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Preface

The declarative speci�cation of transactions and change is becoming increasingly important in a

wide range of applications, including workow systems, active databases, distributed information

systems, cooperative systems, agent-based systems, to name just a few.

Although research on dynamic behaviour (i.e., the evolution of databases or even entire infor-

mation systems with time) is far from complete, a number of interesting and solid approaches

have begun to emerge. However, there is no general picture of the problem space, there are no

widely accepted solutions to the central problems, and it is unclear how the various approaches

relate to each other.

The need is not only for complex rule bases, but also for standard database functionality, such

as concurrent access, transaction isolation and atomicity, large amounts of data, data distri-

bution, recovery from system failures, etc. In addition, many current applications require an

active, event-based approach as well as the invocation of external, non-database actions. The

problems to be solved therefore span all of logic programming and databases, from theory to

implementation.

The informal workshop proceedings are available at

http://www.fmi.uni-passau.de/~freitag/dynamics 98/

June 1998
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Abstract

In this paper we propose a modal approach for reasoning about dynamic domains in

a logic programming setting. In particular we de�ne a language, called DyLOG, in which

actions are naturally represented by modal operators. DyLOG is a language for reasoning

about actions which allows to deal with rami�cations and to de�ne procedures to build

complex actions from elementary ones. Procedure de�nitions can be easily speci�ed in

the modal language by introducing suitable axioms.

In the language the frame problem is given a non-monotonic solution by making use

of persistency assumptions in the context of an abductive characterization. Moreover, a

goal directed proof procedure is de�ned, which allows to compute a query from a given

dynamic domain description.

1 Introduction

Reasoning about the e�ects of actions in a dynamically changing world is one of the main

problems which must be faced by intelligent agents. Most of the approaches which have been

developed to model actions and change allow to reason about the e�ects of a single action

or of a sequence of primitive actions. An interesting extension consists in providing more

general ways of composing actions, by de�ning conditional or iterative actions. This requires

to develop a \programming language" for actions, where primitive actions play the role of

assignments to variables in conventional programming languages, i.e. their execution causes

a state change. Among the most signi�cant achievements in this area, we mention GOLOG

[22] and transaction logic [5, 6].

The e�ects and preconditions of actions are usually described using logic. Thus logic

programming is a natural candidate to de�ne a language for reasoning about actions, since it

allows to combine reasoning capabilities with control aspects. However pure logic program-

ming lacks an essential aspect: a way of dealing with state changes.

Starting from Gelfond and Lifschitz' seminal work [14], several proposals have been put

forward for representing actions in logic programming, which provides simple and well studied

nonmonotonic mechanisms. Gelfond and Lifschitz have de�ned a high-level action language

A and they have given its translation into logic programming with negation as failure. Fur-

thermore, [10] and [11] have proposed translation of (extensions of) the language A into
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abductive logic programming, while [24] has de�ned an extension of the language A to deal

with concurrent actions, together with a sound and complete translation to abductive normal

logic program. Other extensions of the language A have been proposed in the literature. For

instance, the AR0 language of Kartha and Lifschitz [16] deals with the rami�cation prob-

lem, and for such language a translation is given into a formalism based on circumscription,

rather than into logic programming. Furthermore, the language A
K

, presented in [26], is an

extension of A which deals with sensing actions.

Apart from [26] the above mentioned extensions of A do not cope with the problem

of de�ning complex actions. This issue has been tackled in GOLOG [20, 22], a high level

robot programming language which is based on a theory of actions in the situation calculus.

The formalization of complex actions in GOLOG draws considerably from dynamic logic

[17]. In particular, action operators like sequence, nondeterministic choice and iteration are

provided. The de�nition of GOLOG is rather complex as it is based on second order logic.

More precisely, second order logic is needed in de�ning complex actions, in particular, for

iteration and for procedure de�nitions. While the second order formalization allows properties

of GOLOG programs to be proved (through the induction principle), on the other hand it

determines a gap between the de�nition of the language, which is quite general, and its Prolog

implementation.

In this paper we present a modal action language DyLOG which allows to reason about

complex actions. Its logical characterization is rather simple and very close to the procedural

one, which is given by introducing a goal directed proof procedure. Since it allows complex

actions, it is strongly related to GOLOG and to the A
K

language, which also incorporates

complex actions. As a di�erence, rather than referring to an Algol-like paradigm for describing

complex actions, DyLOG refers to a Prolog-like paradigm: complex actions are de�ned through

(possibly recursive) de�nition, given by means of Prolog-like clauses.

The approach that we follow in de�ning our action theory is also di�erent, as it is based on

the adoption of a modal language. Starting from the similarities of GOLOG complex actions

with dynamic logics, we argue that a natural de�nition of complex actions can be provided

in a modal setting. Indeed, the adoption of Dynamic Logic or a modal logic to deal with the

problem of reasoning about actions and change is common to many proposals, as for instance

[9, 28, 8, 30, 15], and it is motivated by the fact that modal logic allows very naturally to

represent actions as state transition, through the accessibility relation of Kripke structures.

In particular, in [3] we have presented a modal logic programming language for reasoning

about actions, where actions are represented by modalities. The language extends the lan-

guage A and it allows to deal with rami�cations, by means of \causal rules" among uents,

with incomplete initial states, and with nondeterministic actions. The language relies on an

abductive semantics, to provide a nonmonotonic solution to the frame problem, and, when

there are no rami�cations, it has been proved to be equivalent to the language A. In fact, the

semantics of the language A, which is de�ned in terms of a transition function among states,

appears to be quite near to a canonical Kripke structure for our modal language.

The language DyLOG extends the previous language in various ways. First of all we

introduce rules to specify action preconditions making use of \existential" modal operators.

The main contribution of the paper concerns the extension of the language with \procedures",

which allow to de�ne complex actions. We show that this can be easily achieved in modal

logics by de�ning a suitable set of axioms of the form hp1ihp2i : : : hpni' � hp0i'.

If p0 is a procedure name, and the pi(i = 1; : : : ; n) are either procedure names, or primitive

actions or test actions, the above axiom can be interpreted as a procedure de�nition, which
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can then be executed in a goal directed way, similarly to standard logic programs.

Though we do not make use of dynamic logic in our language, and, in particular, we

do not introduce iteration, sequence and nondeterministic choice operators, we can model

action iteration by recursive procedure de�nition, action sequences by action composition,

and nondeterministic choice among actions by alternative clause de�nitions. Furthermore,

we are able to give a name to complex actions by means of procedure de�nitions, which are

not allowed in Dynamic Logic.

Summarizing, we present a language for reasoning about actions which combines the

simplicity of the language A, of which it can be regarded as an extension, with the capability

to express complex actions as in GOLOG, building on the standard Kripke semantics of modal

logics.

In the next section we present the language DyLOG. To make the comparison with other

formalisms easier, we use a syntax close to that of language A. In Section 3 we give a goal

directed proof procedure for the language, and in Section 4 we present a logical characteri-

zation of DyLOG based on multimodal logics. We conclude by comparing our language with

related work.

As it will emerge from Section 4 the adoption of a syntax close to that of language A is

just a matter of notational convenience, and modal formulas could be directly used instead (as

done for instance in [3]). Hence DyLOG can actually be regarded as a modal logic programming

language.

2 The language DyLOG

The syntax of DyLOG is inspired from the language A and its extensions in [14, 16]. In the

following we use atomic propositions for uent names and we denote by F a uent expression,

consisting of a uent name f or its negation :f (note that ::f is equal to f). Let true be a

distinguished proposition, then we denote by Fs a uent conjunction de�ned as follows:

Fs ::= true j F j Fs1 ^ Fs2

A dynamic domain description in DyLOG consist of three parts: a set of simple action

clauses, a set of procedures, and a set of observations on the initial state.

The simple action clauses are rules that allow to describe direct and indirect e�ects of

primitive actions on the world. In particular, simple action clauses consist of action laws,

precondition laws, and causal laws.

Action laws de�ne direct e�ects of primitive actions on a uent and allow to represent

actions with conditional e�ects. They have the form \a causes F if Fs", where a is a

primitive action name, F is a uent, and Fs is a uent conjunction, meaning that action a

has e�ect on F , when executed in a state where the uent preconditions Fs hold.

Precondition laws allow to specify action preconditions, i.e. those conditions which make

an action executable in a state. Precondition laws are of the form \a possible if Fs"

meaning that when the uent conjunction Fs holds in a state, execution of the action a is

possible in that state.

Causal laws are used to express causal dependencies among uents and, then, to describe

indirect e�ects of primitive actions. They are of the form: \F if Fs" meaning that the uent

F holds if the uent conjunction Fs holds too.
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Intuitively, for describing a dynamic domain, we need a set of action and precondition

laws for each primitive action together with a (possibly empty) set of causal laws.

Procedures de�ne the behavior of complex actions. Complex actions are de�ned on the

basis of primitive actions, and test actions. Test actions are needed for testing if some uent

holds in the current state and for expressing conditional complex actions. They are written

as \(Fs)?", where Fs is a uent conjunction. A procedure in DyLOG is de�ned as a collection

of procedure clauses of the form

p0 is p1; : : : ; pn (n � 0)

where p0 is the name of the procedure and pi, i = 1; : : : ; n, is either a primitive action, or a

test action, or a procedure name (i.e. a procedure call). The sequence of pi's is the body of

the clause. If n = 0 we simply write the above procedure clause as p0. Of course it is possible

to de�ne recursive procedures. Moreover, procedure can be non-deterministic: there can be

more than one procedure clause for a certain procedure name p0.

A set of observations describes what uents are true in the initial state. They have the

form \ initially F" meaning that the uent F holds in the initial state (i.e. before any

action execution). For simplicity, we require the initial state to be complete, i.e. for each

uent name f either f or :f holds in the initial state.

In the following, we use (�; Obs) to denote a dynamic domain description, where � is a

set of simple action clauses �a and procedure clauses �p, while Obs is a set of observations

on the initial state.

A goal in a dynamic domain description in DyLOG has the form:

Fs after p1; p2; : : : ; pn (n � 0) (1)

where pi, i = 1; : : : ; n, is either a primitive action, or a procedure name, or a test and Fs is a

uent conjunction. Note that, if n = 0 we simply write the above goal as Fs.

Intuitively, the goal (1) corresponds to ask if it is possible to execute the sequence of test,

primitive, and complex actions p1; p2; : : : ; pn in such a way that it terminates in a state where

Fs is satis�ed. Thus, Fs represents a condition on the terminating state. A goal succeeds if

there is a terminating execution leading to a new state in which Fs holds. As usual in logic

programming, execution of a goal returns as a side-e�ect an answer which is an execution

trace \a1; a2; : : : ; am", i.e. a primitive action sequence from the initial state to the new one.

Though we will make use of variables in the next example, in this paper we develop

the proof theory and the modal theory of our language for the propositional case only. An

extension to the �rst order case is shortly addressed in Section 5.

Example 2.1 This example is taken from [5] and simulates the movements of a robot arm

in a world of toy blocks. Possible states are represented by means of the uents on(x; y),

clear(x), and wider(x; y) that say that block x is on top of block y, that nothing is on top

of x, and that x is wider that y, respectively. We de�ne two complex actions. The �rst one,

stack(n; x), speci�es how to stack n arbitrary blocks on top of block x while the second one,

move(x; y), de�nes how to move block x on top of block y.

(1) stack(N;X) is (N > 0)?;move(Y;X); stack(N � 1; Y ).

(2) stack(0;X).

(3) move(X;Y ) is pickup(X); putdown(X;Y ).
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The de�nition of complex action stack(N;Y ) is recursive. The complex action move(X;Y )

is de�ned in terms of the execution of the primitive actions pickup(X) and putdown(X;Y ),

which are ruled by the following laws:

(4) pickup(X) possible if clear(X).

(5) pickup(X) causes clear(Y ) if on(X;Y ).

(6) putdown(X;Y ) possible if X 6= Y ^wider(Y;X) ^ clear(Y ).

(7) putdown(X;Y ) causes on(X;Y ) if true.

The following two causal laws express some indirect e�ects of the primitive actions pickup

and putdown by representing a uent dependency between on(X;Y ) and clear(X).

(8) :on(X;Y ) if clear(Y ).

(9) :clear(Y ) if on(X;Y ).

Suppose that we have a world with the �ve blocks a, b, c, d, and e such that a is wider

than b, c, and d, while e is narrower than b, c, and d. Assume that all blocks are alone

and, then, clear. We want to stack two blocks on a such that b remains clear. Let � be

the set of clauses (1)-(9) and let Obs be the set of observations that describes the initial

situation above. Then the goal clear(b) after stack(2; a), succeeds with two solutions;

the �rst one with answer \pickup(c); putdown(c; a); pickup(e); putdown(e; c)" and the sec-

ond one with answer \pickup(d); putdown(d; a); pickup(e); putdown(e; d)". Note that the se-

quence \pickup(b); putdown(b; a); pickup(e); putdown(e; b)" is not an answer because it makes

clear(b) false after stacking. 2

To model persistency we say that if a uent expression F holds in a state obtained after

performing a sequence of primitive actions a1; : : : ; am�1, and its complement :F is not made

true by the next primitive action am, then the uent expression F holds after performing the

actions a1; : : : ; am�1; am. From a procedural point of view (see Section 3), our non-monotonic

way of dealing with the frame problem consists in using negation as failure (NAF) in order

to verify that the complement of the uent F is not made true in the state a1; : : : ; am�1; am.

In the modal theory we will adopt an abductive semantics to capture persistency.

As an example, let us consider the case of executing the action pickup(c) in a state in

which c is on top of d and d is on top of e. Assume that before executing the action the

following uent expressions hold (among others): clear(c), :clear(d), :clear(e), on(c; d),

and on(d; e). Executing the action pickup(c) has the immediate e�ect of making clear(d)

true, and the indirect e�ect of making :on(c; d) true. All the other uents are not a�ected

by the action execution and, by applying persistency, they will keep their previous values.

For instance, since :on(d; e) cannot be proved after executing action pickup(c), on(d; e) will

persist. On the other hand, the persistency of :clear(d) and on(c; d) is blocked.

As the action language in [3], DyLOG allows to deal with action rami�cations. The ram-

i�cation problem is concerned with the additional e�ects produced by an action besides its

immediate e�ects [27, 25]. In our language rami�cations can be expressed by means of causal

laws which allow to formalize one-way causal relationships among uents.

To represent causal laws correctly, we want to avoid their contrapositive use. In the logic

programming setting it is quite natural to represent causal rules by making use of explicit

negation [13]. When using explicit negation, a negative uent :f is regarded as a new positive

atom. Hence, uent expressions can be regarded as atomic formulae and causal laws can be

seen as (modalized) Horn clauses, and thus they are directional implications.
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3 Proof Procedure

In this section we introduce a proof procedure which allows to compute a query from a given

dynamic domain description.

In [3] we have de�ned an abductive proof procedure in which alternative abductive solu-

tions allow to model non-determinism w.r.t. the e�ects of primitive actions. The main focus

of this paper is on the treatment of complex actions. For this reason and for sake of simplicity

we will neither deal with primitive actions with non deterministic e�ects nor with incomplete

initial state speci�cation. To cope with such aspects an abductive proof procedure would be

needed similar to the one presented in [3]. On the contrary, in this paper, we propose a proof

procedure based on NAF.

The proof procedure reduces the procedure call in the query to a sequence of primitive

actions and test actions, and veri�es if execution of the primitive actions is possible and if the

test actions are successful. To do this, it needs to reason about the execution of a sequence

of primitive actions from the initial state and to compute the values of uents at di�erent

states.

The �rst part of the proof procedure, denoted by \ `ps ", deals with execution of pro-

cedures (complex actions), primitive actions and test actions. To execute a procedure p we

non-deterministically replace it with the body of a procedure clause for it. To execute a

primitive action a, �rst we need to verify if that action is possible by using precondition laws.

If so, then we can move to a new state, in which the action has been performed. Finally, to

execute a test action (Fs)?, the value of Fs is checked in the current state. If Fs holds in the

current state, the state action is simply eliminated, otherwise the computation fails.

During a computation, a state is represented by a sequence of primitive actions a1; a2; : : : ; am.

The value of uents at a state is not explicitly recorded but it is computed when needed in

the computation. The second part of the procedure, denoted by \ `fs ", allows to determine

the values of uents in a state.

A goal of the form (1) succeeds if it is possible to execute p1; p2; : : : ; pn (in the order)

starting from the current state, in such a way that Fs holds at the resulting state. In general,

we will need to establish if a goal of the form (1) holds at a given state a1; : : : ; am. Hence,

we will write

a1; : : : ; am `ps Fs after p1; p2; : : : ; pn with answer �

to mean that the goal Fs after p1; p2; : : : ; pn can be proved from the dynamic domain

description (�; Obs) at the state a1; : : : ; am with answer �, where � is an action sequence

a1; : : : ; am; : : : am+k which represents the state resulting by executing p1; : : : ; pn in the current

state a1; : : : ; am. In the following we denote by " the initial state.

The �rst three rules de�ne, respectively, how to execute procedure calls, test actions and

primitive actions:

1) a1; : : : ; am `ps Fs after p; p2; : : : ; pn with answer � if there is a procedure clause

(p is p01; : : : ; p
0

n0) 2 � and a1; : : : ; am `ps Fs after p01; : : : ; p
0

n0 ; p2; : : : ; pn with answer

�;

2) a1; : : : ; am `ps Fs after (Fs0)?; p2; : : : ; pn with answer � if a1; : : : ; am `fs Fs
0 and

a1; : : : ; am `ps Fs after p2; : : : ; pn with answer �;
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3) a1; : : : ; am `ps Fs after a; p2; : : : ; pn with answer � if

there is a precondition law (a possible if Fs0) 2 � such that

a1; : : : ; am `fs Fs
0 and a1; : : : ; am; a `ps Fs after p2; : : : ; pn with answer �;

4) a1; : : : ; am `ps Fs with answer � = a1; : : : ; am if a1; : : : ; am `fs Fs.

Rule 4) deals with the case when there are no more actions to be executed. The sequence

of primitive actions to be executed a1; a2; : : : ; am has been already determined and, to check

if Fs is true after a1; a2; : : : ; am, proof rules 5)-8) below are used.

The second part of the procedure determines the derivability of a uent conjunction Fs at

a state a1; a2; : : : ; am, denoted by a1; a2; : : : ; am `fs Fs, and it is de�ned inductively on the

structure of Fs:

5) a1; : : : ; am `fs true;

6) a1; : : : ; am `fs F if

a) m > 0 and there exists an action law (am causes F if Fs) 2 � such that

a1; : : : ; am�1 `fs Fs,

b) there exists a causal law (F if Fs) 2 � such that a1; : : : ; am `fs Fs,

c) m > 0 and a1; : : : ; am�1 `fs F and not a1; : : : ; am `fs :F ;

7) a1; : : : ; am `fs Fs1 ^ Fs2 if a1; : : : ; am `fs Fs1 and a1; : : : ; am `fs Fs2;

8) " `fs F if (initially F ) 2 Obs.

