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Preface

Surfing on the Ocean of Numbers - why this title? Because this little book does not
attempt to give theorems and rigorous proofs in the theory of numbers. Instead it will
attempt to throw light on some properties of numbers, nota bene integers, through a
study of the behaviour of large numbers of integers in order to draw some reasonably
certamn conclusions or support already made conjectures. But no matter how far we
extend our search or increase our samples in these studies we are in fact, in spite of
more and more powerful technologies, merely skimming the surface of the immense
sea of numbers. - Hence the title.

Most books in Mathematics are used as reference books. I still consult my first
Number Theory book which I bought in 1949 - Elementary Number Theory by
Uspensky and Heaslet. It was when I was young and enthusiastic and dreamt about
becoming a Mathematician. I am still enthusiastic but I became a Physicist instead..
However, I staved on the theoretical side and avoided to have to much to do with
things that can break. But even so experiments are a major source of knowledge and
maybe this book shows a little of a Physicist’s approach to Mathematics. Most results
are presented or supported by tables and graphs. All calculations have been carried out
on a Pentium 100 Mhz laptop using Ubasic as a programming language. Finally, the
author has tried to make a book which should be easy and pleasant to read.

A word about the beauty of Mathematics and Number Theory in particular. The
crystallized truth of a theorem, where a whole spectrum of mathematical thoughts
come together to form an entity, is like a painting where designs and colours merge
mto a work of art. But sometimes it is not the finished result which is the most
interesting - it could be the unsolved problem itself. Why? Maybe it is the challenge of
getting somewhere with it or the hours and days of thinking and trying that occupy the
mind in a positive sense different from the problems of our time. It all brings piece to
the mind - it’s like walking in the silence of the forest enjoying the trees, the sun and
the blue sky , and should it happen that all the bits and pieces suddenly fall into place
to give a solution then it is the most sublime experience for the human mind - eureka!
But then the interest in the problem fades away unless solving the problem created
new ones - and that is almost always the case.



Most topics in this book have been selected from Only Problems, Not Solutions by F.
Smarandache. Others have bee suggested by Dr. R. Muller of Erhus University Press.
A few problems which the author has found interesting originate from the Numbers
Count Column of Personal Computer World. This journal has had great importance
for the author as a source of recreational Mathematics and I take this opportunity to
thank the Editor of this column Mike Mudge for all correspondence and
encouragement he gave me in the past.

Dlustrations, graphics, layout and final editing up to camera ready form has been done
by the author. Tables have been created by direct transfer from computer files
established at the time of computation to the manuscript so as to avoid typing errors.

This book has come into being thanks to R. Muller at Erhus University Press who has
never failed an opportunity to give his support and encouragement. Rapid e-mail
exchange between him in the USA and me in France has greatly facilitated our work.
also thank Dr. Muller’s colleagues for their help. Many thanks are also due to my son
Michael Ibstedt for his help and advice concerning computer equipment and software.

Last but not least my warm thanks to my dear wife Anne-Marie for her encouragement
and endless patience with a husband who does not always listen because his mind is
somewhere else.

February 1997
Henry Ibstedt
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Chapter I

On Prime Numbers

This chapter deals with some computational observations on prime numbers and their
distribution. These computations only skim the surface of the ocean of integers but
theyv give an idea of the general behavior of primes and often support some of the
many conjectures that are made concerning primes. Computer programs have been
written in Ubasic with extensive use of some of the built in functions of this language.
In some cases the use of these functions will be illustrated with a few lines of program
code. Most results are given in tabular and/or graphical form.

1. On the Sequence a-p,+b

In his book Only Problems, Not Solutions’ F. Smarandache asks the following
question:

If (a,b)=1, how many primes does the progression a-pn, + b, where p, is prime and
ne{l,2,...}, contain?

Already for a=1 and b=2 we run into the classical unsolved problem “Are there
infinitely many twin primes?”. The answer to how many? is certainly equally difficult
for other sets of parameters a,b. However, some interesting information on how a-p, +
b behaves will be obtained for the first 10,000,000 primes pr.

Let m be the number of primes produced by a-p, + b for n<N, i.e. if a-p, + b is prime
we can write a-pp + b = gn Where qq is prime. The following Ubasic program lines
have been used to determine whether a-p, + b is prime or not:

while N<10000001

p=nxtprm(p)

inc N

c=a%*p+b%

if nxtprm(c-1)=c then inc m

wend
The program has been implemented for a set of values of the parameters a and b. The
result is shown in table 1. It is interesting to visualize the result. Because of the
logarithmic behaviour of the distribution of primes it is reasonable represent m/N as a

! Unsolved problem number 17.



function of logioN rather than as a function of N. For this reason the value of m has
been recorded during the computation for N=10, 102, 10%, 10* 10°, 10%, and 10",

Table 1. Number of primes m in the progression a-pr.~2 for n<N

ab /N 10 102 102 104 108 108 i
1.2 5 25 174 1270 10250 86027 738597
2.1 5 25 166 1221 9667 82236 711183
3.2 8 47 290 2350 1891¢ 160127 1392733
4.1 3 21 145 1108 9314 78676 685069
£2 5 26 188 1492 12020 103010 903165
3.1 7 39 277 2175 18019 153925 1342255
/.2 4 23 167 1288 10634 91232

The graphs in figure 1 show m/N (v-axis) as a function of log;eN (x-axis) where m is
the number of primes of the form ap,+b for n<N. Figure 1b is an enlargement of figure
1a for large values of N, (N <10"). The eight curves correspond to the following sets of

0.8

0

Figure 1a.
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0.03

- wers listed in the order in which the curves appear from top to bottom in the
=--4 side of the two figures: (a,b)=(3.2), (6,1). (5.2), (7,2), (1,2} (2,1), (4.1} and

Tabie 2. Number of orimes m generated Dy pa+l for nEN

B/ N 10 e feey 100CC geesee Heessey
2 5 25 174 1270 10256 86027
4 4 27 i 1244 10214 85834
) 7 48 344 2538 20472 170912
8 S 24 178 1303 10334 85846
10 5 34 231 1682 13653 114394
12 7 48 340 2515 20462 171618
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Figure 2. The ratio m/M plotted agdinst logN for b=2,4,6,8,10,and 12
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The number of primes m in the sequence a-p.+b forn =1, 2, ... N is illustrated in
figure 2 fora = 1and b = 2, 4, 6, 8, 10 and 12 where the ratio M=m/N is plotted
against logN. The corresponding numerical results are given in table 2.

The general appearance of the graphs for various values of the parameters (a,b) in
apn+b is very similar. In particular figure 1b shows an interesting picture of curves
running parallel to one another and in particular to the one for (a,b)=(1,2), that is the
curve for p+2 which corresponds to prime twins for which we have the classical
conjecture that there are infinitely many. This makes the following conclusion
reasonable.

Conjecture: The progression aps+b , (a,b)=1 contains infinitely many prime
numbers.

2. Prime Number Gaps

Smarandache asked how many primes there is in the progression apn+b. For a=1 and
b=2 the question is equivalent to ‘how many twin primes are there?’. Since we have a
very stable conjecture that there are infinitely many we now want to know something
about their distribution and also about the distribution of other prime number gaps
€=Dn:1-Pn. With a small change in the Ubasic program used in the previous section we
can study the distribution of primes over gaps g=2, 4, 6, ...

p=3

while p<N

q=p

p=nxtprm(p)

u=(p-q¥2

inc f{u) ‘Count the number of gaps = p-q.

if p(u)=0 then p(u)=q “Store the smallest prime for which the
wend ‘gap occurs in p().

This program was run for primes p<N=2.10° The result is shown in table 3,where fis
the number of gaps g and p the prime number for which the gap first occurs, N<2-10.
All gaps g<292 except 264, 278 and 286 are represented in the table which is
arranged so that gaps g=2 (mod 6), g=4 (mod 6) and g=0 (mod 6) are found in
separate columns . Gaps g=0 (mod 6) occur much more frequently than the other two.
This is illustrated in figure 3 which also shows that In f as a function of g has a near
linear behaviour for all three types. The “wild” behaviour fot gaps>250 would
certainly correct itself if the range of primes in the study were extended. The area

13



below the curves for g=2 (mod 6} and g=4 (mod 6) are equal as will be shown shortlv.
The curve for g=2 (mod 6) behaves verv well while the one for g=4 (mod 6) shows an
interesting ripple effect. In particular it shows a “bump” for g=70 which showed up
already in the smallest sample N<10° for which g=70 first appeared. What causes this
high frequency for g=70?

For a prime number p>5 we have p==x! (mod 6). Let g and p be two consecutive
primes forming the gap g=p-q. We distinguish between the following cases:

Shift
1. g=1(mod 6) and p=1 (mod 6) = g=0 (mod &) ++
2. g=1(mod 6) and p=-1 (mod 6) = g=4 (mod 6) +-
3. q=-1(mod 6)and p=i (mod &) = g=2 (mod 6) -+
4. g=-1{mod 6) and p=-1 (mod 6) = g=0 (mod 6) -

A sequenice of consecutive primes (with the first prime =3) can be characterized bv the
shifts:
BT S e o

The longest sequence of consecutive primes = 1 (mod 6) for p<10”is of length 18:

450588156, 450688177, 450588207, 450988231, 450988241, 450988261,
4 0988497 450988333, 450988339, 450988381, 450988387, 450988399,
450988411, 450988423, 450988441, 450988471, 450988477, 450988567

va primes = -1 {(mod 4} for p<10®is of length 22
I i j g

[

- Lo VAR o aat Sat e e - et
z1d the longest segquence of consecut

766319189, 766315201, 766319231, 766319237, 766319249, 766319261,
T6E319273. T 3‘9291,766319339 76631935' 766319363, 766315369,
766319423, 766319441, 766319453, 663194 3 "663’9507, 766319549,

TSCRiG5T3, TLE3195TS, Te6316621, THE31%

6
S

t\)

G (med €) be b, fa, and §; respectively for p<N. Then
is - crcrvnse we will have f={i+1.

ding the next :.mtz to be +-, ++, -+ or - are
{ HL Pt G+HE) and Fo=iol( foﬁgﬂﬂ) we would
This is not 1he case.
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Before looking into this let’s first consider a related question: Do primes=l (mod 6)
(notation f.) occur with the same frequency as primes = -1 (mod 6) (notation f) ?
Table 4 shows a study of the number of primes f. and f. congruent to -1 respectively 1
(mod 6) for primes less than 10* fork=1,2,3, ... 9.

Within the range of this study we have f. > f .. However, the ratior =(f . - £.)/(f . - f3)
is decreasing. Will eventually f. < f. ?

We have proved that f; = f; (assuming the last shift to be +-). We will now study the
relative frequencies defined through

F=fl(fotfrtfs)  Fefd(forforty)  Fo=fo/(fotfrty)
Again we have F; = F, and of course Fo=1 - 2-F». To study how F, varies as we
increase the number of consecutive primes p<10* the execution of the program for gap
statistics was stopped for k=1, 2, ... 9 to produce the data shown in table 5.

