0Bg,) together
with the boundedness of (I 4+ T;,)! in C(Bg,) and the compactness of the
single-layer potential with kernel ®, from C®7(0Bg,) to C(Bg,) imply the
compactness of P.

(]

Our next task is to construct the Robin data Ou(-,()/dv — iu(-,() of
the special solutions used in the Uniqueness Theorem 2.10. We will derive
a uniquely solvable equation for the Robin data which only contains A,
and integral operators built on the special fundamental solution €*g.(z)
for the Helmholtz equation. These unphysical fundamental solutions were
introduced after Lemma 2.9.

Our reasoning after Lemma 2.9 implies that for ¢ € €* with I(¢) # 0
and ¢ - ¢ = k2 the relation

@ Ng (v —y) =D (x,y) +dc(r —y), 1,y €Br , v #y,

holds true where g € C*(Byg:) satisfies Age + k%G = 0 in Bygr. To simplify
notation we define
6in|3{:|

v = e = —
() = gelo) =

+gc(x), 0 < |a| < 2R .

We choose R < Ry < R" < R'. Equation (2.15) tells us that for suffi-
ciently large |3(¢)| the special solutions u(-, () are the unique solutions to

uw,¢) = ¢ =52 [ Welw —y)(1 = n)()uly,)dy , v € B . (248)

Bpn
The following lemma states Green’s representation theorem for u(-, () in
the spherical shell Ry < || < R” with the fundamental solution ®, replaced
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Lemma 2.28 Assume k > 0 and ¢ € C° satisfies F(¢) # 0 and ¢ - ¢ = k2.
Furthermore, let u(-,() € C(Bgv) be a solution to the modified Lippmann-
Schwinger equation (2.48). Then, for Ry < |z| < R" u(-,{) admits the
representation

e, = [ (P, 0= el =) D)) . 2.40)

O0BR,

Proof: Taking into account the regularity properties of volume potentials
and the fact that ¥¢(x —y) = ®,.(z,y) + gc(r — y) with a smooth function
gc satisfying Age + k?gc = 0 we conclude for the solution u(-,{) of the
modified Lippmann-Schwinger equation (2.48) that u(-,{) € C?(Bgr) and
Au(-,¢)+r*nu(-,¢) = 0 in Bgs. Since for a fixed » € R* with Ry < |z| < R"
the function ¥¢(z — -) € C*(Bp,) is a solution to the Helmholtz equation in
Bp,, we obtain from Green’s second theorem

[ (2D, 0 w9 2L Dy
= = [ Welw—y)(1 - m)(W)uly, Oy

Br,

whence the assertion.
O

We now intend to consider the limit x — zy € 0Bpg, in (2.49) in order
to arrive at the desired boundary integral equation for the Robin data. To
this end we define the operators S¢, K¢, IC’C and 7; analogously to the known
operators in classical potential theory:

8 C*(0Br,) = C(0Br,)  (ScN)@) =2 [ Welw—y)f(w)ds(y),
9B,
1 1 8\IJ< L -
K¢ C'(@Br,) » CY(0Br,)  (Kef)() =2 [ ) rtupastu),
OBR,
KL 00 (0By,) — C"(0Br,) (KL —2/’m“x‘ F(w)ds(y)
0B,
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for x € Bg, and T¢: CY7(0Bg,) — C%7(0Bg,)

.0 oV (z —y)
(Tef) () =2 3V<x>334 —ovgy | Wdst) , @ € B

Since U, and eIl /(47|-|) only differ by a smooth function, the above bound-
ary operators inherit the properties of the analogous ones with kernel ®, (see
[6, Chapter 2]). Similarly, the jump relations and mapping properties of sin-
gle and double-layer potentials and their derivatives defined with the kernel
U, are the same as those with the kernel ®,.

Lemma 2.29 Assume k > 0 and ¢ € C* satisfies () # 0 and ¢ - ( = K.
Furthermore, let u(-,{) € C(Bgv) be a solution to the modified Lippmann-
Schwinger equation (2.48). Then, the Robin data f = Ou(-,()/0v — iu(-,()
on 0Bg, are a solution to

o i-x
o) = (=

b (T~ KA — (K, = D)f (K ~ i) Anf +i8cf} ()
(2.50)

- ieic"”)

on OBg,.

Proof: In order to have a representation of u(-, () containing f = du/0v — iu
and u = A, (0u/0v — iu) we reformulate equation (2.49) as

wen) = e [ (O e - g

OB,

—U(z - y)(% —iu(y,¢)) }ds(y) , Ry < |z| < B" .

From this we can infer together with the jump relations
2u(x,¢) = 27+ { (K¢ — iS¢ + DAnf = Scf}(x)

Julz, Q) 0e” +{(Te —i(KL = D)Auf = (Kt = 1) f }(x)

ov ov
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on 0Bpg,. Multiplying the first equation by ¢ and subtracting the result from
the second one we finally obtain for the Robin data f of the function u(-, ()
the equation

eiC-x

f@) = (&
b T~ (K~ DAL (K~ Df
—i(’CC - 7:84 + [)Anf + ZSCf}($)

- ieic'w)

on 0Bp, and we have proved the lemma.

Next, we examine the operator
An:C: 00’7(6BR2) — 00’7(6BR2) ,
defined by

Anef = —{( — iK)Anf — (K¢ = I)f —i(K¢ = iS)Anf +iScf}
which occurs in (2.50).

Lemma 2.30 A, :C*(9Bg,) — C*?(0Bg,) is compact.

Proof: We define v := Pf to be the solution of Av + x*nv = 0 in Bp, and
Ov/Ov—iv = f on 0B, (see Theorem 2.27). Green’s representation theorem
applied to v in Bp, reads

/{@P T y U )_aq;V(( )) (y)}ds(y)

2 [ ®ul@,p)(1 = m)We()dy , @ € Br, .

Br,

From Green’s second theorem applied to v and g¢(z — -) we conclude

[ Hacte =5~ = )asto)
i [ Gelw =) = )Wo(y)dy , = € Br,



Then, we add the two equations and arrive at

o) = [ (wee =g - T uast)

dBr,

—K? / Ue(x—y) (1 —n)(y)v(y)dy, v € Bg, . (2.51)

Reordering terms we obtain

o) = [ {ee =05 - (TR v - )4 Jasto)
i [ Wew—y)(1 = n)W)e(y)dy , € B, .

This yields

ov
2f = 22- 9
f 5 w

= (KL D)~ (T — (KL + D) — i8] + 0 i — DAf)
2t [ (PRS- ) m) oy

on 0Bpg,. Finally, subtracting on both sides the term in curly brackets and
dividing by two we have

Auef == [P i )1 = )P

Br,,

The compactness then follows from the compactness of P and the mapping
properties of volume potentials.
O

Now, we would like to prove that the integral equation (2.50) has a trivial
nullspace. To this end we state and prove a helpful assertion in the following

lemma.

Lemma 2.31 Assume Ry < R" < R'.
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(a) For all x, z € Bg» the relation

| (L (o) - el 9 = ds() =0
holds true.

(b) If v is defined by

o) = [ Wely—f(E)ds() , Ra <yl SR

OB,
with f € C%7(0Bg,), then for all |z| < R" the relation

[ (o) 2y - 20

OBy

holds true. This is also true, if v is defined by

= [ TG, R <

with f € CY7(0Bg,).

(¢c) A function v defined as in part (b) admits for Ry < |x| < R" the
representation

o) = [ (PR u(y) et~ ) g )ds)

Proof: Since for |z],|z| < R" ®(-,2) and ®,(x,-) are radiating solutions to
the Helmholtz equation in IR* \ Bgv, we have from Lemma 1.4 that

09, (y, 2) 0P, (z,y) B
/ (T(y)q)”(x’y) - @K(y,z)T(y))dS(y) =0.

OBpgn
Green'’s second theorem applied with g.(- — z) and g¢(z — ) in Bp» yields

9gc(r —y)

0 )ds(y) =0

9e(w —y) = gy — 2)

/ (3§<(y —2)
v (y)

OBy
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Finally, we know from Green’s representation theorem

[ C g =)~ a0 2D isty) = (o -
and
/(g%%iﬁ@Aaw—ﬁdy—@@%%%ﬂﬂﬂw=§dx—@-

Adding the last four equalities we arrive at assertion (a).

If we insert the definition of the single-layer v, defined as in assertion (b),
into the integral over Bpgw, reverse the order of integration, and use part (a),
we can conclude that the integral over 0Bg» vanishes for all |z| < R". For
the double-layer v we apply v(z) -V, to the relation from part (a) and arrive
at

0 0¥ (y— 2) B _8\IJC(y—z)8\IJ¢(x—y) s(y) =
/ (61/(y) ov(z) Yele =y) ov(z) Ov(y) dely) =0

OBpgn
for |z| = Ry and |z|] < R". Now, we can proceed analogously as for the
single-layer and we have proved part (b) of the lemma.

For part (c) we observe that v, defined as in assertion (b), is a solution
to the Helmholtz equation in Ry < |z| < R". Hence, it can be represented as

o) = [ (P - o - ) st

[ g - e

OBgn

v(y))ds(y) -

This can be seen by inserting ¥¢(z — y) = ®,(z,y) + gc(r — y) and using
Green’s representation theorem for the intgrals containing ®, and Green’s
second theorem for the remaining integrals. (Note that on both spheres v is
directed into the exterior, i.e., to infinity)
Since the integral over 0Bg» vanishes due to part (b), we have completed
the proof of the lemma.
O
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We are now in a position to prove that the operator I — A, . is injective
for sufficiently large |3(¢)|. As with the normal derivatives, for a function
v defined in By, we denote by v_ the uniform limit v(- — hrv(-)) for h — 0,
h >0, on 0Bpg,. And we define analogously the limit v, from the exterior if
v is defined outside of Bg,. We summarize our results about the Robin data
of the special solutions u(-, () in the following theorem.

Theorem 2.32 Let n € C%(IR?) with supp (1 —n) C Bg, S(n) > 0, and
R < Ry < R" < R' be given. Assume x> 0 and ( € C* satisfies ( - ( = K?
and |S(¢)| > 2k*(R'/7)||1 — n||leo + 1. Furthermore, let A, be the Robin-
to-Dirichlet map and let u(-,¢) € C(Bgv) be the solution to the modified
Lippmann-Schwinger equation (2.48).

Then, the Robin boundary values f := ou(-,()/0v—iu(-, () are the unique
solution to the equation (2.50), i.e.,

aei§~x

o0 ") + (Ancf)(z) , € OBg, .

fz) = (

Moreover, A, ¢ is a compact operator in C*V(9Bg,).

Proof: The remark after Lemma 2.9 implies that the modified Lippmann-
Schwinger equation (2.48) has a unique solution. Lemmas 2.29 and 2.30
show that f is in fact a solution of (2.50) and that A, is compact.

[t remains to prove the injectivity of equation (2.50). To this end assume
f € C%(0Bg,) is a solution to f = A, f. We define v in Bg, to be the
solution of Av + k?nv = 0 in Bg, which has the Robin data 0v/dv —iv = f.
For Ry < |z| < R" we define

v@) = [ (P o )0 D) - Vel - ) F ) )ds(y)

o1ln, Ov(y)
(2.52)
From the jump relations we conclude
% —
ov +
]‘ . ! ! . . .
= AT =ik, = D)AWf = (K, = Df = i(Ke = iS¢ + DAnf +iSc f}
= An,(f
= . (2.53)
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Our next aim is to show that v; = v_. Lemma 2.31 (c) together with
(2.53) implies for Ry < |z| < R”

o) = [ ) el =) G )is()
[ e =) - el - )1 st

We compute the difference of (2.52) and the last equation and we obtain for
g:=A,f —v, and

w)i= [ (P iv(e - o)) @ € B \ OB,

that w(z) = 0 for Ry < |z| < R". From the jump relations we conclude
—w_=wy —w_ =g, —0w_[/Ov =0w,/0v—0w_/Ov =ig and we arrive
with Green’s first theorem at

. ow_
i / lg|?ds = / Ww_ds: /(|Vw|2—/£2|w|2)da:.

0B, dBr, Br,

Taking the imaginary part yields g = 0, whence vy = A, f = v_. Together
with (2.53), i.e., Qv_/Ov —iv_ = f = Ovy/Ov — ivy, we now know v, = v_
and Ov_/0v = Ovy /Ov. Then, as in (2.51), we can represent v with the help
of the fundamental solution W,:

o) = [ o= G - TS ()it
i [ We(w—y)(1 = n)W)e(y)dy , € Br, .

Moreover, with Green’s second theorem and Lemma 2.31 (b) we compute
OV (z —y)
ov(y)

= [ g - e

[ (e -2 )

9B,

vy (y))ds(y)

v(y))ds(y)
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Hence, v is a solution to the homogeneous modified Lippmann-Schwinger
equation

v(@) = = [ Wl —y)(1 = )W)y , @ € Br,

Brg,

and must vanish in Bg, due to the remark after Lemma 2.9. This finally
implies f = dv_/0v —iv_ = 0.
|

The last step of the reconstruction of (n—1)"(«) is summarized in the next
theorem. As in the Uniqueness Theorem 2.10 we choose for a fixed vector
a € T the unit vectors dy, dy € R® such that d, -do =d; - =dy - =0 and

define
1 2
G o= ot t2—m2+%d1+td2€®3a

5 1 2
G = —ga—i tQ‘“”%dl_td? ¢t

for t > 2k*(R'/7)||1 — nl|e + 1 + k.

Theorem 2.33 Let the notation and assumptions of Theorem 2.32 be given.
Moreover, define for a fited oo € T and for t > 26*(R'/7)||1 = o + 1+ &
the vectors (i, ¢; as above and let f; € C%7(DBg,) be the unique solution to

el

5~ i) + (Ang fi)(@) , @ € OB, .

fe(w) = (

Then,

eift-w - Lz
i [ (S~ i) ) — 5 (o) ()

t—o00
O0BR,

= k> (2R3 (n — 1) (a) .

Proof: Following our considerations in (2.42) we apply Green’s second the-
orem in Bg, with the functions et and u(z,¢;) = e“*(1 + v(z,¢;)) from
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Lemma 2.9 and we arrive at

Deit® 7 i
[ (057 i f@) - ey

9Bp,
iGeea -
_ / {868 () — lCt'“"au(axy’Ct)}ds(x)
0Bp,
= K /(n(m) - 1)eic~t'“"u(x,g)dx

Br

_ 2 / (n(z) — 1)e™ (1 + v(x, ¢,))dx

Br

The theorem now follows because |[v(-,(;)||zz — 0 as ¢ — oo according to
Lemma 2.9.
|

Let us conclude this chapter by summarizing the reconstruction procedure
assuming that the far field pattern uy ,: S? X S* — € originating from a
refractive index n € C(Bj) is exactly known. We wish to emphasize that it
is a theoretical reconstruction procedure. In view of the fact that at present
no quadrature rules are available for surfaces in IR® which are comparable
in quality to their counterparts for arcs in IR?, it is not possible to solve
integral equations on such surfaces with a comparable amount of work and a
comparable accuracy. In addition, the kernels of our integral equation have
to be computed with the help of a series expansion and show an oscillating
behavior, especially for large (. This strongly indicates that at present one
will encounter serious difficulties when attempting a numerical reconstruction
of n according to this procedure.

e Compute the Fourier coefficients

prtats = | [ ttoon (@, )Y @)V (d)ds(@)ds(d)
Sa Sa

e Compute for z, y € 0Bg, the kernels
sn(,y) == Cx(7,y)

/ﬁ}2

— =Y T (KRR ("032)3//1“(

a l1,k1,02,k2 | |

Vi ()

|y
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7 aq)n(xay)
kn(xay) - 61/(35)
S i (T (kR (kR (v ()
- t iy kylaks K 5 K 1\
4m Ik l2 ko dt 2 . | ly|

(see (2.31) and (2.46)).

Define the integral operators

(Suf)@) =2 [ sulw,y)f(W)ds(y) , © € OB,

9B,

(K, f) @) =2 [ Eale.)f(w)ds(y) , = € OBp,,

9Br,
and A, = S,(I + K| —iS,)™" (see Theorem 2.27).
Fix a € " and choose ( = (, f = ft as before Theorem 2.33; compute
Aug = ST~ KA, — (KL~ 1) — (K — iS)A, +iSc) |
where the operators S¢, K¢, K and 7T; are defined on page 99.
Solve the equation
flz) = (agjx — i) + (A f)(x) , @ € OB, .

(It has a unique solution due to Theorem 2.32)

Insert the solution f into

aeic-m = -
[ 1% i) (M) @) — ¢ () s

dBr,

and calculate the limit as ¢ — oc. Divide the limit by x%(2R')*2? and
set the result to (n — 1) ().

Repeat the last three items for all o € T'.

n=1+)Y (n—1)(a)e, in L?(Bg,).

acl
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Chapter 3

The Direct Electromagnetic
Scattering Problem

The propagation of electromagnetic waves in an inhomogeneous isotropic
medium is governed by the Maxwell equations

OH o€

V/\S—l—uoat =0, VAH €5 =J.
Here, the electric field £ and the magnetic field H are mappings from space
and time, IR* x IR, into IR®. The magnetic permeability p is a positive
constant, whereas the electric permittivity ¢ = e(x) > 0 is assumed to be
a positive function of the space variables. Finally, we assume that Ohm’s
law, J(x,t) = o(x)€E(x,t), relates the current density J to the electric field
& where the conductivity o > 0 is a nonnegative function.

Since we want to consider a medium whose inhomogeneity is compactly
supported and which is a dielectric outside a large ball, we have o(x) = 0
and €(x) = ¢y > 0 with a constant €, for all |z| > R.

Suppose now that the electromagnetic wave is time-harmonic with fre-
quency w > 0 having the form

£, 1) = %(%E(z)em) H(wt) = %(\/%H(x)em) |

Then, the fields £ and H must satisfy the equations
VAE—ikH=0, VAH+iknE =0 in R? (3.1)
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where K := w, /€1y is the wave number and

_ o (x) 3

n(z) = 6O(e(a:)—irz " ) , € R,

is the refractive index of the medium. Henceforth we will refer to (3.1) as
the perturbed Maxwell equations and to (3.1) in the special case n = 1 as
the Maxwell equations.

The main subject of this chapter is the following direct electromagnetic
scattering problem: given x, n and an incident wave E*, H?, i.e., a solution
to the Maxwell equations, find the scattered fields F* and H® such that the
total fields £ := E' + E*, H := H' + H* satisfy the perturbed Maxwell
equations and such that E*, H® satisfy a radiation condition.

In section 3.2 we establish the existence of a unique solution to this prob-
lem. Asin the acoustic case, in the next section we start with a vector Green’s
theorem and representation theorems because these results are basic tools in
our analysis of the direct and inverse scattering problem. Since solutions to
the Maxwell equations are also solutions to the Helmholtz equation, some
results from the acoustic case, especially Rellich’s lemma, are also useful in
the electromagnetic case. Uniqueness for the direct electromagnetic scat-
tering problem is proved via Green’s theorem, Rellich’s lemma, and unique
continuation. In order to prove existence of a solution we derive a Fredholm
integral equation for the electric field E with the help of the representation
theorem. We then show that this integral equation has a unique solution.

We shall employ the special unique continuation principle formulated in
Theorem 1.2. Otherwise our analysis follows the treatment in [7]. The as-
sumption that pg is a constant is a good approximation for many materials.
It also simplifies the analysis of the direct scattering problem and even more
of the inverse scattering problem. The reader who is interested in direct
scattering problems with a variable u should consult [31, section 22] or [51],
where the authors also employ integral equation techniques. By coupling
integral equation techniques and variational methods Leis is dealing with
anisotropic inhomogeneous media in [26].
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3.1 Representation Formulas for the Maxwell
Equations

As in the acoustic case we first review Green’s theorems for vector valued
functions and proceed to representation formulas for solutions to the Maxwell
equations via the Stratton-Chu representation of vector fields. The Silver-
Miiller radiation condition, which is the analogue of the Sommerfeld radiation
condition, allows to represent solutions to the Maxwell equations in exterior
domains with the help of surface layers, too. Finally, we discuss the far field
pattern of a radiating solution to the Maxwell equations.

We have included this section in order to refer to its results later. Since
the proofs of the assertions are worked out in [7, Sections 6.1, 6.2], we omit
the proofs.

If B, F:D — C® denote C'(D)-smooth vector fields in a C2-smooth,
bounded, open set D C IR?, then

/(VAE)-Fds:/{(V/\E)-F—E-(V/\F)}dx. (3.2)

This follows from the identities (VA E)-F =v-(EAF)and V- (EAF) =
(VAE)-F —FE-(VAF) together with Gauss’ theorem. Here, we use VA E
for the curl and V - E for the divergence of a vector field E. a A b denotes
the vector product of two vectors a, b € C3.

The regularity assumptions on £ and F' can be weakened. FE, F €
CHD)NC(D) and VA E,VAF € C(D) are sufficient for (3.2).

If we have four vector fields F, H and E’, H' as above and use equation
(3.2), we arrive at

JAwnE) -1 — (v AE) - HYds
= [{(VAE~isH) H'+ (VA H+ixE) - E'}ds

- /{(v NE —ixH') - H+(VAH +icE') - Eyde,  (3.3)

where k € C is an arbitrary constant.
The following representation theorem for vector fields due to Stratton and
Chu [43] will be very useful in later sections.
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Theorem 3.1 Let D C IR? be a bounded, open, C?-smooth set with exterior
unit normal vector v. For vector fields E, H € C'(D) the Stratton-Chu
formula

E(x) = —VA/ By (w, y)ds(y)
+V/) D (2,y)ds(y)
4ﬁ/mwAH@maawww)

oD

+V A [{V A B(y) = inH ()} 0.z, y)dy
—V/V-E@ﬂ%@wMy
+¢ﬁ/ks7Afﬂy)+¢KE@»}¢Axdndy,a:ez). (3.4)

A similar formula holds with the roles of E and H interchanged.
If F and H are a solution to the Maxwell equations
VAE—icH =0, VAH+ikE =0, (3.5)
the Stratton-Chu formula can be reformulated.

Theorem 3.2 If D satisfies the assumptions of Theorem 3.1 and if E, H €
CYD)N C(D) are a solution to (3.5) in D, then we have

B(a) = =V A [ vly) A B0, 1)ds(y)
+i;jVA v(y) AH(y)®u(2,y)ds(y) , € D, (3.6)
and "
H@)::—VA/WQAH@m(xw@()
_i;iVA (y) A E(y)@u(w,y)ds(y) , x € D . (3.7)
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A consequence of the last representation is the analyticity of solutions to
the Maxwell equations. Hence, we may take the divergence and the curl of the
Maxwell equations (3.5) and arrive at V- E =V -H = 0 and AE + x*E = 0,
AH + k?H = 0in D, if E and H are solutions to the Maxwell equations in
D. Here, we have used the identity VA VA = —A + VV-.

In order to have the analogous representation to Theorem 3.2 for solutions
to the Maxwell equations in exterior domains we have to impose the Silver-
Miiller radiation condition on the solutions.

Let £, H € C'(IR*\ Bg) be a solution to the Maxwell equations in
R?® \ Bg. E, H satisfy the Silver-Miiller radiation condition (E, H are a
radiating solution) if

‘ l‘iin (H(z) ANz —|z|E(z)) =0 (3.8)
where the limit holds uniformly in all directions |z| 'z.
Similarly to Lemma 1.4 it is possible to derive from the Silver-Miiller
radiation condition
| 1E@)Pdsty) < M
ly|=r
for all » > R (see the first part of the proof of Theorem 6.6 in [7]). This
implies for radiating solutions F, H and E, H to the Maxwell equations
which are defined in the exterior of a ball Bg:

/{(uAE)-fI—(y/\E)-H}ds:O,T>R. (3.9)
ly|=r
For a proof use the vector Green’s theorem (3.3) in the spherical shell {r <
lz| < r'}, i,
0=— / (WAE)-H—(wAE)-Hds+ / {((WAE)-H—(wAE) HYds
lyl=r ly|=r"

write

{(vAE)-H—(vAE)-H}ds = / {E-(HAv)—E)—E-((HAv)—F)}ds ,
lyl=r" ly|=r"
and observe that this integral converges to 0 as ' — oo due to the Cauchy-
Schwarz inequality and the radiation condition.

For a radiating solution to the Maxwell equations in the exterior of a ball
Theorem 3.2 takes the form (see [6, Theorem 4.5]):
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Theorem 3.3 Let E, H € C'(IR?\ Bg) be a radiating solution to (3.5) in
R*\ Bg.

(a) Then we have

E) = VA [ vly) AE@)®u(z, y)ds(y)

S VAVA [ o) AH@)R(r0)ds(y) o] > R

K

: (3.10)
and
H@) = VA [ vly) A Hy)ue,y)ds(y)
LAY [ o) A B ist) el > R
R (3.11)

(b) For x € By the right hand sides of (3.10) and (3.11) vanish.

We can infer from (3.10) and (3.11) that each cartesian component of E
and H is a radiating solution to the Helmholtz equation, i.e., it satisfies the
Sommerfeld radiation condition. It is also possible to show the converse: so-
lutions to the Maxwell equations for which each cartesian component satisfies
the Sommerfeld radiation condition also satisfy the Silver-Miiller radiation
condition.

We are now in a position to define the far fields F,, and H,, as

I : —IKT - I : —IKT I - 2

Ew(t) = lim re™"™" E(r) , Ho(2) = lim re”"" H(rz) , & € 5%
Again Rellich’s lemma, Lemma 1.7, implies that the far field E,, uniquely
determines E. Hence, by H = (ik) 'V A E it also determines H. Analo-
gously H,, determines F and H. A closer examination with respect to the
asymptotics |x| — oo in (3.10) and (3.11) shows H(Z) = & A Ex (%) and
T Ex(Z) =2 - Hoo(z) =0, i.e., E, and H, are tangential fields on the unit
sphere.
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In the last lemma of this section we establish a transformation mapping
solutions to the perturbed Maxwell equations to solutions of a perturbed
Helmholtz equation. This transformation, due to Colton and Paivéirinta ([8]),
is a basic ingredient in the uniqueness proof of the direct scattering problem
and in the analysis of the inverse problem because it allows to employ the
results from previous chapters.

Lemma 3.4 Assumen € C*7(Bg), S(n) >0, R(n) > 0, supp (1—n) C Bg,
and let E, H € C*(Bg) satisfy

VANE—-ikH=0, VANH+iknE =0

in the ball By. Then, E, H € C*(Bg) and E' := n'?E, H := H are a

solution to
(A + K% (5,) = Q(fl,> , (3.12)

where the operator Q s defined by

off) -

k2(1 —n)E' —ikn Y2Vn A H' — (E' - V)(%Vn) + (n Y2An'2)E
ikn='2Vn A E' + k*(1 — n)H' '
(3.13)

Proof: First, we examine the regularity of £ and H. To this end we compute
for any ¢ € C§°(Bg) with the help of the second perturbed Maxwell equation
and Gauss’ theorem:

/@V -(nE)dx = - /(Vgp) - (nE)dx

= i (Vo) (VA H)dx



This implies V - (nE) =0, i.e., V- E = —(1/n)Vn - E. Now, we insert the
last relation and V A H + ikE = ix(1 — n)E into the representation (3.4).
The equality

vBé V) EW)® (. 1)y :Bl @, (r,9)V [ V- E](y)dy

from Theorem 1.9 (b) and the regularity properties of volume potentials im-
ply E € C%7(Bg). Applying the smoothing properties of a volume potential
once more we have £ € C*(Bg). Computing H = (ix)"'V A E from the
representation of E a similar reasoning yields H € C*(Bg).

Next, we apply the operator (V-) to the first Maxwell equation and arrive
at V- H = 0. Taking the curl of the perturbed Maxwell equations and using
the identities

VAVAF=-AF+VV-F,

VA F)=AAN(VAF)+ FA(VAA)+(A-V)F+(F-V)A

for vector fields A, F we obtain
AH + k*H = ikn '*Vn A (0?E) + *(1 —n)H (3.14)
and
1
AE = —r*nE — V(—Vn : E)
n
— 2B - Lvna (VAE) - (lvn V)E — (E V)(an)
N n n n ’

where we have also used V A {(1/n)Vn} = 0. From the last equation we
derive

A(n'?E) = n'*{AE + (%Vn -V)E} + (An'/*)E

1 1
= —k*n(n'?F) —ikn'?=Vn A H — ((n'?E) - V)(—Vn)
n n
+(n71/2An1/2)(n1/2E) . (315)

From (3.15) and (3.14) we can deduce

(A + &%) (5,) = Q(i) :
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This ends the proof of the lemma.
O

Note that we can associate to any z € IR* a matrix Q(z) € €®*° such

that (0 (Z;) ) (@) = Q) ( (g;) (v))

holds true for all vector fields (U, U,):R* — C€° FEach entry of Q is a
uniformly y-Hélder continuous function in IR® having compact support in
Bg.
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3.2 Existence and Uniqueness for the Direct
Electromagnetic Scattering Problem

Our considerations at the beginning of this chapter lead us to the following
direct electromagnetic scattering problem (DEP):

Given the wave number x > 0, the refractive index n € C?7(IR?) with
R(n) > 0, S(n) > 0 and supp (1 — n) C Bpg, and the incoming wave E°,
H' € C'(IR?) satisfying

VAE —ikH' =0, VAH +ikE" =0 in R3,

find the fields £, H € C'(IR*) which are a solution to the perturbed
Maxwell equations

VAE—-ikH=0 , VAH+iknE =0 in R (3.16)

such that the scattered fields E* := E — E*, H* := H — H* satisfy the Silver-
Miiller radiation condition lim (H*®(z) Az — |z|E*(z)) = 0 uniformly for all

|z|— 00

directions & := (1/|z])x € S2.

First, we want to establish uniqueness for (DEP). As in the acoustic
case we use Green’s theorem and Rellich’s lemma to arrive at £ = 0 in the
exterior of Bg. Then we apply the unique continuation principle.

Theorem 3.5 If E, H € C*(IR*) are a solution to the perturbed Mazwell
equations (3.16) in R? and satisfy the Silver-Miiller radiation condition, then
E = H =0 in R?, especially, the direct electromagnetic scattering problem
(DEP) has at most one solution.

Proof: The radiation condition implies

0 = lim / \H(x) Av(z) — B(x)|ds(x)
|z|=r

= 7ﬂli_)lrgo{ /{|l//\H|2+|E|2}ds—2§R{ / (I/AE)-Hds}}.

|z|=r |z|=r

(3.17)
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Since we also know from Green’s theorem (3.2) together with the perturbed
Maxwell equations (3.16) that

—é]%{/(u/\E)-Hds} - —%{/{(V/\F)-H—F-(V/\H)}dm}
|z|=r By
_ _é}e{/{—m|H|2 + in| B }da )
- n/%(n)|E|2deO,

B,

we obtain with (3.17)

|E|*ds — 0, r — oo .

|lz|=r

Then, Rellich’s lemma yields E = H = 0 in IR? \ By because the cartesian
components of F are radiating solutions to the Helmholtz equation in the

exterior of Bp.
According to Lemma 3.4 E' := n'?E, H := H € CZ(IR?) satisfy the

inequality
E' o E' E' E'
2ol = )+l = 1)

in IR? with a suitable constant M. Therefore, we can conclude E' = H' =0
in Br by Theorem 1.2, whence £ = H = 0 in IR?.