A uent expression F holds at state a1; a2; : : : ; am if: either F is an immediate e�ect of

action am, whose preconditions hold in the previous state (rule 6(a)); or F can be derived

by applying a causal law (rule 6(b)); or F holds in the previous state a1; a2; : : : ; am�1 and it

persists after executing am (rule 6(c)). This last case allows to deal with the frame problem:

F persists from a state a1; a2; : : : ; am�1 to the next state a1; a2; : : : ; am unless am makes :F

true, i.e. it persists if :F fails from a1; a2; : : : ; am. In rule 6(c) not represents negation as

failure.

We say that a goal Fs after p1; p2; : : : ; pn succeeds from a dynamic domain description

(�; Obs) if it is operationally derivable from (�; Obs) in the initial state " by making use of

the above proof rules with the execution trace � as answer (i.e., " `ps Fs after p1; p2; : : : ; pn
with answer �).

4 The logical semantics

In this section we present a logical characterization of DyLOG in two steps. First, we in-

troduce a multimodal logic interpretation of a dynamic domain description which describes

the monotonic part of the language. Then, we provide an abductive semantics to account for

non-monotonic behaviour of the language.

Following the proposal in [3], a dynamic domain description (�; Obs) in DyLOG is inter-

preted in a multimodal logic. The basic idea is to use a �nite number of modal operators to

represent primitive actions, procedure names, and test actions. Moreover, we use a universal
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modal operator [always] of type S4 to represent any sequence of primitive actions. Di�er-

ently from [3], each dynamic domain description is interpreted in a particular multimodal

logic characterized by a set of axiom schemas determined by its procedure clauses together

with a theory based on the set of simple action clauses and the observation.

More precisely, given a dynamic domain description (�; Obs), let us call L(�;Obs) the propo-

sitional modal logic on which (�; Obs) is based. L(�;Obs) contains a �nite number of modal

operators [t] and hti (universal and existential modal operators, respectively) for each primi-

tive action, procedure name, and test action t that appears in (�; Obs). All these modalities

are normal, that is, they are ruled at least by axiom K(t) : [t]( � ') � ([t] � [t]').

Let us denote by �a the set of simple action clauses which are in � and by �p the set

of procedure clauses in � (i.e. � = �a [ �p). The set �p is interpreted as a set of axiom

schemas; more formally, the axiom system for L(�;Obs) contains an axiom schema of the form

hp1ihp2i : : : hpni' � hp0i', for each procedure clause p0 is p1; p2; : : : ; pn in �p, where '

stands for an arbitrary formula, p0 for a procedure name, and the pi's for any primitive

action, procedure name, or test action. We call A�p
the set of axioms determined by �p.

While the axioms determined by �p characterize a logic, the action clauses in �a and the

observations in Obs de�ne a theory fragment of the multimodal logic language L(�;Obs). In

particular, we de�ne the following mapping from action laws, precondition laws, causal laws,

and observations which belong to �a and Obs to modal formulae (we call �(�;Obs) the theory

determined by �a and Obs):

a causes F if Fs ; [always](Fs � [a]F )

a possible if Fs ; [always](Fs � haitrue)

F if Fs ; [always](Fs � F )

initially F ; F

where [always] is a modal operator of type S4 that represents any sequence of primitive

actions, and it is used to denote information which holds in any state. Hence, [always] occurs

in front of all simple action clauses that have to hold in any state, while it does not occur

in front of observations that have to hold only in the initial state. The axiom system for

L(�;Obs) contains the following interaction axiom schema I(always; ai) : [always]' � [ai]',

one for each primitive action ai in (�; Obs), which rules the interaction between the modal

operator [always] and the modalities [ai].

The language L(�;Obs) contains test modalities. Like in dynamic logic [18], if  is a

proposition then  ? can be used as a label for a modal operator. As usual, besides the axiom

K, the modalities built by the operator \?" are axiomatized by the following: h ?i' ()

 ^ '. Summarizing, a domain description (�; Obs) is interpreted in a multimodal logic

L(�;Obs) and the simple action clauses in �a and the observations in Obs determine a theory

�(�;Obs) in such a logic.

The meaning of a formula in L(�;Obs) is given by means of a standard Kripke semantics

and more details can be �nd in [1].

The monotonic part of the language does not account for persistency. In order to deal

with the frame problem, we introduce a non-monotonic semantics for our language by making

use of an abductive construction: abductive assumptions will be used to model persistency

from one state to the following one, when a primitive action is performed. In particular, we

will assume that a uent expression F persists through an action unless it is inconsistent to

assume so, i.e. unless :F holds after the action.
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The semantics we de�ne is an extension of the abductive semantics proposed in [3] to deal

with complex actions de�nitions. As a di�erence with [3] here we have adopted a two valued

semantics, instead of a three-valued one. Moreover, here we do not allow for incomplete initial

states.

In de�ning our abductive semantics, we adopt (in a modal setting) the style of Eshghi and

Kowalski's abductive semantics for negation as failure [12]. We de�ne a new set of atomic

propositions of the form M[a1][a2] : : : [am]F and we take them as being abducibles.1 Their

meaning is that the uent expression F can be assumed to hold in the state obtained by

executing primitive actions a1; a2; : : : ; am. Each abducible can be assumed to hold, provided

it is consistent with the domain description (�; Obs) and with other assumed abducibles.

More precisely, in order to deal with the frame problem, we add to the axiom system of

L(�;Obs) the persistency axiom schema

[a1][a2] : : : [am�1]F ^M[a1][a2] : : : [am�1][am]F � [a1][a2] : : : [am�1][am]F (2)

where a1; a2; : : : ; am (m > 0) are primitive actions, and F is a uent expression. Its meaning

is that, if F holds after action sequence a1; a2; : : : ; am�1, and F can be assumed to persist

after action am (i.e., it is consistent to assume M[a1][a2] : : : [am]F ), then we can conclude

that F holds after performing the sequence of actions a1; a2; : : : ; am.

Given a domain description (�; Obs), let j= be the satis�ability relation in the monotonic

modal logic L(�;Obs) de�ned in the previous section (including axiom schema (2)). In the

following, ::p is regarded as being equal to p.

De�nition 4.1 A set of abducibles � is an abductive solution for (�; Obs) if,

a) 8M[a1][a2] : : : [am]F 2 �, �(�;Obs) [� 6j= [a1][a2] : : : [am]:F

b) 8M[a1][a2] : : : [am]F 62 �, �(�;Obs) [� j= [a1][a2] : : : [am]:F .

Condition a) is a consistency condition, which guarantees that each assumption cannot be

assumed if its \complementary" formula holds. Condition b) is a maximality condition which

forces an abducible to be assumed, unless its \complement" is proved. When an action is

applied in a certain state, persistency of those uents which are not modi�ed by the direct or

indirect e�ects of the action, is obtained by maximizing persistency assumptions.

Since p and :p are taken as two di�erent propositions, it might occur that both of them

hold in the same state, in an abductive solution. To avoid this, we introduce a consistency

condition to accept only those solutions without inconsistent states. We say that an abductive

solution � is acceptable if, for every sequence of actions a1; a2; : : : ; am, (m � 0), and uent

name p: �(�;Obs) [� 6j= [a1][a2] : : : [am]p ^ [a1][a2] : : : [am]:p.

De�nition 4.2 Given a domain description (�; Obs) and a goal Fs after p1; p2; : : : ; pn, a

solution for the goal in (�; Obs) is de�ned to be an acceptable abductive solution for (�; Obs)

such that �(�;Obs) [� j= hp1ihp2i : : : hpniFs:

1Notice that M has not to be regarded as a modality. Rather, M� is the notation used to denote a new

atomic proposition associated with �. This notation has been adopted in analogy to default logic, where a

justi�cation M� intuitively means \� is consistent".
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According to the de�nition above, a domain description may have more than one ab-

ductive solution. Indeed the semantics above also allows to model primitive actions with

non-deterministic e�ects: executing an action may lead to alternative states, each one mod-

eled by a di�erent abductive solution. Though in our language primitive actions cannot be

non-deterministic with respect to immediate e�ects, they can have non-deterministic e�ects

through rami�cations (causal laws). Since this paper is principally devoted to explore how to

deal with complex actions de�nitions, as mentioned above, the proof procedure presented in

Section 3 does not account for non-deterministic primitive actions. While we refer to [3] for

an example on non-deterministic actions, we just want to observe that the case of multiple

solutions occurs when there are negative dependencies in the set of causal rules (as, for in-

stance, a if :b^ c and b if :a^ c). These cases cannot be dealt with our proof procedure,

since they cause the procedure to enter an in�nite loop.

There are also cases when a set of action laws and causal rules � may have no abductive

solution. It may happen, for instance, when � contains causal rules with negative dependen-

cies, as the rule F if :F . In such a case, it might be impossible to �nd a set of abducibles

satisfying both conditions (a) and (b). The fact that some domain description may have no

abductive solution is quite similar to the problem of nonexistence of stable models in logic

programs with negation as failure.

The proof procedure computes just one solution, while the abductive semantics may give

no solutions or multiple solutions for a given domain description. Hence, we can say that

the relation of this logical characterization with the proof procedure above is similar to the

relation of stable model semantics with SLDNF. Since existence of abductive solutions is

not guaranteed, what we can show is that our procedure gives sound results in the case an

abductive solution exists. We can prove the following.

Theorem 4.1 (Soundness) Let (�; Obs) be a dynamic domain description and let Fs after

p1; p2; : : : ; pm be a goal in DyLOG. Then, for all abductive solutions � for (�; Obs), if

Fs after p1; p2; : : : ; pm succeeds from (�; Obs) then �(�;Obs) [� j= hp1ihp2i : : : hpmiFs.

The proof is omitted for sake of brevity. It can be done by induction on the rank of

the derivation of the goal, and it makes use of a soundness and completeness result for the

monotonic part of the proof procedure presented in Section 3 with respect to the monotonic

part of the semantics.

As in the case of logic programs with negation as failure, syntactic conditions can be

de�ned on domain descriptions which guarantee the existence of abductive solutions. For

instance, it is quite natural to de�ne a notion of strati�ed domain description, by imposing

that causal laws are such that a uent cannot depend negatively on itself. Such a restriction

would allow to avoid negative loops and thus to assure existence of abductive solutions.

This restriction to strati�ed rule bases has also the e�ect to avoid multiple solutions and

hence to force primitive actions to be deterministic. In this way the nondeterministic part of

the language is con�ned at the level of procedure de�nitions.

Notice that the proof procedure in Section 3 does not perform any consistency check on

the computed abductive solution. There are cases when a set of action laws and causal laws

� has abductive solutions, but it does not have acceptable ones. This may occur when �

contains alternative action laws for an action a, which may be applicable in the same state,

and have mutually inconsistent (immediate or non immediate) e�ects. For instance, if there
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are two action laws for a as follows:

a causes f if p a causes :f if q;

when a is executed in a state containing both p and q, the successor state will contain both

f and :f , and hence it will be inconsistent.

Another possible cause for the nonexistence of acceptable solutions comes from inconsis-

tencies in the set of observations Obs.

Conditions can be de�ned on domain descriptions to guarantee the acceptability (consis-

tency) of abductive solutions (if any). Such conditions generalize the notion of e-consistency

[10], which has been de�ned for the language A. In our context, since causal laws are present

in a domain description, essentially we have to require that, for any set of action laws (for

a given action) which may be applicable in the same state, the set of their immediate and

indirect e�ects (obtainable through the causal laws) is consistent.

The requirements of strati�cation and e-consistency together ensure that a domain de-

scription has a unique acceptable solution (if Obs is consistent). Under these conditions we

argue that completeness of the proof procedure in Section 3 can be proved. In fact, the

conditions above prevent the proof procedure from entering an in�nite loop.

Rather then imposing syntactic restrictions on domain descriptions, an alternative way to

solve the problem of non existence of abductive solutions is that of moving to a three-valued

semantics, by weakening conditions (a) and (b) above. Such a solution was adopted in [3],

for the language with only primitive actions.

5 Conclusions

In this paper we have de�ned a logic programming language for reasoning about actions,

which includes complex actions introduced by means of procedure de�nitions. In de�ning the

proof theory and the model theory of our language we have only focused on the propositional

part of the language. However, both the proof procedure of the language and its modal

characterization can be extended to the �rst order case. In the �rst order case, variable may

occur both in uent names and in action names (a �rst order monotonic modal programming

language of this kind was studied in [2, 1]).

The problems which arise when addressing the �rst order case are similar to those which

occur in �rst order logic programs in presence of negation as failure (NAF). More precisely,

the oundering problem has to be addressed. In our language NAF is used by the proof

procedure at step 6c), the one which deals with persistency of uents. In order to avoid

oundering we have to ensure that, during the computation, all the actions in the sequence

a1; : : : ; am are groundly instantiated, and, at each state, only ground uent expressions can

be derived. To enforce this, an allowedness condition (see [19]) can be put on action laws,

preconditions laws and causal laws. Essentially, all the variables occurring in the head of

action laws, preconditions laws and causal laws have also to occur in their bodies. Moreover,

the set Obs of observations on the initial state must be ground.

The major formalisms introduced for reasoning about dynamic domains and for de�ning

and executing complex actions are Transaction Logic and GOLOG.

Transaction Logic (T R) [5, 6, 7] is a formalism designed to deal with a wide range of update

related problems in logic programming, databases and AI. It provides a natural way to de�ne

composite transactions as named procedures, by giving them a declarative speci�cation in a
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logical �rst order framework. In T R complex transactions can be constructed from elementary

actions by sequential and concurrent composition. Moreover, non-deterministic transactions

and constraints on transactions can be expressed, and both hypothetical and committing

actions are allowed.

In our language only the sequential part of T R can be represented. Essentially our pro-

cedures can be de�ned by sequential composition, and both non-deterministic and recursive

procedures are allowed. As a di�erence with T R, in our language constraints on the execution

of transactions cannot be de�ned, except on the initial and �nal state of the transactions. This

is inherent in the semantic structure of our language, which is not based on \path structures"

as the semantic theory of T R.

A major di�erence with T R which makes our language much more similar GOLOG than

to T R concerns elementary actions. While T R is parametric with respect to elementary

transitions, which are de�ned through a \transition base" and whose behaviour is not mod-

elled in the language, in our language e�ects of elementary actions have to be de�ned by

introducing action laws and causal laws. Moreover, our domain description contains precon-

dition laws which are used to establish if elementary actions are executable in a given state.

Simple action clauses provide a very compact de�nition of actions. Aspects of action theory

like action precondition, rami�cation, persistency have not to be addressed in T R, since the

\transition base" provides an extensional description of the behaviour of elementary actions

(by describing the e�ects of actions on all possible states).

As concerns the speci�cation of elementary actions, our language is much more similar to

GOLOG [22], though, from the technical point of view, it is based on a di�erent approach.

While our language makes use of modal logic, GOLOG is based on classical logic and, more

precisely, on the situation calculus. We make use of abduction to deal with persistency, while

in GOLOG is given a monotonic solution of the frame problem by introducing successor state

axioms. In our case, procedures are de�ned as axioms of our modal logic, while in GOLOG

they are de�ned by macro expansion into formulae of the situation calculus. Moreover, in

DyLOG it is very natural to express, within the goal, conditions on the �nal state of a procedure

execution (e.g. Example 2.1).

As mentioned in the introduction, GOLOG de�nition is very general and it makes use of

second order logic to de�ne iteration and procedure de�nition. Hence there is a certain gap

between the general theory on which GOLOG is based and its implementation in Prolog. In

contrast, in this paper we have tried to keep the de�nition of the semantics of the language

and of its proof procedure as close as possible.

In this work we do not deal with sensing actions, that is, actions whose e�ect is that

of changing state of knowledge [29]. Sensing actions are foundamental to reason about con-

ditional plans in presence of incomplete information [21, 4, 26]. In particular, in [26], the

authors extend Gelfond and Lifschitz' language A to reason about complex plans, including

conditional and iterations, in presence of sensing. In this case, plans can depend on the out-

come of the sensing actions and the language allows to model a form of hypothetical reasoning

on complex plans. Instead, in our language, as in [22], we can describe and execute complex

plans, that are de�ned by means of a DyLOG logic program, though plans can only depend

on information about the initial state. Nevertheless, in DyLOG we can provide names for

complex plans and, moreover, we can express action preconditions and causal relationships

among uents to deal with rami�cations. Extending DyLOG to reason about sensing actions

is a direction for future work.

In de�ning our language we have not made use of dynamic logic, and, in particular, we
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have not introduced in our language program operators as \sequential composition", \non-

deterministic choice"and \iteration". On the other hand, we have the test operator and we

de�ne our procedures as sequences of actions. The capability of de�ning (recursive) procedures

makes a further di�erence with dynamic logic.

An approach to reasoning about action based on dynamic logic has been presented in [9].

There a monotonic solution to the frame problem is adopted. The language in [9] does not

deal with procedure de�nitions but it allows to deal with concurrent actions.

The semantics of our language is de�ned by following an abductive approach. Hence, our

work has strong connections with [10, 11, 24, 23]. All these works address the problem of

reasoning about actions in a logic programming abductive setting, by de�ning translations of

the language A and its extensions to abductive logic programming. These languages do not

deal speci�cally with procedure de�nitions and we refer to [3] for a more detailed comparison

with these approaches. We just want to mention that in [24] a language with concurrent

actions is developed. Parallel composition is an operator to construct complex actions that

we have not considered in our language and this is a direction in which DyLOG can be

extended.
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Database Evolution under Non-deterministic and

Non-chronological Updates

Yannis Dimopoulos� Antonis Kakasy Suryanarayana M. Sripadaz

Abstract

Data base applications that model aspects of the real-world, should keep track of the

changes that are happening in it, and reect these changes as accurately as possible in the

database. If the information about changes, in the form of updates, is not supplied to the

database in an ideal way, the database needs to have mechanisms that assimilate correctly,

whenever possible, this new information.

We propose a model called FlexUp that addresses two cases of non-ideal information

supply. The �rst is the well-known, in the context of deductive databases, problem of non-

deterministic updates of intensional predicates. The second is the problem of non-chronological

updates, i.e. updates that come to the system in an order that does necessarily reect the

order in which the corresponding changes happen in the real-world.

The main features of FlexUp are (a) it is conservative in the sense that in case of ambiguity

it avoids realizing updates in ad hoc ways (b) it satis�es ACID-like properties and therefore

it is in accordance with traditional transaction systems.

1 Introduction

Databases in general and deductive databases in particular try to model the real-world and keep

track of the changes that are happening in it. The information that the database holds forms the

basis for taking decisions by the application system, and therefore it is important that the state

of the database reects the state of the real-world as correctly as possible. When the changes

that happen in the world are provided to the database in an ideal way, it is easy to satisfy

this criterion of correctly reecting the state of the world. However, there are cases where this

information about the changes in the world is not always ideally provided. The information may

be incomplete or it may arrive at the database in an order di�erent from that of the changes in

the world. This problem is particularly acute when we have intensional (view) relations in our

database which can be updated in several di�erent ways. Let us examine the following illustrative

example.

