![]() |
Sfb 288 Differential Geometry and Quantum Physics |
Abstract for Sfb Preprint No. 130
Small-Amplitude Solutions of the Sine-Gordon Equation on an Interval under Dirichlet or Neumann Boundary Conditions A. I. Bobenko, S. Kuksin
J. of Nonlinear Science 5 (1995) 207-232
We give a complete classification of the small-amplitude finite-gap solutions of the Sine-Gordon (SG) equation on an interval under Dirichlet or Neumann boundary conditions. Our classification is based on an analysis of the finite-gap solutions of the boundary problems for SG equation by means of the Schottky uniformization approach. There are two figures which are included as a separate file.
The pictures of this preprint can be seen if you please click(here).
No PostScript version available.