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PREFACE

Florentin Smarandache, an American mathematician of Romanian de-
scent has generated a vast variety of mathematical problems. Some prob-
lems are easy, others medium, but many are interesting or unsolved and
this is the reason why the present book appears. Here, of course, there
are problems from various types. Solving these problems is addictive like
eating pumpkin seed: having once started, one cannot help doing it over
and over again.

The Editor



Problem 1. The equation
Pap1—Pa=1,

where p,, is the n—th prime, has a unique solution between 0.5 and 1;
- the maximum solution occurs for n = 1, i.e.

¥ -2"=1whenz=1;
- the minimum solution occurs for n = 31, i.e.
127F — 113° = 1 when = = 0.567148... = ag.

Thus, Andrica’s Conjecture

An=pl7 - PP <1

is generalized to:
e B, =ph. —ph <1, where a < aq.

o Co=pplt = pi/* < 2/k, where k> 2.

® D, =pp,1 —ph < 1/n, where a < ao and n big enough, n = n(a),

holds for infinitely many consecutive primes.
a) Is this still available for ap < a <17

b) Is there any rank ng depending on a and n so that (4) is verified for

all n > ny?
® pnt1/pPn < 5/3, and the maximum occurs at n = 2.
References: [67, 68, 86, 94]

Problem 2.
2.1: Representations of the odd numbers

A) Any odd integer n can be expressed as a combination of three

primes, as follows:

1) As a sum of two primes minus another prime (k = 3,s = 1): n = p+
g—r, where p, ¢, r are all prime numbers. The trivial solution: p = p4q—g¢

where p is prime is not included. For example:

1=345-7 =5+7-11 =7+11-17 =11+13-23=... ;
3=5+5-7 =T+19-23=17423-37=... ;

5=3+13-11 =...;
7T=11413-17=... ;
9=5+473 =..;
11=7417-13 =



a) Is this conjecture equivalent to the Goldbach's Conjecture (any odd
integer > 9 is the sum of three primes)?

b) Is the conjecture true when all the three prime numbers are different?

¢) In how many ways can each odd integer be expressed as above?

2) As a prime minus another prime and minus again another prime
(k =3,5s=2): n=p—q—r, where p,q,r are all prime numbers. For
example:

13-5-7
13-3-7
13-3-5
17-3-7
17-3-5
19-3-5

17-3-11 = 19513 = .. ;
23-7-13 = .. ;
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a) Is this conjecture equivalent to the Goldbach’s Conjecture (any odd
integer > 9 is the sum of three primes)?

b) Is the conjecture true when all the three prime numbers are different?

¢) In how many ways can each odd integer be expressed as above?

B) Any odd integer n can be expressed as a combination of five primes
as follows:

3)n=p+qg+r+1t—u, where p,q,r,t,u are all prime numbers, and
t#u (k=3,s =1). For example:

3+3+3+5-13

3+5+11+13-29
3+7+11+13-29
3+T+114+13-29
T+7+114+13-29
5+7+11+17-29
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a) Is the conjecture true when all the five prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

4)n=p+q+r—t—u, where p,q,r t,u are all prime numbers, and
t,u£ pgq,r (k=25,5=2). For example:

3+7+17-13-13 3+7+23-13-19 = .. ;
54+7+17-13-13 e}

T+7+17-13-13
5+11+417-13-13
74+11417-13-13
7+11+419-13-13

.oy
..y
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a) Is the conjecture true when all five prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

5)n=p+gq—r—t—u, where p,q,r,t,u are all prime numbers, and
r,t,u# p,q (k=5,s =3). For example:

11+13-3-3-17
13+13-3-3-17
3+29-5-5-17
3+31-5-5-17
34+37-7-7-17
9+37-7-7-17
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a) Is the conjecture true when all the five prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

6)n=p—gq—r—1t—u, where p,q,r,t, u are all prime numbers, and
q,rt,u#tp(k=5,s=4). For example:

13-3-3-3-3
17-3-3-3-5
19-3-3-3-5
23-3-3-5-5
29-3-5-5-7
31-3-5-5-7
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a) Is the conjecture true when all the five prime numbers are different?
b) In how many ways can each odd integer be expressed as above?

2.2: Representations of the even numbers

A) Any even integer n can be expressed as a combination of two primes,
as follows:

1) n = p — ¢, where p, q are both primes (k = 2, s = 1). For example:

2 = 75 = 1311 = ..
4 = 11-7T = ..;

6 = 13-7 = ..;

8§ = 135 =

In how many ways can each odd integer be expressed as above?

B) Any even integer n can be expressed as a combination of four primes
as follows:

2) n = p+q+r—t, where p, q, 1,1 are all prime numbers (k = 4,5 = 1).
For example:



3+3+3-7 3+5+5-11 = ..
343+5-7
3+5+5-7
1145+5-13

a) Is the conjecture true when all the four prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

3) n = p+g¢—r—t, where p, g, r,t are all prime numbers (k = 4,5 = 1).
For example:

[T
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2 = 11411-3-17 = 11411137 = .. ;
4 = 11413317 = ..;

6 = 13413317 = ..

8§ = 11417-7-13 =

a) Is the conjecture true when all the four prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

4) n = p—q~r—t, where p, g, t are all prime numbers (k = 4,s = 3).
For example:

11-3-3-3
13-3-3-3
17-3-3-5
93-3-5-7

a) Is the conjecture true when all the four prime numbers are different?
b) In how many ways can each odd integer be expressed as above?

13-335 =

.y
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2.3: General conjecture:

Let k> 3, and 1 < s < k, be integers. Then:

i) If k is odd, any odd integer can be expressed as a sum of k—s primes
(first set) minus a sum of s primes (second set) [so that the primes of the
first set is different from the primes of the second set].

a) Is the conjecture true when all the k prime numbers are different?

b) In how many ways can each odd integer be expressed as above?

i) If k is even, any even integer can be expressed as a sum of k — s
primes (first set) minus a sum of s primes (second set) [so that the primes
of the first set is different from the primes of the second set].

a) Is the conjecture true when all the k prime numbers are different?

b) In how many ways can each even integer be expressed as above?

References: {71], p. 190 from [82].

Definition 1. E(n) = z*> + z3* + ... + 23!, where n > 2, with

n

- 24,Z3,..,2a > 1 and has the greatest common divisor 1.

10



Problem 3. Is the number of the primes of this form finite or infinite?
References: [20, 25, 50, 51].

Theorem 1. Let S(n) be the Smarandache function: S(n) is the
smallest number, such that S(n)! is divisible by n. Let p be an integer
> 4. Then:

p is prime iff S(p) = p.
Here and everywhere below “iff” denotes “if and only if”.
References: [32, 72].

The following four statements are derived from the Wilson Theorem
(p is prime iff (p — 1)! is congruent to —1 (mod p)), but they improve it
because the factorial is reduced.

Theorem 2. Let p be an integer > 3. Then:

p—1
2

p is prime iff (p — 3)! is congruent to (mod p).
References: [73] and pp. 94-98 from [81].
Theorem 3. Let p be an integer > 1. Then:
p is prime iff (p — 4)! is congruent to (—1)L3+! ]_p—-g—lj (mod p).
References: [73] and pp. 94-98 from [81].
Theorem 4. Let p be an integer > 5. Then:
pis prime iff (p — 5)! is congruent to rh + %1 (mod p),
with h = | 47| and r = p — 24h.

References: [73] and pp. 94-98 from [81].

Theorem 5. Let p = (k—1)!h+ 1 be a positive integer k > 5, h being
a natural number. Then:

p is prime iff (p — k)! is congruent to (—1)*k (mod p),

11



with t= A+ {B] +1.
References: {73} and pp. 94-98 from [81].

Everywhere above |z| means the inferior integer part of z, i.e., the
smallest integer greater than or equal to z.

Theorem 6. Characterization of Twin Primes:

Let p and p+2 be positive odd integers. Then the following statements
are equivalent:

a) p and p + 2 are both primes;

b) (p = 1)!(3p+2) + 2p+ 2 is congruent to 0 (mod p(p + 2));
¢) (p~ 1)!(p — 2) — 2 is congruent to 0 (mod p(p + 2));

- -1\
g =121, 20 2t 1 is an integer.

Theorem 7. Characterization of Pairs of Primes:

Let p and p + k be positive integers, with (p,p+ k) = 1. Then p and
p+k are both primes iff (p— 1){(p+ &)+ (p+ k—1)!p+2p+ k is congruent
to 0 {mod p(p+ &)).

Theorem 8. Characterization of Triplets of Primes:
Let p— 2, p and p + 4 be positive integers, coprime two by two. Then
p— 2. p and p+ 4 are all primes iff

P LN (RS ERARY

Theorem 9. Characterization of Quadruples of Primes:
Let p, p+ 2, p+ 6 and p+ 8 be positive integers, coprime two by two.
Then p, p+ 2, p+ 6 and p + 8 are all primes iff

Mo-1+1]  Ae-11+1]  Sfp-D!+1  8lp-1)+1]
4 p+2 p+6 p+8

is an integer.

Theorem 10. General Theorem of Characterization of n Prime Num-
bers simultaneously:

12



Let py, p2, ..., pn be positive integers > 1, coprime two by two, and
1<k; <piforl<i<n. Then the following statements are equivalent:
a) p1, P2, -.-, Pn are prime simultaneously;

B 5 (v k)M — D! (D] T gy =0 (mod pupapu;

n

Z [(pi — k)M (ki — 1)t = (=1)%] ]_Ei pj

1=

¢) S = 0 (mod p1p2...ps);
E (s )ik = D! = (DR

d) 7 = 0 (mod pj);
E (- k(- 1! = (DM

e) B is an integer.

References: (78], [79], pp. 13-18 from [81].

Problem 4. Study Smarandache - Kurepa Function:
For p being prime, SK(p) is the smallest integer, such that ISK(p) is
divisible by p, where !SK(p) = 0!+ 1!+ 2! + ... 4+ (p — 1)!. For example,

p |2 3 7 11 17 19 23 31 37 41 61 71 73 89
SK(p)|2 4 6 6 5 7 7 12 22 16 55 54 42 24

Reference: [3)].
Problem 5. Study Smarandache - Wagstaff Function:

For p being prime, SW(p) is the smallest integer, such that W(SW(p)) is
divisible by p, where W(p) = 11+ 2! + ... + pl. For example,

p |3 11 17 23 29 37 41 43 53 67 73 79 97
SWp)|2 4 5 12 19 24 32 19 20 20 7 57 6

Reference: {3].

Problem 6. Study Smarandache Ceil Functions of n—th Order:
Si(n) is the smallest integer, for which n divides Si(n)*. For example, for

13



k = 2, we have:

n {12 3 4 5 67 8 9 10 11 12 13 14 15 16
So{n)i2 4 3 6 10 12 5 9 14 8 6 20 22 15 12 7

References: [13], pp. 27-30 from [40].

Problem 7. Study Pseudo-Smarandache Function:
Z(n) is the smallest integer, such that 1 +2+ ... 4+ Z(n) is divisible by n.
For example,

Reference: [43].

Problem 8. Study Smarandache Near-To-Primordial Function:
SNTP(n) is the smallest prime, such that either p* — 1,p" or p* + 1 is
divisible by n, where p°, for a prime number p, is the product of all primes
less than or equal to p. For example,

n 1 234567289 1011
SNTP(n}12 2 2 = 3 3 3 = = 5 11

where * +” means “does not exist”. SNTP(n) is undefined for squareful
integers: 4, 8,9, 12, ...
References: [1, 54].

Problem 9. Study Smarandache double-factorial function:
SDF(n) is the smallest number, such that SDF(n)! is divisible by n,
where the double factorial

mll = 1.35....m, if m is odd
T} 246....m, if mis even

For example,
n |12 3 45 67 8 9 10 11 12 13 14 15 16
SDF(n)!1 2 3 4 5 6 7 4 9 10 11 6 13 14 5 6
1.5

Reference: Section No. 54 from [33].

Theorem 11. Smarandache Primitive Functions:
Let p be prime. S, : N — N, having the property that (S,(n))! is divisibie

14



by p”, and it is the smallest integer with this property, where here and
everywhere below A is the set of the natural numbers.

For example, S3(4) = 9, because 9! is divisible by 3%, and it is the
smallest one with this property.

These functions help us compute the Smarandache Function.

Reference: [72].

The following three Smarandache’s problems are solved by Ion Bala-
cenoiu (see [12]).

Theorem 12. Smarandache Functions of the First Kind:
Sa N = N* N*={1,2,3,..}

i) If n = u" (with ¥ = 1, or ¥ = p being a prime number), then
Sn(a) = k, where k is the smallest positive integer such that k!is a multiple
of u™®;

i) If n = p7*.pi2...p7*, then S,(a) = S .
i) If n = p7*.p5...p;*, then S, (a) rlngfg)t( { ij(a)}

Theorem 13. Smarandache Functions of the Second Kind:
Sk N* — N*, S¥(n) = S, (k) for k € N*, where S, are the Smarandache
Functions of the First Kind.

Theorem 14. Smarandache Functions of the Third Kind:
S¥(n) = Sa,(bn), where S, is the Smarandache Function of the First
Kind, and the sequences {a,) and (b,) are different from the following
situations:
i)a, =1 and b, = n, for n € N*;
i) @, = nand b, = 1, for n € N'*.

Reference: {12].

Definition 2. A function f : N* — AN* is called Smarandache-
multiplicative one if for any (a,b) = 1, f(ab) = max(f(a), f(b)), i.e., if
it reflects the main property of the Smarandache Function.

Reference: [89].

Definition 3. Let f : N — N be a strictly increasing function and z
an element of R - the set of the real numbers. Then:
a) Inferior f— part of z 1S f(z) is the smallest k, such that

fle) <z < f(k+1).

15



b} Superior f— part of z SSf(z) is the smallest k, such that
() < 2 < f(k+1).

