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On Smarandache’s Podaire Theorem

Let A',B’,C’' be the feet of the altitudes of an acute-angled triangle ABC
(A" € BC, B' €¢ AC, C' € AB). Let d/,V,V denote the sides of the podaire triangle
A'B'C’. Smarandache’s Podaire theorem [2] (see [1]) states that

Z o't < i-z a® (1)

where a, b, ¢ are the sides of the triangle ABC. Our aim is to improve (1) in the following
form:
1 2 1 2 1
Y ! 2
Yot <3(Xe) <5(Xe) <324 @
First we need the following auxiliary proposition.
Lemma. Let p and p' denote the semi-perimeters of triangles ABC and A'B'C’, re-

spectively. Then
3)

YRS

Proof. Since AC' =bcos A, AB' = ccos A, we get
C'B’' = AB? + AC? ~ 2AB’ - AC' - cos A = a? cos? A,
so C'B’ = acos A. Similarly one obtains
A'C'=bcosB, A'B' =ccosC.
Therefore

) 1 IR 1 R . . . .
p = §ZAB = §ZacosA= 5251112A=2RsmAsmBsmC



(where R is the radius of the circumcircle). By a = 2R sin A, etc. one has

p’=2RH£§=%,

where S = area(ABC). By p = g (r = radius of the incircle) we obtain
=L

P =zp. (4)

Now, Euler’s inequality 2r < R gives relation (3).
For the proof of (2) we shall apply the standard algebraic inequalities

zy +r2+y2) < (z+y+2)° <32+ +25).

Now, the proof of (2) runs as follows:

(Ze)

1 2 1 1 1 1
W< = ') = (VY <l /< 2
Z‘ab—s(za At e e S DI
Remark. Other properties of the podaire triangle are included in a recent paper of

the author ([4]), as well as in his monograph [3].
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On the diophantine equation a? + b*> = 100a + b

The numbers 1233 and 8833 have the curious property that 1233 = 122 + 332 and
8833 = 882 + 332. Let zyzt be a four-digit number satisfying this property, i.e. zyzt =
5 + 7. By putting a = T3, b = 21, since Tyzt = 100T7 + z¢ = 100a + b, we are led to

the following diophantine equation:
a® + b* = 100a + b. (5)

The above problem required a and b to have two digits, but we generally will solve
this equation for all positive integers a and b.

By considering (1) as a quadratic equation in a, we can write
a2 = 50 + V2500 + b — b2 (6)

To have integer solutions, we must suppose that
2500 + b — b* = 72 (7)

for certain positive integer z, giving a; 2 = 50 £ .
By multiplying with 4 both sides of equation (3) we can remark that this transforms
equation (3) into
(27)? + (26 — 1)* = 10001. (8)
It is well known that an equation of type u? + v? = n (n > 1) has the number of
solutions 4(7; — 72), where 73 and 7, denote the number of divisors of n having the forms
4k +1 and 4k + 3, respectively. Since 10001 = 137-73 and 137 =4-34+1,73=4-18+1,
clearly 7y = 4, 75 = 0. Thus u? +v? = 10001 can have exactly 16 : 4 = 4 positive solutions,

giving two distinct solutions. Remarking that 73 = 32482, 137 = 112+42, by the identities
(0® + B2 (u® + %) = (au — Bv)* + (uB + av)® = (Bu — aw)® + (au + Bv)?,

we can deduce the relations 762 + 652 = 10001, 1002 + 12 = 10001; implying 2z = 76,

2b -1 = 65; 2z = 100, 2b — 1 = 1 respectively. For z = 38 and b = 33 we get the

values @; = 50+ 38 = 88, a = 50 — 38 = 12. For £ = 50, b = 1 one has a; = 100,

as = 0. Therefore, all solutions in positive integers of equation (1) are (a,b) = (12,33);

(a,b) = (88,33). These are exactly the numbers stated at the beginning of this note.
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On the least common multiple of the first n positive
integers

1. A. Murthy [1] and F. Russo [2] recently have considered the sequence (a(n)), where
a(n) =[1,2,...,n] denotes the lL.c.m. of the positive integers 1,2,...,n.
We note that a{n) has a long-standing and well known connection with the famous

” prime-number theorem”. Indeed, let A be the Mangoldt function defined by

A(n) = logp, if n = p* (p prime)

0, otherwise

Put ¥(z) = Z A(n), known as one of the Chebyshefl’s function. Now

n<z

ZA(m) = Z logp =log H D-

m<n p*<n p*<n

Let k, be the largest positive integer with p* < n. Then

log H p** = loga(n)

p<n

on the base of the known calculation of l.c.m. Therefore
a(n) = e¥™ (14)

where e* = exp(z). By the equivalent formulation of the prime number-theorem one has

/
%)——»Iasn—aoo,givingby(l):

lim {/a(n) =e. (15)

n—oo

Now, by Cauchy’s test of convergence of series of positive terms, this gives immediately
that
1 a(n)
—— and —_ (16)
nZZl a{n) ; n!
are convergent series; the first one appears also as a problem in Niven-Zuckerman {3}.

Problem 21.3.2 of [4] states that this series is irrational. A similar method shows that the

second series is irrational, too.



2. Relation (2) has many interesting applications. For example, this is an important
tool in the Apéry proof of the irrationality of {(3) (where ( is the Riemann zeta function).
For same methods see e.g. Alladi [7]. See also [8]. From known estimates for the function

1, clearly one can deduce relations for a(n). For example, Rosser and Schoenfeld [5] have

shown that M takes its maximum at z = 113 and w—gﬂ < 1.03883 for z > 0. Therefore
z

({‘/a(n)) takes its greatest value for n = 113, and
Ya(n) < 088 forall n>1. (17)
Costa Pereira [6] proved that 330 < M for £ > 70841 and —d)—(i) < 932 for z >

531 T T 531
60299; giving

e/l « a(n) < e¥2/53  for n > 70841. (18)

A. Perelli [9] proved that if N®** < H < N, then ¢(z + H) —¥(z) ~ H for almost all
z (0 € (0,1) is given), yielding:

a(n + H)
log T ~ H for almost all n, (19)

for N%+* <« H < N.
M. Nair [10] has shown by a new method that Z ¥(n) > az? for all T > z4, where

n<z

a = 0.49517. . .; thus:
Z loga(m) > an®? for n > ng. (20)

m<n

Let A(z) = ¢¥(r) — z. Assuming the Riemann hypothesis, it can be proved that

A(z) = O (yzlog’z); ie.
loga(n) —n = O (Vnlog’n). (21)
This is due to von Koch [11]. Let
D(z) = % /1 NG

By the Riemann hypothesis, Cramér [12] proved that D(z) = O (y/z) and S. Knapon-
ski [13] showed that

logz
loglogz

D(z) > Vzexp <—c -logloglog x) .



Without any hypothesis, J. Pintz [14] proved that

NES
D(z) > 5500 for > 2. (22)

References

(1] A. Murthy, Some new Smarandache sequences, functions and partitions, SNJ
11(2000), No.1-2-3.

[2] F. Russo, On three problems concerning the Smarandache LCM sequence, SNJ
12(2001), No.1-2-3, pp.153-156.

[3] 1. Niven - H.S. Zuckerman, An introduction to the theory of numbers, John Wiley

and Sons, Inc. (Hungarian translation, 1978).
[4] Problem 21.3.2, Ontario Mathematics Gaz.

(5] J.B. Rosser and L. Schoenfeld, Approzimate formulas for some functions of prime
numbers, Illinois J. Math. 6(1962), 64-94.

[6] N. Costa Pereira, Elementary estimates for the Chebyshev function (z) and the
Mébius function M(z), Acta Arith. 52(1989), 307-337.

[7] K. Alladi, Research News, March 1979, Univ. of Michigan.