Table 4. Number of primes = -1 respectively 1 (mod 6). r=(f. - f.}/{f. + f+)

K 1 2 -3 4 5 é 7 8 9
f 1 12 85 * 616 4805 39264 332383 2880936 25424819
s 1 1 81 611 4785 39232 332194 2880517 25422713
f.-f. 0 i 4 5 20 32 189 419 2106
f.+fe 2 23 166 1227 9590 78496 664577 5761453 50847532
10¢ 0 435 241 4] 21 4 3 0.7 0.4
Table 5. Prime number gap distribution {mod 6) for primes <10k
k g=2(modé) g=4(modé)} g=0{modé) Total F2
1 2 1 0 3 0.5
2 9 8 7 24 0.354166667
3 58 56 53 167 0.341317365
4 379 378 471 1228 0.308224756
5 2870 2868 3853 9591 0.299134605
6 22839 22837 32821 78497 0.290941055
7 189285 189284 286009 664578 0.284819088
8 1616471 1616470 2528513 5761454 0.280566416
9 14107250 14107249 22633034 50847533 0.277442162
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Tabie 3.

jo 74 f p g=4 f p o f p
2 6388042 3 4 6384967 7 & 1140765) 23
8 5069051 a9 10 6568071 139 12 8472823 199
14 4690561 113 16 3527160 1831 18 6427670 523
20 3528810 887 22 3030348 1129 24 4600962 1669
26 2190452 2477 28 2386944 2971 D 4298663 4297
32 1359889 5591 34 1430231 1327 36 2341569 9551
38 1103677 30593 40 1308406 19333 42 19408%4 16141
44 796213 15683 46 687135 81463 48 1190342 28229
50 678359 31907 52 511183 19609 S4 856601 35617
56 444581 82073 58 383239 44293 60 789454 43331
62 247659 34061 64 253846 89489 &6 4466901 162143
68 191321 134513 70 272834 173359 72 277514 31397
74 137620 404597 76 122523 212701 78 233230 188029
80 119756 542603 82 85030 265621 84 176328 461717
86 &3174 155921 88 65612 544279 90 133019 404851
92 44723 927869 94 40821 1100977 96 71864 360653
98 37946 604073 100 39504 396733 102 52752 1444309
104 24215 1388483 106 20996 1098847 108 36484 2238823
110 21894 1468277 112 17316 370261 114 26413 492113
116 11385 5845193 118 10863 1349533 120 23526 1895359
122 7408 3117299 124 7521 6752623 126 14443 1671781
128 5181 3851459 130 71 5518687 132 8974 1357201
134 3881 £958667 136 3380 6371401 138 6567 3826019
140 3970 7621259 142 2393 10343761 144 4104 11981443
146 1776 034247 148 1966 2010733 150 4022 13626257
152 1288 8421251 154 1561 4652353 156 2152 17983717
158 886 49269581 160 1012 33803689 162 1413 39175217
164 661 20285099 166 553 83751121 168 1271 37305713
170 607 27915737 172 430 38394127 174 729 52721113
176 332 38089277 178 22 39389989 180 638 17051707
182 238 34271601 184 235 79167733 186 342 147684137
188 124 134065829 190 205 142414669 192 219 123454691
194 109 166726367 196 112 70396393 198 221 46006769
200 91 3780439759 202 71 107534587 204 129 112098817
206 44 232423823 208 56 192983851 210 141 20831323
212 35 215949407 214 38 253878403 216 50 202551667
In 21 327966101 220 34 473264693 22 31 122164747
224 18 409866323 26 15 519653371 228 21 895858039
230 17 407010093 232 3 525436489 234 23 189695659
236 10 216668403 238 8 673919143 240 15 391995431
242 8 367876529 244 5 693103639 246 7 555142061
248 6 191912783 250 8 387096133 252 8 630045137
254 3 1202442089 256 1 1872851947 258 2 1316355323
260 3 944192807 262 1 1649328997 270 2 1391048047
266 1 1438779821 268 1 1579306789 276 1 649580171
272 1 1851255191 274 | 1282463269 282 3 436273009
284 2 1667186459 280 2 1855047163 288 2 1294268491
290 1 1948819133 292 1 1453168141

16



1% * T T T i
; i ! ! ;
I H t
{ : i
‘ !
|
|
1
i
b
! )
i ! DN
! i v
H ! ,
t 1}
H 1 Y
0 ; I
0 50 100 150 200 250 300

Fgure 3. In(f} as a function of g for N<2.10%. g=0 {mod 6é) upper solid line, g=2 {mod
6) lower solid line and g=4 {mod é) dashed line.
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= 0.

Figure 4. Relative frequency of prime gaps . F2 = F4 (thick line) and Fo (thin fine).
Conclusion: Fy <0.45 and F; = F, >0.27 for primes <10’.

The approach to the values 0.5 and 0.25 that one would have expected is very slow
and is slowed down with increasing k, - one realizes that the interval 8<k<9 is ten
times as large as the interval 0<k<8. The data used is cumulative but even if we
consider only the interval between 10® and 10° we have F2=12,659,767/45,680,669=
0.2771 compared to F;=0.2774 for the whole interval between 0 and 10°.

Question: Given an arbitrarily small number 8>0, does a prime p; exist so that
F7<0.25+8 for all p>py?

18



Chapter 11

On Smarandache Functions

1. Smarandache - Fibonacci Triplets
We recall the definition of the Smarandache Function S(n):
S(n) = the smallest positive integer such that S(n)! is divisible by n.
and the Fibonacci recurrence formula:
Fa=Fay1+ Faz (n>2)
which for Fg = F; = 1 defines the Fibonacci series.

We will concemn ourselves with isolated occurrences of triplets n, n-1, n-2 for which
S(n)=S(n-1)+S(n-2) and pose the questions: Are there infinitely many such triplets? Is
there a method of finding such triplets which would indicate that there are in fact
infinitelv many of them?

A straight forward search by applying the definition of the Smarandache Function to
consecutive integers was used to identify the first eleven triplets [1] which are listed
in table 1. As often in empirical number theory this merely scratched the surface of the
ocean of integers. As can be seen from figure 1 the next triplet may occur for a value
of n so large that a sequential search may be impractical and will not make us much
wiser.

Table 1. The first 11 Smarandache-Fibonacci triplets

4 n $i{nj ${n-1} : $in-2}
1 11 1 5 23
2 121 211 5 17
3 4902 43 29 2.7
4 26245 181 18 163
5 32112 223 197 213
6 64010 173 2:23 127
7 368140 233 2-41 151
8 415664 313 273 167
9 2091206 269 2-101 67

10 2519648 1109 2101 907
i1 4573053 569 253 463
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However, an interesting observation can be made from the triplets already found.
Apart from n=26245 the Smarandache-Fibonacci Triplets have in common that one
member is two times a prime number while the other two members are prime
numbers. This observation leads to a method to search for Smarandache Fibonacci
triplets in which the following two theorems play a réle:

L If n = ab with (a,b) = 1 and S(a) < S(b) then S(n) = S(b).

I If n = p® where p is a prime and a < p then S(p*)=p.

2500000 ; ; .
2000000 e
1500000

1000000 :
500000 % e
o4 : | '

0 2 4 6 8 10 12

Figure 1. The values of n for which the first 11 Smarandache-Fibonacci triplets occur.

The search for Smarandache-Fibonacci triplets will be restricted to integers which
meet the following requirements:

n = xp* with a<p and S(x)<ap 1)
n-1 = yq" with b<q and S(y)<bq @
n-2 = zr° with c<r and S(z)<cr 3)

20



Table 2a. Smarandache-Fbonacci triplets

# N SiN) §{N-1) SN2} 1

1 4 4 * 3 2 0

2 1 1 5 6 0

3 121 2 * 5 17 0

4 4902 43 29 14 -4

5 32112 223 197 26 -1

6 64010 173 46 127 -1

7 368140 233 82 1581 -1

8 415664 313 167 146 -8

9 2091206 269 202 67 -1
10 2519648 1109 202 907 0
11 4573053 569 106 463 -3
12 7783364 2591 202 2389 0
13 79269727 2861 2719 142 10
14 136193976 3433 554 2879 -1
15 321022289 7589 178 7411 5
16 445810543 1714 > 761 953 -1
17 559199345 1129 662 467 -5
18 670994143 6491 838 5653 -1
19 836250239 9859 482 9377 1
20 893950202 2213 2062 151 0
21 937203749 10501 10223 278 -9
22 1041478032 2647 1286 1361 -1
23 1148788154 2467 746 1721 3
24 1305978672 5653 1514 4139 0
25 1834527185 3671 634 3037 -5
26 2390706171 6661 2642 4019 0
27 2502250627 2861 2578 283 -1
28 3969415464 5801 1198 4603 -2
Va4 3970638169 2066 * 643 1423 -6
30 4652535626 3506 * 3307 199 0
31 6079276799 3394 * 2837 557 -1
32 6493607750 3049 1262 1787 5
33 6964546435 2161 1814 347 -4
34 11329931930 3023 2026 997 -4
35 11695098243 12821 1294 11527 2
36 11777879792 2174 % 1597 577 6

21



Table 2b. Smarandache-Fbonacci triplets

# N S{N} S{N-1) SIN-2} 1
37 13429326313 4778 * 1597 3181 1
38 13849559620 6883 2474 4409 ]
39 14298230970 2038 * 1847 191 7
40 14988125477 3209 2986 223 2
41 17560225226 4241 3118 1123 -2
42 18704681856 3046 * 1823 1223 4
43 23283250475 4562 * 463 4099 -10
44 25184038673 5582 * 1951 3631 -2
45 29795026777 11278 = 8819 2459 0
46 69481145903 6301 3722 2579 3
47 107456166733 10562 * 6043 4519 -1
48 107722646054 8222 * 6673 1549 -1
49 122311664350 20626 * 10463 10163 0
50 126460024832 6917 2578 4339 1
51 155205225351 8317 4034 4283 -5
52 196209376292 7246 * 3257 3989 -5
53 210621762776 6914 * 1567 5347 11
54 211939749997 16774 * 11273 5501 0
55 344645609138 7226 * 2803 4423 9
56 484400122414 16811 12658 4153 -1
57 533671822944 21089 18118 2971 0
58 620317662021 21929 20302 1627 0
59 703403257356 13147 10874 2273 -2
60 859525157632 14158 * 3557 10601 -5
61 898606860813 19973 13402 6571 1
62 972733721905 10267 10214 53 -4
63 1185892343342 18251 12022 6229 -2
64 1225392079121 12202~ 9293 2909 -4
65 1294530625810 17614 = 5807 11807 -3
66 1517767218627 11617 8318 3299 -8
67 1905302845042 22079 21478 601 -1
68 2679220490034 11402 = 7459 3943 11
69 3043063820555 14951 12202 2749 5
70 6098616817142 24767 20206 4561 2
71 6505091986039 31729 19862 11867 2
72 13666465868293 28099 16442 11657 7
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p.q and 1 are primes. We then have S(n)=ap,S(n-1)=bq and S(n-2)=cr. From this and
by subtracting (2) from (1) and (3) from (2) we get

ap=bq+cr 4)
xp*-vq° =1 (5)
vg* -z’ =1 (6)

The greatest common divisor (p®.q>)=1 obviously divides the right hand side of (5).
This is the condition for (5) to have infinitely many solutions for each solution (p,q) to
(4). Such solutions are found using Euclid’s algorithm and can be written in the form:
Xx=X+q, V=Yo-p't (5)
where t is an integer and (Xq, Vo) is the principal solution.
Solutions to (5°) are substituted in (67) in order to obtain integer solutions for z.
z=(yq" - )A° (67
Solutions were generated for (a,b,c)=(2,1,1), (a,b,c)=(1,2,1) and (a,b,c)=(1,1,2) with
the parameter t restricted to the interval -11<t<11. The result is shown in table 2.
Since the correctness of these calculations are easily verified from factorizations of
S(n), S(n-1) and S(n-2) these are given in table 3 for two large solutions taken from an

extension of table 2.

Table 3. Factorization of two Smarandache-Fibonacci triplets

n= 16,738,688,950,356=22-3-31-193-15,269? S(n)= 2:15,269
n-1= 16,738,688,950,355=5-197-1,399-1,741.6,977 Stn-1)= 6977
n-2= 16,738,688,950,354=2-72-19-23-53-313-23,56 1 S{n-2)= 23,561
n= 19,448,047,080,036=22-32-432.17, 093 S(n)= 2-17,093
n-1= 19,448,047,080,035=5-7-19-37-61-761.17.027 S{n-1)= 17,027
n-2= 19,448,047,080,034=2-97-1,609-3,631:17,159 S(n-2)= 17,159
Conjecture:

There are infinitelv many triplets n, n-1, n-2 such that S(n)=S(n-1 *S(n-2).

23



Questions:

1. Itis interesting to note that there are only 7 cases in table 2 where S(n-2) is two
times a prime number and that they all occur for relatively small values of n.
Which is the next case?

2. The solution for n=26245 stands out as a very interesting one. Is it a unique case
or is it a member of a family of Smarandache-Fibonacci triplets different from
those studied here?

References:

C. Ashbacher and M. Mudge, Personal Computer World, October 1995, page 302.

2. Radu’s Problem

For a positive integer n, the Smarandache function S(n) is defined as the smallest
positive integer such that S(n)' is divisible by n. Radu [1] noticed that for nearly all
values of n up to 4800 there is always at least one prime number between S(n) and
$(n+1) including possibly S(n) and S(n+1). The exceptions are n=224 for which
S(n)=8 and S(n+1)=10 and n=2057 for which S(n)=22 and S(n+1)=21. Radu
conjectured that, except for a finite set of numbers, there exists at least one prime
number between S(n) and S(n+1). The conjecture does not hoid if there are infinitely
many solutions to the following problem.