Particular cases (they are discussed in [8, 10, 11, 61}):
a} Inferior prime part:
For any positive real number n ISp(n) is defined as the largest prime
number less than or equal to n. The first values of this function are:

2,3,3,5,5,7,7,7,7,11, 11,13, 13, 13,13, 17, 17,19, 19, 19, 19, 23, 23...

b) Superior prime part:
For any positive real number n SSp(n) is defined as the smallest prime
number greater than or equal to n. The first values of this function are:

2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17, 17,19, 19, 23, 23, 23...

c) Inferior square part:
For any positive real number n 1Ss(n) is defined as the largest square less
than or equal to n. The first values of this function are:

0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16, 16, 16, 16, 16, 16, 16, 16, 25...
d) Superior square part:

For any positive real number n SSs(n) is defined as the smallest square
greater than or equal to n. The first values of this function are:

0,1,4,4,4,9,9,9,9,9,16,16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25,

25, 25,25,36,36...

e) Inferior cube part:
For any positive real number n ISe(n) is defined as the largest cube less
than or equal to n. The first values of this function are:

0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27...
f) Superior cube part:
For any positive real number n SS¢(n) is defined as the smallest cube
greater than or equal to n. The first values of this function are:

0,1,8,8,8,8,8,8,8,27,27,27,27,27,27, 27,27, 27,27, 27, 27,27, 21....

16



g) Inferior factorial part:
For any positive real number n IS5 f(n) is defined as the largest factorial
less than or equal to n. The first values of this function are:

1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24...

h) Superior factorial part: For any positive real number n SSf(n) is de-
fined as the largest factorial less than or equal to n. The first values of
this function are:

1,2,6,6,6,6,24,24, 24, 24,24, 24, 24, 24, 24,24, 24, 24,24, %4 24...

References: {69, 80]

Definition 4. Let f : N — A be a strictly increasing function and z
be an elemerit of R. Then: fractional f— part of £ FSf(z) = z - ISf(z),
where ISf(z) is the Inferior f—part of z, defined above.

Particular cases:

a) Fractional Prime Part:

FSp(r) = ¢ — ISp(x), where ISp(z) is the Inferior Prime Part, defined
above. Example: FSp(12.501) = 12.501 — ISp(12.501) = 12.501 — 11 =
1.501.

b) Fractional Square Part:

FSs(z) = ¢ — ISs(z), where 1Ss(z) is the Inferior Square Part, defined
above. Example: FSs(12.501) = 12.501 — I55(12.501) = 12.501 — 9 =
3.501.

¢) Fractional Cubic Part:

FSe(z) = £ — ISc(x), where ISec(z) is the Inferior Cubic Part, defined
above. Example: FSc(12.501) = 12.501 — 1S¢(12.501) = 12.501 — 8 =
4.501.

d) Fractional Factorial Part:

FSf(z) = x—1Sf(z), where ISf(z) is the Inferior Factorial Part, defined
above. Example: FSf(12.501) = 12.501 — ISf(12.501) = 12.501 — 6 =
6.501.

Remark 2.1 This is a generalization of the fractional part of a number.
Remark 2.2 In a similar way the following ones are defined:

- Inferior Fractional f—Part IFSf(z) = z — ISf(z) = FSf(z);

- Superior Fractional f—Part SFSf(z) = SSf(z)—z; for example, Superi-
or Fractional Cubic Part of 12.501 is SF S¢(12.501) = 27—-12.501 = 14.499.

Definition 5. Let g : A — A be a strictly increasing function, and
let “~” be a given internal law on A. Then we say that f: A — A is

2 17
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complementary with respect to the function g and the internal law

if f(z) is the smallest k, such that there exists z € A so that z ~ k = g(z).
Particular cases (the first three cases are discused in {8, 9]):

a) Square Complementary Function: f : N — N, f(z) is the smallest k,

such that zk is a perfect square. The first values of this function are:

1,2,3.1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1, 26,3, 7...

b) Cubic Complementary Function: f : N — A, f(z) is the smallest £,
such that zk is a perfect cube. The first values of this function are:

1,4,9,2,25,36,49,1, 3,100,121, 18,169,196, 225, 4, 289,12, 361, 30...

More general:

¢) m—power Complementary Function: f : N — N, f(z) is the smallest
k, such that zk is a perfect m—power.

d) Prime Complementary Function: f : N — A, f(z) is the smallest F,
such that z + k is a prime. The first values of this function are:

1,0,0,1,0,1,0,3,2,1,0,1,3,2,1,0,1,3,2,1,0,1,5,4,3,2, 1,0, 1,5...
References: [24, 34, 58, 69, 80, 92]

Problem 10. Smarandache-Fibonacci Ttriples:
11, 121,4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648,

4573053, 7783364, 79269727, 136193976, 321022289, 445810543, 559199345,
670994143, 836250239, 893950202, 937203749, 10411478032, 1148788154.

Integer n is such one that S(n) = S(n — 1) + S(n — 2), where S(k)
is the Smarandache function. It is not known whether this sequence has
infinitely or finitely many terms. H. Ibstedt and C. Ashbacher indepen-
dently conjectured that there are infinitely many terms. H. Ibsteat found
the largest known number of this kind: 19448047080036.

References: {7, 40]

Problem 11. Smarandache-Radu Duplets:
224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975,
45388758, 46297822, 67697937, 138852445, 157906534, 171531580,

18



299441785, 551787925, 1223918824, 1276553470, 1655870629,
1853717287, 1994004499, 2256222280.

Integer n is such one that between S(n) and S(n+ 1) there is no prime
(S(n) and S(n+1) included), where S(k) is the Smarandache function. It
is not known whether this sequence has infinitely or finitely many terms.
H. Ibstedt conjectured that there are infinitely many terms. H. Ibsteat
found the largest known number of this kind:

270329975921205253634707051822848570391313.
References: [40, 62]

Definition 6. Functional Iteration of First Kind:

Let f : A — A be afunction, such that f(z) < z for all z, and min f(z) >
TEA
my # —oo. Let f have p > 1 fix points mg < z; < 73 < ... < zp. [The
point z is called a fix one if f(z) = z.]. Then SIl;(z) is the smallest
number of iterations k, such that f(f(...f(z) ...) ) = constant.
e S e’

E times  k times
Example: Let n > 1 be an integer, and d(n) be the number of the

positive divisors of n, d : N'— A. Then SI14(n) is the smallest number of
iterations k, such that d(d(...d(z) ... ) ) = 2; because d(n) < n for n > 2,
S—— ——

E times & times
and the fix points of function d are 1 and 2. Thus SI14(6) = 3, because

d(d(d(6))) = d(d(4)) = d(3) = 2; SI14(5) = 1, because d(5) = 2.

Definition 7. Functional Iteration of Second Kind:
Let ¢ : A — A be a function such that g(z) > z for all z, and let
b > z. Then SI2,(z,b) is the smallest number of iterations k such that

glg(..g(z)...)) >¢.
N e N —

E times & times

Example: Let n > 1 be an integer, and o(n) be the sum of positive di-
visors of n, (1 and n included), o : N'— N. Then S12,(n, b) is the smallest
number of iterations k such that o(o(...0(z ) ... ) ) > b; because o(n) > n

(SRS S

k times  k times
for n > 1. Thus S12,(4,11) = 3, because o(o(c(4))) = o(o(7)) = ¢(8) =
15> 11.
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Definition 8. Functional Iteration of Third Kind:
Let h : A — A be a function, such that A{z) < z for all z, and let
b < z. Then SI3x(z,?b) is the smailest number of iterations &, such that
h(h(..h{z)...) ) <b.
N i Nt e

k times & times

Example: Let n be an integer and gd(n) be the greatest divisors of n,
less than n, gd : N* — A", Then gd(n) < n for n > 1 and SI3,4(60,3) =
?(bgcause 9d(gd(gd(gd(60)))) = gd(gd(gd(30))) = gd(gd(13)) = gd(5) =

“References: [3J], pp. 52-38 from {40}, Problem 52 from {80}].

The following sixteen theorems are proved by F. Smarandache {29,
64, 18, 35, 19]. More decimals for each constant have been computed by
Weisstein [94].

Theorem 15. The First Constant of Smarandache’s:

y L
n>2 S(n)!

is convergent to a number $;, which satisfies §.000 < s; < 0.717.
Reference: pp. 116-118 from [29].
Theorem 16. The Second Constant of Smarandache’s:
S(n)

np2 n!

is convergent to an irrational number s,.
Reference: pp. 119-120 from [29].

Theorem 17. The Third Constant of Smarandache’s:

1
52 SOSG) 5

is convergent to a number s3, which satisfies 0.71 < s; < 1.01.
Reference: pp. 121-126 from {29].
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Theorem 18. The Fourth Constant of Smarandache:

na

Y o—-
n>2 S(2)5(3)...5(n)’
where a > 1, is convergent to a number s4.
Reference: pp. 121-126 from [29)].
Theorem 19. The series

g (-

n>1 n!’

converges to an irrational number.
Reference: [64].

Theorem 20. The series

S(n)
n>2 (n+ 1)1

converges io a number sg, where e % < s < %
References: [18, 35].
Theorem 21. The series
S(n)
n>r (n + T)' ’

where r is a natural number, converges to a number s7.
Reference: [35].

Theorem 22. The series

S5(n)

n>r (n - 1‘)!’

where r # 0 is a natural number, converges to a number sz.
Reference: [35].
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Theorem 23. The series

converges to a number sg.
Reference: [35].

Theorem 24. The series

R
n2r S(n) /SR

where a > 1, is convergent to a number s;g.
References: [19, 33].

Theorem 25. The series

v 1
n2r S(n)Y/(S(n) = NI

where a > 1, is convergent to a number s;;.
Reference: [19].

Theorem 26. Let f : A’* — R be a function which satisfies the
condition

c
0 s waay—a@ =1y

for t # 0 being a natural number, d(z) being the number of divisors of z,
and the given constants a, ¢ > 1. Then the series

T f(5(n)
n>1

is convergent to a number s;,,.
Reference: [19].
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Theorem 27. The series

(I sy

is convergent to a number s;3.
Reference: [19].

Theorem 28. The series

1
2
n>1 S(n)l\/S(n)!(log S(n))?’

where p > 1, is convergent to a number s,4.
Reference: [19].

Theorem 29. The series

2n
y
n>1 S(2™)V
is convergent to a number s;5.
Reference: [19].
Theorem 30. The series
S(n)
n>1 nlt?’

where p > 1 is a real number, converges to a number s;6. For 0 < p <2
the series diverges.
Reference: [19].

Definition 9. An Algorithm of Multiplication of Two Integer Num-
bers, A and B:
- let k > 2 be an integer;
- write A and B in two different vertical columns: ¢(A), respectively ¢(B);
- multiply A by k, and write the product A; in column c¢(A);
- derive B by k, and write the integer part of the quotient B; in column
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e(B);
. and so on with the new numbers 4; and B,, until we get B; < k in

column ¢(B);
- write another column ¢(r), on the right side of ¢(B), such that: for each
number of column ¢(B), which may be a multiple of k¥ plus the rest r
(where r = 0,1, ...,k — 1), the corresponding number in ¢(r) will be r;
- muitiply each number of column A by its corresponding r of ¢{r), and
put the new products in another column ¢{P) on the right side of ¢(r);
- finally, add all numbers of column ¢(P).
A x B = the sum of all numbers of ¢{P).

Remark that any multiplication of integer numbers can be done only
by multiplication with 2,3,..., k, divisions by k, and additions.

This is a generalization of Russian multiplication (when k£ = 2).

This multiplication is usefull when £ is very small, the best values being
for k = 2 (Russian multiplication — known from Egyptian times), or k = 3.
If k is greater than or equal to min(10, B), this multiplication is trivial (the
obvious multiplication).

Example 1 (if we choose k = 3): 73 x 97 =?

x3 /3

c{A) [ ¢(B) | ¢(r) | <(P)
73 97 1 73

219 32 2 438"
657 10 1| 657
1971 3 0 0
5913 1 15913
total: 7081

Therefore: 73 x 97 = 7081.

Remark that any multiplication of integer numbers can be done only
by multiplication with 2,3, divisions by 3, and additions.

Example 2 (if we choose k£ = 4): 73 x 97 =7

x4 /4
{A) | ¢(B) | <(r) | <(P)
73 97 i 73
292 24 0 0
1168 6 2123386
4672 1 11 4672
total: 7081

Therefore: 73 x 97 = 7081.
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Remark that any multiplication of integer numbers can be done only
by multiplication with 2, 3,4, divisions by 4, and additions.
Example 3 (if we choose k = 5): 73 x 97 =7

x5 /5
c(A) [ ¢(B) | c(r) | <(P)
73 97 2| 146

365 19 4 | 1450
1825 3 3 | 5475

total: 7081

Therefore: 73 x 97 = T081.

Remark that any multiplication of integer numbers can be done only
by multiplication with 2, 3,4, 5, divisions by §, and additions.

The above multiplication becomes less usefull when k increases. Look
at example (4) to see what happens when k = 10:

x10 | /10
c(A) | ¢(B) | e(r) | c(P)
73 97 71 511
730 9 9 | 6570
total: 7081

Therefore: 73 x 97 = 7081.

Remark that any multiplication of integer numbers can be done only
by multiplication with 2,3, ...,9, 10, divisions by 10, and additions — hence
we obtain just the obvious multiplication.

Reference: see Section 110 from [33]

Definition 10. An Algorithm of Division of an Integer Number, A by
k", where k,n > 2 are integers:
- write A and k™ in two different vertical columns: c(A), respectively c(k™);
- multiply A by k, and write the integer quotient A; in column ¢(A);
- write the quotient ¢; = "~} in column c(k™);
.. and so on with the new numbers A; and g¢;, until we get g, = 1(= k°)
in column c(k™);
- write another column ¢(r), in the left side of ¢(A), such that: for each
number of column ¢(A), which may be a multiple of k¥ plus the remainder
r (where r = 0,1, ...,k — 1), the corresponding number in c(r) will be r;
- write another column ¢(P) by its corresponding r of ¢(r), and put the
new products in another column c¢(R) on the left side of ¢( P);
- finally, add all numbers of column ¢(R) to get the final remainder R,
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while the final quotient will be stated in front of c¢(k™)’s 1. Therefore:
A/(k™) = A, and remainder R,.

Remark that any division of an integer number by k™ can be done
only by divisions to k, calculations of powers of k, multiplications with
1,2,...,k — 1, additions.

The above division becomes less usefull when k increases. Look at
example (4) to see what happens when k = 10:

Example 1: 1357/(27) =?

2 | /2
c(R) [ c(P) [ e(r) | c(4) | c(27)
1 2° 111357 27 line;
9 2! 0] 678 26 line,
4 22 11 339 25 lines
8 28 1] 169 24 lineg
0 24 0 84 2» lines
0 25 0 42 22 lineg
64 26 1 21 21 liney
10 2% 1 lastiine.
77

Therefore: 13577(27) = 10 and the remainder is 77.

