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Abstract

Different types of two- and three-dimensional representations of a finite metric
space are studied that focus on the accurate representation of the linear order
among the distances rather than their actual values. Lower and upper bounds for
representability probabilities are produced by experiments including random gen-
eration, a rubber-band algorithm for accuracy optimization, and automatic proof
generation. It is proved that bofarthest neighbour representatioasd cluster

tree representationalways exist in the plane. Moreover, a measurerdér accu-

racyis introduced, and some lower bound on the possible accuracy is proved using
some clustering method and a result on maximal cuts in graphs.

1 Introduction

The question of how distance information might be visualized is of importance for
many sciences including physics, medicine, sociology, and others. Mathematicians
have early studied the possibility embedding finite metric spac& into other, in

some sense better spaces like the Euclidean plane or 3-space. Beginning with Menger
[Men28], who gave the precise criteria far to beisometricallyembeddable (that is,
under exact preservation of the distances) into some Euclidean space, most of them
have focused on mappings that m&pinto some standard space in a “quantitative”
manner. The goal in this field of research, known under the maetdac scalingjs to
preserve thealuesof the distances as good as possible, that is, to minimize a certain
error, known as “stress” (cf. [She62]).

The aim of this paper is to study more “qualitative” kinds of visualization of dis-
tance data. In contrast to metric scaling, we will not be interested in the actual values
of distances but rather in their comparison. Considering only the lioilr among
the distances instead of their value, a measu@adr accuracyof a representation is
introduced. Unlike stress, order accuracy has an easy interpretation as a certain proba-
bility of correctness. After an experimental exploration of different types of represen-
tations, a lower bound on the possible accuracy of plane representations will be proved



using some clustering method and a result on maximal cuts in graphs. The experimen-
tal methods include random generation, optimization of accuracy by a rubber-band
algorithm, and automatic proof generation. All results are summarized in Table 1.

2 Order accuracy

Throughout this papetX = (X, d) is afinite metric spacethat is, X is finite, and
d: X? —[0,00] fulfils d(z,y) = d(y, x), d(x,y)+d(y, z) = d(x, z), andd(z,y) = 0
if and only if z = y. However, one advantage of the following approach is that it also
applies to anyfinite, symmetric distance skt the sense of [Hei98] and [Hei], which
is a far more general type of object than a metric space. For the sake of simplicity,
we will also assume thaX equals the set = {0,...,n — 1} of non-negative inte-
gers, and that the pairwise distances between the poiltsark all different, that is,
d(z,y) = d(«’,y") > 0 implies{z,y} = {«/,¥'}. In particular, eaclx € X has ex-
actly onenearest neighboutin(z) € X and ondarthest neighboufn(x) which fulfil
d(z,nn(z)) < d(z,y) < d(z,fn(z)) forally € X \ {z,nn(z), n(z)}.

We will be mostly interested in representing the pointsXoby points of either
some Euclidean spadg,,, that is, the real vector spa™ with Euclidean distance,
or the L;-planeM, that is, the seR? with the “Manhattan”-distancé(xz,y) = |z, —
Y1l + 22 — yal.

Theorder accuracyx(f) of a mapf from X into some metric spacg = (Y, e)
is defined as the probability that, of two randomly chosen paitg/} and{z, w} of
elements ofX, the one with the larger distance in the “representatipmlso has the
larger “original” distance. More formally,

w0 = (D) ften ey creo:
vy, 24w, {2y} £ {2 w0}, and
d(z,y) < d(z,w) <= e(fz, fy) < e(fz,fw)}‘.

Note that2a(f) — 1 is just Kendall’s rank correlation coefficieptbetween the two
linear orders on thé’;) pairs{z,y} that result when these pairs are compared with
respect to either their original or their image distance. Using a variant of the merge-
sort algorithm e can be computed in linear-times-logarithmic time, hen¢g) can be
computed inD(n? log n) time.