Example 1.1 Consider the database in an organisation, comprising of the extensional relations

Employee(EmployeeName, Department) and Manager(ManagerName, Department) and the in-

tensional relation Manages(ManagerName, EmployeeName) de�ned as follows:

�Max-Planck-Institut f�ur Informatik, 66123 Saarbr�ucken, Germany.
yDepartment of Computer Science, University of Cyprus, Nicosia, Cyprus.
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Manages(MName;EName) Manager(MName;Dept); Employee(EName;Dept)

Assume the following data in the extensional relations to start with:

Manager(Bob, Audio), Manager(Mary, Video),

Employee(Tom, Audio), Employee(Peter, Accounts)

Now consider the update request U1: Add Manages(Mary, Tom)

The intensional relationManages can be updated by any combination of (basic) updates (add

and delete) on the extensional relations (Manager, Employee) that would bring the database in

a state that makes the body of the rule hold. Therefore, the speci�c update request U1 can be

realised in at least 3 ways:

� Tom moved to the Video department: f delete Employee(Tom, Audio), add Employee(Tom,

Video) g.

� Mary moved to the Audio department: f delete Manager(Bob, Audio), add Manager(Mary,

Audio) g.

� Both Tom and Mary moved to a new department, say Marketing: f delete Manager(Mary,

Video), delete Employee(Tom, Audio), add Manager(Mary, Marketing), add Employee(Tom,

Marketing)g.

Such an update request U1 is non-deterministic since it is not clear which of the alternatives

above reects the actual change that has occurred in the world and therefore should be used to

realize the update request.

The problem of non-deterministic view updates is well-studied in the context of deductive databases

(see e.g. [11, 2, 7, 20, 12, 1]). In these works the primary concern is that of realizing a single

update working under the implicit assumption that one of the many di�erent realizations can be

choosen at the time when the update is presented to the database. Several important criteria

for tackling the problem of non-deterministic updates such as preferring minimal updates have

been considered e.g. [9, 13, 14, 6]. Although these can be useful, they do not solve the problem

completely and can sometimes lead to ad hoc solution. Any arbitrary mechanism for resolution

of ambiguity would mis-represent the state of a�airs in the real-world, thus compromising the

criterion of faithful representation of the world by the database. In this paper we will assume that

the information about the changes in the world may be distributed over several updates, and the

update that can make them deterministic has not been presented to the database yet. We thus

need to consider a sequence of updates and the evolution of the database under this sequence.

In [19] the notion of cumulative updates is proposed, where update ambiguities are resolved by

combining information from several updates. However, [19] does not propose a transaction model

that enables such update mechanisms to be implemented.

Another important case of non-ideal supply of information to the database is when this ar-

rives in an order that does not necessarily correspond to the order in which changes have oc-

curred in the real-world. In such a case we say that the database is receiving non-chronological

updates. An underlying assumption of traditional update and transaction models is that up-

dates are chronological (full edged temporal databases are an exception to this rule [18]). This

assumption may be too strong for databases in advanced applications. To illustrate the prob-

lem consider again the above example and assume that after U1 we get another update U2=

fdelete Manager(Mary; V ideo), add Manager(Mary;Marketing)g. If this change in the world



recorded by U2 occurred before that of U1 then U1 must be realized in the third way. But if U2

is treated by the database as a later change, because it is presented to the database after U1,

there is no guarantee that U1 will be resolved in the same way. Thus, a database after a series of

updates may or may not reect the state of the world, depending upon the order in which such

updates are committed.

It is clear from the foregoing that both of the above scenarios require updates to be handled in

a more exible way, by exchanging information between di�erent update requests. In this paper,

we develop a model, called FlexUp, suitable for the non-ideal situations of non-deterministic and

non-chronological updates by allowing more exibility in realising them. The basic idea is to allow

non-deterministic update requests the possibility to wait (pending updates) for more information

that will make them deterministic. When a new update is submitted to the system, carrying some

deterministic information, this may help some of the pending updates to become deterministic

and therefore commit. The model also uses information concerning the time at which the update

becomes valid in the real-world, referred to as valid time (in temporal database parlance [18]), to

allow updates to commit irrespective of the order in which they are submitted while respecting

their chronological ordering.

An indirect e�ect of the non-ideal supply of information to the database is the fact that

an update request may be inconsistent at the time when it is presented to the database due

to some information that has not arrived at the database yet. The FlexUp model allows such

updates to pend in the same way as the non-deterministic updates, waiting for information that

would render them consistent. If such information arrives then the update can be realised on the

database otherwise it is rejected as in the standard database system.

Looking at the problem of deductive database updates from the point of view of transactions,

we can identify some important criteria that an update model should satisfy. An update can

be seen as a special case of a write-only transaction (i.e. a transaction that does not depend

on the state of the extensional database) that changes the state of the database. Under this

view, each update/transaction should satisfy ACID-like properties developed by the traditional

database community [10]. It turns out that our model satis�es the atomicity and consistency

properties. Therefore, the FlexUp model is in accordance with traditional transaction models.

Each transaction/update either commits or aborts as a single unit without any dependencies

or post conditions. In this sense our approach also contributes ideas for developing transaction

models capable to cope with situations of non-ideal information supply. This is an important issue

as many kinds of transaction models have been proposed, motivated by advanced applications

from various domains [8, 17, 15, 16]. These models attempt to relax the ACID properties of

transactions in order to achieve greater functionality and higher e�ciency [3]. However, most of

the commercial database systems rely only on the standard transaction model satisfying ACID

properties [10].

It should be pointed out that, in general, a database is updated through more complex forms of

transactions that could involve reading from the database and depending on what is read, di�erent

sets of updates are selected. In these cases the problem of handling non-ideal information supply

in the database, becomes more complex, and an extension of FlexUp would be needed.

Summarizing, the main features of the FlexUp model are the following.



� It handles non-deterministic updates by keeping these pending until complementary infor-

mation from other update requests helps resolve the ambiguities.

� It exploits the valid time to handle non-chronological updates.

� Guarantees the consistency of the database according to the speci�ed integrity constraints.

� It enjoys ACID-like properties.

2 The Update model

In this section we describe the FlexUp model and illustrate its behaviour with examples. We

start by introducing some basic concepts that are used by FlexUp.

A database contains a set of extensional relations. An extensional database is a set of ground

facts on these extensional relations. A database may also have view or intensional relations

de�ned from the extensional relations. The intensional relations are not explicitly stored in the

database.

De�nition 2.1 A basic update operation on the database has the form add(p) or delete(p) where

"p" is a ground fact of an extensional relation. When add(p) (resp. delete(p)) is e�ected, the

resulting extensional database contains "p" (resp. does not contain "p").

An update on extensional relations is a set of basic update operations together with an

associated time called the valid time of the update. Updates on view (intensional) relations

must be translated into a set of basic update operations. Such a translation is not always unique,

but instead there can be many di�erent sets of basic operations for the same update (see e.g. [12]).

This is the phenomenon of non-determinism in the update requests. For instance, in the context

of updating intensional relations through abduction (e.g. [12]), every abductive explanation of the

update gives us a di�erent way of realizing this update. Abstracting from the details of how view

update requests are related and translated to basic operations (these details are not important

in the study of this paper) we adopt the following de�nition of an update on the database.

De�nition 2.2 A realization is a set of basic update operations. An update is a pair U =<

R; vt > , where R is a set of realizations and vt is a time point called the valid time of U.

The deterministic part of an update is the set of basic operations that are common in all of

its realizations. Hence, no matter how this update will be realized, once it commits, the basic

update operations in the deterministic part will be e�ected on the database.

De�nition 2.3 The deterministic part DP (U) of an update U =< R; vt > is de�ned to be

DP (U) =
Tn

i=1Ri, where R1; : : : Rn are the realizations of U contained in R.

We will assume that for any set of updates with the same valid time the union of their

deterministic parts does not contain both add(p) and delete(p) for some p.

Within the FlexUp model an update U , can be in one of three states: Pending, Commit,

or Abort. A FlexUp update is kept pending if it is non-deterministic or inconsistent, until fur-

ther updates provide enough information to resolve the non-determinism or inconsistency in the

pending update. Upon the arrival of another update the FlexUp procedure tries to identify a

set of updates that are mutually deterministic and consistent. Then these updates move into the

commit status and are committed. The new committed updates start this process again with the

possibility of other updates to commit. First we give some preliminary de�nitions.



De�nition 2.4 A state of a database is a triple Si = (DB0; CU; PU), where DB0 is an exten-

sional database, CU is a set of pairs of the form < Uj ; Rj >, where Uj is an update committed

via the realization Rj, and PU is a set of pending updates.

The extensional DB0 is to be thought as the state at some initial time of reference and CU

(respectively PU) the sets of committed (respectively pending) updates at some time after this

initial time.

De�nition 2.5 The extensional database wrt some database state S = (DB0; CU; PU) and some

valid time t, denoted by DBS
t , is the extensional database obtained after committing, in their valid

time order, all the realizations in CU that are associated with updates with valid time less or equal

to t. The current extensional database, denoted by DBS, is the database DBS
tf
, where tf is the

greatest valid time amongst the committed updates CU .

We next give the de�nition of the key notion of committable updates which de�nes which

(pending) updates have become ready to commit.

De�nition 2.6 Let S = (DB0; CU; PU) be a state of the database. Then a set of updates U 2 PU

is committable wrt the state S i� the following conditions hold:

a) All updates in U refer to the same valid time t,

b) Every update Ui 2 U has a realization rij such that for every add(p) 2 rij (resp. delete(p))

either p 2 DBS
t (resp. p 62 DBS

t ) or p belongs to the deterministic part of another update Uk 2 U .

c) Let U 0 be the set of pairs < Ui; rij >, where Ui 2 U and rij is the realization of the update

Ui selected in (b). Then for every valid time t0 � t and the state S0 = (DB0; CU [ U
0; PU � U),

DBS
t0 is consistent.

This notion of committable combines two elements. The �rst element, captured by conditions

(a, b), simulates the conditions required to hold for the whole set of updates in U to be accepted

(and committed), by a conventional update model, when these are not distributed over the

di�erent updates but are given all together as one update to the database DBt referring to the

valid time "t" of interest. It therefore requires that any non-determinism that may exist in the

updates of this set can be resolved using the collected information distributed over the di�erent

updates in U and information from DBt. The second element (condition c) checks that the

realizations of the updates in the set U do not violate any of the integrity constraints at any valid

time starting from the valid time of U up to the latest valid time.

Example 2.7 Consider a database that contains the integrity constraint :(s; r), the fact r in its

initial extensional state DB0, with no committed updates yet, and a set of pending updates U1 =<

f(add(p); add(q)); (add(p); add(l))g; 4 >, U2 =< f(add(m); add(s)); (add(m); add(t))g; 4 >, U3 =<

f(add(s))g; 4 >. Assume that the latest update that has arrived at the database is U4 =<

f(add(q))g; 4 >.

We �rst note that U1 and U2 are pending because they are non-deterministic and that U3

is pending because it is inconsistent. When U4 arrives then the set of updates fU1; U4g is com-

mittable since both refer to valid time 4, the �rst realization of U1 belongs to the deterministic

part of U4, and if they are realized on DB0, the extensional database remains consistent. Note

that U3 can not be included in the set of committable updates, as it violates, together with the

fact r, the integrity constraint. Consequently, U2 can not also be committable since it remains



non-deterministic. Notice that if a new update U5 =< f(delete(r); 3 > comes after and commits,

U3 and so also U2 become committable.

We note here that in the de�nition of committable we require that the valid time of di�erent

updates must be exactly the same for these to be able to exchange information among their

deterministic parts. This is a formal idealization of a notion of "closeness" of valid times that is

dependent on the speci�c domain of the application for which the database is built. In general,

we can employ a suitable temporal reasoning mechanism to project (forwards and backwards)

information from updates along the valid time axis.

The basic FlexUp model consists of two main procedures. The �rst one, called Process-New,

is activated when a new update arrives at the system. The procedure checks if the information

that the update carries, helps to make some of the pending updates (with valid time equal to

the valid time of the new one) committable. When this happens the committable updates are

committed and the sets of pending and committed updates are changed accordingly. In detail,

the procedure Process-New is as follows.

Assume that the database starts at some initial time with an extensional state DB0 and is

currently in the state S = (DB0; CU; PU) when the new update, Unew, arrives.

Procedure Process-New (Unew, PU , CU)

te := valid time of Tnew; PU := PU [ Unew;

CSte := Subset of updates of PU with valid time te that are committable wrt S = (DB0; CU; PU);

If CSte 6= ; then

begin

For each Ui 2 CSte do

CU = CU[ < Ui; Ri >, where Ri is the deterministic part of the update Ui;

PU := PU � CSte ;

Process-Rest (PU , CU);

end

Note that although we do not add the whole realization of a committed update (but only its

deterministic part), the rest of the realization belongs to the deterministic part of the other

updates which will be committed together with this. As we will see in Section 3, this means that

updates that commit have the atomicity property.

When a new set of updates is committed by the procedure Process-New, the state of the

database changes. This means that other updates pending either due to non-determinism or

inconsistency before this activation of procedure Process-New, may now they also become com-

mittable. This job is carried out by the procedure Process-Rest which checks the whole set of

the pending updates (in their valid time order) to determine if some of them can commit. This

is repeated until no additional updates become committable.



Procedure Process-Rest (PU , CU)

�nished:=false;

While not �nished do

begin �nished:=true;

te := earliest valid time in PU ; tlast := latest valid time in PU ;

While te � tlast do

begin

CSte := Subset of updates of PU with valid time te that are committable wrt S = (DB0; CU; PU);

If CSte 6= ; then

begin

�nished:=false;

For each Ui 2 CSte do

CU = CU[ < Ui; Ri >, where Ri is the deterministic part of the update Ui;

PU := PU � CSte ;

end;

te := te + 1;

end; end;

The model as described so far keeps track of all the updates submitted to the system (committed

and pending). This might be unrealistic for practical applications. For this reason the system may

periodically "time out" all the pending updates with valid time earlier than a time t by removing

them from the set of pending updates and aborting them. Also all committed updates with valid

time earlier than t are removed form the set of committed updates. This time t then becomes

the next initial time and the extensional database DBt the next initial extensional database.

Any new update that arrives and has valid time earlier than t will be aborted without further

processing.

Let us illustrate the behaviour of FlexUp with the following examples. The �rst example

is a simple example that shows how non-determinism is resolved using information from later

updates.

Example 2.8 Consider a database of a company that consists of the view relation new-stock(id,

ammount) where id is the identi�cation number of a new stock and "ammount" the quantity of

the stock. Furthermore assume that there are three extensional relations, stock(id, ammount) that

records the quantity of each stock, the relation retail(id) that records which stock is of retail type,

and the relation wholesale(id) that records the stock of wholesale type.

Suppose that at valid time 1 a new update U1 arrives where we want to update the database

with the fact, new � stock(id123; 50), on this view relation. Also assume that the type of stock

id123 has not been decided yet, and therefore there are two possible realizations of this update,

U1 =< f(add(stock(id123; 50); add(retail(id123)); (add(stock(id123; 50); add(wholesale(id123))g; 1 >.

So the update is non-deterministic and is added to the pending updates. After some time we de-

cide that id123 will be of wholesale type and give the update U2 =< f(add(wholesale(id123))g; 1 >

which then renders U1 and U2 committable.

The second example given below is representative of the way non-chronological updates are

handled within FlexUp model and how updates can be pending due to inconsistency.



Example 2.9 Consider a database that consists of the extensional relation rank(Name, Rank)

that records the rank of the faculty of a university and the relation pay(Name, Document, Am-

mount) that records reimbursements of faculty traveling expenses. The database also contains the

integrity constraint that only tenured faculty get reimbursed for traveling and the fact rank(Tom,

Assistant).

Assume that at valid time 5 Tom gets promoted to Associate Professor but the relevant update

is not given to the system (until e.g. the Senate approves his promotion). At time 7 Tom goes

to a conference and the update request U1 =< fadd(pay(Tom;Receipt� 101; 1200))g; 7 > comes

to the system. This update can not be realized since Tom is still an Assistant Professor in the

database and the integrity constraint is violated. So U1 is added to the pending updates. At some

later point the update U2 =< f(add(rank(Tom;Associate)); delete(rank(Tom;Assistant)))g;

5 > comes and it commits. Now update U1 can also commit since it is now consistent wrt the

constraint.

We now give a more complex example that demonstrates the general behaviour of FlexUp

model in complicated situations.

Example 2.10 Consider the following set of updates:

U1 =< f(add(p); add(s)); (add(p); add(t))g; 1 >

U2 =< f(add(q))g; 2 > U3 =< f(delete(p); add(r))g; 2 >

U4 =< f(add(s); add(c)); (add(s); add(d))g; 1 >

U5 =< f(add(m))g; 4 > U6 =< f(add(c))g; 1 >

U7 =< f(delete(a); add(b))g; 3 > U8 =< f(add(k))g; 2 >

Suppose that the initial extensional database is DB0 = fag and that the database has the in-

tegrity constraints :(a;m) and :(b; k). Also assume that the updates are submitted in the order

(U1; U2; : : : ; U8).

When U1 arrives to the system it becomes pending since it is non-deterministic and there is not

enough information to resolve this non-determinism. Hence the set of pending updates becomes

PU = fU1g. Then U2 comes, with valid time 2, and since it is deterministic and consistent it

commits. The set of committed updates CU becomes CU = fU2g. Then U3 arrives which is

deterministic and consistent and commits. Hence, CU = fU2; U3g and the current (wrt valid

time 2) extensional database is DB = fa; q; rg. When U4 is submitted FlexUp sees that its non-

determinism can not be resolved with the information we have, hence PU = fU1; U4g. Note that

U4 carries the deterministic information add(s) that can make U1, which is pending, to commit,

but this is not possible since U4 itself is not committable.

When U5 arrives, although this is a deterministic update it is inconsistent since a was in the

database before valid time 4 and adding m will violate the constraint :(a;m). Hence U5 becomes

pending and PU = fU1; U4; U5g. When U6 comes we see that U4 becomes deterministic (since

U4 can now commit on its �rst realization using deterministic information provided by U6) and

in turn U1 becomes also deterministic. Hence all of U1; U4; U6 are committable since also they

do not violate any of the integrity constraints. The set of committed updates becomes CU =

fU1; U4; U6; U2; U3g and the current (wrt valid time 2) extensional database is DB = fa; q; r; s; cg.

Now U7 arrives which is deterministic and consistent and commits. This then makes the pending

update U5 consistent, since a is deleted, and therefore commits as well. The current extensional



database is DB = fq; r; s; c; b;mg and PU = ;. Next U8 is submitted which is deterministic but

it can not be committed since it is inconsistent with the database of valid time 3 that contains

(due to U7) b. Hence it will be added to the pending updates.