Remark that the division of an integer number by any power of 2 can
be done only by divisions to 2, calculations of powers of 2, multiplications
and additions.

Example 2: 19495/(33) =?

/3 /3

e(R) [ c(P) [ c(r) | e(A) | «(3%)
1 33y 1110495 3 line;
0 31 0 6498 37 lines
0 32 0 2166 36 lines
54 33 2 722 35 liney
0 34 0 240 3 lines
486 35 2 80 33 lineg
1458 38 2 26 32 line;
4374 37 2 8 3! lines
2 30 laSth'nc

6373

Therefore: 194957(3%) = 2 and the remainder is 6373.

Remark that the division of an integer number by any power of 3 can
be done only by divisions to 3, calculations of powers of 3, multiplications
and additions.
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Reference: see Section 111 from [33]

Definition 11. A Prime Base:
0,1,10,100,101, 1000, 1001, 10000, 10001, 10010, 10100, 160000, 100001,

1000000, 1000001, 1000010, 1000100, 10060000, 10000001, 100000000,
100000001, 100000010, 100006100, 1000000000, 1600000001, 10000000100,
1000000101, ...

Smarandache defined over the set of natural numbers the following infinite
base: py = 1, and for k > 1 pi is the k—th prime number. He proved that
every positive integer A may be uniquely written in the prime base as:
def n
A=(aTado)sp = ;Eo a;p;,

with all a; = 0 or 1 {of course, a, = 1), in the following way:
-ifpp <A< pnyrthen A=p, +ry;
~if pm €71 < pmy1 then 7y = ppy + 10, m< n;
and so on until one obtains a remainder r; = 0.

Therefore, any number may be written as a sum of prime numbers +e,
where e = 0 or 1.

If we note by p(A) the Smarandache superior part of A (i.e. the largest
prime less than or equal to A), then A is written in the Smarandache prime
base as:

A = p(A) + p(A - p(4)) + p(A - p(A) — p(A - p(A))) + ...

This base is important for partitions with primes.
References: [33, 37]

Definition 12. A Square Base:
0,1,2,3,10,11,12,13,20, 100, 101,102, 103,110, 111, 112, 1000, 1001, 1002,
1003, 1010, 1011, 1012, 1013, 1020, 10000, 10001, 10002, 10003, 10010,
10011, 10012, 10013, 10020, 10100, 10101, 100000, 100001, 100002, 100003,

100010, 100011, 100012, 100013, 100020, 1060100, 100101, 100102, 100103,
100110, 100111, 100112,101000,101001,101002, 101003, 101010, 101011,
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101012,101013, 101020, 101100, 101101, 101102, 1000000, ...

Smarandache defined over the set of natural numbers the following infinite
base: for £ > 0 s = k%. He proved that every positive integer A may be
written in a unique way in the Smarandache square base as:

def n
A= (a,,...alag)sz = i§l a;Ss;,

withalla; =0 or1fori>2, 0<a; <3, 0<a; <2 and, of course,
an = 1, in the following way:
-if s, K A< sq43 then A =5, + 1y
-if $;m <7y <S4y thenry =5, + 12, m< n;
and so on until one obtains a remainder r; = 0.

Therefore, any number may be written as a sum of squares (1, being
obvious, is not counted as a square) +e, where e = 0,1 or 3.

If we note by s(A) the Smarandache superior square part of A (i.e. the
largest square less than or equal to A), then A is written in the Smaran-
dache square base as:

A=s(A)+s(A-s(A4) +5(A-5(4)—s(A—-s(A))+ ...

This base is important for partitions with squares.
References: {33, 37

Definition 13. A m—Power Base (generalization):

Each number n written in m—power base, where > 2 is an integer.

Smarandache defined over the set of natural numbers the following
infinite m—power base: for £ > 0 ¢x = #™. He proved that every positive
integer A may be written in a unique way in the m—power base as:

def n

A= (an...alao)s,,, = '20 a;t;,
i=

i+2)" -1

withag; =Qorlfori>m, 0<a; <] GrI™
i=0,1,...,m~ 1, and, of course, a, = 1, in the following way:
-ift, <A<ty then A =t, +ry;
-iftm €7y <tmy1 thenry =1y, + 7, m<
and so on until one obtains a remainder r; = 0.

Therefore, any number may be written as a sum of m—powers (1, being
obvious, is not counted as a m—power) +e, where e = 0,1,2, ... or 2™ — 1.

] (integer part) for
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If we note by ¢(A) the Smarandache superior m—power part of A (i.e.
the largest m—power less than or equal to A), then A is written in the
Smarandache m—power base as:

A=t(A)+t(A—t(A)) +t(A—t(A)—t(A - t(A))) + ...

This base is important for partitions with m—powers.
References: [33, 37]

Definition 14. A Factorial Base:
0,1,10,11,20,21,100,101,110,111,120, 121, 200, 201,210, 211, 220, 221,

300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101,
1110,1111,1120,1121,1200, ...

Smarandache defined over the set of natural numbers the following infinite
base: for £ > 1 fi = k!. He proved that every positive integer A may be
written in a unique way in the factorial base as:

def n
A= (TG aa)r) = I af;,

with all @; = 0,1,...,2 for i > 1 in the following way:
-if fa AL fn+1a then A = fn, + 75
-if fn €71 < fmg1, then ry = frn + 72, m <
and so on until one obtains a remainder r; = 0.

What is very interesting is that: a; =0or 1;a3 =0,10r 2;a3=0,1,2
or 3, and so on ...

If we note the Smarandache superior factorial part of A (i.e. the largest
factorial less than or equal to A), by f(A) then A is written in the Smaran-
dache factorial base as:

A= f(A)+ f(A- f(A) + f(A- f(A) - f(A- f(A)) + ..

Rules of addition and subtraction in Smarandache factorial base: for
each digit a; we add and substract in base i + 1, for ¢ > 1. Here is an
example, for an addition:

base 5 4

Ol =
=] — O N
+

2
2
1 1
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because: 0+ 1 = 1 (in base 2); 1 + 2 = 10 (in base 3), therefore, we write
0 and keep 1; 2+ 2+ 1 = 11 (in base 4). Now a subtraction

base 5 4
1 0
3

B9 Of
| O e D

because: 1 -0 =1 (in base 2); 0 — 2 =7 it is not possible {in base 3), go
to the next left unit, which is 0 again (in base 4), go again to the next
left unit, which is 1 (in base 5), therefore, 1001 — 0401 — 0331 and then
0331 - 320 = 11.

Find some rules for multiplication and division.

In a general case, if we want to design a base such that any number

def n

A= (a,aGo)p = El a;b;,

with all @; = 0,1, ...,¢; for i > 1, where all {; > 1, then this base should be
bl = l,bH.} = (i,’ + l)b' for Z 1.
References: {33, 37]

Definition 15. A Generalized Base:

Smarandache defined over the set of natural npumbers the following
infinite generalized base: 1 = g9 < g1 < ..., g% < ...). He proved that every
positive integer A may be written in a unique way in the Smarandache
generalized base as:

def n
A=@ aGk)se = I g,

with 0 < ¢; < {y_,.._.;'_—l} (integer part) for i = 0,1,...,n, and, of course,
an > 1, in the following way:
-if gn <A< gns1 then A =g, +ry;
- if gm €71 < gm41 then 1y = g + 72, m < n;
and so on until one obtains a rernainder r; = 0.

If we note by the Smarandache superior generalized part of A (i.e.
the largest g; less than or equal to A), g(A) then A is written in the
Smarandache generalized base as:

A=g(A)+ g(A— g(A)) + 9(A~g(A) — 9(A - g(A))) + ..
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This base is important for partitions: a generalized base may be any
infinite integer set (of primes, squares, cubes, any m—powers, Fibonac-
ci/Lucas numbers, Bernouly numbers, Smarandache numbers, etc.) whose
partitions are studied.

A particular case is when the base verifies: 2g; > gi41 for any ¢, and
go = 1, since all the coefficients of a written number in this base will be 0
or 1.

Remark: another particular case: if one takes ¢; = p'~%, i=1,2,3,...,
p an integer > 2, one gets the representation of a number in the numerical
base p (p may be 10 (decimal), 2 (binary), 16 (hexadecimal), etc.).

References: [33, 37]

Definition 16. A Concatenated Natural Sequence:

1,22,333,4444, 55555, 666666, 7777777, 88888888, 999999999,
10101010101010101010,1111111111111111311111,

121212121212121212121212,13131313131313131313131313,
1414141414141414141414141414,151515151515151515151515151515, ...

Definition 17. A Concatenated Prime Sequence:

2,23,235,2357,235711,23571113,2357111317,235711131719,
23571113171923, ...

Back concatenated prime sequence:

2,32,532,7532,117532,13117532,1713117532, 191713117532,
2319171311753, ...

Conjecture: there are infinitely many primes among the numbers of
the first sequence.

Definition 18. A Concatenated Odd Sequence:
1,13,135,1357,13579,1357911,135791113, 13579111315, 1357911131517
Back concatenated odd sequence:
1,31,531,7531,97531,1197531,131197531, 15131197531, 1715131197531

Conjecture: there are infinitely many primes among these numbers.
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Definition 19. A Concatenated Even Sequence:
2,24,246, 2468,246810, 24681012, 2468101214, 2468101214186, ...
Back concatenated even sequence:
2,42,642,8642,108642,12108642, 1412108642, 161412108642, ...

Definition 20. A Concatenated S—sequence {generalization):
Let s;,52, ..., 5n, ... be an infinite integer sequence (noted by S). Then:

81,8:1892,818283,...818283...8, ...

is called Concatenated S—sequence, and

§1,5281,538281,...89...838981, ...

1s called Back concatenated S—sequence.

Problem 12. How many terms of the Concatenated S—Sequence be-
long to the initial S—sequence? Or, how many terms of the Concatenated
S—Sequence verify the relation of other given sequence?

Look now at some other examples, where S is the sequeuce of squares,
cubes, Fibonacci, respectively.

Definition 21. A Concatenated Square Sequence:

1,14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, ...
Back concatenated square sequence:

1,41,941,16941,2516941, 362516941, 49362516941, 6449362516941, ...

How many of them are prefect squares?

Definition 22. A Concatenated Cubic Sequence:
1, 18,1827, 182764, 182764125, 182764125216, 182764125216343, ...
Back concatenated cubic sequence:

1,81, 2781, 642781, 125642781, 216125642781, 343216125642781, ...
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How many of them are prefect cubes?

Definition 23. A Concatenated Fibonacci Sequence:

1,11,112,1123,11235,112358,11235813, 1123581321, 112358132134, ...
Back concatenated Fibonacci sequence:

1,11,211,3211,53211,853211,13853211, 2113853211, 342113853211, ...

Does any of these numbers is a Fibonacci number?

Definition 24. A Power Function: SP(n) is the smallest number
m, such that m™ is divisible by n.
Remarks: If p is prime, then SP(p) = p. If r is a square free, then

3
SP(r)=r. Ifn= 1II p{ andall s; <p; then SP(n) =n. If n = p°,
i=1
where p is prime, then:
p, f1<s<p
p’, ifp+1<s<2p?
SP(n)y=<{ p?, fp*+1<s<3p®
P, f(-1)pt+1<s<tp
Reference: [83]

Definition 25. A Reverse Sequence:
1,21,321,4321,54321, 654321, 7654321, 87654321, 987654321,
10987654321,1110987654321, 121110987654321, ...
Definition 26. A Multiplicative Sequence:
2,3,6,12,18,24, 36,48,54, ...

General definition: if my, my, are the first two terms of the sequence, then
mg, for k£ > 3, is the smallest number equal to the product of two previous
distinct terms. All terms of rank > 3 are divisible by m;, and m». In our
case the first two terms are 2, respectively 3.
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Definition 27. A Wrong Sequence: A number n = djaz...az con-
sisted of at least two digits, with the property: the sequence a;,ag, ..., ag,
bis1,0e42, ... (Where bpy, is the product of the previous k terms, for any
i > 1) contains n as its term.

The author conjectured that no number is wrong. Therefore, this se-
quence is empty.

Definition 28. Impotent Numbers:
2,3.4,5,7,9,11,12,17, 19, 23, 25, 29, 31, 37, 41, 43, 47,49, 53, 59, 61, ...

A number n those proper divisors product is less than n. This sequence
contains terms with the forms of p and p?, where p is a prime.

Definition 29. A Random Sieve:
1,5.6,7,11,13,17,19,23, 25,, 29,31, 35, 37,41, 43,47,53,59, ...

General definition:

- choose at random a positive number u;;

- delete all the multiples of all its divisors, except this number;

- choose another number u; being greater than n; among the remaining;
- delete all the muitiples of all its divisors, except this second number;

.. and so on.

The remaining numbers are all coprime two by two.

The obtained sequence ug, £ > 1, is less dense than the prime number
sequence, but it tends to the prime number sequence and also tends to
infinity. This sequence may be important in this way. In our case u; =
6,u2 = 19, uz = 35,

Definition 30. A Cubic Base:
0,1,2,3,4,5,6,7,10,1%, 12,13, 14,15, 16,17, 20,21, 22,23, 24, 25, 26, 27,
30, 31, 32, 100, 101, 102, 103, 104, 105, 106, 107,110,111,112, 113, 114, 115,
116,117,120,121,122,123,...

Smarandache defined over the set of natural numbers the following
infinite base: for k > 1 s; = k3. He proved that every positive integer A
may be written in a unique way in the cubic base as:
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def n
A= (@G, G1d0)cs = X aisi,

with 0 <a; <7,0<ae2<3,0<0e3<2,and0<q; <1, fori>4, and,
of course, a, = 1, in the following way:
-ifen, L A< cepy1, then A=c, + 11
-if ey <1 < Cmy1, then ry = ¢y + 19, m < n;
and so on until one obtains a remainder r; = 0.

Therefore, any number may be written as a sum of cubes (1, being
obvious, is not counted as a cube) +e, where e = 0,1,..., 7.

If we note the superior cubic part of A (i.e. the largest cube less than
or equal to A) by ¢(A), then A is written in the cube base as:

A=c(A)+c(A—-c(A) +c(A—c(A) = c(A—c(A))) + ...

This base is important for partitions with cubes.