[8] J. Séndor, On the g.c.d. and l.c.m. of numbers (Romanian), Lucr. Semin. "Didactica

Mat.” vol.15(1999), pp.167-178.
[9] A. Perelli, Local problems with primes, I, J. Reine Angew. Math. 401(1989), 209-220.

[10] M. Nair, A new method in elementary number theory, J. London Math. Soc.
(2)25(1982), 385-391.

{11} H. von Koch, Sur la distribution des nombres premiers, Acta Math. 24(1901), 159-
182.



[12] H. Cramér, Ein Mittelwertsatz in der Primzahitheorie, Math. Z. 12(1922), 147-153.

[13] S. Knapowski, Contributions to the theory of distribution of prime numbers in arith-

metic progressions, I, Acta Arith. 6(1961), 415-434.

[14] J. Pintz, On the mean value of the remainder term of the prime number formula,

Banach Center Publ. 17(1985), 411-417, PWN, Warsaw.

10



On certain limits related to prime numbers

1. Let p,, denote the nth prime number. The famous prime number theorem states (in

equivalent form) that
Dn

nlogn-alaanoo. (23)
(In what follows, for simplicity we will note z,, — a when lim z, = a). There are some
n—oo
immediate consequences of this relation, for example:
DPnsa
— — 1; 24
y2 (24)
log pn,
1. 2
logn - (25)
Without logarithms, (1) and (3) have the form
nvPr s e; (26)
P/ — e (27)
From (2) easily follows
YPn— L; (28)
while (1) and (2) imply
pn—é—l _pﬂ. N 0. (29)

nlogn
In paper [1] there were stated a number of 106 Conjectures on certain inequalities re-
lated to (p,). The above limits, combined with Stolz-Cesaro’s theorem, Stirling’s theorem

on n!, simple inequalities imply the following relations (see [7], [8]):

logn
i 1 o3 (30)
—+.. .+ —
Y41 Dn
[ htths (S @
n(n+1) ’
logn
2
p{logn]
£iogn . 39
logpn - w) ( )
P/ Dn+1Pn+2 — 15 (33)

11



\"/p1p2 < Pn - 0; (34)

n!
p(n-i-;?;" DPni — o0 (35)
—(ﬁn!)! — 0; (36)
plpzpnz - - 0; (37)
P(n+1)t — Pn! .
(pn+1 _pn)! e (38)

P1+D2t ... +Dn
P+ P+ ...+ Pu
loglog pn.1 —loglogp, _

- 0; (39)

0; 40
log pn+1 — log p, (40)

1 epn+1 — ep‘n
—log——— — 1; 41
Dn 8 Pn+1 — DPn ( )
me(&ﬂ;&ﬁ=+w; (42)

Pnt1 — DPn
lim inf (/Prr1Pn+z — &PrPna1) = 0; (43)
mMM@MW‘ﬂﬂ)=& (44)
lim sup (p[m} -p[ﬁ}) = 00; (45)
1

imint 2 (VA - VA =0 (e (0.3)); (46)
limsuppr * (&/Pns; — ¥pn) =+ (k=2 keN), etc (47)

With the use of these limits, a number of conjectures were shown to be false or trivial.
On the other hand, a couple of conjectures are very difficult at present. Clearly, (24)
implies

. - DPn+1 — DPn
lIminf————— = 0. 48
\VPn (48)

A famous unproved conjecture of Cramér {3] states that
. o ¢Pn+1— Dn
lminf ——— = 1. (49
(log7.)? )
If this is true, clearly one can deduce that

Dn+i1 — Pn

logpoy = " %0)

lim sup

12



Even

. Dn+1 — Pn
lim sup m < o0 (51)

seems very difficult. A conjecture of Schinzel [2] states that between z and z + (log z)?

there is always a prime. This would imply p, < ppi1 < pn + (logpa)?, so

Pn+1— DPn
VDPn

Probably, this is true. A result of Huxley [4] says that with the notation d, = pp+1 —p»

0. (52)

z & « . . l'f‘
one has d, < pi* - (¢ > 0), and the Riemann hypothesis would imply d. < p2 . Even
these statements wouldn’t imply (30). Erdés and Turén [5] have proved that —— > 1
for infinitely many n, while 1 < 1 for infinitely many m; probably
: dnt1
lim sup —— = +o0 53
P (83)
is true. 7
2. In [12] it is shown that
log pn, — Pn 1. (54)
n
Therefore
Dn+1 Dn
1 n - = 4 = n+ — ’
08 Prs1 = - logpn+— — 0
so by putting z, = Poi1 _ Pn by log pn+1 — logp, — 0, we get
n n + 1 n 3 n n b fa)
Z, — 0. (55)
Thus
[Tn| — 0, (56)

implying |z,| < 1/2 for sufficiently large n. This settles essentially conjecture 81 of [1]
(and clearly, improves it, for large n). Now, by a result of Erdos and Prachar [6] one has
c1log’p, < Z |Tm| < c2log? pr,

m=1

(c1, 02 > 0 constants), so we obtain

l$1[+...+|xn|> < oo (57)

lim sup ( oe2p

13



lim inf ('xl[ -lt)gzp—L lx"') > 0; (58)

it would be interesting to obtain more precise results. By applying the arithmetic-
geometric inequality, one obtains

n

log” p,

What can be said on liminf of this expression?

lim sup 2127 . .. 2o )Y™ < 0. (59)

3. In paper [11] there are stated ten conjectures on prime numbers. By the following
limits we can state that the inequalities stated there are true for all sufficiently large
values of n. By Huxley’s result (for certain improvements, see [2]),

n%d, n®

Prn+1DPn < n5/12—€(10g n)5/12—5 — 0,
so if & < 5/12 — ¢, we have
Prt1=Pn _ o -
Prn+1 + Dn

for sufficiently large n. This is related to conjecture 2 of {11].

We now prove that

o8 Pnt1
(n + 1)lgrn -1 (61)
. . . 1 3Qlos 127
this settles conjecture 7 for all large n, since Siog? < 1and ETRE > 1. In order to prove

logpn
) ; (nlogpnﬂ—logpn)_ Now,

(39), remark that the expression can be written as ( 1
n
logpn/logn
logn
(n + 1) ] ~1l=1,
n

n+ 1) " _
- =
logn

llogn ln"
()= [o2) ] o
n n

and apply relation (3). Therefore, it is sufficient to prove

since

nlogPnt1~logpn _, 1 (62)

By Lagrange’s mean value theorm applied to the function ¢ + logt on t € [pn, pn+1]

we easily can deduce

Bt ZPr < Jogpass — logpa < 22t Br,
Pn+1 Pn

14



Therefore, it is sufficient to prove
n(Pn+1~Pn)/Pn — 1; (63)

nPat1=Pn)/Pas1 _, 1 (64)

By (2), (42) follows from (41). Now, for (41) it is enough to prove (by taking logarithms)

that o1~ Pn logn — 0, or, by using (1); that
DPn
Pn+1 — Dn
— = 0.
P, (65)

This is stronger than (7), but it is true, and follows clearly e.g. by d, < n"/!2*s. This
finishes the proof of (39).
Conjectures (8) and (10) of [11] are clearly valid for sufficiently large 7, since

v Pn+1 — 10gpn+1
/Pn — logpn

-1 (66)

a.Dd
—_—,——

67
vpn+1 - Ingn ( )

Indeed,

v Pn+1 (1 - logpn+1/\/pn+1) 1. (1 - 0) — 1 ete
VP (1 —logp,//pr) 1-0 ’
Now, conjecture (9) is true for large n, if one could prove that

(log prs1)VP"

—_— e = 1. 6
(log p)Vret (68)

. IOg Dn+i ' /o1
Since this expression can be written as Ev— (log pp)VP»T1=vP~ we will prove

O Pn
first that
(log pn)VP+i—vP — 1. (69)
By logarithmation,
d, pl/1zee
(V/Pr+1 — /Pn) loglogpr, = —\/PT;—'*'—_\/ITH loglog p, < 277, loglogp, — 0,

so indeed (47) follows.