Find consecutive integers n and n~1 for which two consecutive primes pr and pi;
exist so that pi < Min(Sm),Stn~1}; and pi-; > Max(Sm).S(n~1)).

Consider
o+l = xpy’ (I

and
n=Vpet® )

where p; and pr-; are consecutive prime numbers. Subtract (2) from (1).

Xpc - VP = 1 3
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The greatest common divisor (p;°,pr-1°) = 1 divides the right hand side of (3) which is
the condition for this diophantine equation to have infintelv manv solutions. We are
interested in positive integer solutions (X,V) such that the following conditions are
met.

S(mt+1) = spy. i.e. S(X) < spr 4)

S(n) = spr1 , 1.6 &(¥) <Sprs )]
In addition we require that the interval

sp° < q < spr-1* is prime free, i.e. that q is not a prime.

Euclid’s algonithm is used to obtain principal solutions (X, Vo) to (3). The general set
of solutions to (3) is given by

X=Xo* pr1™ Y =Yo-prt )
with t an integer.

These algorithms were implemented for different values of the parameters d=pr-1-pr, s
and t. The result was a very large number of solutions. Table 4 shows the 20 smallest
{in respect of n) solutions found. There is no indication that the set would be finite.
One pair of primes may produce several solutions.

Within the limits set by the design of the program the largest prime difference for
which a solution was found was d=42 and the largest exponent which produced
solutions was s=4. Some numerically large examples illustrating these facts are given
m table 3.

To see the relation between these large numbers and the corresponding values of the
Smarandache function in table 5 the factonizations of these numbers are given below:

1182293664715229578483018 = 2-3-89-193-431-16127812
1182293664715229578483017 = 509-3253-16128232

11157906497858100263738683634 = 2-7-372-56671-55333F
11187906497858100263738683635 = 3-5-11-192.16433-55337°
17549865213221162413502236227 = 3-112-307-12671-35333*
175498652132211462413502236226 = 2-23-37-71-419-743-553373
270329975921205253634707051822848570391314 = 2.33-47-1289-2017-119983- 1674414
270329975921205253634707051822848570391313 = 37-23117-24517-38303- 167443+



Table 4. The 20 smallest solutions which occurred for s=2 and d=2

# n sin} St 1) P D2 t
1 265225 206 202 199 211 0
2 843637 302 298 23 307 0
3 6530355 122 118 113 127 -1
4 24652435 926 922 919 92 0
S 35558770 1046 1042 1039 1049 0
6 40201975 142 146 139 149 1
7 45388758 122 118 113 127 -4
8 46297822 1142 1138 1129 11581 0
9 67697937 214 218 211 223 0
0 138852445 1644 1642 1637 1657 0
11 157906534 1718 1714 1709 1721 0
12 171531580 1766 1762 1759 1777 0
13 299441785 2126 2122 2113 21229 0
14 551787925 2606 2602 2593 2609 0
15 1223918824 3398 3394 3391 3407 0
16 1276553470 3446 3442 3433 3449 0
17 1655870629 3758 3754 3739 3761 0
18 1853717287 3902 3898 3889 3907 0
19 1994004499 3998 3994 3989 4001 o]

2C 2256222280 4166 4162 4159 4177 0
Tabie 5. Four numericdlly iarge solutions
Padirs of conseculive integers St} d t Pe Pret
1182293664715229578483018 3225562 42 -2 1612781
1182293664715229578483017 3225646 1612823
1115790649785810026 3738683634 165999 4 0 55333
11157906497858100263738683635 166011 55337
17549865213221162413502236227 165999 4 -1 55333
17549865213221162413502236226 166011 58337
270329975921 205253634707051822848570391314 669764 2 0 167441
270329975921205253634707051822848570391313 669772 167443

It is also interesting to see which are the nearest smaller P; and nearest bigger Pi-
primes to S; = Min(S(n),S(n+1)) and S; = Max(S(n),S(n+1)) respectively. This is

shown in table 6 for the above examples.



Table 6. Px < S1 < S2 < Pen

Py S S2 Prn G =Pa-Px
3225539 3225562 3225646 3225647 108
165983 165999 166011 166013 30
669763 669764 669772 669787 24

Conclusion:
There are infinitely many intervals {Min(S(n),S(n+1)),Max(S(n),S(n+1))} which are
prime free.

References:

LM. Radu, Mathematical Spectrum, Sheffield University, UK, Vol. 27, No. 2, 1994/5,
p. 43.

3. The Smarandache Ceil Function

Definition: For a positive integer n the Smarandache ceil function of order k is
defined through '

Si(n) = m where m is the smallest positive integer for which n divides m*.

In the study of this function we will make frequent use of the ceil function defined as
follows:

[x | = the smallest integer not less than x.

The following properties follow directly from the above definitions:

1. Sim)=n
2. Sp*)=p** for any prime number p.

3. For distinct primes p, q, ...r we have S(p°q®-1%) = p oK g L

Theorem L Si(n) is a multiplicative function.

! This function has a great resemblance to the Smarandache function. it’s definition was proposed by
K. Kashihara (Japan) and conveyed to the author by R. Muller.
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A function f(n) is said to be multiplicative if for (n;,n;) = 1 if it is true that f{nn,) =
f{n;)f(n2). In our case it follows directly from (3) that if (n;,n;) = 1 then Sp(mmy) =
Sk(nl)sk(llz).

However, consider n=nin, when (n;,n;)=1. In a simple case let nj=m;-p* and n;=my-p®
with (m;m;)=1 we then have Syn) = S(m;)Smy)p P which differs from
Si(n1)S(nz) whenever ]'(a+ﬁ)/k] = [a/k] + [B/k1 In fact one easily proves that
[(o+Byk1=Ta/k 1+ pK]lor [(a+pykl=Task]+[BK]-1.

Theorem IL Si.i(n) divides Si(n)

Express n in prime factor form n=p®q®--1® and apply (3). We then see that all prime
powers In Sy-i(n) are less than or equal to those of Si(n), i.e. Sk,l(n)I Si(n).

Theorem II1. For sufficiently large values of k we have S(n)=TIp; where the product
is taken over all distinct primes p; of n.

By extending the argument in theorem II we have that, if j=max(a, B, ... &) then
Synypq-1fork >j.

Corollary 1. S(p) = p for any prime number p.

Corollary 2. If n is square free then Sy(n) = n.

Theorem IV. k exists so that Sy(n!) = p#, where p is the largest prime dividing n.
p# denotes the product of all primes less than or equal to p. Let’s write n! in prime
factor form. n!=2°3%..-p", where a>B>....>y. In order to apply theorem IIl we need to
find o Consider 1-2-3-4-5-6 ... n. This product contains [n!/2] even integers, [n!/4]

multiples of 4, etc ....and finally [n!/2°] multiples of 2%, where 2°<n!<2%%. § is
determined by 8=[log n/log 2]. From this we find that Si(n!) = p# for

5
k=a:Z[n!/2']
r=1
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Table 7. The Smarandache ceil function

n §2 83 S4 S5 S6& §/ n 2 83 S84 S5 86 §7
4 2 135 45 15
8 4 2 136 68 34
9 3 140 70
12 [ 144 12 12 é
16 4 4 2 147 21
18 6 148 74
20 10 150 30
24 12 [ 152 76 38
25 5 153 51
27 9 3 156 78
28 14 160 40 20 20 10
32 8 4 4 162 18 18 [
36 6 164 82
40 20 10 168 84 42
44 22 169 13
45 15 171 57
48 12 12 6 172 86
49 7 175 35
50 10 176 44 44 22
52 26 180 30 1
54 18 6 184 92 46
56 28 14 188 94
60 30 189 63 21
63 21 192 24 12 12 12
64 8 4 4 196 14
68 34 198 66
72 12 [ 200 20 10
75 15 204 102
76 38 207 69
80 20 20 10 208 52 52 26
81 9 9 3 212 106
84 42 216 36 [
88 44 22 220 110
90 30 224 56 28 28 14
92 46 225 15
96 24 12 12 228 114
98 14 232 116 58
99 33 234 78
100 10 236 118
104 52 26 240 60 60 30
108 18 6 242 22
112 28 28 14 243 27 9 9 3
116 58 244 122
17 39 245 35
120 &0 30 248 124 62
121 1 250 50 10
124 62 252 42
125 25 5 256 16 8 4 4
126 42 260 130
128 16 8 4 2] 261 87
132 66 264 132 &6
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Calculations. Calculation of Si(n) for n < 1000 were carried out m Ubasic, which has
a built in ceil function. The result is shown in table 7. Since Sxn) = n for square free
numbers these have been excluded from the table When Sy(n) is square free the
entries for larger values of k become repetitive. Instead of repeating these values the
corresponding spaces in the table have been left blank.

4. The Smarandache Pseudo Function Z(n)

Definition” Z(n) is the smallest positive integer m such that 1+2+...+m is divisible
bvn

Alternative formulation: For a given positive integer n, Z{n) equals the smallest
positive integer m such that m{m+1)2n is an integer.

The following properties follow directly from the definition:

Z(1F1

20253

For anv odd prime number p, Z(p)p-1

By extension of (3) we have Z(p*)p*-1

. In the special case n=2* we have Z(2%)=2""-]

N W

Calculation of Z(n)

We need to find m so that m{m+1 }=2nk has a positive integer solution for the smallest
possible positive value of k.

~1+V1+8kn
m = - 5

For a given value of n the smallest square 1+8kn is found by executing the foliowing
program lines in Ubasic where effective use of the ISQRT(x) has been made:

? Definition by K. Kashihara (Japan) conveyed to the author by R. Muller, Erhus University Press,
USA



10 INPUT “n “n

20k=0

30inck

40 x=1+8*k*n

50 if x<>(1sqrt(x)y*2 then goto 30
etc - to evaluate m

The complete program has been implemented for n<1000. The result is displayed in
table 8.

Theorem: If n=pq, where p and q are two distinct primes with g=q-p, then
Z(ny=Min(p(qgk+1)g where pk+1=0 (mod g), q(pk-1)g where pk-1=0 (mod g))

Proof:

We have to consider three cases:

1. plmandq|(m+1)which, since we assume ¢>p, we distinguish from
2. plm+)andqlm

3. palm+)

Case 1. Consider px=m and qy=m+1 which together with g=q-p gives
p(x-yy=gy-1 1)

Since we must have p ! (gy-1) we can put gy-1=pk where k ] (x-y). Our solution for y
then becomes

v=(pk+1)/g with pk+1=0 mod g) )
Inserting this in (1) results in

p(x-(pk+1)/g)=pk
from which

x=(qgk+1)g (3)

which we insert in m=px to obtain

m=p(qk+1)/g where k is determined through pk+1=0 (mod g)
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Table 8a. Z{n) for n <1000, n non-prime