3 Properties of the FlexUp Update Model

In this section we present some of the formal properties of FlexUp, and discuss briey their

signi�cance.

We �rst note that FlexUp keeps the current extensional database consistent. Furthermore,

each extensional database referring to any valid time, is also consistent.

Proposition 3.1 For any resulting state of the database S = (DB0; CT; PT ) and for any valid

time t, the extensional database DBt is consistent.

The resolution of non-determinism by FlexUp does not involve any arbitrary choice within

the set of committed updates. The realization selected for a particular update is supported by

the deterministic information in other committed updates.

Proposition 3.2 Let DB denote the extensional database resulting after a sequence of updates

SU has been submitted to FlexUp on an database with initial state DB0. Then p 2 DB (resp.

p 62 DB) if p 2 DB0 (resp. p 62 DB0) or add(p) (resp. delete(p)) belongs to the deterministic

part of of a committed update U 2 SU .

Another property of FlexUp is that this assimilates information about changes in the world

while respecting the time order in which these changes happened in the world (their valid times).

The following two results demonstrate this property and show an order independence of FlexUp

amongst the committed updates.

Proposition 3.3 Let SU be a sequence of updates ordered by their valid times such that if sub-

mitted to FlexUp all the updates in SU commit resulting to a �nal extensional database DBf . Let

SU 0 be a permutation of SU submitted to FlexUp. Then FlexUp will commit all the updates in

SU 0 resulting to the same �nal extensional database DBf .

Let us denote by Do(DB;R) the extensional database obtained when e�ecting a realization

R on the database DB.

Theorem 3.4 Let SU be a sequence of updates submitted to FlexUp on an initial state DB0. Let

also U 0 � SU be the updates that have been committed within a time period t and (U1; : : : ; Un)

a permutation of the updates in U 0 ordered by their valid time. Then there exists a sequence

(R1; : : : ; Rn) where each Ri is a realization of the update Ui, such that the extensional database,

DB, at the end of period t, is Do(: : : Do(Do(DB0; R1); R2) : : : Rn).

This last theorem shows that the set of updates U 0 can be given in any order but when they

commit their e�ect is as if they were given in their valid time order. The theorem also shows

that at any time the set of committed updates satis�es the atomicity property, in the sense that

each committed update has in e�ect been completely realized ( by one of its realizations) on the

initial database.

The above results can be put together to give the following corollary that characterises

uniquely the extensional database at any time.



Corollary 3.5 Let SU be a sequence of updates submitted to FlexUp on an initial database DB0.

Let also U 0 � SU be the updates that have been committed within a time period t and (U1; : : : ; Un)

a permutation of the updates in U 0 ordered by their valid time. The extensional database DB,

at the end of the period t is equal to Do(: : : Do(Do(DB0;DP (U1)); DP (U2)) : : : DP (Un)), where

DP (Ui) is the deterministic part of the update Ui.

Hence, FlexUp simulates, for the committed updates, an ideal supply of information.

Finally, we note that when information arrives at the database in an ideal way so that all the

updates can commit under the standard update model, FlexUp will exhibit the same behaviour.

For example, if all the updates arrive in their valid time order and are all consistent (but not

deterministic) then all updates committed under the standard model will also commit under

FlexUp.

4 Concluding remarks

In this paper we introduced the FlexUp model that supports non-deterministic and non-chronological

updates. FlexUp resolves update ambiguities and assimilates information in non-chronological

order. We showed that FlexUp has the following properties: (a) It does not make any arbitrary

choices in its resolution of non-determinism. (b) It assimilates information about changes in the

world while respecting the chronological order of these changes. (c) When the update requests

are chronological it performs as well as the standard model. (d) It satis�es ACID-like properties.

We emphasise that FlexUp is a conservative extension of the standard update model: we have

used a very simple temporal reasoning model to transfer information from one update to another.

In part, this model was motivated by the desire to stay close to traditional transaction systems.

But the main reason for its simplicity is the pragmatic need for the high-level of reliability and

accuracy of the information that is held by a database: in practice, we can not have a recovery

mechanism from incorrect data that has been extracted from the database and acted upon. Our

work has shown that even with such simple temporal reasoning mechanisms it is a non-trivial task

to de�ne a suitable update model with the desired database properties. Further study is needed

to understand how more advanced forms of temporal reasoning, that would allow a more general

form of exchange of information between updates at di�erent valid times can be incorporated

in the update model allowing the same degree of reliability. The non-monotonic nature of such

frameworks often leads to the need of belief revison that may not be possible in the pragmatic

context of databases and hence these frameworks will need to be specially adapted and re�ned

for their use in database evolution.
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Abstract

Normal proof procedures in abductive logic programming assume that

a given program does not change until the proof is completed. However,

while a proof is being constructed, new knowledge which a�ects the proof

might be acquired. This paper addresses two important issues: 1. How is it

con�rmed that the proof being constructed is not a�ected by the addition

of a clause? 2. If a�ected, how are the invalid parts of the proof restored?

The abductive proof procedure used in this paper is Kakas and Mancar-

ella's procedure and is extended to prepare for proof checking and proof

restoration. It is shown that any invalid part of a proof can be restored

if some additional goals are solved. These additional goals can be added

before a proof is completed.

Keywords: Abduction, Logic Programming, Knowledge Acquisition.

1 Introduction

In most literature on logic programming, the design of a proof procedure does

not take into account the dynamic nature of a program. If this kind of proof

procedure is used, every time the program is revised and changed, the goal has

to be proved again under the new program. However, it is easy to imagine that

if the program is changed only a little bit, the old proof is still valid in a lot of

cases.

The purpose of this project is to reuse the same proof unless it becomes invalid

and to change only limited parts of the proof if the proof becomes invalid. Indeed
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in a lot of cases, it takes time to make a proof. When a whole proof or a part

of a proof needs to be constructed within limited time, it is not a good idea to

make a brand new proof from the beginning every time programs are corrected.

Consider planning in robotics. Suppose that a robot is always gathering

information through its sensors and that the database of the robot is always

changing.

Suppose that the robot starts constructing a plan at time, say, 10:00:00 and

�nishes at 10:01:15. If the plan is made based only on the information at 10:00:00,

it is impossible to say that the plan is still valid at 10:01:15 because the database

might be updated between 10:00:00 and 10:01:15. This means that the robot is

not sensing the outer world while making the plan. (Even if the robot senses the

outer world, it is not using new information during that time.)

For this reason, some criteria are needed by which to con�rm that the plan is

still valid after updating the database. Also it is essential to reuse some parts of

the plan to avoid reconstructing a brand new plan and save time.

In partial order planning, causal links or protected links are used for replanning.

(See standard textbooks such as [20].) In this paper, a more general theory which

can be applied to any proof in abductive logic programming will be introduced.

Of course, it is assumed that the contents of the databases (or programs) being

used are updated as the time goes on.

The proof procedure discussed in the present paper is for abductive logic

programming. The abductive proof procedure adopted in this paper is based

on the Eshghi-Kowalski (E-K) procedure [4] and the Kakas-Mancarella (K-M)

procedure [11, 12]. The E-K procedure is an extension of SLD resolution and the

K-M procedure is an extension of the E-K procedure.

The rest of the paper is organised as follows. In Section 2, abductive logic

programming is introduced briey. In Section 3, the K-M procedure is introduced.

The procedure is extended to prepare for the expansion of the program. Based on

the additional information which is obtained by the extended K-M procedure, a

proof restoration procedure is introduced in Section 4 which is the most important

section. This proof restoration procedure can also check the validity of a proof.

After showing a result of experiments in Section 5 and the related works are

discussed in Section 6, the conclusion is discussed in Section 7.

2 Abductive Logic Programming

Before de�ning an abductive framework, some basic words are de�ned. It is

assumed that the readers of this paper are familiar with the concepts of logic

programming.

In this paper, variables are expressed by letters and numerals starting with

an upper case letter. Constants, predicate symbols, and function symbols are

expressed by letters and numerals starting with a lower case letter. Intuitively,
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the negation not is so called negation as failure but it is not, strictly speaking, in

the sense that negative literals are treated as hypotheses.

De�nition 2.1 A literal is either a positive literal or a negative literal. A pos-

itive literal is an atom. A negative literal is of the form not P where P is

an atom. The contrary of a positive literal P is the negative literal not P . The

contrary of a negative literal not P is the positive literal P . The contrary of a

literal L is expressed as L�.

De�nition 2.2 A clause is of the form L( L1; :::; Ln where L is an atom and

L1; :::; Ln are literals. The clause L( can be expressed as L.

Note that ( is used only for clauses of logic programs and  refers to the

implication of classical logic.

De�nition 2.3 An abductive framework1 is a tuple hP;Abi, where P is a

program, a set of clauses and Ab is a set of abducibles, a set of literals, such

that P does not include a clause of the form L ( L1; :::; Ln such that L is an

element of Ab. An abducible is a positive abducible if it is a positive literal.

An abducible is a negative abducible if it is a negative literal.

To avoid transforming the negative literal not p to the positive literal neg(p)

which is called a non-base abducible in [11], all negative literals whose atoms

are mentioned in P or Ab are normally regarded as abducibles unless otherwise

mentioned.

As far as the semantics of the procedure in the present paper is concerned, the

completion semantics is used. The completion of the program P and abducibles

Ab is de�ned as follows.

De�nition 2.4 Given a program P and a set of literals Ab (abducibles), comp(P;

Ab) is the least set such that for any positive literal q which is not in Ab,

� all the clauses in P de�ning q are:

q ( L1;1; :::; L1;n1 ... q ( Lm;1; :::; Lm;nm

if and only if

� comp(P;Ab) includes:

q $ (L1;1 ^ ::: ^ L1;n1) _ ::: _ (Lm;1 ^ ::: ^ Lm;nm)

1Integrity constraints are not included for simplicity.
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3 An Abductive Proof Procedure

In this section, the abductive proof procedure based on the procedure introduced

by Kakas and Mancarella [11, 12] is introduced. The Kakas-Mancarella (K-M)

proof procedure is an extension of the Eshghi-Kowalski (E-K) proof procedure

[4] which simulates SLDNF by abduction. The E-K procedure is an extension of

SLD resolution.

In the original de�nition, an abductive derivation and a consistency derivation

are de�ned separately. In the following de�nition, however, they are de�ned as

a single derivation. Although the following de�nition is the same as the original

de�nition in essence, a new set called defending set is used to prepare for the

expansion of the given program. Recording additional information in a defending

set does not a�ect the proof procedure at all. Therefore, the following proof

procedure works in the same way as the original one.

De�nition 3.1 The resolvent of the set of literals fP; L1; :::; Lng on P by the

clause P ( Ln+1; :::; Lm is the set of literals fL1; :::; Lmg.

De�nition 3.2 A goal is either of the form (pos; Ls) where Ls is a set of literals,

or of the form (neg; Cs) where Cs is a set of sets of literals.

Intuitively, (pos; fL1; :::; Lng) means that the goal is to prove L1 ^ ::: ^ Ln

and (neg; ffL1;1; :::; L1;n1g; :::; fLm;1; :::; Lm;nmgg) means that the goal is to prove

:(L1;1 ^ ::: ^ L1;n1) ^ ::: ^ :(Lm;1 ^ ::: ^ Lm;nm).

De�nition 3.3 A goal list is of the form [G1; :::; Gn] where G1; :::; Gn (n � 0)

are goals.

Intuitively, the goals are proved in this order. (i.e. from G1 to Gn) Note that

[] is one of goal lists.

De�nition 3.4 A defending set is a set whose elements are of the form (L; Ls)

where L is a literal and Ls is a set of literals.

Intuitively, the element of a defending set (L; Ls) means that the set of literals

fLg [ Ls (which means that  L ^ Ls has to be proved) and the positive literal

L(2 fLg[Ls) were selected when the consistency derivation rule c1 was applied.

(The consistency derivation rules will be de�ned soon.) The procedure tried to

prove that L does not hold and if L is proved to be true, one of the literals in LS

has to be proved to be false. Therefore, when a clause de�ning L is added to the

program, the defending sets have to be checked.

De�nition 3.5 A goal set is of the form (GL;�; R) where GL is a goal list, �

is a set of literals (abducibles), and R is a defending set2.

2In [7], a set of defending sets is called Reject and R is used often to refer to a set of

defending sets.
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The goal set (GL;�; R) means that all the goals in GL have to be proved with

the abducibles in � assumed to be true. R will be used to restore the correctness

when a clause is added to the program.

De�nition 3.6 A derivation from (G1, �1, R1) to (Gn, �n, Rn) under the

abductive framework hP;Abi is a sequence of goal sets:

(GL1;�1; R1); :::; (GLn;�n; Rn)

such that for each i(1 � i � n � 1), GLi is of the form [Fi;1; :::; Fi;xi] (xi >

0), if Fi;1 is of the form (pos; fL1; :::; Lkg) (k > 0) and Lu(2 fL1; :::; Lkg) is

selected, then (GLi+1;�i+1; Ri+1) is obtained by one of the following abductive

derivation rules,

a1 If Lu is not an abducible in Ab and a clause in P whose head is Lu is chosen,

then �i+1 = �i, Ri+1 = Ri, and GLi+1 = [(pos; Ls); Fi;2; :::; Fi;xi] where

Ls is the resolvent of fL1; :::; Lkg on Lu by the chosen clause.

a2 If Lu is an abducible in Ab and Lu 2 �i, then �i+1 = �i, Ri+1 = Ri, and

GLi+1 = [(pos; Ls); Fi;2; :::; Fi;xi] where Ls = fL1; :::; Lu�1; Lu+1; :::; Lkg.

a3 If Lu is a positive abducible in Ab, Lu 62 �i, and not Lu 62 �i, then �i+1 =

fLug [ �i, Ri+1 = Ri, and GLi+1 = [(pos; Ls); Fi;2; Fi;3; :::; Fi;xi] where

Ls = fL1; :::; Lu�1; Lu+1; :::; Lkg.

a4 If Lu is a negative abducible in Ab, Lu 62 �i, and L�u 62 �i, then �i+1 =

fLug [ �i, Ri+1 = Ri, and GLi+1 = [(neg; ffL�ugg); (pos; Ls); Fi;2; Fi;3;

:::; Fi;xi] where Ls = fL1; :::; Lu�1; Lu+1; :::; Lkg.

else if Fi;1 is of the form (neg; fC1; :::; Ckg) (k > 0), Cv(2 fC1; :::; Ckg) is

selected, Cv is of the form fLv;1; :::; Lv;yg (y > 0), and Lv;l(2 fLv;1; :::; Lv;yg)
is selected, then (GLi+1, �i+1, Ri+1) is obtained by one of the following consis-

tency derivation rules,

c1 If Lv;l is not an abducible in Ab, then �i+1 = �i, Ri+1 = f(Lv;l; fLv;1;

:::; Lv;l�1; Lv;l+1; :::; Lv;yg)g [ Ri, and GLi+1 = [(neg; Cs [ fC1; :::; Cv�1;

Cv+1; :::; Ckg); Fi;2; Fi;3; :::; Fi;xi] where Cs is the set3 of all the resolvents

of Cv each of which is obtained by resolving Cv on Lv;l by a clause in P .

c2 If Lv;l is an abducible in Ab and Lv;l 2 �i, then �i+1 = �i, Ri+1 = Ri, and

GLi+1 = [(neg; fC1; :::; Cv�1; Cv n fLv;lg; Cv+1; :::; Ckg); Fi;2; Fi;3; :::; Fi;xi].

c3 If Lv;l is an abducible in Ab and L�v;l 2 �i, then �i+1 = �i, Ri+1 = Ri, and

GLi+1 = [(neg; fC1; :::; Cv�1; Cv+1; :::; Ckg); Fi;2; Fi;3; :::; Fi;xi].

3This can be an empty set.
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c4 If Lv;l is a positive abducible in Ab, Lv;l 62 �i,and not Lv;l 62 �i, then �i+1 =

fnot Lv;lg [ �i, Ri+1 = Ri, and GLi+1 = [(neg; fC1; :::; Cv�1; Cv+1; :::;

Ckg); Fi;2; Fi;3; :::; Fi;xi].

c5 If Lv;l is a negative abducible in Ab, Lv;l 62 �i,and L�v;l 62 �i, then �i+1 =

�i, Ri+1 = Ri, and GLi+1 = [(pos; fL�v;lg); (neg; fC1; :::; Cv�1; Cv+1; :::;

Ckg); Fi;2; Fi;3; :::; Fi;xi].

and else if Fi;1 is of the form (X; �), where X is either pos or neg, then (GLi+1;

�i+1; Ri+1) is obtained by the following controlling derivation rule.

cdr �i+1 = �i, Ri+1 = Ri, GLi+1 = [Fi;2; :::; Fi;xi]

From a derivation, it is possible to trace the proof construction. Abductive

derivation rules try to prove that the selected literal is true. Consistency deriva-

tion rules try to prove that the selected literal is false or at least one literal in

the selected set of literals is false.

For safety reason, in the predicate case, it is prohibited to select a nonground

abducible when one of the rules [a2], ..., [a4], [c2], ..., [c5] is applied. This

restriction prevents so called \oundering". Note that even if the selected (non-

abducible) literal is not ground, [a1] and [c1] can be applied by using uni�cation.

De�nition 3.7 A derivation from ([(pos; fL1; :::; Lng)]; �; �) to ([];�m; Rm) un-

der the abductive framework hP;Abi is a (complete) proof for L1:::Ln under

the abductive framework hP;Abi

De�nition 3.8 A derivation from ([(pos; fL1; :::; Lng)]; �; �) to (GLm;�m; Rm)

under the abductive framework hP;Abi is an incomplete proof for L1:::Ln under

the abductive framework hP;Abi.

Note that complete proofs are the limiting case of incomplete proofs.

Example 3.1 Consider the following program where negative literals, ab(V ),

and super(W ) are abducibles.

clause 1: fly(X)( bird(X); not ab(X)

clause 2: fly(penguin)( super(penguin)

clause 3: bird(penguin)

A proof for not fly(penguin) is as follows.

ab 1 ?not fly(penguin)

co 1.1 ?ffly(penguin)g (not fly(penguin) 2 �)

co 1.2 ?fbird(penguin); not ab(penguin)g; fsuper(penguin)g

((fly(penguin); �) 2 R)
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co 1.3 ?fnot ab(penguin)g; fsuper(penguin)g

((bird(penguin); fnot ab(penguin)g) 2 R)

ab 1.3.1 ?ab(penguin)

ab 1.3.2 success (ab(penguin) 2 �)

co 1.4 ?fsuper(penguin)g

co 1.5 failure (not super(penguin) 2 �)

ab 2 success

4 Clause Assimilation and Proof Restoration

When or after a proof is constructed by the abductive proof procedure shown in

the previous section, if a new clause is added to the given program, the validity of

the complete or incomplete proof is no longer guaranteed. However, by proving

additional goals, the validity of the proof can be restored.

De�nition 4.1 An added goal by checking the clause L ( L1; :::; Ln and the

set of defending sets R is a set of literals of the form fL1; :::; Lmg such that

(L; fLn+1; :::; Lmg) 2 R.