Definition 31. A Triangular Base:
1,2,10,11,12,100,101,102, 110, 1000, 1001, 1002, 1010, 1011, 10000,

10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002, 100010,
100011, 100012, 100100, 1000000, 1000001, 1000002, 1000010, 1000011,
1000012,1000100, ...
Numbers, written in the triangular base, are defined as follows: {(n) =

nn+ 1 ,forn > 1.

Definition 32. A Double Factorial Base:
1,10, 100, 101, 110, 200, 201, 1000, 1001, 1010,1100,1101, 1110, 1200,

10000, 10001, 10010, 10100, 10101, 10110, 10200, 10201, 11000, 11001,
11010,11100,11101,11110,11200,11201, 12000, ...
Numbers, written in the double factorial base, are defined as follows:

df(n) = nll.

Definition 33. A General Base: Let 1 = b; < by <b3 < ...<b, <
... be a strictly increasing integer sequence. Then any positive integer can

35



by written in a unique way in this infinite base (in the same way as the
previous particular bases). If we note the superior square part of A (i.e.,
the largest bk less than or equal to A) by 5(A), then A is written in the
general base as:

A = b(A) +b(A — b(A)) + b(A — b(A) — b(A — b(A))) + ...

This base may be important for partitions with increasing sequences.
Reference: {70}

Definition 34. A Non-Multiplicative Sequence (General defi-
nition): Let my, mo, ..., m; be the first £ > 2 terms of the sequence. Then
m;, for i > k + 1, is the smallest number not equal to the product of &
previous distinct terms.

Definition 35. A Non-Arithmetic Progression:
1,2,4,5,10,11,13, 14,28, 29,31, 32,37,38, 40,41, ...
General definition: if m;, my are the first two terms of the sequence,
then my, for k > 3, is the smallest number, such that no 3-term arithmetic
progression is in the sequence. In our case the first two terms are 1 and 2.

Generalization: the same initial conditions, but with no i—term arithmetic
progression in the sequence (for a given i > 3).

Definition 36. A Cubic Product Sequence:
2,9,217, 13825, 1728001, 373248001, 128024064001, 65548320768001, ...

C,n = 1+ 5155...5,,, where ¢; is the k—th cubic number.
Problem 13. How many of them are prime?

Definition 37. A Factorial Product Sequence:
2,3,13,289,34561,24883201, 125411328001, 5056584744960001, ...

Fn =14 fifs...fn, where fi is the k—th factorial number.

Problem 14. How many of them are prime?

36



Definition 38. An U— Product Sequence (generalization): Let
u,, n > 1, be a positive integer sequence. Then we define a sequence, as
follows: U, = 1 4+ ujus...uy,.

Reference: [70]

Definition 39. A S, function (numbers):
1,2,3,2,5,6,7,4,3,10,11,6,13, 14,15, 4,17,6,19,10, 21, 22, 23, 12,
5,26,9,14,29,30,31,8,33,...

Sy(n) is the smallest integer m, such that m? is divisible by n.

Definition 40. A S; function (numbers):
1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,4,17,6,19, 10,21, 22, 23,6,
5,26,3,14,29,30,31,4,33, ...

S3(n) is the smallest integer m, such that m? is divisible by n.

Definition 41. An Anti-Symmetric Sequence:
11,1212,123123, 12341234, 1234512345, 123456123456,

12345671234567, 1234567812345678, 123456789123456789,
1234567891012345678910,12345678910111234567891011,
123456789101112123456789101112, ...

Definition 42. Recurrence Type Sequences:
A.1,2,526,677,701,842,866,1517,458330,458333, 458354, ...

SS;(n) is the smallest number, strictly greater than the previous one,
which is the squares sum of two previvus distinct terms of the sequence;
in our particular case the first two terms are 1 and 2.
Recurrence definition:
1) number a belongs to 5Ss;
2) If b, ¢ belong to SS3, then b? + ¢? belonugs to SSs, too;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to S$S5,.
Sequence SS; is increasingly ordered. Rule 1) may be changed by: the
given numbers aj, as, ..., ar, where k£ > 2, belong to 5§5,.
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B. 1,1,2,4,5,6,16,17,18,20, 21,22, 25, 26, 27, 29, 30, 31, 36, 37, 38,

40,41,42,43,45,46, ...

S51(n) is the smallest number, strictly greater than the previous one {for
n > 3), which is the squares sum of one or more previous distinct terms
of the sequence; in our particular case the first term is 1.
Recurrence definition:
1) number a belongs to SS;;
2) I by, by, ..., b belong to SS;, where k > 1, then b2 + b2+ ...+ b? belongs
to S5, too;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to SS;.
The sequence S5, is increasingly ordered. Rule 1) may be changed by
the given numbers a;, a3, ..., ax, where k > 1, belong to SS;.

C.1,2,3,4,6,7,8,9,11,12,14,15,16,18,19,21, ...

NS§S3(r) is the smallest number, strictly greater than the previous one,
which is not the squares sum of two previous distinct terms of the sequence;
in our particular case the first two terms are 1 and 2.
Recurrence definition:
1) numbers a < b belong to ¥ SS,;
2) If b, c belong to NSS,, then b2+ c? does not belong to NSS,; any other
numbers belong to NSS,;
3) only numbers, obtained by rules 1) and /or 2) applied a finite number
of times, belong to NSS;.
The sequence NSS; is increasingly ordered. Rule 1) may be changed
by the given numbers a,, az, ..., az, where & > 2, belong to NSS,.

D. 1,2,3,6,7.8,11,12,15,16,17, 18,19, 20, 21,22, 23, 24, 25, 26, 27, 28,

29,30,31,32,33,34, 38,39,42,43,44,47, ...

NS551(n) is the smallest number, strictly greater than the previous distinct

terms of the sequence; in our particular case the first term is 1.
Recurrence definition:

1) number a belongs to NSS;;

2) If by, b3, ..., b belong to NSSy, where k > 1, then b2 + 62 + ... + b2 do

not belong to NSSy;

38



3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to NSS;.
Sequence NSS; is increasingly ordered. Rule 1) may be changed by
the given numbers ai, ay, ..., ar, where k > 1, belong to NSS;.

E. 1,2,9,730,737,389017001, 389017008, 389017729, ...

CS,(n) is the smallest number, strictly greater than the previous one,
which is the cubes sum of two previous distinct terms of the sequence; in
our particular case the first two terms are 1 and 2.
Recurrence definition:
1) numbers a < b belongs to C'So;
2) If ¢, d belong to CSa, then ¢® + d° belongs to ¢Ss, too;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to CS,.
Sequence CSy is increasingly ordered. Rule 1) may be changed by the
given numbers ay, as, ..., ax, where k > 2, belong to CS,.

F. 1,1,2,8,9,10,512,513,514, 520, 521, 522,729,730, 731,
737,738,739,1241, ...

CS)(n) is the smallest number, strictly greater than the previous one (for
n > 3), which is the cubes sum of one or more previous distinct terms of
the sequence; in our particular case the first term is 1.
Recurrence definition:
1) numbers a < b belongs to CSy;
2) If by, bs, ..., by belong to CS1, where k > 1, then b2 4+63+ ...+ b3 belongs
to CSy;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to CS;.
Sequence CS) is increasingly ordered. Rule 1) may be changed by the
given numbers ay, @z, ..., ak, where k > 1, belong to CS;.

G. 1,2,3,4,5,6,7,8,10,11,12,13, 14, 15, 16,17, 18, 19, 20,
21,22,23,24,25,26,27,29, 30,31, 32, 33, 34,36,37,38, ...

NCS:(n) is the smallest number, strictly greater than the previous one,
which is not the cubes sum of two previous distinct terms of the sequence;
in our particular case the first two terms are 1 and 2.

Recurrence definition:
1) numbers a < b belongs to NC\Ss;
2) If c,d belong to NCS;, then ¢® + d3 does not belong to NCS3; any

39



other numbers do belong to NCSs;
3) only numbers, obtained by rules 1) and for 2}, applied a finite number
of times, belong to CS-.
Sequence NCS; is increasingly ordered. Rule 1) may be changed by
the given numbers a,, ay, ..., ag, where k > 2, belong to NCS,.

H.1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19, 20,21, 22,
23, 24, 25,26,27,30,31,32,33, 34,37,38.39, ...

NCSi(n) is the smallest number, strictly greater than the previous one,
which is not the cubes sum of one or more previous distinct terms of the
sequence; in our particular case the first term is 1.
Recurrence definition:
1) number a belongs to NCS;;
2) if by, by, ..., bx belong to NCS;, where k > 1, then b2 + 53 + ...+ 83 do
not belong to NCS;
3) only numbers, obtained by rules 1} and /for 2}, applied a finite number
of times, belong to NCS;.
Sequence NCS; is increasingly ordered. Rule 1) may be changed by:
the given numbers a,, as, ..., a;, where k£ > 1, belong to NCS;.
I. A General-Recurrence (Positive) Type Sequence:
General Positive recurrence definition:
Let & > j be natural numbers, and a;,ay, ...,ar - given elements, and
R — a j—relationship (relation among j elements). Then:
1) elements aj, a3, ..., ax belong to SGPR;
2) if my,my, ..., m; belong to SGPR, then R(m;,m, ..., m;) belongs to
SGPR, too;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to SGPR.
Sequence SGPR is increasingly ordered.
Method of constructing the Smarandache (positive) general recurrence
sequence:
- level 1: the given elements a;, a3, ..., ag belong to SGPR;
- level 2: apply the relationship R for all combinations of j—elements
among a,, as, ..., a¢; the results belong to SGRP, too; order all the elements
of levels 1 and 2 together;

: le;'el’i + 1: if by, be, ..., by are all the elements of levels 1, 2, ..., i ~ 1,

and ¢y, ¢g, ..., ¢, are all the elements of levels i, then apply the relationship
R for all combinations of j—elements among by, bs, ...,bm, €1, ¢3, ..., 4, sO
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that at least one element is from level ¢; the results belong to SGRP, too;
order all elements of levels i and i + 1 together;
and so on ...
J. A General-Recurrence (Negative) Type Sequence:
" General Negative recurrence definition:
Let k& > j be natural numbers, and a3, as, ..., ar — given elements, and
R - a j—relationship (relation among j elements). Then:
1) elements a1, az, ..., ax belong to SGNR;
2) if my, my,...,m; belong to SGNR, then R(mi,m;,...,mj) does not
belong to SGN R;
3) only numbers, obtained by rules 1) and /or 2), applied a finite number
of times, belong to SGNR.
Sequence SGN R is increasingly ordered.
Method of constructing the Smarandache (negative) general recurrence
sequence:
- level 1: the given elements ay, as, ..., a; belong to SGNR;
- level 2: apply the relationship R for all combinations of j elements a-
mong dai, az, ..., ax; none of the results belong to SGRP, too; the smallest
element, strictly greater than all a;, as, ..., a;, and different from the pre-
vious results, belongs to SGNR; order all the elements of levels 1 and 2
together;

- level i+ 1: if by, bo, ..., b, are all the elements of levels 1, 2, ..., i—1, and
€1,€2, ..., ¢n are all elements of level i, then apply the relationship R for
all combinations of j—elements among by, b, ..., by, €1, Ca, ..., ¢y, s0 that at
least one element is from the level i; none of the results belong to SGNR;
the smallest element, strictly greater than all the previous elements, and
different from the previous results, belongs to SGNR; order all the ele-
ments of levels ¢ and i + 1 together;

and so on ...

Problem 15. Partition Type Sequences:
A.1,1,1,2,2,2,2,3,4,4, ...

How many times is n written as a sum of non-null squares, disregarding
the terms order? For example:

9 = 12412 +12 412 +1%2 +1241241%412
12412 412412 412422
32,

nuwan
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therefore ns(9) = 4.

B.1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,5,5,5,5,5,6,6...

How many times is n written as a sum of non-null cubes, disregarding the
terms order? For example:

9 B34 134134 134134+ 134 13418
13428

o

therefore ne(9) = 2.
C. A General-Partition Type Sequence
How many times can n be written in the form of

n = R(f(n1), f(n2), ... f(ns))

for some k and n;, ng, ..., n; between 1 and n?

Particular cases: when f(z) = 22, or z3, or z!, or %, etc. and relation
R is the obvious addition of numbers, or multiplication, etc.

Reference: [70}.

Definition 43. A Non-Geometric Progression:
1,2,3,5,6,7,8,10,11,13, 14, 15,16, 17,19,21, 22, 23, 24, 26, 27, 29, 30,
31, 33,34,35,37,38,39,40,41,42,43, 45,46, 47, 48,50, 51, 53, ...

General definition: if my, m2 are the first two terms of the sequence, then
mg, for £ > 3, is the smallest number, such that no 3-term geometric
progression is in the sequence. In our case the first two terms are 1,
respectively 2.

Generalization: if'my,my, ..., m;_1 are the first i~ 1 terms of the sequence,
i > 3, then m;, for k > u, is the smallest number, such that no i—term
geometric progression is in the sequence.

Definition 44. A Unary Sequence:
11,111,11111,1111111,3113111212311,1111311311111,11111311111111111,

11111111111111121,1321111111112111111,13111111113111111111110, ..
u(n) = 11...1, p, digits of “1”, where p, is the n—th prime.
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Is there an infinite number of primes belonging to the sequence?

Definition 45. Let Vi, V5, ..., V,;, be an n—sided polygon, n > 3, and
S be a given set of m elements, m > n. In each vertex V;, 1 < i < n,
of the polygon one puts at most one element of S, and on each side s;,
1 <1 < n, of the polygon one puts e; > 0 elements from S.

Let R be a given relationship of two or more elements of S. All el-
ements of S should be put on the polygon’s sides and vertices so that
the repationship R on each side gives the same result. What connections
can be found existing among the number of the sides of the polygon, set
S (what elements and how many), and the relation R in order for this
problem to have solution(s)?

Definition 46.

I) Smarandache Polyhedrons (With Edge Points): similar definition
generalized in the 3-dimensional space: the points are put on the vertices,
and edges only of the polyhedron (not on inside faces).

II) Smarandache Polyhedrons (With Face Points): similar definition
generalized in the 3-dimensional space: the points are put on the vertices,
and inside faces of the polyhedron (not on the edges).

IIT) Smarandache Polyhedrons (With Edge/Face Points): similar def-
inition generalized in the 3-dimensional space: the points are put on the
vertices, on edges, and on inside faces of the polyhedron.