3 Order and weaker representations

An order representatiorof X in Y is some mapf : X — Y with a(f) = 1, that
is, with d(z,y) < d(z,w) < e(fz, fy) < e(fz, fw). Likewise, anorder repre-
sentationof a (strict) linear ordek on the set3(X) of two-element subsets of is
amapf : X — Y with {z,y} < {z,w} < e(fz, fy) < e(fz, fw). It will be
convenient to identify the metric spagé with its associated linear order which is
given by{z,y} < {z,w} <= d(z,y) < d(z,w) here.
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ForY = E, o, there is always an order representation—there is even afrfap
whiche(fz, fy) = d(z,y) + C for some constar® > 0. This was proved by Cailliez
[Cai83]. A random generation of five-element subsetEptonfirmed this result for
n = 5, and a similar experiment showed that all four-element metric spaces not only
have an order representationip but also inM.

To get a feeling how probabledaneorder representation is for a five-element met-
ric space, | also repeatedly drew five-element samples from the uniform distribution on
the unit square and determined the resulting order among the ten pairwise distances.
In this way, of thel0! = 3628 800 linear orders oB3(5), at least3.8% [resp.65.2%]
were found to have an order representatioifnwith the Euclidean [resp. “Manhat-
tan”] metric. Moreover, at lea$6.7% [resp.67.7%] had alocal order representation,
thatis, a magf : X — R? suchtha{z, y} < {x, 2z} < e(fz, fy) < e(fx, fz) for
all z,y, z, where agaire was the Euclidean [resp. “Manhattan”] metric. Judging from
these empirical numbers, order representability seems to be considerably stronger than
local order representability in the Euclidean case, but not in the “Manhattan” case.

Considering only the information coded in the functians and fn, it was also
found that at least’8.3% of the10! orders had a planextremal neighbours representa-
tion, that is, amayf : X — E, such thahn(fx) = f(nn(z)) andfn(fz) = f(fn(zx))
forallz € X. Likewise, at leas#3.3% allowed for a map under which both the nearest
and second-nearest neighbours were represented accurately, and afiottlewed
for a map under which at least the information about which points were the two nearest
to 2 was represented accurately foral{see Table 1).

In view of the quickly growing numbe(?;)! of orders onB3(n) and the limited
space for storing the list of orders already found, such a random generation did not
make much sense far > 5. It is, however, possible to estimate some similar lower
bounds at least fat € {6, 7} from the following experiment.

4 Representation by accuracy optimization

Starting with a randomly generatgd: X — E,,, an order representation of a linear
order < on B(X) can often be produced by a stepwise maximization of order accu-
racy. The following optimization step proved useful: for each pairy}, {z, w} with
{z,y} < {z,w} ande(fx, fy) > e(fz, fw), movez,y towards each other by some
fixed fraction ofe(fx, fy), and movez, w away from each other by the same fixed
fraction ofe(fz, fw). | have tested this kind of rubber-band algorithm in several ways:
(i) When < was taken to be the order that corresponded to 8 or 25 independently
uniformly distributed random points in the unit square, the algorithm found an order
representation ok in E, in about96% of all cases, no matter if 8 or 25 points were
taken. For 25 points, the resulting representations were almost similar to the original
sets. More precisely, for each edge the quotient between its original length and its
length in the representation was determined, and on average the relative difference
between maximal and minimal quotient was less th%n(compared tol2% for 15
points and ove60% for 8 points).
(i) When < was taken from a uniform distribution of all linear orders B(b),
the algorithm succeeded in ond$% of the cases. Since, as mentioned before, more



than 53% of the orders actually have an order representation, this indicates that the
algorithm is susceptible to being caught in a local optimum.

However, in both (i) and (ii), the success of the algorithm did not seem to depend
on the initial state: when a cluster representation (see below) instead of a random initial
state was used, only the average number of iterations needed shrinked slightly.

(i) As in (i), but for five points in a 100-dimensional cube. Here the success rate
was abou9%. Such finite subspaces of high-dimensional spaces frequently occur in
multivariate statistics, for example.

(iv) Generating the orders as in (i), an order representatifi iof six-point metric
spaces was found in aboii% of 1000 cases, but of seven-point spaces in aal$%
of 7000 cases.

The rubber-band algorithm has also been implemented as a Java applet which can
be tested at

http://www-ifm.math.uni-hannover.de/ ~heitzig/distance.