O
Before we proceed let us point out that we made stronger regularity as-
sumptions on n than necessary. We need C?7-smoothness of n in order to
obtain C?-smoothness of E and H, whence of E' = n'/?E and H' = H. With
the help of a better unique continuation principle than our Theorem 1.2 it
is possible to prove the existence of a unique solution to (DEP) under the
weaker assumption n € C™(IR?) (see [7, Chapter 9]). However, when we
study the inverse electromagnetic problem we shall need C?7-regularity of n,
hence it is reasonable to work with this smoothness from the beginning.

In order to prove existence of a solution we derive a Fredholm integral
equation for F with the help of the representation from Theorem 3.1. We
show that a solution of the integral equation is a solution to (DEP) and that
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the integral equation has a trivial nullspace. By the Riesz-Fredholm theory
this implies the existence of a solution to (DEP).

Let E = E'+ E*, H= H'+ H°® be a solution to (DEP). The equation
V AH+iknE =0 yields VA H + icE = ik(l — n)E and, by taking the
divergence, V - E = —%Vn - E. If we insert these expressions together with
V A E —ikH =0 into the representation formula (3.4) for E in the ball B,,
r > R, we obtain

B(w) = =V A [ vly) A B0z, y)ds(y)

0By

+V / v(y) - E(y)®(x,y)ds(y)

0By

ik / v(y) A H(y)®x(z, y)ds(y)

2 [ @ulw,y)(1 = ny) E(y)dy
S Vn) - E)dy . v € B,

Next, we want to show that the sum of the boundary integrals is E*(x). We
have

[ v) -V, A H) 2,9 }ds(y) = 0

0By

due to Stokes’ theorem. Then, using

Ve - {v(y) N H(y)Px(z,y)}
= u(y)- [Vy A {H(y)@ﬁ(x,y)}] — O (7, y)v(y) - [V A H(y)]

and VA H(y) = —ikE(y), |y| = r, we arrive at

Ve [ ) NH@Rwp)dsly) = in [ v(y)- B, y)ds(y)

Our considerations so far imply that

_VA / v(y) A E(y)®.(z,y)ds(y)
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%v AV A [ vly) A H () (x,y)ds(y)

— _VA / v(y) A E(y)®.(z,y)ds(y)

0By

+V / v(y) - E(y)®(z, y)ds(y)

0By

~in [ vly) A H(y)Ou(, y)ds(y) (3.18)

0By

Finally, we insert £ = E' + E*, H = H' + H® into the left hand side of the
last equation and use Theorems 3.2 and 3.3 (b) to see that it coincides with
Observing that r can be chosen arbitrarily we obtain the integral equation

B() = E'@)—#? [ @ule,y)(1 = n(y) E(y)dy

@vn(y) E(y)dy, s€ R, (3.19)

for the unknown field E. This is the analogue of the Lippmann-Schwinger
equation in the acoustic case.

Lemma 3.6 Let k and n be given as in (DEP). Moreover, assume E*, H® €
CY(IR?) are a solution to the Mazwell equations (3.5) in R® and E € C(Bg)
is a solution to (8.19) in Bg. Then,

B(x) = E'(2) = [ Oulz,m)(1 = nly) E(y)dy

@Vn(y) -E(y)dy , v € R*,

and H(z) == (ik)"'V A E(z), * € R?, are the solution to (DEP) for the
incident wave E*, H'.

Proof: First note that there is no ambiguity in the definition of F in Bg
because E is a solution of the integral equation. Moreover, the smoothing
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properties of the volume potential and the analyticity of E?, H® imply that
E € C*(R?), H € C'(IR?).

Our next aim is to show V- (nE) =0, i.e., V- E = —(1/n)Vn - E. To
this end we take the divergence of both sides of the integral equation (3.19),
observe (1/n)V - (nE) =V -E+ (1/n)Vn- E, reorder terms and arrive at

1 2 1 3
@V - (nE)(z) = —r B{(l - n(y))%(af,y)@v -(nE)(y)dy , x € R”.

Hence, (1/n)V - (nE) = 0, because the homogeneous Lippmann-Schwinger

equation has only the trivial solution due to the proof of Theorem 1.13.
Now, we compute

H(z) = iv A E(x)

= H'(z) +ikV A / ®.(z,y)(1 —n(y)E(y)dy , v € R?,

and

VAH(z)+ikE(z) = m{v AV A / (2, ) (1 — n(y)) E(y)dy

= —ir(A+ k) / D (2, y) (1 — n(y)) E(y)dy

+inV [ @ula )V - {1 = ) E}(y)dy

n(y)
= k(1 —n(z))E(z), z € R?,

+ikV / @H(x,y)LVn(y) - E(y)dy

where we have used

V-{(l—n)E}Jr%Vn-E - V- {1-nE}-V-E
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= —V.(nE)
=0

for the last equation. Hence, £ and H are a solution to the perturbed
Maxwell equations.

For the radiation condition we use the relation E* = E—E" = —(ix) "'V A
(H — H') in the exterior of By to derive H*(z) A2 — E*(x) = H*(x) AT +
(ik) "'V A H*(z) for |z| > R. From

H(2) = ikV A / &, (2,5)(1 — n(y))E(y)dy , = € R,

and

1 p
(72 A o)) A+ 292 AT A o)} < 007
for all p € C*, Jy| < R and |z| > 2R + 1 with a suitable constant M we can
see that £°, H? satisfy the Silver-Miiller radiation condition. This completes
the proof of the lemma.
O

We are now in a position to prove the main result of this section, namely
that (DEP) has a unique solution.

Theorem 3.7 The integral equation (3.19) has a unique solution. The direct
electromagnetic scattering problem (DEP) has a unique solution which is also
the solution to the integral equation (3.19).

Proof: The mapping properties of volume potentials imply that the integral
operators from equation (3.19) are compact operators in C'(Bg). Hence, it
suffices to show that (3.19) has a trivial nullspace in order to obtain the
existence of a unique solution. Assuming that F € C(Bg) is a solution
to the homogeneous equation (3.19), i.e., with E* = 0, we know from the
preceding lemma that E defined in IR* by the right hand side of (3.19)
and H := (ix)"'V A E are a solution to the homogeneous problem (DEP),
whence vanish identically by Theorem 3.5. This proves that (3.19) has a
unique solution.

Since the solution of equation (3.19) yields a solution of (DEP) by the
last lemma, we have also proved the existence of a solution to (DEP), which
is unique by Theorem 3.5.

O
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Chapter 4

The Inverse Electromagnetic
Scattering Problem

We are now turning to the inverse electromagnetic scattering problem. We
assume that we know the far fields of the scattered fields E? for sufficiently
many incident plane waves (all angles of propagation, all polarizations) at a
fixed wave number. The task is to reconstruct the refractive index n from
these data.

As in the second chapter we start with a uniqueness result, i.e., two refrac-
tive indices producing the same far field patterns must coincide. Uniqueness
for this inverse scattering problem was first proved in [8] by Colton and
Piivirinta. The main difficulty lies in the fact that for the Maxwell equa-
tions special solutions cannot be obtained by simply imitating the acoustic
case. This is due to the terms containing derivatives in the electromagnetic
Lippmann-Schwinger equation. Colton and Paivarinta were able to trans-
form solutions to the perturbed Maxwell equations into solutions of a per-
turbed Helmholtz equation which in turn could be used to construct special
solutions.

Compared to the paper [8] our analysis is based on the fundamental
solutions W, and g¢, i.e., on Fourier series, whereas Colton and Paivarinta use
results from [32, 46] which are derived via Fourier transforms. Moreover, we
give a proof for the completeness of total fields originating from plane incident
waves in the space of all solutions to the perturbed Maxwell equations which
is different from the proof of Lemma 2.1 in [8]. The latter seems to have a
gap. Our proof is based on the idea of [20, Lemma 5.20] which we already
employed in the acoustic case.
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Then, we proceed to the question of stability. So far this has not been
examined in the literature for the electromagnetic problem. Starting from the
far field pattern belonging to the refractive index n we first construct integral
operators N, on a sphere surrounding the inhomogeneity. This construction
is severely ill-posed. Then, we derive a logarithmic stability estimate for
In — 71||oo in terms of |V, — Nj||« and in terms of the difference of the far
field patterns. As in the acoustic case it is a local result and we have to
assume some a priori knowledge on the smoothness of the refractive indices.

Finally, we show how to recover n from its far field pattern. To this end
we derive a uniquely solvable integral equation of the second kind for certain
boundary data belonging to the special solutions of the perturbed Maxwell
equations. The operators and the right hand side of this integral equation
are known or can be computed from the far field pattern. These boundary
data together with Green’s theorem admit to compute the Fourier coefficients
(n—1)(a), a €T.

As in the previous chapter we assume the magnetic permeability 4 to be
a constant. The reader who is interested in an inhomogeneous p is referred
to the two papers [38, 39] where the authors examine the reconstruction
of the material parameters ¢, u and o from boundary measurements of the
electric and magnetic field. They obtain the Fourier transform of the right
hand side of a system of semilinear elliptic equations for the searched-for
parameters. This difficulty does not arise in our case because we assume p
to be a constant. However, we have to construct boundary integral operators
from the far field pattern, whereas they already start with the impedance map
on the boundary.

As in the acoustic case we have included a separate proof for the unique-
ness of the inverse problem, though the construction implies uniqueness,
because then the procedure is easier to understand.

Many technical details can be worked out similarly to the acoustic case.
Occasionally, we therefore briefly mention the analogous proofs for the acous-
tic case and do not repeat the entire analysis. Consequently, the reader
should be warned that it is necessary to know the second chapter in order to
read this chapter.
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4.1 Uniqueness for the Inverse Electromag-
netic Scattering Problem

The aim of this section is to prove that the far field pattern uniquely de-
termines the refractive index. To this end we first define what is meant
by the notion far field pattern. In the acoustic case a plane incident wave
u'(z,d) = €' was essentially given by its direction of propagation d € S2.
In the electromagnetic case an incident plane wave

E'(z,d,p) :=dA (pAd)exp(ird-z) , H(z,d,p) = (ik) "'V A E*(x,d,p) ,

z € IR3, is determined by its direction of propagation, d € S?, and by the
vector p € C? controlling its polarization. E(-,d,p), H(-,d, p) are a solution
to the Maxwell equations. Hence, given the wave number x > 0, the refractive
index n € C%7(IR*) with supp (1—n) C Bg, ®(n) > 0 and I(n) > 0, and the
incident wave E'(-,d,p), H'(-,d,p), there exists a unique solution E(-,d,p),
H(-,d,p) to the direct electromagnetic scattering problem (DEP) from the
preceding chapter. Each cartesian component of the scattered electric field
E*(-,d,p) := E(-,d,p) — E'(-,d,p) is a radiating solution to the Helmholtz
equation. Consequently, E*(-,d, p) satisfies for & € S?

KT

E*(ré, d,p) = —{Ex(#,d,p) +o(1)} , r = 0 .

r

We define
Feo:S?x 82 x €* — C? (2,d,p) — Ex(2,d,p)

to be the far field pattern corresponding to the refractive index n.
For convenience we denote by C'(Bpg) the set of refractive indices we are
interested in:

C(Bg) :={n € C*'(R*):supp (1 — n) C Br, R(n) >0, I(n) >0} .

Let the wave number x > 0 be fixed. If 7 € C'(Bg) is another refractive
index producing the far field pattern FE.. and if E,, = E., then we want to
show n = n.

The main steps of the proof closely follow the acoustic case. We first
derive the relation

/(n —7)E-Edx =0 (4.1)

Br
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for all solutions F, H to the perturbed Maxwell equations
VAE—-ickH=0, VAH+iknE =0 in Bg,,

and for all solutions F, H to the perturbed Maxwell equations
VAE—ikH=0, VAH+ikinE =0 in Bg,, (4.2)

where R; > R.

In the case E = E(-,d,p) equation (4.1) follows from the coincidence of
the far field patterns with the help of Green’s theorem. In order to show
that (4.1) holds true for a general E we approximate E by elements from
span {E(-,d,p):d € S? , p € C*} with respect to the L?(Bg)-norm.

The second step consists in the construction of special solutions to the
perturbed Maxwell equations which depend on parameters ¢, n € €. Al-
though we already derived the right fundamental solutions W, for this task
in the acoustic case, we still need some more ideas because the Lippmann-
Schwinger equation (3.19) contains derivatives of the volume potential. These
derivatives do not allow a straightforward treatment along the lines of the
acoustic case.

But in the end, for a fixed a € T', we arrive at special solutions such
that E(z) - E(x) converges to e "% with respect to the L'(Bg)-norm as
|$(()| — oo. Equation (4.1) then implies that the Fourier coefficients of n
and n coincide, i.e., n = n.

After this outline of the section let us start with relation (4.1) for E =
E('a d, p)'

Lemma 4.1 Let 0 < R < Ry and n, n € C’(BR). Furthermore, assume E,
H are a solution to ({.2) in Bg,. If for fized p € C?, d € S? the far field
patterns Eo(-,d,p) and Ex(-,d,p) coincide on S?, i.e.,

Eo(2,d,p) = Ex(,d,p) for all & € S?,

then the relation

holds true.
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Proof: We define E'(z) := E(x,d,p) — E(x,d,p) = F*(z,d,p) — lf?s(x,d,p)
and H'(x) := H(z,d,p) — H(z,d,p), x € R®. From E.(-,d,p) = Ex(-,d,p)
and Rellich’s lemma we conclude E'(x) = H'(x) = 0, |z| > R. Moreover, we

compute
VAE —ikH' =0, VAH +icE = ic{(1—n)E(-,d,p) — (1 —n)E(-,d,p)}

and
VAE—ikH=0, VAH+ikE =ik(l —h)E

in IR®>. Then, Green’s theorem (3.3) applied with F, H and E’, H' in the
ball Bp, yields

0 = /{(I/AE)-H'—(V/\E')-I:I}dS
= ix [{(1=R)E- (E(,d,p) = E(.d.p))

~((L=n)E(,d,p) ~ (1~ ) E(d,p)) - E}dz
= ik /(n—ﬁ)E(-,d,p)-de,

and we have proved the lemma.
O

Our next aim is to approximate the electric field of a solution to the
perturbed Maxwell equations by elements from span {F(-,d,p):d € S? , p €
C*} with respect to the L?(Bg)-norm. We start with the special case n = 1
which is treated similarly to Lemma 2.2, i.e., in the spirit of [20, Lemma
5.20].

Lemma 4.2 Assume 0 < R < R, and let E', H" € C'(Bg,) satisfy the
Mazwell equations in Br,. Then, there exists a sequence

(E}, H}) € span {(E'(-,d,p), H'(-,d,p)):d € S* , pe C°} , j €N,
such that ||E* — E;||%2(BR) +||H* — H;||%2(BR) — 0, j = o0.
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Proof: We define

X = {(BE|p,, H|g,): E,H € C'(Bg,)

are a solution to the Maxwell equations in Bp,} C L*(Bg)

and X to be the completion of X in L?(Bg). It suffices to show that any
(Ey, Hy) € X which is orthogonal to all E'(-,d,p), H'(-,d, p), i.e.,

JAEBo@) - B'(,d,p) + Ho(w) - H'(, d, p) }dw = 0 (4.3)

for all d € S?, p € C*, must vanish in L?(Bg).
If (Ey, Hy) € X satisfies (4.3), we define for |z| > R

Vi) = V/\V/\/%(x,y)mdy—mv/\ /(Pﬁ(x,y)Ho(y)dy

W(z) = —ikVA / @, (z,y)Eo(y)dy — V AV A / O, (z,y)Ho(y)dy .

Then, V, W € C'(IR*\ Bg) are a radiating solution to the Maxwell equations
in IR® \ Bg. Furthermore, the asymptotic behavior of the derivatives of
®,.(x,y) for large |z| (see [7, formulas (6.25),(6.26)]) implies for any vector
p € C? and any d € S%

A7p - Vo (—d)
= p- / K2 YA N (Eo(y) A d)dy — K*p - / e tvd A Hy(y)dy
Br

= K /{Eo(y)-Ei(y,d,p)+Ho(y)-Hi(y,d,p)}dy

= 0.
Hence, we know that the far field V, of V' vanishes and thus V' (z) = W(x) =
0 for all |z| > R.

Next, we choose a sequence (Ej, H)) € X, | € IN, approximating (Ey, H),

||El — EOH%Q(BR) + ||Hl — HO“%/?(BR) —0 , [ —00.
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The representation formulas (3.6) and (3.7) read

E(r) = —VA / y) A Ei(y)®n(z, y)ds(y)

0Bp,

1
+—VAVA [ vly) A Hi(y)®u(w9)ds(y) , 7 € B

9Br,

Hiw) = VA [ vly) A H(y)®sle,y)ds(y)

9Br,

1
- VAVA v(y) A E(y)®s(x,y)ds(y) , = € Bg,
9Br,

where Rj satisfies R < R3 < R,.
Now, we insert these expressions for F; and H; in

/{El Eo(z) + Hy(z) - Hy(z)}dw

interchange the order of integration, and arrive at

/ {Ei(@) - Bolw) + Hi(x) - Ho(a) o

_ /{ ) A E(y)) - W(y) + (v(y) A Hi(y)) - V(y)}ds(y)

8BR3
= 0,leN,

because V and W vanish on 0Bpg,. The limit [ — oo yields Fy = Hy = 0 in
L?(Bg) and we have proved the assertion.
O

In order to obtain this approximation result for general n we want to use
the Lippmann-Schwinger equation (3.19). For convenience, if n € C(Bg)
and U is a vector field, we define the integral operator T,,: C(Bg) — C(Bg),

(LU)@) = 1 [ ®ula,p)(1 = n(y))U(y)dy

-V / @H(x,y)ﬁvmy) -U(y)dy , * € B . (4.4)
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Then, the Lippmann-Schwinger equation reads (I + T,,)E = E' in Bg. We
already know that (I +7T,) ! is a bounded operator in C'(Bg) equipped with
the maximum norm. However, we need the boundedness of (I + T},) ! with
respect to the L?(Bg)-norm. In the second chapter, a simple application of
the Cauchy-Schwarz inequality implied that the analogous acoustic operator
T, is compact in C(Bg) with respect to the L?(Bg)-norm. This allowed
to conclude that (I +7,)~" is bounded in (C(Bg), || - ||l12(8r))- Due to the
stronger singularity of the kernel of 7}, in the electromagnetic case we have
to work harder now. We use a functional analytic tool provided by Lax in
[25] which allows to infer the boundedness in (C(Bg), || - ||z2(8y)) from the
boundedness in (C(Bg),|| - |lw) (see also [7, Theorem 3.5]). Lax’s theorem
states for a linear operator A: C'(Bg) — C(Bg) which is bounded with respect
to || - ||o and symmetric with respect to the L?*(Bpg)-scalar product, that A
is also bounded in (C(Bg), || - lz2(5x)) and that ||A|lz2(5,) < [|A]lso-

Lemma 4.3 If T,,;: C(Br) — C(Bg) is defined as in (4.4), then (I +T,)~"
is bounded in C(Bg) equipped with the L?(Bg)-norm.

Proof: The operator T)*: C(Bg) — C(Bg), defined by

(VYY) = W1 =n(y) [ Buley)V (@)

+V -Bé (I)H(x,y)V(x)dx%V@ , Y € Br,

is the adjoint operator to T, with respect to the L?(Bg)-scalar product. By
the mapping properties of the volume potential 7' is a compact operator
in (C(Br), || * ||s), hence, due to the Fredholm alternative theorem and the
injectivity of [+T,,, (I+7T)") ! exists and is bounded in (C(Bg), ||||oc)- Then,
the symmetric operator (I +T7) (I +T,) ! is bounded in (C(Bg), || - [|s0)
and we can conclude from Lax’s theorem that

I(T+T0) " 72y = 1T+T0) ™ (T+T0) " 2y < NT+T5) ™ (T+T0) ™ oo -
a

We can now prove the approximation result for general n.
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Lemma 4.4 Assume 0 < R < Ry and let E, H € C'(Bpg,) satisfy the
perturbed Mazwell equations (3.16) in Bg,. Then, there exists a sequence

E; € span{E(-,d,p):d € S? , pe €’} , je N,

such that ||E — Ej||t28g) — 0, j — 00.
Proof: We fix R < Ry < R; and define

E'(z) = —-VA / v(y) N E(y)®.(z,y)ds(y)

+iv AV A / v(y) A H(y)®(2,y)ds(y)

9B,

and H'(z) := (ix)"'V A E%(z) for & € Bg,. Then, E’, H® are a solution to
the Maxwell equations in Bp,.

Starting from the representation formula (3.4) for E in Bg, and follow-
ing the considerations that lead to (3.18) and (3.19) we obtain the integral
equation

B(r) = E'@)—#* [ @ule,y)(1 - n(y) E(y)dy
) By 2 € By (45)

for the field E, i.e., E = (I +T,) 'E" in Bp.

Now, according to Lemma 4.2, we choose a sequence (EJZ, HJ’:), j € N, from
span {(E'(-,d,p), H'(-,d,p)):d € S? p € C*} which approximates (E’, H) in
L*(Bg), and we set E; to be the solution to the Lippmann-Schwinger equa-
tion (4.5) with incident field E}. Hence, we have E; € span {E(-,d,p):d €
S%.pe C*} and

E;—E=(I+T,) '(E, - E" in Bg,
whence

1B = Ellesa) < 1T+ T) " leawo 1B — E'll2(sa) — 0, 5 — 00 .
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Finally, if we approximate the electric field of an an arbitrary solution to
the perturbed Maxwell equations in By, by elements from

span {E(-,d,p):d € S* , p € C*}

with respect to the L?*(Bg)-norm and use Lemma 4.1, we obtain relation
(4.1). This is stated in the next lemma.

Lemma 4.5 Assume 0 < R < Ry and that the far field patterns for the
refractive indices n, i € C(Bg) coincide on S? x S? x €3, i.e., By, = Ey
If E, H € CY(Bg,) are a solution to

VANE—ickH=0, VAH +iknH =0 wn Bg,,
and if E, H € CY(Bg,) are a solution to

VAE—ikH=0, VAH+iknH =0 in Bg,,
then we have the relation

/(n(x) — () E(x) - B(x)dr =0 .

Br

Our next task is the construction of special solutions to the perturbed

Maxwell equations. For a given o € I' we are looking for solutions E(-,(,7),

H(-,(,n) and E( ¢, 1), H(-,¢,1) to the perturbed Maxwell equations which
depend in such a way on the parameters (, 1, C, i € C? that

(l‘, Ca 77)) : (l‘, Ca 77]) — 6fia-$

with respect to the L'(Bg)-norm for an appropriately chosen sequence of the
parameters.

Our knowledge from the acoustic case suggests to use an incident field
Ei(x) = ne’*® where ¢ € € satisfies ( - ¢ = k% and |S(¢)| is sufficiently
large, and where 7 - ¢ = 0. The conditions on ¢ and 5 imply that E* and
H' := (ik)"'V A E* are a solution to the Maxwell equations. Furthermore,
the physical fundamental solution ®,, should be replaced by the nonphysical
U, in the Lippmann-Schwinger equation (3.19).

We remind the reader that W.(z) = (e*l*l/4r|z|) + §¢(x) was defined
on page 97 and that g is a solution to the Helmholtz equation in Bsg.
Moreover, the properties of the volume potential G having kernel g.(z—y) =
e~ @=NW (x — y) were investigated in Theorem 2.8.

We first prove the analogue to Lemma 3.6.
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Lemma 4.6 Suppose 0 < R < R" < R' and n, ¢ € € satisfy ¢ - ¢ = K2,
1S(Q)| > 262(R'/7)||]1 — | + 1 and n- ¢ = 0. Furthermore, define E*(z) :=
nei Hi(x) = (ik)"'V A E(z), v € R?, and assume E € C(Bgr) is a
solution to

B(r) = E'2)—#* [ V(o —y)(1 - n(y) Ey)dy

+9 [l - y>@w<y> E(y)dy, v € Bp . (46)

Then, E € C*(Bgr), and E, H := (i) "'V A E satisfy the perturbed Mazwell
equations in Brn.

Proof: We conclude from the smoothing properties of the volume potential
and the analyticity of E*, H' that E € C?(Bgr) and H € C*(Bgr).

Taking the divergence of both sides of the integral equation (4.6), multi-
plying by =% and defining u := (1/n)V - (nE) =V - E + (1/n)Vn - E, we
arrive at

e u(z) = —k?[Ge((1 = n) (e "u))|(x)  in Bgr.

Since the linear mapping v — k*G¢((1 — n)v) has an L*-norm less than one,
we obtain e~“*u(x) = 0, v € Bgr, i.e.,

1
V-FE=——-Vn-E.
n
Now, we compute as in the proof of Lemma 3.6
H(z) = —V AB(@)
= — x
¢ 1K
= H(@)+ixV A [ We(o —y)(1 = n(m) E(y)dy , = € B,
Br
(4.7)
and

VANH(z)+ikE(x) = m{V/\V/\/\I!C(x—y)(l—n(y))E(y)dy
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+inY [ W@ = y)V {1 =) E}y)dy

+ikV / Ve(r —y)——=Vnl(y) - E(y)dy

b
n(y)
= ik(l —n(z))E(x) , x € Bgr .

This ends the proof of the lemma.
O

Equation (4.6) is a Fredholm integral equation of the second kind. Thus,
analogously to Theorem 3.7, we would like to show that it has a trivial
nullspace in order to ensure its unique solvability. However, we cannot pro-
ceed as in the direct electromagnetic scattering problem because £ — E* and
H — H' from the above lemma are not radiating solutions. Hence, we cannot
apply the Silver-Miiller radiation condition which implied uniqueness of F in
the preceding chapter. Our reasoning from the acoustic case is not directly
applicable either. If we multiply equation (4.6) by e %, we obtain one term
Gc((1 = n)(e™7E)) and a second term

(V+ iC)Gg(%Vn . (e‘ig"”E)) :

This second operator does not converge to zero with respect to L?(Bgn).
Furthermore, this term causes difficulties to obtain the asymptotic behavior
of e72(E — E%)(x) for |3(¢)| — oo from (4.6). The unique solvability
can be achieved, if ||n — 1]|c1 is sufficiently small, but the derivation of the
asymptotic behavior still needs hard work which is done in [45].

The following trick to overcome these difficulties is due to Colton and
Péivdrinta (see [8]). They derive an integral equation with kernel g, for
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e~ rn!2(E — EY), e7*(H — H') where they make use of the fact that
E' := n'?E, H' := H satisfy a Helmholtz type differential equation. We
already used their idea in the proof of Lemma 3.4.

Lemma 4.7 With the assumptions as in the preceding lemma suppose E
is a solution of (4.6). Then E"(z) = e " n!/2(x)(E — E%)(x), H"(z) =
e~%(H — H")(x), * € Bgr, are a solution of the equation

E" E" Fl(aCaﬁ))
=-G:Q + 4.8
(Hl/) C <HII> (FZ(, C, ,r]) ( )
where Q is the operator defined in (3.13) and

Fl('7 Ca 77) L (—in_l/QC -Vn — Anl/Q)T] nl/277
()oY ol )

Proof: We first establish the equality

("R == o (T oo

To this end we note that due to (4.7) and Theorem 1.9 (b) H — H® can be
written as

H(w) = H'(@) = [ (o~ y)U)dy , @€ Bar |

with a vector field U. This implies

aa - m@ = [ (e
: OV¢(z —y) i
—W(H—H)(w)ds(y)
— [ A+ R)H = B)) )V~ y)dy
=~ [ (A +R)H ~ H)W)¥lo - y)dy , @€ Br .
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Here, the first equality follows from Green’s representation formula (1.10) by
inserting V¢(z — y) = ®,(x,y) + gc(r — y) and using the identity (1.9) for
the terms with g.. For the second equality we observe that the boundary
terms vanish due to Lemma 2.31 (a) (see the proof of Lemma 2.31 (b) where
surface potentials are examined instead of a volume potential). This proves
the lower line of (4.9).

Due to (4.6), the same reasoning yields the analogous representation for
E—FE'. Finally, (n'/?2—1)(E— E") € C3(Bgn) also admits this representation
because the boundary terms vanish due to the compact support of (n'/? —
1)(E — E'). Adding the representations for (n'/2 — 1)(E — E') and E — E'
we obtain the upper line of (4.9).

Finally, we compute with the help of Lemma 3.4

a0 )

nl/Q(E_ Ez) n1/2Ei n1/2Ei

= . ) = (A+K? .

Q( g )T )@ )

and insert the result into (4.9). Multiplying both sides of the equation by

e~ completes the proof of the assertion.
(Il

Now we are in a position to prove the existence of a unique solution
to (4.6), if |(()| is sufficiently large. We can also obtain the asymptotic
behavior of the solution E as |J(¢)| — oo.

If A:C°% — C° is a linear operator, we define

|A]l2 := max | Ap]| .
Ip|=1

Moreover, we denote by %, the positive number
RI
to := 2—{max [|Q(z)lz + K*||1 = nll} + 1, (4.10)
™ CEGBR

which only depends on «, R/, the C?*-norm of 1 — n and ||1/n|| .

Theorem 4.8 Suppose the assumptions of Lemma 4.6 hold true. Further-
more, let ¢ satisfy the additional requirement |3(¢)| > to, where ty is defined

in (4.10).
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(a) Then, the integral equations (4.6) and (4.8) both have a unique solution.

(b) There is a positive constant M (depending only on k, R, ||1/n||s +
|1 = nl|c2), such that the solution E to (4.6) satisfies

E(IL‘) = E(%Cﬂ?) = eig-m{n+ f(xagan)g—i_ V(%Cﬂ?)} , T € BR” )

where the L?-norms of the vector fields V(-,(,n) and of the functions
f(-,¢,n) can be estimated by

Min|
||V(7C777)||L2 Bpn) T+ ||f(7<777)||L2 Bpn < .
(Bg) (Bg) 1S(0)]
Proof: Since we can estimate
E” E//
270 iy < 51| (70

we have for |J(C)| > to and for any solution (E”, H") of the homogeneous

equation (4.8):
E’// E// 1 E//
[ | S 9

Therefore, equation (4.8) has a trivial nullspace and thus a unique solution
by the Riesz-Fredholm theory.

With the help of Lemma 4.7 we see that any solution £ to the homoge-
neous integral equation (4.6) yields an element (e~ n'/2E, (i) "'V A E) in
the nullspace of (4.8). Hence, the nullspace of (4.6) is also trivial and equa-
tion (4.6) has a unique solution by the Riesz-Fredholm theory. This proves
part (a) of the lemma.

For part (b) we note that E(x) = E'(z) + ¢“*n~"2(z)E"(z) by the
definition of E” and that (E”, H") is a solution to (4.8), i.e.,

E" E" Fi(-.¢m)
=-G :
(H) 4 (Q<H">) i (Fz('a )
The equation [¢|> = [R(C)]? + |S(C)]? = 2|S(¢)|* + x? allows to bound [(|
by |¥(¢)|. Hence, by Theorem 2.8 there is a constant M; such that

||(F1('7<777)7FZ(':C:n))“LQ(BRu) < M1|77| :

L2(BRII) )
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Then, we can infer from the integral equation (4.8) that ||(E", H")||z2(B,.,) <
My|n| for all |(C)| > to with a suitable constant M.