15



Now, the limit

10g 1 \ V7"
<———°gp ") —1 (70)
log p
. . . log pr1 . .
seems difficult. By taking logarithms, /p, log _io—g;)_ — 0 will follow, if we suppose
that
log p,,
log pr n
is true for sufficiently large n. This is exactly conjecture 6 of [11]. Now, by (49) we get

v/Pn

(48), since clearly B 0 (e.g. by (1)). Therefore one can say that conjecture 6 implies
conjecture 9 in [11] (for large values of n).

4. I can prove that Conjecture 6 holds true for infinitely many n, in fact a slightly
stronger result is obtainable. The logarithmic mean L(a,b) of two positive numbers a,b

is defined by

b—a
L{a,b) = ————o—o.
(a,5) logh —loga
It is well-known that (see e.g. [13})
Vab < L(a, b) < a;b.
Thus
I n-+ | n -1 n
og (%.P_i) — 1og(108 pss) ~ log(log p) < g Pn1 —logpn
log pn. V1ogpnlogproy
< DPn+: — Pn <pn+1—pn._£=b_n'
/PrDn+1108 pr 108 D logpn P Pn
Now, if
Dn
bn < ] 2
A (72)

then Conjecture 6 is proved. The sequence (b,) has a long history. It is known (due to
Erdos) that b, < 1 for infinitely many n. Since ‘% > 1, clearly (50) holds for infinitely
many n. It is not known that

lim inf b, = 0, (73)

but we know that
lim sup b, = +o0. (74)
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The relation
bi+by+...+b,

n

-1 (75)

is due to L. Panaitopol, many other results are quoted in [9].
Remarks. 1) Conjecture 5, i.e. logd, < n%1° is true for large n by Huxley’s result.
2) Conjectures 3 and 8 (left side) are completely settled by other methods ([10}).
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On a Generalized Bisector Theorem

In the book [1] by Smarandache (see also [2]) appears the following generalization of
the well-known bisector theorem.
Let AM be a cevian of the triangle which forms the angles u and v with the sides AB

and AC, respectively. Then
AB MB sinv
AC  MC sinu’
We wish to mention here that relation (1) also appeared in my book [3] on page

(76)

112, where it is used for a generalization of Steiner’s theorem. Namely, the following result
holds true (see Theorem 25 in page 112):

Let AD and AF be two cevians (D, E € (BC)) forming angles a, 8 with the sides
AB, AC, respectively. If A < 90° and a < B, then

BD-BE _ AB’
CD-CE ~ AC?

(77)

Indeed, by applying the area resp. trigonometrical formulas of the area of a triangle,

we get
BD A(ABD)  ABsina
CD A(ACD) — AC'sin(A — a)

(i.e. relation (1) with u = @, v = 3 — @). Similarly one has

BE _ ABsin(A - §)
CE ™~  ACsinf

Therefore

BD-BE _ (AB\’sina sin(A—g)
CD-CE \AC) sinf sin(A—a)
Now, identity (3),by0 <a < < 90°and 0 < A—f < A—a < 90° gives immediately

(78)

relation (2). This solution appears in [3]. For a = 3 one has

BD-BE (AB)2 (79)

CD-CE \AC

which is the classical Steiner theorem. When D = E, this gives the well known bisector

theorem.
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On certain conjectures by Russo

In a recent note 1] F. Russo published ten conjectures on prime numbers. Here we
prove three of them. (For solutions of other conjectures for large n, see [2]).

Conjecture 3 is the following:
eV ﬁ/e@<e\/§/6\/§ (80)

Written equivalently as

eV PA;%+\/%— < eV 21?'+\/§,

/n-i—l \/g [ Dn \/§
+ 4= < yf— -. 81
Dn+1 2 n T 5 ( )

For n < 16, (2) can be verified by calculations. Now, let n > 17. Then p, > 3n.

we have to prove that

Indeed, p;; = 53 > 3 - 17 = 51. Assuming this inequality to be valid for n, one has
DPni1 > Pn+2>3n+280 poy1 2> 3n+3 =3(n+1). But 3(n + 1) is divisible by 3, so

n+1 1 .. .
Pn+1 > 3(n + 1). Since < 3 it is sufficient to prove that

n+1
3 3 1
ﬁ+\@>\@+\/;’
1
ie. 3+— +10r2>3( ) ie. 2v10 > 3 (/5 — This is easily seen
f V2 R (V5= v2). Y

to be true. Therefore (2), i.e. (1) is proved.
Remark. The proof shows that (2) is valid whenever a sequence (p,) of positive
integers satisfies p, > 3n.

Conjecture 5 is
logd,, — log \/Z < %ns/m’ where d,, = pPni1 — Pn. (82)
By log Vd, = %log dy, (3) can be written as
logd, < n®10, (83)

It is immediate that (4) holds for sufficiently large n since d,, < p, and logp, ~ logn

(n — o) while logn < n%/1° for sufficiently large n. Such arguments appear in [2].
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Now we completely prove the left side of conjecture 8. We will prove a stronger

relation, namely

n+ -1 n
VPni1 —logpn (n>3) (34)
v/Pn — logp,
Since M < 1, (5) will be an improvement. The logarithmic mean of two
V2 —log?2
positive numbers is
b—a
L{a,b) = ———.
(a,5) logb —loga

It is well-known that L{a,b) > Vab for a # b. Now let @ = ppr1, b = pn. Then Vab >
\/E+\/5is equivalent to /pni1 (\/p_n——l) > /Pn- I \/Pr—121,ie p, >4 (n>3),

this is true. Now,

—bp
Pl Br s ot > VBn + VPt

log pni1 — logpn

gives
DPn+1 — DPn > logp lng
+1 y
vpn+1 + vpn " "
ie.

VPri1 — 10gPniy > /D — lOgpy.

This is exactly inequality (5). We can remark that (5) holds true for any strictly increasing

positive sequence such that p, > 4.
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On values of arithmetical functions at factorials I

1. The Smarandache function is a characterization of factorials, since S(k!) = k, and

is connected to values of other arithmetical functions at factorials. Indeed, the equation
S(z) =%k (k>1 given) (85)

has d(k!) — d((k — 1)!) solutions, where d(n) denotes the number of divisors of n. This
follows from {z : S(z) = k} = {z : zlk!, z { (k — 1)!}. Thus, equation (1) always has
at least a solution, if d(k!) > d((k — 1)!) for k¥ > 2. In what follows, we shall prove this
inequality, and in fact we will consider the arithmetical functions ¢, 0, d, w, 2 at factorials.
Here ¢(n) = Euler’s arithmetical function, o(n) = sum of divisors of n, w(n) = number

of distinct prime factors of n, (n) = number of total divisors of n. As it is well known,

we have (1) = d(1) = 1, while w(1) = Q(1) =0, and for 1 < pr‘ (a; > 1, p; distinct
i=1
primes) one has

¢<n)=ng (-3).

Q(n) = Z a;,

t=1

d(n) =[] (a: +1). (86)

=1

The functions ¢, g,d are multiplicative, w is additive, while Q is totally additive, i.e.
@, 0,d satisfy the functional equation f(mn) = f(m)f(n) for (m,n) = 1, while w, 2 satisfy
the equation g(mn) = g(m) + g(n) for (m,n) =1 in case of w, and for all m,n is case of
Q (see [1]).

2. Let m = Hp?*, n= H pf] * (a;, B > 0) be the canonical factorizations of m and
=1 i=1

n. (Here some ¢; or ; can take the values 0, too). Then

r

=1
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with equality only if a; = 0 for all <. Thus:
d(mn) > d(n) (87)

for all m,n, with equality only for m = 1.

r

Since H(a,— +5:+1) < H(a,- +1) H(ﬁi + 1), we get the relation

=1 =1 1=1

d(mn) < d(m)d(n) (88)

with equality only for (n,m) = 1.
Let now m = k, n = (k — 1)! for k > 2. Then relation (3) gives

d(k!) > d((k — 1)!) for all k > 2, (89)

thus proving the assertion that equation (1) always has at least a solution (for k¥ = 1 one
can take z = 1).