Z{n) n Z{n) n Z(n) n Z{n) n I(n}

1 1 58 28 114 56 164 40 215 85
2 3 60 15 115 45 165 44 216 80
4 7 62 31 116 87 166 83 217 62
6 3 63 27 117 26 168 48 218 108
8 15 64 127 118 59 169 168 219 72
9 8 65 25 119 34 170 84 220 55
10 4 66 11 120 15 171 18 221 51
12 8 68 16 121 120 172 128 222 36
14 7 69 23 122 60 174 87 224 63
15 5 70 20 123 4] 175 49 225 99
16 31 72 63 124 31 176 32 226 112
18 8 74 36 125 124 177 59 228 56
20 15 75 24 126 27 178 88 230 115
21 6 76 56 128 255 180 80 231 21
22 N 77 21 129 42 182 91 232 144
24 15 78 12 130 39 183 40 234 116
25 24 80 64 132 32 184 160 235 94
26 12 81 80 133 56 185 74 236 176
27 26 82 40 134 67 186 92 237 78
28 7 84 48 135 54 187 33 238 84
30 15 85 34 136 16 188 47 240 95
32 63 86 43 138 23 189 27 242 120
33 1 87 Vol 140 55 190 19 243 242
34 16 88 32 141 47 192 128 244 183
35 14 90 35 142 71 194 96 245 49
36 8 91 13 143 65 195 39 246 123
38 19 92 23 144 63 196 48 247 38
39 12 93 30 145 29 198 44 248 31
40 15 94 47 146 72 200 175 249 83
42 20 95 19 147 48 201 66 250 124
44 32 96 63 148 IR 202 100 252 63
45 9 98 48 150 24 203 28 253 22
46 23 99 44 152 95 204 119 254 127
48 32 100 24 153 17 205 40 255 50
49 48 102 51 154 55 206 103 256 511
50 24 104 64 155 30 207 45 258 128
51 17 105 14 156 39 208 64 259 1
52 39 106 52 158 79 209 76 260 39
54 27 108 80 159 53 210 20 261 116
55 10 110 44 160 64 212 159 262 131
56 48 111 36 161 69 213 71 264 32
57 18 112 63 162 80 214 107 265 105
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Table 8b . Z{n) for n < 1000, n non-prime

n Z{n) n Z{n) n Z{n) n Z{n) n Z{n)
266 56 318 159 366 60 416 64 469 133
267 89 319 87 368 160 417 138 470 140
268 200 320 255 369 81 418 76 471 156
270 80 321 107 370 184 420 104 472 176
272 255 322 91 371 105 422 211 473 43
273 77 323 1582 372 216 423 188 474 236
274 136 324 80 374 187 424 159 475 75
275 99 325 25 375 125 425 50 476 119
276 23 326 163 376 47 426 71 477 53
278 139 327 108 377 116 427 182 478 239
279 62 328 287 378 27 428 320 480 255
280 160 329 140 380 95 429 65 481 221
282 47 330 44 381 126 430 215 482 240
284 71 332 248 382 191 432 351 483 69
285 75 333 36 384 255 434 216 484 120
286 143 334 167 385 55 435 Va's 485 194
287 4] 335 134 386 192 436 327 486 243
288 63 336 63 387 171 437 114 488 304
289 288 338 168 388 96 438 72 489 162
290 115 339 113 390 39 440 175 490 195
291 96 340 119 391 68 441 98 492 287
292 72 341 154 392 48 442 51 493 203
294 48 342 152 393 131 444 m 494 208
295 59 343 342 394 196 445 89 495 44
296 11 344 128 395 79 446 223 496 3]
27 54 345 45 396 143 447 149 497 70
298 148 346 172 398 199 448 384 498 83
299 91 348 87 399 56 450 99 500 375
300 24 350 175 400 224 451 164 501 167
301 42 351 26 402 200 452 112 502 251
302 151 352 319 403 155 453 150 504 63
303 101 354 59 404 303 454 227 505 100
304 95 355 70 405 80 455 90 506 252
305 60 356 88 406 28 456 95 507 168
306 135 357 84 407 110 458 228 508 127
308 55 358 179 408 255 459 135 510 84
309 102 360 80 410 40 460 160 511 146
310 124 361 360 411 137 462 132 512 1028
312 143 362 180 412 103 464 319 513 189
314 156 363 120 413 118 465 30 514 256
315 35 364 104 414 207 466 232 515 205
316 79 365 145 415 165 468 143 516 128
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Table 8c. 1{n} for n < 1000, n non-ptfime

n 1(n) n Z{in) n Zin) n Z{n) n n)
517 187 565 225 616 175 667 115 715 45
518 M 566 283 618 308 668 167 716 536
519 173 567 161 620 279 669 222 717 239
520 44 568 496 621 161 670 200 718 359
522 116 570 75 622 311 671 121 720 24
524 392 572 143 623 266 672 63 721 308
525 125 573 191 4624 351 674 336 722 360
526 243 574 287 425 424 475 324 723 240
527 186 575 275 626 312 676 168 724 543
528 32 576 512 627 132 678 339 725 174
5% 528 578 288 628 471 679 97 726 120
530 159 579 192 6% 221 680 255 728 272
531 17 580 144 630 35 681 227 729 728
532 5% 581 83 632 79 682 3401 730 219
533 244 582 96 633 210 684 152 731 85
534 267 583 264 634 316 685 274 732 183
535 214 584 511 635 254 686 343 734 367
536 335 585 90 636 159 687 228 735 195
537 179 584 22 437 195 488 128 736 575
538 268 588 48 638 87 689 52 737 66
539 98 589 247 639 71 690 275 738 287
540 80 590 59 640 255 892 519 740 184
542 271 591 197 642 107 693 98 741 38
543 180 592 480 644 160 694 347 742 371
544 255 594 2296 645 129 695 139 744 464
545 109 595 34 646 152 696 144 745 149
546 104 596 447 648 80 697 204 746 372
548 136 597 198 649 176 698 348 747 332
549 243 598 91 650 299 699 233 748 407
550 99 8600 24 651 62 700 175 749 321
551 57 602 300 652 488 702 324 750 375
552 207 4603 134 654 108 703 37 752 704
553 237 604 151 655 130 704 384 753 251
554 276 605 120 656 287 708 140, 754 116
555 74 606 303 657 72 706 3521 755 150
556 416 608 512 658 1401 707 202 756 216
558 216 609 174 660 120 708 176 758 379
559 129 610 60 662 33 710 284 759 230
560 160 411 234 663 51 711 315 760 95
561 33 612 135 664 415 712 623 762 380
562 280 614 307 665 189 713 92 763 217
264 47 615 164 666 36 714 84 764 191




Table 8d. Z{n) for n £ 1000, n non-prime

n Z{n) n Z{n) n Z{n) n Z{n) n {n}
765 135 813 270 864 512 912 95 960 255
766 383 814 296 865 345 913 165 961 960
767 117 815 325 866 432 914 456 962 259
768 512 816 255 8647 288 915 60 963 107
770 55 817 171 848 216 916 687 964 240
771 257 818 408 869 395 917 392 965 385
772 192 819 90 870 144 918 135 966 252
774 171 820 40 871 402 920 160 968 847
775 124 822 411 872 544 921 306 969 152
776 96 824 720 873 387 922 460 970 484
777 N 825 99 874 436 923 142 972 728
778 388 826 412 875 125 924 231 973 139
779 246 828 207 876 72 925 74 974 487
780 39 830 415 878 439 926 443 975 299
781 142 831 276 879 293 927 206 976 671
782 68 832 767 880 319 928 319 978 488
783 377 833 391 882 440 930 1585 979 88
784 735 834 416 884 272 931 342 $80 440
785 314 835 334 885 59 932 232 981 108
786 131 836 208 886 443 933 311 982 491
788 591 837 216 888 IR 934 467 984 287
789 263 838 419 889 126 935 220 985 394
790 79 840 224 890 355 936 143 986 203
791 112 841 840 891 242 938 335 987 140
792 143 842 420 892 223 939 312 988 208
793 182 843 281 893 94 940 375 989 344
794 396 844 632 894 447 942 156 990 44
795 105 845 169 895 179 943 368 992 960
796 199 844 188 896 511 944 767 993 330
798 56 847 363 897 207 945 189 994 496
799 187 848 159 898 448 946 43 995 199
800 575 849 282 899 434 948 552 996 248
801 89 850 424 900 224 949 364 998 499
802 400 851 184 901 424 950 75 999 26
803 219 852 71 902 164 951 317 1000 624
804 200 854 244 903 42 952 272
805 69 855 170 904 112 954 423
806 155 856 320 905 180 955 190
807 269 858 143 906 452 956 239
808 303 860 215 908 680 957 87
810 80 861 41 909 404 958 479
812 231 862 431 910 104 959 273
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Case 2. Consider px=m+1 and qy=m together with g=q-p. Repeating the calculation in

case 1 results in:

m=q(pk-1)g where k is determined through pk-1=0 (mod g)

Case 3. Consider m=pq-1. We must have pg-1<p(qk+1)/g to beat case 1. This
inequality can be written p(q(g-k)-1)<g where g>k and q>2 from which we see that
this inequality is impossible. The argument is similar to reject case 3 in comparison
with case 2. m is therefore given by the minimum value for m as calculated in cases 1

and 2 ie.

Z{ny=Min(p(qgk+1Yg where pk+1=0 (mod g), q(pk-1)g where pk-1=0 (mod g))

Corollary: Z(n) is not a multiplicative function.

The above theory has been used to calculate Z(pq) for a few prime number gaps g=q-
p. The result is shown in table 9.

Table 9a. Z{n) for the first 10 prime gaps g=10 and g=30

Gap: gp=10 Gap: g-£=30

P q n Z{n) P q n Z(n)
139 149 20711 2085 4297 4327 18593119 8056874
181 191 34571 3438 4831 4861 23483491 782621
241 251 60491 6024 5351 5381 28793731 10557522
283 293 82919 24904 5749 5779 33223471 12182131
337 347 116939 35047 6491 6521 42327811 15519980
409 419 171371 17178 6917 8947 48052399 11212457
421 431 181451 18102 7253 7283 52823599 228904648
547 557 304679 91348 7759 7789 60434851 22159704
577 587 338699 101551 7963 7993 63648259 14850994
631 641 404471 40383 8389 8419 70626991 25896843
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Table 9b. Z{n) for the first 10 prime gaps g=20 and g=40

Gap: g-p=20 Gap: gp=40

p q n Z{n) p q n Z(n)
887 907 804509 120631 19333 19373 374538209 28090849
1637 1657 2712509 94946OJ 20809 20849 433844841 97615018
3089 3109 9603701 43215108 22573 22613 510443249 38283808
3413 3433 11716829 1757695 25261 25301 639128561 303584498
3947 3967 15657749  2348464F 33247 33287 1106692889 470345309
5717 5737 32798429 11479736F 38461 38501 1480786961 703374768
5903 5923 349434469 122369181 45013 45053 2027970689 152098927
5987 6007 35963909  5394286fF 48907 48947 2393850929 179537596
6803 6823 46416869 1624556, 52321 52361 2739579881 68488188
7649 7669 58660181 2639649 60169 60209 3622715321 815109442
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Chapter 1

Loops and Invariants

In many practical as well as theoretical processes we repeat the same operation on an
object again and again in order to arrive at a final result, or sustain a certain state or
maybe simply to see what is going to happen. Each time a hammer hits a nail the nails
sinks & bit deeper until it can sink no further. This repeated operation has resulted in
an invariant state. A different situation occurs in an engine when energy is used to
make a piston perform cycles or loops. Many similar phenomena occur when Tepeating
processes on numbers through iterations. Before going into the problems of this
section let us consider the iteration process itself.

Let I(n) define an operation to be carried out on n. If we apply this operation to I(n)
itself we say that we perform an iteration and could write this as I(I(n)). After a
number of iterations we could have something like KI(...I(n)...)). which we will write
I(iy(n) to indicate the keh iteration. Alternatively we can use 1y to denote the result of
the keh iteration and ng to denote the starting value. We then have

n; = I(no), m = I(m), g = I(ng)

Let us apply this to a simple case where I(n) is defined through Kn) = 1/n. If we take
no=1 then m=1 for all k, i.e. the result of the iteration is invariant. If we take ny=2
then n=1/2 for odd values of k and n=2 for even values of k, i.e. we have an iteration
resulting in a loop of length 2. If we apply the iteration process to I(n)=n’ then the
result will be forever increasing and we say that the iteration is divergent.

Since we are dealing with a very important concept which has attracted a lot attention
some of the topics in this section have been dealt with before. In particular Perfect
Digital Invariants [1], which has recently been reactivated under another name
“Steinhaus’ problem” [2]. However, all results presented here have been generated in
recent studies carried out by the author and have been retained even though some of
them may duplicate earlier results. This proved necessarv in order to arrive at a
consistent presentation and some new results. J. S. Madachy has made me aware of
more literature on this interesting topic some of which is listed in the references.
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1. Perfect Digital Invariants and Related Loops
For an arbitrary positive integer
Ni=a,10" + a5, 10" + 2,10+ ag
we define Ni.; = I(Ny) through
INy)=ay +an %+ ... +a%+a%, whereqe N, q=>2.

For a given positive integer ng the iteration process n; = I(mg), n; = I(my), ... 18
continued until one of the following situations 1s reached:

L In=n Perfect Digital Invariant (PDI)
L Iner)=m Loop of length L
O 1(n) > = Divergent

Case I is impossible. It follows from the following determination of the upper search
limit for each value of q. Let us consider the largest possible n-digit number N =
999...99 = 10"°-1. We have I(N) = n-9% and need to determine Nmax so that N-I(N)>0
for all N>Nmax. Let u be the largest value of n for which 10™-1-n-99< 0, i.e.