Now, we write down the equation for E” from (4.8), define E' := n'/?n +
E", reorder terms, and obtain

E' = {~Ge(=in"%C-Vnn) — Ge(—=in2Vn A (¢ An)))
+ {—GC [n2(1 —n)E' — ikn~?Vn A H" — (E'-V) (%VTL)
H AR B - Ge(—an' )|
With the help of
in 2 Vnn+in PV A (CAD) = in"?Vn

we arrive at

E" = Gc(m_l/QVn -mMC+V'(,¢n),

where V' denotes the term in large square brackets from the previous formula
for E”. Finally, we define

fGm) = 0T Ge(in™ 2V )
VG = 7BV CGm)
and use the decay of ||G¢||2 for large |J(()| in order to obtain assertion (b)

of the theorem.
O

With the help of these special solutions we can prove the desired unique-
ness theorem for the inverse electromagnetic scattering problem similarly to
the inverse acoustic scattering problem.

Theorem 4.9 Assume r > 0 is fized. If the far field patterns correspond-

ing to the refractive indices n, n € C(Bg) coincide, i.e., Ex(%,d,p) =
Ey(2,d,p) for all (&,d,p) € S? x S? x C°, then n = f.

Proof: With R < R; < R' we know from Lemma 4.5 that

/(n(a:) — () B(z) - B(x)de =0 (4.11)

Br
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whenever E, H € C''(Bg,) are a solution to
VANE—-ikH=0, VAH+iknE =0 in Bg,,
and E, H € C'(Bpg,) are a solution to
VAE—ikH=0, VAH+ixiE =0 in Bg,.

Now, we fix a vector a € T" and choose the unit vectors d;, ds € IR? such
that a, d; and dy are orthogonal. Next we define for sufficiently large t > 0
the vectors

1 2

Ct = —_O{+Z t2_ﬁ2+ﬁd1+td2 y
2 4

- 1 | 2

Ct = —504 i/ t? K2 + —d1 td2 ,
1 o]

= a4 Yy

1 ]

~ — o %y

Tt o] o 12

Note that |a| # 0 for a € T'. Straightforward computations show (; - ¢; =
G-G=k G- =C-m =0 and Ine| = || < M, for all sufficiently large ¢.
Therefore, from the preceding theorem we can infer the existence of special
solutions E(-, ¢, ), H(-, ¢, my) and E(-, ¢, 7e), H(-, G, i) to the perturbed
Maxwell equations with refractive index n, n, resp., such that

E(x, Come) = €y + f(2, Gon) G + Ve, Gom)} , © € Bg,
E(x, (i) = ei&w{ﬁt + fla, Gi) G + V (2, G )} 5 @ € Ba,
and
VGG le2ay + 11V G i) 22Ba)
M/

Ty Sty It 2(Bgr ~'7 Nt; ~t 2(Br S ~ = . 4.12

Using eiCteeilr = e gy -1y =1 — (|af?/4t?), n; - = —laf =7 - G,
G+ ¢ = (Jaf?/2) — k? together with (4.12) we arrive at

E(l‘, Cta 77t) ’ E(ZL’, 5t7 ﬁt) = eiiwm(l + h(ZU, t))
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with
/ h(z,t)|dz — 0, t = oo .
Br

Hence, inserting the special solutions into (4.11) implies (n — 1) () = 0 as
t — 00. Proceeding as above for all & € T we finally arrive with the help of

(1.2) at
In = lli2(p,) = D I(n—0) (@)]* =0,
acl
whence n = n. This ends the proof of the theorem.
(I

Let us close this section with two remarks. As in the acoustic case it
is possible to replace the plane incident waves by any set of solutions to
the Maxwell equations which is complete in the space of all solutions to the
Maxwell equations with respect to L?(Bg). Second, instead of measuring far
field data one might also use near field data like the tangential components
of the electric or magnetic field on a large sphere because these data uniquely
determine a radiating solution to the Maxwell equations.
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4.2 Stability of the Inverse Electromagnetic
Problem

We will now examine the continuous dependence of the refractive index n on
the far field pattern. We assume throughout this section that the refractive
indices n satisfy n € C(Bg), ie., n € C*(IR?), 0 < v < 1, R(n) > 0,
S(n) > 0, and supp (1 —n) C Bg.

If &, d € S? are fixed, the mapping

p€C¥— E(i,d,p)cC?

is linear. Therefore, we regard the far field pattern as a matrix valued map-
ping
oo: S x S% — €33
€xo (%, d) has the vector E.(%,d, dy) as its kth column where dy, do, d3 denote
the usual cartesian unit vectors.
Analogously to the acoustic case we use a very strong norm || - || = on the
far field patterns by prescribing a very rapid decay of the Fourier coefficients

s = [ [ el VI @)V (d)ds(@)ds(d) | (4.13)
S2 2
lilo=0,1,..., =y <k <1, —la <hky <y,

of the far field patterns e.,. Here, the integral over a matrix valued function
is defined by computing the integral for each entry of the matrix valued
function. Hence, the Fourier coefficients ju, 51,5, € C*** are matrices, too.
Furthermore, we denote for a matrix A = (a;;) € C*** by

3 1/2
1Al = (3 lael?)
k=1

the Frobenius norm.
We want to derive the estimate

]71/15

|7)

with a constant ¢ for all refractive indices n, n lying in some small subset
O of C(Bg). This means that the mapping e, + n is continuous and

In = Alloc < c[=n([lecon — oo

143



that a local uniqueness result holds. Having the acoustic case in mind we
expect that O is not only small with respect to the maximum norm but with
respect to a C?-norm, i.e., we need additional information in a stronger norm
in order to obtain the stability result.

Imitating the reasoning in the acoustic case we start by studying the decay
of the Fourier coefficients and proving continuity of the mapping n — e p.

Next, we reconstruct the kernel of a certain boundary integral operator N,
with the help of a series expansion involving the Fourier coefficients g, .k, -
N,, depends continuously on e, ,. However, since the || - ||z-norm is a very
strong norm, which is not appropriate for measured far field patterns, this
mapping is severely ill-posed.

Finally, we investigate the dependence of n on NN, with the help of the
special solutions from the last section and arrive at our main estimate.

For convenience we define as in (4.4) the operator T,: C(Bgr) — C(Bgr)
by

(LU)@) = 1 [ ®ula,p)(L = n(y)U(y)dy

1 _
——Vn(y)-Uly)dy , v € Bg .
n(y)
Lemma 4.10 Assume the far field pattern ey: S? x S? — C*3 originates
from the refractive index n € C'(Bg) satisfying supp (1 — n) C Bg, for some
0 < Ry < R. Let py,k,1,k, denote the Fourier coefficients of eo as defined in

(4.13). Furthermore, define Ry := (1/2)(R + Ry). Then, there is a constant
¢ depending on ey such that

exR3 )211+3( exR3 )212+3

2
<
| 113kt || 7 < 0(211 +1 20+ 1

We also have

||:U’llk112k2||%‘ <00 .

Z 2[1 + 1)2[1+3(2l2 + 1)2l2+3
gk, ERTE ekR

Proof: Using the Lippmann-Schwinger equation (3.19) and the asymptotic
behavior of @, for large |z| we can compute the columns of ey, as

52

Eulind,dy) = — [ (L=n(y)Ely.d,d)e™dy
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1K 1 -
— —V - E(y,d,d)e " Ydy z
47TB/ n(y) n(y) (ya ) k:)e yr,

t,deS*, k=1,2,3. (4.14)

Ry

Interchanging the order of integration we obtain

[ Bucl d, )Y (2)Y (d)ds(@)ds(d)

= = [ = nw) [ B d d)VE@ds(d) [ e =y @)ds(@)dy
1 : 1 ’ )
= v

| By, d dYE(ds(@)V [ ey (@)ds(@) fdy
SZ
and then by the Cauchy-Schwarz inequality

3 2

It = Y| [ [ Bl d, d) Vi ()Y (d)ds(@)ds(d)
k=1 S2 g2
3 2
< ey . d, di)Y,"2 (d)ds(d)
k=1 g2 L2(BR1)
2
[ [ e d)ds(d)
S2 L2(BR1)
2
H v/ —mdmykl dS‘(d) ]
L2(BR1)
(4.15)

¢ will denote various constants during the proof.
In formula (2.27) we have bounded the first term in [...] by a multiple of

( ey )2[1-}-3
201+1 .

For the first factor and for the second term in [...] we note that by
Lemma 2.6 (b) there is a constant ¢ such that the inequality

/|vu| dx+z /| |da:<c/|u|2dx
laxm

Bg, Br,
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holds true for all u € C?*(IR?) satisfying Au + k*u = 0 in IR*. We can then
estimate

2 2
< ¢

L2(Bg,)

/ eIV R () ds(d)
52

exR3z \201+3
<
= 6(251 n 1)

H v / e ATYF () ds (d)

LZ(BR?))

Y

where, in the second line, we have used the analogous estimate to (2.27)
again. Moreover, we have

2

[ i d d) Y (d)ds(d)

L2(BR1)
2

1 pp—
SVAVA / et Y (d)dyds(d)

L2(BR1)
2

L2(BR3)

< H/ znd:vykz (d)

)

R
( 26;: +31 )212+3

and finally by the boundedness of (I +T,)~" in L?(Bg,) (see Lemma 4.3):

2

/ E(-, d, dy) Y} (d)ds(d)

Lz(BRl)
2

- H (I+Tn)*1/E"(-,d, ) Y (d)ds(d)

l2

L2(Bg,)

R
C(;: +31 )%H '

Now, we can complete the proof analogously to Lemma 2.17.

By this lemma we know that the norm ||ex ||+ defined by

20) + 12043 /215 + 1\ 2l2+3 5
||600,n||2.7-' = Z | etk toes || 72
lhkl’lz’,@( ekR ) ( ekR ) thane
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is well defined if n € C'(Bg) because supp (1 —n) C Bp implies that there is
a radius Ry < R with supp (1 —n) C Bg,.

Proceeding similarly to the proof of Lemma 2.18 we can prove the con-
tinuous dependence of ey, on n.

Lemma 4.11 Let ny € C’(BRI), R, < R, be given. Then, there are positive
constants ¢ and € such that [|esn — €somo ||l 7 < c{[|n —1n0lloo + ||V — Vg0 }
for all n € C(Bg,) satisfying ||n — nollso + ||V — Vng||oo < €.

Our next aim is to introduce a certain boundary integral operator NN,
which is the electromagnetic analogue of the operator S, in the acoustic
case. To this end we must introduce some spaces of tangential fields on the
sphere 0Bg,. We denote by T(0Bg,) the continuous, tangential vector fields
a on OBp,, i.e., which satisfy z - a(z) = 0, x € dBg,, and by T%7(0Bg,) the
space of uniformly ~-Ho6lder continuous vector fields @ on 0Bk, which are
tangential to 0Bg,. By Grad i we mean the surface gradient of a function
Y € CY(0Bg,). If for a € T%(0Bg,) there exists a function ¢ € C%7(0Bg,)
such that

/ Grad ¢ - ads = — / Yds
dBr, dBr,
holds true for all ¢y € C'(0Bg,), we define Diva := ¢ to be the surface
divergence of a. The reader can find more details in [7, p. 161]. The space
of all tangential fields from T%7(0Bg,) possessing a y-Holder continuous
surface divergence is denoted by Tg’V(aBRz). Moreover, we introduce the
norm ||“||T§” = ||aljo,, + ||Divallo, for a € T} (0Bg,).

In [7, Theorem 6.17] the authors prove that the operator
Ni: T3 (0Bg,) — T3 (0Bg,)
defined by
(Ma)(z) = 2v(x) A{V AV A / B, (x,y)aly)ds(y)} , = € OBy, ,
0B,

is bounded with respect to || - ||T£,7. At this point we slightly deviate from

the notation in [7] where the authors define Na := N;(v A a). Nja is the
tangential component on 0Bpg, of the vector potential

E(z) =2V AV A / o, (z,y)aly)ds(y) , © € R*\ 8Bn, ,  (4.16)

OB,
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ie., YNEy =vAE_ = Njaon OBg,. The subscripts, + and —, indicate that
we approach the boundary 0Bpg, from the exterior and interior, respectively.
Furthermore, the fields £ and H := (ix) 'V AE are a solution to the Maxwell
equations in IR* \ 0Bg,, satisfy the Silver-Miiller radiation condition and
vA(Hy — H_) = —2ika on 0Bg,.

In order to define an analogous operator N, we proceed as in the acoustic
case and consider the following boundary value problem (BV P):

Given Ry > R, k > 0, n € C(Bg), and a € Ty (8Bp,), find E, H defined
in IR? \ 0Bg, satisfying the following requirements:

Elpg,, H|s,, € C'(Bg,) N C(Bg,),

Elps\grys Hlpovay; € C'(R*\ Br,) NC(IR*\ Bg,),

VAE—ikH=0, VAH+iknE =0 in R*\ 0Bg,,
E, H satisfy the Silver-Miiller radiation condition,
vA(Ey —E_)=0,vA(Hy — H_) = —2irka on 0Bg,.

Lemma 4.12 For all a € T)"(dBp,) the boundary value problem (BV P)
has a unique solution E, H. E, H are given by

E(z) == 2VAVA / D (2, y)aly)ds(y)
[ (L= ()l )U () dy

+VB/ @V”(y) U(y)@p(z,y)dy , v € R*\ OB, ,
(4.17)

and H := (ik) "'V A E, where U € C(Bg) is the unique solution to the
Lippmann-Schwinger equation

(U+T,U)(x) =2VAVA / . (z,y)aly)ds(y) , * € By .

9B,
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Proof: 1f we assume that E, H are a solution to (BV P) with a = 0, the first
part of the reasoning in Theorem 3.5 implies £ = H = 0 in the exterior of
Bpg,, whence vAE_=v ANH_ =0 on 0Bpg,.

Now, starting from the Stratton-Chu formula (3.4) for F in Bg, and
following the considerations which lead to (3.18) and (3.19), we see that E is
a solution of the homogeneous Lippmann-Schwinger equation. Thus, we also
have E = H =0 in Bg,. This completes the uniqueness proof for (BV P).

In order to prove that E, H defined as in the assertion are a solution to
(BVP) for an arbitrary vector field a, we imitate the proof of Lemma 3.6.
Taking the divergence of both sides of the Lippmann-Schwinger equation for
U implies V-(nU) = 0 in Bg. Then, computations as in Lemma 3.6 show that
E, H are a radiating solution to the perturbed Maxwell equations. Finally,
the properties of the vector potential (4.16) and of the volume potential yield
that F, H satisfy the boundary conditions.

O

We are now in a position to define

No:T)"(0Bg,) — T3 (0Br,)  (Nya)(z) :=v(z) ANEy(z), = € OBg, ,
(4.18)
E, H being the solution to (BV P). Since the last two terms in the def-
inition (4.17) are C2-smooth in IR?, the linear operator N, is well defined
and bounded. Furthermore, we also have N,a = v A E_ on 0Bpg,. Finally,
we note that the definition of U is possible for any continuous vector field
a € C(0Bg,), whence the last two integrals on the right hand side of (4.17)
are still well defined for a € C'(0Bg,). This allows to regard (N, — N;) as a
linear and bounded operator in the spaces C(0Bg,) or T(0Bg,).
The following lemma states some properties of V,,.

Lemma 4.13 The linear operators N, satisfy:

(a) / (Npa) - (b A v)ds = / (@A v) - (Nub)ds for all a, b € T*"(8Bg,).

dBp, 8Bg,

(b) The mapping n — (N, —Ny), from (C(Bg),||-||c1) to the space of linear
and bounded operators in T(0Bpg,) equipped with the || - ||-operator
norm, 1S continuous.
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Proof: For a, b € Ty (0Bpg,) we define F as in (4.17), H := (ir)"'V A E,
and E’, H' analogously where we replace a by b. Then we use the formulas
(3.3) and (3.9) to compute

/ {(Npa) - (bAv) — (a Av) - (Nyb)}ds
- /{l//\E) (v A (H, — H')| Av)

2m
8Br,

—([vAN(Hy —H_)|Av)-(vAE")}ds

= - /{ vAE)-H, — (vAE)-H,)
—((WAE)-H —(vANE'")-H_)}ds
0.

This proves part (a).
Assertion (b) can be established along the lines of Lemma 2.20 (c).
|

Now, we examine how to compute the operator N,, from a knowledge of
the Fourier coefficients 14, ,1,k, Of €son. This also allows to derive continuous
dependence of N,, on ey, ,. We remind the reader that N,, — N, is well defined
in T'(0Bg,), hence it makes sense to examine ||N,, — Njlloo = ||(N, — N1) —
(Na = N1)l[oo-

Lemma 4.14 Let the far field pattern eq,: S? x S? — (D?’Xf’ with Fourier
coefficients piy, g 1.k, OTiginate from the refractive index n € C(Bg). For x,
y € O0Bg, we define the matrix

I<34

a9 i= =10 3 R GeR (R BYE (Y (D ki
a l17k17l27k2 X
(4.19)

(a) For all a € Ty (0Bg,) there holds

(Naa)(z) = (N1) () = 20(2) A [ Kl )aly)ds(y) , = € OB, .

9B,
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(b) There is a constant ¢ such that for all n, i € C(Bg) the inequality
| Nn — Nilloo < €llécon — €onll# holds true.

Proof: As in the proof of Lemma 2.21 (a) we can use the Cauchy-Schwarz
inequality for the series in (4.19) together with the rapid decay of the Fourier

coefficients (Lemma 4.10) and the estimate for |h,§1)(/£R2)| (Lemma 2.16) in
order to see that the series is absolutely and uniformly convergent on 0Bp, X
O0Bpg,. Therefore, k, is a well defined continuous matrix valued function.

From the definition of N, in (4.18) we know that for a € T} (9Bg,) the
difference N,a — N;a has the form

(Npa — Nya)(x)
= —r(@) A [ (1= ) @, n)U(y)dy

Br

V) AT [ () - V)0 9)dy . 2 € 0By,
' (4.20)

where U € C(Bg) is the solution to

(U+T,U)(x) =2V AV A / P, (z,y)aly)ds(y) , © € By .

OB,

The right hand sides of the last equation and of (4.20) are well defined for any
continuous vector field a € C'(0Bg,) and represent bounded linear operators
with respect to the maximum norm. Since Ty (9Bg,) C C(0Bg,), it suffices
to prove that the right hand side of (4.20) and

2w(x) A / kn (2, y)a(y)ds(y)

OB,

coincide for all z € 0Bpg, and for all a € C(0Bg,). As

span{Ylk(ﬁ)dm:m =1,2,3;1=0,1,...; -1 <k < l}
is dense in C(0Bg,), we establish the desired equality only for the fields

Ylk(ﬂ)dm Here, di, ds, ds denote the usual cartesian unit vectors in IR®.
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First, we compute for x € 0Bp,

2 / y’@ Y ydnds(y)
r
Kk R2 g T
= ——=>i" bhﬁ)OﬂRzﬂﬁ?(ﬁfh)Yﬁ”(Eﬂ)uhkuﬂadm

2T

For the computation of the right hand side of (4.20) we proceed similarly
to the proof of Lemma 2.21 (a) and compute

WAVA [ @)Y (L) ds(y)

OB, v

A\l S
- 2¢mR§h§;>(nRZ)( 47’) VAVA / ety R (d)d,, ds(d)
m

A\l ) S _
- 2mR§h§21)(/<;R2)( 4” K2 / E'(z,d,d,)Y}?(d)ds(d) , = € By ,
m

and
U = 20+ T) {VAVA / B, (-, y )Y’f2(| Ve ()}
= 2ikR2hY (KRy) (_42[2 K> / E(,d,d) Y2 (d)ds(d) .
Defining
V() = =k [ (1= )@z, U (y)dy
+v V) V) )dy o] >
we obtain with the help of (4.14)
Vul@) = —1 [ =n@)e U
+% / @Vn(y) -Uly)e "™ Ydy &



Y -

- QiKRghl(;)(nRQ)( 42) K> / By (#,d,d)Y (d)ds(d) , &€ S%,
T 2

whence

()"

/ Vio () Vi (2)ds () = 2is 20 (5 Ry) L kit o tata o - (4.21)
S2

Since V' is a radiating solution to the Helmholtz equation in the exterior of
Bg, if supp (1 —n) C Bg,, R1 < R, according to [7, Theorem 2.14] it has an
expansion

00 Iy
Viz) =3 S ane b (kl2)) Y/ ()
h=0ki1=—11

which converges absolutely and uniformly on compact subsets of {|z| > R}.
Here, the coefficients a;,, are vectors in C*. Now, comparing the Fourier
coefficients for the far field of the above series expansion with (4.21) we can
finish the proof of assertion (a) as in Lemma 2.21 (a).
The analogous estimates to the proof of Lemma 2.21 (b) yield part (b) of
the lemma.
(]

As in the acoustic case we need a connection between the integrals
‘/(n —n)E - de‘
Br

and the quantity ||N,, — Nj||so which is established in the following lemma.
During the proof of the lemma we employ two more boundary integral opera-
tors, namely Lo: Ty (0Bgr,) — Ty (0Bg,) and M: Ty (0Bg,) — Ty (0Bg,)
which are defined by

(Loa)() = (@) A [ @oley){ [ Boly, 2)a(z)ds(=)}ds(y)

dBr, dBp,

(4.22)
(Ma)(z) = 2 / v(x) AV A{®,(z,y)aly)}ds(y) , = € OB, .

9B,

The proof of Theorem 6.19 in [7] shows that the operator I + M + iNy Ly
has a continuous inverse in T(? ""(0Bg,). Moreover, given a tangential field

153



b € T)"(0Bg,) and defining a := 2(I + M + iN,Ly)~'b € Ty"(0Bg,) the
fields

V(g) == VA / (y)ds(y)

OBr,
HVAVA / (, ) (Loa) (y)ds(y) ,
OBg,
1

are a radiating solution to the Maxwell equations in IR*\ By, with vAV, = b

on 0Bpg,, i.e., we can solve the exterior Dirichlet problem for the Maxwell

equations. Finally, Theorem 6.20 in [7] states that || A W||por < ¢||b|| 70
d d

for a suitable constant ¢ which is independent of b.

Lemma 4.15 Assume R < Ry < R" and ¢ > 0 are positive constants.
Then, there exists a positive constant ¢ such that for all n, n € é(BR)
with ||n]|cz, [|7]|cz, [|1/7]|cs [|1/7]l0 < €1, and for all solutions E, H €
C'(Brr) N L*(Bgr) to VAE —ikH =0, VA H +iknE =0 in B and all
solutions E, H € CY(Bre)NL*(Bpo) to VAE —ikH =0, VAH +iknE = 0
i Bprn the estimate

| [ (n =B - Bdz| < | No = Nalloopa 1 Bllion 1 Bllizs, — (4:23)

holds true.

Proof: As in the acoustic case we extend E, H outside of Bg, to radiating
solutions V', W to the Maxwell equations such that v A E_ = v A V.. This
allows to connect (¥ A E_)|ap,, and the operator N,. We define V(z) :=
E(z), z € Bg,, and

V(z) = 2V A / (y)ds(y)
OB,
L2V AV A / ®, (2, y)(Loa)(y)ds(y) , = € R*\ Br, ,
0Bn,

with a := (I+M+iN,Lo) " (VAE_) oy, Moreover, weset W := (ix)'VAE
in R® \ Bg,. Then, we know Vigr,» Wlss, € C'(Bg,) N C(Bg,), and
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V|IR3\B—R27 VV|]R3\B—R2 € CY(R?\ Bg,) N C(IR*\ Bg,). Furthermore, V, W
satisfy the Silver-Miiller radiation condition and v A (V, — V_) = 0. Hence,
we know from Lemma 4.12 that

1
vA Vi = %Nn(l/ A (W, — W+))

on 0Bpg,. From the remarks preceding this lemma we can conclude ||v A
(W = W) oo < 02||E||1,%B—R2' ||E||17%B—R2 can be bounded by a multiple of
||n1/2E||17%B—R2. Since (n'/?2E, H) are a solution to a perturbed Helmholtz
equation (Lemma 3.4), we obtain from Lemma 2.6 (b) that there are con-
stants ¢z, ¢4 independent of F, H and n (but dependent on ¢;, Ry and R")
such that

I A V- = W)l < el Bl < el Bllisg - (4.24)

~ We can proceed analogously and define vector fields V, W starting with
E He CI(BRN) N L2(BRH).
Then, we use Lemma 4.13 (a), (3.9) and (3.3) to compute

% [ (0 AV =Wl A V) - (N = Na) (v A (2 — T72)) s
_ i / [N A (W= = W) - (I A (= = W) Av)ds
_i [ (A v =Wl Av)  Na(v a (7 17,))ds

- / [ AVe) - (W = W) = (WA TR) - (Wo = W) s

= [ HwAV) W= AT W Yds
= ik / (n—)E - Edz | (4.25)

Finally, we conclude from (4.24) and (4.25)

‘/(n - ﬁ)Ede‘
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_ % [ (A v =Wl Av) - (Vo = Na) (v £ (O = V7)) ds|

< N, — Nﬁ”oo,aBRZ||E||L2(BRH)||E||L2(BRH) ;

and we have proved the lemma.
(Il
We are now in a position to prove our main estimate which implies the
continuous dependence of n on N,, or ey .

Theorem 4.16 Let ng € é(BR) be given. Then, there are a neighborhood
O of ny of the form

O :={n € C(Bg):||n — nol|c> < €} ,
and a positive constant c, such that for all n, n € O the estimate
In = #tfloo,5z < c[=In(|Ns = Nillo,0m5,)] "

holds true.

Proof: We choose R < Ry < R" < R' < 2R,. Furthermore, with Q,,, defined
as in (3.13) for the refractive index ny we set

R/
t; = 2—{max || Q,, () |l2 + K2||1 — noloo + 1} + 2K + 200 ,
™ CEGBR

and choose 0 < €; < 1/2 sufficiently small to ensure

-7

L me .
T5am, = 1) ) > h

Due to the continuous dependence of Q,, and of (N,, — N;) on n (Lem-
ma 4.13 (b)) we can find € with 0 < € < ¢; such that

max [|Qn, (z) — Qn(x)[l2 + #*[In — nollee < 1
CEGBR

and
||Nn - Nﬁ||oo,8BR2 S 261

for all .
n,n € O :={n € C(Bg):||n — nol|cz < €} .
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From (2.38) and (2.39) we know that for n, 7 € O and any p > 2 the
estimate
In—illse < 2R)™2 Y |(n—7) ()| +—= (4.26)
aa<p? VP
holds true. ¢ may denote various constants during the proof.

As in the proof of Theorem 2.23 we have to pick a suitable p, depending
on || Ny, = Nill,0By,, in order to estimate the right hand side of (4.26). The
Fourier coefficients |(n —n)(a)|, a - a < p?, can be bounded by using the
preceding lemma and the special solutions from the uniqueness proof for the
inverse problem.

We choose t := W In||N, — Nilloo and p := /15, Then, the
inequalities ||V, — Na||~ < 1 and ¢ > ¢, are satisfied for all n, 7 € O by the
definition of € and we also have p > 2.

For a vector o € I with o - o < p? we choose as in Theorem 4.9

G o= —%Oz + i/ t? — K2 + kazdl + tdsy
G o= —%a—z’ t2—n2+%d1—td2 ,
N = ﬁa—i— |%|d2 ,
T ﬁa— %dg .

Then, we have ()| > t — k > t/2, |¢]/IS(¢G)] < 2, and ()] >
t— Kk >ty for all n € O (ty as in (4.10)), whence by Theorem 4.8 there
exist the special solutions E(z,(,m) = €“%(n, + f(z, Gyme) + V(z, Gyme))
and the L?(Bgr)-norms ||f(-, ¢, o)l + |V (-, ¢, me)|| 22 can be bounded by
(Inele) /13(¢)| uniformly in n € O, ¢ > t;. The analogous assertions apply to

E(z, Ces M) = el P + f(l" Ces ) + V(SU G, Mt))-
Now, we estimate with the help of the preceding lemma

(7 —n)(a)]
= (2R)77| / (7 — ) (x)e "]

= 2RI 3/2‘/ :U Ctant) E(xagtaﬁt)dx
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jof”

+ [ (= m@e = Tx +lal(f @, Gom) + (G )

—(ne + f (2, Come)Ge) - )

) ( Ctant)f(x é?nt) (IaCtﬂ?t) ' ‘N/(xvétaﬁt)
V(x,
— (7 + f(xa é, ﬁt)ét) Vi, G, 77t)} ‘

=z clal?
< C“Nn - NﬁHOO“E(? Ct? 77t)||L2(BRu)||E(', Cta 7775)||L2(BRN) + +
2 _ARy(t af*
< cljafet B HNIN, = Nofloo +=5) (4.27)

where we have used the fact that

IEC, Gomllzmn < 1€ oo,pany e+ F (G )G+ V(s G el 2m)
< C|C¥|€2R2 (t+]a])

forallt > t;, n € O, and a € T because |J((;)| < t+|a|. Note that the terms
in (4.6) originating from the integral containing derivatives of the modified
fundamental solution contribute |a|? in formula (4.27) and so does our choice
of n; and of 7;. These powers of |«|, which did not occur in the acoustic case,
imply the different exponent —1/15 in the assertion when compared to the
exponent —1/7 in the acoustic case.

Inequality (4.27) implies

4
S =)@ < ¢ Y (a0 N, - Nyl + 125
a-a<p? a-a<p? t
7
p
S C{€4R2t€4R2pp5||Nn o Nﬁ”oo + 7}
7
p
< C{€(4R2+1)(t+p)||Nn — Niloo + 7} ,

because of p® < 5le’.
Finally, we obtain from (4.26), our last estimate, p = #*/1> < t, and the
definition of ¢

7
1
In—ill < efe® DN, — Nofla + 5+ —)

A
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2
t1/15}

[ (1N = Nall) ™ + (= In [N, — N L)/}
< o(=In||N, — Niloo) ™"

IN

C{e(8R2+2)t||Nn . Nﬁ“oo +

IN

for all n, n € O because < (—In(z)) ! for 0 < x < 1, and we have proved
the theorem.
(]

Theorem 4.17 Let ng € C(Bpg,) with Ry < R be given. Then, there are a
neighborhood O of ny of the form

O :={n € C(Bg,): ||n — nol|c> < €} ,
and a positive constant ¢, such that for all n, n € O the estimate

)]

17 = 7ifloo,Br < ¢[=In([lecon — €0,

holds true.

Proof: We know from Lemma 4.11 that the mapping n — e, is continuous
from C(Bpg,) to the far field patterns equipped with the norm || - || z. Then,
in the proof of Theorem 4.16 we can choose € > 0 sufficiently small to satisfy
the additional requirements

1/2
F

(1 + C,)Heoo,n - eoo,ﬁ“]: S 2“51 and C,“eoo,n - eoo,ﬁ“]: S ||eoo,n - eoo,ﬁ

for all n, n € O, too, where ¢’ denotes the constant ¢ from Lemma 4.14 (b).
Inserting the estimate

|Nn = Nilloo < ¢'ll€ccn = €oonllr

from Lemma 4.14 (b) into Theorem 4.16 we arrive at the assertion of the
theorem.
(]
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4.3 The Reconstruction of the Refractive In-
dex

In this section we derive a method to reconstruct the refractive index n from a
knowledge of the far field pattern e, ,. We shall give a procedure to compute
the Fourier coefficients (n — 1)"(«), if the Fourier coefficients 14, k,1,%, of €oo
are known. However, although our method is theoretically satisfying it is
certainly not appropriate for practical computations because we never take
care of the severe ill-posedness of the problem.