With the same substitutions, relation (4) yields
d(k!) < d((k — 1)D)d(k) for k > 2 (90)

Let k = p (prime) in (6). Since ((p — 1)!, p) = 1, we have equality in (6):

d(p') :
Az -1 =2, p prime. (91)
S(k!) k

3. Since S(k)/kl — 0 — 1 as £ — 00, one may ask the similar

"S(k—1) k-1
problems for such limits for other arithmetical functions.

It is well known that

|
0(7:') — 00 a8 N — 00. (92)
n!
In fact, this follows from o(k) = Z d= Z g, so
dlic dlk

as it is known.
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From the known inequality ([1]) ¢(n)a(n) < n? it follows

n o(n)
— > =
en) 7 n
n!
80 ——= — 0, implying
o(n!) )
elnl) — 0 as n — 0. (93)

nl
Since p(n) > d(n) for n > 30 (see [2]), we have ¢(n!) > d(n!) for n! > 30 (i.e. n > 5),
so, by (9)

d(n!
——(:'—) — 0 as n — 0. (94)
. . d(n)

In fact, much stronger relation is true, since e 0 for each € > 0 (n — o0) (see

! !

(1]). From @ < ﬁ%—)- and the above remark on o(n!) > nllogn, it follows that
n! !
d(n!

lim sup (73 ) logn < 1. (95)

These relations are obtained by very elementary arguments. From the inequality

p(n)(w(n) + 1) > n (see [2]) we get
w(n!) — o0 as n — oo (96)
and, since Q(s) > w(s), we have
Q(n!) = 00 as n — oo. (97)
From the inequality nd(n) > (n) + o(n) (see [2]), and (8), (9) we have
d(n!) — 00 as n — co. (98)

This follows also from the known inequality ¢(n)d(n) > n and (9), by replacing n with

nl. From o(mn) > mo(n) (see [3]) with n = (k — 1)!, m = k we get

o(k!)
) >k (k>2) (99)
and, since o(mn) < o(m)o(n), by the same argument
o(k!l)
(k=1 <o(k) (k=>2). (100)

25



Clearly, relation (15) implies

) a(k?)
kl-lilolo a—(m = +00. (101)

From p(m)p(n) < p(mn) < mp(n), we get, by the above remarks, that

At
(k) £ ————— PR <k (k>2) (102)
implying, by (k) — co as k — oo (e.g. from (k) > vk for k > 6) that
(k) ~
S k=D - T (103)
By writing o(k!) — o((k — 1)!) = o((k — 1)}) [ o(k!) } from (17) and
= =k
o((k — 1)) — oo as k — oo, we trivially have:
klirgo[a(k!) —o((k = 1)1)] = +oo. (104)
In completely analogous way, we can write:
Jim [p(k!) — p((k = 1) = +o0. (105)

4. Let us remark that for £ = p (prime), clearly ((k — 1)!,k) = 1, while for & =

composite, all prime factors of k are also prime factors of (k — 1)!. Thus

(k) = w((k = 1)) = w((k - 1)) + w(k) if k is prime
| w((k-1)1) if k is composite (k > 2).

Thus
wlk!) —w((k = 1)) = { L, for k= prime (106)
0, for k = composite
Thus we have
lim suplw(k!) —w((k — 1)1)] =
koo (107)
lggf[w(k!) —w({(k-1))] =

Let p, be the nth prime number. From (22) we get

o) [ yitk=n
N

w((k—1)! 0,if k = composite.
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Thus, we get

w(k!l)

The function Q is totally additive, so
Q(kY = Q(k - 1)Ik) = Q((k — DN + Q(k),
giving
QkY - Q(k - DY) = QUk). (109)
This implies
lim sup[Q(k!) — Q((k — 1)1)] = +o0 (110)

k—00

(take e.g. k = 2™ and let m — o0), and
Iiin'mf[Q(k!) k-1 =2

(take & = prime).
For Q(k!)/Q((k — 1)!) we must evaluate
Qk) k)
Q-1 QD+ +...+Qk-1)

logk
IZ—EE and by the theorem of Hardy and Ramanujan (see [1]) we have

Since Q(k) <

Z Q(n) ~zloglogz (z — o)

n<z

logk
(k—1)loglog(k — 1)

s0, since — 0 as kK — 00, we obtain

Q(kY)

e Q- D) (111)
5. Inequality (18) applied for k£ = p (prime) implies
1 !
lim L. 2@ (112)

reop p((p-1))

This follows by ¢(p) = p — 1. On the other hand, let ¥ > 4 be composite. Then,

it is known (see [1]) that k|(k — 1)!. So @(k!) = ¢((k — 1)lk) = ke((k — 1)!), since
o(mn) = my(n) if m|n. In view of (28), we can write

1 p(kh

27



!
For the function o, by (15) and (16), we have for k = p (prime) that p < g((;(ﬂ)') .

.1 o(p!)
m -+ ———— = 1. 114
5 ol - 1) )
In fact, in view of (15) this implies that
N o (k)
| f- =1 11
pitaly e s R (115)
By (6) and (7) we easily obtain
!
lim sup d(k) =1. (116)

koo d(k)d((k —1)!)
In fact, inequality (6) can be improved, if we remark that for k£ = p (prime) we have
d(k!) = d((k — 1)) - 2, while for k = composite, £ > 4, it is known that k|(k — 1)!. We
apply the following

Lemma. If njm, then

d(mn) < d(n?)

dim) ~ d(n)’ (117)

Proof. Let m = Hp“H @ on= Hp"‘l (o/ < a) be the prime factorizations of m

and n, where n|m. Then

N O PR
d(m) [e+n][e+1 a+l )

a+a'+1 22" +1 . . .. .
Now + < + & o < « as an easy calculations verifies. This immedi-
a-+1 o +1

ately implies relation (33).

By selecting now n =k, m = (k — 1)!, £ > 4 composite we can deduce from (33):

d(k)  _ d(F)
k-1 = k)

(118)

By (4) we can write d(k?) < (d(k))?, so (34) represents indeed, a refinement of relation
(6).
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On the Irrationality of Certain Constants Related
to the Smarandache Function

1. Let S(n) be the Smarandache function. Recently I. Cojocaru and S. Cojocaru [2]

have proved the irrationality of Z S( )

=1
The author of this note [3] showed that this is a consequence of an old irrationality

criteria (which will be used here once again), and proved a result implying the irrationality
- S(n)
n-1
of Z(—l) e
n=1

E. Burton [1] has studied series of type Z (ksiki)' ,
k=2 °

which has a value € (e - g %)

= S
He showed that the series Z ( ( ) is convergent for all » € N. I Cojocaru

r)!

and S. Cojocaru [3] have m’croduced the "third constant of Smarandache” namely
which has a value between e and _{E Our aim in the follow-

; S(2)8(3) ... 8(n)’ 100 100°

ing is to prove that the constants introduced by Burton and Cojocaru-Cojocaru are all

irrational.
2. The first result is in fact a refinement of an old irraionality criteria (see [4] p.5):
Theorem 1. Let (z,) be a sequence of nonnegative integers having the properties:
(1) there exists ng € N* such that z,, < n for alln > ny;
(2) z, < n— 1 for infinitely many n;
(8} ., > 0 for an infinity of m.