10°-1-u99<0 while 10%'-1-(u+l)94>0
then there is a smallest positive integer a, 1<a<9, such that
a10"+10"-1-2%-u94>0

This gives Npax = (a+1)-10" -1 as an upper limit for solutions. Nmax could be improved
bv looking for a smaller value than 9 for the second most significant figure but this
would give more complications than benefits in computer implementation. That Npax
exists proves that the iteration process does not diverge since after a number of
iterations larger than Npex a previously assumed value must be repeated completing a
loop or collapsing on an invariant.

Omnly a small subset of all integers < Nmax needs to be used as input numbers in a

search program. The following two input criteria greatly reduce the computer
execution time.
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1. The order in which digits occur in an input number is of no importance. Np =
2337 will give the same result as Ny = 3732. A number whose digits are a
permutation of an already used input number will therefore be rejected. As an
example take q=5 for which Npax = 299999. In this case an input number needs
to have maximum 6 digits of which there can be at most 6 ones or twos and a
maximum of 5 of the other digits.

2. Input criterion number 1 is used so that the search always proceeds from a
smaller to a larger input number. If for any input number N, we have I(Ng)<No
then the iteration process is aborted since I(Np) has either been dealt with before
or doesn’t meet criterion number 1.

Complete solutions were calculated for q = 2,34, ... 15. Apart from the trivial case
I(N)=1 these solutions are given in table 1 together with the upper search limit for
each q. The longest loop is of length 381 for q¢ = 14. There are no Perfect Dagital
Invariants (PDIs), i.e. solutions to N = I(N) for q=2, =12 and g=15.

References:
1. Lionel E. Deimel Jr. and Michael T. Jones. Journal of Recreational Mathematics, pgs
87-108, Vol. 14 .2

2. Personal Computer World, page 333, January 1996
3. Dean Morrow, Journal of Recreational Mathematics, pgs 9-12, Vol. 27.1
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Table 1a. PDis and related loops

q Nemax Length of Smailest Largest N
S=IN Loop term fterm

2 199/4 8 4 145 3

2999 1 153 17

1 370 16

S=76 1 371 19

1 407 2

2 136 244 1

2 919 1459 1

3 55 250 6

3 160 352 3

4 29999 i 1634 1

1 8208 8

S=153 1 9474 2

2 2178 6514 6

7 1138 13139 135

5 299999 1 4150 1

1 4151 1

$=345 1 54748 10

1 92727 1

1 93084 1

1 194979 1

2 58618 76438 23

2 89883 157596 i

4 10933 73318 9

[ 8299 150898 13

10 8294 183635 24

10 9044 133682 33

12 24584 180515 ?3

22 9045 167916 12

28 244 213040 21

6 3999999 1 548834 2

2 63804 313625 5

S$=401 3 282595 845130 71

4 93531 650550 5

10 239459 1083396 167

30 17148 1758629 150
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Table 1b. PDIs and related loops

q Nenax Ltength of Smallest Lorgest N
S=IN Loop term tem

7 4107-1 1 1741725 2
1 4210818 7

$=1012 1 9800817 10
1 9926315 12

1 14459929 1

2 2755907 6586433 1

2 8139850 9057586 30

3 2767918 8807272 45

6 2191663 9646378 21

12 1152428 14349038 70

14 922428 16417266 28

21 982108 14600170 93

27 253074 18575979 141

30 376762 19210003 225

56 86874 19134192 114

92 80441 14628971 210

8 4.108-1 1 24678050 19
1 24678051 188

S=1544 1 88593477 12
3 7973187 77124902 14

25 8616804 149277123 828

154 6822 153362052 482

9 4.10%-1 1 146511208 34
1 472335975 22

$=5058 1 534494836 53
1 912985153 34

2 144839908 1043820406 45

2 277668893 756738746 3

3 180975193 951385123 8

3 409589079 1339048071 13

4 52666768 574062013 171

8 20700388 1212975109 545

10 62986925 931168247 164
10 180450907 857521513 87
19 42569390 1001797253 403
24 52687474 708260569 373
28 322219 1298734342 262
30 41179919 1202877221 1434
80 32972646 1724515947 1133
93 2274831 1430717631 273
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Table 1c. PDIs and related loops

q Nemax Length of Smgliest Largest N
S=I N Loop term term

10 4.1010-1 1 4679307774 1

2 304162700 344050075 13

S=7408 6 123148627 7540618502 159

7 1139785743 9131926726 1084

17 62681428 13957953853 706

81 20818070 15434111703 711

123 192215803 14230723551 4733

11 4101 1 32164049650 30

1 32164049651 63

$=7628 1 40028394225 5

1 42678290603 3

1 44708635679 7

1 49388550606 11

1 82693916578 2]

1 94204591914 1

2 4370652168 11346057072 58

3 2491335968 71768229638 75

3 4517134494 33424168842 2

3 6666140097 36704410767 3

5 416528075 103153306403 54

5 2181207047 28167146357 43

7 9005758176 71727610926 50

10 3967417642 98110415227 100

18 12650989279 128870085703 486

20 2075164239 127554589656 1205

42 195493746 106744983639 1075

48 101858747 134844138593 1015

117 739062760 169812860326 1566

118 872080538 165906857819 609

181 8922100 176062673167 1142

12 4.10'2-1 5 98840282759 785119716404 128

40 2700216437 1157645923834 1557

5=9466 94 4876998775 1281243062759 1883

133 16068940818 1200615480166 5897
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Table 1d. PDIs and related loops

g Nmax tength of Smallest Largest N
S=I N toop term term

13 4.1013-1 1 564240140138 10

3 3396705890823 6294418483143 240

$=35177 5 2310198454262 10830899644190 50

5 3656948275943 6405584099531 1601

8 688271525816 5647840775906 8844

9 1113928853354 5840462013812 503

13 672769417360 6842950405261 240

16 662218816395 10829615029038 3403

18 100555910945 7735617503306 404

22 221192011997 7722486519974 821

31 759039131807 12916172647637 625

100 98183216073 10719727658703 6794

146 111240729637 11270705761846 11753

14 4.10'41 1 28116440335967 60

4 6674458190799 74548238736415 9

$=40180 4 27510477911590 47800729611562 428

S 841332967215 57268678554888 154

6 5911230616470 55918604360271 441

6 22955961974580 94220062144011 3N

7 5833130055708 97267770775241 35

14 1447300158177 92876091448633 51ty

15 4423275478678 78789825354783 1698

65 931899363208 118800319349172 3517

96 157270047611 92354596687594 9448

381 78924999008 142415666495594 18959

15 410181 3 255349823145519 447090882837630 17

8 76058866219899 729415146625008 10157

$=48785 A 70433029388274 657638038056753 518

12 41845353013296 632509424234352 1261

15 14745577655668 619115571288208 177

19 14746637048586 895875047683584 362

30 1096193499692 1030397118565900 94

46 10059036985836 662536011243090 1302

75 593343453343 864468451964287 18270

216 92683904599 1065173414568230 2400

362 595476555320 1145004602355100 13379
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2. The Squambling Function

The squambling function U(N) originates from The Penguin Dictionary of Curious
and Interesting Numbers, page 169. In its present form the problem was formulated by
G. Samson in the November 1995 issue of Personal Computer World:

For a given integer N = ap+ a;10 + ... +a,10" > 10", a, = 0, the squambling function is
given by

UN)=at+a" " + . +a,.

Iterating the squambling function will result in an invarant or a loop. As in the
previous problem there are no starting values for which the process diverges. To see
this consider

UN) = a2 +a™ + .. +at <9+ 9+ . + 977 =81(9"-1)8

If Ny exists for which UN) < Ny for all N > No then the squambling function must
return to one of its previous values after a sufficiently large number of iterations, €.
the process converges (or goes into a loop). No exists and is estimated to be less than
10* from the inequality below

UN) < 81 (9" -1¥/8 < 10" <N

More detailed considerations may considerably lower this upper limit for No, but in
any case the upper limit is so large that a complete search for invariants and loops is
hardly feasible. The result of a search for squam-mvariants and squam-loops for
integers up to 10° is summarized in table 2, where L=the total number of numbers in
the loop (=length of the loop, which equals 1 for an invarant), M=the smallest
number in the loop, N=the largest number in the loop and Q=the number of loops
found for initiating integers less than 10°.

Table 2. Squam-loops and squam-invariants

L 1 1 1 1 i 3 8 105

M 1 43 63 47016 542186 126529 579 5

N 1 43 63 47016 542186 4787463 59830 43055027
Q | 165421 | 613722 | 4617 125 6 13 2077 214018
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If there are more invariants and loops then they must have a smallest element greater
than 10°, or more precisely a smallest element which is larger than the upper limit for
a previous search. This has been used in an extended search for starting integers up to
50,000,000. No new loops were found. Question: Are there any?

Let us finally consider what happens if we reduce the powers to which each digit is
raised by one. This makes the process & fortiori convergent as can be seen from the
arguments used previously. The iteration process was examined for starting integers
up to 10°. No loops were found. Apart from iterations ending on one-digit invariants a
number of other invariants were found.

Table 3. The number of start integers Q below 10° resulting in an invariant |

i 89 135 175 518 598 1306 1676 2427

Q 347 492 54 319 128 102 20 27

Question: Are there no loops in this case?

3. Wondrous Numbers

This study deals with the extended Wondrous Numbers Conjecture stated as follows
by B.C. Wiggin [1]:

Any integer n 2 (D-1) may be directed through a series of iterations as a
Sfunction n = R (mod D). Starting with ng the series of iterated Wondrous
Numbers aren;, n,, ... I, ...
Definition: Let m=Ry (mod D)

if Re=0 then ny-1=m/D

if 1SR<D-2 then iy =D+ 1 )Ry

if Re=D-1 then ni=ng(D+1)+1

It is conjectured that the series ultimately converges to n<D.

This study will show that the above conjecture does not hold.

To examine the behaviour of the above process assume that for a given ny we have

1 = 0 (mod D)



in which case
g1 = WD, I = Dy
Let
g1 = Ry (mod D)
We have to consider three cases
Case 1

Ry-1 =0

T2 = Nget/D; Nz = m/D?
Case I

0 <Ry £D-2

g2 = Dkei(DH1) - Rieny

From this we see that ny.» = 0 (mnod D) and substituting from (1) that
k2 < (1 +1/D)

If Ry+2i stays within the above limits for I=1, 2, ... m then

Dgiom < (1 + /D)™

Case II1
Rkﬂ =D-1

As in case II ny.2 =0 (mod D) but
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ey <1 +1/D) + 1 “@

For the series to diverge the case R=0 must occur with a frequency which is much
higher than the expected 1/D (on the average). In a worst case scenario let us assume
that R # 0 so many times that it balances the effect of the occurrence of case I
Ignoring (4) which can be considered as compensated by ignoring R.1 in (3) we then
have.

o1+ VDD’ =

For D = 11 this gives m ~ 56 just to hold the balance. If remainders R are evenly
distributed then m would vary around 10. It is very safe to say that the series does not
diverge. However, it does not always converge to n < D as conjectured. Brendan
Woods {2] reported that she failed to get termination with (D,N) = (13,70), (14,75),
(58,59), (82,83) and (198,199). The reason is that these cases produce loops as shown
in table 4. No = 199, D = 198 produces a very long loop of length 2279 requiring 2499
iterations.

Charles Ashbacher [3] investigated all divisors in the interval 3 < D < 12 for all initial
values no < 14000000. Even with the most effective programmimg and up to date
equipment this is a very impressive piece of work. In all cases iterations terminated on
a one-digit number. He listed those cases for D=11 and D=12 where more than 1000
ncranonswemreqmredbefomthcte!mmalva]uewasreachedandmadethe
following observation “...for certain series of ascending n the number of cycles
descended in steps of 2 contrary to the expected behaviour that the number of cycles
rises with the size of the number”. He adds that no justification has been found for this
and challenges readers to further explore this behaviour. The remainder of this section
will be devoted to an explanation of this mystery though an analysis of the case D =
11. A similar analysis to the one below has been carried out for D = 12 with similar
results.

Since all iterations result in a one-digit terminal value all cases with nyp < 14000000
which require more than 1000 iterations can be classified according to their terminal
value. This is done in the column marked p in table 6, which contains Ashbacher’s
table as a subset. There are only three different terminal values 3, 7 and 8.

