![]() |
Sfb 288 Differential Geometry and Quantum Physics |
Abstract for Sfb Preprint No. 317
The Gaußian Measure on Algebraic Varieties I. Agricola and T. Friedrich
We prove that the ring $Aff{R}{M}$ of all polynomials defined on a real algebraic variety $MsubsetR^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}demu)$, where $demu$ denotes the volume form of $M$ and $de u=e^{-|x|^2}demu$ the Gaußian measure on $M$.
Get a gzip-compressed PostScript copy of this preprint
preprint317.ps.gz (68 kB)