Then the series i % ts trrational.
Let now z, =nz,S%(n —1). Then

fes] S k oo .
M RIS

k=2 n=3

Here S(n—1) <n-1<nforalln > 2; S(m—1) < m — 2 for m > 3 composite,
2
since by S(m — 1) < —g(m — 1) < m — 2 for m > 4 this holds true. (For the inequality

2
S(k) < =k for k > 3 composite, see [6]). Finally, S(m — 1) > 0 for all m > 1. This proves

3
= Sk
the irrationality of Z_; (k-E-_i)'
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Analogously, write

= = S(m-r)
; k+r)' Z T oml

m=r+2

Put z,, = S(m—r). Here Stm —r) <m—-r<m,Sm-r)<m-r<m-=1 for
r > 2, and S(m —r) > 0 for m > r + 2. Thus, the above series is irrational for r > 2, too.

3. The third constant of Smarandache will be studied with the following irrationality
criterion (see [4], p.8):

Theorem 2. Let (a,),(b,) be two sequences of nonnegative integers satisfying the
following conditions:

(1) a, > 0 for an infinity of n;

(2) b, >2,0<a,<b,—1foralln>1;

(8) there exists an increasing sequence (i,) of positive integers such that

hl’n bi,,, = +OO, llln ain/b,-n =

n—cC n—oo
Then the series Z BE?P—E 1s irrational.
> 1
Corollary. Forb, > 2, (b, positive integers), (b,) unbounded the series Z —_—
biby .. bn

1s irrational.

Proof. Let a, = 1. Since limsupb, = 400, there exists a sequence (i,) such that

n—o0

1
b;,, — oo. Then — — 0, and the three conditions of Theorem 2 are verified.

By selecting b,: = S(n), we have b, = S(p) = p — oo for p a prime, so by the above

1
Corollary, the series is irrational.
; S(1)5(2)...5(n)
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On certain generalizations of the Smarandache
function

1. The famous Smarandache function is defined by S(n) :=min{k € N: nlk!}, n > 1
positive integer. This arithmetical function is connected to the number of divisors of n,
and other important number theoretic functions (see e.g. [6], [7], [9], [10]). A very natural
generalization is the following one: Let f : N* — N* be an arithmetical function which
satisfies the following property:

(P,) For each n € N* there exists at least a k € N* such that n|f(k).

Let Fy : N* — N”* defined by

Ff(n) =min{k € N : n|f(k)}. (1)

Since every subset of natural numbers is well-ordered, the definition (1) is correct, and
clearly Fy(n) > 1 for all n € N*.
Examples. 1) Let id(k) = k for all K > 1. Then clearly (P;) is satisfied, and

Fyg(n) =n. (2)

2} Let f(k) = k!. Then Fi(n) = S(n) - the Smarandache function.
3) Let f(k) = pi!, where py denotes the kth prime number. Then

Ff(n) = min{k € N*: n|p!}. (3)

Here (P;) is satisfied, as we can take for each n > 1 the least prime greater than n.

4) Let f(k) = ¢(k), Euler’s totient. First we prove that (P;) is satisfied. Let n > 1
be given. By Dirichlet’s theorem on arithmetical progressions ([1]) there exists a positive
integer a such that £k = an + 1 is prime (in fact for infinitely many a’s). Then clearly
(k) = an, which is divisible by n.

We shall denote this function by F,. (4)

5) Let f(k) = o(k), the sum of divisors of k. Let k be a prime of the form an — 1,
where n > 1 is given. Then clearly o(n) = an divisible by n. Thus (P,) is satisfied. One

obtains the arithmetical function F,. (5)
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2. Let A C N*, A # 0 a nonvoid subset of N, having the property:
(P,) For each n > 1 there exists k € A such that n|k!.

Then the following arithmetical function may be introduced:
Sa(n) =min{k € A: nlk!}. (6)

Examples. 1) Let A = N*. Then Sx(n) = S(n) - the Smarandache function.

2) Let A = N; = set of odd positive integers. Then clearly (P,) is satisfied. (7)

3) Let A = Ny = set of even positive integers. One obtains a new Smarandache-type
function. (8)

4) Let A = P = set of prime numbers. Then Sp(n) = min{k € P : n|k!}. We shall
denote this function by P(n), as we will consider more closely this function. (9)

3. Let g : N* — N* be a given arithmetical function. Suppose that g satisfies the
following assumption:

(P;) For each n > 1 there exists k > 1 such that g(k)|n. (10)

Let the function G4 : N* — IN* be defined as follows:

Gy4(n) = max{k € N*: g(k)|n}. (11)

This is not a generalization of S(n), but for g(k) = k!, in fact one obtains a "dual”-
function of S(n), namely

Gi(n) = max{k € N* : k!|n}. (12)

Let us denote this function by S,(n).

There are many other particular cases, but we stop here, and study in more detail
some of the above stated functions.

4. The function P(n)

This has been defined in (9) by: the least prime p such that np!. Some values are:
P(1) =1, P(2) =2, P(3) =3, P(4) =5, P(5) = 5, P(6) = 3, P(7) = 7, P(8) = 5,
P(9) =7, P(10) =5, P(11) =11,...

Proposition 1. For each prime p one has P(p) = p, and if n is squarefree, then

P(n) = greatest prime divisor of n.
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Proof. Since p|p! and p { ¢! with ¢ < p, clearly P(p) = p. If n = p;ps . . . pr is squarefree,
with p,...,p, distinct primes, if p, = max{pi,...,p.}, then p;...p-|p;!. On the other
hand, p;...p, t ¢! for ¢ < p,, since p, t ¢!. Thus p, is the least prime with the required
property.

The calculation of P(p?) is not so simple but we can state the following result:

Proposition 2. One has the inequality P(p?) > 2p+ 1. If 2p + 1 = ¢ is prime, then
P(p?) = q. More generally, P(p™) > mp + 1 for all primes p and all integers m. There is
equality, if mp + 1 is prime.

Proof. From p?|(1-2...p)(p+1) ... (2p) we have p?|(2p)!. Thus P(p?) > 2p+1. One has

equality, if 2p+1 is prime. By writing p™|1-2.. .p@-{- i)r -.2p.. l(m - l)pi- 1]. .. Mp,
where each group of p consecutive terms contains a member divisible by p, one obtains
P(p™)>mp+1.

Remark. If 2p + 1 is not a prime, then clearly P(p?) > 2p + 3.

It is not known if there exist infinitely many primes p such that 2p + 1 is prime too
(see [4]).

Proposition 3. The following double inequality is true:
2p+1< P(p*)<3p-—1 (13)

mp+1< Pp™)<(m+1)p-1 (14)

if p > po.

Proof. We use the known fact from the prime number theory ([1], [8]) tha for all a > 2
there exists at least a prime between 2a and 3a. Thus between 2p and 3p there is at least
a prime, implying P(p?) < 3p — 1. On the same lines, for sufficiently large p, there is a
prime between mp and (m + 1)p. This gives the inequality (14).

Proposition 4. For all n,m > 1 one has:
S(n) < P(n) <2S(n) -1 (15)
and

P(nm) <2[P(n)+ P(m)] — 1 (16)
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where S(n) is the Smarandache function.

Proof. The leﬁ side of (15) is a consequence of definitions of S(n) and P(n), while the
right-hand side follows from Chebyshev’s theorem on the existence of a prime between a
and 2a (where a = S(n), when 2a is not a prime).

For the right side of (16) we use the inequality S(mn) < S(n) + S(m) (see [5}):
P(nm) < 28(nm) — 1 < 2[S(n) + S(m)] — 1 < 2[P(n) + P(m)] — 1, by (15).

Corollary.

lim {/P(n)=1. (17)

This is an easy consequence of (15) and the fact that 1}3.10 t/S8(n) = 1. (For other
limits, see [6]).

5. The function S,(n)

As we have seen in (12), S.(n) is in certain sense a dual of S(n), and clearly

(S.(n))!n|(S(n))! which implies

1<8(n)<Sm)<n (18)
thus, as a consequence,
: Si(n)
lim ¢ =1.
255w ! (19)
On the other hand, from known properties of S it follows that

. . St (n) . S*(n)
1 f = = 1.
im in S 0, hin_’solip 5(n) 1 (20)

For odd values n, we clearly have S,(n) = 1.