Table 5 shows the 180 first iterations for no = 1345680, which is the first entry m
Ashbacher’s table. Table 5 confirms the above theory that at least every second R is
zero. This explains the step 2 decrease with ascending n since this causes the terms to
oscillate. In general every second term was out of bounds of the investigation which
was limited to ne<14000000. These cases with long cycles are due to long “freak™
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oscillate. In general every second term was out of bounds of the investigation which
was limited to ng<14000000. These cases with long cycles are due to long “freak”
sequences if iterations with remainders R=0. Let’s apply (3°) to the first occurrence of
R=0 for even k in table 5. n; = 16148154, njs7 = 167493499.

nier < 16148154(1 + 1/11)¥%/121 ~ 167494096
This, as is seen, 1s a very good approximation.

Table 4. Loops instead of anticipated convergence

n no Loop starls First term of Ltoop tength of
: for: loop finishes for: loop
13 70 92 1911 162 71
14 75 13 166 91 79
58 59 19 4002 555 537
82 83 153 13120 925 773
198 199 221 61380 2499 2279

We also see from table 5 that it contains a sequence of numbers which also occur in
table 6, i.e. the initiating value no = 1345680 is the “grandparent” of a whole family of
larger initiating values having the same terminal value 8. However, table 6 also
contains initiating values with terminal value 8 which do not occur in table 5. At some
stage, however, these will merge with the iteration process for the “grandparent” .
These cases have been identified and labeled in column ¢ (c="child”) in tabie 6. These
“children” have been used as starting numbers for iteration processes to see at which
point they will join the “grandparent” iteration. The result is shown in tables 7 and 8,
where K is the number of iterations for the child (which may have a number of
children of its own as can be seen from table 6), and K-p is the number of iterations
for the grandparent before merging occurs. It is amazing how soon this happens. Only
the 8-family child 11700624 makes it on its own almost to the end. N-max is the
maximum value for the iteration process which occurs after K-m iterations. The 3-
family is childless.

References:
1. B.C. Wiggin, Journal of Recreational Mathematics, pgs 52-56, Vol. 20.1

2. M. Mudge, Personal Computer World, page 335, Dec. 1995
3 C. Ashbacher, Journal of Recreational Mathematics, pgs. 12-15, Vol. 24.1
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Tabile 5. The first 180 iterations for D=11, N=1345480

kR n k R n k R n k R n
1 O 16148154 2 9 1468014 91 O 810226780 92 1 73656980
3 0 17616159 4 1 1601469 93 O 883883759 94 5 80353069
5 0 19217627 6 4 1747057 5 0 964236823 96 4 87657893
7 0 20964680 8 9 1905880 97 0 1051894712 98 8 95626792
? 0 22870551 10 9 2079141 99 0 1147521496 100 8 104320136
11 0 24949683 12 8 2268153 101 0 1251841624 102 6 113803784
13 0 27217828 14 8 2474348 103 0 1365645402 104 7 124749582
15 0 29692168 16 9 2699288 105 © 1489794977 106 2 135435907
17 0 32391447 18 10 2944677 107 0 1625230882 108 2 147748262
19 O 35336125 20 1 3212375 109 0 1772979142 110 2 161179922
21 0 38548499 22 7 3504409 1M 0 1934159062 112 7 175832642
23 O 42052901 24 7 3822991 113 0 2109991697 114 10 191817427
25 0 45875885 26 6 4170535 115 O 2301809125 116 10 209255375
27 O 50046414 28" 8 4549674 117 0 2511064501 118 2 228278591
2 0 54596080 30 3 4963280 119 0 2739343090 120 1 249031190
31 0 59559357 32 1 5414487 121 0 2988374279 122 1 271670389
3 0 64973843 34 10 5906713 123 0 3260044667 124 10 296367697
3 0 70880557 36 8 6443687 125 0 3556412365 126 8 323310215
37 0 77324236 38 3 7029476 127 © 3879722572 128 10 352702052
39 0 84353709 40 1 7668519 129 0 4232424625 130 10 384765875
41 O 92022227 42 3 8365657 131 © 4617190501 132 2 419744591
43 0 100387881 44 10 9126171 133 0 5034935090 134 8 457903190
45 0 109514053 46 9 9955823 135 0 5494838272 136 6 499530752
47 0 119449867 48 3 10860897 137 0 5994369018 138 ¢ 544942638
49 0 130330761 50 8 11848251 139 0 6539311647 140 10 594482877
S51 0O 142179004 52 1 12925364 141 © 7133794525 142 6 648526775
53 0 155104367 54 3 14100397 143 0 7782321294 144 10 707483754
55 0 169204761 56 S 15382251 145 © 8489805049 146 1 771800459
57 O 184587007 58 5 16780637 147 O 9261605507 148 3 841964137
59 0 201367439 &0 4 18306149 149 0O 10103569641 150 ¢ 918506331
61 0 219673784 62 9 19970344 151 0 11022075966 152 10 1002006906
63 0 239644119 64 10 21785829 153 O 12024082873 154 8 1093098443
65 0 261429949 66 1 23766359 155 ¢ 13117181308 156 1 1192471028
67 0 2B51948307 48 3 25926937 157 O 14309652335 158 6 1300877485
&9 0 311123241 70 5 28283931 159 0 15610529814 160 1 1419139074
71 0 339407147 72 10 30855197 161 0 17029668887 162 2 1548151717
73 0 370262365 74 6 33660215 163 0 18577820602 164 5 1688892782
75 0 403922574 76 1 36720234 165 0 20266713379 166 0 1842428489
77 0O 440642807 78 1 40058437 167 8 167493499 168 0 2009921980
79 0 480701243 80 6 43700113 169 5 182720180 170 0 2192642155
81 0O 524401350 82 5 47672850 171 6 199331105 172 0 2391973254
83 0 572074195 84 10 52006745 173 ¢ 217452114 174 10 19768374
85 0 624080941 86 8 56734631 178 0O 237220489 176 10 21565499
87 0 680815564 88 10 61892324 177 0 258785989 178 2 23525999
89 0 742707889 90 8 67518899 179 O 282311986 180 10 25664726




Table 6. Some Wondrous Numbers and their Genetic Relations, D=11

E n k p c} # n k p cf # n k p?
1 1345680 1127 8 0| 42 5308496 1148 7 0] 83 10648288 1132 7 O
2 1468014 1125 8 O} 43 5414487 1095 8 0| 84 10860897 1079 8 O
3 1601469 1123 8 0| 44 5572804 1203 7 1 85 10971881 1191 8 4
4 1747057 1121 8 O] 45 5684068 1150 8 1 86 11178458 1187 7 2
5 1905880 1119 8 0] 46 5791086 1146 7 O 87 11178462 1187 7 1
6 2038440 1170 7 O 47 5906713 1093 8 O 88 11311510 1230 3 0
7 2079141 1117 8 Of 48 6079422 1201 7 1 89 11401647 1134 8 1
8 2223752 1168 7 O} 49 6200801 1148 8 1 90 11401651 1134 8 3
9 2268153 1115 8 0] 50 4317548 1144 7 0O} 91 11401653 1134 8 2
10 2425911 1166 7 O] 51 6443687 1091 8 O 92 11416314 1130 7 O
11 2474348 1113 8 0O} 52 6632096 1199 7 1 93 11700624 1077 8 5
12 2597542 1168 8 1 53 6764510 1146 8 1 94 11735002 1242 7 3
13 2646448 1164 7 0O 54 6891870 1142 7 Of 95 11735026 1242 7 4
14 2699288 1111 8 0] 55 7029476 1089 8 O 96 11848251 1077 8 O
15 2833682 1166 8 1 56 7235013 1197 7 1 97 11969324 1189 8 4
16 2887034 1162 7 0O 57 7379465 1144 8 1 98 12194681 1185 7 2
17 2944677 1109 8 O] 58 7518403 1140 7 O 99 12194685 1185 7 1
18 3091289 1164 8 1 59 7668519 1087 8 O] 100 12339829 1228 3 O
19 3149491 1140 7 Of 60 7892741 1195 7 1/ 101 12438160 1132 8 1
20 3212375 1107 8 O] 61 8050325 1142 8 1| 102 12438164 1132 8 3
21 3372315 1162 8 1 62 8050330 1142 8 2| 103 12438167 1132 8 2
22 3435808 1158 7 Of 63 8201894 1138 7 Ol 104 12438192 1132 8 4
23 3504409 1105 8 O 64 8365657 1085 8 Of 105 12672342 1128 7 O
24 3606876 12183 7 1 65 8610263 1193 7 1| 106 12764317 1075 8 S
25 3678889 1160 8 1 66 8782172 1140 8 1] 107 12801820 1240 7 3
26 3748154 1156 7 O] 67 8782176 1140 8 3} 108 12801846 1240 7 4
27 3822991 1103 8 0O &8 8782178 1140 8 2| 109 12925364 1075 8 O
28 3934773 12117 7 1 69 8947520 1136 7 O 110 13057444 1187 8 4
29 4013333 1158 8 1 70 9126171 1083 8 O] 111 13303288 1183 7 2
30 4088895 1154 7 O 71 9393014 1191 7 1l 112 13303292 1183 7 1
31 4170535 1101 8 O 72 9580551 1138 8 1] 113 13461631 1226 3 O
32 4292479 1209 7 1 73 9580555 1138 8 3] 114 13568901 1130 8 1
33 4378181 1156 8 1 74 9580557 1138 8 2 115 13568906 1130 8 3
34 4460612 1152 7 O 75 9760931 1134 7 0] 116 13568909 1130 8 2
35 4549674 1099 8 O 76 9955823 1081 8 O] 117 13568928 1130 8 7
36 4682704 1207 7 1 77 10057558 1193 8 4] 118 13568936 1130 8 6
37 4776197 1154 8 1 78 10246920 1189 7 2| 119 13824373 1126 7 O
38 4866122 1150 7 O 79 10246924 1189 7 1| 120 13924709 1073 8 5
39 4963280 1097 8 O] 80 10451510 1136 8 1} 121 13965621 1238 7 3
40 5108404 1205 7 1 81 10451514 1136 8 3| 122 13965648 1238 7 5
43 5210396 1152 8 1 82 10451516 1136 8 2] 123 13965650 1238 7 4
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Table 7. The 7-family. Grandparent = 2038440

# N-child Nchidone Nparent K K N- N-max K
one step onestep - - merger -
before before c p m
merging merging
T 3606876 293535231 2223752 46 3 26685021 8601348512990 562
2 1024692 381088411 2887034 28 9 34644400 8601368512990 538
3 1173500 764423308 5791086 97 25 69493028 8601368512990 591
4 1173502 293535231 2223752 75 3 26685021 8601368512990 591
S 1396564 293535231 2223752 71 3 26685021 8601368512990 587
Table 8. The 8-family. Grandparent = 1345680
# N-chid N<chidone N- K K N- N-max K
one step one - merger -
before before c P m
merging merging i
1 259754 504634735 3822991 66 25 45875885 22512799837 489
2 805033 326613848 2474348 30 15 29692168 22512799837 443
3 878217 388697375 2944677 32 19 35336125 22512799837 461
4 100575 504634735 3822991 91 25 45875885 22512799837 514
5 117006 38236 290 1048 1098 3476 43996530071824 348
6 124381 177629694 1345680 é 1 16148154 22512799837 453
7 135689 211393897 1601469 8 5 19217627 22512799837 451

4. Iterating d(n) and o(n) - Two problems proposed by F. Smarandache

(a) Let n be a positive integer and d(n) the number of positive divisors of n including
1 and n. Find the /smallest/ k for which d(d(...dm)...))=2 after k iterations, i.e.

find k so that dgy(n) =

d(n) is an important arithmetic function. We will look at its most important properties.

The factors of p®, where pis a prime are 1, p, p’, ..

. p* Consequently d(p*) = 1+a.