Despite the algorithm’s lack of optimality, we can use these results to estimate lower
bounds for the fraction of representable orders. As the samples were large enough, one
can use the approximate confidence bound that arises from the approximation of the
actual binomial distribution by a normal distribution (see [Kre91]). For a sample of
sizeN, s + 1/2 successes, and confidence nivéait has the form

2 2 2
stE-ofs-F+g

Ni& with ¢ = ®71(p).
c

Taking 8 = 0.995, this leads to the following conjectured bounds:

Conjecture 1 In E;, a six- [seven-] element metric space has an order representation
with probability at least0% [9.5%].

For six points inE,, the same method gives a conjectured lower bound of Ziilysee
Table 1).

5 Disproving local order representability

A local order representation can also be characterized as a map that preserves the or-
der among the three sides of any triangle. More precisgly, X — Y is a local
order representation if and only if for each three distinct pointg, = € X with
d(z,y) < d(y,z) < d(z,z), alsoe(fz, fy) < e(fy,fz) < e(fz, fz). Using el-
ementary geometry, one sees that, in the Euclidean plane, the latter is equivalent to
Lfvfzfy<Zfyfxfz<Zfzfyfz &)

Therefore, the existence of a plane local order representation for some<ocder
be disproved by showing that a certain set of inequalities between angles in the plane
has no solution. The advantage of using angles instead of distances is that the additional
equations and inequalities which everypoint subset of the plane must fulfil are all



linear in the angles:

0) ZLabc € [0, 7
(i) Zabc + Zbca + Zeab =m
(iii) Zaze < Lazb + Zbze
(iv) Zazb+ Zbze+ Zeza = 27 if z is in the convex hull oy, b, ¢,
) Laze = Lazb + Lbzc if bis “between”’a andc as seen from:.

In search of a local order representationXarthese linear relations together with those

of type (x) enable us, starting with the largest inter{@lr], to successively narrow

down the interval of possible values of each angle. If some angle’s interval becomes
empty, there can be no local order representation of this erdefrhis method can

also be used to disprove the existence of even weaker kinds of representations such as
extremal neighbours representations.

Example 2 Figure 1 shows a computer generated proof that the ofdet} <
{a,d} < --- < {b,d} (listed on top) cannot occur among the distances between five
points in the plane. Lines 1, 2, and 3 state that certain angles are smalleiOthan
smaller tharp0°, or larger thar60° because they are the smallest, second smallest, or
largest in their corresponding triangle, respectively. Line 4 states thataaly be in
the convex interior of the five points, since each of the remaining four is the farthest
neighbour of some other. Lines 5-7 apply the “tripod” inequality (iii), using bounds
already known from lines 1 and 2, this dependence being logged at the end of the lines.
Line 8 notices a violation of (iv) so thatcannot be in the convex hull af b, d. Simi-
larly, line 9 states that aldocannot be betweemandd as seen frona. In line 11, (ii)
is used to derive a lower bound for a second smallest angle from an upper bound for a
largest angle. This is the only kind of argument the algorithm can use to derive bounds
that are not just multiples &#0°. The rest of the proof shall be clear now.

Note that the premises in lines 1-4 already follow from the information coded in
the mapsin andfn alone, hence the order under consideration does not even have an
extremal neighbours representation.

There is a similar example which shows that it may also be impossible in the plane
to accurately represent the set of two nearest neighbours of five points. Since for dis-
joint five-element subsets of some metric spatethe distribution of the orders that
correspond to these subsets are independent, we have:

Corollary 3 For ann-element metric space, the probability of a plane extremal neigh-
bours representation shrinks exponentially for- co.

To get explicit upper bounds for local representability, | tested several thousand
randomly generated orders with this algorithm. For five points, 795 out of 10000
orders could be shown to have no plane local order representation in this way. Using
again estimated confidence bounds with= .995, this results in an estimated upper
bound 0f.928 for the fraction of plane locally order representable order$6r). For
n = 6,7, 8, and9, the corresponding numbers were 4156 out of 10000, 3627 out of
4500, 11 690 out of 12 000, and 9990 out of 10 000, respectively, resulting in the upper
bounds shown in Table 1.



Figure 1: A computer generated non-representability proof.