Proposition 5. For n > 3 one has
S.(nl+2)=2 (21)
and more generally, if p is a prime, then for n > p we have
S.(nl+(p-D)=p-1. (22)
Proof. (21) is true, since 2|(n! + 2) and if one assumes that k!|(n! + 2) with k& > 3,

then 3|(n! + 2), impossible, since for n > 3, 3|n!. So k& < 2, and remains k = 2.
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For the general case, let us remark that if n > k + 1, then, since k|(n! + k!}, we have
S.(nl+ k) > k.

On the other hand, if for some s > k£ + 1 we have s!|(n! + k!), by £+ 1 < n we get
(k + 1)|(n! + k1) yielding (k + 1)|k!, since (k + 1)|n!. So, if (k + 1)|k! is not true, then we
have

S.(n! + k) = k. (23)

Particularly, for £ = p — 1 (p prime) we have pt (p — 1)!.
Corollary. For infinitely many m one has S,(m) = p — 1, where p is a given prime.

Proposition 6. For all k&, m > 1 we have
S.(k!lm) > k (24)

and for all a,5 > 1,
S.(ab) > max{S.(a), S.(b)}. (25)

Proof. (24) trivially follows from k!|(k!m), while (25) is a consequence of (S.(a))!la =
(S.(a))Y(ad) so S.(ab) > S.(a). This is true if a is replaced by b, so (25) follows.
Proposition 7. S,[z(z —1)...(z —a+ 1)] > a for all z > a (z positive integer).(26)
Proof. This is a consequence of the known fact that the product of a consecutive
integers is divisible by a!.
We now investigate certain properties of S,(a!d!). By (24) or (25) we have S.(alb!) >
max{a, b}. If the equation
alb! = ¢! (27)

is solvable, then clearly S.(alb!) = c. For example, since 3! - 5! = 6!, we have S,(3!-5!) = 6.
The equation (27) has a trivial solution ¢ = k!, a = k! —1, b = k. Thus S, (k!(k!-1)}) = k.
In general, the nontrivial solutions of (27) are not known (see e.g. [3], [1]).
We now prove:
Proposition 8. S,((2k)!(2k + 2)!) = 2k + 2, if 2k + 3 is a prime; (28)
S.((2K)1(2k + 2)!) > 2k + 4, if 2k + 3 is not a prime. (29)
Proof. If 2k + 3 = p is a prime, (28) is obvious, since (2k + 2)!|(2k)!(2k + 2)!, but
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(2k + 3)! 1 (2k)!(2k + 2)!. We shall prove first that if 2k + 3 is not prime, then
(2E+3)|(1-2...(2k)) (%)

Indeed, let 2k + 3 = ab, with a,b > 3 odd numbers. If a < b, then a < k, and
from 2k +3 > 3b we have b < gk +1 < k. So (2k)! is divisible by ab, since a,b are
distinct numbers between 1 and k. If a = b, i.e. 2k + 3 = a?, then () is equivalent with
a?[(1-2...a)(a +1)...(a® — 3). We show that there is a positive integer k such that
a+1<ka<a?-3or. Indeed, a(a—3)=a%>—-3a <a?-3fora>3andala—3)>a+1

by a® > 4a + 1, valid for a > 5. For a = 3 we can verifiy () directly. Now (x) gives
(2k + 3)1](2k)!(2k + 2)1, if 2k + 3 # prime (#%)

implying inequality (29).

For consecutive odd numbers, the product of factorials gives for certain values
S.(3t-5y =6, S.(5-7)=8, S.(7-9!)=10,

S.(9!-111) =12, S.(111-13) =16, S,(13!-15!) =16, S,(15!-17!) =18,
S.(171-191) =22, S.(19!-211) =22, S.(21!-23!) = 28.

The following conjecture arises:

Conjecture. S,((2k — 1)1(2k + 1)!) = gx — 1, where gi is the first prime following
2k + 1.

Corollary. From (g — 1)!{(2k — 1)}(2k + 1)! it follows that g, > 2k + 1. On the other
hand, by (2k — 1)}(2k + 1)!]|(4k)!, we get ¢ < 4k — 3. Thus between 2k + 1 and 4k + 2
there is at least a prime g;. This means that the above conjecture, if true, is stronger than
Bertrand’s postulate (Chebyshev’s theorem [1}, [8]).

6. Finally, we make some remarks on the functions defined by (4), (5), other functions
of this type, and certain other generalizations and analogous functions for further study,
related to the Smarandache function.

First, consider the function F, of (4), defined by

F, =min{k € N*: njp((k)}.
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First observe that if n + 1 = prime, then n = ¢(n + 1), so F,(n) =n + 1. Thus
n+1=prime = F,(n)=n+1. (30)
This is somewhat converse to the ¢-function property
n+1=rprime = p(n+1)=n.

Proposition 9. Let ¢, be the nth cyclotomic polynomial. Then for each a > 2
(integer) one has
F,(n) < ¢n(a) for all n. (31)
Proof. The cyclotomic polynomial is the irreducible polynomial of grade ¢(n) with
integer coeflicients with the primitive roots of order n as zeros. It is known (see [2]) the
following property:
n|o(pn(a)) foralln > 1, alla > 2. (32)
The definition of F,, gives immediately inequality (31).
Remark. We note that there exist in the literature a number of congruence properties
of the function ¢. E.g. it is known that njg(a® — 1) foralln > 1, a > 2. But thisis a
consequence of (32), since ¢,(a){a™ — 1, and ulv = @(u)|¢(v) implies (known property
of ) what we have stated.
The most famous congruence property of ¢ is the following
Conjecture. (D.H. Lehmer (see [4])) If o(n)|(n — 1), then n = prime.
Another congruence property of ¢ is contained in Euler’s theorem: m|(a®(™ — 1) for
(a,m) = 1. In fact this implies

S.[a?™) —1] > m for (a,m!) =1 (33)
and by the same procedure,
S.(p(a™ —1)] > n for all n. (34)
As a corollary of (34) we can state that

lim sup S, [ip(k)] = +o0. (35)

k—o0
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(It is sufficient to take k = a™ — 1 — 00 as n — o).

7. In a completely similar way one can define Fy(n) = min{k : n|d(k)}, where d(k) is
the number of distinct divisors of k. Since d(2"~!) = n, one has

Fyn) <2771 (36)

Let now n = pi* ... p2" be the canonical factorization of the number n. Then Smaran-
dache ([9]) proved that S(n) = max{S(p7*),...,S(P>)}.

In the analogous way, we may define the functions S,(n) = max{p(p7*),...,e(P2")},
S,(n) = max{c(p?),...,0(p?)}, etc.

But we can define S3(n) = min{g(p2"), ., ¢(pE)}, §(n) = min{p(p), .., 9(p2)},

etc. For an arithmetical function f one can define

Ag(n) = Lem{f(p1), ..., f(p77)}
and
dg(n) = g.cd{f(p7"), .., f(p27)}.
For the function A,(n) the following divisibility property is known (see {8], p.140,
Problem 6).
If (a,n) =1, then
njfa?*™ — 1]. (37)

These functions and many related others may be studied in the near (or further)
future.
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On an inequality for the Smarandache function

1. In paper [2] the author proved among others the inequality S(ab) < aS(b) for all

a, b positive integers. This was refined to
S(ab) < S(a) + S(b) (119)

in [1]. Our aim is to show that certain results from our recent paper [3] can be obtained
in a simpler way from a generalization of relation (1). On the other hand, by the method

of Le [1] we can deduce similar, more complicated inequalities of type (1).

