[ Home ] [ About Us ] [ Research ] [ People ] [ Publications ] [ News ] [ Other Info ]
Sfb288 logo Sfb 288 Differential Geometry and Quantum Physics

Abstract for Sfb Preprint No. 446


Conjugate Harmonic Maps and Minimal Surfaces

Konrad Polthier

We consider discrete harmonic maps that are conforming or non-conforming piecewise linear maps, and derive a bijection between the minimizers of the two corresponding Dirichlet problems. Pairs of harmonic maps with a conforming and a non-conforming component solve the discrete Cauchy-Riemann equations, and have vanishing discrete conformal energy. As an application, the results of this work provide a thorough understanding of the conjugation algorithms of Pinkall/Polthier and Oberknapp/Polthier used in the computation of discrete minimal and constant mean curvature surfaces.


Get a gzip-compressed PostScript copy of this preprint
preprint446.ps.gz (385 kB)


Copyright © 1999 Sfb 288, Mathematics 8-5, Strasse des 17 Juni 136, TU-Berlin, 10623 Berlin
[ Home ] [ About Us ] [ Research ] [ People ] [ Publications ] [ News ] [ Other Info ]