IV) Smarandache Polyhedrons (With Edge Points): similar definition
generalized in the 3-dimensional space: the points are put on the edges,
and inside faces only of the polyhedron (not in verteces).

What connections can be found existing among the number of ver-
tices/faces/edges of the polyhedrons, set S (what elements and how many),
and the relation R in order for this problem to have solution(s)?

Examples: 1

a) For an equilateral triangle, the set Ns = {1,2, 3,4, 5,6}, the addition,
and on each side to have three elements exactly, and in each vertex an
element, one gets:

the sum of each of the three sides is 9 [the minimum elements 1,2,3 are
put in the vertices];
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1

2 4 3

the sum of each of the three sides is 12 [the maximal elements 6,5,4 are
put in the vertices].

There are no other possible combinations to keep (the sum constant).

Therefore: The Triangular Index SGI(3) = (9,12;2), means: the min-
imum value, the maximum value, the total number of combinations, re-
spectively.

b) For a square, the set N2 = {1,2,3,4,5,6,...,12}, the addition, and
on each side to have four elements exactly, and in each vertex an element.
What is the Square Index SGI(4)?

c) For a regular pentagon, the set N2 = {1,2,3,4,5,6,...,20}, the
addition, and on each side to have five elements exactly, and in each vertex
an element. What is the Pentagonal Index SGI(5)?

d) For a regular hexagon, the set N3 = {1,2,3,4,5,6,...,30}, the
addition, and on each side to have six elements exactly, and in each vertex
an element. What is the Hexagonal Index SGI(6)?

e) Generally speaking: For a n—sided regular polygon. the set Mj2_,
= {1,2,3,4,5,6,...,n% — n}, the addition, and on each side to have n
elements exactly. What is the n—Sided Regular Polygonal Index SGI(n)?

Examples: II

a) For a regular tetrahedron (4 vertices, 4 triangular faces, 6 edges),
the set Mg = {1,2,3,4,5,86, ..., 18}, the addition, and on each edge to have
three elements exactly {in each vertex one element) — to get the same sum.

b) For a regular hexahedron (8 vertices, 6 square faces, 12 edges), the
set N3z = {1,2,3,...,32}, the addition, and on each edge to have four
elements exactly (in each vertex one element) — to get the same sum.

c) For a regular octahedron (6 vertices, 8 triangular faces, 12 edges),
the set Vs = {1,2,3, ..., 18}, the addition, and on each edge to have three
elements exactly (in each vertex one element) — to get the same sum.

d) For a regular dodecahedron (14 vertices, 12 square faces, 24 edges),
the set Me2 = {1,2,3,...,62}, the addition, and on each edge to have four
elements exactly (in each vertex one element) ~ to get the same sum.

Compute the Polyhedron Index SHI(v,e, f) = (m,M; nc) in each
case, where v is the number of the polyhedron verteces, e is the number
of edges, f is the number of faces, m is the minimum sum value and M is
the maximum sum value, nc is the total number of combinations.

€) Or other versions for the previous particular polyhedrons:

- putting elements on the inside faces and vertices only (not on the edges);
- or putting elements on the inside faces, edges and vertices, too;
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- or putting elements on the inside faces and edges only (not on the ver-
tices).
References: {13, 15, 16, 38, 40, 42, 44, 52, 69, 92].

Definition 47. An Add-on Sequence:

Let G = {g1,92,---, 9k, ...} be an ordered set of positive integers with
a given property G. Then the corresponding Smarandache G Add-On
Sequence is defined through

SG={a;i|ar=g1,0c = ap_1 10800 £ g k> 1}.

This definition is a generalization of Definitions 17, 18 and 19.

Definition 48. Concatenation Type Sequences
Let s1, 82, ..., Sn, ... be an infinite integer sequence (noted by S). Then
the concatenation is defined as

S1,8182,8518283, ...

Problem 16. How many terms of this concatenated S—sequence be-
long to the initial s—sequence.

Definition 49. Partition Type Sequences
Let f be an arithmetic function, and R a k—relation among numbers.
How many times can n be expressed in the form of;

n= R(f(nl);f(n2)’ ""f(nk))’

for some k and nj,no,...,ng, so that ny +ny + ...+ np = n?

Problem 17. How many times can n be expressed as a sum of non-null
squares (or cubes, or m—powers)?

Definition 50. Construction of Elements of the

Square-Partial-Digital Subsequence

The Square-partial-digital subsequence (SSPDS) is the sequence of
square integers which admit a partition for which each segment is a square
integer. An example is 5062 = 256036, which has partition 256 / 0 /
36. C. Ashbacher showed that SSPDS is infinite by exhibiting two infi-

nite families of elements. We will extend his results by showing how to
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construct infinite families of elements of a SSPDS containing the desired
patterns of digits.

Problem 18. 441 belongs to the SSPDS, and its square 4412 = 194481
also belongs to the SSPDS. Can another example of integers m, m?, m*
all belonging to SSPDS be found?

Problem 19. It is relatively easy to find two consequtive squares in
SSPDS, e.g., 122 = 144 and 13% = 169. Does the SSPDS contain three or
more consequtive squares as well? What is the maximum length?

Problem 20. How many primes are there in the expression: z¥ + y*,
where ged(z,y) = 17 K. Kashihara announced that there are only finitely
many numbers of the above form, which are products of factorials. F. Luca
proved the following conjecture: 7

Let a,b, and ¢ be three integers with ab # 0. Then the equation
az¥ 4+ by = c2®, with z,y.2 > 2, and ged(z,y) = 1, has finitely many
solutions (z,y, z, n).

Problem 21. J. Castillo asked in [21] how many primes are there in
the expression: z7? + z3° + ... + z5', where n > 1,2;.22,...,2, > 1, and
ged(z1,22,...,2,) = 17

This is a generalization of Problem 43 called "Smarandache expression”
in [21]. F. Luca announced a lower bound for the size of the largest prime
divisor of an expression of type az¥ + by, where ab # 0, z,y > 2, and
ged(z,y) = 1. :

The following three problems are proved by Henry Ibstedt in [41]

Theorem 31. Subtraction Periodic Sequences

Let ¢ be a positive integer. Start with the positive integer N and let N’
be its digital reverse. Put Ny = |{N’ —¢{, and let N{ be its digital reverse.
Put N; = | N’ —¢|, and let V] be its digital reverse. And so on. We shall
obtain eventually a repetition. For example, with ¢ = 1 and N = 52 we
obtain the sequence:

52,24,41,13,30,02,19,90,08,79,96, 68,85,57, 74,46, 63, 35, 52, ...
Here a repetition occurs after 18 steps, and the length of the repeating

cycle is 18.
First example: ¢ =1, 10 < N < 999.
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Every other member of this interval is an entry point into one of five
cyclic periodic sequences (four of these are of the length of 18, and one
of the length of 9). When N is of the form of 11k or 11k — 1, then the
iteration process results in 0.

Second example: 1 < ¢ <9, 100 < N <999. For ¢ = 1,2 or 5 all
iterations result in the invariant (0 sometimes, after, a large number of
iterations. For the other values of ¢ there are only eight different possible
values for the length of the loops, namely 11,22,33,50,100,167,189,200. For
¢="Tand N = 109 we have an example of the longest loop obtained: it
has 200 elements, and the loop closes after 286 iterations. (H. Ibstedt)

Theorem 32. Multiplication Periodic Sequences

Let ¢ > 1 be a positive integer. Start with the positive integer N,
multiply each digit z of N by ¢ and replace that digit by the last digit of
cz to give N;. And so on. We shall obtain eventually a repetition. For
example, with ¢ = 7 and N = 68 we obtain the sequence:

68, 26,42, 8468, ...

Integers which digits are all equal to 5 are invariant under the given oper-
ation after one iteration.

If ¢ = 2, there are four term loops, starting with the first or second
term. If ¢ = 3, there are four term loops, starting with the first term. If
¢ = 4, there are four term loops, starting with the first or second term. If
¢ = 4 or 5, the sequence is invariant after one iteration. If ¢ = 7, there
are four term loops, starting with the first term. If ¢ = 8, there are four
term loops, starting with the second term. If ¢ = 9, there are two loops,
starting with the first term.

Theorem 33. Mixed Composition Periodic Sequences

Let N be a two-digit number. Add the digits, and if the sum is greater
than 10 add them again. Also take the absolute value of their difference.
These are the first and second digits of N;. Now repeat this. For example,
with N = 75 we obtain the sequence:

75,32,51,64,12,31,42,62,84, 34,71, 86, 52,73, 14, 53, 82, 16, 75, ...

There are no invariants in this case. Four numbers: 36, 90, 93, and 99
produce two-element loops. The longest loops have 18 elements. There
are also loops of 4, 6, and 12 elements. (H. Ibstedt)

There will always be a periodic (invariant) sequence whenever we have
a function f : S — S, where S is a finite set, and we repeat the function
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f more times than card(S). Thus the General periodic sequence is defined
as:
a; = f(s), where s is an element of S;

az = fla1) = f(f(s)); a3 = f(az) = f(f(a1)) = F(f(F(s)))
Definition 51. Erdos-Smarandache Numbers:
2,3,5,6,7,10,11,13,14,15,17, 19, 20, 21, 22, 23, 26, 28, 29, 30,

31,33,34,35, ...

Solutions of the diophantine equation P(n) = S(n), where P(n) is the
largest prime factor which divides n, and S(n} is the Smarandache func-
tion.

References: (36, 68]

Problem 22. A Square Product Sequence:
2,5,27,577,14401,518401, 25401601, 1625702401, 131681894401,
13168189440001, 1593350922240001, ...

Sp = 1 + 8159...5,, where s; is the k—th square number. How many of
thein are prime?

Problem 23. A Cubic Product Sequence:
2,9,217, 13825, 1728001, 373248001, 128024064001, 65548320768001, ...

Cpn = 14¢162...C,, Where c; is the k—th cubic number. How many of them
are prime?

Problem 24. A Factorial Product Sequence:
2,3,13,289, 34561, 24883201, 125411328001, 5056584744960001, ...

F, = 1+ fifa...fn, where f; is the k—th factorial number. How many of
them are prime?

Problem 25. How many solutions have the equalities:

S(n+1)+S(n+2)=S(n+3)+S(n+4)?
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M. Bencze found the solutions n = 5, 6, 27;
Sn+1)—-S(n+2)=S(n+3)—S(n+4)?
M. Bencze found the solutions n = 0, 1, 48;
Sn+1)+S(n+2)+S(n+3)=S(n+4)+S(n+5)+S(n+6)?

M. Bencze found the solution n = 4.

Problem 25. Continued Fractions
If we consider the consecutive sequence

1,12,123,1234,12345, ...

we form a simple continued fraction

1+ 1
12 +
23+

T
1234 + g5

If we consider the reverse sequence

1,21,321,4321,54321, ...
to the previous one we get a general continued fraction

1

124
23+

£5)1
1234 + pgii—

Calculate each of the above continued fractions. The previous example
is convergent (Dodge [31]) but what about the second?
Reference: [22, 23, 31, 87]

Problem 27. Palindromic Numbers and Iterations: A number
is called palindromic if it reads the same forwards and backwards. For
example: 121, 34566543, 1111. The Pseudo-Smarandache function Z(n)
is defined for any n > 1 as the smallest integer m, such that n divides
evenly 1 + 2 + ... + m. There are some palindromic numbers n such that
Z(n) is also palindromic Z(909) = 404, 2(2222) = 1111. Let Z*(n) =
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Z(Z(Z(...(n)...))), where function Z is executed k times. Z°(n) is, by
convention, n.

Unsolved problem: What is the largest value of m, such that for
some n, Z%(n)s is a palindrome for ali k = 0,1,2,.

ConJecture (Ashbacher): There is no largest value of m, such that
for some n, Z%(n)s is a palindrome for all k = 0,1,2,...,m?

Reference: [43]

Problem 28. Some upper bounds for the Smarandache func-
tion average: Let S = 1.(S(1) + S(2) + ... + S(n)) be the Smarandache
function average. S. Tabirca and T. Tabirca proved that

= _3 12
<Zn+-+= 5;
S_8n+4+n,forn>o,

= .21 1 2

< pe—-=

.S'_.72n-§-12 = , forn>23

They conjectured that S = m, for n > 1.
The following three theorems are proved by F. Smarandache in {75].

Theorem 34. On Concurrent Lines: If a polygon with n sides
{n > 4) is circumscribed to a circle, then there are at least three concurrent
lines among the polygon’s diagonals and the lines which join tangential
points of two non-adjacent sides.

Theorem 35. On Cevians Theorem: Let AA’, BB',CC' be three
concurrent cevians (lines), in the point P, in the triangle ABC. Then

PA PB PC_ .
ATPFTPC =

and

PA PB PC _ BA CB AC>8
PA""PB''PC' ~ BA'' CB' AC'= "
Theorem 36. On Podaire Theorem: Let AA’, BB',CC’ be the

altitudes of the triangle ABC. Note AB = ¢,BC = a,CA = b, and
A'B' =¢,B'C'=a',C'A' = V. Then

dV¥ +¥cd+dd' < :i-(a2 + b2 + ¢%).
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Problem 29. Let p be a positive prime and s > 2 be an integer. Then

Z(p’) = p°* — 1, if p is even; or Z(p*) = p*"1 — 1, if p is odd. The
solution set of the diophantine equation Z(z) = 8 is {9,12,18,36}. For
any positive integer n the diophantine equation Z(z) = n has solutions.
Unsolved Problem 1: The diophantine equation Z(z) = Z(z + 1) has
no solutions.
Unsolved Problem 2: For any given positive number r there exists an
integer s, such that the absolute value of Z(s) — Z(s + 1) is greater than
r.

Reference: [43]

Definition 52. Smarandache similar triangles: Let us denote by
T(a, b, c) the triangle ABC with side lengths of a, b, c. Then the two similar
triangles T'(a, b, ¢) and T'(a’, ¥’, ) are said to be Smarandache similar ones
if S(a) = S(a’), S(b) = S(b'), S(c) = S(¢').

Reference: [65]

Definition 53. Smarandache Related Triangles: Unsolved prob-
lems 1), 2), 4) are solved by Charles Ashbacher in [5]. Being given a
triangle T(a, b, ¢), we say that a triangle T'(a’, ¥, ¢’} is Smarandache relat-
ed to T if S(a) = S(a’), S(b) = S(b'), S(¢) = S(¢'). Note that triangles T
and 77 may or may not be similar.