The main ideas from the acoustic case are also applicable to the elec-
tromagnetic problem. There are some additional technical difficulties be-
cause replacing the Robin boundary value problem from section 2.3 by an
impedance boundary value problem for the Maxwell equations leads to more
complicated integral equations, even for n = 1, than those encountered in the
acoustic case (see [7, section 9.5] and references given there). The impedance
map which is considered in [45, 38, 39] can only be employed, if  is not an
eigenvalue in Bp,.

Therefore, we choose an unphysical boundary value problem for the per-
turbed Maxwell equations by prescribing vAH — Ly(vAE) on 0Bpg, where the
operator Lg is defined in (4.22). We prove that the map A,: 73" (0Bg,) —
T (dBp,), given by v AH — Lo(v A E) — v A E, is well defined for all x > 0
and can be computed from the Fourier coefficients 14, k1,5, Of €0c -

In the second step we derive a uniquely solvable equation of the form

(I — Apc)bey =vAHE, — Lo(v AE¢,) on 0Bg,

for the boundary values b;, = v A H(-,(,n) — Lo(v N E(+,(, 1)) of the special
solutions E(-,¢,n), H(-,¢,n) from Theorem 4.8. Here Ef, (z) = 7 - €7,
H},(x) = (ir) "'V A E{,(z) are known. A, is a compact operator, which
can be computed with the help of A, and integral operators having kernels
originating from the unphysical fundamental solution V.. Hence, given e,
we can obtain v A H(-,(,n) — Lo(v A E(-,(,n)) and v A E(-,(,n) on OBg,.

In the last step, similarly to the Uniqueness Theorem 4.9, we obtain the
Fourier coefficients (n — 1)"(«) from the above boundary data.

Our first aim is the definition of the operator A,,. To this end we have to
prove that the following boundary value problem (RP) has a unique solution:
Given 0 < R < Ry, k>0, n € C(Bg) and b € Ty (0Bg,),
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find E, H € C'(Bg,) N C(Bg,) satisfying the perturbed Maxwell equa-
tions
VAE—-ikH=0, VAH+1knE =0 in Bpg,,

and
vANH —Ly(vAE)=b on 0Bg,.

We would like to prove that the vector fields E, defined in (4.17), together
with H := (ix)"'"VAFE are a solution to (RP), if the density a € T3 (9Bpg,) is
chosen appropriately. We already know from the preceding section v A E_ =
Npa. Since we also need v A H_, we must study the boundary values of H

more closely. To this end we define M,: T} (dBg,) — Ty (Bgr,) by

(Maa)(@) = 2 [ v(@) A Vo APu(, y)a(y)}ds()

OB,

—v(@) AV A [ (1=n(y)@ula,)U)dy , © € OB, |
' (4.28)

where U € C(Bg) is the unique solution to

U+T,U=2VAVA / D, (-, y)aly)ds(y) in Bg.

dBr,

Regarding the kernel k,, from (4.19) as being defined in a neighborhood of
0Bpgr,, M, — M, corresponds to an integral operator having as kernel the
matrix valued function k,(z,y), where the mth column of k,(z,y) is given
by kn(z,y)dm = 26 20(x) A Vg A {kn(x,y)dy}. Hence, the relation between
N,, and M,, is similar to the one between S,, and K], in the acoustic case.

The mapping properties of volume potentials imply that 7}, is a compact
operator in C%7(Bg). Hence, by the Riesz-Fredholm theory (I + T,)7! is
bounded in CY7(Bg) and U € CY7(Bg). Then, the mapping properties of
the volume potential and of the vector potential also imply that M, is a
linear and bounded operator.

If F is defined as in (4.17), i.e.,

E(z) == 2VAVA / D (2, y)aly)ds(y)

9B,
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[ (1= n(y)@ule,n)U )y

+VB/ @V”(y) -U(y)®u(z,y)dy , © € R*\ 9Bk, ,

with U as above, we have

H(z) = iVAE(:r)
— _9ikV A / . (z, y)aly)ds(y)

OB,

iKY A /(1 — 1(y))®s (2, y)U(y)dy , = € R\ 9Bg, ,

whence by the jump relations
vANH_=—ik(M, —I)aand v AN Hy = —ik(M,, + I)a on 0Bg,.

The regularity properties of volume potentials and of the boundary layer
potential also imply E, H € C'(Bpg,) N C(Bg,) and E, H € C'(R?\ Bg,) N
C(R? \ Bg,).

In the following lemma we show that M, is compact and how it can be
computed from a knowledge of ey .

Lemma 4.18 Assume the far field pattern ey n: S? x S? — C*** originates
from the refractive index n € C’(BR) and has the Fourier coefficients [u, k, 1ok, -
Furthermore, define the matriz valued function l~~cn:8BR2 x 0Bp, — ¥
which has as its mth column the vector

kn(xay)dm
’ M)
— K Dy —ly (1) koo Y dhy, fo T
o _47TR2l ICXZ:]Q ! 2hl2 (KJRQ)Yiz (m){’{/( dt )(K)RQ)Y}I (m)x
1,k1,l2,k2
X
+hl(11)(/€R2)(GI'ad Yifl)(a)} A (Mllk112k2dm) , T, Y € aBR2 (429)

(dy, dy, ds denoting the cartesian unit vectors).

(a) The operator M,:Ty"(0Bg,) — Ty (0Bg,) defined in (4.28) is com-
pact (0 <y < 1).
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(b) For all a € Ty (9Bg,) there holds

(Mya)(x) = (Ma)(z) + 2v(z) A / Fn(2,y)a(y)ds(y) , © € OBg,

dBr,

where M = M is defined in (4.22).

Proof: The series expansion in (4.29) is absolutely and uniformly conver-
gent on 0Bpg, X 0Bg,. Hence k, is a well defined, continuous matrix valued
function.

For assertion (a) we observe that the operator M from (4.22) is compact
([7, Theorem 6.16]) and that the mapping Ty (0Bg,) — C(Bg), a — U,
is compact. Since ®, is a smooth function for x € 0Bg,, y € Bg, we can
conclude that M, — M is compact, whence M, is compact.

Assertion (b) is proved along the lines of Lemma 4.14 (a) by checking for

a= Y’”(l") d,, the coincidence of

2v A / (y)ds(y)

OB,

and the term originating from the volume potential in the definition of M,,.
The latter can be represented as k2v(z) A[V AV (z)], z € OBg,, with V
defined as in the proof of Lemma 4.14 (a). Applying x 2V A - to the series

expansion of V' given in the proof of Lemma 4.14 (a) yields the assertion.
O

Before turning to the boundary value problem (RP) let us define

Soa —2/q)01‘y (),xE@BRz,

OB,

for a vector field a € C(0Bg,). Sp is an injective operator (see the proof
of Theorem 3.10 in [7]) and can be regarded as a bounded operator from
C(0Bg,) to C*7(0Bg,) or as a bounded operator between C'%7(9Bg,) and
C'7(0Bg,). Moreover, Sy is symmetric with respect to the L?(0Bpg,)-scalar
product. Note that the operator Ly from (4.22) has the form Lya = vASySya.
The identity Div(v A E) = —v - (V A E) on 0Bg, for smooth vector fields E
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in Bg, ([7, (6.38)]) together with the jump relation for the first derivatives
of the single-layer potential ([7, Theorem 6.12]) implies the relation

(Div(Loa))(z) = —2 / V() - Vo A ®o(2,)(Soa)(y)}ds(y) , = € B,

9B,

the integral being a Cauchy principal value. Hence, Lg is a bounded operator
from T(0Bg,) to Ty (0Bg,).

We are now in a position to prove that (RP) has a unique solution. We
start with uniqueness.

Lemma 4.19 If E, H are a solution to (RP) with b =0, then E = H =0
m BRZ'

Proof: If E, H are a solution to the homogeneous problem (RP), we compute

/ 1So(v A E)|2ds = / (v AE)- S2(v A E)ds
8Br, 9Br,
= — / E - Ly(v A\ E)ds
9B,
= — / E-(vAH)ds
9B,
- /{(V/\E)-H—F-(V/\H)}dm
Bk,
- —ix / (|H|? - n|E]}Ydz |
Bk,
Taking the real part of this equation we can conclude Sy(v A E) = 0, whence
v A H = 0 by the boundary condition and v A E = 0 by the injectivity of Sy.
Now, the Stratton-Chu formula for F yields via (3.18) that F is a solution to
the homogeneous Lippmann-Schwinger equation and therefore must vanish

identically.
a

Theorem 4.20 For any given b € Ty (0Bpg,) there is a unique solution E,
H to (RP). The mapping An: Ty (0Bg,) — Ty (0Bg,), Aub := vAE, is well
defined and can be computed from e ,,. The linear operator P: Tg’V(aBRZ) —
C'(Bg) defined by Pb= E|g- is compact.
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Proof: Our reasoning before Lemma 4.18 implies that F defined as in (4.17)
and H := (ik) "'V A E satisfy the boundary conditions of (RP), if a €
T (9Bp,) is a solution to

[—ik(M, — I) — LoNyJa = b . (4.30)

As in the proof of Lemma 4.12 E' and H also satisfy the differential equations.

Since N, is bounded in 7" (0Bpg,) (see (4.18)), since the imbedding
T (0Bg,) C T(0Bg,) is compact, and since Lg: T(0Bg,) — T3 (0Bg,)
is bounded (see the remark before Lemma 4.19), the operator LyN, is a
compact operator in Ty (9Bg,). Due to the compactness of the operator
M,, (Lemma 4.18 (a)) in T;""(0Bpg,) it suffices to prove that equation (4.30)
has a trivial nullspace.

If a € T)"(0Bg,) is a solution to the homogeneous equation (4.30), we
define E asin (4.17) and H := (ix) 'VAE in IR*\0Bg,. From the uniqueness
of (RP) we can conclude E|p, = H|g, = 0. Since F, H are a radiating
solution to the Maxwell equations in the exterior of Bg, with v A B, =
v AN E_ = 0, the uniqueness of the exterior Maxwell problem also implies
E = H = 0 in the exterior of Bp, ([7, Theorem 6.18]). We can now complete
the existence proof by observing 0 = v A (Hy — H_) = —2ika.

The proof of the unique solvability of (RP) implies that

A, = Nu[—ik(M, —I) — LyN,] *,

ie., A\p: Ty (0Bg,) — T3 (0Bg,) is well defined, bounded, and can be com-
puted from e, because the kernels of the integral operators M,, and N,, can
be computed from the Fourier coefficients of eq .

Finally, the boundedness of [—ik(M, — I) — LoN,]~" in T} (dBg,) to-
gether with the boundedness of (I +7T,) ! in C'7(Bg) and the compactness
of the mapping 7" (0Bg,) x C'(Bg) — C(Bpg)

(a,U) — 2V AVA / D, (z,y)a(y)ds(y)

9B,

= [ (1= n(y)) sl 1)U (y)dy

Br

—l—VB/ ﬁVﬂ(y) -U(y)®,(z,y)dy , * € Br,
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imply the compactness of P.
(Il

Our next aim is to compute the boundary data b., = v A H(-,(,n) —
Lo(vANE(-,(,n)) of the special solutions used in the Uniqueness Theorem 4.9
assuming that e, ¢ and n are known. To this end we use a uniquely
solvable Fredholm equation of the second kind for b¢,, which only contains
A, and integral operators having W, and its derivatives as kernels.

We choose R < Ry < R" < R'. First, we need an analogous represen-
tation to Theorem 3.3 for the special solutions E(-,(,n), H(-,(,n) in the
spherical shell Ry < |z| < R" where the fundamental solution ®, is replaced
by W,.

Lemma 4.21 Assume k > 0, n € C(Bg), and ¢, n € € satisfy |3(¢)| >
26%(R /7)1 = nlloe + 1, n- ¢ = 0, and ¢ - ¢ = w>. Furthermore, define
Ef,(x) :=ne“®, HE (2) := (ix) 'V A B}, (z) in R*. If E(-,¢,n) € C(Bgr)
15 a solution to the modified Lippmann-Schwinger equation

E(xa ¢, 77) = Eé,q($) — K2 / \I/C(aj — y)(l — n(y))E(y, ¢, n)dy
1 / elr - Z/)%Vn(y) -E(y,¢,n)dy , © € Bgr
(4.31)

and H(-,¢,n) = (ik) 'V AE(-,(,n), then for Ry < |x| < R" the representa-
tion

B(o,Cn) = Bl + VA [ vly) ABy, ¢l - y)ds(y)

dBg,
1
~ VAV [ wl) A H (e~ y)ds(y)
dBp,

(4.32)
holds true.

Proof: According to Lemma 4.6 F(-, ¢, n) is C*-smooth and the vector fields
E(-,¢,n), H(-,(,n) satisfy the perturbed Maxwell equations in Bgw, in par-
ticular
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For fixed vectors p € €%, R, < |z| < R", the vector fields

, 1 , .
E'(y) = —Evy/\vy/\{‘lfc(x—y)p} , H'(y) == VyAN{Uc(z—y)p} , y € B, ,

are a solution to the Maxwell equations. Now we use (3.3) to compute

p-{vna / v(y) NE(y, ¢ m¥c(z — y)ds(y)

dBr,

Lloava / v(y) AH(y, ¢, m)Wc(x — y)ds(y) }

K
9B,

[ A@ABC G B~ (A B) - HCon)ds

dBr,

- / (1= n)E(y,(,n) - {Va A Vi A (Uc(z — y)p) by

= p-{-+#’ / Ye(z —y)(1 = n(y)Ely, ¢ n)dy

+VB/ @Vn(y) - E(y, ¢, m)¥e(x —y)dy} . (4.33)

Since p and z are arbitrary, the integrals on the right hand side of (4.32) and
the integrals in (4.31) coincide and we have proved the lemma.
O

Analogously to the acoustic case we need boundary integral operators
containing the fundamental solution ¥, instead of ®,. To this end we define
the operators M¢ and N¢: Ty (0Bg,) — Ty (0Bg,) by

(Mea)() = 2 [ v(w) A Vo A {¥elo = yla(y)Hs(y),

9B,

(Nea)(z) == 2v(x) A {V AV A / Ue(x— y)a(y)ds(y)} , T € OBp, .

9B,

Since the difference of W, and e*'l/(4r|-|) is an analytic function, boundary
potentials with kernel W, inherit the mapping properties and jump relations
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from those defined with ®,, which can be found in [6, chapter 2] and [7,
section 6.3]. Let us note again that our definition of N; and the definition of
N in the above references slightly differ.

We are now in a position to derive the desired equation for the boundary
data b, = vAH(-,(,n)— Lo(v ANE(+,(,n)) of the special solutions E(-,(,n),
H(-,¢,n) from Theorem 4.8.

Lemma 4.22 With E(-,(,n), H(-,(,n) being defined as in Lemma 4.21 the
boundary data b, = v ANH(-,¢,n) —Lo(vNE(-,(,n)) on OBg, are a solution
to

bew = vAH{, —Lo(vAE{,)
1 1
+§{M<{b<,, + LoAubey} +bey + —NeAubey
1
—Lo[McAnbey — —Nelbey + LoAnbca}|}  (4.34)

on 0Bpg,.

Proof: With the help of v A E(-,(,n) = Aybc,, we rewrite the representation
(4.32) as

B(e,Cn) = ELy@)+ VA [ (Auben)0)¥c(x = y)ds(y)

OB,

1
——VAVA [ {ben+ Lohabea} () ¥el(w = y)ds(y)

9B,

for Ry < |z| < R". Applying (ik)™'V A - yields

Hiw,Gn) = H(@)+ VA [ {ben+ LoAabea} () ¥elz = y)ds(y)

9B,

+%v AT [ (b)) T = y)ds(y)

9B,

Then, we obtain from the jump relations

bC:ﬂ = V/\H+('7C,77)—LO(V/\EJr(',CaU))
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= vAH, — LvAEL,)
1 1
5 { M+ D{bey + LoAuben} + —NeAubey
1
—Lo[(M¢ + ) Anbcy — —Nefbeq + LoAnbes}] )

and we have proved the lemma.

Next, we prove that the operator A, ¢: T3 (0Bg,) — T3 (0Bkg,),
1 1 1

which occurs in (4.34), is compact.

Lemma 4.23 The operator A, ¢: Ty (0Br,) — T3 (0Bg,) is compact.

Proof: For a given tangential field b € T}”(@B&) let V', W be the solution
to (RP) having the boundary data v AW — Lo(v AV) = b, i.e., v AV = A,b.
By the Stratton-Chu formula for V' together with (3.18) we know

V() = =VA [ vly) AV )@ y)ds(y)

9B,

+iv AV A / v(y) AW (y)®@w(z, y)ds(y)

[ @u(@,y)(1 = ny)V (1)dy

The analogous reasoning as in (4.33) yields

0 = —VA / v(y) ANV (y)dc(x — y)ds(y)
+iv AV A / v(y) AW (y)ge(z —y)ds(y)
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2 [ Gele = )(1 = n(y)V (y)dy

If we add these two equations, we get

V() = =VA [ (Ab)y)¥ele -~ y)ds(y)

9B,

+iv AVA [ b+ LoAabb ) We(o — y)ds(y)

9B,

[ Welw = y)(1 = n(y))V (v)dy

(4.35)

and after applying (ix)™'V A - to both sides

W) = VA [ b+ LoAbb@) ¥l — y)ds(y)
L VAVA [ (AW~ p)ds(y)

iKY A / Ue(z — y)(1—n(y))V(y)dy , = € Bp, .

The jump relations now imply
b = vAW_ —Ly(v ANV)
_ _%{(Mg — D){b+ LoA,b} + iMAnb
Lo[(Mc — DA — N+ LoAut)])

tikw AV A [ Wl = y)(1 = n(m)V (y)dy

Bg
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+Lg (z/ A {52 / Ue(-—y)(1 —n(y)V(y)dy
-V / We(: —y)LVn(y)-V(y)dy}) :

whence, reordering terms and inserting V|E = Pb, P being the solution
operator from Theorem 4.20,

Angh = ik AV A [ W= y) (1= n(y)(Ph)(y)dy
+Lo(v A {s? [ Wel- = p) (1= n(y)) (P)(y)dy

=5 [ el =) Tnl) - (PHw)d})

The compactness of A, . now follows from the compactness of P (Theo-
rem 4.20) together with the mapping properties of the volume potential. O

The previous lemma admits to apply the Riesz theory in order to estab-
lish the existence of a unique solution to (4.34). Hence, our next aim is to
establish the injectivity of the operator I — A,, .. The following lemma is the
electromagnetic analogue to Lemma 2.31 and is needed during the injectivity
proof for I — A, ..

Lemma 4.24 Assume Ry < R" < R'.

(a) For all x, z € Bgv and p € C* the relation

0 = V,A / v(y) A {Vy A (y — z)p}] Ue(z —y)ds(y)

OBy

1
V. AV A
K
1
[ v A [V AV A — 29} Wela — y)ds(y)
OBgn
(4.36)
holds true.
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(b) If E, H are defined by

B(y)i=Vy A [ Wely=2)a()ds(z) , Ro <yl <R,

dBr,

H = (ik)"'V A E with a € Ty, (0Bg,), then for all |z| < R" the
relation

0 = V,A / ()¢ (z —y)ds(y)

OBpgn

VLAV A / v(y) A H(y)¥e(x = y)ds(y)

OBpgn

holds true. This is also true, if E, H are defined by

E(y) ==V, AV, A / Ue(y — 2)a(2)ds(z) , Re < |y| < B"

dBg,
H := (ik) 'V A E with a € Ty (0Bpg,).

(c¢) If vector fields E, H are defined as in part (b), then for Ry < |z| < R"
we have the formula

E(x) = VA / (1) V¢(z —y)ds(y)
_%ww | ) A H ) Ye(o - y)ds(y) -

Proof: For part (a) let ¢ € C* be an arbitrary vector. Defining

E(y) := Vy AM{®x(y, 2)p} , H(y) := ivy NE(y), y € R7\ {z},
and
B(y) =~V AV, Mo} s H ) o= 2oV, AE) y € R\ {a)
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we compute with the help of (3.9)

D, (2,y)ds(y)

q- (Vw A / v(y) A {vy AN ®u(y, 2)p}

OBy
1
——V.AV,A
K

[ v A [29, 79,4 180, 0]t y)ds(y>)

OBpgn

-/ {(I/AE)-H'—(V/\E')-H}dS

= 0.

Replacing ®,; by g in the above computation and using (3.3) yields

q- (Vm A / v(y) A [Vy Ay — Z)p}] gc(r —y)ds(y)

OBpgn
1
——V,. AV, A
K
1 - -
[ v [0 A Aty = A}t - s
OBgn
~ 0. (4.37)

From the representation in Theorem 3.2 applied to the field V, A{g.(y—2)p},
y e BRH, we have

0+ (Ve [ v A A ity = )]st

OBgn
1
——V.,.AV,A
IR

[ 0 [0 AT Aty = )]l i)

= —q [Va A ez — 2)p}]
= —(Vugclx—2)Ap)-q.
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Finally, Theorem 3.2 also implies

0+ (Ve [ ) A [, A 1020 il = s)ist

OBy

1
——V, AV, A
1K

[ v [0 AT A @l ) e = st

- —p. (vz A / v(y) A [Vy AA{ge(z — y)q}} P, (2,y)ds(y)

[ 0 190 A Al - | a)isto))
= p-(V. A (el — Aa))
= (Vage(x —2)Ap)-q.

Adding the last four equations we arrive at assertion (a) because ¢ € C? is
arbitrary.

For part (b) we insert the definition of E and H in the assertion, inter-
change the order of integration, and apply part (a). The second assertion of
part (b) is obtained similarly with the help of

0 = V,A / I/(y)/\{vy/\vy/\{\l’g(y—z)p}

OBy

Uz —y)ds(y)

—ivx AVg A
[ v A iRy A ey~ 20} Wela — p)dsy)

which is the result of applying V A - to (4.36).
Finally, for part (c) we use (3.3) and establish analogously to (4.37) for
Ry < |z| < R" the relation

0 = —V,A / v(y) N E(y)ge(r — y)ds(y)

O(Bpgur \BRQ)
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1 N
+Evm AV A / v(y) N H(y)ge(z —y)ds(y) .
3(33”\31%2)

If we add the representation from Theorem 3.2 applied to the field £ in
{R2 < |z| < R"}, we have

Bw) = ~Van [ vl) ABE@)(e - y)ds(y)
9(Bgr\Br,)
1
FVoAVLA [ vy NH@)T (e — y)ds(y)
9(Bpi\Br,)

Here, v is directed into the exterior of {Ry < || < R"}. Since the integrals

over 0Bpr cancel due to part (b), assertion (c) follows.
(]

The next theorem states the injectivity of I — A, . and summarizes our
knowledge about the boundary data b.,, = v A H(-,(,n) — Lo(v AN E(-,(,n))
of the special solutions E(-,(,n), H(-,(,n) from Theorem 4.8.

Theorem 4.25 Let n € C*(IR?) with supp (1—n) C Bg, R(n) > 0, I(n) >
0, and R < Ry < R" < R' be given. Assume > 0 and ¢, n € C® satisfy
(- C=r" (=0,

Rl
()] = 2—{max | Q)] + "1 = nll} + 1,
T zeBg

Q being defined in (3.13). Furthermore, A, denotes the map v AN H — Lo(v A
E) — v AN E from Theorem 4.20, E(-,(,n) is the solution to (4.31), and
H(,¢,n) = (ik) "'V A E(, ¢,).

Then, the boundary values b¢, == vANH(-,(,n) —Lo(v NE(-,(,n)) are the
unique solution to the equation (4.34), i.e.,

€z§~:v

- v(z)A(CAN)— {LO (eic'wu/\nﬂ (x)+ [An,cbc,n} (x) , © € OBg, .

bey(x) =

Moreover, A, is a compact operator in Ty (0Bg,).

Proof: Due to Theorem 4.8 equation (4.31) has a unique C?-smooth solu-
tion, whence E(-,(,n), H(-,(,n) are well defined. Then, Lemma 4.22 states
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that bc, is a solution to (4.34). The compactness of A, was proved in
Lemma 4.23.

It remains to show the injectivity of equation (4.34). To this end assume
b € Ty (0Bg,) is a solution to b = A, ¢b. In Bg, we define E, H to be
the solution to (RP) having boundary data v A H — Ly(v A E) = b and for
Ry < |z| < R" we set

Br) = VA [ (Ab))¥(e ~y)ds(y)

0B,
1
—VAVA [ b+ Lohab}(m)Vc(z — y)ds(y)
iK oitn,
(4.38)
H(z) = (ik) 'V A E(z)
= VA / {6+ LoAnb} () Ue(a — y)ds(y)
OB,
1
+EV ANV A (AnD) (V) ¥e(x — y)ds(y) -
0B,
Using the jump relations we arrive at
vAH, —Li(wvANE;)=Acb=b=vANH_—Ly(vANE_). (4.39)

Now, we want to show that v A E, = v A E_. To this end we employ
Lemma 4.24 (c) together with (4.39) and represent F for Ry < |z| < R" by

Bw) = VA [ (0 AE)@)Yele - y)ds(y)

OB,

S VAYA [ (bt Lolw A B} ) Wela — y)ds(y)

dBr,

Computing the difference of (4.38) and the last equation we obtain for

a = Nb—vAE,,
V() = VA [ alp)¥(s - y)ds(y)

176



1 -
—EV ANV A (Loa)(y)¥¢(x — y)ds(y) , * € Brr \ 0Bk, ,

OB,

W = (ik)7'VAV,

that V(z) =0 for Ry < |z| < R".
From the jump relations we conclude —v A V. = v A (V. = V) = q,

—VvAW_ =v AWy —W_) = Lya, and the vector Green’s theorem (3.2)
yields

/ |Spal?ds = /E-[(VAS@@)/\I/]dS
OBRr, O0BR,
= /(V/\W)-W,ds
OB,
- —m/(|W|2—n|V|2)da:.
Br,

From the real part of this equation we see Spa = 0, whence ¢ = 0 and
vAE, = A,b = vAE_. Together with (4.39) this also implies vAH, = vAH_.

Then, as in (4.35), we can represent E with the help of the fundamental
solution W:

B@) = -VA [ WAE)@)¥c(z—y)ds(y)
FLVAVA [ (A H) @)l — y)ds(y)

2 [ W — ) (1 = ny) E(y)dy

+V / e(z — y)ﬁW(y) -E(y)dy , © € Bg, .

Furthermore, with formula (3.3) and Lemma 4.24 (b) we compute for all
peC?

p |V [ B WEG - past

OB,
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—|—%V/\V/\ (VAH+)(y)‘I’c($—y)d5(y)]

— p-|-VaA /(VAE)(y)\IJC(x—y)ds(y)
PRV ATA [ AR - o)
= 0, QTEBRQ . "

Hence, F is a solution to the homogeneous modified Lippmann-Schwinger
equation (4.31) and must vanish in Bp, according to Theorem 4.8. This
finally impliesb=v AH_ — Ly(v AN E_) = 0.

(I

By our considerations so far we know that, given the far field pattern
€con, it 1S possible to compute the operator A, and the boundary values
vAH(-,(,n)—Lo(vAE(-,(,n)), vAE(+,(,n) of the special solutions E(-,(,n),
H(-,¢,n) from Theorem 4.8. Hence, we know the Cauchy data v A E(-,(,n)
and v A H(-,(,n) of these solutions provided |J(¢)| is sufficiently large. The
final theorem of this section shows how to compute (n — 1)"(a) from this
information.

As in the Uniqueness Theorem 4.9 we choose for a fixed vector a € I" the
unit vectors dy, dy € R? such that dy -do = dy - =dy - = 0, and define for
¢ 2 22 {max | Q) o + 1 — oo} + 1+ x

T R

1 2

Ct = —§Oé+l 2 /‘i2+|—d1+td2 R

: 1 |af?

Ct = —504 1 t2 /‘i2 + —d1 — tdg R
1 o

- a4 Yy

77t |O{|a+ 2t 2 )
1 o

~ - a1y

Tt o] o 42
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Theorem 4.26 With the notation and assumptions of Theorem /.25 define
for a fized o € T and for

Rl
t > 2—{max[|Q(z)[l2 + £l — nfle} + 1 + &
™ .Z'EBR

the vectors Cy, G, my, T as above, and let b, € Tg”(@Bm) be the unique
solution to
ez'(t-w )
() = ——v (@) A (GAm) - [LO <e’<t'$1//\77t>](x)+[An,gtbt} (), € OBg, .
(4.40)

Finally, let E,, H, denote the vector fields Et(x) = eivef, e R3, H, =
(ik)"'V A E,.

Then, v N E(-,Ciyme) = Apby, v ANH (-, Cyme) = by + LoAnby are the Cauchy
data of the special solutions from Theorem 4.8 and

lim / (WAE)-H(,Com) — (A ECGm)) - Hiyds

t—o00
0B Ry

= ik(2R)3?(n —1)"(a) .

Proof: Since |3(¢)| > 2% {max || Q(z) |2+ £%[|1 = nl| } +1, by the preceding
.Z'EBR

theorem equation (4.40) has a unique solution which concides with the bound-

ary data v A H (-, Gz, m) — Lo(v A E(+, (t, m¢)) of the special solutions from The-

orem 4.8. Hence, we have v AE(+, (g, m) = Apby, vAH (<, Gy i) = by + LoAyby.
Relation (3.3) immediately yields

[ AWAE) - HGom) = (v A B Gom)) - Hibds

9B,

= ik /(n—l)Et-E(-,Ct,nt)dx

Bg,
— i [ (= D@ (14
Bg,
+{_% — f(x, Gyme) ] + 73 - V(z, Ct,m)}>da: ,
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where we have also used 7, - 7, = 1 — (Ja|?/4t?) and (; - 7; = —|a/ in the last
line.

According to Theorem 4.8 the L?-norm of the terms in curly brackets
in the last line converges to 0 as t — oo. This completes the proof of the

reconstruction procedure.
O

Let us close this section with a summary of the reconstruction procedure.
We assume that the far field e, originating from the refractive index n €
C(Bg) is exactly known.

e Compute the Fourier coefficients

priats = | [ €l V@)Y (@)ds(@)ds(d)
Sa Sa

e Compute for x, y € 0Bpg, the matrices

kn(2,9)

K qy—
= = SRR (R (5R) Y (S Vi (s
a l17k17l27k2 1‘| | |

and k,(x,y) which has as its mth column the vector

kn(,y)d
? o
o K 1 —1o (1) ko y dhll oy T
= — i hy (KR Y () (kRo) Y ()
Ak, h,k%,kz S |y|{ ( dt) RN
+hz(1 (k1) (Grad Yz'fl)(ﬂ)} A (12,5 1oky D)

d, being the mth cartesian unit vector (see (4.19) and (4.29)).
Define the operators N,,, M,, and A,,: Tg”(aBRZ) — Tg”(aBRZ) by

(Naa)() = 2@ AVAVA [ Bula,y)aly)ds(y)
+2u(x) A / kn(z,y)a(y)ds(y) , x € OBg, ,

OB,
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(Maa)(@) = 2 [ v(2) A Vo A {@(e,m)aly) ds(y)

dBg,
2@ A [ Fal@yaly)ds(y) , @ € OBr, |
dBg,
Ay = N,[=ir(M, —I)— LyN,]™"

(see Theorem 4.20 for A,; the smoothing operator Ly, defined in (4.22),
is known).

Fix a« € T and choose ( = (, f = (,m = m, n = 1; as before
Theorem 4.26; compute

1 1
Anc = 5{MC{I + LoAn} + T+ —NeA,
1
—Lo[McA, - —N I+ LoAn}]} .

where the operators M, and N are defined on page 167.