2. By mathematical induction we have from (1) immediately:

S(ayay . ..an) < S(ay) + S(az) + ...+ S(an) (120)
for all integers a; > 1 (1 =1,...,n). When a; = ... = a,, = n we obtain
S(a™) < nS(a). (121)

For three applications of this inequality, remark that
S((mH™y < nS(m!) =nm (122)

since S(m!) = m. This is inequality 3) part 1. from [3]. By the same way, S((n!)™1") <
(n—=11S(n!)=(n-1)ln=nlie.

S((nhy VY < pt (123)

Inequality (5) has been obtained in [3] by other arguments (see 4) part 1.).
Finally, by S(n?) < 2S(n) < n for n even (see {3], inequality 1), n > 4, we have

obtained a refinement of S(n?) < n:
S(n?) <2S8(n)<n (124)

for n > 4, even.
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3. Let m be a divisor of n, i.e. n = km. Then (1) gives S(n) = S(km) < S(m)+ S(k),

so we obtain:

If m|n, then

S(n) — S(m) < § (ﬁ) . (125)
m
As an application of (7), let d(n) be the number of divisors of n. Since H k = nd™/2
kin
and H k = n! (see [3]), and by H k| H k, from (7) we can deduce that
k<n kin k<n

(126)

S(nd(n)/2) + S(n! /nd(n)/2) > n.

This improves our relation (10) from [3].

4. Let S(a) = u, S(b) = v. Then bjv! and ul|z(z—1) ... (z—u+1) for all integers x > u.
But from a|u! we have ajz(z —1)...(z —u+1) forallz > u. Let z =u+v+k (k> 1).
Then, clearly ab(v+1)... (v+k)|(u+v+k)!, so we have S[ab(v+1)... (v+k)] L u+v+k.
Here v = S(b), so we have obtained that

Slab(S(b) + 1) ... (S(b) + k)] < S(a) + S(b) + k. (127)

For example, for k = 1 one has
Slab(S(b) + 1)] < S(a) + S(b) + 1. (128)

This is not a consequence of (2) for n = 3, since S[S(b) + 1] may be much larger than 1.

References
[1] M. Le, An inequality concerning the Smarandache function, Smarandache Notions J.,
vol. 9(1998), 124-125.
[2] J. Sandor, On certain inequalities involving the Smarandache function, Smarandache
Notions J., vol. 7(1996), 3-6.
[3] J. Sdndor, On certain new inegualities and limits for the Smarandache function,

Smarandache Notions J., vol. 9(1998), 63-69.

43



On multiplicatively deficient and abundant numbers

Definition 28 of [1] introduces the so-called "impotent numbers” n whose proper di-
visors product is less than n. It is mentioned there that the sequence of these numbers
contains terms with the forms p and p?, where p is a prime.

Let T(n) denote the product of all divisors of n. Then T(n) = n® iff n is a
multiplicatively-perfect (or shortly m-perfect) number. In a recent paper [2] we have stud-
ied these numbers or, for example, numbers satisfying equations of type T(T(n)) = n?
(called m-superperfect numbers). Clearly, the above impotent numbers satisfy the inequa-
lity

T(n) <n® (129)
i.e. they are multiplicatively deficient (or ”m-deficient”) numbers. Therefore it is not
necessary to introduce a new terminology in this case.

First remark, that all m-deficient numbers can be written in the forms 1, p, p?, pg, p°q,

where p, g are distinct primes. Indeed, if d;, ds, .. ., d, are all divisors of n, then

n n
diye.ydy=4—,..., =%,
{11 3 } {dl ds}

implying that
n n n
didy.. . dy= —-— ... —
2 di dy d,
i.e.
T(n) = n*/? (130)

where s = d(n) denotes the number of distinct divisors of n. Therefore inequality (1) is
satisfied only when d(n) < 4, implying n € {1,p,p? pq,p%q}. Clearly, n is m-abundant
when

T(n) >n? (131)

implying d(n) > 4. Since for n = p$*...p%" one has d(n) = (g +1)...(a, + 1), in the
case r = 1, (3) is true only for a; > 3; when 7 = 2 for a; = 1 we must have az > 2,
while for a; > 2, a; > 2 this is always valid; for r > 3, (3) always holds true. Therefore,

all m-abundant numbers are of the forms n = p® (a > 4); p¢® (8 > 2), p°¢® (o, 8 > 2);
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w(n) > 3 (where p, g are distinct primes and w(n) denotes the number of distinct prime

divisors of n).

On the other hand, let us remark that for n > 2 one has d(n) > 2, so
T(n)>n (132)
with equality, only for n = prime. If n # prime, then d(n) > 3 gives
T(n) > n*? (n # prime). (133)
Now, relations (4) and (5) give together
T(T(n)) > n®* for n # prime (134)
Since 9/4 > 2, we have obtained that for all composite numbers we have T(T'(n)) > n?,
i.e. all composite numbers are m-super abundant. Since T(T(p)) = p < p?, all prime
numbers are m-super deficient. Therefore we can state the following ” primality criterion”.

Theorem 1. The number n > 1 is prime if and only if it is m-super deficient.

In fact, by iteration from (6) we can obtain

g’(T( ..T(n).. )1 > n®/? . n # prime.
&

Since 3% > 2% - k for all k£ > 1, we have the following generalization.
Theorem 2. The number n > 1 is prime if and only if it is m-k-super deficient.

(n is m-k-super deficient if T(T(...T(n)...)) < n*).
s

For related results see [2].
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On Certain Arithmetic Functions

In the recent book [1] there appear certain arithmetic functions which are similar to
the Smarandache function. In a recent paper [2] we have considered certain generalization
or duals of the Smarandache function S(n). In this note we wish to point out that the
arithmetic functions introduced in [1] all are particular cases of our function Fy, defined
in the following manner (see [2] or {3}).

Let f : N* — N* be an arithmetical function which satisfies the following property:

(P;) For each n € N* there exists at least a k € N* such that n|f(k).

Let Fy : N* — Nx defined by

F¢(n) = min{k € N* : n|f(k)} (135)

In Problem 6 of [1] it is defined the ”ceil function of ¢-th order” by Si(n) = min{k :

n|kt}. Clearly here one can select f(m) = m* (m = 1,2,...), where ¢t > 1 is fixed.

m(m + 1)
2

Smarandache” function of Problem 7. The Smarandache ”double-factorial” function

Property (P,) is satisfied with k = n’. For f(m) = , one obtains the ”Pseudo-

SDF(n) = min{k : n|k!!}

where
1.3-5...k ifkisodd

2-2-6...k ifkiseven

Kll=

of Problem 9 [1] is the particular case f(m) = m!l. The "power function” of Definition 24,
i.e. SP(n) = min{k : n|k*} is the case of f(k) = k*. We note that the Definitions 39 and
40 give the particular case of S; for t =2 and ¢t = 3.

In our paper we have introduced also the following "dual” of Fy. Let g : N* — Nx be
a given arithmetical function, which satisfies the following assumption:

(P3) For each n > 1 there exists k > 1 such that g(k)|n.

Let G, : N* — N~ defined by

Gy4(n) = max{k € N*: g(k)|n}. (136)
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Since kt|n, k!!|n, k*|n,

k(k+ 1
(k 2-{— i1, all are verified for k = 1, property (P) is satisfied,

so we can define the following duals of the above considered functions:
S;(n) = max{k : k*|n};

SDF*(n) = max{k : k!ljn};

SP*(n) = max{k : k*|n};

Z*(n) = max {k : k(k;- 1)ln} .
These functions are particular cases of (2), and they could deserve a further study, as
well.
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On a dual of the Pseudo-Smarandache function

1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smaran-
dache function. Let f : N* — N* be an arithmetic function with the following property:
for each n € N* there exists at least a k € N* such that n|f(k). Let

F; : N* — N defined by F¢(n) = min{k € N* : n|f(k)}. (137)

This function generalizes many particular functions. For f(k) = k! one gets the
k(k

Smarandache function, while for f(k) = ( 2+ )

tion Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions

one has the Pseudo-Smarandache func-

as follows: Let g : N* — N* be a function having the property that for each n > 1 there
exists at least a k > 1 such that g(k)|n.