TEST OF EDGE ORDER de < ad < ac < ab < ce < bhe < bc < cd < ae < bhd

USING ONLY EXTREMAL NEIGHBOURS INFORMATION

legend: points are labeled a,b,c,d,e
Xy is a segment, xyz is a triangle, x:iyz is the angle in xyz at vertex x

X:)ywz means that x:yz=xyw+x:wz

line type proposition
1. smallest a:de,b:ad,b:de,c:ad,c:de,d:bc,e:ab,e:ac < 60
2. dominated a:be,a:ce,b:ac,b:cd,c:ab,d:ab,d:ac,d:be,d:ce,e;ad < 90
3. largest a:bc,a:bd,a:cd,b:ae,c:ae,c:bd,d:ae,e:bd,e:cd > 60
4. on bndry a,b,d,e since in fn[X]
5. tripod a:bd <=abe+a:de < 90+60= 150
6. tripod a:cd <=aceta:de < 90+60= 150
7. tripod b:ae <=b:ad+b:de < 60+60= 120
8. not ¢ in abd since c:ad+c:bd+c:ab<360
9. not c:abd since c:ad<c:ab+c:bd
10. tripod c:ae <=c:ad+c:de < 60+60= 120
11. larger abe > (180-b:ae)/2>(180-120)/2= 30
12. larger a:ce > (180-c:ae)/2>(180-120)/2= 30
13. not a:che since a:ce<a:bc+a:be
14. not a:bce since a:be<a:ce+a:bc
15 hence a:bec
CASE ANALYSIS using points a,bcd:
16. (i) ASSUMING a:bcd...
17. sum a:bd =a:bc+a:cd > 60+60= 120
18. sum a:bc =abd-a:cd < 150-60= 90
19. tripod a:be >=a:bd-a:de > 120-60= 60
20. not a:bec since a:bc<a:ce+a:be
21 hence a in bce
22. contradiction!
23. (ii) ASSUMING a:chd...
24. sum a:cd =a:bc+a:bd > 60+60= 120
25. sum a:bc =a:cd-a:bd < 150-60= 90
26. tripod a:ce >=a:cd-a:de > 120-60= 60
27. not a:bec since a:bc<a:be+a:ce
28. hence a in bce
29. contradiction!
30. (i) ASSUMING a:bdc...
31 not d:acb since a:bdc
32 not d:abc since a:bdc
33. hence d:bac
34. not c:bad since a:bdc
35 hence c:adb
36. new sum c:abd since ad diag in cabd
37. new circ d in abc since a:bdc and c:adb
38. contradiction!
39. (iv) ASSUMING a in bcd...
40. contradiction!

CONTRADICTION in all four cases!

follows
from

16.3.3.
16.5.3.
17.1.
18.12.19.
14.13.20.
21.4.

23.3.3.
23.6.3.

25.11.26.
13.14.27.
28.4.

30.
30.
31.4.32.
30.
8.9.34.
30.33.
30.35.
37.4.



Figure 2: A “universal” nearest neighbour graph of nine points in the plane

Conjecture 4 In E,, a six-element metric space has a local order representation with
probability at mos60%.

This fast vanishing of the probability of plane local order representability on the one
hand shows that the above algorithm is quite successful, and on the other hand moti-
vates the study of even weaker kinds of plane representation.

6 Nearest and
farthest neighbour representations

The directed graplG,,(X) with vertex setV(G) = X and edge seE(G) =
{(z,nn(z)) : € X} is known as thenearest neighbour grapbf X. Asymptotic
properties of nearest neighbour graphs of subsets of the plane have been studied in
[EPY97]. Thefarthest neighbour grapbf X is defined similarly. By alown-treel

mean a finite connected digraph all of whose vertices have out-degree one, except for
a root vertex with out-degree zero.

Proposition 5 A finite digraphG is a nearest [farthest] neighbour graph of a metric
space if and only if each of its components is a disjoint union of two down-trees whose
roots are joined by a double edge.

Since theproof is easy but quite technical, it is omitted here.

The digraphs characterized by this result will be cabbedooted forestsn the se-
quel, and a pair of roots will be calledegroot for short. Aproper childof a vertexx
in a digraph is a vertey for which there is an edgg, =) but no edgéz, y).

Proposition 6 A bi-rooted forest of size at most nine occurs as a nearest neighbour
graph in the plane if and only if no vertex has more than four proper children.