Theorem 4.1 For any incomplete proof for L1; :::; Lk from ([(pos; fL1; :::; Lkg)];
�; �) to ([Ft;1; :::; Ft;n]; �t; Rt) under the abductive framework hP;Abi and for any

clause C which does not de�ne an atom in Ab, if there exists a derivation from

([(neg; AGs); Ft;1; :::; Ft;n]; �t; Rt) to ([];�s; Rs) under the abductive framework

hP [ fCg; Abi, where AGs is the set4 of all the added goals by checking C and

Rt, then comp(P [ fCg; Ab) [�s j= fL1; :::; Lkg.

Proof5: The only derivation rule which might be a�ected by the

addition of a clause to a program is the consistency derivation rule

c1. The application of c1 is a�ected by the addition of a clause to a

program if and only if the clause de�nes an atom which was selected

when c1 was applied.

Suppose that the set of literals fP;Q1; :::; Qng was selected and the

literal P was selected from the set when c1 was applied. After the

application of c1, fP;Q1; :::; Qng was replaced with the set of all the

resolvents each of which is a resolvent of fP;Q1; :::; Qng on P by a

clause in the program. This information is recorded in Rt because

(P; fQ1; :::; Qng) 2 Rt If a clause of the form P ( Qn+1; :::; Qm is

4This set is empty if the given (incomplete) proof is not a�ected by the assimilation of the

clause.
5More precise proof is in the full paper.
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added to the program, the only thing which has to be done is to prove

the goal (neg; ffQ1; :::; Qmgg). This is done by adding (neg; AGs) to

the goal list.

Example 4.1 Consider the following program where negative literals are ab-

ducibles.

clause 1: innocent(X)( not guilty(X)

clause 2: guilty(X)( law(L); against(X;L)

clause 3: law(eu)

clause 4: law(uk)

clause 5: against(a; japan)

A proof for innocent(a) is shown below.

ab 1 ?innocent(a)

ab 2 ?not guilty(a)

co 2.1 ?fguilty(a)g (not guilty(a) 2 �)

co 2.2 ?flaw(L); against(a; L)g ((guilty(a); �) 2 R)

co 2.3 ?fagainst(a; eu)g; fagainst(a; uk)g
((law(L); fagainst(a; L)g) 2 R)

co 2.4 ?fagainst(a; uk)g ((against(a; eu); �) 2 R)

co 2.5 failure ((against(a; uk); �) 2 R)

ab 3 success

If law(un) is added to the program after co 2.3 is derived, this proof becomes

invalid and this invalidity is detected because law(L) is recorded in R. The proof

is restored by proving  against(a; un) under the updated program.

If law(japan) is added to the program after co 2.3 is derived, this proof

becomes invalid and this invalidity is detected because law(L) is recorded in R.

This proof cannot be restored because  against(a; japan) cannot be proved.

5 Experiments

In the case of depth �rst search, as long as the added clause is not chosen when

applying the abductive derivation rule a1, it has been con�rmed by experiments

that the proof restoration method in Theorem 4.1 is generally faster than the

naive method which restarts constructing a proof from the beginning when the

program is updated. This is due to the fact that the procedure in the present

paper has pruned some branches of the search tree when the naive method restarts
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constructing a proof from scratch. The proof restoration method in the present

paper just adds additional branches which a�ects the validity of proofs. The

exceptional case is the case where it takes little time before a clause is added to

the program. In this case, our procedure is nearly the same as the naive method

as far as the time to construct a proof is concerned. One of the results of the

experiments is shown below.

Example 5.1 Consider the following program in Prolog.

cl(hold(F,Tnext), [given+(F,T)]):-Tnext>0, T is Tnext-1.

cl(hold(F,Tnext), [hold(F,T), not(broken(F,Tnext))]):-

Tnext>0, T is Tnext-1.

cl(broken(pos(F),Tnext), [given+(neg(F),T)]):-T is Tnext-1.

cl(broken(neg(F),Tnext), [given+(pos(F),T)]):-T is Tnext-1.

cl(given+(neg(alive),T), [do(shoot,T), hold(pos(loaded),T)]).

cl(given+(pos(loaded),T), [do(load,T)]).

cl(given+(pos(alive),0), []).

cl(given+(neg(loaded),0), []).

cl(do(load,1000), []).

cl(do(shoot,2000), []).

The compiler reads the above program and regards a clause of Prolog of the

form:

cl(A; [L1; :::; Ln]) : �C1; :::; Cm:

as the clause of an abductive logic program:

A( Lkm
1
; :::; Lkm

n

if C1; :::; Cm hold where for each i (1 � i � m), if Li is of the form not(F), Lkm
1

is not F , else if Li is of the form F, Lkm
1

is F . The only abducibles are negative

literals.

The program6 expresses so called the Yale Shooting Problem. At �rst (at time

0), the turkey is \alive" and the gun is not \loaded". The action \load" makes

the gun loaded. When the gun is \loaded", if someone \shoots" the turkey, the

turkey is not \alive" afterwards. The action \load" is taken at time 1000. The

action \shoot" is taken at time 2000.

given+(pos(F),T) means that F becomes true immediately after T and it

continues to be true, by default, until it becomes false. given+(neg(F),T) means

that F becomes false immediately after T and it continues to be false until it

becomes true.

The test query shown below is if the turkey is \not alive" at time 4000. This

query will succeed unless the program is changed.

6This program is made so that it takes a lot of time to construct a proof.
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? hold(neg(alive); 4000)

After applying (abductive or consistency or controlling) derivation rules 10000

times, the following clause7 is added to the abductive logic program.

given+(neg(loaded), T )( do(unload; T )

This does not a�ects the truth value of the query because \do(unload; T )"

does not hold for any T .

It took 856.116699 cpu-time8 for the naive method to answer the query while

our method answered in 579.649963 cpu-time. While the naive method applied

derivation rules 31992 times, our procedure applied derivation rules 22242 times.

6 Related Works

Truth maintenance (TM) systems have close relationships with the semantics

of abductive logic programming as is surveyed in [10]. The TM system records

what have been calculated and reuses them afterwards. Even if the database is

updated, only limited parts of the records are corrected. There are mainly two

TM systems, the justi�cation-based TM system (JTMS) [2] and the assumption-

based TM system (ATMS) [1], both of which are propositional logic. The JTMS

records only one set of assumptions whereas the ATMS records di�erent sets of

assumptions at one time. Although the ATMS cannot use negation in justi�-

cations which correspond to clauses in logic programming, the JTMS can use

negation corresponding to negation as failure. The relationships between the

JTMS and abductive logic programming are discussed in [3, 6, 12]. The relation-

ships between the ATMS and abductive logic programming are discussed in [18].

A proof procedure to compute generalised stable models was developed [21] us-

ing the JTMS. An abductive proof procedure for the ATMS was developed in [8].

Non-monotonic extensions of the ATMS were developed in [19, 9]. A Prolog-like

theorem prover for predicate SLD resolution based on the TM systems was devel-

oped in [22, 23]. None of the above TM systems allows updates of justi�cations

during the calculation.

A number of abductive planners [15, 17, 14, 25] use the cycle procedure [13]

to cope with dynamic environments. It is straightforward to combine the cycle

procedure with the procedure in the present paper. In [15, 17, 14], de�nitions of

predicates cannot be changed. Although the treatment of unde�ned predicates

is written in [15], the occurrences of \observation predicates" are restricted to

integrity constraints. In [25], when the invalidity of a plan is detected, the plan

is constructed from the beginning.

7This clause corresponds to \cl(given+(neg(loaded), T), [do(unload, T)])." in the

above Prolog program. This Prolog clause can be added by using the built-in predicate

\assert".
8The Prolog compiler used in this experiment is ECLiPSe.
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7 Conclusions and Future Works

In Section 4, it was shown that even if some parts of the complete or incomplete

proof become invalid, these invalidities can be detected and the validity can be

restored by proving added goals. The extended K-M procedure and the proof

restoration procedure have been tested using Prolog as is shown in Section 5. By

the experiments, it was found that when the K-M procedure spends long time

before a clause is added to the program, our procedure can save a lot of time

in the depth �rst search if the added clause is not chosen when the abductive

derivation rule a1 is applied.

Various planning algorithms [5, 16, 24] use abduction. As a future work, the

algorithm in the current paper will be applied to planning so that it can replan

e�ciently.
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Appendix

In this paper, the deletion of clauses from a program is not considered. However,

the deletion of clauses can be simulated by the addition as follows. The program

P is changed to P ! for this purpose.

De�nition 7.1 Given a set of clauses P , P ! is the least set of clauses such that

for each clause C in P :

a( L1; :::; Ln

P ! contains the clause C!:

a( L1; :::; Ln; not x

where x is a new atom called a deletion atom which does not occur in any other

clause in P !. C! is called the corresponding clause of C.

Similarly, the addition of a clause is as follows.

De�nition 7.2 Whenever a clause C:

a( L1; :::; Ln

where a; L1; :::; Ln mention none of the deletion atoms of clauses in P !, is added

to the program P , the clause C!:

a( L1; :::; Ln; not x

is added to P ! where x is a new atom called a deletion atom which does not

occur in any other clause in P !. C! is called the corresponding clause of C.

The deletion of a clause can be simulated by the addition of the deletion atom

of the corresponding clause.



42

De�nition 7.3 Whenever a clause C is removed from the program P , the clause

x is added to the program P ! where x is the deletion atom of the corresponding

clause of C.

Example 7.1 Consider the following program P .

clause 1: fly(X)( bird(X); not ab(X)

clause 2: fly(penguin)( super(penguin)

clause 3: bird(penguin)

P ! is as follows.

clause 1!: fly(X)( bird(X); not ab(X); not del1
clause 2!: fly(penguin)( super(penguin); not del2
clause 3!: bird(penguin)( not del3

None of del1, del2, del3 holds and all of not del1, not del2, not del3 hold. The

deletion of clause 2 from P is simulated by the addition of the clause del2 to P !.
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Abstract

Logic programming languages based on linear logic have been of recent interest, particularly

as such languages provide a logical basis for programs which execute within a dynamic environ-

ment. Most of these languages are implemented using standard resolution or backward-chaining

techniques. However, there are applications for which the use of forward-chaining techniques

within a dynamic environment are appropriate, such as genetic algorithms, active databases and

agent-based systems, and for which it is di�cult or impossible to specify an appropriate goal

in advance. In this paper we discuss the foundations for a forward-chaining approach (or in

logic programming parlance, a bottom-up approach) to the execution of linear logic programs,

which thus provides forward-chaining within a dynamic environment. In this way it is possible

not only to execute programs in a forward-chaining manner, but also to combine forward- and

backward-chaining execution. We describe and discuss the appropriate inference rules for such

a system, the formal results about such rules, the role of search strategies, and applications.

1 Introduction

In recent years there has been a signi�cant amount of interest in logic programming languages based

on linear logic [7], a logic designed with bounded resources in mind. Due to the resource-sensitive

nature of linear logic, such languages such as Lygon[8], Lolli[9], Forum[12], ACL[10], LC[19], and

LO[3] have been applied to concurrency, updates, knowledge representation, logical interpretations

of actions and graph search algorithms. These languages are generally implemented in a top-down

manner,1 using the standard techniques of resolution and uni�cation, in that given a program P and

a goal G, the key question is to determine whether or not P ` G, and hence computation proceeds

by decomposing G into a su�ciently simple form, and then applying resolution to generate a new

goal. The precise details of the computational method vary from system to system, depending on

1Here we use the term in the usual logic programming sense, in which top-down is synonymous with backward-

chaining. However, as proof trees are written upside-down by logic programmers, and the right way up by proof

theorists, such terms can be quite confusing. In this paper, we adhere to the logic programming usage, i.e. that

top-down execution refers to backward-chaining techniques, and bottom-up to forward-chaining ones.
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exactly what restrictions are placed on the formulae in P and G, and what search strategy is used.

However, these methods, apart from ACL, all generally use the \query-and-answer" paradigm, in

that a query (the goal) is posed to the program, and if the goal succeeds, then some kind of answer

information that has been calculated in the course of the proof is returned.

When compared with traditional logic programming languages such as Prolog, these languages

have the advantage of introducing dynamic behaviour within a logical framework. However, there

are some applications in which such backward-chaining techniques2 are not as natural as forward-

chaining ones3. For example, in [8] it is discussed how problems which involve rule-based changes

of state, such as the blocks world, bin-packing problems, or the Yale shooting problem, �t more

naturally into a paradigm in which the output of the computation is a multiset of formulae (i.e.

resources) rather than an answer substitution or something similar. The most natural outcome of

a bin-packing program is a representation of the �nal state of the bins, or for the blocks world, the

most natural outcome is a representation of the �nal state of the world. This approach to logic

programs is somewhat di�erent from the query-and-answer paradigm, in that there is no real notion

of success or failure, but rather a series of state changes which result in some particular outcome.

This approach is more akin with that of ACL; in our case, we are interested in the ability to mix

the paradigms together, and for the largest possible class of formulae.

The combination of forward-chaining and a dynamic environment provides a way for logic

programs to be reactive, i.e. able to take action depending on the circumstances found at the time,

rather than adhering to a predetermined plan. Applications such as genetic algorithms, active

databases and agent systems appear to �t naturally into this paradigm, as they generally do not

have a speci�c goal in mind, such as \move these blocks to that location" or \sell 10% of IBM

stock", but are more open-ended, such as requiring that the movement of blocks be managed to

minimise storage requirements, or that stock be bought and sold in order to maximise pro�ts. For

such applications it would seem that a bottom-up execution model would be appropriate. Clearly,

it will be useful to be able to combine both bottom-up and top-down execution, which may be

thought of as providing both reactivity and rationality within a dynamic environment, so that both

unplanned and planned actions may be performed. Similar observations have been made about

Mixlog [16], a system which uses aspects of linear logic to model both top-down and bottom-up

execution methods in the same computational framework. However, in our case we are interested

in allowing an interaction between both execution methods, rather than incorporating both into

the one computational mechanism as is done in Mixlog.

Hence the key technical question is then to �nd the appropriate computational framework

for bottom-up evaluation of linear logic programs. Unlike the situation for languages based on

classical logic, in which there is no internal notion of dynamics, the linear logic case involves

evaluating a program in a dynamic environment, and hence the program will generally change

during computation. Hence it is not so much a matter of converting implicit information into

explicit information (as, for example, happens in the well-known T!

P
construction [5]) as changing

the program itself to reect the outcomes of the computation.

One of the key di�erences between the top-down and bottom-up approaches is that backtracking

is used in the top-down paradigm to implement the \don't know" non-deterministic choices that

need to be made. In the bottom-up case, it is not clear that such action is appropriate, but there

does need to be some mechanism to cope with such choices. As we shall see, this comes down to

an appropriate choice of the result of evaluating the program.

In addition, it seems important to permit top-down execution where appropriate, as is done

2i.e. given A! B, conclude that to prove B it is su�cient to prove A
3i.e. given A! B, conclude that if A has been derived, then B can be derived.



in Mixlog and in deductive databases systems which use bottom-up execution, such as Aditi [18].

As we shall see, our framework allows signi�cant exibility in the balance between top-down and

bottom-up execution.

This paper is organised as follows. In Section 2 we give a brief introduction to linear logic, and

in Section 3 we discuss the appropriate form of the inference rules of the system and in particular

the role of the implication rule. In Section 4 we give a formal presentation of the inference rules

and informal discussion of their properties. Section 5 contains a discussion of transitivity issues

and Section 6 contains the formal soundness and completeness results. Section 7 presents the

possibilities for normalization of derivations in our system, and the following section has a brief

discussion of search strategies and applications. Finally we present our conclusions and possibilities

for further work in Section 9.

2 Linear Logic

Linear logic contains two forms of conjunction: one which is \cumulative", i.e. for which p
 p 6� p,

and one which is not, i.e. pNp � p. Roughly speaking, the former is what allows linear logic to deal

with resource issues, whilst the latter allows for these issues to be overlooked (or, more precisely,

for an \internal" choice to be made between the resources used), as, by default, each formula in

linear logic represents a resource which must be used exactly once.

Consider the following menu from a restaurant:

fruit or seafood (in season)

main course

all the chips you can eat

tea or co�ee

Note that the �rst choice, between fruit and seafood, is a classical disjunction; we know that

one or the other of these will be served, but we cannot predict which one, which may be thought

of as an \external" choice, in that someone else makes the decision. On the other hand, the choice

between tea and co�ee is an \internal" choice | the customer is free to choose which one shall be

served. Note the internal choice is a conjunction; in order to satisfy this, the restauranteur has to

be able to supply both tea and co�ee, and not just one of them. The chips course clearly involves a

potentially in�nite amount of resources, in that there is no limit on the amount of chips that the

customer may order. We represent this situation by pre�xing such formulae with a !. Note also

that the meal consists of four components, and hence we connect the components with 
. Hence

we have the following representation of the menu:

(fruit � seafood) 
 main 
 ! chips 
 (tea N coffee)

where we write � for the classical disjunction. Note that the use of ! makes it possible to recover

classical reasoning, as formulae beginning with ! with ? in a succedent behaves classically, in that

such formulae may used arbitrarily many times, including 0, rather than exactly once. Hence chips

corresponds to exactly one serving of chips, ! chips corresponds to an arbitrary number of servings

(including 0). In this way we may think of a formula !F in linear logic as representing an unbounded

resource, i.e. one that may be used as many times as we like. Thus classical logic may be seen

as a particular fragment of linear logic, in that there is a class of linear formulae which precisely

matches classical formulae.



Linear logic also contains a negation, which behaves in a manner reminiscent of classical nega-

tion. The negation of a formula F is written as F?. As there are two conjunctions, there are two

corresponding disjunctions, as well as a dual to ! denoted as ?. The following laws, reminiscent of

the de Morgan laws, all hold:

(F1 
 F2)
? � (F1)

?
O (F2)

?

(F1 O F2)
? � (F1)

? 
 (F2)
?

(F1 � F2)
? � (F1)

?
N (F2)

?

(F1 N F2)
? � (F1)

? � (F2)
?

Each of these four connectives also has a unit, which, for 
 and N are written as 1 and >, and

which may be thought of as generalisations of the boolean value true, and for O and � are written

as ? and 0, and which may be thought of as generalisations of the boolean value false.

There is far more to linear logic than can be discussed in this paper; for a more complete

introduction see the papers [7, 17, 15, 1], among others.

3 Specifying Bottom-up Computation

A bottom-up evaluation of a program involves producing a new program based on the old one.

Hence, unlike the top-down case, the notion of a goal is of minimal interest per se; the main

technical point is to determine how the new program is derived from the old. Hence we will denote

by P  P 0 the statement that P 0 can be derived in an appropriate manner from P . Naturally

 must respect soundness, i.e. that if P  P 0 then P ` 
P 0. The key point is then to �nd the

appropriate inference system for  .