Solve the equation

eic-w
(@) A (¢ AT) -

ben(w) = Ly <6i<'mlf A 77)} (#) + [Ancbea) (@)

on 0Bpg,. (It has a unique solution due to Theorem 4.25)

Define ac, := Apbey, ccp = bey + Loacy, (ac, and ¢, are the Cauchy
data v A E(-,(,n) and v A H(-,(,n) of the special solutions).

Insert a¢, and ¢, into

[ A @) ) - (ccq A V(@) = agyle) - (572 A i) s ()

OB,

and calculate the limit as ¢+ — oo. Divide the limit by ix(2R')*? and
set the result to (n — 1)"(«).

Repeat the last four items for all o € T'.

n=1+Y (n—1)(a)e, in Bg,.

acl
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Chapter 5

The Direct Scattering Problem
in Elasticity

In linear elasticity theory the displacement vector
U(.’L‘,t) = (ul(x,t),u2(x,t),u3(x,t)) ; T E IR3 RS R )

obeys the law
0? 3
p(x)@ Z kat,j—1,2,3 r€R €eR,
if there are no body forces acting in the medium occupying IR*. Here, (S;;)
denotes the stress tensor and p is the mass density of the medium. In addi-
tion, one assumes a linear relation between the stress tensor and the linear
strain tensor (€,) (Hooke's law)

3
Sjk = Z Cjkzmﬁlm , k=1,2,3,

I,m=1
where the linear strain tensor is defined by
ou ou
e+ e
8xm 8xl

We will assume throughout that the medium is isotropic. Then, we can
describe the medium by the two Lamé coefficients A and p, which determine
all the coefficients Cjj,, and Hooke’s law reads

) lm=1,2,3.

€im =

Sk = 2pejr + Nen + € +€33)05k, J,k=1,2,3,
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;i denoting the Kronecker delta. The reader can find a more detailed de-
scription in [9]. We simplify the discussion further by supposing that A and
i are constants satisfying 4 > 0 and 2+ A > 0.

We want to consider a medium having an inhomogeneous mass density p
which satisfies p(z) = 1 in the exterior of a large ball. Moreover, we examine
time-harmonic waves, i.e., we assume u(x,t) = R{U(z)e ™'} with a fixed
frequency w > 0. Then, the vector field U: IR* — C* must obey

AU +w?pU =0 in R®. (5.1)

The operator A* is defined by

e~ O (0U;  OU 0
A*U]; = ;axk{“(axk + axj)}—i-a—xj[)\V-U]

0
= pAU; + OWWU%[V U]
J

0
= —u[V/\V/\U]j—i-()mLQu)%[V-U] ,j=1,2,3.
J
Henceforth, we will refer to (5.1) as the elasticity equation.
Assuming p(r) = 1 in IR? and applying V A - or V- to (5.1) we see that
the quantities V - U and V A U satisfy the Helmholtz equations

w2

2+ A

A(V-U) + (V-U)=0,

2
A(VAU) +(VAU)=0.
I
Hence, we define for a given frequency w > 0 and given Lamé constants A, p

the wave numbers

w w

Kg i= , Kp i= —F—— .
Vi HRVEITEED

In this chapter we are interested in the following direct elastic scattering
problem: given A, u1, w, p and an incident wave U?, i.e., a solution to A*U* +
w?U* = 0 in IR3,

find the scattered field U®, such that the total field U := U’ 4+ U*® is a
solution to (5.1) and such that U® satisfies a radiation condition.
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In the next section we start as usual with Green’s theorems (called Betti
formulas for the elasticity equation in [23]) and representation formulas. In
view of the above Helmholtz equations we expect to see the fundamental
solutions ®,, and @, to appear in the fundamental solution for the elasticity
equation. However, despite our knowledge about ®, from previous chapters
this section is longer than the former analogous ones because we prove some
theorems for the elastic case which we accepted as proven in the acoustic and
electromagnetic case.

The second section deals with uniqueness and existence for the direct
elastic scattering problem. The key words for uniqueness are again Green’s
theorem, Rellich’s lemma and unique continuation. For the elasticity equa-
tion the proof of the unique continuation principle uses the same idea as
in the acoustic case. Nevertheless, it is more involved because it not only
requires estimates of the L?-norms ||G¢f]||zz but also of [|V(G¢f)||z2. Ex-
istence of a solution is derived with the help of the representation theorem
which leads to a Fredholm integral equation of Lippmann-Schwinger type for
the displacement vector U. Although the elastic scattering problem itself is
not studied in the books [23, 24] the reader can find there a rather exhaus-
tive treatment of boundary value problems in linear elasticity by potential
methods and our approach is in the spirit of these methods.
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5.1 The Fundamental Solution

From now on we suppose that the given real constants w, A\ and pu satisfy
w>0, p>0,2u+A>0.

Moreover, we define ki, 1= w/ /I, K, = w/+/2p+ A, and, for a smooth vector
field U, A*U := pAU + (A + p)V(V - U). If v € €? is a vector and U is
a smooth vector field in a neighborhood of a point z € IR?, we denote by
[T(U,v)](x) the vector

ou
ov

Here, (i, fo € IR are arbitrary constants satisfying 3; + o = A + p. Our
notation does not indicate the dependence of 7" on 3, and [» because large
parts of the subsequent analysis are independent of a special choice of these
parameters. Let us note that, for 8, = p and §y = A, [T(U,v)](z) is the
traction vector on a surface containing x with normal vector v at x, whence
it has a physical meaning. When we need a special choice of #; and [, in
later sections, we indicate this choice. Moreover, we shall often suppress
the dependence of T" on v, too. When we integrate on a surface having the
normal vector v, we simply write (TU)(x) instead of [T'(U, v(z))](z).

If D ¢ R? is a C%-smooth, bounded, open set and if U, V:D — €3
denote C?(D)-smooth vector fields, then Gauss’ theorem implies

[T(U,v)](x) := (B + p)5~(x) + 5oV - U)(2)v(2) + Siv(z) AV AU(z)] .

/ (TU) - Vids

— /(ﬁ1+u)(AU V + Z ggk g;fk)dx

+ / Ay V(Y- U)(V-V)lde
+/ﬂ1 (VAVAU)-V = (VAU)-(VAV)de

= /{mﬁngffg; AV D)V V)

~BUV AU) - (VAV)}da
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+ [(a0) Vi, (5.2)

D

which we call the first Betti formula.
It is possible to weaken the regularity assumptions on U and V. U,
V € CY(D) N C?*(D) and A*U € C(D) are sufficient for (5.2).
Interchanging the roles of U and V in (5.2) and subtracting yields the
second Betti formula

JAT0) -V = (TV) - U}ds

JUA U +w?0) -V = (AV + V) - Uhde, (5.3)

for any w > 0.

In order to state representation theorems we need a fundamental solution
for the operator A*+w?I. This will be a matrix valued function IT: R*\ {0} —
€33, Denoting by di, ds, ds the cartesian unit vectors in IR® we define for
r € R* x # 0, the jth column of II(z) by

eins|:1:| 1 eilﬁs|$| — eiﬁpm
_|__VV E——— , ':1,2,3.
drplz] T w? { 47|z | ‘7} J

(z)d; :=
This matrix is called Kupradze’s matrix in [24]. We denote its entry in the
jth row and kth column by II;,. From its definition we can infer that it
is an even function of x satisfying II(z) = II(z)7, i.e., it coincides with its
transpose. In addition, we see with the help of VAV A= -A4+V(V..)
that

elfs |z

T(z)d; = —V/\V/\ {47r|x|d } vv =5

emp\x\

L i=1,2,3. (5.4)
dr|z| %)

We have to study some more properties of II, especially its behavior for
|z] — 0. To this end we expand ¢*I®//(47|z|) in a power series and obtain

el cos(k|z|) = .sin(k|z|)

47|z - 47|z 47 ||

1 K2 ’
T drf| 8_7r|x| + &Mz fi(k22?) +ikfa(kPz]?)  (5.5)
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with two entire functions f; and f;. Inserting these expressions in the
definition of II, collecting the terms having a 1/|z|-singularity, and using
(kp — K2)/w? = —=(A 4 p)/[(2p + X)] motivates the definition of

drplz| 8mp(2u+ N) Ox;0Ty

19

and of the matrix I (z) := (Hg[,?(x)) for © # 0. For the A*-operator
Kelvin’s matrix I1() has the same role that 1/(4x|-|) has for the A-operator.

Lemma 5.1 II and IO satisfy:
(a) A*(T(z)d;) +w?((II(2)d;) = 0, A*(ITV(2)d;) = 0 in R*\ {0}.

(b) For any constant ¢, there exists a constant co such that for all 0 <
lz| < ¢ and all j,k =1,2,3, 11,15, 13 = 1,2,3, the estimates

0 c
Mk () — ) (2)] < ¢ 3y, (Tie(@) = I ()| < ER
T () - 1Y (@) < 2
O, 0z, TS g
0’ (0) €
‘m(ngk(@ — Ly (x))‘ < x—|3

hold true.

(¢) For any constant ¢, there exists a constant co such that for all 0 <
lz| < ¢ and all j,k =1,2,3, l1,ls = 1,2, 3, the estimates

Co 0 Cy
I, 2 1 %n < 2
Mje(a)] < 7 [ Than(o)| < 7
62 Cy
< —
Oxy, 0z, (x)‘ — |x)?

hold true. The same estimates are valid, if I1 is replaced by I1(0).
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Proof: For IT part (a) follows by straightforward calculations using (5.4) and
A" =—puV AV A+ (A+2u)V(V-.). For I we compute

A1 (x)d;)
= WA+ A+ V(V-) [mdj]
_%(_MV AV A+ A+ 20V (V- ) [V(V - (|aldy)]
= ALV (ol )] - AL [T (i)
= 0.

For part (b) we insert the expansion (5.5) into the definition of IL(z)
and we arrive at

2

~ 0
Mye(r) —152(0) = lol () + o) + e {lo (o) + b))

with entire functions fj, fjk, Gjk, hjk. Observing for any odd integer [ the
relation d|x|'/0x,, = lz,|x|" "2, assertion (b) follows by differentiating the
above expression.

The estimates for I1(*) in assertion (c) are also a consequence of the above
observation. Together with part (b) the assertions are valid for II, too, and
we have proved the lemma.

O

Before we state and prove the representation theorem for the elasticity
equation we want to prove separately one technical ingredient for the repre-
sentation theorem.

Lemma 5.2 Let U be a continuous vector field in a neighborhood of x € IR.
Then, we have

—Uj(z) = lim [ U(y)-T,(T(z —y)d;)ds(y)
OBc(x)

= lim [ Uy T,z - y)d;)ds(y) -
OBe(x)
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Proof: We will prove the identity

[ 1,09 @ — y)d)ds(y) = =5, € >0, (5.6)
OB¢(x)

[T, (I (z — y)d;)]; being the [th component of the vector T, (TIO (x — y)d;).
Then, using the inequalities for the first derivatives of H;?c) from Lem-
ma 5.1, we can conclude

| / (@)] - T,(MO (x — y)d;)ds(y)|
OB (
< — —2d
< dnax |U(y) U(x)|aB/() ce “ds(y) >0, e =0,

whence

OBe(x)
_ / U(z) - T, (z — y)d,)ds(y)
Be(a)
n / )] - T,(MO (x — y)d;)ds(y)
dB.(z)
—Uj(z), e—=0.

Note that we use the same letter ¢ for various constants during the proof.
Moreover, the inequalities

C
[z — y|

G, 2 o
— I (z — y) — =11 <
| 5y (@ =) = 5 (@ —y)| <
from Lemma 5.1 (b) imply
7,({T1(z — y) = IO (z — y)}dy)| < ™", y € DBe(w)

whence

lim [ U@) T, - y) - T (@ = y)}d;)ds(y) =0

e—0
OB ()
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OBc(x)

= ~Uio) +lim [ U@ T,({1( — y) ~ T~ y)}d,)ds(y)
OB¢(x)

= —Uj() .

Let us now turn to the proof of (5.6). Without loss of generality we
assume x = 0, whence v(y) = e 'y for y € 9B.(0). We start with the
calculation of [T, ((4muly|) d;)];. To this end we use 3; + o = A + p and

A (VAU = aUl 23: Vg aagf (5.7)
to arrive at
1 0 0; 0 1
[Ty(mdj)]z - (Bl+u)$(47r/il|y|)+525—?Jj(47w|y|)yl
o, 0 0,0
5 [_5(47r:|y|) * Z oy (47leik|y|)]
= —ﬂ At M?J iYi
= YL -

dre?  dmwetp

Next, we compute

. 5 .
LVl = Girw Z g (2= ) o ()

= —(6+ M) + (61 + )y]yl 20307 y]yz .

With the help of the last two equatlons we finally arrive at

5'[ A+ 1%

0 _ J

LW =~ e = fra i
A+

0jt Y5t Yiy
—m[—(ﬁmL w2+ (B + W= 267 ]

051 [1 ()5 +/~L)}
4mre? 2012+ N)

Y >\+M( n 51—252+M)
et 2(2u + A)
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From Gauss’ theorem we know

8y]
47 63 ayl ’

yjyz

47re4 47re3
9B, (0) 9B,

yjvds =
(0)

whence

[ 1,000 )d,)lds
8B (0)

_ _5.[1_(A+u)(ﬂl+u) 1A+u( W)]
— ji 2u(2p + N) 3 2(20 + \)
= _6]l )

and we have proved the lemma.
(Il

With the help of the preceding lemma we can now prove representation
theorems. To this end we also need the analogues of the double-layer poten-
tials and we define for a vector ¥ € C? the matrix valued functions = and
—=(0) b
=% by

(1]

(a:,y,z/)de = T,((zx —y)dj,v), z,y € R, £y,
(xaya V)de = Ty(H(O)(J“ - y)djal/) y T, Y € IR3 y T 7é y,

(=]
=

—_
—
—

i.e., the jth row of Z(z,y, ) consists of the pseudostress vector of the jth
column of II and similarly for Z(°). Since in the sequel v is always the unit
normal vector at a point y lying on a surface, we omit the dependence on v
and write Z(z,y) instead of Z(z,y, v(y)) and similarly for Z(©.

Theorem 5.3 Let D C IR? be a bounded, open, C?-smooth set with exterior
unit normal vector v. For a vector field U € CY(D) N C*(D) with A*U €
C(D) we have the representation formulas

Ul) = [{lie = )@U)) - (@ 5)U ) Jds(y)

—/H(x — (AU + ) (y)dy , v €D . (5.8)
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and

Ule) = [{T@ - y)(T0)(w) - 2 (@, »)U ) }ds(y)

—/H<°> (@ —y)(AU)(y)dy , z €D . (5.9)

D

Proof: For a given x € D we choose ¢ > 0 sufficiently small to ensure
B(z) € D and apply the second Betti formula in D, := D \ B(z) with
V = II(x — -)d;. With the normal vector v on 0B.(z) being directed into
the exterior of B.(x) we obtain

[ 45+ {2 p)U ) 1w = )(TU) (5) Jds(y)

- / dj - {Z(z,y)U(y) - (z — y)(TU)(y) }ds(y)

OB¢(x)

- /dj Mz — y) (AU + w?U) (y)dy .

Since the entries of I1(x — y) are of magnitude e ' on dB.(z), these terms
vanish as € — 0. According to the previous lemma the terms

_ / d; - Z(z,y)U(y)ds(y)
05 (2)

converge to U;(z) as € — 0. Hence, the limit € — 0 reveals the jth row of
equation (5.8).
Equation (5.9) is proved analogously.
(]

The above representation formulas imply that solutions to A*U+w?U = 0
or A*U = 0 are analytic.

Our next aim is the derivation of the corresponding representation for-
mula, if U is a solution to A*U + w?U = 0 in an exterior domain. To this
end we have to impose an additional requirement on U, namely a radia-
tion condition. The radiation condition and the fundamental solution must
match. There are two ways to obtain a radiation condition. One can study
the behavior of the fundamental solution for large |z| and then formulate a
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radiation condition accordingly. This is done in [23, 24]. A second possibility
is to require an integral relation which corresponds to (1.14). We choose the

latter approach now.
Let U € C*(IR? \ Bg) be a solution to A*U + w?U = 0. U is a radiating
solution, if for all 7 > R and for all |z| < r the identity

[ {1 = p)(T0) ) - 2@, )0 () }ds(y) =0 (5.10)
ly|=r

holds true.

The radiation condition and the representation formula (5.8) applied in
the spherical shell { R < |z| < r} to a radiating solution U to A*U+w?U =0
immediately yields the following theorem.

Theorem 5.4 Let U € C?(IR*\ Bg) be a radiating solution to A*U +w?U =
0 in IR* \ Br. Then we have

Ulr) = / {E(@,9)U(y) =z = y)(TV)(y) }ds(y) , 2| > R . (5.11)

O0BRr

We next check whether the columns of the fundamental solution II(y — z)
regarded as vector fields of the variable y are radiating solutions.

Lemma 5.5 Fiz 2 € R?, k € {1,2,3}, and R > |z|. Then, U :=II(- — 2)dy
is a radiating solution to A*U + w?U =0 in R\ {z}.

Proof: Suppose r > R, |x| < r, and x # z, and define the vector

1@) = [ {1z = )(T0) W) = =, 9)U(y) }ds(y)

ly|=r

Writing for a sufficiently small € > 0

1@) = | [{oas— [ {Jas— [ {}as]

lyl=r OB (x) OB (2)
+ / {Yds + / {)ds,
O0Bc(x) 0B(z)
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we can conclude from the second Betti formula applied in B, \ (B(2)UB.(z))
that the components d; - [...], j = 1,2,3, of the terms in square brackets
vanish. Moreover, the representation (5.8) applied to U in B.(x) implies

dj' / {}dSZU](I):d]H(-T—Z)dk) ) ]:17273
OBe(x)

Finally, using that IT is an even function and (5.8) again we compute

di- [ {1 = y)T0)) - 2, n)U) }ds

OBe(z)
— / {M(z = y)di] - [T, (T(z — y)d;)]
0Bc(z)
~[1,(I(z = y)dy)] - [(z — y)d;] bds
= —d; - II(z — x)dy .

Hence, we know I(x) = 0 for all |z|] < r, x # z. Since the definition of
I reveals that I is continuous in |z| < r, we have proved I(z) = 0 for all
|z| < r, i.e., the columns of II(- — z) satisfy the radiation condition.

|

We conclude this section by studying the mapping properties of a volume
potential with kernel II(x — y). Lemma 5.1 (c) together with Theorem 1.9
yield that

Vo)) = [ T@ = y)pl)dy, v € R?,

is a uniformly y-Hélder continuous differentiable vector field on each compact
subset of IR?, if ¢ € C(Bg) is a continuous vector field (0 < v < 1). Fur-
thermore, we have [|Vo||1 4.5, < ¢||¢||lc,5, With a suitable constant ¢ = ¢(r)

and the derivatives can be computed by

0,000)(@) = [0 ~yel)dy , v € R, j=1,2,3.

Br

(0;IT) denotes the matrix obtained by taking the jth derivative of each entry
of II. In addition we have for ¢ € Cj(Bpg) the identity 9;(Vy) = V(9;¢). Of
course, the same is true, if IT is replaced by I1(9). Furthermore, the behavior

195



of IT — I(® at z = 0 stated in Lemma 5.1 (b) allows to conclude that even
the first derivatives of

[ =) =1 = )oly)dy , v € R,

can be treated as above. Therefore, in order to study the second derivatives
of the volume potential with kernel TI(z —y) it suffices to examine the volume
potential with kernel TI(%)(z — y).

Theorem 5.6 Assume R > 0 and define for a vector field ¢ € C*(Bg),
€ (0,1), the volume potential

/Hx— y)dy , * € Bg .

Then Vo € C*(Bg) and

(A*(V))(@) + w* (Vo) (2) = —p(2) , © € Bg .

An analogous assertion holds true, if I1 is replaced by 10,

Proof: Lemma 5.1 together with Theorem 1.10 (a) imply Vy € C?*(Bg).
Moreover, for ¢ € C%7(Bg) the second derivatives of

/Hlllzx_ Y(y)dy , v € By,

are given by

a0u(r) = [ (0TI — ) (W) — v(a))dy

Br

~ (@) [ w)ON,) @~ y)ds(y) , 7 € Br.

O0BRr

Now, for a vector field ¢ = 1d; we compute with the help of the above
formula

(A Vo)|(@) = [(n+B)ANVY) + VYV - (Vo) + BV AV A (V)| ()
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#00) [ {55 M0 — )
+ 3 SO = )]y

+61w(y) A Vy A IO (@ — y)di) fds(y)
— () / T, (IO (x — y)dy)ds(y)

OBR
= —@Z)(l‘)dk , T € By .

The last equality follows by applying the representation formula (5.9) to an
arbitrary constant vector field U(z) = p € C*, z € IR*, which yields

p=- [ EO@ypds(y) , v € Br,

0Bg
and thus
di-p = = [ {EO @y d} - pdsy)
0Bg
= — / T,(MO (x — y)dy)ds(y) -p, v € Bg .
0Bg

Since any vector field ¢ = (g1, 2, p3) can be decomposed into ¢ =
S~ @rdy, we have proved the assertions for the kernel I1(0).
Due to the behavior of IT — I1(”) near z = 0 (Lemma 5.1 (b)) and due

to the relation A*{[H(x) — 11 (x)]dk} = —w?II(z)dy, T # 0, our results are
also true for the volume potential with kernel II(z — y) by Theorem 1.9.
O
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5.2 Unique Solvability of the Direct Elastic
Scattering Problem

This section is devoted to the following scattering problem for elastic waves:

Given real constants w, A and p satisfying w > 0, > 0, A+ 2p > 0, and
given a real valued function p € C7(IR?) (0 < v < 1) with supp (1—p) C B,
and given an incident wave U?, i.e., the vector field U’ € C?(IR?) is a solution
to A*U + w?U' = 0 in IR?,

find the vector field U* € C?(IR?) such that the total field U := U’ + U*®
satisfies A*U + w?pU = 0 in IR?, and such that U*® satisfies the radiation
condition (5.10).

We start by proving that a solution of the above scattering problem is also
a solution to a Lippmann-Schwinger type integral equation and wice versa.

Lemma 5.7 If U* € C%(IR?) is a solution to the above elastic scattering
problem, then U = U' + U?* is a solution to

Ule) =U'(@) = [ (1= py)l(x = p)U(y)dy , w € RP . (5.12)
Br
If o € C(Bg) is a solution to (5.12) in B and if U is defined by
U (@) 1= —® [ (1= p))TI(e = y)p)dy , @ € R?,
Br
then, U? is a solution to the elastic scattering problem with incident wave U®.
Proof: Let U® be a solution to the elastic scattering problem with incident

wave U, Applying the representation formula (5.8) to U := U* 4+ U*® in the
ball B,, r > R, we get

Ul) = [ {16 = y)(T0)(y) - 2@, 9)U(y) }ds(y)

0By

= [N = ) (AU +2U)(y)dy

= [ {1 - »@U)) - S, U () ds()

0By
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+ [ e~ @0 W) - 2 )0 @)} ds(y)

—w? [(1= p))I(@ = »)U(y)dy , @ € B,

By

The radiation condition states that the integrals on 0B, containing U* vanish,

whereas the integrals on 9B, containing U* can be replaced by U*(z) due to

Theorem 5.3 applied to U*. This proves the first part of the lemma.
Suppose now that ¢ € C(Bg) is a solution to

o) = U'(x) = w? [(1= ply))Iw = y)e(y)dy , = € B

Br

Applying the smoothing properties of volume potentials we obtain ¢ €
C'(Bg), whence (1 — p)¢ € C}(Bg) and U* € C?(IR?). Since the columns
of II(z — y), considered as a function of z, satisfy the radiation condition
by Lemma 5.5, U? satisfies the radiation condition. Finally, we compute for
U=U"+U* Ulg; = ¢ by the integral equation and

A*U + w*U
= —WHAT ) [ (L= p) — U (y)dy
= wZ(l - pU

by Theorem 5.6. This completes the proof of the lemma.
O

Since the integral operator in (5.12) is compact, it now suffices to prove
that the elastic scattering problem has at most one solution in order to
establish the existence of a unique solution. Although the main ideas for
the uniqueness proof are the same as for the previous scattering problems,
it becomes longer than the former ones due to some additional technical
difficulties.

The first part of the uniqueness proof is the following lemma. We show
that a radiating solution U € C?(IR* \ Bg) to A*U + w?U = 0 must vanish
in the exterior of Bg, if an additional condition on the sign of

3( / U {~uw ANV AT + (A +20)(V-T)w}ds) , B> R,

dBr,
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is satisfied. Note that the integrand is equal to U-TU with the special choice
By = —p, Bo = A+ 2pu. The idea is to apply Rellich’s lemma to V - U and
V A U which are both solutions to a Helmholtz equation in IR* \ Bg. Then,
we can infer from the differential equation

~uVAVAU+A+2u)V(V-U)+w?U =0 in R*\ By

that
A+ 2p

w2

"
U= 5VAVAU - V(V-U), (5.13)

whence U = 0.

Lemma 5.8 If U € C%(IR*\ Bpg) satisfies A*U 4+ w?U = 0 in IR*\ By, the
radiation condition (5.10), and

3( / U-A{~uv AV AT + (A +2u)(V - T)w}ds) >0,

0B,
for a fized Ry > R, then U(xz) =0 for all |z| > R.

Proof: We choose a function y € Cg°(IR® \ Bg) such that y(z) = 1 for
all |z] > (R + Ry)/2 and define U’ := xU € C*(IR?). U’ is a solution to
AU 4+ w?U" = w?F in R? with a vector field F € C$°(Bpg,) depending on
x and U. U’ coincides with U in the exterior of Bg,, whence it is also a

radiating solution and we know from the representation (5.8), the radiation
condition (5.10), and by (5.4)

Ule) =U'2) = ~w* [ T@=y)F(y)dy

= —-VAVA / Py, (z,y)F(y)dy

Br,

+VV. / D, (z,y)F(y)dy , * € R*\ Bg, .



and

VAU@) = =RV A [ @ (0,y)Fy)dy

Bpr,

= —/ii / Q.. (z,y)V A Fl(y)dy , xEIR3\B—RI,

Bpr,

are radiating solutions to a Helmholtz equation with wave number x,, &,

respectively. This implies for large || and % := |z|~'z the estimate
V- U@)| +|V AU()| < |70| (5.14)
and the radiation conditions
2+ V(Y- U)(@) =iy (V- U)@)| < 5 (5.15)
|(VAV/\U)(:C)Aa:n—ms(VAU)(xngxiF. (5.16)
Furthermore, the behavior
. 1 . 4]
Vi@, (2, y) N T = O(W) , (Vm AP, (x, y)q}) -T = O(W) ,
for large |x|, uniformly in y € Bp,, reveals
IV(V-U)(z) A2+ |(VAV AU(z)) - 2] < %P .
Hence, we obtain from (5.13)
w? 1
(V/\V/\U)(x)/\iz7U(x)/\§:+O(W), 2| = oo , (5.17)
V(Y- U)a) i =~ U() -+ O 1
(V- )(x)-x——Qu_i_)\ (z) - &+ (W) o] = oo . (5.18)

Employing the inequalities (5.15), (5.16) we compute

. 2 , 2
lim [ {=[(VAVAU)Av —in,V AU
r—00 K/S

r
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24 + )2
L2ut N
Kp

\%(v U — ik (V - U)f}ds

2

= lim[/{i—|(V/\V/\U)/\l/|2+u2/£s|V/\U|2

r—00
0By

P20
+2§R<m2 [T A AT) AV} AV A T}ds

VU + 20+ )k, |V - U Jds

viCutA)? [ a%(v-U)(v-U)ds)}.
" (5.19)

We will now show that lim inf R(...) > 0. Then, we can conclude from (5.19)
that
/ IV AU ds + / IV -UPds =0, r— oo,
0By 0B,

whence, by Rellich’s lemma, VAU = 0 and V-U = 0 in the exterior of Bg,.
Finally, formula (5.13) shows U = 0 in the exterior of Bg, and then U = 0
in the exterior of Br by the analyticity of U.

In order to compute $(...) we insert the right hand side of (5.17) for
(VAVAU)Av and the right hand side of (5.18) for (9/0v)(V-U) = &-V(V-U).
With the help of inequality (5.14) we thus arrive at

®(..)

— w2§R<iu [ (W Av)-(VAT)ds = i(2u+ ) /(V-U)(V-U)ds)

OB, OB,
1
+O(;)
= w2%< / U-{—,ul//\V/\U—l—()\+2,u)(V-U)V}ds>
9(Br\Bg,)
_ _ 1
+w2%< / U-{=uw AV AT + (A +2u)(V - U)u}ds> +0(=)
OB, r
- w2%<,u [ NAUPdz—p [ U (VAV AT
B,\Bg, B,\Bg,
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(204 N) / V- UlPde + (2u + A) / U-V(V-U)dx)

Br\Bg, Br\Bg,
_ — 1
—Mﬂ%</1U-{#WA‘%NU+%A+2MXV-UWME>+CK—)
OBg, r
= w2%< / U- A*de)
By\Bg,
— 1
+w? </l]{/wAVAU44A+mo(-UWM%+%Kﬁ
OBg, "
_ — 1
= w2%< / U-{—pww AVAU~+ (A+2u)(V - U)V}dS) + O(—)
OBr, ’
which completes the proof of the lemma.
O

The next step of the uniqueness proof is a unique continuation result
which allows to conclude U = 0 in Bgi. Unique continuation principles for
the elasticity equation are proved in [19, 48]. However, we stay with our
way to prove a weak form of a unique continuation result by employing the
solution operator G¢. To this end we examine the L?-norms of the first
derivatives of G'¢¢ in the next lemma.

Lemma 5.9 Suppose K > 0, 0 < R < R and ¢ € € satisfies (- ( = K2,
|3(¢)| > 1+ k. Then, there exists a constant ¢ > 0 such that

HV/w —y)ey)dy|,

for all ¢ € Cy(BgR). Here, g. denotes the function defined in (2.9).

Proof: Let @) be the unitary transformation with Q(R(¢)) = (|R(¢)],0,0),
Q(X(C€)) = (0,]¥(¢)[,0) and define £ := (|R({)],7](¢)[,0). For a function
¢ € C§°(Bg) we have ¢ := 9 o QT € C5°(Bp), hence the Fourier coefficients
U(a), a € T, are rapidly decaying. Moreover, we know fom the definition of
gc that

/v / golw = pe)dy[ de = [|¥ / 9:(Q"z = y)p(y)dy| do
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- /‘v/gﬁ(x—y)w(y)dyfd:c.

Br

Now, we conclude from Lemma 2.7 (a) that

[ so =ty = ¥ 0 e
and
V/gg(x—y)w(y)dy = aia%%(ﬂf)

in B where both series are absolutely and uniformly convergent due to the
rapid decay of the ¢ (a). Therefore, we arrive at

B Y e — T Y

|v / 9c(- = y)ely)dy

voo = 2o ot 2% ol
< sup——— |l
- aEIF) |Oé'04+2§'05|2 ’ B
Estimating for a € T, |a| < 5|S(()],
la-a+26-af > |S(a-a+26-a)
= 2]a|3(Q)]
T
> alal,
and for a € T, |a] > 5|3(C)],
la-a+26-a] > |R(a-a+26-a)
> af(Ja| = 4[S()])
> o,
we see that
-« 2

s 5.20
P Taa ot ap = o

for a suitable constant ¢. This proves the assertion for densities p € C§°(Bg).
The lemma also holds for a general density ¢ € Cy(Bpg) because ¢ can be
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approximated by C§°(Bg)-functions with respect to the || - |[oo-norm and
because the volume potential with kernel g.(z — y) is bounded from C(Bg)
to CY7(Bg).