The following four problems are interested and Problems 1), 2), 4) are
solved by Charles Ashbacher in [5)].

Problem 1: Are there two distinct dissimilar Phytagorean triangles that
are Smarandache related, i.e., both T(a,b,¢) and T(a',¥, ¢’') are Phy-
tagorean, so that S(a) = S(a’), S(b) = S(b'), S(c) = S(¢'), but not being
similar.

Problem 2: Are there two distinct and dissimilar 60°—triangles or 120°—
triangles that are Smarandache related?

Problem 3: Let triangle T'(a, b, c) be given. Is it possible to give either an
exact formula or an upper bound for the total number of triangles (without
actually determining all of them) that are Smarandache related to T'?
Problem 4: Consider other ways of relating two triangles in the Smaran-
dache number sense. For example, are three two triples of natural num-
bers (a,b,¢) and (a’,¥,¢'), such that a + b+ ¢ = a’ + ¥ + ¢/ = 180° and
S(a) = S(a’), S(b) = S(¥'), S(c) = S(¢'). If such distinct triples exist, the
two triangles would be Smarandache related via their angles. Of course,
in this relationship the side lengths of the triangles may not be natural
numbers.

Reference: [63]
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The following four definitions are introduced in F. Smarandache’s paper
“Paradoxist Mathematics” (see pages 5-28 from [82]).

Definition 54. Paradoxist Geometry: A new type of geometry
was constructed by F. Smarandache (see [57]) in 1969 simultaneously in a
partially Euclidean and partially non-Euclidean space by replacing the Eu-
clid’s fifth postulate (axiom of parallels) with the following five-statement
propositions:

a) there are at least one straight line and one point exterior to it in the
space, for which only one line passes through the point and does not in-
tersect the initial line [1 parallel];

b) there are at least one straight line and one point exterior to it in the
space, for which only a finite number of lines l,la, ..., li (k > 2) pass
through the point and do not intersect the initial line [2 or more (in a
finite number) parallels};

¢) there are at least one straight line and one point exterior to it in the
space, for which any line that passes through the point intersects the ini-
tial line [0 paraliel];

d) there are at least one straight line and one point exterior to it in the
space, for which an infinite number of lines that pass through the point
(but not all of them) do not intersect the initial line {an infinite number
of parallels, but not all lines passing through;

e) there are at least one straight line and one point exterior to it in the
space, for which any line that passes through the point does not intersect
the initial line [an infinite number of parallels, all lines passing throught
the point].

Definition 55. Non-Geometry: A curious geometry was construct-
ed by F. Smarandache (see {26]) in 1969 with the following “axioms”:
1. It is not always possible to draw a line from an arbitrary point to an-
other arbitrary point.
2. It is not always possible to extend by continuity a finite line to an
infinite line.
3. It is not always possible to draw a circle from an arbitrary point and of
an arbitrary interval.
4. Not all the right angles are congruent.
5. If a line, cutting two other lines, forms the interior angles of the same
side of it strictly less than two right angles, then not always the two lines
extended towards infinity cut each other in the side where the angles are
strictly less than two right angles.
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Definition 56. Counter-Projective Geometry This type of geom-
etry has been constructed by F. Smarandache (see [17]) in 1969.

Let P, L be two sets, and r a relation included in P x L. The elements
of P are called points, and those of L lines. When (p,[) belongs to r,
we say that line { contains point p. For these, one imposses the following
counter-axioms:
1) There exist either at least two lines, or no line, that contains two given
distinct points.
2) Let p1, p2, p3 be three non-collinear points, and g1, g2 two distinct points.
Suppose that {pi,q1,p3} and {p2, g2, ps} and collinear triples. Then the
line containing p;,ps, and the line containing g¢;,¢2 are not intersecting
each other.
3) Every line contains at most two distinct points.

Definition 57. Anti-Geometry

It is possible to deformalize entirely Hilbert’s groups of axioms of the
Euclidean Geometry, and to construct a model, such that none of its fixed
axioms holds. Let us consider the following things:
- a set of <points>: A, B,C, ...
- a set of <lines>: h k1, ...
- a set of <planes>: a, 3, ¥, ... and
- a set of relationships among these elements: “are situated”, “between”,
“parallel”, “congruent”, “continuous”, etc. Then, we can deny all Hilbert’s
twenty axioms [see David Hilbert, “Foundations of Geometry”, translat-
ed by J.Townsend, 1950; and Roberto Bolona, “Non-Euclidean Geome-
try”,1938). There exist cases, within a geometric model, whem the same
axiom is verified by certain points/lines/planes and denied by others.

GROUP I. ANTI-AXIOMS OF CONNECTION:

I.1. Two distinct points of A and B do not always completely deter-
mine a line.

Let us consider the following model MD:
Get an ordinary plane é, but with an infinite hole in being of the following
shape:
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semi-plane delta 1 . . curve f1 (frontier)

t semi-plane delta 2 . . curve f2 (frontier)

Q

Plane é is a reunion of two disjoint planar semi-planes; f1 lies in MD,
but 2 does not; P, Q are two extreme points on f that belong to MD.

One defines a LINE [ as a geodesic curve if two points A, B that belong
to MD lie also in /. If a line passes two times through the same point, then
it 1s called a double point (KNOT).

One defines a PLANE a as a surface, such that for any two points
A, B that hein a and belong to MD there is a geodesic curve which passes
through A, B and lies also in a.

Now, let us have two strings of the same length: one ties P and Q with
the first string s;, so that curve s; is folded in two or more different planes
and s; is the plane 6. Next, do the same with string s2, tie Q with P,
but over plane é, and so that s, has a different form from s,; and a third
string s3, from P to Q, much longer than s;. Then, s, s2, s3 belong to
MD.

Let I,J, K be three isolated points — as some islands, i.e. not joined
with any other point of MD, exterior to plane é.

Unsolved problem: Of course, this model is not perfect, and it is far
from the best. Readers are asked to improve it, or to make up a new one
that is better.

Let A, B be two distinct pointsin é;_z,. P and Q are two points on s;,
but they do not completely determine a line, referring to the first axiom
of Hilbert, because A — P — 51 — Q are different from B— P - s, — Q.

1.2. There is at least one line / and at least two distinct points A and
B of |, such that A and B do not completely determine line {.
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Line A — P — 51 — @ is not completely determined by P and @ in
the previous construction, because B — P — s; — @ is another line passing
through P and Q.

1.3. Three points A, B, C not situated in the same line do not always
completely determine a plane a.

Let A, B be two distinct points in 6;_g,, such that A, B, P are not co-
linear. There are many planes containing these three points: §; extended
with any surface s containing s, but not cutting s; in between P and Q,
for example.

I.4. There is at least one plane, @, and at least three points A, B,C in
it not lying in the same line, such that A, B, C do not completely determine
the plane c. (See the previous example.)

L5. If two points A, B of a line [ lie in a plane a, it does not mean
that every point of { lies in a.

Let A be a point in é;_y,, and B - another point on s; between P and
Q. Let o be the following plane: é; extended with a surface s containing
s1, but not cutting s, between P and @, and tangent to é; on a line QC,
where C is a point in 83_y,. Let D be a point in é2_f,, not lying on the
line QC. Now, A, B, D are lying on the same line A — P — 5, — Q — D,
A, B are in plane a, but D is not.

1.6. If two planes o, 8 have a point A in common, does not mean that
they have at least one second point in common.

Construct the following plane a: a closed surface containing s; and so,
and intersecting 6, in one point only, P. Then a and é; have a single point
In common.

I.7. There exist lines, where only one point lies, or planes, where only
two points lie, or space where only three points lie.

Hilbert’s 1.7 axiom may be contradicted if the model has discontinuities.
Let us consider the isolated points area.

Point I may be regarded as a line, because it is not possible to add any
new point to I to form a line.

One constructs a surface that intersects the model only in points I and

J.

GROUP 1II. ANTI-AXIOMS OF ORDER

I1.1 If A, B, C are points of a line and B lies between A and C, it does
not mean that B always lies between C and A, as well.

Let T lies in sy, and V lies in s2, both of them closer to @, but different
from it. Then: P,V,T are points on line P —s; — Q — 5o — P, i.e. the
closed curve that starts from point P and lies in s; and passes through
point @ and lies back to s; and ends in P), and T lies between P and V
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- because PT and TV are both geodesic curves, but 7 does not lie between
V and P

- because from V the line goes to P and then to T, therefore, P lies
between V and T.

By definition: segment AB is a system of points lying upon a line
between A and B the extremes are included.

Warning: AB may be different from BA; for example: the segment PQ
formed by the system of points starting with P, ending with @, and lying
in 51, is different from the segment QP formed by the system of points
starting with @, ending with P, but belonging to s;.

Moreover, AB may sometimes be different from AB; for example: the
segment PQ) formed by the system of points starting with P, ending with
@, and lying in sy, is different from the segment PQ formed by the system
of points starting with P, ending with @, but belonging to s».

I1.2. If A and C are two points of a line, then: there does not always
exist a point B lying between A and C, or there does not always exist a
point D such that C lies between A and D.

For example: let F be a point on fi, F being different from P, and G a
point in &;, G does not belong to fi; draw the line [ which passes through
G and F; then: there exists a point B lying between G and F
~ because GF is an obvious segment, but there is no point D, such that
F lies between G and D;

- because GF is right bounded in F (G F may not be extended to the other
side of F, because otherwise the line will not remain a geodesic curve one
anymore).

I1.3. There exist at least three points situated on a line, so that: one
point lies between the other two, and another point lies between the other
two, as well.

For example: let R, T be two distinct points, different from P and Q,
situated on line P —s; — @ — s, — P, such that the lengths of PR, RT, TP
are all equal; then: R lies between P and T, and T lies between R and P,
and P lies between T and R, as well.

IL.4. Four points A4, B, C, D of a line cannot always be arranged: so
that B lies between A and C and also A between D, and such that C lies
between A and D and also between B and D.

For example: let T and R are two dictinct points, different from P and
Q, situated on line P — 57 — @ — s — P, so that the lengths of PR, RQ,
QT and TP are all equal, therefore, R belongs to s;, and T belongs to s»;
then P, R, Q, T are situated on the same line:

so that R lies between P and Q, but not between P and T
— because the geodesic curve PT does not pass through R,
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and so that @ does not lie between P and T
- because the geodesic curve PT does not pass through Q,
but lies between R and T

- let A and B be two points in §5_ 721 such that A, Q , B are colinear,
and let C, D be two points on sy, s, respectively, all of the four points
being different from P and Q; then A, B, C, D are points situated on the
same line as A—~Q — s, —P—s,— B, which is the same A—Q—s,—P—s,—B,
therefore, we may have two different orders of these four points in the same
time: A, C, D, B and A, D, C, B.

IL5. Let A, B, C be three points not lying in the same line, and let
I be a line lying in the same plane ABC, not passing through any of the
points A, B, C. Then, if line ! passes through a point of segment AB,
it does not mean that line [ will always pass either through a point of
segment BC, or through a point of segment AC.

For example: let AB be a segment passing through P in the semi-plane
61, and let C be a point lying in 61, too, on the left side of line AB; thus A,
B, C do not lie on the same line; now consider line Q —s;— P —5; — Q-D,
where D is a point, lying in semi-plane &; but not on f,: therefore, this line
passes through point P of the segment AB, but it passes neuther through
a point of the segment BC, nor through a point of the segment AC.

GROUP III. ANTI-AXIOM OF PARALLELS.

In a plane o through a point A, lying outside of line I, either no line,
or only one line, or a finite number of lines can be drawn (At least two of
these situations should occur.) The line(s) is (are) called parallel(s) to {
through the given point a.

For example:

- let lp be the line N — P — s; — Q — R, where N is a point lying in 6,
not on fi, and R is a similar point lying in 6, not on fo, and let A be a
point lying on s, then: no parallel to Iy can be drawn through A (since
any line passing through A, hence, through s,, will intersect s, hence, {;
in P and Q);

- if line I; lies in 6y, so that I; does not intersect frontier f;, then:
through any point lying on the left side of /; one and only one parallel will
pass;

- let B be a point lying in f;, different from P, and another point C
lying in 61, not on fi;let A be a point lying in 6; outside of BC; then: an
infinite number of parallels to line BC can be drawn through point A.

Theorem: There are at least two lines ;, {5 of a plane, which do not
meet a third line I3 of the same plane, but they meet each other, (ie. if 4
is parallel to I3, and all of them are in the same plane it is not necessary
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that {; is parallel to l3).

For example: consider three points A, B,C lying in f;, and different
from P, and D a point in 6; not on f;; draw lines AD, BE and CE, so
that E is a point in é; not or f; and both BE and CE do not intersect
AD; then: BE is parallel to AD, CE is also parallel to AD, but BE is
not parallel to CE because point E belongs to both of them.]

GROUP IV. ANTI-AXIOMS OF CONGRUENCE

IV.1. If A, B are two points on a line [, and A’ is a point upon the
same or another line ¥, then: upon a given side of A’ on the line I’, we
cannot always find only one point B’ so that segment AB is congruent to
segment A'B’.

For example:

- let AB be a segment lying in §; and having no point in common with
f1, and let us construct line C — P — s; — Q — s — P (noted by ! which
is the same with C — P — s3 = Q@ — 57, — P, where C is a point lying in
8, neither in fi, nor on AB; take a point A’ on I, between C and P, so
that A’'P is smaller than AB; now, there exist two distinct points B’ on
s9, such that A’B1’ is congruent to AB, with A’'B1 different from A’'B2;

- but if we consider a line I lying in §; and limited by the frontier f;
on the right side (the limit point being noted by N), and take a point A’
on I, close to M, such that A’M is less than A'B’, then: there is no point
B’ on the right side of I/, so that A’B’ is congruent to AB.

A seginent may not be congruent to itself! For example: let A be a
point on s;, closer to P also; A and B are lying on the same line A - Q -
B— P— A, which is the same as line A— P— B—@— A, but AB measured
on the first representation of the line is strictly greater than AB measured
on the second representation of their line.

IV.2. If a segment AB is congruent to the segment A’B’ and also to
the segment A” B”, then segment A’B’ is not always congruent to A" B”.