It should be noted that another signi�cant di�erence from the top-down case is that whilst we

will be a given a program P to evaluate, there will (generally) be no speci�cation of P 0. Hence

the evaluation will be a forward-chaining one, and the rules for  will be in the style of Plotkin's

Structural Operational Semantics [13], in that given a rule such as

P  P 00

P  P 0 R

4 where P is known but P 0 is not, we will use the premise (and any appropriate sub-proofs) to

evaluate P to P 00, and then using the rule R we will then evaluate P to P 0. Hence we will generally

use the rules of the system below in such a way that P is known before the proof is attempted,

and, if the proof is successful, P 0 is calculated in the course of the proof.

In the top-down case, the root of the proof is P ` G, where both P and G are known, and

hence whatever calculations arise from the proof are in the form of witnesses for existentially

quanti�ed variables, or choices for disjunctive branches in the proof (and are hence dependent,

at least partially, on G). In the bottom-up case, the outcome of the computation is a multiset

of formulae (P 0), and this is dependent only on the original program P , and not on any other

formulae. Hence the bottom-up approach encompasses a di�erent computational paradigm that

the top-down approach.

One aspect of this di�erence may be found in the way that \unused" resources are treated.5

For example, we expect that p; q; p ( r  q; r; a top-down execution of the same program with

4Note that we assume, for simplicity, that R is a unary rule.
5Note that in linear logic, we do not have that p; q ` p, as the q has not been accounted for. We do, however, have

that p; q ` p
 q.



the goal q 
 r would succeed, but both of the goals r and q would fail. Hence in the bottom-up

case unused resources are not a source of failure, but are \added extras" in the outcome of the

computation.

It should be noted that the above form of rules is similar to the notion of conditional rewriting

systems, in that we may think of the above rule as stating that P can be re-written to P 0 under

the condition that the premise of the rule holds.

Our technical aim, then, is to �nd the appropriate rules for  . Clearly we want the evaluation

process to be complete, in that for some class of goal formulae, we have that there is a proof of

a goal G from the original program just in the case that there is a proof of G from the evaluated

program.

A natural starting point for this analysis is the rule of modus ponens. The linear form of this

rule may be stated as A;A( B ` B. An important point to note is that both A and A( B are

consumed by this process, and hence the linear form has a di�erent e�ect in the context of a proof

than the corresponding rule in either classical or intuitionistic logic. In particular, whilst the rule

looks the same, in the classical or intuitionistic case, the presence of the structural rules of weakening

and contraction mean that we can actually use a stronger form of the rule, i.e. A;A! B ` A^B.

Note that A ^ (A! B) � A ^B (in both classical and intuitionistic logics), and hence a bottom-

up execution process based on this rule will preserve equivalence. This strong property ensures

that such a process will never need to backtrack, as the preservation of equivalence ensures that

anything provable from the original program is provable from the evaluated one. Hence, the TP
construction [5] and similar constructions which are used to give semantics to logic programs may

be used without any consideration of either the order in which the rules of the program are used,

or the completeness of the evaluation mechanism.

In the linear case, the equivalence property does not hold. For example, the program p; p( q

will clearly evaluate to q, and whilst p; p( q ` q, it is clearly not the case that q ` p 
 (p( q).

As a result, we need to consider how we may achieve an appropriate completeness property for the

linear version.6

Note that the issue of completeness is complicated by the interaction between strictly linear

formulae and !. For example, consider the program p; !(p ( q). Note that p; !(p ( q) ` p and

p; !(p( q) ` q (but of course p; !(p( q) 6` p
 q). Hence we have that p; !(p( q) ` pN q, and so

completeness requires that p; !(p ( q)  p N q. Note that this is a way of integrating the choice

of whether or not to make use of a particular rule with a means of making the rewriting system

conuent.

Note also that we would want !p; !(p( q)  !q, rather than the weaker form !p; !(p( q) q.

One way to achieve this is to use the weaker form, but to have an explicit rule to achieve the

stronger one where possible. We will return to this point below.

Hence the main computational metaphor will be that given a program P containing a clause

G ( D, we wish to �nd P1; P2 such that P = P1 [ P2 [ fG ( Dg and P1 ` G so that we have

P1; P2; G( D  P2;D. The main focus is then on the appropriate form of the implication rule.

Note that we do not assume that D is atomic; as we shall see, this is a natural choice for bottom-up

evaluation, as well as being very useful for applications.

It should be noted that the rules for are similar to the notion of conditional rewriting systems,

in that we may think of the above rules as stating that P can be re-written to P 0 under the condition

that the premises hold.

One key technical issue is how to determine whether P1 ` G or not. Clearly this will generally

require right rules, such as in the program p; q; (p
q)( r, for which we require that p; q; (p
q)(

6As noted above, any reasonable evaluation should be sound, i.e. if P  P 0, then P ` 
P 0.



r  r. It is clear that in this case we have P2 = ;, P1 = fp; qg, and it is straightforward to show

that p; q ` p 
 q. However, we would expect the same result from the program D1;D2; G1 (

p;G2( q; (p
 q)( r where D1 ` G1 and D2 ` G2. Note that in this case the proofs of D1 ` G1

and D2 ` G2 may be arbitrarily large.

The question is then how we write the implication rule. One possibility is the one below.

P1 ` G

P1; P2; G( D  P2;D

However, this is not particularly satisfactory. This does not provide for any bottom-up eval-

uation of P1, and whilst we wish to retain the possibilities for interaction between top-down and

bottom-up computations, we also want to allow the possibility that our computations are as bottom-

up as possible. Hence we propose the rule below:

P1  P 0 P 0 ` G

P1; P2; G( D  P2;D
(

When compared to the rules of the linear sequent calculus, this rule corresponds to a particularly

localised form of the (L rule, which may be speci�ed as below:

P1 ` G;�1 P2;D ` �2

P1; P2; G( D ` �1;�2

( L

Clearly our rule corresponds to the case in which the body of the clause can be evaluated

without any external context (i.e. �1). As we shall see, this will require some restrictions on the

proofs (and hence classes of formulae) that we consider.

Note also the exibility of the ( rule when it comes to the balance between top-down and

bottom-up evaluation. For example, we may choose to maximally evaluate P1 before attempting

to prove P 0 ` G, and hence make the proof of P 0 ` G as simple as possible. On the other hand,

we may choose not to evaluate P1 at all, and hence choose P1 = P 0, and proceed in an entirely

top-down manner. Naturally, we may choose a more intermediate course, as well.

Another possibility for the implication rule is given below.

P  P 0 P1 ` G P2;D  P 00

P1; P2; G( D  P 00 (
0

This version of the rule encodes the transitivity of  into the rule, and as we shall see, (0 is

a derived rule of the system given below.

The rules for the other connectives which may appear in programs are generally straightforward

copies of those for the left rules in the linear sequent calculus. The most interesting one of these is

the rule for O. The rule in the sequent calculus is

�1; F1 ` �1 �2; F2 ` �2

�1;�2; F1 O F2 ` �1;�2

This suggests the following rule for  .

P1;D1  P 0
1

P2;D2  P 0
2

P1; P2;D1 OD2  (
P 0
1
)O (
P 0

2
)
O

Here we split the program, as indicated by the sequent calculus rule, evaluate each part sepa-

rately, and then combine the results.



Another point to note is that we do not require that the heads of clauses (i.e. the D in G( D)

be atomic. In some top-down systems, this assumption is made in order to simplify the goal-

reduction process, i.e. given a sequent P ` G, one wants to reduce G as much as possible, and

hopefully to a multiset of atomic formulae, before applying left rules, including the resolution rule

[14, 9]. There are some top-down systems in which the heads of clauses need not be atomic, such

as Forum and LO, in which there may be occurrences of O, but this still corresponds to a simple

method of determining the next goal. In the bottom-up case, the emphasis is more on �nding

connections within the program, and producing the appropriate results. This may involve the

derivation of atomic formulae, but there is no obvious reason for restricting clauses to contain only

atomic heads (or, for that matter, to any other subclass of de�nite formulae) . For example, in

a genetic algorithm application, it is often desirable to replace a pair of chromosomes with a new

pair; in this case, it is clearly more natural to express this change in the form (A
B)( (C 
D)

than in a fragment in which the right hand side of ( is restricted to atoms.

We need also to consider some extra properties, and hence rules, for our system. For example,

we would insist that the system be transitive, so that if P1  P2 and P2  P3, then P1  P3.

It may be possible to establish such a result by proving directly the appropriate properties of the

rules, but it seems appropriate to add the necessary rule to the system, and then consider how it

may be eliminated, in the manner of cut elimination [6]. In addition, we would expect that the

system would allow weakening in some global sense, in that if P1  P2, then P1; P3  P2; P3. This

suggests the following rules:

P1  P2 P2  P3

P1  P3

Cut
P1  P2

P1; P3  P2; P3

Weak

Note that these rules ensure that  is transitive and monotonic (essentially localising the

evaluation of program clauses). Note also that Cut corresponds to the cut rule in the linear

sequent calculus, and Weak to a particular form of weakening. As we shall see, these rules play an

important role in the system.

There are two other rules of note. As noted above, we will require that p; !(p ( q)  p N q.

In order to achieve this, it seems reasonable to allow a \backtrackable" choice to be made at some

point in the derivation, and then \collect" the di�erent choices together when necessary. Hence

if we �nd that P  P1 and P  P2, then we can conclude that P  (
P1) N (
P2). In e�ect

this allows us to choose to execute a particular branch when desired, and to draw together various

di�erent branches as required. Another way to think of this rule is that if P1  P2 and P3  P4

then it seems reasonable that (
P1) N (
P2)  (
P3) N (
P4). When P1 = P2, this is just

P1  (
P3)N (
P4), as (
P1)N (
P1) � (
P1). As noted above, it is this rule that addresses the

problem of conuence in the presence of \don't know" non-determinism.

The other rule of note is the one which deals with !. As noted above, we wish to have a means

of recovering the stronger conclusion where appropriate, such as determining that !p; !(p( q) !q

from !p; !(p( q) q. Hence we add an appropriate rule to the system, based on the corresponding

rule in the sequent calculus, and address the eliminability of this rule below.

Hence the main technical points are concerned with implication, and \meta-properties", such as

transitivity, conuence and the strength of the conclusions reached. The following section contains

a formal de�nition of the inference system.

4 Inference Rules

Below we present the inference rules for the system.



De�nition 1 A derivation tree is proof tree governed by the following rules:

P  P
Axiom

P1  P 0 P 0 ` G

P1; P2; G( D  P2;D
(

P;Di  P 0

P;D1 ND2  P 0
N

P1;D1  P 0
1

P2;D2  P 0
2

P1; P2;D1 OD2  (
P 0
1
)O (
P 0

2
)
O

P;D1;D2  P 0

P;D1 
D2  P 0



P;D  P 0

P; !D  P 0 !
P; !D; !D  P 0

P; !D  P 0 C!

P  P 0

P;1 P 0 1
P;D[t=x] P 0

P;8xD  P 0 8

P1  P2 P2  P3

P1  P3

Cut
P  P 0

P;Q P 0; Q
Weak

P  P1 : : : P  Pn
P  (
P1)N : : : N (
Pn)

collect
!P  P 0

!P  !P 0 !M

We will often use P  P 0 as a shorthand for the statement that P  P 0 has a derivation tree.

Note that for the right-hand premise of the ( rule, we assume that the standard rules of the

linear sequent calculus are used.

Note also that the following rule for implication is equivalent to the one above in the presence

of Weak:

P1  P 0 P 0 ` G

P1; G( D  D

Whilst this may appear to be a simpler form of the rule, we use the above form for ease of comparison

with the corresponding rule in the sequent calculus.

It is interesting to note that the ( rule is akin to a directed cut, in that P 0 does not appear

anywhere in the conclusion of the rule, but that there is a computational means of deriving P 0 from

P . Hence P 0 corresponds to an interpolant formula for P and G [4].

Note also that as written, the rules for  do not necessarily specify a bottom-up computation;

the generality of the ( rule means that the left-hand premise could be trivial. The bottom-up

interpretation comes from a derivation tree together with a particular execution strategy, such as

requiring that the P  P 0 premise of( be maximally evaluated. Such a strategy can be speci�ed

by a syntactic rule such as P 0 being required to be a multiset of formulae of a particular kind, or

by requiring that the proof of P ` G have a particular property, such as bounding the number of

right rules that can be used by the number of connectives in G.

Another consideration (foreshadowed above) is that the implication rule seems to require some

form of restriction. In particular, it seems necessary to insist that in the (L rule of the linear

sequent calculus, i.e.

�1 ` F1;�1 �2; F2 ` �2

�1;�2; F1 ( F2 ` �1;�2



we have that �1 = ;. This means that we can look entirely within the program to satisfy F1,

rather than having some external context (�1) make a contribution. The precise properties of this

rule are then clearly of interest. Hence we come to the de�nition below.

De�nition 2 Let � be a proof in the linear sequent calculus. We say � is (-localised if every

occurrence of the rule (L in � is of the form

�1 ` F1 �2; F2 ` �

�1;�2; F1( F2 ` �

Our particular interest is to determine an appropriate class of formulae for which (-localised

proofs are complete (i.e. a proof exists i� a (-localised proof exists). One way in which to obtain

such a result is to restrict our attention to intuitionistic linear logic, i.e. the fragment in which

every succedent contains at most one formula. However, this seems too drastic, especially as the

restriction only applies to one rule, rather than to all rules. In addition, it is possible to re-write

certain proofs which contain multiple formulae in succedents into(-localised proofs. Consider the

sequent pO q O r; r( s ` s; p; q which has a proof as below:

p ` p q ` q

pO q ` p; q
OL

r ` r

pO q O r ` r; p; q
OL

s ` s

pO q O r; r( s ` s; p; q
( L

Note that the occurrence of (L is not (-localised, as �1 = fp; qg, �2 = fsg. However, note

that there is an(-localised proof of this sequent, given below:

p ` p q ` q

pO q ` p; q
OL

r ` r s ` s
r; r( s ` s

( L

pO q O r; r( s ` p; q; s
OL

Note also that we have pO q O r; r( s pO q O s, as below:

pO q  pO q
r  r r ` r
r; r( s s (

pO q O r; r( s pO q O s
O

Hence it is possible to show by a permutation argument (sketched below) that (-localised

proofs are complete for goal formulae in which formulae of the form ?G and ? are absent. The

reason for this restriction is that if we allow the corresponding rules of the sequent calculus to

arbitrarily add formulae to the succedent, then we cannot be guaranteed to rearrange the left-hand

premise of the(L rule to be a singleton multiset. Consider for example the following proof:

q ` q

q `?p; q
W ?R

q `?p� r; q
�R

s ` s

q; (?p� r)( s ` s; q
( L

It should be clear that there can be no (-localised proof of this sequent. The problem is that

?p is needed for the construction of the formula in the endsequent, and that in order for this to

happen, we require the presence of q in the succedent of the left premise of (L. Note that when

considering proof-search which begins at the root of the proof, the W?R and ?R rules may be



thought of as reducing the number of formulae in the succedent. However, if we do not allow

such rules, then the only way in which a succedent which contains more than one formula can be

reduced to the succedent of an axiom (which must be a singleton) is for each occurrence of OR to

be matched by an occurrence of OL which reduces the size of the succedent.

To see an example of this, consider the provable sequent pO r; t O q; (pO (q 
 r))( s ` sO t

which has the following proof (which is not (-localised):

q ` q r ` r

r; q ` q 
 r

R

t ` t

r; tO q ` q 
 r; t
OL

p ` p

pO r; tO q ` p; q 
 r; t
OL

pO r; tO q ` pO (q 
 r); t
OR

s ` s

pO r; tO q; (pO (q 
 r))( s ` s; t
( L

pO r; tO q; (pO (q 
 r))( s ` sO t
OR

Note that the upper occurrence of OL can be permuted downwards past the(L rule, whereas

the lower occurrence of OL cannot be permuted past the occurrence of OR, as the formulae p and

q
 r are on di�erent branches of the occurrence of OL. Hence we can rearrange this proof into the

one below.

p ` p

r ` r q ` q

r; q ` q 
 r

R

pO r; q ` p; q 
 r
OL

pO r; q ` pO (q 
 r)
OR

s ` s

pO r; q; (pO (q 
 r))( s ` s
( L

t ` t

pO r; tO q; (pO (q 
 r))( s ` s; t
OL

pO r; tO q; (pO (q 
 r))( s ` sO t
OR

Note that this sequent has the following derivation in our system:

p p q; r  q; r

pO r; q  pO (q 
 r)
O

pO (q 
 r) ` pO (q 
 r)

pO r; q; (pO (q 
 r))( s s
(

t t

pO r; tO q; (pO (q 
 r))( s sO t
O

A formal statement of the correctness of this process is in Section 6.

5 Transitivity Rules

As mentioned above, we want  to be transitive and monotonic. However, it is not clear that Cut

and Weak are the only rules which will serve this purpose (although it should be clear that they

are reasonable choices). In addition, we would also expect some slightly stronger properties of  

to hold, in that we would expect both of the following rules to be admissible:

P1  P 0
1

P2  P 0
2

P1; P2  P 0
1
; P 0

2

Mix
P1  P2 P2; P  P3

P1; P  P3

ICut

Note that there is a counterpart to Mix in the classical sequent calculus, which is often used

to simplify proofs, such as cut elimination. Note also that ICut is similar to the version of the cut

rule used in the intuitionistic sequent calculus LJ.



It is easy to see that Cut is an instance of ICut, and that Weak is an instance of Mix (as

P  P ). Hence it is clear that the combination of Mix and ICut is at least as powerful as that of

Cut and Weak. Interestingly, the converse is also the case, in that Mix and ICut are derived rules

in the presence of Cut and Weak as below:

P1  P 0
1

P2  P 0
2

P1; P2  P 0
1
; P 0

2

Mix

P1  P 0
1

P1; P2  P 0
1
; P2

Weak
P2  P 0

2

P 0
1
; P2  P 0

1
; P 0

2

Weak

P1; P2  P 0
1
; P 0

2

Cut

P1  P2 P2; P3  P4

P1; P3  P4

ICut

P1  P2

P1; P3  P2; P3

Weak
P2; P3  P4

P1; P3  P4

Cut

Hence we get the result below.

Proposition 1 Cut + Weak � Mix + ICut

Hence the combination of Cut and Weak seems to be a good way to get simple, elegant rules

with the appropriate power. We would want both of these to be ultimately eliminable, however,

in order to simplify the process of �nding proofs. However, note that due to the forward-chaining

(or \rewriting") nature of the rules, any lack of eliminability is not as drastic as it may seem. For

example, with the Cut rule, given P1, it is possible to calculate P2 via the left premise, and once

P2 is known, it is possible to calculate P3 from the right premise. Hence, whilst eliminability is

desirable, a lack of it does not necessarily mean that the system is inherently intractable.

6 Results

In this section we give the formal results about  .