(]

We are now in a position to establish the existence of a unique solution
to the elastic scattering problem.

Theorem 5.10 For any incident wave U' € C?(IR?), i.e., A*U' + w?U' =0
in R3, the integral equation (5.12) and the direct elastic scattering problem
both have the same unique solution.

Proof: The equivalence of the scattering problem and the integral equation
(5.12) stated in Lemma 5.7 implies that it suffices to show that the scattering
problem has at most one solution in order to establish the existence of a
solution.

Let U be a solution to the scattering problem with incident wave U? = 0.
We pick R; > R and compute

%( / U-{-pw AVAU+ A+ 2u)(V-U)V}ds)

0Bp,

— %(/ U-ATdr + /{u|V/\U|2+()\+2u)|V-U|2}d:c)
BRl BRl

~ 0

Hence, U vanishes in the exterior of Br by Lemma 5.8.
By Lemma 5.7 we can represent U as

Ula) = —* [ (1= ply)la = p)U(y)dy , =€ R

Br

Then, the mapping properties of the volume potential imply that U is C*-
smooth, i.e., U € C3(Bg). Next, we define v := V- U € CZ(Bg) and we
obtain the following system of differential equations for U and v:

A
AU—i—ﬂVv—irlisz = 0,

m
Av+ripv+kVp-U = 0.
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The first equation is the elasticity equation pAU + (A +u)V(V-U) +w?pU =
0 and the second one arises when taking the divergence of the elasticity
equation.

Hence, there is a constant ¢; such that

1/2

AU@)] < a(lU@)+ [Vo@)?) ",
Au@)] < a(U@P+l@)P)"”, e R

We choose R' > R and t > 1 sufficiently large to ensure

2 P2 2 P12
iR 2 9 iR
oy [20 ci+4

St 2] <1. (5.21)

Here, ¢ denotes the constant from the previous lemma. Furthermore, we
define ¢ := (t,it,0) € C* and
Vizg) = (Vi(z),Va(x), Vs(z), Vi(x))
e E (U (2), Us(z), Us(x),v(z)) , € C:= (—R',R')> .
If we are able to show V' = 0, we can conclude U(z) = 0, z € C, whence U

vanishes identically in IR®.
Now, we estimate

(A + 2 - V) V() |*

1

= AT ()

< A(X WP+ T P)

< C?(Z:|Vj(x)|2+2|V‘Q(w)l2+4t2|‘é(w)l2) : (5.22)

where we have used e “*Vu(z) = VVi(z) + iVi(z)€ in the last line, and
similarly

(A +2i¢ - V)Vi(a)|* = [e " Av(x)[* < c%(_zl Vi@P). (5.2
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Theorem 1.1 (b) applied to Vy € CZ(C) reveals Vy = —Ge((A + 2i§ - V)Vy),
whence by (5.23) and Theorem 2.8 (d) (or Theorem 1.1 (a))

2 C%RQ . 2
Wil < S S I3 (5.21)
=1

Due to the preceding lemma we also know

4
IVVallZ: < el 3 IVillia - (5.25)

j=1

The same reasoning applied to Vi, Vo, V3 € CZ(C) leads to

3
2
31V
j=1
3
; 2
= Y IIGe((A + 2i€ - V)V)) 22
j=1
C%RIZ 3 ) ) ) ,
< o (S IVl + 21V VAll + 42 [Vil7)
Jj=1
AR? 3 4 2R2 4
< L (X IVillze + 266 S IV;lEe + 485 STV 1)
4 Jj=1 j=1 ™ j=1
2 D12 2 12 4
c R 2 2 al? 9
o (20 + 4+ V) (5.26)

Here, we have used (5.22) in the third line and we have inserted (5.24), (5.25)
in the fourth line. Adding (5.24) and (5.26) finally yields the inequality

4 2 DI2 2 DI2 4
R iR
SVl < D2t + 45 2] S VG R

whence V' = 0 because of (5.21).
This means that the scattering problem with U? = 0 only has the trivial
solution and the proof of the theorem is complete.
|
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We conclude this section with a discussion of the asymptotic behavior of
U?. Since the solution U? of the elastic scattering problem has the form

V() = —® [(1= plg))TI(z = y)U(y)dy
= —VAVA [ @ (5,y)(1 - py))U)dy
49V [ @ ()1 = o)V )y

we obtain from the asymptotic behavior of ®,, that

H2eins\w\ o
Us(x) = s / —imsdy (] _ P A (U(y) A2
(x) T [ o) A (U) A )y
Br
/if,ei"”"f’"”' o
- —ikpZy (1 _ 5 -
s [T s Uy
Br
1
+O(W) |z = 00 (5.27)
Hence, we know
) = S @) + @y i 1 0( L) el
= a(x u(z) — ), |z 0 ,
2] 2] |z [?

with a smooth function v and a smooth tangential vector field a on S?. We
call U (%) := a(Z) + u(2) 2, & € S?, the far field of U*.
The formulas

VAU@) = =iV A [ @ (o,9) (1= o))V (y)dy |
VU 2) = =2V [ D@ p) (1 - pu)U()dy

show that V A U® and V - U® are both radiating solutions to a Helmholtz
equation in the exterior of Br. Furthermore, using the asymptotic behavior

of &, again, we can compute their far field patterns and compare them with
(5.27). This yields [V A U®loo(2) = iks@ A a(2) and (V - U)oo(Z) = ikpu(),
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% € S2. We can now infer from the one-to-one correspondence between far
field patterns and radiating solutions to the Helmholtz equation, i.e., from
Rellich’s lemma, that any solution U? to the elastic scattering problem, which
has a vanishing far field U}, = 0, must vanish identically in the exterior
of Bg. This follows immediately from (V - U®)o(2) = ik,2 - U (%) = 0,
[V AU oo(2) = insz ANUS(2) = 0, whence VAU®* =0 and V-U*® =0 in
IR*\ Bg. Relation (5.13)
A+2

w? Mv

U= Evavarr - (V- U?)
w

now implies U® = 0. Let us summarize this one-to-one correspondence be-
tween radiating solutions which are the scattered part of a solution to the
elastic scattering problem and its far field patterns in the following theorem.

Theorem 5.11 Let U* be the scattered part of a solution U = U'+U? to the
elastic scattering problem. Then, the far field U3, of U® uniquely determines
U? in the exterior of Bg.

In elastic scattering a plane incident wave is defined by
; 1 , 1 .
Uz, d,p) = = Vo(Vo - [pe"*47)) + 5V AV, A [pe™¥] , 2 € R?
w w

where d € S? is its direction of propagation and p € C* controls its polar-
ization. Straightforward calculations show that U’ is a solution to A*U* +
w?U" = 0. Note, that for d-p = 0 the first term vanishes and we have a pure
shear wave, whereas for d A p = 0 the second term vanishes and we have a
pure pressure wave.

Denoting by U*(-,d, p), U(-,d,p) the scattered wave and the total wave
belonging to the elastic scattering problem with incident wave U’(-, d, p), we
define the far field pattern belonging to the density p to be the matrix valued
function Us: S? x S? — €33, having as its jth column

Uso(#,d)d; = [U*(-,d, d;)]oe(2) , j=1,2,3, 3,d € S*.

Our considerations from above imply that
2

K A
Us(ityd)d; = === [ 59(1 = p(y))i A (U(y, d,dy) A 2)dy
Bgr
K2 o
—22 [ p(y))e - Uty dydy)dy . (5.28)
Bgr
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Chapter 6

The Inverse Elastic Scattering
Problem

The last chapter of this thesis deals with the inverse elastic scattering prob-
lem. We assume the far field pattern corresponding to the density p to be
known and we want to obtain information about p from this data. Deviating
from our results of the acoustic and the electromagnetic case we shall only
give a uniqueness proof in the first section and a stability result in the second
section.

In [10] uniqueness is proved, if the far field pattern is known for an in-
terval of frequencies. We will improve this result by only using the far field
pattern at one fixed frequency w as data. The main idea is the same as for
the previous scattering problems. The coincidence of two far field patterns
originating from two densities allows to prove an analogous orthogonality
relation to (2.1) or to (4.1). Then, we construct solutions to the elasticity
equation which depend in an appropriate way on parameters n and ¢, insert
these solutions into the orthogonality relation, and can conclude that the
Fourier coefficients of the densities coincide, hence that the densities must
coincide. The reader who is interested in a global uniqueness theorem for the
(nonconstant) Lamé coefficients should consult the paper [36] by Nakamura
and Uhlmann.

As in the acoustic case the special solutions to the elasticity equation
can be used to obtain bounds for the Fourier coefficients of the difference
of two densities |(p — p)"(«)|, which in turn allow to estimate ||p — p||o by
the difference of certain boundary integral operators or by the difference of
the far field patterns belonging to the densities p and p. To this end, in the
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acoustic case, we had to solve certain boundary value problems. We used
boundary integral operators whose properties are investigated in [6]. The
analogous integral operators for the elastic case are examined in [23, 24].
However, since our aim is to keep this thesis as self-contained as possible, we
have included an analysis of the elastic single-layer potential in an appendix
to the second section where we only take results from [6] for granted. Never-
theless, in this chapter we sometimes briefly refer to the analogous acoustic
or electromagnetic results instead of repeating a technical proof.

A reconstruction proof, which follows the lines of the reconstruction in the
acoustic case, would require an analysis of the elastic double-layer potential,
too, and we consider this to be beyond the scope of this thesis. We have thus
omitted the reconstruction procedure of the density from the far field pattern
although we believe that a treatment as in the acoustic case is possible.
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6.1 Uniqueness for the Inverse Elastic Scat-
tering Problem

We assume two densities p, p € C (Bg) are given, where we denote again by
C(Bg) == {p € C*'(IR®): supp (1 — p) C Bg , p real valued}

the set of densities we are interested in.

Moreover, we suppose that the frequency w > 0 and the Lamé constants
>0 and A with 2p + A > 0 are fixed and known. It is our aim to prove
that the coincidence of the far field patterns Us, and Us belonging to p and
p, respectively, imply the equality p = p.

Following the reasoning of the acoustic and electromagnetic case we start
with the relation

/(p—ﬁ)U-dezO (6.1)

Br

for all solutions U, U to the elasticity equations
AU +w?pU =0 , AU+w?pU =0 in Bpg,,

respectively, where R; > R. This relation will be established first in the case
U ="U(-,d,p) and then via an approximation argument for a general U.

Lemma 6.1 Assume 0 < R < Ry and p, p € C(Bg). Furthermore, assume
U is a solution to A*U + w?pU = 0 in Bg,. If the far field patterns Uy, and

U coincide on S? x S2, i.e.,
0% d,p)]_(2) = [U°(d,p)] (&) foralld,de % peC?,
then the relation

[ (o) = @)Uz, d,p) - O(a)dz = 0

Br

holds true for all d € S?, p € C>.

Proof: For fixed d € S?, p € €* we have U(z,d, p) = U(x,d,p), |z| > R, by
the coincidence of the far fields and the one-to-one relation between far fields
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and scattering solutions to the elasticity equation, which we derived at the
end of the last chapter. Then the second Betti formula (5.3) implies

0 = [{ITW(dp)~ T dp)]-T = (T0)- (U(d,p) = U(d,p)) Jds

= o {0 oDV ) - (1= s )] Ol

S = )T (@) - Uerd,p) — D, d,p»}da:

= & [(p(@) = @)U, d,p) - U(a)dr |

Br

and we have proved the lemma.
(I

Next we turn to the approximation of a solution to the elasticity equation
in Bg,, Ry > R, by elements from span {U(-,d,p):d € S, p € C*} with
respect to the L?(Bg)-norm. Once more we first use the idea from [20,

Lemma 5.20] for the special case p = 1.

Lemma 6.2 Assume 0 < R < Ry and let U' € C?(Bg,) satisfy A*U* +
w2U" = 0 in Bg,. Then, there exists a sequence

i i , 2 3 -
U; € span {U'(-,d,p):d € S*, pe C’}, jeN,
such that ||U* — U}Hi%BR) — 0, j = 0.
Proof: With
X = {U|BR: U e 02(BR2) and A*Ul —i—wQUi =01in BRQ} C LZ(BR)

and X being the completion of X in L?(Bj) we assume that Uy € X satisfies

/ Us(z) - Uz, d,p)ds = 0
Br

for all d € S?, p € C*. Then, we must show that U vanishes in L?(Bg).
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For |z| > R we define

W(a) = [z = y)Toly)dy

W € C?*(IR?\ Bg) is a radiating solution to the elasticity equation in IR*\ Bg.
Using the asymptotic behavior of the derivatives of ®(z,y) for large |z| (see
7, formulas (6.25),(6.26)]) we compute for any vector p € C* and any d € S?:

drp - Weo(—d) = —k’p- / e Y d A (Uy(y) A d)dy
Br
o [ T
Br

2 /m-w‘(y,d,p)dy

- 0.
Hence, the far field W, of W vanishes and W (z) = 0 for all |z| > R.
Now, let U; € X, [ € IN, be a sequence approximating U,
||Ul — U()H%Q(BR) — 0 y [ —o0.
By the representation formula (5.8) we can write U, [ € IN, as
Ule) = [ {1t = y)(T0)(y) ~ Z(@,)Uy) }ds(y) , = € B,
OB,

where Rj satisfies R < R3 < R,.
Inserting this representation for U; and interchanging the order of inte-
gration we conclude

- [ G- [ 2wy Ta(a)de ds(y)
= [ {TU)@)- W) - (TW)() - Uily) bs(y)
= oljgle]N,
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since W vanishes on dBpg,. As | — oo we arrive at Uy = 0 in L?(Bg) and we

have proved the assertion.
(Il

The approximation result for a general p can now be derived with the
help of the Lippmann-Schwinger equation (5.12). For convenience we define
the operator V,: C(Bgr) — C(Bg) by

OVU)(@) = [ (1= p() (e = y)U(y)dy , = € Br

Br

Lemma 6.3 Assume 0 < R < Ry and let U € C*(Bg,) satisfy A*U +
w?pU = 0 in Bg,. Then, there erists a sequence

U; € span{U(-,d,p):d € S* , pe C*} , jeIN,
such that ||U — Uj||2(gy) — 0, j — o0.

Proof: We fix R < Ry < R; and define

U'(z) = / (@ = y)(TU)(y) - Z(z,9)U(y) }ds(y) , « € B, .

dBr,

The representation formula (5.8) together with the elasticity equation imply
the integral equation

Ule) =U'(@) = w? [ (1= pu)M(x ~ p)U(y)dy , = € Br, . (62)

Br

for the field U, i.e., U = (I +V,)"'U". U' is a solution to A*U’ + w?U* =0
in Bg,. This can be seen by applying A* + w?I to both sides of (6.2).

(At first sight it seems reasonable to obtain A*U'+w?U? = 0 directly from the
definition of U’. But this requires an examination of the elastic double-layer
potential, and it is not obvious (as in the acoustic case) why the double-layer
potential is a solution to A*U + w?U = 0.)

Now, according to Lemma 6.2, there exists a sequence U;, j € IN, from
span {U'(-,d,p):d € S?,p € €} approximating U’ in L?(By), and we set Uj;
to be the solution to the Lippmann-Schwinger equation (6.2) with incident
field U?. This implies U; € span {U(-,d,p):d € S*,p € C*} and

Ui —U=(I+V,) (U -U in Bg.

216



Since V,: (C(Br), |- lz2(8r) = (C(Br); || - ll22(Br)) is a compact operator by
Lemma 5.1 (¢) and Theorem 1.9 (c), we finally employ the Riesz theory to
conclude

U5 = Ullzasey < I+ Vo) HleawallU; = Ulllz (g =0, j = 00

This ends the proof of the lemma.
O

We are now in a position to prove relation (6.1) by approximating an
arbitrary solution to A*U + w?pU = 0 in B, by elements from

span {U(-,d,p):d € S* , p € C*}

with respect to the L?(Bg)-norm and by using Lemma 6.1. This is stated in
the next lemma.

Lemma 6.4 Assume 0 < R < Ry and that the far field patterns for the
densities p, p € C(Bg) coincide on S? x S?, i.e., Uy, = Uy If U € C?*(Bg,)
is a solution to A*U + w?pU = 0 and U € C? (BRI) is a solution to A*U +
w?pU = 0 in Bg,, then we have the relation

[ (6a) = @)U () - Uw)dr = 0.

Br

Next, we want to exploit the above relation for the proof that all Fourier
coefficients of p and p must coincide. To this end we have to construct
special solutions to the elasticity equation. For a given a € I' the solutions

U(-,¢s,m) and Uf., Cs, 7) should depend in such a way on the parameters (j,
n, G, 7 € €2 that

U(x,(s,n)) - U(m, fs,ﬁ) — gl

with respect to L!'(Bpg) for an appropriately chosen sequence of the parame-
ters.

Of course we will imitate the procedure used in the acoustic and the
electromagnetic case, i.e., we use an incident field U'(z) = ne’®, where
¢, € €2 satisfies ¢, - ¢, = k2, and where - (, = 0. These conditions on (,

217



and 7 imply that U® is a solution to A*U’ + w?U* = 0. Moreover, in the
Lippmann-Schwinger equation (5.12) we replace the fundamental solutions
P, , @r,, which occur in the definition of II, by W¢, and ¥,.

The reader can find the definition of W (z) = (e**//4r|z|) + g¢(x) on
page 97. g¢ is a solution to the Helmholtz equation in Bygr. The properties of
the volume potential operator G having kernel g.(x—y) = e‘ig'(’”_y)\llg(x—y)
were investigated in Theorem 2.8.

We still have some freedom in the choice of the parameter ¢, € C*. It
turns out that ¢, with ¢, - {, = x3, I((,) = I((,) and R((,) being a positive
multiple of R((;) is appropriate for our purpose.

Let us first introduce some notation. If ¢; € €? is a vector satisfying , -
¢, = k% and |3(¢,)| > 0, we denote by @ € IR>** the unitary transformation
with det(Q) = 1, which maps (s to & = (|R((s)], 1|(¢s) ], 0), ie., Qs = &
Note, that & - & = k2 implies |R(()| = /IS(¢s)|? + k2. Next, we define

& = (V/IS(¢))? + /ﬁ?,,i|%((s)|,0) and ¢, := QT¢,. Hence, we have Q(, = &,.
Finally, we define the modified fundamental solution €2, which replaces
the fundamental solution II, by

1 1 .
QO (2)d; == ;xycs (1)d; + —VV - {(Ue, = We)d} (@), [a] >0, j=1,23,

where dy, dy, d3 denote the cartesian unit vectors, i.e., Q. :R*\ {0} — C*
is a matrix valued function. Inserting W, = (e¢™I1/4x| - |) + g, into this
definition, we see that Q. = II + QCS where the columns of the matrix QCS
are analytic solutions to A*U 4 w?U = 0 in Byp.

We start with the assertion that a solution to a modified Lippmann-
Schwinger equation is also a solution to the elasticity equation.

Lemma 6.5 Suppose 0 < R < R" < R, and n, (; € C* satisfy (s - (5 = k2

R4

1S(¢)| >0, and n- ¢, = 0. Let ¢, € C° be defined as above. Furthermore,
define U'(z) :=ne’=®, x € R*, and assume U € C(Bpgr) is a solution to

Ulw) = U'(a) =® [ (1= p) % (e = )U(y)dy , v € Bpr . (6.3)
Br
Then, U € C?(Bgn) is a solution to A*U + w?pU = 0 in Bpr.
The proof follows immediately by applying A* + w?I to equation (6.3)
and observing that A*U* + w?U? = 0,

(A" +w?) [(L=py)I( = Uly)dy = (1= p)U ,

Br
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(A" +w?) (1= p)0c. (- = y)U )y =0

Br

Equation (6.3) is a Fredholm integral equation of the second kind. Thus,
we have to inspect its nullspace. Furthermore, we need the asymptotic be-
havior of its solutions as |((s)| — 0o. The next remarks and the next lemma
prepare this inspection which will be carried out in Theorem 6.7.

We rewrite the jth column of €2¢, as

1 1 .
Q, (z)d; = FVAV/\{\IICS(x)dj}—FVV-{\Ilcp(x)dj} |zl >0, 5=1,23,
take the divergence of (6.3), and use integration by parts to arrive at

(V- U)) = =2 [ We,(w = p){(1 = p)V U = Vp-Uly)dy , v € B .

Moreover, using the definition of {2¢, and integration by parts we find from
(63) fOI' €T € BRH

Now, we define W (x) := e U (x), w(z) := e (V- U)(x), x € Bpr.
Multiplying both sides of the last two equations by e~ we finally obtain

w(w) =~} [ gq, (6 = 9)e oI~ — V- W)y , @ € B
Br

(6.4)
and
W) = n- %2 /(1 —p(W))ge, (x —y)W (y)dy
~(V+i6) [ (g — ) — Oy (2 — )
{(1=p)w—=Vp-WHy)dy , v € Brr .
(6.5)
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If we can show that W = 0 for n = 0, we have proved injectivity of
the integral equation (6.3). Moreover, if we know the behavior of W for
|¥(s)| — oo, we also know the behavior of U. To this end we study more
closely the operator A¢,: C(Bgr) — C(Bgr),

(Aco)(x) == (V +1iC,) / (9¢. (z — y) — @™ @ g (2 — y))p(y)dy

which occurs as the second integral in (6.5).

Lemma 6.6 There is a constant ¢ depending on R", R', ks, and k, such
that the inequality

C
[AcpllL2(p ) < I%(Cs)|||<’0“L2(BR”)

holds true for all ¢ € Co(Bprr) and for all |I((s)| > 1+ k) + Ks.

Proof: We denote by ) the unitary transformation with det(Q) = 1 mapping
(s t0 & = (IR()], 1|S(C)1, 0). ¢ and &, are defined as on page 218. A simple
computation shows that

& — &l = [/ISGP+r = ISP+ r2

_ - w2
RCIP+ 3 + ISP+
C1
= REI (¢

We split the integrand in the definition of A, into

(g¢, (7 — y) — @™V g (2 —y))p(y)

= (9¢.(x —y) — g¢,(x — y))e(y)
+(1 = D) ge (@ —y)p(y)

and proceed as in the proof of Lemma 5.9, i.e., we show the assertion for
¢ € C°(Bgr) and define ¢ := ¢ o QT € C§°(Bpgr). The definition of g,
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yields

/ ‘ / (9¢.(z —y) — g, (v — y))@(y)dy\zdx

Brin Bgn

IN

/ ‘ / (96, = 96,)(Q"x — y)@(y)dy\zdx

Bpi By
1] e = g) @ = vy d
Bpi By
1 1 2 ,
aze;‘ a-a+ 2 a N Oé'Oé—i-pr-a |7/)(CY)|
2(§ - §s) ey 2 )
Slearm, Wo-arm w1
4|§P _Ss|2 |Og|2 R )
CZ; oo+ 285 - af? |a-a+2§p.a|2|¢’(a)|

Co 2
w ||<P||L2(BR,,) :

Here we have used the estimate (6.6), and (1.5), (5.20) from the proofs of
Theorem 1.1 and Lemma 5.9.
Moreover, a reasoning as above and as in the proof of Lemma 5.9 implies

IV [ (06 96)C ~ ety

Bgn

< — gll%
L2(BRH) - |%(<s)|2 L (BR”) )

Together with the inequality |(s| < 2|S(()]| for ¢, - ¢ = k2 with |S(()| > ks

we arrive at

[(v+ic) [ (o6 = 96)( = ey,

Bgn

< |2
L2(BRH) - |%(Cs)|2 L (BR”) .

Hence, it remains to estimate

(V4iC) [ (1= D) (@ — y)p(y)dy

Splitting

Bgn

(1= ge (- y)el(y)

= go(r—y)(l—e”

(=C)v)o(y)

+(1 = @I g (x —y)e G p(y)
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we note that

—i(Cy—Ce)- Cs
sup |1 —e i(¢p—Cs) y| S
yEBpn |%(C5)|

and obtain with the help of Theorem 2.8 and Lemma 5.9 that

|(V+ic,) / g, (- — ) (1 = 7 @=D) o)y | <_°

LZ(BR//) WH@H%%BRH) .
Brn s

Finally, the uniform boundedness of |e=(¢%~%)¥| in Bp» and an analogous
reasoning as above leads to

2

[(V+ic) [ (1= @ n)g (o~ e @ rpy)ay]|,
L2(Bgn)

By
Cr 2
< — .
= |%(C5)|2||¢||L2(BR”)

Plugging all estimates together we have proved the assertion of the lemma.
O

We are now in a position to prove that the modified Lippmann-Schwinger
equation (6.3) has a unique solution, provided |3((;)| is sufficiently large, and
to discuss its behavior.

Theorem 6.7 There is a constant ty, depending only on R", R, w, ks, k)
and ||1 — p||1,4, such that the modified Lippmann-Schwinger equation (6.3)
has a unique solution if |3((s)| > to.

Furthermore, there is a positive constant ¢ (depending only on R', R", w,
ks, p and |1 — pll1,) such that the solution U to (6.3) satisfies

U(l‘) = U(l‘,Cs,n) = eZCsx{n + F(:L-’ Cs,/r])} , T 6 BRH y
where the L*-norms of the vector fields F(-,(s,n) can be estimated by

c|n|
13(¢s)

1F( Cos Ml 22y <

fO’f’ all |%(Cs)| Z t[]-
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Proof: In order to prove that equation (6.3) has a trivial nullspace we set
W(z) := e U (z), w(x) := e 2V -U)(z), x € B, for a solution U of
the homogeneous equation. The reasoning before (6.4) and (6.5) now leads
to the equations

W)= - [ (1= py)ge.(x — )W (y)dy — [Ac, (1 = p)w — Vp- W)](x)

and

w(z) = =k, / gc,(x — y)e TN — pyw — Vo Wy)dy , © € Bpr .
Br

This is a fixed point equation in C'(Bgr) X C(Bg+). We equip this linear space
with the norm [|[(W,w)]|? := |[W|%: + ||w||3.. By the last lemma and our
knowledge about G'¢, we know that the linear mapping in this space which is
defined by the right hand sides of the above equations has an operator norm
bounded by ¢/|J((s)], i.e., for a sufficiently large ty > 0 the operator norm is
bounded by 1/2 provided |¥((;)| > to. Hence, Banach’s fixed point theorem
states W = 0, w = 0, and therefore U = 0. The Riesz theory now implies
that equation (6.3) has a unique solution for all right hand sides U*.

An analogous reasoning to the scalar case immediately gives the asymp-
totic behavior

U(x7<san) = eigs-m{n + F(x7<sa77)} y & € BR” )

with [|F(, G 2 (s < elnl/1S(C)]-
m

The uniqueness proof for the inverse elastic scattering problem is now
an easy consequence of these special solutions and the orthogonality relation
stated in Lemma 6.4.

Theorem 6.8 Let the Lamé constants A and u of the elasticity equation be
given and let w > 0 be fized. If the far field patterns corresponding to the
densities p, p € C(Bg) coincide, i.e., Ux(%,d) = Ux(Z,d) for all (&,d) €
S? x 82, then p = p.
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Proof: We fix Ry with R < R; < R'. Then, for a vector a € I' we choose
the unit vectors dy, dy € IR such that a, d;, and d, are orthogonal, and we
define for sufficiently large ¢ > 0 the vectors

Q) = —%aJri t2—n§+|OjTQd1+td2,
G = —50 =it m§+¥d1—td2,
o) = ot e,
n(t) = ﬁ —%dz

This is possible because |o| # 0 for o € I'. As in the proof of Theorem 4.9
we have Cs(t) ’ Cs(t) = Cs(t) ’ Cs(t) = ’%ga Cs(t) ) ﬁ(t) = Cs(t) ) 77(t) = 0 and
In(t)] = |7(t)| < ¢4 for all sufficiently large ¢t. Therefore, by the preceding
theorem there exist special solutions U(-, (,(t), n(t)) and U(-,((t),7(t)) to
the elasticity equations with densities p, p, resp., such that

U, Go(t),n(1)) = €O {n(t) + F(2,G(t),0(t)} , @ € B,

U(w, (), 7(1)) = €O {ii(t) + F(x, (), 7(1)} , @ € Bg, ,

and
IF G G n() 22y + 1 ¢ GE), A0 2By < oo -

Using e/(02eiC (0 — g=ie-w and n(¢) - 7j(t) = 1 — (|a|2/4t2), we arrive at

U, Go(t),n(1) - Uz, Gs(1),71(1)) = e (1 + h(z, 1))

with
/ h(z,t)|dz — 0, t = oo .
Br

We insert these special solutions into the orthogonality relation from Lem-
ma 6.4 and obtain (p— p)"(a) = 0 as t — oo. The coincidence of the Fourier
coefficients yields the desired coincidence of the densities and we have proved
the theorem. O
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As usual we remark that it is possible to replace the plane incident waves
by any set of solutions to A*U +w?U = 0 which is complete in the space of all
solutions to this equation with respect to L?(Bg). Second, instead of mea-
suring far field data one might also use near field data like the displacement
vector on a large sphere because these data uniquely determine a radiating
solution to A*U + w?U = 0.

225



6.2 Stability of the Inverse Elastic Problem

In this section we want to establish a result which essentially states that on a
sufficiently small set the densities depend continuously on their corresponding
far field patterns. We assume throughout this section that the real valued
densities p satisfy p € C(Bg), i.e., p € CY(IR?), 0 < v < 1, and supp (1 —
p) - BR.

For fixed Z, d € S? the mapping

peC— [U°(d,p)| ()€

is linear. Therefore, as at the end of chapter 5 we regard the far field pattern
as a matrix valued mapping

Us: S? x S* — €,

Us (%, d) has the vector Uy (%, d, dy,) as its kth column where dy, ds, d3 denote
the usual cartesian unit vectors.

As usual we employ a very strong norm || - || on the far field patterns.
Due to the two wave numbers &, and k4 corresponding to pure pressure waves
and pure shear waves we split the far field U,, into four parts, namely the
normal and the tangential components of the far field corresponding to a
pure incident plane pressure wave and to a pure incident plane shear wave.
We define a plane incident pressure wave by

. 1 ;
Uz,press(x,d,p) = __ZV(V . [pempd.x]) T € IR3 ,
w
and a plane incident shear wave by
. 1 ;
Uz,shear(x,d,p) = —2V AV A [pemsd.x] = IR?) )
w

The waves are propagating into the direction d € S?, whereas p € C* controls
their amplitude and polarization. By UP™**(-,d, p) we denote the total field
corresponding to the incident wave U“P"(. d, p) and by UP'®$(z,d, p), & €
S?, we mean the far field of the scattered wave corresponding to the incident
wave UPress(. d p). Due to the linearity of the map p — UP'**(%,d, p) there
is a matrix UZ'**(2,d) € €*** such that U?®**(%,d,p) = UP'***(z,d)p for
all p € C*. We use the analogous notation U (., d, p), Ut (4, d, p) and
Ushear (3. d), if the incident wave U*PT*s(., d, p) is replaced by U (. d, p).
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Furthermore, let A(2) € IR*** denote the matrix having the entry ;i
in the jth row and kth column where & € S? is a unit vector . Then the
relation

Urress(z d, p) = U'(z,d, (p- d)d) = U'(x,d, A(d)p)
yields UPrss(&,d) = Uy(Z,d)A(d). The normal component of the far field
urress(. d, p) on S? is given by A(Z)ULr**S(&,d,p), & € S?, whereas the tan-
gential components are given by (I — A(2))UP'*(z,d,p), # € S?, where
I € € is the identity matrix. Similarly, we can compute U»*"*%" (., d, p) =
Ui(x,d, (I — A(d))p), whence Uz (z,d) = Uy(z,d)(I — A(d)), and then
split Ushear (%, d) into its normal and tangential part.
Summarizing we can write

Uso(#,d) = (I = A(2))Uso(Z,d)(I — A(d)) + A(2)Uso(Z, d) (I — A(d))
+(I — A(2))Uso (%, d)A(d) + A(2)Us (2, d)A(d) , #,d € S* .
(6.7)
Especially, the knowledge of U, allows to compute the normal and tangential
components of the far fields from pure incident plane shear and pressure
waves.