The number of factors in n = p°p® is easily seen to be (1+o)(1+B) from which the
following important theorem follows:

! In fact k is a (single-valued) function of n.
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If o, and n, have no common divisor, i.e. are relatively prime which we write
(n,n2)=1, then d(ninp)=d(ni)d(n;). We say that the arithmetic Sunction dnj is
multiplicative.
With n written in standard form n=p;p,"...pr" we have

d(n) = (1+a)1+p)...(1+1) m
We can now state:

d(n)<n for all n.

d(n)=1 if and only if n=1.

d(n)=2 if and only if n is a prime number.
From the above properties we see that d(n) is a measure of how far n is from being a
prime number. The larger the number of factors of n the larger is d(n), d(n) being
equal to 2 only when n is a prime. This makes it interesting to try to answer
Smarandache’s question [1]: How many iterations k are required in day(n)=2?7

Before looking at this problem let’s make an important observation:

Given an arbitrarily large positive integer k we can always construct
infinitely many integers n for which dgy(n)>2 for all i<k and dpy(n)=2.

Here is how: Let pi, P2, ... Px be odd primes (not necessarily distinct). Make the
following series of constructions:

n; = p; d(n;, =2

n, = pi’ d(ny) = p;
n=p® =prt dn)=pp
n, = P:S_’ d(n,)=n,
n, = p:H_l din)=n,_,

So that for n = o we have dgy(n) = 2 while dg(n) > 2 for i < k. Since we can choose
our primes anyway we like as long as p; = 2 this construction can be carried out in
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infinitely many ways. If we ask for the smallest k for which dmn) = 2 for all n then
the answer is that such a k does not exist.

Now to the problem. Factorizations and applications of (1) have been used to calculate
k as a function of n for n<100, table 9. This does not tell us much about the general
behaviour of dy(n). Table 10 provides some interesting cumulative statistics for n <
10°. No more than 6 iterations are required for any n < 10°. It seems strange that the
column for k = 7 remains empty for n < 10° and n < 10° in particular in view of the
regular behaviour in the column for k = 3 and our previous observation that k can be
arbitrarily large for properly chosen sufficiently large n. This calls for further study.

Table 9. K as a function of n forn < 100

n kin kin kln kin k|n k|ln kln kin « n k
o101 12t 3|31 1 141 151 3|6t 171 118 2191 3
2 1112 4122 3132 4142 4|52 4|62 3{72 5|82 3|92 4
3 118 1123 1133 3143 1053 1163 473 1183 1193 3
4 214 3{24 4{34 3144 4|54 4|64 2|74 3|84 5|94 3
S5 1]15 3|25 2|35 3 (45 4|5 3{65 3|75 4]85 3|95 3
& 3|16 2|26 3|36 3|46 315 466 4176 4 )8 3|9 5
7 0117 v t27 3(37 1147 1157 3le7 1177 3|87 3i97 1
8 3|18 4(28 4(38 348 4|58 3|68 4|78 4|8 4|98 4
9 219 1{29 1|39 349 215 1160 3|79 1]8 1l90 4
10 3/20 4130 4740 4|50 4]60 5170 4|8 49 5 i100 3

Let p# denote the product of all prime numbers less than or equal to p and consider
the largest number r of distinct prime numbers which are needed to construct any
integer < 10° ie. p# < 10° < p.#. With these primes consider all possible
constructions

2°3% pt < 10° Q)

This does not mean constructing all n < 10° but it does mean arriving at a structure
into which all prime factorizations of n < 10° fits. This will be so because any number
< 10° not produced by (2) will have fewer prime factors and smaller powers than one
or more of the integers produced by (2). To illustrate this let’s look at the case n <
100. We have 2-3-5 < 100 < 2.3-57. We will therefore consider all possible
construction 2*3%-5° < 100. These are obtained for a < 6, B <4 and € < 2 resulting in
table 11.



Table 10. Number of iteration k required to arrive at d(n)=2

n< k=1 k=2 k=3 k=4 k=5 k=6 k=7
10 4 2 3
100 25 7 34 28 5
1000 168 16 348 323 144
10000 1229 33 3444 3181 2108 4
100000 9592 79 34429 30466 24839 594
1000000 78498 189 344238 292460 271971 12643

Table 11. All possible prime factorization combinations C for n < 100

# C d n E C d n # C d n # C d n
1 000 1 1 11 100 2 2 |21 202 9 10031 410 10

2 001 2 5 12 101 4 1022 210 6 12}32 500 6 32
3 002 3 25|13 102 6 50123 211 12 60} 33 510 i2 96
4 010 2 3 14 110 4 6 | 24 220 9 36|34 600 7 64
5 011 4 15715 111 8 30|25 300 4 8

6 012 6 75116 120 6 18| 26 301 8 40

7 020 3 9 17 121 12 90} 27 310 8 24

8 021 6 45|18 130 8 54| 28 320 12 72

9 030 4 27119 200 3 4 129 400 5 16

10 040 5 81|20 201 6 20}30 401 10 80

Any number < 100 corresponds to one or more of these structures, for example 77 =
7-11 corresponds to 1 10, 1 0 1 and 0 1 1. This means that d(n) can only assume
values listed in table 11 for n < 100. The above scheme has been computer
implemented for n < 10'2. The result is shown on table 12 and figure 1, which gives a
clear picture of the overall behaviour of d(n).

Finally we will be able to sav something about dg(n). For n < 10" we have d(n) <
6720<10%. From table 10 it is seen that k < 6 for n < 10* and we therefore conclude
that

k<7forn< 10
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Table 12. Largest vaiue of d{n) forn < 10k, k <12

k Llargest Number of Number of Prime comb. Comresponding log{d)
d d values combingtions for largest d n

1 4 4 4 11 6 1.3863
2 12 11 34 121 %0 2.4849
3 32 22 141 31 840 3.4657
4 64 38 522 311110 9240 4.1589
5 128 40 1848 3311010 98280 4.8520
6 240 94 6179 4211101 942480 5.4806
7 448 135 20198 63111100 8648640 6.1048
8 768 190 42950 33211110 91891800 6.6438
9 1344 266 133440 621111110 931170240 7.2034
10 2304 359 399341 5312111100 9777287520 7.7424
A 4032 481 783061 6322111100 97772875200 8.3020
12 6720 626 2309712 64211111100 963761198400 8.8128

101

8--

6..

ind)
44+
2.»
+ + t t } {
0 2 4 6 8 10 12
k

Diagram 1. Largest value of Infdiny) for n < 10"



®) Lae o(n) = Zd and m a given positive integer. Find the smallest k for
din.d>0

which o(01... 012} ... }) 2m after k iterations, i.e. O ) 2)z>2m

Clearly k is a function of m. It is a stepwise increasing function. The first six
Iterations have been used to illustrate this for the interval 2 < m < 25 in diagram2.

However, a far more interesting function to study is the inverse of k(m). This function

m(k) is growing so rapidlv that numerical results are difficult to interpret and
represent. A better picture of the behavior of 6i(2) is obtained by studving the function

fik) = In(myk
This function is represented in diagram 3 for the interval 1 < k < 100. After going
through an interesting minimum for small values of k the curve flattens out. It seems
to remain downwards convex. Does it approach a horizontal asymptote?

Finally, a few iteration results (k,m): (1,3), (2.4), (3,7), (4.8), (5.15), (6.24), (7.60),

(100,2972648508456959686477689735325484246606843303655482359755571200)

-

51

Diagram 2. k as a function of m.
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Diagram 3. filky=Infmy/k.
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Chapter IV

Diophantine Equations

1. Some Thoughts on the Equation |y*-xY=k

In his book Only Problems, Not Solutions Smarandache formulated unsolved problem
#20 as a conjecture rather than a problem:

Let k be a non-zero integer. There are only a finite number of solutions in-
integers p, q, X, v, each greater than 1, to the equation x° - v¢=k '

In this study we will only consider the equation for p=q. By writing the equation in the
form [xP - v3 = k we only need to consider cases where p > q.

For a given set of parameters (p,q,k)} it would then be desirable to list this finite
number of solutions (x,y). However, if this were possible if would probably already
have been done. So Smarandache’s statement is likely to be based on statistical
evidence rather than analytical reasoning. It is mainly from the statistical point of view
we will study this equation. The parameters will be restricted to k<200 and p<9. As in
most studies of this nature Ubasic provides the most effective computer language. All
solutions where x<100 and v<100 can be churned out in a couple of seconds. To go
any further we need a general approach to avoid running through meaningless search
intervals. Consider

xzpyqik

For sufficiently large v only x = F{ ’yq Torx = L‘P ’yq 1 can produce solutions
corresponding to

! Smarandache adds that “For k=1 this was conjectured by Cassels (1953) and proved by Tijdeman
1976).” (Gamma 2/1986)
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k=F{/}71P-y‘l (1a)
k=yq-L{/_)7Jp (1b)

It is easy to imagine from (1a) and (1b) that the number of solutions thin out rapidly as
we increase y. Let’s illustrate this for p=3 and g=2 by looking at the number of
squares s which fit into the interval between (n-1)* and (n+1)’, ie. integers s for
which

or

(n-1)’<s’<(n+1)? 2)

Let Smn be the smallest and sp.x the largest s which satisfies (2). We can then
calculate the ratio f between the number of squares between (n-1)* and (n+1)’ and the
difference between these cubes, i.e.

= Soax — Soim

(n+1°-(n-1)>°
To have a solution we must have an s such that |s? - n’ = k. The smaller f is the
smaller is the chance for this to happen for our very limited range for k. Let s,* be the
largest square which is smaller than n® and s,” be the smallest square which is larger
than n® then s; and s, give an indication of the behaviour of |s?- n’ . These two ways
of looking at the problem are displayed in table 1 for a sequence of values of n which
have been chosen so that n is neither square nor cube.

Table 1. Frequency of squares

n 523 ni-s2 f

5 19 4 3.95-102

50 316 391 1.40-103
5-102 14761 7600 4.40-105
SR 430916 276191 1.41.106
5104 2515600 19845079 4.47-108
5108 287598881 419507900 1.41-10¢
5-10¢ 11203852544 11156827231 4.47-10M
51 513527672836 193579108351 1.41.1012
5-108 1151976475001 21208703299996 4.47-1014




Table 2. Largest y

k o) a Y X
24 3 2 8158 736844
199 4 2 10 99
28 4 3 15 37
60 5 2 76 50354
24 5 3 4 10
13 5 4 3 4
127 6 2 4 63
37 6 3 2 3
104 6 4 3 5
32 6 5 2 2
95 7 2 6 529
10 7 3 3 13
95 7 4 6 23
96 7 5 2 2
64 7 6 2 2
161 8 2 3 80
40 8 3 2 6
175 8 4 2 3
13 8 5 2 3
192 8 6 2 2
128 8 7 2 2
83 9 2 3 140
169 9 3 2 7
113 9 4 2 5

Although the search for solutions was extended to y=10000 no solutions were found
for the following values of k:

6, 14,21, 29, 34, 42, 43, 50, 52, 58, 59, 62, 66, 69, 70, 75, 78, 82, 85, 86, 91, 102,
110, 111, 114, 123, 125, 130, 133, 134, 146, 149, 150, 158, 160, 165, 173, 176, 177,
178, 182, 187, 189, 195.

No solutions were found for (p,q)=(9,5), (9,6), (9,7) and (9,8).

Computer search: Calculations were carried out in Ubasic for y<10000, k<200 and
p<9. Most solutions occur for small values of y for which we cannot use the CEIL ( 1)
and the FLOOR (L ) functions. The ROUND function has been used instead.
Calculations are carried out with real numbers to 19 decimal places (POINT 9 in the
Ubasic language).To safegard against “near integer” solutions a “proposed” solution is

61




recalculated with integers in a subroutine. A simple version of the program is given
below:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

200
210
220
230
240

point 9

Y1=10000

forR%=3t0 9

for $%=2 to R%-1

for K%=1 to 200

Y=2

while Y<Y1

if (YAR%-K%)<1 then X1=[K%-YAR%}A(1/5%):goto 100
X1={YAR%-K%) A (1/5%)

X=round(X1)

if abs(X-X1)<10A(-30) then gosub 210
endif

X1=(YAR%+KB) N (1/5%)

X=round(X1)

if abs(X-X1)<10A(-30) then gosub 210
endif

incY

wend

next:next:next

end

if abs(YAR%-XAS%}<>K% then goto 240
if X<=1 then goto 240

print R%,$%.Y.X.K%

retum

The number of solutions for each set of parameters is given in table 3. The largest
value of vy which occurs in a solution for each parameter set (p,q) is given in table 2,
which confirms the indications for the rarity of solutions for large y given in table 1.

The largest number of solutions (11) occur for k=17. Several of these are due to the
fact that no distinction is made between (x*)° and (x®)®. These solutions are displayed
in table 4. A limited search (y<100) was carried out for 10<p<20, k<200. Only two
solutions with y=2 were found. These results are shown in table 5.