Proof. Let G be a bi-rooted forest withV’ (G)| < 9. If some vertex: has five proper
childrenz, ..., x5, there is no nearest neighbour representatidg,inOtherwise, for

i # j, the longest side of the trianglex ;2 would bez;z;, hence the angle between
the segments;z andx ;= would be larger tham /3. Likewise, the longest side of the
trianglex;x nn(x) is z; nn(x), hence the anglgx;x nn(x) would also be larger than
7 /3 which is impossible in the plane.

On the other hand, one can verify that all bi-rooted forests with at most nine vertices
and without vertices that have more than four proper children fit into the “universal”
forest sketched in Figure 2. Each of its four components is constructed from its two
roots (joined by a double edge of length 100) by successively adding children, where
the edges originating from children of ordehave lengthl00 + n and share a mutual
angle of(65 + ¢ — n)° if they are neighboured. Since in that figure, each edge points
towards the nearest neighbour, the proposition is proved. ]

Using this result, it was possible to calculate the fractions of linear ordei{:on
with a plane nearest neighbour representation shown in Table 1. Note thatfdo,
the analogue of the above proposition is false, a counter-example being the bi-rooted
forest consisting of two connected roots with four children each.
As for nearest neighbour representationEinit was proved by Fejesdth [FT43]
that ofn points on a unit sphere i, at least two must have a distance of at most

Op = \/4 — cosec? —
n—2

In particular,d14 = 0.98, hence there exist no fourteen points on the unit sphere with
pairwise distance larger than one. In other words, of fourteen rays\vith a common
source, at least two have an angle of at nt@St Therefore, a bi-rooted forest with a
root that has thirteen children cannot have a representati@g.iin particular, not all
linear orders or3(15) have a nearest neighbour representatioB{n However, one
may hope that at least all linear orders®f13) have a representation since there exist
twelve such points on the sphere.

=N

Conjecture 7 Every metric space of up to thirteen elements has a nearest neighbour
representation irk;.

Note thatd;3 ~ 1.014 > 1, and the empirically supported conjecture that there are no
thirteen such points is still unproved—this might show that questions of representabil-
ity of larger sets might also be quite difficult.

Surprisingly, a small degree at all vertices of the nearest neighbour graph does not
assure plane nearest neighbour representability: Eppstein, Paterson, and Yao [EPY97]
could show that for a subséf of E,, |X| = O(D(Gnn(X))?), where D(G) is the
depthof G, that is, the maximal length of a path from a vertex to the corresponding root.
Using their exact bounds, one can show that for example the complete binary bi-rooted
tree with2%6 — 2 ~ 102° vertices does not have a nearest neighbour representation in
E,. However, it seems likely that already far smaller binary trees fail to have one.

Eppstein et al. also showed that the expected number of compone®rits ©F) is
asymptotic to approximatel§.31|X| if the points of X are independently uniformly



distributed in the unit square. More precisely, the probability for a vertex to belong to
a bi-root is6 /(87 + 3v/3) ~ 0.6215 in that case. From this it is also clear that the
expected fraction of elements &f that are not the nearest neighbour of some other
element is at mosi.2785. However, the smallest exact upper bound to this fraction is
far larger:

Proposition 8 In any finite subset di,, at most7/9 of its elements are not a nearest
neighbour of some other element, and this bound is sharp.

Proof. It is quite easy to see that the bi-rooted forest consisting of a root with four and
another with three children has a nearest neighbour representafignence7/9 is
possible.

On the other hand, lef be a component of the nearest neighbour graph of a finite
subset of the plane. Then its roetandq together havé: < 7 children, and” can be
constructed from these+ 2 vertices by subsequently addikg< 4 children to some
end vertex, thereby increasing the number of end verticés byl in stepi. Thus, the
final fraction of end vertices i is

kt3iki-1) 17
(k+2)+>,k 9

since7(k+2+3, ki) —9(k+3, (ki —1)) = 14—2k+95—2>, k; = 95— 2-45 > 0,
wheres is the number of steps needed. O

In view of these facts about nearest neighbour graphs, the following might be a bit
surprising:

Theorem 9 Every finite metric space has a farthest neighbour representati@y.in

Proof. Let G := G, (X) be the corresponding farthest neighbour graptits depth,
and define an infinite bi-rooted forest as follows. The vertices off are labelled
a;: andb;¢, wherej is a non-negative integer arduns over all tuples of at mos?
non-negative integers, including the empty tupl&he bi-roots are the paifs:;g, b,y }
with non-negative integef, each vertex; (.. i ) is a child ofa;( . ), and each vertex
bi(...k,m) 1S @ child ofb;( ). In other words,lH has countably many isomorphic
components (numbered by, and each vertex has countably many children, up to
depthD. This digraphH contains an isomorphic copy 6f, hence it suffices to give
a representation dff. To address points of the plane, it will be convenient to identify
R? with the setC of complex numbers in the usual way.