We need this splitting because the Fourier coefficients of the above terms
show a different behavior. We define these Fourier coefficients by

i = [ (= A@) Ul d) (T = AV )Y (d)ds(@)ds(d)

s = [ [ A@U(@ T = A @VE (d)ds(2)ds(d)
Wi = [ [ = A@)Uncli, d) )Y ()Y (d)ds(2)ds(d) |

i, = [ [ AG) Ul d)AW@)YE (@)Y (d)ds(2)ds(d) |
52 52
li,lp=0,1,..., =1 <k <l , =lb<ky <y . (6.8)

Note, that the Fourier coefficients uﬂ)lm € C*** are matrices.
The norm || - || on the far fields will be defined by prescribing a rapid

decay for each of the Fourier coefficients “ﬂibky m=1,...,4.
The main estimate of this section reads

~ —1/11
lp = Pllse < e|n(|Usep = Uso sl )|
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with a constant ¢ for all densities p, p lying in some small subset O of C’(BR).
Hence, the mapping Uy , — p is continuous and we have local uniqueness.
Of course, O is not only small with respect to the maximum norm but with
respect to a C?-norm, i.e., stability is only obtained with the help of an a
priori information.

Imitating the reasoning in the acoustic case we begin with the decay of
the Fourier coefficients and prove continuity of the mapping p — Uy ,.

Then, we show how to reconstruct the kernel of the Green’s operator for
the elasticity equation on a large sphere with the help of a series expansion
involving the Fourier coefficients which originate from Uy, . Since the || - || #-
norm is a very strong norm, which is not appropriate for measured far field
patterns, this mapping is severely ill-posed.

Finally, employing the special solutions from the last section, we inves-
tigate the dependence of p on the Green’s operator and arrive at our main
estimate.

We remind the reader that

3
1A == (3 lagel?)”

J,k=1

denotes the Frobenius norm for a matrix A = (a;;) € C*°.
Furthermore, for convenience we define the operator V,: C(Bg) — C(Bg)
by
VU)(@) = w? [ (1= py))(e ~ U y)dy , € B .

Br

Lemma 6.9 Assume the far field pattern Us: S? x S? — C**3 originates
from the density p € C(Bg) satisfying supp (1 — p) C Bpg, for some 0 <
Ry < R. Let /‘l(lr?c)llzkz} m=1,...,4, denote the Fourier coefficients of Uy, as
defined in (6.8). Furthermore, define Ry := (R + Ry)/2. Then, there is a

constant ¢ depending on Uy such that

( ers R )2l1+3( eksR3 )2l2+3
(&

1
) e ll% <

2ll +1 2[2 +1 ’
(2) 2 ekpRs \20143 / erg Ry 20243
oo I < C(2l1 +1) (212+1) :
(3) 2 ersR3 \21+3 / ekpR3 \ 202+3
oo I < C(2l1 +1) (212+1) :
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ekplis )211+3( erp 3 )2l2+3

(4) 2
||lek112k2||F < 6(211 +1 20+ 1

Furthermore, we have

2[1 + 1\201+3 2l2 + 1\20+3
> ) R

1
GHSR GHSR ||'u'l(1/)€1l2k2||%7‘ <00,

l1,k1,l2,k2

and analogous inequalities are true for the other Fourier coefficients u§f,?ll2k2,
m = 2,3,4.

Proof: Let us examine the behavior of ,ul(f,)c Loky- The other Fourier coefficients
ul(f,)ﬂb,w can be estimated analogously.
From the far field representation (5.28) and our considerations that lead

to the splitting of the far field we obtain

2

AU, d) (T = Ald))dy = =3 [ & 71— ply)) - U™ (y, d,dy)dy 2

for the jth column of A(2)Ux(Z,d)(I — A(d)) = A(2)Usrr(#,d). Inter-
changing the order of integration we obtain

it = [ [A@UL (@, d, )V @)Y (d)ds(@)ds(d)

- -2 [la-ow)
[ e TG AGISE) [0, D) b

Now, the Cauchy-Schwarz inequality and an analogous reasoning to the proof
of Lemma 4.10 complete the proof of the lemma.
O

By this lemma we know that the norm ||Us, ,|| defined by

Z 2l1 + 1)2l1+3(212 + 1)2l2+3

U 2 =
H Oo’p”f ek R ek R

1
[y
l1,k1,l2,k2
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2
116870, 1ok 13
I1,k1,l2,k2

D

l1,k1,l2,k2

D

l1,k1,l2,k2

3
11 1k 1

4
15 s 1

=y

ERp

is well defined, if p € C'(Byg) because supp (1 — p) C B implies that there is
a radius Ry < R with supp (1 — p) C Bg,.

Proceeding similarly to the proof of Lemma 2.18 we can prove the con-
tinuous dependence of Uy, , on p.

Lemma 6.10 Let py € é(BRl), Ry < R, be given. Then, there are positive
constants ¢ and € such that ||Uss,p —Us po |7 < €|lp— pollso for all p € C(Bg,)
satisfying [|p — pollos < €.

Now, we want to study the Green’s operator for the elasticity equation,
i.e., an integral operator having a matrix valued kernel II, such that for
any smooth, compactly supported vector field F' the vector field U(x) =
S, (2, y)F(y)dy, * € R?, satisfies A*U + w?pU = —F and the radiation
condition. For p = 1 we know this operator because then we have I, (z,y) =
II(x — y). Since we are merely interested in the operator S,: C*7(9Bp,) —
OO’V(aBRz)

(Spp)(x) =2 / IL(z,y)e(y)ds(y) , © € OBk, ,

dBr,

we deduce its properties from S; with the help of the Lippmann-Schwinger
equation without ever studying the kernel II,. The properties of S; corre-
spond to the single-layer in the acoustic case. The reader can find the nec-
essary regularity results in the appendix of this chapter (see Theorem 6.23
and Lemma 6.24):

Sy: C%(0Bg,) — C*7(0Bg,) is bounded. The potential

U@) =2 [ @ = y)e)dsy) , v € R*\0Br, ,  (6.9)

9B,
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with density ¢ € C%7(0Bg,) satisfies

Ulsg, € C"(Br,), Ulgs\gy; € CVV(IRP\ B,),

Uy =U_=Sipand TU_ — TU, = 2p on 0B, (here, T can be defined
with any choice of 1, B2 € R, 01 + 2 = A + ).

As usual the subscripts, + and —, indicate whether we approach the
boundary 0Bpg, from the exterior and interior, respectively. Furthermore,
the field U satisfies A*U +w?U = 0 in IR*\ 0Bg, and the radiation condition.

Now we define the operator S, with the help of the following boundary
value problem (BV P):

Given Ry > R,w >0, >0, A€ R (2u+ )\ >0), p€ C(Bg) and ¢ €
C%(0Bg,), find U € C*(IR? \ 0Bg,) satisfying the following requirements:

U- = U|BR2 < CI(B—R2)7 U+ = U|]R3\B—Rz € C’I(IR3 \ BRz)v

A*U 4+ w?pU =0 in R?\ 0Bg,,
U satisfies the radiation condition,
U —-U,=0and
—uv AV AU- =Us]+ A+ 2p)(V - [U- = Uy])v = 2¢ on OBg,.

Note that the last requirement means TU_ — TU, = 2¢, where the traction
operator T is defined with ) = —pu, B2 = 2u + .

Lemma 6.11 For all p € C*(0Bg,) the boundary value problem (BV P)
has a unique solution U. U 1is given by

U(x) = 2/ (x —y)e(y)ds(y)

OB,

—* [ = py) e =)W )y, = € R,

(6.10)

where W € C(Bpg) denotes the unique solution to the Lippmann-Schwinger
equation

(W + V) (z _2/ (& — y)o(y)ds(y) , = € Br .

OB,

231



Proof: Assuming U is a solution to (BV P) with ¢ = 0 we choose Ry > Ry
and compute with Betti’s first formula (5.2) (8, = —pu, 2 = A + 2u)

%( / U-{-mw AV AU+ (A+2u)(V-U)I/}dS)

0B,

= %(/ U+'{—MV/\V/\U_++()\+2/L)(V'U_+)l/}d8)
0B,

= %(/ U,-{—/W/\V/\KﬂL()x—i-?p)(V-i)V}ds)
0B,

= 9 U_-AU_d

J(BZQ )
= 0.

Then, we can conclude from Lemma 5.8 that U vanishes in IR*\ Bg,, whence
U_ =0and —puvAVAU_+(A+2p)(V-U_)v = 0 on Bg,. The representation
formula from Theorem 5.3 (3; = —pu, B2 = A+2u) applied to U_ implies that
U_ is a solution of the homogeneous Lippmann-Schwinger equation (5.12).
Thus U_ must vanish, too, and we have proved uniqueness for (BV P).

In order to show that U defined as in (6.10) is a solution to (BV P) we
follow the proof of the second part of Lemma 5.7 to obtain that U satisfies
the elasticity equation, due to the Lippmann-Schwinger equation for W, and
the radiation condition. For the boundary conditions we observe that the
volume potential in the definition of U is a C2-smooth vector field in IR and
that the single-layer potential satisfies the needed regularity conditions and
jump relations at the boundary.

(Il

We are now in a position to define

S,:C%"(0Bg,) — C"7(0Bg,) (Spp)(x) :=Uy(x), v € 0Bg, , (6.11)

where U is the unique solution to (BV P). S, is well defined, bounded, and
S,p = U_ on 0Bg,. Note, that the definition of S,¢ makes sense, too, if
we suppose ¢ to be continuous instead of Holder continuous. We need more
properties of S,.

Lemma 6.12 The linear operators S, satisfy:
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(@) [ (Sy0)-wds= [ - (Sw)ds for all o, & € C*(OBy,).

8B, 8B,

(b) The mapping p — S,, from (C(Bg), || - |ls) to the space of linear and
bounded operators in C(0Bg,) equipped with the || - || -operator norm,
s continuous.

Proof: For o, ¢ € C*(0Bg,) we define U as in (6.10) and U’ analogously,
where we replace ¢ by ¥. Then we compute

[ A(S0) v = ¢+ (Su)hds

9B,

1
= 5 [ W-@U -TUY) — (U ~TU,) - U'}ds
9Bn,

= 0

because the integrals containing TU_ and TU’ vanish by the second Betti
formula. Moreover, the integrals involving TU, and TU can be seen to be
zero by the radiation condition after replacing the integral over Bg, by an
integral over 0B,, r > Rs, inserting the definition of U, and interchanging
the order of integration. This proves part (a).
The proof of assertion (b) follows the proof of Lemma 2.20 (c).
|

Our next goal is the computation of the operator S, from a knowledge of

the Fourier coefficients ugf',?l Ioky Of Usop- A consequence of this computation
is the continuous dependence of S, on Uy .

Lemma 6.13 Let the far field pattern Uy, ,: S? x S? — C*** originate from

the density p € C(Bg). Let uﬂ)lhky m =1,...,4, denote the Fourier coeffi-
cients as defined in (6.8).
For z, y € 0Bg,, x # vy, we define the matrix

sp(x,y) :=1(z — y)

11 —1o
- > MKQW%m£WMMRﬂﬁ()w4 itk
l1kiloko

1 1 o Y 3
+hiphis R3hS) (ks Ro) By (1ip Ro) Vi (| |)Yk (ﬂ)ﬂgll)cll2kg}
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,L'llflg

- Z —{ﬁsHpRghgll)(ﬁpRZ)h (’Li R2)YE]1€1( )YkQ( ) Foykey Lok
i 4T 7] ||

+K/]2)R§hl(11)(KPRQ)hl(QI)(K/pRQ)Yi]f ( )Yk2( ) l1k)1l2k2} °
(6.12)

(a) For all ¢ € C(0Bg,) there holds

(Spo)@) =2 [ s5,(e,)0(w)ds(y) , v € OB, .

9B,

(b) There is a constant ¢ such that for all p, p € C(Bg) the inequality
1S, — Silloe < ellUso,p — Uso,5l| 7 holds true.

Proof: The Cauchy-Schwarz inequality, the rapid decay of the Fourier coeffi-
cients (Lemma 6.9), and the estimate for |hz )(K)Rg)| (Lemma 2.16) imply that
the series in (6.12) are absolutely and uniformly convergent on 0Bg, X OBk, .
Therefore, s, is a well defined continuous, matrix valued function for x # y.

From the definition of S, in (6.11) we see that for ¢ € C(0Bg,) the
difference S, — Si¢ has the form

(Sp(P - 5190)(1‘)
— _VAVA /(1 = p(¥) P, (z, y) W (y)dy
+VV- /(1 — p(Y) P, (z, Y)W (y)dy , € OB, ,
" (6.13)

W € C(Bpr) being the solution to

(W + V) (z —2/ (& — y)o(y)ds(y) , « € Br .

OB,

It suffices to prove that the right hand side of (6.13) and

2 [ (s, ) = 1w = y))ely)ds(y)

9B,
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coincide for all x € 0Bg, and for all ¢ € C(0Bg,) having the special form
o= Ylk(ﬂ)dm Here, dy, ds, d3 denote the usual cartesian unit vectors in IR?.

First, we compute for x € 0Bg,

2 [ (syl,y) —T(w - >>1fk2<||>cl nds(y)
dBg,
le*lQ
= -2 Z{ 2R2 K/SRQ)hll (h} RZ) A /’Lglll)clbkzdm

l1k1
11—l
1 4 3 xT
"‘“pf‘énghz(Q)(“pRﬂh (HsR2) :U’l(ll)cllgkgd }Yzlfl(m)
TR

7
—2 Z{K/sﬁpRgth ( RZ)hll)(HPRZ) 47T /’L§12])Cll2k2dm
l1k1

il —12

[ 4 i (r
—|—/<;12,R§h (/ﬁ;pR2)h (/prQ) e Mz(lillzmdm}yllf (m)

(6.14)

In order to compute the right hand side of (6.13) we proceed similarly to
the proof of Lemma 2.21 (a) and obtain

2 / Yk2(| |)d ds(y)

9B,

l>

Al . -
= mngw(ﬁst)% Ut @, d, d)YE (d)ds(d)
m
2

_ N\l ) - _
+2mpR§h,§21)(npR2)% / U (2, d, d,y) Y (d)ds(d) , = € By,

and
_7)l2 -
W) = 2in B (1) S [ U9 (0, )Y (d)s(a)
T
2
ity RZh{D (1, Ry) (= / UPess (1, d, dy) Y (d)ds(d)
for x € Bp.
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Now, we compute the normal and the tangential components of the far
field of

W) = =VAVA [(1=p(u)0s,(z.)W (1)dy
+9V - [(L= p0)0n, 2 )W W)y, |2] = R

(note that W’|sp,, is the right hand side of (6.13)): the tangential compo-
nents originate from the vector field

~VAVA [(= ) (a.9)W )y, fol > R,

which is a solution to the Helmholtz equation with wave number kg, and has
the far field pattern

(I = A(2)) W, (%)

=B (1 p(y))e e A (W (y) A 2)dy

Br
—i)l2

47

= 2k, R0 (k,Ry) ( / (I — A@) U (&, d, dy,) Y, (d)ds(d)

S2
_ 7\l -
2ir B0 ey o) S [(1 = A@)UZ 6, d,) Y (d)ds(d)

47
5'2

Thus we have

. N : —i)P
[ = AE)WL@YE @) = 2im 0D (s Ba) L s

2
S2
+2ik RQh(l)(IiR)(_i)lQ 8
pilaflyy \Rpdt2) = Fiy kyloky Ome -

(6.15)

On the other hand according to [7, Theorems 2.14 and 2.15] we have for
|z| > R a series expansion

T
SV AVA [0 o) ()W W)y = 3 ann ) (ol Vi (1)
Br ik
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which converges absolutely and uniformly on 0Bpg,. The coefficients a;,, are
vectors in €* and the Fourier coefficients of the far field of this series are
given by

1 1

/ﬁ;_smallkl .

Comparing this expression with the equation for the Fourier coefficients de-
rived in (6.15) yields

li—la

[ 1
Ak, = _2’%§Rgh (HSR2) 4 Ml(11)61l2k2d
)

—la
(3)

—2/€pnsR2hl(2 (kpRo :u’llkllzkzd

Similarly, the normal components of W/ which originate from

VY- [ = o), (e, )W )y, || = R,

a vector valued solution to the Helmholtz equation with wave number x,,
have the Fourier coefficients

1o
) ~ (3
/A x Y (l‘)dS( ) = 2”€st]7'( )(HSRQ)( 473 lul(12/)91l2/€2 m

N\ o
. —i
+2mpR§hl(21) (kpR2) %Mﬁlzm A,
(6.16)

A series expansion of the above vector field as

Zbllkl L (/‘fp|x|)}/211€1(| |)

l1k1

computing the Fourier coefficients of its far field, and comparing them with
(6.16) then yields

ll l2

2
bllkl = _2K;5K/I)R§hl(g)(ﬁ;sR2) 4 :“l(ll)clbl@dm
le—lz 4
_2“2R2h (KpR2)—— 1 Mz(li)cledem
m

237



Therefore, on 0Bp, we have the expansion

ll—lz
W) = —2 3 (K2R (5, B (5, ) i) o
l1k1
le —ls

T
+’fp/‘isR§h ("pr2)h (HsR2) Mz(fl)clede }Yilfl(m)

l1 l>

_QZ{K/SK’I)RZth (K/SR2)hl1 (’%IJRZ) lul(121)€112k2d
I1k1
22 (1) le_b (4) k(%
Since this coincides with (6.14), we have proved assertion (a).
The analogous estimates to the proof of Lemma 2.21 (b) yield part (b) of
the lemma.
O

Next, we wish to establish the estimate

[ (0= p)U - Oda| < elIS, = Syllseome WVl |02,y (617)

for solutions U, U € C?(Bpr)NL?(Bgr) to the elasticity equation (R < Ry <
RH)‘

In the acoustic case the proof needed two ingredients. For a given solution
u to the perturbed Helmholtz equation in Brs we constructed a radiating
solution to the Helmholtz equation in the exterior of Bg,, whose Dirichlet
boundary values coincided with the values of u on 0Bpg,. This allowed to
represent u as a single-layer having the Green’s function s, as kernel. The
second ingredient was the estimate ||u

l,fy,B—R2 < C||u||L2(BRH)'

Since the solution to the exterior Dirichlet problem requires a thorough
analysis of the elastic double-layer potential [23, 24, 12] (a task that we want
to avoid), we use a different approach in order to represent a solution U to
the elasticity equation as a single-layer with the Green’s kernel s,, namely
we solve a Robin boundary value problem in the following lemma.

For the second ingredient, the a priori estimate, we use the analogous
approach to the proof of Weyl’s lemma, Lemma 2.6. Finally, we establish
the desired estimate (6.17) in Lemma 6.16 .
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During the proof of the following lemma we shall use the boundary inte-
gral operator K: C%7(0Bpg,) — C*7(0Bg,)

(Kye)a) = 2 [ T - y)ew)ds(y)
—? [(1= p) TNz = )W (W)ldy , € OB, .

Here, W is defined as the unique solution to

(I+V)W =2 [ 1(=y)e()ds(y)

dBg,
in Bg, and T} is the unphysical traction operator defined with the parameters

g = MAtm At

A3 A+ 3

(6.18)

The choice of the constants (; and (5 is now important because it yields a
compact operator K| with a weakly singular kernel (see Lemma 6.25 in the
appendix). Therefore, K is a compact operator.

Note, that in linear elasticity the traction operator 7, corresponds to the
the operator d/0v(x) in acoustic scattering. We have therefore chosen the
same name K' for the normal derivative of the acoustic single-layer and the
traction of the elastic single-layer.

The jump relations for the single-layer with kernel II and the properties
of the volume potential imply for the vector field U defined in (6.10): TU_ +
iU = (I + K, +1S,)p on 0Bg,. This motivates to consider the following
boundary value problem with Robin data (RBV P):

Given Ry > R, w > 0, p >0, A € R (2u+ A > 0), p € C(Bg) and
F € C%(0Bg,),

find U € C?(Bg,) N C*(Bg,) satisfying A*U + w?pU = 0 in Bp, and
TU_ +::U_ = F on 0Bg,. Here, the parameters (; and (3, in the definition
of T are chosen according to (6.18).

Lemma 6.14

(a) (RBV P) has at most one solution.
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(b) For all F € C%(0Bg,) the equation (I + K| +iS,)¢ = F has a
unique solution p € C®(0Bg,) depending continuously on F. If ¢ is
a solution to this equation, then, the vector field U defined in (6.10) is
the unique solution to (RBV P).

Proof: For assertion (a) we compute with Betti’s first formula, the homoge-
neous boundary condition, and the elasticity equation

i / U[2ds

OB,
= U-TUds
OB,
= — / U - (w?pU)dx
Br,

3
+ /{(51+u)2|8kU|2+62|V-U|2—61|V/\U|2}dx.

BR2 k=1

Hence, taking the imaginary part we have U|3BR2 = 0, and TU = 0 on
0Bpg, by the boundary condition. Now, the representation formula from
Theorem 5.3 applied to U implies that U is a solution to the homogeneous
Lippmann-Schwinger equation (5.12). Thus U must vanish and we have
proved uniqueness for (RBV P).

For part (b) we note that, if ¢ is a solution to the equation (I + K, +
iS,)p = F, and if U is defined by

Ux) = 2 / (z —y)e(y)ds(y)

OB,

—* [(L=py) Iz =)W (p)dy . v € R,

Br

W € C(Bg) being the unique solution to the Lippmann-Schwinger equation

(W +V,W)(@) =2 [ T@=y)e)ds(y) , = € Ba,

9B,
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then U is a solution to the boundary value problem (RBV P). The differential
equation follows from the Lippmann-Schwinger equation for W, whereas the
boundary behavior of U is a consequence of the elastic single-layer.

If p is a solution for F' = 0, we know from part (a) that U vanishes
in Bg,. Furthermore, U is a radiating solution to A*U + w?U = 0 in the
exterior of Bp, with vanishing Dirichlet boundary values and we can compute
for Ry > R, with Betti’s first formula (5.2) (now 3, = —pu, 2 = A + 2p)

3( / U {—uw AV AT + (A +2u)(V - T)v}ds)

dBr,

= %(/ U+'{—/LV/\V/\U_++()\+2/1,)(V'U_+)V}d8)
0Bp,
= 0.

Lemma 5.8 then implies that U vanishes in IR® \ Bg,, whence 29 = TU  —
TU,; = 0 on 0Bpg,. Since the operators in the integral equation are compact,
existence and continuous dependence of a solution follows by the Riesz theory.
This completes the proof of the lemma.

O

Now we prove the a priori estimate which corresponds to Weyl’s lemma.

Lemma 6.15 Assume 0 < Ry < R"” and ¢; > 0 are constants. Then, there
is a constant cy > 0 such that for all p € C(Bgr) with ||p||e < ¢1 and for
all U € C*(Bgv) N L*(Bgr) satisfying A*U + pU = 0 in Bgv the inequality
||U||1’%B—R2 < el|U||p2(Byyy holds true.

Proof: We first construct suitable test vector fields ¢ € C§°(Bpgv). Let
B.(z*) C Bpgr, € > 0, be a ball and let x € C§°(IR) be a cut-off function
satisfying x(t) = 0, if |t| > €/2, and x(t) = 1, if |t| < €/4. For a vector field
Y € C§°(Bea(x*)) we define

o) = [ xlle =)@ — y)ey)dy , v € R

RB

As in Lemma 2.6 we have ¢ € C§°(Bc(z")).
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_ The matrix valued function k(z) = (x(Jz]) = DO (z), z € R?, satisfies
k € C*(IR*) and we obtain with the help of Theorem 5.6 in B,(z*)

(gt pp)a) = —vl@)+ [ Aulk@ - y)ey)dy
Be/4(z*)
o) [ e =y IO (@ = yuy)dy
Be/4(z*)

We denote by M:R? — ®3Xf the C*°-smooth matrix valued function sat-
isfying A% (k(z — y)¢¥(y)) = M(x — y)y(y). Using integration by parts and
reversing the order of integration we arrive at
0 = / o (AU + pU)dz
Be(z*)

= / (A" + pp) - Udx

Be(z*)

+ / pla |x—y|> "z = y)U(w)dz} dy

Be(z*)

for any ¢ € C§°(B¢/4(x*)). Hence, we have for all y € B,/4(z*)

/ MT( YU (x)dx

Be(x*)

+ [ plpxle —yhO @~ UE)dz . (6.19)
Be(z*)

The Cauchy-Schwarz inequality yields ||Ul|«,5,,,*) < cllU||L2(B,.), With
a constant ¢ depending on € (via x) and ||p[|c,B,. -

Replacing € by €/4 and repeating the procedure, which lead to equation
(6.19), with an adjusted cut-off function x we obtain

Uly) = /

+ / p@)x(x =y — U (w)dz
e/4l‘

*

M"(x — y)U(z)dx
)
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for all y € B./15(z*). Now, the estimates from Theorem 1.9 imply
10l g < NNz

Finally, we complete the proof by covering the compact set Bp, by finitely
many balls of the form B, s;(7;), where ¢; is chosen sufficiently small to

ensure B, (7;) C Bgr, and by patching together the above norm estimates
for ||U

1777B6 /16(1']) ’
! O

The desired estimate (6.17) is now a consequence of the two previous
lemmas and Betti’s second formula.

Lemma 6.16 Assume R < Ry < R" and w, ¢; > 0 are positive constants.
Then, there exists a positive constant ¢ such that for all p, p € C’(BR) with
1ol ymes Al Ame < 1, and for all solutions U € C?(Bgv) N L*(Bgr) to
A*U 4 w?pU = 0 in Bge and all solutions U € C*(Bg) N L*(Bgr) to A*U +
w?pU = 0 in Bpr the estimate

[ (0= AU - Uda| < cl1S, = Syllooma, U2 | D120, (6:20)
Br

holds true.

Proof: Let U satisfy the assumptions of the assertion. Due to Lemma 6.14 we
have a representation of U|p,_ asin (6.10), where the density ¢ € C*7(0Bg,)
satisfies the integral equation

(I+K,+iS,)p=TU_+iU_ on 0Bg,.

Hence, we know

0y S c/|U

. (6.21)

Ielleo < [l 17,5,

The above inequality used the fact that (I + K, + iS,)~" is bounded in
C%Y(dBpg,). In order to have the same inequality with a constant ¢, which
holds uniformly for all densities p as in the assertion, we have to prove that
the bound can be chosen uniformly for all p € C(Bg) with ol ,me < cr.
This can be seen by the following reasoning:

We choose Ry > R; > R and assume that p; € C(Bgr), j € N, is a
sequence with [[p;ll;, rs < 1 and [|(I + K, + iSp,) Mo — 00, j — oo.
Since the imbedding C'(Bpg,) C O (Bg,) is compact for 0 < v < 7, we
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assume without loss of generality that ||p; — poll; rs — 0, j — oo, for a
suitable real valued function py € C (IR*) with supp(1 — pg) C Bp,. Due
to the continuous dependence of the mapping p — (I + K, + iS,)~! from

{p e C*Y (IR*):supp(1l — p) C Bpg,}

to the space of bounded linear operators on 0Bg, (the volume potentials in
the definitions of S, and K, depend continuously on p, see Lemma 6.12 (b))
we obtain the contradiction

I(T+ K, +5,,) Mlleon = (T + Ky + iSp) Hloan <00

Of course, we can apply the analogous reasoning to U, whence we have
represented U and U as a combination of a single-layer potential and a volume
potential. This representation is also defined in R3 \ Bg,. We thus have a
continuous continuation of U and U as radiating solutions to A*W +w?W = 0
in the exterior of Bp,.

Then, we use Lemma 6.12 (a), the jump relation, and (5.3) to compute

| ¢ (85— 5,)pds
dBr,

— % / ((TU- —TU,) - U — (T —TU,) - U)ds

OB,

1 ~
- 3 /(TU,-U—TU,-U)ds

dBg,
w2 ~
= 3 /(ﬁ—p)U-de , (6.22)
Br

because, as in the proof of Lemma 6.12 (a), the integrals involving TU, and
TU, vanish.

Using Lemma 6.15, (6.22), and (6.21) we complete the proof of the lemma
and estimate

\/(p—ﬁ)Ude\

2 -
= | / - (S5 = S,)@pds|
O0BR,
S C“Sﬂ - Sﬁ||OO:BBR2 ||U||L2(BRII)||U||L2(BRII) . 0
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Finally, we prove the main estimate, which implies the continuous depen-
dence of p on S, or on Uy ,.

Theorem 6.17 Let py € C(Br)NC?(IR?) be given. Then, there are a neigh-
borhood O of py,

O :={p e C(Br)NC*(R?):||p — pollc> < €},

and a positive constant ¢, such that for all p, p € O the estimate

19 = Pl < cl= (IS, = Spllciam, )"

holds true.
Proof: We choose R < Ry < R" < R' < 2R,. Furthermore, we choose
to > 0 from Theorem 6.7 sufficiently large to ensure the existence of the

special solutions and the estimates stated for them in this theorem holding
uniformly for all ||p — pol|c2 < 1 and for all |J((s)| > to. Then, we set

tl = t0+2/‘is+100 .

Finally, we choose 0 < ¢; < 1/2 sufficiently small to have

-9

= W@2e) >t .
(R, 1 1) ") >h

Due to the continuous dependence of S, on p (Lemma 6.12 (b)) we can
find € with 0 < € < ¢; such that

1Sy = Spllsc,0Br, < 261

for all .
p,p €0 :={pecC(Br)NC*(IR*):||p— pollc> < €} .
The inequalities (2.38) and (2.39) imply
¢
P =Pl < p—=p) () +—= 6.23
lo = pll a.§52|( ) (@)l + 5 (6.23)

for p, p € O and any 6 > 2.
As in the proof of Theorem 2.23 we wish to pick a suitable §, depending
on ||S, — Ssllcc,0Bs,, in order to estimate the right hand side of (6.23). We
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bound the Fourier coefficients |(p — p) ()], a - a < 62, with the help of the
preceding lemma and the special solutions from Theorem 6.8.

To this end we set t := —mln 1S, — Sjlle and & := t¥/!1. By the
definition of ¢, the inequalities ||S, — Ss[|.c < 1 and t > ¢, are satisfied for
all p, p € O, and we also have § > 2.

For a vector a € T with o - a < §%2 we choose as in Theorem 6.8

1 _ |o|?