In what follows, we assume that implications are not allowed in goals. This is for reasons of

simplicity. For example, if at some stage in the derivation there was an occurrence of the implication

rule of the form

P1  P 0 P 0 ` D0
( G

P1; (D
0
( G)( D  D

then the proof of P 0 `( G could conclude with(R 7, making the premise P 0;D ` G. Clearly this

sequent is not problematic per se, but in a completeness proof based on an induction on the size

of the proof, this means that we can \push" the bottom-up behaviour into the right-hand premise

of the ( rule as well, in that as the proof of P 0;D ` G is necessarily shorter than that of the

endsequent, we can then deduce that 9P 00 such that P 0;D  P 00 and P 00 ` G. Note that whatever

the hypothesis implies about P 0;D ` G will also be true for P 00 ` G, and so we can recursively

apply the hypothesis all the way up the proof tree. This suggests the addition of the following rule

to the inference system:

P  P 0 P 0 ` G

P ` G

7In fact, as the(R rule is asynchronous (in the terminology of [2]) then the proof may be assumed to be of this

form.



Note that in this form, this rule is precisely a directed cut. This may be thought of as a

\top-down" conclusion from the premises P  P 0 and P 0 ` G, whereas the implication rule gives

P;G( D  D, which may be considered the corresponding \bottom-up" conclusion. However, a

full analysis and discussion of this point would take us beyond the scope of this paper, and so for

now we omit the possibility that goals may contain implications to simplify the discussion.

Hence we arrive at the class of formulae below.

De�nition 3 We de�ne the following classes of formulae:

Goal formulae: G ::= A j G
G j GOG j GNG j G�G j 1 j?j 8xG j 9xG j!G j?G

Strong goal formulae: G ::= A j G
G j GOG j GNG j G�G j 1 j 8xG j 9xG j!G

De�nite formulae: D ::= A j D 
D j D OD j D ND j 1 j?j 8xD j!D j G( D

where G is a goal formula.

Strong de�nite formulae are de�nite formulae in which all formulae of the form G ( D are

such that G is a strong goal formula.

In all cases above, A is an atomic formula.

De�nition 4 We de�ne the depth of a formula F as follows:
depth(A) = 0 where A is atomic

depth(|F ) = 1 + depth(F ) where | is a unary connective

depth(F1~F2) = 1 + max(depth(F1), depth(F2)) where ~ is a binary connective

We de�ne depth(F) = �F2Fdepth(F ).

Proposition 2 (Soundness) Let P be a multiset of de�nite formulae. Then if P  P 0 then

P ` 
P 0.

Corollary 1 Let P be a multiset of de�nite formulae and let G be a multiset of goal formulae.

Then if P  P 0 and P 0 ` G then P ` G.

Proof: By the above proposition, P ` 
P 0, and as 
P 0 ` G, we have that P ` G. �

The statement of a completeness result is more subtle. It is tempting to state the completeness of

 as follows: if P ` G then 9P 0 such that P  P 0 and P 0 ` G. However, this is trivially true, as

P  P . Hence the statement of completeness need to be somewhat more careful, and will depend

upon the precise execution properties desired. Below we present one version of completeness which

seems appropriate for a \maximally bottom-up" computation.

and

Proposition 3 (De�nite Completeness) Let P be a multiset of strong de�nite formulae and G

be a multiset of strong goal formulae. If P ` G has an (-localised proof, then there is a multiset

P 0 of D formulae such that P  P 0 and P 0 ` G where the number of right rules in the proof of

P 0 ` G is not more than depth(G).

It is clear that the amount of mandatory bottom-up evaluation is proportional to the degree

of freedom allowed in the proof of P 0 ` G; the greater the freedom, the more scope there is for



top-down evaluation. Hence strategies which are more intermediate than the strict bottom-up

approach will require an appropriate statement of the requirements for this proof.

Note that the restriction to strong de�nite formula is necessary, as the presence of contraction

on the right may violate the property about right rules and the depth of the succedent. Whilst

this may seem a little strong, the proposition below introduces another reason for restricting our

attention to this class of formula, as we require that weakening not be present in order to show the

completeness of (-localised proofs.

Proposition 4 Let P be a multiset of strong de�nite formulae and G be a multiset of strong goal

formulae. Then P ` G is provable i� P ` G has an (-localised proof.

Hence we have that  is complete for strong de�nite formulae. As noted above, there may be

other forms of completeness which are of interest, but the one given above seems appropriate for

bottom-up execution.

Note that in order to determine search strategies for our inference rules, we consider their

permutation properties, i.e. the ability to interchange adjacent rules without altering the overall

proof. Many of these follow immediately from the properties of the corresponding rules in the linear

sequent calculus [11]. Our interest is in the properties of the rules peculiar to our system, and in

particular the consequences of the permutation properties for the eliminability of Cut and Weak

(and for that matter, collect and !M) and the possibilities for normal forms for proofs.

A full analysis is beyond the scope of this paper, but we briey discuss these below. Our Cut

rule generally cannot be permuted upwards, but can always be permuted downwards, expect past

other occurrences of Cut. Hence the Cut rule is not eliminable, but we can limit its occurrences

to being closer to the endsequent than any other rule. As mentioned above, this does not mean

that our rules are inherently intractable, as it is possible to use P to calculate P 0. In fact, this may

be considered as an appropriate proof-theoretic characterization of the transitivity of  , in that

a derivation of P1  P2 can always be \supplemented" by the derivation of P2  P3 and hence

P1  P3, no matter how long or complicated the derivation of P1  P2 may be.

The Weak rule also cannot be generally eliminated. It is eliminable at the axioms, and permutes

upwards past all rules except O, collect and !M. Hence this suggests that the three rules O, collect

and !M should be modi�ed to incorporate the Weak rule. In such a modi�ed system, the Weak

rule is eliminable (note also that our form of the( rule e�ectively already has Weak encoded into

it). Note also that Weak is a more general rule than the corresponding one in the linear sequent

calculus, as the Weak rule does not place any restrictions on the formulae which may occur in the

rule. In this sense, and particularly given the impermutabilities of the Weak rule, our inference

system has some characteristics of a�ne logic, i.e. linear logic with arbitrary weakening rules added.

It is interesting to note that in a�ne logic, the weakening rules cannot always be permuted upwards,

akin to the lack of upward permutability of Weak past !M. In a computational sense, this indicates

when it is necessary to \localise" the current search.

The collect rule has the interesting property of permuting downwards past all rules except

Weak, and on the right-hand side of Cut. Hence in a system in which Weak is eliminable, collect

can always be permuted downwards, except past certain occurrences of Cut. This suggests that a

normal form would position the occurrences of collect immediately above the occurrences of Cut.

It should also be noted that the standard problems of contraction apply here, and hence so can

the standard solutions, such as requiring proofs not to contain occurrences of weakening immediately

above contraction where the two rules do not occur in permutation position, i.e. that there is a

formula introduced by the weakening rule which is eliminated by the contraction.



We also note that the permutation behaviour of Mix and ICut is signi�cantly more restrictive

than that of Cut and Weak, which acts as a post-fact justi�cation of our choice of the latter two

rules.

Using these observations, it is not hard to come up with an equivalent \normalized" system, in

which the above suggestions are incorporated, and in which:

� there are no occurrences of Weak.

� for each occurrence of Cut, the only rules between the Cut and the endsequent are other

occurrences of Cut.

� for each occurrence of collect, the only rules between the collect and the endsequent are other

occurrences of collect or Cut.

7 Computational Issues

As noted above, the normal form for proofs consists of an arbitrary number of occurrences of the

Cut rule at the root of the proof. From a computational point of view, this means that we may

arbitrarily extend any derivation of P1  P2 to P1  P3 provided that we can show that P2  P3,

and so that computation can continue whenever the appropriate reductions can be found. This

inde�niteness of termination is clearly appropriate for a forward-chaining application such as a

genetic algorithm, in which it is desirable to continue computation until a certain threshold is

reached.

The properties of the collect rule pose some interesting implementation issues. Clearly if it is

desired to determine all possible consequences of a particular set of circumstances (such as �nding

all possible states which would result from a particular setting of valves in a power plant), then

it will be necessary to have many occurrences of the collect rule, and hence a potentially large

number of di�erent computational branches. On the other hand, if the aim of the computation is

to �nd some appropriate �nal state (as distinct from all such possible states), such as an appropriate

serialisation of a set of banking transactions, then it may not be appropriate to use the collect rule

at all, as the entire set of possibilities does not need to be examined. Hence it would seem natural

to allow the user to explore the di�erent branches lazily (i.e. each branch is generated on demand)

rather than eagerly (i.e. all branches are evaluated in advance).

The issues concerning the other rules are fairly standard for the implementation of linear logic

programming languages, and hence will not be discussed here. One exception to this is the !M rule,

which, in this case, will function as a trigger of its own: whenever the formulae on the left of  

contain only formulae of the form !D, then \promote" the current outcome. As computation will

proceed by having P speci�ed in advance, it is straightforward to determine when this promotion

should occur. For example, given the program !D; !(G0
( D0), it should be clear that for any

P 0 such that !D; !(G0
( D0)  P 0, then !D; !(G0

( D0)  !P 0. Hence the !M rule could be

implemented as a ag of some sort, rather than as an explicit search rule per se.

There are some remaining sources of non-determinism, including the choice of the formula to be

used in rules such as(. An interesting observation that can be made is that there are some cases

in which a \breadth-�rst" approach would be desired. For example, in a genetic algorithm, the

use of aggregate functions (such as sum, count, maximum, minimum, etc.) implies that the use of

atoms must be breadth-�rst within a predicate; for example, the �tness of the overall is generally

required, and may be used as an input to the next step in the algorithm. Clearly then the data has

to be processed in a breadth-�rst manner to achieve this. On the other hand, in an application such



as an active database, a depth-�rst approach may be more appropriate, as it is generally important

to follow through on a particular course of action rather than allowing alternatives to be pursued.
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Abstract

Maintaining database consistency is one of the major applications of active databases.

One of the problems encountered in this case is the non termination of rules execution. Then,

the general solution is to undo the modi�cations and roll back to the initial database which

is assumed to be consistent. In this paper, we present an algorithm that generates update

rule programs from constraints expressions. The semantics of these rules is given by means

of a logic program model, namely the well founded model. The derived programs can serve

to maintain and restore database consistency. Maintaining database consistency assumes its

consistency before user updates are requested while restoring consistency does not consider

this hypothesis.

1 Introduction

Active databases use ECA rules (Event, Condition, Action) in order to specify which actions

must be triggered when some event and condition are met. Database integrity management

is one of the most prominent application �elds of active databases. The intuitive idea is that

whenever some violating updates arise, if integrity constraints are violated, then the system

must achieve some correcting actions in order to restore database consistency. A large amount

of research has been done in the integration of active rules in this area, see e.g. [CFPT94,

CW90, LML97, ST96, UD92]. We also refer to [AART97, DDS98, ALS95, MT98, TO95] among

works that have considered logic programming paradigm in the context of integrity constraints

management.

Ceri & Widom[CW90] consider integrity constraints (IC) expressed as SQL queries with

possibly aggregates. The derived rules from these IC guarantee database consistency whenever

rules execution terminates. Schewe & Thalheim [ST96] characterize a class of IC for which

there exists a program of active rules that restores database consistency without invalidating

users updates when it is possible, e.g. let p(a) ) q(a) be an IC and let � = ; be a database

instance where we want to insert p(a). This transition violates the IC. In order to restore

consistency either q(a) is inserted or p(a) is deleted. The �rst alternative preserves the e�ect

of the user transition, thus it is preferred. Inserting p(a) is in this spirit, a repairable transition

because there exists a consistent database state containing p(a). Notice that the transaction

yyAuthor's address: University of Antwerp (UIA). Departement Wiskund en Informatica. Universiteitplein 1.

B-2610 Antwerpen (Wilrijk). Belgium
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+p(a);�q(a) is not repairable. [ST96] does not address the problem of termination. Lud�ascher

et al [LML97, LM98] consider the particular case of referential IC's as those proposed in SQL92

standard. They give a translation of these IC's into logic programs and show that the well

founded semantics [vGRS91] may be used in order to maintain database consistency. They use

Statelog programs which are Datalog programs where predicates are augmented with a state

attribute that may contain the successor function +1. Because of this use of functions, the

programs in Statelog must deal with in�nite models. Among the works on the termination of

rules execution, we refer to [AWH92, BCP95] and the recent work [BDR98]

In this paper, we propose an algorithm that derives logic rules from declarative expression of

IC's. Although we use well founded semantics which is based on a three valued logic we show

that the models we obtain are always bi-valued. This paper is an extension of [BM97] where we

have considered incomplete databases.

Motivating example. Consider the following IC:

c1 � 8X : p(X)) q(X)

c2 � 8X : r(X)) :q(X)

and assume that we have the following update rules

�1 : p(X);:q(X) �! +q(X)

�2 : r(X); q(X) �! �q(X)

�1 maintains c1 and the second c2. If p(a) and p(b) are both inserted in the empty (coherent)

database, then the rules are �red in order to restore consistency. �1 is executed �rst then �2
becomes executable and after executing it, �1 becomes again executable. Thus, we enter a non

terminating rule execution. The generally adopted solution in this case, is to stop rules execution

and roll back to the initial state of the database, and since this state is a coherent one, so we

have a consistent �nal state.

In this paper, we try to avoid the consistency of the initial state hypothesis. Doing so, we

must �nd a way to associate active rules to IC's whose execution never enter non terminating

loops.

Paper organization. The �rst section introduces the concepts used throughout the paper.

Then, we propose an algorithm that generates a set of update rules from a set of IC's. We show

that these programs can maintain database consistency. Then, we re�ne the algorithm in order

to obtain rules that can maintain and restore database consistency.

The ability to restore database consistency is quite useful in a context where IC's can be

added during the life of the database.

2 Preliminaries

A database � is a set of facts. The constraints we consider in this paper are those that can be

expressed by denials. A denial is a rule of the form

p1( ~X1); : : : ; pm( ~Xm);:q1( ~Y1); : : : ;:qn( ~Yn) �! inc (1)
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This rule must be safe in a sense that variables appearing in negative literals must also appear

in a positive literal. inc is a 0-ary predicate, hence a denial can be seen as a boolean query. If C

is a set of such IC's, then a database � satis�es C i� �[C 6j= inc or equivalently, �[C j= :inc.

Now suppose that there exists c 2 C such that � j= body(C). This means that � is inconsis-
tent. To restore consistency, either we insert some tuples in the predicates qj or we delete some
ones from the predicates pi. Thus, from the denial (1), we may derive one rule among the m+n
rules of the form

p1( ~X1); : : : ; pi�1( ~Xi�1); pi+1( ~Xi+1); : : : ; pm( ~Xm);:q1( ~Y1); : : : ;:qn( ~Yn) �! �p
i
( ~Xi)

or

p1( ~X1); : : : ; pm( ~Xm);:q1( ~Y1); : : : ;:qj�1( ~Yj�1);:pj+1( ~Xj+1); : : ::qn( ~Yn) �! +q
j
( ~Yj)

Example 1 Let us consider the referential IC:

employee(X;Y );:dept(Y ) �! inc

From this denial, we can derive two update rules

employee(X;Y ) �! +dept(Y )or:dept(Y ) �! �employee(X;Y )

Notice that the second rule is not safe nor range restricted; Y and X do not appear in any

positive literal in the body of the rule. But this is not a problem since we consider active

domain semantics [AHV95]. The problem of domain independence of update rules has been

addressed in [BM97]. 2

The example above shows how we can derive update rules from denials. We don't give this

straightforward algorithm here. The interested reader may �nd the details in [BM97] where we

considered a more general class of IC's.

Now, we recall some basic de�nitions we use throughout the paper. We consider a set

P of normal (base) predicates and SP the set of signed or update predicates such that p 2

P ) f+p;�pg � SP . The de�nitions of facts, atoms and literals are the classical ones [CGT90].

Lit(P ) (resp. Lit(SP )) is the set of literals obtained by using the predicates in P (resp. SP ). An

update rule � is a Datalog rule where head(�) is an atom in Lit(SP ) and body(�)\Lit(SP ) = ;.

An update program is a set of update rules. A partial interpretation I is a set of ground literals

such that, if pos(I) and neg(I) are respectively the set of positive and negative literals of I, and

if ::neg(I) = fp : :p 2 neg(I)g, then pos(I) \ ::neg(I) = ;. Let A be a set of atoms, then I

is total with respect to A if for all p 2 A, fp;:pg \ I 6= ;. I is conicting if there exists p such

that f+p;�pg � I.

De�nition 1 (Entailment) I entails a ground positive literal p (denoted I j= p) if I �

fp;:�pg or I � f+pg. Conversely, I j= :p i� I � f:p;:+pg or I � f�pg. I satis�es a

ground rule � (I j= �) i� whenever I j= body(�), then Head(�) 2 I. Inst(P) is the set of all

ground rules obtained from the program P by replacing all variables by the constants appearing

in P. I is a model of P if I satis�es every rule in Inst(P).

2
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De�nition 2 (Update) An update � is a set of ground update literals. A user update is a

non conicting set of ground update atoms.

2

De�nition 3 (Operator T ) Let I be an interpretation and P an update program.

� T2P (I) = fhead(�) : � 2 inst(P) and I j= body(�)g.

� NFP(I) = f` : 8� 2 inst(P); head(�) = `) I j= :body(�)g.

The operator T is de�ned by the composition of these two operators:

TP(I) = I [ T 2
P (I) [ ::NFP(I)

2

It is easy to see that T is monotone, so the sequence (T n
P )n�0 de�ned by

T 0

P (I) = I

T n
P (I) = T n�1

P (I)

admits a limit. This limit is called the update model of P and is denoted by MI(P) or simply

by M(P) when I is understood.

Intuitively, the update process can be described as follows: given a user update �, an initial

database �, and an update program P:

1. The application of � gives a new state (set of facts) �user,

2. compute the update model M�user
(P). This contains a set of update literals which we

call \derived updates", then

3. the application of the derived updates to �user gives a new database �final.

Formally, consider �, a user update � and a program P.

� �user = � [ fp j+p 2 �g � fp j �p 2 �g.

� Let H be the herbrand base of P. Then, Apply(�;�;P) = �final where

{ if M�user
(P) is total wrt H and not conicting then �final = f�user [ fp j +p 2

M�user
(P)g n fp j �p 2M�user

(P)g,

{ otherwise �final = �.

Example 2 Let � = fr; sg; � = f+p;+qg and P be the program

p; r �! �s

q; s �! �r

�user = fp; q; r; sg and it is embedded into P by adding the rules

�! p; �! q

�! r; �! s
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Let's call the new program by Puser. Now, let us compute the update model

T2Puser
(;) = fp; q; r; sg

NFPuser
(;) = f:�p;:�q;:+p;:+q;:+r;:+sg

I1 = T2Puser
(;)
S
NFPuser

(;)

T2Puser
(I1) = fp; q; r; sg

NFPuser
(I1) = f:�p;:�q;:+p;:+q;:+r;:+sg

I2 = I1

I2 is the �xpoint thus it is the update model. It is not total because both �s and �r are

\unknown". So �final = �. One should notice that for example, even if +p does not appear in

Puser, it is considered as being in the herbrand base. indeed, as soon as p, +p or �p appears in

Puser, fp;+p;�pg is in the \extended herbrand base" of Puser.

