[ Home ] [ About Us ] [ Research ] [ People ] [ Publications ] [ News ] [ Other Info ]
Sfb288 logo Sfb 288 Differential Geometry and Quantum Physics

Abstract for Sfb Preprint No. 421


Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schroedinger operators

Michael J. Gruber

Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We define several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic differential operators acting on vector bundles. This includes Schroedinger operators with periodic magnetic field and rational flux, as well as the corresponding Pauli and Dirac-type operators.


Get a gzip-compressed PostScript copy of this preprint
preprint421.ps.gz (76 kB)


Copyright © 1999 Sfb 288, Mathematics 8-5, Strasse des 17 Juni 136, TU-Berlin, 10623 Berlin
[ Home ] [ About Us ] [ Research ] [ People ] [ Publications ] [ News ] [ Other Info ]