(s(t) = —§a+z t2—n§+Td1+td2,

_ 2

(1) = —=a—iyt? n§+ud1—td2,
1 ||

) = —a+ad

77() |Oé|a+ 2t 2
1 o]

i) = —a— Ay,

it) o] ¢ T 2t ™

Then, we have [S((s(8))] > t — ks > /2, [G(0)]/|S(¢s(8))] < 2, and
|I((s(t))] > t— ks > to for all p € O, whence by Theorem 6.7 there exist the
special solutions U(z, (s(t),n(t)) = eO=[n(t) + F(x,(t), n(t))] satisfying
the inequality |[F(-, (1), n(8))[z2 < (cln(t)])/13(¢s(2))| uniformly in p € O,
t > t,. The analogous assertion applies to U(z, ((t),7(t)) = eiO2[5i(t) +
F(x, G(t), 1(2))]-

With the help of the preceding lemma we compute

(= p) ()]
= (2R)™ / (= p)(w)e ™" da]

— (2RI)73/2

[ (6= P @U@, G (0,0(0) - Uler, (1), 7(8)) d

o*

2 1) Fl, G (1), n(t)

+ [(5= p)wee
=(t) - F(, C,(1), (1))
=P, (1), (1) - F(, Cu(), (1)) fda

claf”
t

IN

CHSP - Sﬁ“OO“U(a Cs(t)a n(t))HLZ(BRN)“ﬁ('? Es(t)a ﬁ(t))HLZ(BRN) +
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2
< c(|oettoD|S ) — S|, + %) , (6.24)

where we have used the fact that

UG, @)z < 1€ lloo,man, [In() + F (-, Co(t), 0(8)) 2230
2Ry (t+]al)

N

< clale

for all t > t1, p € O, and «a € T" because |((s(1))| < t + |a.

Note that contrary to the acoustic case we have a factor |a|*> from our
choice of n(t), 7(t), which can only be bounded by ¢|a|. These terms |a|? are
responsible for the different exponents occurring in the elastic and acoustic
stability estimates.

Inequality (6.24) implies

2
~ R o «
S oo @) < e X (ol )s, - sy + 125
a-a<d? a-a<d?
4Rot 4R206 55 65
< A MIAIFS, — Syl + )

5
< e[S, — Syl + 5}

because of §° < 5lef.
Finally, we obtain from (6.23), our last estimate, § = ¢t*!' < t, and the

definition of ¢

_ (4Ro+1)(t46) 0° 1

lp=plle < cfe™™ 1S, — Shlloo + — + —=1}

t Vs

2
< C{e(8R2+2)t||Sp - Sﬁ“oo + tl/T}
< C{(“Sp_Sﬁ“w)l/n+(_ln||sp_sﬁ||oo)il/u}

< (=S, = Splle) ™M
for all p, p € O because z < (—In(x)) ! for 0 < z < 1, and we have proved
the theorem.

O

Replacing ||S, — S;|| by ||Uso,p — Uso,3]| 7 We obtain the final estimate.
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Theorem 6.18 Let py € C(Bg,) N C*(IR?) with R, < R be given. Then,
there are a neighborhood

O :={pe C(Br)NC*(R*): lp— pollc> < €},

and a positive constant c, such that for all p, p € O the estimate

10 = Allso.e < el=I(|[Uso,p — Use,pll )}~

holds true.

Proof: We know from Lemma 6.10 that the mapping p — Us, is continuous
from C(Bg,) to the far field patterns equipped with the norm || - ||z We
choose € > 0 sufficiently small in the proof of Theorem 6.17 such that

1/2

(1 + C)HUoo,p - Uoo,ﬁ”f < 2¢ and C“Uoo,p —Usoillr < ||Uoo,p - Uoo,ﬁ”f

are satisfied for all p, p € O, too (here ¢ denotes the constant from Lem-
ma 6.13 (b)). Inserting the estimate

155 = Splloo < llUs0,p = Usoys

|

from Lemma 6.13 (b) into Theorem 6.17 we complete the proof of the theo-
rem.
O
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6.3 Appendix: The Elastic Single-Layer Po-
tential

This appendix contains the regularity results and the jump relations for the
single-layer potential

U@) = [Tz = y)e(y)ds(y) , = € R*\ D,

where D is a C?-smooth bounded domain in IR?, ¢ is a uniformly Holder con-
tinuous vector field on D, and IT: IR*\ {0} — €*** denotes the fundamental
solution to the operator (A* + w?I) from section 5.1.

We closely follow the reasoning in [6, chapter 2] for the acoustic single-
layer potential and we base our analysis on the next two theorems whose
proofs can be found in [6, Theorem 2.7, Remark 2.8, Lemma 2.10, Re-
mark 2.11].

Theorem 6.19 Let D C IR? be a C?-smooth, bounded, open set, and suppose
G is a closed domain containing 0D in its interior. Assume the function K
s defined and continuous for all v € G, y € 0D, v # y, and assume there
exists a positive constant M such that for all x € G, y € 0D, x # y, we have

K (2,y) < Mlz—y| " (6.25)
Assume further that there exists m € IN such that
K (21,y) = K (22, 9)| < MY oy — y|™ 7 |oy — 22l (6.26)
j=1

for all x1, xo € G, y € 0D with 2|xy — 5| < |x; — y|. Then the generalized
potential u defined by

u(@)i= [ K@ y)ewds(y) , o€ G,

with density ¢ € C(0D) belongs to the Holder space C*(G) for all v € (0,1)
and

[|u 07,6 < Cv||90||oo,3D

for some constant C, depending on .
The analogous assertion holds true, if G is replaced by 0D, i.e., the kernel
K is only defined for x, y € 0D, x # y, and u(z) is only defined for x € OD.
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Remark: If a function K defined for v € Bg, y € 0D, x # y, has
first partial derivatives with respect to x for all y € 0D, and if these par-
tial derivatives are continuous functions in x for each fixed y and satisfy
VK (x,y)| < M|x—y|™™ for all x # y for some m € IN, then the inequality
(compare (6.26))

K (21,y) — K(22,y)| < 2" M|z — y|™" |21 — 22|

is satisfied for all 21, 9 € By, y € 0D with 2|z — z5| < |x1 — y|, y # =1, xo.
This can be inferred from

1
K (29, y) — K(1,9)| = ‘/[vmx(m +t(z2 — 21),1)] - (2 — 21)dt
0
< sup |V K (21 +t(x2 — 21),y)||v2 — 21
t€[0,1]
——

— |1y — 1
(Jzy —yl/2)m

because |z +t(zy—x1) —y| > |x1 —y|—|va— 21| > |21 —y|/2 for all t € [0, 1],
if 2[zy — o] < |21 —yl.

In regard of Theorem 6.19, the above remark, and the estimates from
Lemma 5.1 (b) we know that the vector field

Ue) = [z = y) = (@ — y)e(y)ds(y) , = € R?,

oD

belongs to CY7(IR?), if ¢ € C(AD) is a continuous vector field. Moreover,
we have ||U||1,%]R3 < Oy ]l¢lls and

a%.U(ﬂf) -/ [%(H(x —y) =10 —y)]e(w)ds(y) . v € R

It is therefore sufficient to carry out the analysis for the single-layer potential
having Kelvin’s matrix 1Y as kernel.

Theorem 6.19 together with the estimates from Lemma 5.1 (c¢) immedi-
ately imply that the single-layer potential

Ule) = [ 19 = y)ey)dsty) , = € R, (6.27)
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with a continuous density ¢ is uniformly Hélder continuous in IR* and that
U,z < Cyll¢llo- Especially, this implies that Si: C(0D) — C*7(dD) is
bounded and S;: C%(0D) — C%7(dD) is compact. Here, S; denotes the
operator defined by

(S10)(x —2/H:v— (y)ds(y) , = € 9D |

which occurred in the previous section.

Hence, it remains to study the first derivatives of the potential in (6.27).
To this end another result [6, Lemma 2.10] is useful. In order to understand
its notation we note the following facts:

For a C?-smooth domain D there is number hy; > 0 such that to each
point x from the closed neighborhood

he :={r =2+ hv(z):z€ 0D, |h| < hg}

of D there corresponds a unique point z € dD such that © = z + hv(z).

Moreover, there is a small constant R > 0 such that for all z;, zo € 0D,

ry = 21 + hv(z1), £ = 20 + hv(22) € Dy, with 0 < |27 — x| < R/4 the

estimates

|21 — 2| + h?
2

hold true. We also assume R sufficiently small to ensure the following two
requirements:

1
§|ZU1—£U2| S |21—22| §2|£U1—£U2| 5 |£U1—22|2_ (628)

S.r:={y€dD:|ly—z| < R}

is connected for each z € 0D; v(z) - v(y) > 1/2 for all z, y € 0D with
|z —y| < R.

Theorem 6.20 Let D C IR? be a C?-smooth, bounded, open set. Assume
the function K to be defined and continuous for all x € Dy, y € 0D, © # y,
and assume that there exists a positive constant M such that for all x € Dy,
y € 0D, x # y, we have

K (2,9)| < Mz —y| 2. (6.29)

Furthermore, assume there exists m € IN such that

K (21,y) — K(x2,9y)| < MY o1 —y| > oy — 2of (6.30)
j=1
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for all xy, x5 € Dy, y € 0D with 2|x; — z5| < |21 — y|, and that

/ K(z,y)ds(y)| < M (6.31)
AD\S..

for all z € 0D and x = z 4+ hv(z) € Dy, and all 0 < r < R. Now define

u(w) = [ K@.plely) - (2)ds(y) , v € Dy,

with density p € C%7(0D), 0 < v < 1. Then u belongs to C*7(Dy,) and

||u 0777Dh0 S C||SO||07778D

for some constant C'.

The analogous assertion holds true, if Dy, is replaced by 0D, i.e., the
kernel K is only defined for x, y € 0D, x # vy, and u(x) is only defined for
x € 0D.

These two theorems are employed by the authors in [6, Theorems 2.12
and 2.17] to analyze the potential with kernel

1

K =

xFYy.

They obtain that, if ¢ € C(9D) is continuous, then
1
= [ ——o(y)d R*
u(z) 84 47r|x_y|so(y) s(y), v €R”,

is uniformly Holder continuous in IR® and

[ellopme < Cylllloo,on

for all 0 < v < 1 and some constant C, depending on 0D and ~. Moreover,
if p € C*™(dD), 0 < v < 1, is uniformly Holder continuous, then the
first derivatives of the potential v can be uniformly extended in a Holder
continuous fashion from IR?\ D into IR*\ D and from D into D with limiting
values

1 1

V() =6£ Ve( o =) P Wdst) F ge(a)le) , s € 0D, (632)
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where the integral exists as a Cauchy principal value. They also have the
estimates

Cyllelloq.op 5

||VU||0,7,]R3\D

<
IVullg, 5 <

for some constant C, depending on 0D and 7.
Since Kelvin’s matrix II”) has the entries
5]’]9 _ A+ 1% 82 |IL‘|
drplr]  8mp(2p + X) Ox 0y,

) () := Lo £0, k=123

in view of the above results it remains to show the analogous results for the
second term in the definition of Hg-[,? (z), i.e., for the kernels

|z — y|

K —
(z,y) D0

, e Fy, k=123,

We will pursue the same strategy that is used in [6] for the harmonic single-
layer potential. Therefore, our first aim is to extend in a Holder continuous
fashion the first derivatives of the potential with constant density

|z —y|

d R3
D0 s(y), xe R?,

u(r) =
from D into D and from IR? \E into IR® \ D. To this end we split

Yl
d,——ds
/Gra Y 8x]8xk (v)

0 0%z —y|

— 3\ oD .34
1 o) ow,0m, v(y)ds(y) , v € R\ 0D, (6.34)

where Grad denotes the surface gradient on 0D. We are thus lead to consider
potentials with kernel

0 0|z —y|

Kz, y) = ov(y) Ox;0xy

L yedD, zeR, v 4y, (6.35)

and with Holder continuous density.
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Lemma 6.21 Assume j, k € {1,2,3} to be fired and define K (x,y), y € 0D,
v €R® o #vy, as in (6.35). Then, the generalized potential

= [ K@y)e)ds(y) . v e R*\ oD,

with Holder continuous density ¢ € C%7(0D) (0 < v < 1) can be extended
in a Hélder continuous fashion from IR*\ D into R*\ D and from D into D

with limiting values

= [ K(.)e)ds(y) £ drp(w)n(@)v(x) , €D, (6:36)

where the integral exists as a Cauchy principal value. Furthermore, the esti-
mates

||U||0,7,]R3\D < Cll¢lloq.ep ,
<

lullo, 5 Cyllelloq.om (6.37)

hold true for some constant C., depending on 0D and vy.

Proof: We first prove the assertion for the density ¢ =1, i.e., we examine

82

3
- A PP D .
x) / 50 8xj6xk|x ylds(y) , x e R°\ 0

For x € D we choose € > 0 sufficiently small to ensure B.(x) C D. Then we
apply Green’s second theorem (1.9) and Gauss’ theorem (1.7) in D \ B.(x),
use Ay|lr —y| = 2/|r — y|, and obtain

w(@) = 0 R R N Qs ——
e ov(y 8x]8xk D @) 0x;0xy, |v — y|
0 0? 0 1
= = |T ds + 2 V; — ds
] wn g ew é ) g Ty )
1
-2 ds
|yx/| yayk|x—y| -
(6.38)
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We calculate
0 0? 1z |
31/( )ax]axk Y
O [ ik (we—we)(z; —y))

ov(y) Lz —y |z — y?
_ 9 G m)(—y))
ov(y) |v —y| |z —yl3
vi()(@n =) o (2n = ye) (@5 =y {v(y) - (2 — y)}
|z — y[? |z —y]° ’

and note

ve(y)(x; —yy) . vi(y) (T — k) o 1
+ = 20;(y) - -
= gP x—gP 4OF i r—

on 0B.(x) due to v(y) = (y — x)/|x — y|. Moreover, we have

_ Ojk _
az/ () |x—y| dsly) = / iz 15() = —4mosi
ly—x|=¢ ly—z|=e
and
3 (@ — ) () — yj){l;(y) (- y)}ds(y)
~ |z =y
ly—z|=e
3
- 3 / vk (y)ds(y)
OB (0)
= 47T(5]k .
Hence, (6.38) reads
w(x) = —Qi () ds(y) , € D.

3xkaD |~"U - ?/|

For x € R*\ D it is not necessary to cut out the ball B.(z) and a similar
reasoning yields
P :
w(xr) = —2— Mds(y) :
Oy, 5D |z =y
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Finally, for x € 0D, we obtain in an analogous manner that

/ K(z,y)ds(y)

OD\Sy.c
= / K(z,y)ds(y) + / K(x,y)ds(y)
A(D\B.()) 9B (z)ND
0 vi(y
= —2— i) ds(y) + / K(z,y)ds(y)
oz, |95 - ?J|
A(D\Be () 9B (z)ND
P .
— =2 Mds(y) , e—0,

a’UkaD |33 - y|

uniformly for all z € 0D, where the integral is to be understood as a Cauchy
principal value. In the limit the integrals over dB.(z) N D of

(zr — yi)(zj —y){v(y) - (= — )}
ov(y) |x -yl |z —yl°

can be replaced by integrals over 0B (x) N {y € R*: (y — z) - v(x) < 0}. By
symmetry the integrals over the half sphere can be evaluated as one half of
the corresponding integrals over the entire sphere, whence they cancel each
other as they did in the case z € D.

Using the jump relations for the derivatives of the harmonic single-layer
potential we have proved the assertion for ¢ = 1.

Our computation of K (x,y) reveals that K satisfies assumption (6.29).
Condition (6.30) can be verified with the help of the remark after Theo-
rem 6.19. In order to verify condition (6.31) we choose x = z £ hv(z) € Dy,,
z € 0D, h > 0. If © = z+ hv(z), we work in the domain D \ B.(z), if
x = z— hv(z), we work in the domain DU B(z). Then we proceed as above
for the case x € 0D. With the help of the estimate

a2 s . 2 2 (e
|z + hv(z) —y|® > yeaé?(lzl%aDﬂz yl>+h”+2hv(z) - (y — 2)}

_ : 2
= BB 7 )
> 162

- 2

for all y € dB.(2) N D, where we have used (6.28) for the second inequality,
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we can bound

/ K(x,y)dS(y)‘

OD\S. c

< | [ Kewdsw|+ [ K@y
O(D\Be(2)) 0Be(z)ND
a i

< 12— / MdS(y)ﬂL / Sds(y)
0x; |z — y €

O(D\Be(2)) 0B (=)
< M

Y

and similarly for x = z — hv(z).
If we now have an arbitrary uniformly Holder continuous density ¢, we
can split

u(z) = /K(w,y)w(y)dS(y)
- /K(x,y)(w(y) — ¢(2))ds(y) +w(x)p(2) , © € Dp,

where z € D is the point with & = z 4+ hv(z). Since K satisfies the con-
ditions of Theorem 6.20, the integral is uniformly Holder continuous in Dy,
whereas the behavior of the second term and the jump relation follow from
our reasoning for ¢ = 1. This ends the proof of the lemma.

O

Next, we turn to the first integral that appeared in (6.34).

Lemma 6.22 Assume j, k € {1,2,3} to be fized and define the vector field

2

0
U(z) = [ Grady=——=—|z —ylds(y) , x € R*\ 0D .
aé yal']al'k

Then, U can be extended in a Hélder continuous fashion into R® with limiting

values )

0
Ulx) = /Gradyiu —ylds(y) , z € 0D , (6.39)
a])ja{ﬂk
oD
where the integral exists as a Cauchy principal value.
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Proof: Integration by parts (compare [6, Theorem 2.1]) reveals

82
Ux) = =2 | 5— |z — y|H(y)v(y)ds(y) , z € R*\dD ,
D T;0Zy

where H(y) denotes the mean curvature of 0D at the point y € dD. Since
the kernel

0 Ok (zx — yr) (zj — y)) 3
8xj6xk|x_y|:|x—y|_ |x—y|3 7:U7yER 7x7éy7

satisfies the assumptions of Theorem 6.19, we infer that U can be extended
in a uniformly Hélder continuous fashion into IR? with limiting values

82
— 9 —yl|H D
U(x) 546%&ﬂx y|H(y)v(y)ds(y) , x € 0D ,

and it remains to prove for € 9D that

2

i [ Grad, 2o yas(y) = 2 [ 50—yl )as()
fimy A D0y T Y1 ar,0m, L Y WIVIesty) -
9D\ Sq,c D

This can be achieved by using integration by parts again [6, Theorem 2.1]

|z —y] L e —yl,,
/ Gra dy ax]axk ds(y) = 2 / 0z ;0xy, H{y)v(y)ds(y)
OD\Sy.c OD\Sy.c

0%z — y|
— dt(y) .
/ 8xj6xk 7o (y) (y)

ODNOBe(x)

Here, 14 (y) denotes the unit normal vector to the curve 9D NOB,(x) which is

c(z
orthogonal to the normal v(y) of 9D and which is directed into the exterior
of B.(x), and dt is the line element. Next we compute

0”|z — y|
/ WVO (y)dt(y)

S [ e - w(m)dt)
ODNOBe(x)

ODNOB(x)



= 2% [ Hlast) — 5 [ 2w~ w5 Hv()ds)

x,€e

—613 / Grady [(z, — y&) (75 — y;)]ds(y)

SE

:0@_$/GWMW—%mwwmw@,

,€

where we made use of the estimates

/ |z — y|™ds(y) < ce™t?
s

T,€

for a suitable constant ¢ depending only on 0D. From

Grady [(z — yi) (@ — y;)]
= (1=v(v)")Vyl(ze — y)(z; = y))]
= (1= w(2)v(@)")Vyl(zr — ye) (5 — y)] + O(lz — y/*)

we conclude that the last term behaves like

S [ 0= @)V~ ) s — 13)lds(y) + O(6)

x,€e

= 5 [ @) )V~ )~ u)lds() + O

— 613 / (1 —v(z)v(@)")V, [(zr — yk) (z; — y;)]ds(y) + O(e)
Be(z)NE

= Oe), e—=>0.

Here, E/ denotes the tangential plane at € 0D, and E, . is the orthogonal
projection of S, . into E. The integral over B(z) N E vanishes by symmetry
because linear functions like z = (21, 2, 23) € IR* + 2, are integrated over a
two-dimensional disk centered at the origin. This completes the proof of the

lemma.

We are now prepared to study the single-layer potential having Kelvin’s

matrix or Kupradze’s matrix as kernel.
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Theorem 6.23 Let ¢ = (1, @a, p3) € C¥7(ID) (0 < v < 1) be a uniformly
Holder continuous vector field. Then, the single-layer potential

Ula) = [ IO = y)e(y)ds(y) . = € R*\ 0D ,

is uniformly Holder continuous in IR®. The first derivatives of the components
U; can be extended in a Holder continuous fashion from D into D and from
R?*\ D into R*\ D with limiting values

(@) = di- [(OI) (@~ y)e(y)ds(y)
1

B A+
21+ A

W(@) - p(@)|m(z)v;(x)}
(6.40)

F5 (1@

for x € 0D, 7, | = 1,2,3, where the integral exists as a Cauchy principal
value. dy, do, d3 denote the usual cartesian unit vectors. Furthermore, the
estimates

Um0 Cillelloqop
||U||1,7,5 Cyllelloy.om (6.41)

hold true for some constant C, depending on 0D and . The analogous
assertion is true, if II® is replaced by II.

<
<

Proof: We already observed before Theorem 6.20 that it suffices to carry
out the analysis for Kelvin’s matrix because the difference of Kelvin’s and
Kupradze’s matrix is sufficiently regular to apply Theorem 6.19. This theo-
rem also implied the Holder continuity of U. Moreover, since the single-layer
potential for the Laplace equation and its derivatives are rigorously analyzed
in [6] (see the remarks after Theorem 6.20), we confine ourselves to the first
derivatives of the functions

_ [ Plz—y

u(z) = 51,0 U(y)ds(y) , x € R*\aD ,

with a uniformly Holder continuous density ¢ and j, k fixed. To this end we
split in Dy,
0%l — y|

) =
lU(x) 5D 8xj8xk8xl

y) — (2))ds(y)
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0 [z —yl
82:;8[) 0z ;0xy,

+1)(2) ds(y) , © € Dy, \ 0D ,

with © = z + hv(z).

Our reasoning during the proofs of the two previous lemmas implies that
the kernel %) |

r—y

K(a:,y) N axjﬁxkaxl
satisfies the assumption (6.31). It also satisfies the other assumptions of The-
orem 6.20, whence the first integral represents a uniformly Holder continuous
function in Dj,,. Our analysis of the second term during the previous lemmas
implies the Holder continuity of this term in IR*\ D and in D. Furthermore,
the Holder norms of dyu|g and of Qju|ks\ p depend continuously on [|)||o,0p-
Finally, the relations (6.36) and (6.39) from Lemmas 6.21 and 6.22 allow to
compute the values on the boundary:

3| —
Oyuy () :3D %d)(g)d&’(y) F drv;(x) v (z)v(x)Y(x) , x € 0D,

the integral being a Cauchy principal value.
Now, the regularity result and the jump relation for derivatives of the
harmonic single-layer potential (6.32) together with

. (Sj _ A+ H 62|£U|
dmplr] Stp(2p + A) Oz,0my

I () LE#0, k=123,
imply the assertion of the theorem.
O

We needed the above regularity result during the derivation of the stabil-
ity result for the inverse elastic scattering problem, but we did not use the
values of 9;U; of the single-layer potential U on the boundary 0D in general.
However, we had to know the values of a certain linear combination of the
values 0;U; on 0D, namely the values of the traction of U. We remind the
reader that the traction was defined as

T, v)](x) = (B + 1) 2

5, (@) + BV - D) (@)v(x) + Biv(x) AV AU ()
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for x € 0D, where the real constants ;, [ satisfy ) + 32 = A+ u. Relation
(5.7) allows to rewrite the [th component of the above vector as

[TUM) = p @) + (T D)) + 61 3 vnl) 52 ) - (042

ov =

This relation, together with the jump relation of the preceding theorem
allows to derive the following jump relation for the traction of the elastic
single-layer potential. By Z(y, )T we denote the matrix having as columns

E(y,x)de =T,I(z —y)dj,v(z)) , z,y € 0D ,

i.e., the jth column of this matrix consists of the traction (with respect to
x) applied to the jth column of the fundamental solution IT(z — y). This
actually is the transpose of the matrix =(z,y) defined in section 5.1 with its
arguments x and y interchanged.

Lemma 6.24 Let ¢ € C*(0D) (0 < v < 1) be a uniformly Holder con-
tinuous vector field. Then, the traction from the interior and exterior of the
single-layer potential

Ulw) = [ T = y)py)ds(y) , =€ R*\ oD,
oD
can be computed on 0D as the uniformly Holder continuous vector fields

TUL() = [ 2"y, 2)pl)ds() F 5o() , 1€0D, (649

where the integral exists as a Cauchy principal value. The analogous assertion
is true, if I1 is replaced by TI().

Our last result states that the integral operator appearing in (6.43) is
compact in C%7(9D) provided 3; and 3, are chosen in a special way.

Lemma 6.25 For

~ p(A+p)

8, = By m (A + p) (A +2p)

A+ 3u A+ 3p

(6.44)
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the operator K: C*7(0D) — C®7(dD)

_2/ (y)ds(y) , z€dD | (6.45)

has a weakly singular kernel and is a compact operator. The analogous as-
sertion is true, if I is replaced by T1(9).

Proof: Theorem 6.19 and the estimates from Lemma 5.1 (b) imply that the
operator

sz/ =0y, ) (y)ds(y)

is bounded and linear from C(9D) to C*7(dD) for each choice of 3; and .
Hence, we have to analyze the entries of the matrix [0 (y, z)]”, if 3, and 3,
are chosen as in (6.44), i.e., we have to compute the kth entry of the vector
T, (I (z — y)d;, v(z)). In regard of relation (6.42) we start with

[Tm (mdj, I/(Jj))]k

2r |z —yl? 27w|:6—y|3 2rp e —yP

(6.46)

In order to compute the traction of VO;|x — y| we use the original definition
of the traction operator, the relation A,|z — y| = 2/|z — y|, and obtain for
the kth entry

{Tx (anixju -y, 1/(317))]1C

0 82 ZL‘j —yj

_ _‘V(x)'(x_y)_xj_yjyx_xk_ykylx
= G| - ) - )
(21— )~ y)[v(z) - (2 — )]

|z —yl>

— — Yy () . :
252| " vi(7) (6.47)

(b1 +M)(

+3
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Multiplying (6.47) by —(A+pu)/{47p(21+ )} and adding the result to (6.46)
finally yields

2 {Tm (H(U) (z —y)d, V(x))} .
Ojk 1- (B + ) (A + M)] v(z)-(z —y)

2m 201(2p+ A) |z —y[?

Bt A+ ) (@ = yi) (@5 = yy)[v (@) - (2 = y)]
ATp(2p+ A) |z —y[?

+[_ B2 2B2(A + 1) (ﬂl"‘ﬂ)()‘"i_ﬂ)] ZUj—ij (z)
2rp Arp(2p+ A) Arp2u+ ) Nz —yP "

+[_ b (51—1‘#)()““#)}%—%”(@
2mp - Arp2u+A) e —yP

) ) (e - )iv) ()
T eyl |z =yl

(6.48)

with two constants ¢; and ¢y because the coefficients in front of the strongly
singular terms vy (z)(z; — y;)/|x — y|* and vj(z)(x — yx)/|z — y|* vanish due
to the special choice of 3; and (5.

The integral operator with kernel v(z)-(x—y)/(27|x—y|?) is studied in [6,
Theorem 2.30] and is seen to be compact in C%7(9D) in view of Theorem 6.19.
Let us point out that the estimates (see [6, Theorem 2.2])

(@) (x—y| < do—yl*, 2,y€dD,
() —vy)l < cz—yl, 2,ycdD, (6.49)

for a C%-smooth boundary @D are crucial in order to verify the assumptions
of Theorem 6.19. We proceed analogously for the kernel

(Te — y) (7 — y) (@) - (= — y)]
|z =yl

K(z,y) = , 1,y €0D , x #y.

It is weakly singular due to (6.49). Moreover, due to (6.49) we have the
inequality
V(@) - (z—y) = v(2) - (z = y)|

< |wle) = v(2) - (w—y)|+ |v(2) - (2= 2)]
clz —yllx — 2| +elr —2*, 2,y,2 € 0D,

8

IN

264



which together with the remark after Theorem 6.19 immediately yields as-
sumption (6.26) for K with m = 2. This completes the proof of the lemma.
O
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Basic Notation

Z integers

IN positive integers

INy nonnegative integers
IR real numbers

C complex numbers, i := /=1, 2z = v+ iy, v,y € R, Z := x — iy
complex conjugate

IR? threedimensional Euclidean space with points = = (71,39, 3), Tj €
R, |z] = (S 2)'/?

C* = {(21, 22, 23): 2 € C}, |2| = (X |)' 2

a-b:= 230?:1 a;b; for a,b € C? bilinear form

aNb := (aybs —asby, asby —aibs, a1by —ayby) vector product for a,b € C*
D closure of a set D C IR*, 9D boundary of D

0D smooth, v(y) unit normal at y € 9D (if D is bounded v(y) is
directed into the exterior of D), ds 2-dimensional area element in 0D
p- 16

D\D':={zxe D:x ¢ D'}

B,(z*) := {r € R*: |z — 2*| < r} open ball with center 2* € IR* and
radius r > 0, B, := B,(0)

S?:={r e R*|z| =1}

o

8j u axj

= OJu/0x; partial derivative of the function u

Vu := (01u, Dyu, O3u) gradient of u
Au := 0{u + d3u + d3u Laplacian of u

VU := 0,U; + 00Uy + 05Us divergence of a vector field U = (Uy, Uy, Us)
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VAU := (32U3 — 83U2, 03U1 — 31U3, 81U2 — 32U1) curl of a vector field
U = (Ula U27 U3)

A*U = pAU 4+ (A + p)VV - U elasticity operator applied to a vector
field U = (Uy, Uy, Us), p, A are the Lamé constants

Function spaces
DCRR®

C(D), C(D) set of continuous functions on D, D p. 12

C%(D) set of bounded and uniformly Holder continuous functions on
D with exponent 0 <y <1 p.25

D c R? open

C*(D) set of functions on D having all derivatives up to order k € IN
continuous in D p. 12

(D) = ijl C*(D)

C*(D) set of functions in C*(D) all of whose derivatives up to order
k € IN have continuous extensions to D p. 12

C*(D) p.25

CY(dD) p. 25

supp(u) support of a function u, closure of the set {z:u(x) # 0}

C¥(D) set of functions in C*(D) with compact support in D (k € IN
ork=o00) p.12

L*(D) set of functions on D which are measurable and square-integrable
on D with respect to the Lebesgue measure p. 11

T%7(0Bg,) set of y-Holder continuous tangential fields on Bg, p. 147

T (9Bp,) set of y-Holder continuous tangential fields on OBp, posess-
ing a y-Holder continuous surface divergence p. 147

Note: If £ = (F\, By, F3): D — C? is a vector-valued function we write
E € C(D) for Ey, Ey, E5 € C(D), and similarly for all other function spaces
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[ grid in R* p. 11
£ =(s,it,0) € C’, s€R, t>0 p.12
®,. , ¥, fundamental solutions of the Helmholtz equation p. 17, p. 97

g¢ fundamental solution of A42i(-V p. 52, G corresponding solution
operator p. 52

275