2

The following proposition characterizes the cases where the derived rules from IC's can

maintain database consistency.

Proposition 1 Let C be a set of constraints and PC its associated update program. Then, for

each user update � and initial database �, ifM is total and not conicting then Apply(�;�;PC)

is consistent.

2

From the de�nition of Apply, ifM is not total or is conicting then Apply(�;�;PC) = �. Thus,

if � is not initially consistent, we end up with a non consistent database. So, PC can maintain

database consistency but in some cases, it cannot restore it.

The fact that the update model of P can be not total is due to the presence of negative

cycles in the dependency graph of the program �P de�ned below.

De�nition 4 Let P be an update program. �P is the program obtained from P by:

1. if head(�) = +p(X) then add :�p(X) into body(�),

2. if head(�) = �p(X) then add :+p(X) into body(�),

3. replace each p(X) 2 body(�) by (p(X) ^ :�p(X)) _+p(X), and

4. replace each :p(X) 2 body(�) by (:p(X) ^ :+p(X)) _ �p(X). 2

Lemma 1 If �P is strati�ed, then 8�;� : M�user
(P) is total and not conicting.

2

In fact, we can distinguish between two kinds of negative cycles: negatively recursive pro-

grams (NR) and potentially conicting (PC) programs. NR programs are those containing

negative cycles after transformations 3. and 4. in the de�nition above. PC programs are those

containing negative cycles after transformations 1. and 2. These are illustrated by the following

examples:
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Example 3 Let us consider the following sets of IC's:

C1 =

�
p;:q �! inc

r; q �! inc

�
and C2 =

�
r; p; q �! inc

:s; q; p �! inc

�

We �rst derive respectively PC1 and PC2 such that:

PC1 =

�
p �! +q

r �! �q

�
et PC2 =

�
r; p �! �q

:s; q �! �p

�

PC1 is a PC program; let P1 be the program obtained from PC1 after transformations 1 and 2.

P1 contains a cycle where +q depends on :�q and �q depends on :+q.

PC2 is a NR program because the program P2 obtained from PC2 after transformations 3 and 4

presents a negative cycle where �q depends on :�p and �p depends on :�q.

P1 =

�
p;:�q �! +q

r;:+q �! �q

�
and P2 =

8>>>>>>>>>><
>>>>>>>>>>:

r;:�r; p;:�p �! �q

+r; p;:�p �! �q

r;:�r;+p �! �q

+r;+p �! �q

:s;:+s; q;:�q �! �p

�s; q;:�q �! �p

:s;:+s;+q �! �p

�s;+q �! �p

9>>>>>>>>>>=
>>>>>>>>>>;

The dependency graphs of these programs are
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2

Now one may wonder whether for each C there exists PC such that �PC is strati�ed. The

following example shows that this is not the case.

Example 4 Consider the functional dependency X �! Y expressed by the denial

c : p(X;Y ); p(X;Y 0); Y 6= Y 0 �! inc

The predicate p is repeated in c. The only update rule we may infer is

�c : p(X;Y ); Y 6= Y 0 �! �p(X;Y 0)
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which is negatively recursive:

��c =

�
p(X;Y );:�p(X;Y ); Y 6= Y 0 �! �p(X;Y 0)

+p(X;Y ); Y 6= Y 0 �! �p(X;Y 0)

2

De�nition 5 Let c be a constraint. p is a repeated predicate in c if there exists two literals in

c both constructed from p and both are positive or negative. 2

In the following, we assume that none of the IC's we consider contain repeated predicates.

An other case where it is not possible to derive programs that guarantee total non conicting

update models is the case where the IC's are themselves inconsistent, i.e. there does not exist

an instance � that satis�es C. e.g,

C =

8<
:

c1 : p(X); q(X) �! inc

c2 : :p(a) �! inc

c3 : :q(a) �! inc

9=
;

It is generally admitted that \interesting" practical IC's are those satis�ed at least by the empty

database. From the particular form of the IC's considered in this paper, a su�cient condition

such that the empty database would be coherent is to require that the body of c contains at least

one positive literal. c2 and c3 above are not satis�ed by the empty database. In the following,

we suppose that all IC's satisfy this condition.

3 Deriving programs from constraints

In this section, we will �rst give an algorithm that derives a �rst program P1

C which is not

negatively recursive. Then, we present a way to transform P1

C into PC such that for each � and

each update �, M�user
(PC) is bivalued.

3.1 Non negatively recursive programs

In order to derive non negatively recursive programs, we will use the notion of IC graph.

De�nition 6 (Constraints graph) Let C be a set of constraints. GC is a non oriented graph

hV;Ei where V is the set of IC's and (ci; cj) 2 E labeled with p i� the predicate p appears in

both ci and cj with the same sign, i.e. positive or negative. If p appears in opposite signs the

edge is labeled with :p.

2

Example 5 Let

C =

�
c1 : p(X); q(X) �! inc

c2 : r(X);:q(X) �! inc

�
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GC is given below:

c1
:q

c2

Notice that from C, we can derive a potentially conicting program i.e. one rule that inserts

into Q and another whose action is a deletion from Q.

2

Lemma 2 Let C be a set of constraints and GC its associated graph. If GC does not contain a

negative edge, then each PC is not potentially conicting.

2

Example 6 Let

C =

8<
:

c1 : p(X); q(X); r(X) �! inc

c2 : s(X); q(X);:u(X) �! inc

c3 : v(X);:u(X); r(X) �! inc

9=
;

The corresponding graph is

c1
q

c2

c3

r

N N N N N N N N N N N N N
gg

u

ppppppppppppp

Notice that the graph contains a cycle. Notice also that we can derive a negatively recursive

program from C, namely the program:

PC =

8<
:

p(X); r(X) �! �q(X)

s(X); q(X) �! +u(X)

v(X);:u(X) �! �r(X)

9=
;

The dependency graph of �PC contains the negative cycle

�r

:

,,

+u

:

��

�q

:

KK

2

Lemma 3 If GC does not contain cycles, then PC is negatively recursive only if there are con-

straints with repeated predicates.

2

De�nition 7 (p Clique) A p Clique in GC is a clique where all edges are labeled with p. 2



67

All IC's that belong to the same p clique, can be maintained by issuing the same operation

(insertion or deletion) into p. In Example 6, fc1; c2; c3g is a clique, but not a p clique. However,

fc1; c2g is a q clique. If we decide to maintain these two IC's by performing deletions from

q, then this is equivalent to delete the edge between c1 and c2, the so reduced graph does not

contain any remaining cycle. So whatever the action we decide to perform for maintaining c3,

the obtained program is not negatively recursive. This gives an idea of how GC is used in order

to derive non negatively recursive programs.

1st algorithm. The following algorithm derives non negatively recursive programs but which

may contain conicting rules.

Input: A set of constraints C.

Output: A program PC non negatively recursive.

Begin

PC := ;;

Let GC be the graph of C;

While GC contains connected vertices Do:

Choose a maximal p clique CL

For each c 2 CL Do

Derive a rule �(c) which updates p;

PC := PC [ f�(c)g;

Remove c from GC
End For

For each c 2 GC that depends on p Do

Derive a rule �(c) which updates p;

PC := PC [ f�(c)g;

Remove c from GC
End For

End While

For each remaining constraint c Do

Derive a rule �(c);

PC := PC [ f�(c)g;

Remove c from GC
End For

Return PC
End

Proposition 2 Let C be a set of IC's. Then PC the output of the above algorithm is not

negatively recursive. 2

3.2 Managing conicting rules

In this section, we show how to transform a potentially conicting but non negatively recursive

program in such a way that it insures a total well founded model.

We �rst consider the simple case of two rules and illustrate it with the following example:

Example 7 Let C = fp(X);:q(X) �! inc; r(X); q(X) �! incg and
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PC =

�
p(X) �! +q(X)

r(X) �! �q(X)

�

PC is potentially conicting. Consider �, where

p

a

b

r

a

c

q

a

b

c

M�(PC) = � [ f:p(c);:r(b);+q(b);�q(c);:�q(b);:+q(c)g. The literals +q(a) and �q(a) are

unknown. It is easy to see that C is equivalent to:

C0 =

8<
:

p(X);:r(X);:q(X) �! inc

r(X);:p(X); q(X) �! inc

p(X); r(X) �! inc

9=
;

From C0, we derive the program:

PC
0 =

8<
:

p(X);:r(X) �! +q(X)

r(X);:p(X) �! �q(X)

r(X) �! �p(X)

9=
;

The obtained database by using this program is �0 = fp(b); r(a); r(c); q(b)g.

Notice that:

1. �0 satis�es C,

2. The IC's maintained by PC
0 are exactly the same as those maintained with PC ; i.e. the

expression

8X : [(p(X)) r(X) _ q(X)) ^ (r(X) ^ q(X)) p(X)) ^ (r(X) ^ p(X)))]

C0, is equivalent to

8X : [(p(X)) q(X)) ^ (r(x) ^ q(X)))].

Finally, notice that PC
0 is not the only program we may derive. Indeed, with

PC
00 =

8<
:

p(X);:r(X) �! +q(X)

r(X);:p(X) �! �q(X)

p(X) �! �r(X)

9=
;

we obtain �00 = fp(a); p(b); r(c); q(a); q(b)g which is also consistent.

2
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3.2.1 The case of two conicting rules

Consider the IC's

C1 =

�
`1; : : : ; `m; p( ~X); c1( ~X1) �! inc

m1; : : : ;mn;:p( ~X); c2( ~X2) �! inc

�

where `i and mj are base literals, and ci is a conjunction of interpreted literals (e.g. X = 3; Y >

20;X = Y;X 6= Y ). From these IC's, we derive the rules

PC1 =

�
�a : `1; : : : ; `m; c1( ~X1) �! �p( ~X)

�b : m1; : : : ;mn; c2( ~X2) �! +p( ~X)

�

These rules may, �a priori, introduce conicts. Now Consider the IC's:

C2 =

8>>>>><
>>>>>:

`1; : : : ; `m; c1( ~X1) �! p0( ~X 0)

m1; : : : ;mn; c2( ~X2) �! p00( ~X 00)

p0( ~X 0);:p00( ~X 00); p( ~X) �! inc

p00( ~X 00);:p0( ~X 0);:p( ~X) �! inc

`1; : : : ; `m; c1( ~X1);m1; : : : ;mn; c2( ~x2) �! inc

9>>>>>=
>>>>>;

Where ~X 0 is the set of variables in ~X1 and ~X 00 = ~x. From this new set of IC's, we derive

PC2 =

8>>>>><
>>>>>:

�1 : `1; : : : ; `m; c1( ~X) �! p0( ~X 0)

�2 : m1; : : : ;mn; c2( ~X) �! p00( ~X 00)

�3 : p0( ~X 0);:p00( ~X 00) �! �p( ~X)

�4 : p00(~x00);:p0(~x0) �! +p( ~X)

�5 : m1; : : : ;mi�1;mi+1; : : : ;mn; c2( ~X); `1; : : : ; `m; c1( ~X) �! opjmij

9>>>>>=
>>>>>;

Where opjmij =

�
+(:mi) if mi is negative

�mi otherwise

�

Lemma 4 C1 is equivalent to C2. 2

The body of the rules �3 and �4 in PC2 , cannot both be true (they mutually exclude each

other). Thus, we cannot be in a situation where we want to insert and delete the same tuple

from p. Is this enough to say that we have avoided all unknown updates? In other words, can we

be sure that the new program is not negatively recursive? The answer to this question depends

on the rule �5. Indeed, the new program is negatively recursive only if �5 itself is.

Lemma 5 �5 cannot be negatively recursive. 2

Poof: First, notice that �5 cannot be negatively recursive because of a dependency between mi

and an mj , otherwise this would mean that mj and mi have the same sign which contradicts

the fact that we don't have repeated predicates.

However, if there exists an `j s.t. `j and mi can be uni�ed (i.e. there exists a substitution

� with `j� = mi�), then �5 is negatively recursive. Notice that in this case, `i and mj are built

from the same predicate. We can assume without loss of generality that for every predicate p

and every litteral appearing in denials bodies of the form p( ~X) the terms appearing in ~X are

only variables and always the same, i.e. p(X; a) can be replaced by p(X;Y )^Y = a and p(X;X)



70

is replaced by p(X;Y ) ^X = Y . Notice that this assumption is no longer true when accepting

repeated predicates. Hence, `i and mi are identical. Which means that the condition `i ^mj

is equivalent to mj. This allows us to eliminate `j from the body of �5. This way, it is not

negatively recursive any more.

3.3 The case of multiple conicting rules

In the previous section, we have shown how to solve the problem of conicting updates where

we have only two rules. In this section, we generalize that method to the case of multiple rules.

Consider the program:

�p : `1; : : : ; `m; cp( ~Xp) �! �p( ~X)

�p+1 : m1

1
; : : : ;m1

n1
; cp+1( ~Xp+1) �! +p( ~X)

: : :

�p+q : m
q
1
; : : : ;m

q
n1 ; cp+q( ~Xp+q) �! +p( ~X)

The rule �p conicts with the other rules. The solution is to proceed in a way such that the

condition (i.e. body) of �p and those of the other rules cannot be true at the same time. For

this purpose, we transform the program as follows:

�0p : `1; : : : ; `m; cp( ~Xp) �! p0( ~X)

�0p+1 : m1

1
; : : : ;m1

n1
; cp+1( ~Xp+1) �! p00( ~X)

: : :

�0p+q : m
q
1
; : : : ;m

q
nq ; cp+q( ~Xp+q) �! p00( ~X)

�00p : `1; : : : ; `m; cp( ~Xp);:p
00( ~X) �! �p( ~X)

�00p+1 : m1

1
; : : : ;m1

n1
; cp+1( ~Xp+1);:p

0( ~X) �! +p( ~X)

: : :

�00p+q : m
q
1
; : : : ;m

q
nq ; cp+q( ~Xp+q);:p

0( ~X) �! +p( ~X)

The only dependencies generated by these rules are those already existing in the initial program.

Thus, if the �rst program is initially non negatively recursive, then the new one is also non

negatively recursive.

The remaining case is that where the condition of the rule which makes an insertion and the

condition of one of the rules making a deletion are both true, i.e we should consider the IC's of

the form
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ci : body(�p); body(�p+i) �! inc

To maintain this IC, we must derive a rule while preserving the property of non negative

recursion. The following may arise:

� Suppose that there exists a literalM in body(ci) s.t. there exists � with body(�) 3 L where

L and M are two literal from the same predicate Q. This means that we can update Q in

order to maintain ci without creating a negative cycle.

� Suppose now that their does not exist such an M . It is easy to see that this contradicts

the hypothesis that the initial program was non negatively recursive.

In this section, we have �rst proposed an approach that allows to derive update programs

that are not negatively recursive. Then, we have presented a method that solves the problem

of potentially conicting rules. The combination of the two gives programs that satisfy the

following proposition.

Proposition 3 Let C be a set of constraints and PC the program obtained after the two steps

described in this section. Then, for each update � and instance �, the update modelM�user
(PC)

is total and non conicting.

2

So, we can use PC to maintain and restore database consistency. Concerning the complexity of

this process is however exponential. The �rst algorithm is in linear time w.r.t the number of

IC's, while the second part of the derivation is exponential.

Now we address the well known property of minimal change [KM91]. Let � be a user update

submitted to the database �. �user may be seen as the database the user wants to get by his/her

update. However, �user may be not consistent. So in order to restore consistency, �user should

be updated. Let �final be the coherent database obtained after updating �user. Intuitively,

the minimal change property says that the \quantity of change" we make to �user to reach a

consistent database must be as little as possible. Formally,

De�nition 8 �final ful�lls the minimal change property i� 8�0coherent : �user��0 � �user�

�final ) �user ��0 = �user ��final, where � is the symmetrical set di�erence.

2

Proposition 4 IfM�user
(PC) is total and not conicting (which is the case with the programs

we derive), then �final ful�lls the minimal change property.

2

4 Expressiveness

Let's now address the expressive power of the update semantics with update rules. An update

� in a language L can be considered as a sequence of two operations �;  where � is a query and

 is an assignment. Hence, L � Q;FO:=, where Q is a query language and FO:= is �rst order

logic with destructive assignment. For instance, consider the operation of deleting all nodes for

which there is a cycle passing through. We �rst compute the nodes that are not in any cycle
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(the query part), then we assign this set to the set of nodes (the assignment part). Thus, the

expressiveness of an update language is fully determined by it's query language part. In our

update semantics, we �rst we derive updates, then we apply them. The expressiveness of the

�rst part is that of Fixpoint [AHV95] since we use well founded semantics which is equivalent to

Fixpoint. Notice that the combination of the two parts is a subset of the While language1. Let

U denote our update semantics. Then

U �While

since U clearly belongs in PTIME while the language While is in PSPACE and it is conjectured

that PTIME 6= PSPACE.

5 Conclusion

In this paper, we have proposed an algorithm that derives update programs from IC's. These

programs can not only maintain database consistency but also restore it. This is of a particular

interest when IC's can be added dynamically.

In Example 4 we saw that it is not possible to restore the functional dependency constraint

while guaranteeing the minimal change property with a deterministic language (the case of

well founded Datalog). This example suggests the use of the choice construct [GPSZ97] which

introduces a kind of controlled non determinism while leaving the computational complexity

in PTIME which is not the case of the stable semantics[GL88] used by [MT98]. In fact, there

are two kinds of non determinism: tuple and predicate non determinism. We solved the latter

during the update rules derivation.

As future research we would like to investigate is the following problem. let's say that an

update language L can maintain a class of IC's C, denoted MC
L i� for all C � C, there exists

a program P 2 L such that for all � satisfying C and for each update �, if �user is de�ned as

before and P(�user) is the �nal database, then P(�user) � �user is minimal. We say that L

can restore C, denoted RCL if the above de�nition holds when � is not supposed consistent and

� = ;. In other words, P can restore database consistency with minimal change. For instance,

for the update rule

p(X;Y ); Y 6= Y 0 �! �p(X;Y 0)

derived from the functional dependency, the update models that can restore database consistency

with minimal change are exactly those which are stable models. Giving general relationships

between L and C could be an interesting direction of future research.

In [FP97] the authors address the following problem: given a set of IC's C, for each c 2 C

there may be many ways to maintain c. To express his/her preferences, the DB administrator

assigns a weight to each alternative, the problem is to �nd a program P which is guaranteed

to terminate while maximizing the global weight. The authors show that this is a NP hard

problem. In our paper, we have not considered user preferences when deriving programs. It

could be interesting to use the change metrics between the instances generated by two programs

as the distance between them and use this de�nition to generate programs which are among the

closest to those proposed by the user.

1Actually, While can be considered as both a query and an update language.
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