Let
Gg¢(n) = max{k € N*: g(k)|n}. (138)
For g(k) = k! we obtain a dual of the Smarandache function. This particular function,
denoted by us as S. has been studied in the above paper. By putting g(k) = k(k 2+ D)

one obtains a dual of the Pseudo-Smarandache function. Let us denote this function,
by analogy by Z.. Our aim is to study certain elementary properties of this arithmetic

function.

2 The dual of yhe Pseudo-Smarandache function

Let
Z.(n) = max {meN‘: 1”-(%*—1);1;}. (139)
Recall that
Z(n)=min{k€N’: nlk(k;l)}. (140)
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First remark that

2, p=3
Z.(1)=1 and Z.(p) = (141)
L, p#3
2-3 1
where p is an arbitrary prime. Indeed, — = 3|3 but —m—(—ni_*_—)[p for p # 3 is possible

2
only for m = 1. More generally, let s > 1 be an integer, and p a prime. Then:

Proposition 1.

2, p=3
2= "7 (142)
1, p#3
m{m+1), , .. i
Proof. Let ————|p°. If m = 2M then M(2M + 1)|p® is impossible for M > 1

since M and 2M + 1 are relatively prime. For M = 1 one has m = 2 and 3|p° only if
p=3. For m = 2M — 1 we get (2M — 1) M |p*, where for M > 1 we have (M,2M ~1) =1
as above, while for M =1 we have m = 1.

The function Z, can take large values too, since remark that for e.g. n = 0(mod6) we
have 32—4 = 6|n, so Z.(n) > 3. More generally, let a be a given positive integer and n

selected such that n = 0(moda(2a + 1)). Then

Z.(n) > 2a. (143)

2a(2 1
Indeed, _a_(-%i-__) = a(2a + 1)|n implies Z.(n) > 2a.
A similar situation is in

Proposition 2. Let ¢ be a prime such that p = 2¢g — 1 is a prime, too. Then

Z.(pq) =p. (144)

1
Proof. &Qi——)- = pq so clearly Z,(pq) = p.

Remark. Examples are Z,(5-3) = 5, Z,(13-7) = 13, etc. It is a difficult open problem
that for infinitely many ¢, the number p is prime, too (see e.g. [2]).

Proposition 3. For all n > 1 one has

1< Z,(n) < Z(n). (145)
m{m + 1) [nlk(k +1)
2 2
If m > k then clearly m(m + 1) > k(k + 1), a contradiction.

Proof. By (3) and (4) we can write , therefore m(m+1)|k(k+1).
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Corollary. One has the following limits:

Z*(n)—() m_ﬁ_zl(_@__.

i = = 1. 14
m 2y =% 2R 2 (146)
Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s =1
1 Z,
and the well-known fact that Z(p) = p. Then put n = ala 2+ ), when 7 ((:)) =1 and let

a — Q.

As we have seen,

() s (52) -

1
Indeed, a(a+1)1k(k+1) is true for k = a and is not true for any k¥ < a. In the same

m(m + l)la(a +1)
2 2

manner, is valied for m = a but not for any m > a. The following
problem arises: What are the solutions of the equation Z(n) = Z.(n)?

Proposition 4. All solutions of equation Z(n) = Z.(n) can be written in the form

n= T(T; 1 (reN*).

Proof. Let Z,(n) = Z(n) = t. Then n[t—(?—;—l)ln S0 f—(%——}l = n. This gives t* + ¢ —

Vv 1-1
2n=0or (2t +1)> =8n+1, implyingt=L, where 8n + 1 = m?. Here m
-1 1 -
mustbeodd,letm=2r+1,son=(m J(m + )andt=———m2 1.Thenm—-1=2r,
1
m+1=2(r+1)andn=r(r;_ )

Proposition 5. One has the following limits:

711_1_{20 vV Z.(n) = nﬁ_x}go VZ(n)=1. (147)

Proof. It is known that Z(n) < 2n — 1 with equality only for n = 2* (see e.g. [5]).

Therefore, from (9) we have

1< {/2.(n) < ¥/ Z(n) < V2m -1,

and by taking n — oo since ¥/2n — 1 — 1, the above simple result follows.
As we have seen in (9), upper bounds for Z(n) give also upper bounds for Z,(n). E.g.
for n = odd, since Z(n) < n — 1, we get also Z,.(n) < n — 1. However, this upper bound

is too large. The optimal one is given by:
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Proposition 6.

Z.(n) < ﬁ;;_ﬂ for all n. (148)

1
m(m2+ 1) In, 50 m(m2+ ) <n,
ie. m? + m — 2n < 0. Resolving this inequality in the unknown m, easily follows (12).
pp+1)

2

Proof. The definition (3) implies with Z,(n) = m that

Inequality (12) cannot be improved since for n = (thus for infinitely many n)

we have equality. Indeed,

( ———8(p+1)p+1—1)/2=(W—l)/2=[(2p+1)—1]/2=n

2

Corollary.

w 20 o g Z) _
nl_m e =0, lm Y = V2. (149)

Proof. While the first limit is trivial (e.g. for n = prime), the second one is a

consequence of (12). Indeed, (12) implies Z,(n)//n < (\/1‘*'—“ - \/8:)

T_Z( P(P+1

n—00 T2

Slmllar and other relations on the functions S and Z can be found in [4—5].

An inequality connecting S, (ab) with S,(a) and S,(b) appears in [3]. A similar result
holds for the functions Z and Z,.

Proposition 7. For all a,b > 1 one has

Z.(ab) > max{Z.(a), Z.(b)}, (150)
Z(ab) > max{Z(a), Z(b)} > max{Z.(a), Z.(b)}- (151)
Proof. If m = Z,(a), then —n-l—(?'—né—ip—[a. Since alab for all b > 1, clearly —%n-%—ﬂl]ab,

implying Z.(ab) > m = Z.(a). In the same manner, Z,(ab) > Z.(b), giving (14).

Let now k& = Z(ab). Then, by (4) we can write ab|ﬁ(—k§+—9

alk(k;_ U , implying Z(a) < k = Z(ab). Analogously, Z(b) < Z(ab), which via (9) gives

(15).

. By alab it results

Corollary. Z,(3° - p) > 2 for any integer s > 1 and any prime p. (16)
Indeed, by (14), Z,(3° - p) > max{Z,(3%), Z(p)} = max{2,1} = 2, by (6).

We now consider two irrational series.
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-1 "‘1Z
Proposition 8. The series Z and Z ) (n) are irrational.
n=1

Proof. For the first series we apply the followmg 1rrat10nahty criterion ([6]). Let (v,)
be a sequence of nonnegative integers such that

(i) vn < n for all large n;

(ii) v, < n — 1 for infinitely many n;

(iii} v, > O for infinitely many n.

Then i %;— is irrational.

n=1
v 1-1
Let v, = Z.(n). Then, by (12) Z,(n) < n — 1 follows from —ﬁl—;——— < n-—1,

i.e. (after some elementary fact, which we omit here) n > 3. Since Z,(n) = 1, conditions
(i)-(iil) are trivially satisfied.
For the second series we will apply a criterion from [7}:

Let (ax), (bx) be sequences of positive integers such that

(i) klaiaz -
(ii) Oert b < a (k > ko). Then Z k-1 O o irrational.
17795} —1 ails...0%
Let ax = k, by = Z.(k). Then (i) is trivial, while (ii) is %I—:_il—l—) < Z.(k) < k.

Here Z,(k) < k for k > 2. Further Z,(k + 1) < (k + 1)Z.(k) follows by 1 < Z.(k) and
Z(k+1)<k+1
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