For example: let AB be a segment lying in é;y,, and consider the line
C—P—~5s;—-Q—sy—P— D, where C, D are two distinct points in ;..5_1,
such that C, P, D are colinear. Suppose that segment AB is congruent
to segment CD (i.e. C— P — 8 — Q — s — P — D). Get also an obvious
segment A'B’ in §;_y,, different from the preceding ones, but congruent
to AB. Then, segment A'B’ is not congruent to segment CD (considered
as C — P — D, i.e. not passing through Q.)

IV.3. If AB, BC are two segments of the same line I, which have no
points in common aside from point B, and A'B’, B’C’ are two segments of
the same line or of another line /, having no point in common aside from
B', so that AB is congruent to A’B’ and BC is congruent to B'C’, then
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segment AC is not always congruent to A'C’.

For example: let [ be a line lying in 6;, not on f;, and let A, B, C be
three distinct points on I, such that AC is greater than s;; let I’ be the
following line: A’ — P — sy — Q — s5 — P, where A’ lies in §1, not on fi,
and get B’ on s; so that A’B’ is congruent to AB, get C’ on s, so that
BC is congruent to B’C’ (points A, B, C are thus chosen); then: segment
A'C’ which is firstly seen as A’ — P — B’ — Q — C’ is not congruent to AC,
because A’C’ is the geodesic curve A’ — P — C’ (the shortest way from A’
to C’ does not pass through B’) which is strictly less than AC.

Definitions: Let £, k be two lines having a point O in common. Then
system (h.O, k) is called the angle of lines & and k in point O. (Since some
of our lines are curves, we take the angle of the tangents to the curves in
their common point.)

The angle, formed by lines h and k situated in the same plane, noted
by Z(h, k), is equal to the arithmetic mean of the angles formed by A and
k in all their common points.

IV.4. Let an angle (h, k) be given in the plane a, and let a line A’
be given in the plane B. Suppose that in plane § a definite side of line h’
be assigned, and a point O’. Then in plane @ there are one, or more, or
even no half-line(s) k' emanating from point O’, so that the angle (h, k)
1s congruent to angle (h’, k'), and at the same time the interior points of
angle (h', k') lie upon one or the both sides of h’.

Examples:

- Let A be a point in §,_;,, and B, C two distinct points in 85_y,; let A
be the line A~ P —s; —Q — B, and k be the line A— P -5, —Q - C;
since h and k intersect in an infinite number of points (the segment AP),
where they normally coincide - i.e. in each point at this kind their angle
is congruent to zero, angle (h, k) is congruent to zero. Now, let A’ be a
point in é;_¢,, different from A and B’ a point in é;_y,, different from B,
and draw the line b’ as A’ — P — s; — Q — B; there exist an infinite number
of lines k¥, of the form A’ — P — s, — Q@ — C’ (where C' is any point in
82_4,, not in the line @B’), such that angle (h, k) is congruent to (h’, ¥’),
because (h’, k') is also congruent to zero, and the line A’ ~ P —s, —Q— D’
if D' is not on the line QC’.

-if h, k, and k' are three lines in §;_p, which intersect the frontier f; in
one point at most, then there exists only one line k&’ on a given part of A’,
such that angle (h, k) is congruent to the angle (h’, k).

- Is there any case when, with these hypotheses, no k' exists?

- Not every angle is congruent to itself; for example: £(sy, s2) is not congru-
ent to £(sy, s2) [because one can construct two distinct lines: P—s;-Q—A
and P —s2 —Q — A, where A is a point in §,_j,, for the first angle, which
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becomes equal to zero; and P—s, — Q— A and P — s — Q — B, where B
is another point in §,_¢,, B different from A, for the second angle, which
becomes strictly greater than zero!

IV.5. If angle (h, k) is congruent to angle (h’, k') and angle (h”,£"),
then angle (h’, k') is not always congruent to angle (h”,k”). (A similar
construction to the previous one.)

IV.6. Let ABC and A’'B’'C’ be two different triangles, so that
AB is congruent to A'B’,

AC is congruent to A'CY,
{BAC is congruent to LB'A'C".

Then, not always ZABC is congruent to LA’B’C’' and LACB is con-
gruent to LA'C'B’.

For example: let M, N be two distinct points in §_y,, thus obtaining
the triangle PM N; Now take three points R, M’, N’ in é,_;,, such that
RM' is congruent to PM, RN’ is congruent to RN, and angle (RM', RN')
is congruent to angle (PM, PN). RM’'N’ is an obvious triangle. Of course
both the triangles are not congruent, because for instance, PM and PN
cut each other twice — in P and Q — while RM’ and RN’ only once - in
R. (These are geodesical triangles.)

Definitions: Two angles are called supplementary if they have the
same vertex, one side in common, and the other not common sides form a
line.

A right angle is the angle, congruent to its supplementary angle.

Two triangles are congruent if their angles are congruent two by two,
and their sides are congruent two by two.

Propositions: A right angle is not always congruent to another right
angle.

For example: let A — P —s; — Q be a line, with A lying in é,_;,, and
B — P — 51 — Q another line, with B lying in §;_y, and B not lying on
line AP; we consider the tangent t at s; in P, and B chosen in a way
that £(AP,1) is not congruent to Z(BP,t); let A’, B’ be other points lying
in 6;_y, so that ZAPA' is congruent to LA'P —s; — @, and LBPB' is
congruent to ZB'P — s; — Q. Then:
- angle APA' is right, because it is congruent to its supplementary (by
construction);
- angle BPB' is right, because it is congruent to its supplementary (by
construction);
- but ZAPA’ is not congruent to ZBPB’, because the first one is a half of
angle A — P — s, — Q, i.e. a half of Z(AP,t), while the second is a half of
B—P—s, —Q,ie. ahalfof Z(BP,t).

The theorems of congruence for triangles [two sides and an angle in
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between; two angles and a common side; three side] may not hold even in
the Critical Zone (s, s2, fi1, f2) of the Model.

Property: The sum of the angles of a triangle can be:
- 180 degrees, if all of its vertices A, B, C are lying, for example, in 6;_¢,;
- strictly less than 180 degrees [any value in the interval (0, 180)], for
example: let R, T' be two points in 8y, so that @ does not lie in RT,
and S another point on ss;
then triangle SRT has Z(SR, RT) congruent to 0, because SR and ST
have an infinite number of common points (the segment SQ), and LQT R+
LTRQ congruent to 180 — ZTQR [by construction we may vary ZTQR in
the interval (0, 180)];
- even 0 degree: let A be a pointin é,—y,, B a point in é3_¢,, and C a point
on s3, very close to P; then ABS is a non-degenerate triangle (because its
vertices are non-colinear), but

L(A-P—-5,—Q—B,A-P—s5-C)

=/((B-Q-5,—-P—-AB-Q-s3—P—s3—C)
=L(C—33—P—A.C—S3—P—Sl—Q—B)—_—O

{one considers the length of C' — s3 — P — s1 — @ — B strictly less than the
length of C — s3 — B; the area of this triangle is also 0;

- more than 180 degrees, for example: let A, B be two points in é;_;,, so
that ZPAB + LPBA + L(s], s3; inQ) is strictly greater than 180 degrees;
then triangle ABQ, formed by the intersection of lines A— P —s,—Q,Q —
sy — P — B, AB will have the sum of its angles strictly greater than 180
degrees.

Definition: A circle of center M is a totality of all points A for which
the segments M A are congruent to one another.

For example, if the center is @, and the length of the segments M A is
chosen to be greater than the length of 51, then the circle is formed by the
arc of circle centered in @, of radius M A, and lying in é,, plus another arc
of circle centered in P, of radius M A—length of s1, lying in é;

GROUP V. ANTI-AXIOMS OF CONTINUITY
(ANTI-ARCHIMEDIAN AXIOM)

Let A, B be two points. Take the points A;, Az, Az, Ay, ..., so that A,
lies between A and A,, A, lies between A; and Az, As lies between A5 and
A4, ete. and so that segments AA;, A1Ag, A2A3, A3Ay4, ... are congruent
to one another. Then, among this series of points, there not always exists
a certain point Ay, such that B lies between A and A,,.
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For example: let A be a pointin é;_y;, and B a point on f;, B different
from P; let us consider on line AB points A;, Ay, A3, A4, ... in between A
and B, such that AA;, AjAz, A2A3, A3Ay,, ... etc. are congruent to each
other; then, we find that there is no point behind B (considering the
direction from A to B), because B is a limit point (line AB ends in B).

The Bolzano’s (intermediate value) theorem may not hold in the Crit-
ical Zone of the Model.

Unsolved problem: Is there a better model for this anti-geometry?

Definition 38. A Class of Paradoxes

Let < A > be an attribute, and let < Non — A > be its negation.
Then:

Paradoz 1. ALLIS < A>, THE < Non—-A> TOO.
Examples:
E11l: All is possible, the impossible too.
E12: All is present, the absents too.
E13: All is finite, the infinite too.
Parador 2. ALLIS < Non—A>, THE <A > TOO.
Examples:
E21: All is impossible, the possible too.
E22: All is absent, the presents too.
E23: All is infinite, the finite too.
Parador 3.- NOTHING 1S < A>, NOTEVEN < A>.
Examples:
E31: Nothing is perfect, not even the perfect.
E32: Nothing is absolute, not even the absolute.
E33: Nothing is finite, not even the finite.
Remark: The three kinds of paradoxes are equivalent.
More general paradox: ALL (Verd) < A >, THE < Non— A >
TOO.

Replacing < A > by an attribute, we find a paradox.

Let us analyse the first one (E11): “All is possible, the impossible too”.

If this sentence is true, then we get that “The impossible is possible
too”, which is a contradiction; therefore the sentence is false {object lan-
guage).

But the sentence may be true, because “All is possible” involves that
“the impossible is possible”, i.e., “it is possible to have impossible things”,
which is correct (meta-language).

Of course, among these ones, there are unsuccessful paradoxes, but the
proposed method obtains beautiful others.
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References: (2, 14, 44, 45, 46, 48, 49, 53, 55, 56, 57, 63, 77, 91, 93,
96, 97

Definition 59. Linguistic Paradoxes

Let < N > < V >, < A > be some noun, verb, and attribute,
respectively, and < Non— N >, < Non—V >, < Non — A > be their
antonyms, respectively. For example, if < A > is small, then < Non—A >
is big or large, etc.

Also let < N’ >, < N” >, etc. represent synonyms of < N > or even
< N> andso < V' > < V"> etc. or < A" >, < A" >, etc.

Let < NV > represent a noun-ed verb, and < NV’ > a synonym, etc.

Then, one defines the following classes of linguistic paradoxes and semi-
paradoxes.

1. < Non — N > is a better < N >.
< Non — A > is a better < A >.
< Non—V >isabetter <V >.

Examples:
Not to speak is sometimes a better speech.
Not to complain i1s a better complaint.
Unattractive is sometimes better than attractive.
Slow is sometimes better than fast.
No government is sometimes a better government.
A non-ruler is sometimes a better ruler.
No news is a good news.
Not to stare is sometimes a better look.
Not to love is a better love.
Not to move is sometimes a better move.
Impoliteness is a better politeness.
Not to hear is better than not listening.
No reaction is sometimes the best reaction.
Not to show kindness is a better kindness [welfare].
She is better than herself.
No fight is a better fight [i.e., to fight by non-violent means].

2. Only < N > istrulya < Non—~ N >.
Only < A>istrulya < Non— A >.
Examples:
Only a rumor is truly a gossip.
Only a fiction is truly a fact.
Only normal is truly not normal.
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Nobody is truly a ‘'somebody’.

Only fiction is truly real.

The friend is the most dangerous hidden enemy.
Only you are truly not you [= you act strangely].
Only mercy can be truly merciless.

If you spit at the sky, it will fall in your face.
Only gentleness is truly wildness.

3. This is so < A >, that it looks < Non — A >.
Examples:

This is so true, that it looks false!

This is so ripe, that it looks spoilt.

This is so friendly, that it looks hostile.

He seems so trustworthy, that he looks untrustworthy.

This is so fake, that it looks real!

This is so proper, that it looks improper.

This is so beautiful, that it looks unreal.

This is so simple, that it looks difficult.

The story was so real, that it looked fiction.

Can’t see the trees for the forest.

4. There is some < N >, which is < A > and < Non — A > at the
same time.

Examples:

There are events which are good and bad at the same time.

There are lows which are good and bad at the same time.

There are some news which are real and wrong at the same time.

There are some insects which are helpful and dangerous at the same time
[like the spider].

There are men who are handsome and ugly at the same time.

There are classes that are fun and boring at the same time.

There are some ministers who are bevievers and mis-believers at the same
time.

There are moments that are sweet and sour.

There are games which are challenged and not competitive at the same
time.

Food which are simultaneously hot and cold.

The game was excluding, yet boring [because we were losing].

People are smart and foolish at the same time [i.e., smart at something,
and foolish at other thing].

5. There is some < N >, which < V > and really < Non—V > at the
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same time.

Examples:
There are people who trick and do not really trick at the same time.
There are some people who play and do not play at the same time.
Some of life’s experiences are punishments and rewards as the same time.
Exercise is exchausting but also invigorating.
There are children who listen and do not really listen at the same time.
There are teachers who teach and do not teach at the same time.
There are people who spell and misspell at the same time.
Nice and rough people concomitantly.
Politicians who lie and tell the truth at the time!

6. To < V >, even when < Non —V >.
Examples:
A sage thinks even when he does not think.
I exist even when I do not exist.
A clown is funny even when he is not being funny.
To die of thirst surrounded by water [saltwater].
To be poet and not to know it.
A mother worries even when she does not worry.
To believe even when you do not believe.
Is matching even when not-matching.
I sleep even when I am awake.
Always running round.
To dream, even when not sleeping.

7. This < N > is enough < Non — N >.
Examples:

This silence is enough noise.

This vacation from work is hard work.

The superiority brings enough inferiority [= listlessness].

This day is my night.

This diary is enough non-diary.

This sleep is enough awake.

This sweet truthfulness is enough sarcasm.

This table of four is enough for six people.

I had enough.

This job is enough recreation [when enjoying the job].

8. < Non — V > sometimes means < V >.
Examples:
Not to speak sometimes means to speak.
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Not to touch sometimes means to touch.

To preserve peace sometimes means going to war.

To destroy life (as in viruses) sometimes means to preserve life.
Not to listen sometimes means to listen.

Two feet forward sometimes means standing still.

Not to litter sometimes means to litter.