Conclusion: Smarandache’s conjecture is well supported by the numerical results
obtained in this study. The number of solutions diminish rapidly with increasing y, p

and q.
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Table 4. Solutions for k=17

Sol. # p q Y X
1 3 2 2 5
2 3 2 4 9
3 3 2 8 23
4 3 2 43 282
5 3 2 52 375
6 4 2 3 8
7 4 3 3 4
8 5 2 2 7
9 6 2 2 9
10 6 4 2 3
11 9 2 2 23
Table 5. Solutions for 10<p<20

k ] q Y -
63 10 2 2 31
65 10 2 2 33
124 10 2 2 30
132 10 2 2 34
183 10 2 2 29
24 10 3 2 10
23 11 2 2 45
68 11 2 2 46
94 1 2 3 421
112 1 2 2 44
161 11 2 2 47
199 11 2 2 43
149 11 3 2 13
139 11 7 2 3
127 12 2 2 63
129 12 2 2 65
89 13 2 2 91
92 13 2 2 90
192 13 3 2 20

7 15 2 2 181
37 15 2 3 3788
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Table 3a. The number of solutions to [yr-xaj=k

k/a

N W

777 7 8881888 ¢9

5 2 3 45 6 2 3 45 6 7 28um
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Table 3b. The number of solutions to Jye-xaj=k

777 7 88 8 888 9
2 3 45 6 2 3 45 6 7 2Sum
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—_— = N
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Table 3c. The number of solutions to yr-xaj=k

k/q

55 6 6 6677 777 8888828999

3 423 4523456234567 23 48um

100
101
103
104

106
107

109
112
113
115
116
17
118
119
120
121

124
126
127

129

131
132
135
136
137
138
139
140
141
142
143
144
145
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Table 3d. The number of solutions to jyr-xaj=k

p 3 4 4555 66 667 7777 88888389909
k/g 2 2 323 423452345623 4567 23 4S5um

147
148
151
152
153
154
155
156
157 1
159 1 1
161
162 i 1 1
163
164
166 1
167
168
169
170
171
172
174
175
179 11 1
80 2 1
ic3 i
34 2 1 1
i85 1 1
186 1
| 2 1

|

1

i

N

e e 1 ()t a
—

N

N) ot
—

it ma ND et et N e

190
191
192
193 1
194 1
196 1 ]
197 1
198 2
199 2 1
3
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2. The Equation 7(p*+q*+r*+s*+t*) - 5(p™+q*+r? +s2+1%)* + 90pqrst = 0

This equation first appeared in the Numbers Count column of the Personal Computer
World in March 1986. At that time the author found two until then unknown solutions
(p.q.1,5,1/~(87,42,6,3,3) and (p,q,1,5,t)=(99,97.39,13,2). This took approximately 75
hrs on an 8086 processor running a 4.7 Mhz. Now, in 1996, these results were
reproduced using the same program in 21 minutes on a Pentium 100 Mhz. The method
used 1s reproduced below together with a number of new solutions.

Consider the function
F(p.qrst) = T(p+qtriesst’) - S(pPrql+r+s™+%) + 90pqrst
This function is invariant under exchange of variables. This makes it useful to study

the function while all variables except one is kept constant. Denote this variable x.
Afier some elementary algebraic manipulations we have

F(..x+1..)= F(...x,.. )+ G(x) - 10C-H(x) + D/x

where
G(x) =28+ 22x% + 8x + 2
Hx)=2x+1
C = p*+q’+r™+s+t* with one of the constants replaced by x
D = 90pqgrst with the same constant as above replaced by x

This permits us to calculate F(...,x+1,...), G(x), H(x), C and D. When, in the next
step, one of the unknowns p,q.r.s.t is increased by one the following replacements
must be made

C:=C+H(x)
D =D(x+1)x

Without imposing any restrictions we can assume p>q 21> s>t For a given value
of p the search will be conducted for descending values of the other unknowns. For
given values of p, q, 1, s consider the function

g(t) = 7(e+th) - 5(a + )7 +bt

where e = p*+q*+r'+s’, a = p+q’+r*+s? and b = 90pqrs

68



We have
g’(t) = 8- 20at +b
g7(t) =24t - 20a
£7°(t) = 0 for tn, = V(52/6) which gives g’mn = b - 16tm>

Case 1. g’mn > 0. Since g’(0)>0 it follows that g’(t}>0 for t>0. This means that g(t)is
an increasing function for t>0 If we have found t, such that g(t;)>0 then g(ty>0 for all
t>t, and the search can be interrupted for t=t;.

Case 2: g’min<0. For t>t, the function g(t) is convex and a value t=t; will be found for
which the function is positive and increasing. The search is stopped for t>t;>t.

The above method has been used in a computer program written in Ubasic.
Implementation on Pentium 100 Mhz computer has revealed a few new solutions. A
complete list of all solutions for p<400 is given in table 4.

Table 4. Solutions for p<400

# D g r s t
1 1 1 ] i 1
2 2 1 1 1 1
3 2 2 ] 1 i
4 3 3 2 1 1
5 4 2 1 ] 1
6 6 3 2 ] 1
7 7 7 4 2 1
8 17 7 7 1 1
9 59 47 19 7 2
10 87 42 6 3 3
M 99 97 39 13 2
12 124 63 42 17 1
13 127 47 34 2 ]
14 189 87 27 3 3
15 286 154 11 1 11
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3. The Equationy=2-x1x;... x +1
Conjecture:

Let k>2 be a positive integer. The diophantine equation: y = 2-X1X ... Xx+ 1
has a infinitely many solutions in distinct primes y, X;,X, ... Xk.

This is unsolved problem number 11 in Smarandache’s book Only Problems, Not
Solutions. The word distinct has been added by the author. The purpose of this study
is to see ‘how stable’ this conjecture is. This is done through a computer analysis of
all possible solutions for y < 10°. (A very thin layer when surfing the ocean of integers
but big enough to take a bit of time on the computer when it comes to calculations -in
fact more than 100 hrs). From the computational point of view there is no reason to
exclude k=1. The interval O<y<10® is divided into 10 sub-intervals of equal length;

Interval #1: O<y<10®
Interval #2: 10%<y<2-108
Interval #3: 2-10%<y<3-10%
Interval #10 9-10%<y<10°

The endpoints are excluded since these do not contribute to the number of solutions.

Consider
t=(y-1)/2=-x,xz oo Xk )

The task is to identify sequentially all square free numbers n<10°. For each square
free number with k distinct prime factors we calculate the corresponding number y
and test whether it is prime or not. The number of primes is denoted my and the
number of square free numbers is denoted nx. mx and ny are recorded for each interval
and the frequency of solutions Fxy=my/ny is calculated. The result is shown in table 5.

The same result are shown in diagram 1, which conveys a good visualization of a
result obtained through surfing on a small area of the ocean of integers.

Let’s make a few observations:

Why the irregulanties for k=8 and k=97 The smallest square free integer with k prime
factors is pu# where py is the kth prime. For k=8 and k=9 this means there can be no
solutions for y<2-194+1=19399381 and y<2.23#+1=446185741 respectively. The
samples for k=8 and k=9 are therefore too small to give a true picture - randomness
takes precedence over mass behaviour.
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Table 5. Frequency of solutions

#1 k=] k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=g

7| 00765 0.0893 0.1061 0.1282 0.1561 0.1933 0.2435 0.3419

21 00701 0.0817 0.0967 0.1159 0.1407 0.1735 0.2167 0.2607

3| 0.0683 0.0794 0.0937 0.1118 0.1356 0.1665 0.2075 0.2810

4] 00672 00778 0.0919 0.1095 0.1323 0.1612 0.1991 0.2622

51 00662 0.0769 0.0903 0.1080 0©.1301 0.1580 0.1944 0.2252 0.0000
6| 0.0655 0.0760 0.0895 0.1063 0.1280 0.1562 0.1944 0.2298 1.0000
71 00653 00752 0.0887 0.1054 0.1266 0.1543 0.1898 0.2496 1.0000
8| 0.0646 0.0748 0.0878 0.1046 0.1256 0.1529 0.1846 0.2225 0©.5000
91 00641 0.0744 0.0873 0.103¢6 0.1244 0.1508 0.1883 0.2359 0.6667
101 0.0639 0.0738 0.0847 0.1030 0.1238 0.1498 0.1846 0.2120 0.4000

Frequency of solutions

Interv al

Diagram 1 .Frequency of solutions
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With the previous observation in mind let’s compare the frequencies for the first and
the last interval. Diagram 2 shows Fy for the intervals 0<y<10® and 9-10%<y<10°.

Frequency of solutions for intervals 1 and 10

04
03 -
02 : T o1

= 02 | ‘ AR L 10
0.15 :

0.1 Y ‘—._

005

X J

u‘.. B

Diagram 2

Observation: When not too close to p# the frequency smoothly increases with
increasing k. This is a good support for Samrandache’s conjecture.

Let’s now take a closer look at how the frequency of solutions behave for distinct
values of k. Diagram 3 shows that the frequency decreases slightly for all k as larger
integers as included. Is there an asymptote for each k?. The frequency of solutions
increases as we increase k. It should be noted that it is the ratio between the number
of solutions and the number of square free numbers in an interval determined by t in
(1) which depicted. This is of course different from the number of square free
numbers in the interval for y because when y runs through the interval a<y<b then
we consider square free numbers s which obev

(a-1)2<s<(b-1)2
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As a bi-product to this study we have information on how many square free integers

with 1, 2, ..., 9 prime factors there are in our different intervals. This is shown in
table 6, where, as we have seen, we now only have five intervals..
Interval #1: O<s<10®
Interval #2: 108<s<2-10%
Interval #3: 2-10%<s<3-10°
Interval #4: 3-10%<s<4-10°
Interval #5: 4-10%<s<5-10°
frequency of solutions by intervals
04
—o—k=1
03+ —=—k=
—a— k=3
f ol M- ——k=4
. —%—k=5
—e— k=6
0.1 ¢
——k=7
—=—k=8
0.0
0 2 4 6 8 10
interval #
Diagram 3.
Table é. Number of square free numbers
# k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

1 5761455 17426029 20710806 12364826 3884936 605939 38186 516
5317482 16565025 20539998 13029165 4476048 799963 63642 1409
5173395 16270874 20457818 13243252 4689541 879765 76114 2060
5084001 16085983 20402004 13374830 4825914 932513 84968 2560
5019541 15951738 20359052 13468885 4926227 972398 91767 3005

LS TN AR S|
oo oo N O O
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Diagram 4 shows a cumulative representation of the number of square free numbers
withk=1.2, 3, ... 9 prime factors. A square free number with only one prime factor is
indeed a prime number so the first column in table 6 shows the number of prime
numbers in the interval.

Cumuiative statistics of square free numbers

120000000

as
n4
= k]
mn2
01

=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=90

Diagram 4.

The illustration on the cover is another version of the above diagram for n<5-10".
Finally, a problem often leads to other problems. Let’s go back to iterations. In the
introduction to chapter III it was said that iterations result in an invariant, a loop or

divergence. Is there reallv no other possibility? Let's look at this:

We define ug-; = 2-+1 where u; is a prime number. ux-. will have the
property of being a prime number or not being a prime number.

In this case we can give an explicit formula for ux-; in terms of u;. One easily finds
Ut = 25+ )1
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How do we characterize the result of iterations in relation to the property in which we
are interested? Indefinite?

How many times can we iterate ux.; = 2-x+1 preserving primality? For u;=305192579
it is eight times resulting in the following series of nine primes:

305192579, 610385159, 1220770319, 2441540639, 4883081279,
9766162559, 19532325119, 39064650239, 78129300479

Which is the first series with 10 terms - or 11? Maybe we need some deep sea diving!
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The Smarandache Ceil Function

Definition: For a positive integer n the Smarandache ceil function of order k is
defined through !

Sy(n) = m where m is the smallest-positive integer for which n divides m~

In the study of this function we will make frequent use of the ceil function defined as
follows:

‘ {x1= the smallest integer not less than x.

The following properties follow directly from the above definitions:

1. Sin)=n
2. Sp®)=p** for any prime number p.
3. For distinct primes p, g, ...r we have Sy(p°q®-1°) = Ly Lo LUl

Henry Ibstedt
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