Speeding is sometimes not speeding [in case of emergency].

Not to show anger is sometimes to show anger.

9. < N > without < N >.
Examples:
Hell without hell.
The style without style.
The rule applied: there were no rule!
Our culture is our lack of culture.
Live without living.
Some people are so afraid of death, that they do not live.
Work without work.
Cannot live with them, cannot live without them.
Death without death [for a Christian dying is going on the eternal life].
Guilty without guilt [sometimes is guilty but does bot feel guilty].

10.a. < NV > inside/within the < Non - N >.
Examples:

Movement inside the immobility.

Silence within the noise.

Slavery within the freedom.

Loneliness within a crowd.

A circle within a circle.

The wrestling ring inside a squared section.

To find wealth in poverty [i.e., happiness and love].

10b. < Non— N > inthe < N >.
Examples:
Immobility inside the movement.
Noise inside the silence.
The eye of the storm.
Government. Bureaucracies.
Inequality inside the equality.
Single inside the marriage.
Anger inside the happiness.
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Warmth in the cold.

Cold in the heat.

Laughing without being happy.

Has not gotten anywhere.

Poverty in wealth [no poverty or love in a wealth family].

11. The < A > of the < Non — A >.
Examples:

The shadow of the light.

Music of silence.

Relaxing of exercise effect.

The restrictions of the free.

Life through death.

The sound/loudness of the silence.

[ can see the light at the end of the tunnel.

The slave of freedom [someone who could not give up his freedom, not
even in marriage].

12. <V > what one < Non -V >.
Examples:
To see what one cannot see.
To hear what one cannot hear.
To taste what one cannot taste.
To accept what one cannot understand.
To say what one cannot say [to tell a secret].
To wait patiently when one does not know how to wait.
To breathe what one cannot breathe.
To feel what one cannot feel.
To appreciate what one dis-appreciates.
To believe what one cannot believe [faith].
To smell what one cannot smell.

13. Let us < V > by < Non -V >.
Examples:
Let us strike by not striking [= Japanese strike].
Let us talk by not talking; [means to think].
To vote by not voting all.
To help someone by not helping [using experience as a teacher].
Let us justify by not justifying.
Let us win by not winning.
Let us strip by not stripping [to make bare or clear].
Let us fight by not fighting [Ghandi’s motto].
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14. < N > of the < Non — N >.
Examples:
The benefits we get from non-benefits.
The smoke we got from non-smokers.
The rewards we get from hard work.
The service we get from non-service.
The good that comes from bad.
The pleasure we get from the pain.

15, < Nomn—-A>is< A>.
Examples:
The bad is good [because makes you try harder].
The good is bad [because does not leave any room for improvement].
Work is a blessing.
The poor is spiritually rich.
Sometimes ugly is beautiful [because beauty is in the eyes of the beholden].
You have to kiss a lot of frogs before you find a prince.
Hurt is healing.
“There is no absolute” is an absolute.
Not to commit any error is an error.

16 A< Non—N><N>.
Examples:
A positive negative [which means: a failure enforces you to do better].
A sad happiness.
An impossible possibility.
Genuine imitation leather.
A loud whisper.
A beautiful disaster [which means beauty can be found anywhere].
A bitter sweet.
A harst gentleness [a gentleness that is very firm with you].
A guiltless sinner [someone who does not regret sinning].

17. Everything has an < A > and a < Non— A >.
Examples:
Everything has a sense and a non-sense.
Everything has a truthful side and a wrong side.
Everything has a beginning and an end.
Everything has a birth and a death.
Everything has its time and a non-time.
Everything has an appearance and non-appearance.
Everybody has a good side and a bad side.
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Everyone has a right and a wrong.

18. < V > what < Non -V >.
Examples:
To be what you are not.
One needs what one does not need.
Expect the unexpected!
Culture exists by its non-existence.
No matter how rich we are, we never make enough money.
One purchases what one does not purchase.
To work when we are not working.
To die might mean to live forever {= for an artist].
One wants because one does not want [sometimes one wants something
only because someone else likes it].

Look at this Funny Law example:

A Paradoxist Government: Suppose you have two cows. Then the govern-
ment kills them and milks you!

The list of such invented linguistic paradoxes can be indifinitely extend-
ed. It is specific to each language, and it is based on language expressions
and types of sentence and phrase constructions and structures.

One can also play with antonymic adverbs, prepositions, etc to con-
struct other categories of linguistic paradoxes.

References: [2, 14, 44, 45, 46, 48, 49, 53, 55, 56, 57, 63, 77, 91, 93,
94, 96, 97)

Definition 60. Sorites Paradoxes

These sorites paradoxes are associated with Eubulides of Miletus (fo-
urth century B.C.):

1) Invisible paradox:

Qur visible world is composed of a totality of invisible particles.

a) An invisible particle does not form a visible object, nor do two
invisible particles, three invisible particles, etc. However, at some point,
the collection of invisible particles becomes large enough to form a visible
object, but there is apparently no definite point where this occurs.

b) A similar paradox is developed in an opposite direction. It is always
possible to remove an atom from an object in such a way that what is left is
still a visible object. However, repeating and repeating this procedure, at
some point, the visible object is decomposed so that the left part becomes
invisible, but there is no definite point where this occurs.

Between A and Non — A there is no clear distinction, no exact frontier.
Where does A really end and Non — A begin? We extend Zadeh’s fuzzy
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set term to neutrosophic concept.
2) Mass paradox:

Things with mass result from atoms with quasi-null mass.
3) Infinite paradox:

A finite line pegment is formed by infinitely many points.
References: {85]

Definition 61. Linguistic Tautologies

The tautology is a redundancy, a pleonasm, a needless repetition of an
idea, according to the “Webster’s New World Dictionary”, Third College
Edition, 1988.

However, the following classes of tautologies - using repetition - goto a
deeper meaning, and even changes the sense. A double assertion reverses
to a negation.

One also may play with the synonyms.

Let < N >, < V >, < A > be some noun, verb, and attribute,
respectively. Also let < N’ >, < N” >, etc. represent synonyms of
<N>(orjust< N >),andso< V' > < V"> etc. or < A’ >, < A" >,
etc.

Let < NV > represent a noun-ed verb, and < NV’ > a synonym, etc.

Then, one defines the following classes of linguistic tautologies and
semi-tautologies.

1. Mirror semi-paradox:
< N > of the < N' >.
< N > of the < N' > of the < N” >.
Examples:
Best of the best.
Worst of the worst of the worst.
A mother of the mother of the mother... {the maternal grandmother].
A follower of the followers.
The row of the rows. [lots of rows.]

2. Thisisnot an < N >, thisisan < N' >.
Examples:
1 his is not a teacher, this is a professor.
This is not a car, this is a Volkswagen.
This is not a truck, this is a Chevy.
This is not noise, this is music.
This is not music, this is noise.
This is not a cedar tree, this is a <gad>. [gad = Navajo name for cedar
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tree)
This is not a sword, this is a sabre.
This is not a problem, this is a exercise. [= easier]
Practice makes you practice.
This is not a girl, this is Katie.
This is not a horse, this is a pony.

3. < N > is not enough < N' >
< A > is not enough < A’ >.
Examples:
Sufficient is not enough sufficient [which means: to do more than ”suffi-
cient”].
Punishment is not enough punishment.
Health is not enough wealth.
Clean is not enough clean.
Studying is not enough studying {which means to do more than just get-
ting by, i.e. to do research].
Extravagant is not enough extravagant.
Time 1s not enough time.
The more you have, the more you want.
Attention s not enough attention [some people need action, too].

4. More < A > than < A’ >.
Examples:
Better than better [= perfection].
Worst than worst [= evil].
Sweeter than sweeter [= honey].
More life than life [= spirituality].
More depressed than depressed.
Faster than faster.
More beautiful than pretty.
Uglier than ugly [= really ugly].
Smarter than smart [= like a genius).

5. How< A>isan < A" > < N >7

Examples:
How democratic is a so called democratic society?
How republican is a so called republican society?
How civilized is a so called civilized person?
How free is a so called free country?
How commanding is a so called commanding officer?
How Pop Culture is a so called Pop Culture?
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How strong is a strong man?
How lone is a lone ranger? [not very, he has tanto)].

6. No < A > isreally < A’ >.
Examples:
No friend is really a friend [s/he betrays you when you do not even expect!].
No luck is really a luck.
No original is really original.
No husband is really a husband [you learn to depend on yourself!]
No tomboy is really a tomboy [girl considered boyish].
No work is really less work.
No true Marxist is really a true Marxist [they contradict their own beliefs].
No magic is really magic [all is only a trick].

7. 1 would rather prefer < A >, than < A’ >.
Examples:

I would rather prefer pretty, than prettier.

I want this, not that.

I would rather prefer this, to that.

I would rather be old, than old.

I would rather prefer great than big.

I would rather be crazy than crazy [crazy like foolish, than crazy like
insane].

8. More < A >, than < A’ >.
Examples:
Prettier than pretty.
More real than real.
More advantage than advantage.
More help than help.
More smiles than smiles [she did not psychically smile, but there were
smiles all over her face].
More cries than cries.
More meters than kilometers.
Make everyday a rainbow day.
He earns more than himself.
More suspictions than suspected.

9. < V > those who < V' > you.
Examples:
Ignore those who ignore you.
Criticize those who criticize you.
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Defend those who defend you.

10. < V > because < V' >.
Examples:

1 want because I want.

I think because I think.

I hear because I listen.

I see because I look.

I need because I need.

I know because I know.

I live because I live.

I believe what is unbelievable [faith].

I am happy because I am happy [there is no reason for my happiness].

11. < V> the < NV'>.
Examples:
I hate the haters (therefore, I hate myself!)
I envy the evniers (therefore, I envy myself).
I am strange to strangers.
I cheat the cheaters (therefore, I cheat myself).
I lie to liers (therefore, 1 lie myself).
I kick the kickers (therefore, I kick myself).
[ love the lovers.

The list of the so invented linguistic tautologies can be indefinitely
extended. It is specific to each language, and it is based on language
expressions and types of sentence and phrase constructions and structures.
One can also play with synonimic adverbs, prepositions, etc. to construct
other categories of linguistic tautologies.

References: [2, 14, 44, 45, 46, 48, 49, 53, 55, 56, 57, 63, 77, 91, 93,
94, 96, 97

Definition 62. Hypothesis: “There is no Speed Barrier

in the Universe”

F. Smarandache extended an experiment of the University of Inns-
bruck - Austria researchers, which have proved that the speed of light can
be overpassed, contradicting Einstein’s prediction. The Smarandache’s hy-
pothesis is that speed may by even infinite, which looks fantastic! At this
speed, a being would not age and life would have no death.

References: [47, 84, 30}

3



Definition 63. Smarandache Primes, Squares, Cubes,
M—Powers, and More General “T—” Numbers
Smarandache Prime is a term of any of the Smarandache sequences,
or a value of any of the Smarandache-type functions, which is a prime
number.
For example: Stephan [88] proved that in the Smarandache Reverse

Sequence
1,21,321,4321,...,121110987654321, ...

the only Smarandache Reverse Prime is:
RSm(82) = 8281807978...121110987654321

among the first 750 terms, while Weisstein extended the search up to the
first 2,739 terms. One conjectures that this is the only prime in the whole
sequence.

Similarly one defines:

A Smarandache Square is a term of any of the Smarandache sequences
{except, of course, the sequence involving squares), or a value of any of the
Smarandache-type functions, which is a perfect square number.

A Smarandache Cube is a term of any of the Smarandache sequences
{except, of course, the sequence involving cubes), or a value of any of the
Smarandache-type functions, which is a perfect cube number.

And so on: A Smarandache m—Power is a terin of any of the Smaran-
dache sequences (except, of course, the sequence involving m-—powers),
or a value of any of the Smarandache-type functions, which is a perfect
m—power number.

A Smarandache Palindromic Number is a term of any of the Smaran-
dache sequences, or a value of any of the Smarandache-type functions,
which is palindromic.

Generalization: Let “T—" be a specific defined number (for example:
perfect number, or Bell number, or at most a prime number, etc.). Then: A
Smarandache “T'—” Number is a term of any of the Smarandache sequences,
or a value of any of the Smarandache-type functions, which is “T™.

References: [88], pp. 310-311 and 1661-1663 from [94].

Definition 64. Let the set Z, = {0,1,2,...,p — 1}. The elements of
Z, can be written in a unique way as m—adic numbers.

Let r = (apn-18n-2...8180)m a0d § = {(bn_1bs_2...b100)m be two ele-
ments from Z,. Then, one can introduce the operation:

ri=1s = (lan-1 = bn,llGn-2 — ba_2|...|a; — b1 ||ac = bo[)m,
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where |z — y] is the absolute value of z — y.

The set (Z;,1~ 1) is known as the Smarandache Groupoid.

The complement of r, C(r) = r1 — 1 Sup(Z,), where Sup(Z,) is the
maximal element of Z,. o

We say that rRs, iff r1—-0C(r) = s1 - 1C(s). R is a relation of
equivalence, which partitions Z, into equivalence classes. The equivalence
class below is defined as D—form:

Dsup(z,y = {r € Z, | r1 -1C(r) = Sup(Z,)}.
Let us introduce two more operations on Z,:
rl+18 = ({an-1 +bn, }{an-2 + ba-2{}...{a1 + b1 H{ao + b0} )m,

where {z + y} is the remainder of z + y modulo m.

ri.1s = ({an-1.b0, Han-2.bn_2{}...{01.8:}{a0.50})m,

where {z.y} is the remainder of z.y modulo m.

Then the set (Z,, {z+y}, {z.y}) is known as the Smarandache Ring. If
m is prime, then the set (Z,, {z +y}, {z.y}) is known as the Smarandache
Field.

Unsolved problems:

1) Study the Smarandache Ring, and the Smarandache Field.

2) If one introduces other operations on Z,:

riAls= ({a,,-l A b,,,}{a,,-g A bn_z}...{al /\b;}{ao A bo})m,

where {2 A y} is the remainder of z A y (z to the power y) modulo m.
Study (Z;,1A0).
3) And in a similar way for any introduced digit operation on Z,:

riFls=({an=1Fba, }H{an-2Fbn_2|}.. {a1Fb1}{aoFbo})m,
where {zFy} is the remainder of zFy (i.e., F(z,y), for F being a given

function, F : N' = N) modulo m.
References: [90]
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