For each non-negative integgr let Cjo and C;; be the circles of radius 2 with
centrescj = 2 ' ™ andc;; = e(1+27° ™ respectively. These curves can be

30 Jl

parametrized using the following functions, where the coefficiegts> 0 will be
determined later:

fjo(f) 1= Cjo + 26(27j71+)\j5)7r and .fjl(f) = Cj1 + 26(1+2ﬂ71+)\j£)ﬂ—.
In particular,fjo(O) = 36{7‘0, fjl(O) = 3Cj1, Fjo = ij[I] - Cjo, andFjl = fjl[f] -

Cj1, wherel = [-2P 2P] C R. Now the coefficients\; are chosen small enough so

10



that2”\; < m/2 and so that the smallest distance between thef§gtand £, is still
larger than the largest distance between a poidt;inu F;; and a point inF,o U Fiy
for any k # j. This ensures that, faf € {0,1} and all{ € I, the unique point
in Uy Fro U F1 that is farthest away from the poitft, (&) is the pointf; 1 _4(£/2).
More generally, giveg € {0,1} and¢, 3, € I, we have

1£5a(€) = fi1—a(B)] > [£54(&) = fin-aM = 1B =&/2l <]v = &/2] (%)

Using this equivalence, one sees that the following recursive definition results in a
farthest neighbour representatirof H:

f(ajt) = fj,q(t)('f(t)) and f(bjt) = fj,l—q(t)(_f(t))7

where the bi-roots havg(#) := 0 and£(0) := 0, their children have((m)) := 1 and
&((m)) :==1+27™, and all others have((...,k,m)) :=1—¢q((...,k)) and

S(kim) = 26((.. k) - <1—2m>< (k) =& R +1))
(T+27")&((.. ))+(1—2_ (..., k+1)).

Because ofx), we need only verify that ()0 — £((m)) /2] < |£((k, £)) — &((m))/2],
which is true because @f(m)) < 2 < £((k, £)), and that (ii)

26((-- -, k) = &(C o, kym))[ < [26(C - k£ 1)) = &(( - kym))],

where the left hand side equdls— 27™)c with ¢ = (£((...,k)) — &((...,k + 1)),
and the right hand side is the absolute value ®f2(£((...,k+1)) — &((..., k,m)))
which is larger tham in the “—” case and smaller thanc in the “+” case.

7 Cluster representations,
and lower bounds for accuracy

A important question in applications of finite metric spaces is that of clustering the
elements into homogeneous, mutually heterogeneous groups. Formally, a hierarchical
clustering ofX produces what | will call Zluster treehere, which can be formalized

as a chain of partition®,, ..., P, on X, whereP, = {{z} : = € X} is the discrete
andP,, = {X} the indiscrete partition, and eagh ., with k < n arises frompP;, by
joining two clusters, that is, replacing sore B € Py, by their unionA U B. Most
common clustering methods fulfil the following properw):(if & < n, A, B € Py,

A # B,andforalla € A, b € B, andzx,y € X, eitherz,y € AU B, orz,y € C

for someC' € Py, ord(a,b) < d(z,y), thenA U B € Pj41. In other words, when all
distances between membersAfind B are smaller than all distances between points
of other clusters, thed and B are joined next. Now, a cluster tree fdr is said to
have acluster representatiorf : X — Y when all clustering methods that fulfikY
reproduce this cluster tree when they are applied to the metric space: (X, d’)

with d'(z,y) = e(fz, fy).

11



Proposition 10 Every cluster treePy, ..., P, for a finite setX has a cluster repre-
sentation in{0, ..., | (1 ++/2)"/4]} with Euclidean distance.

Proof. Inductively, we construct maps : X — Z and integers; such thatf,, is a
cluster representation, and eaghs already “correct” for alC € P;. ForC € P;, the
convex hull off;[C] will be the intervall0, w;(C)]. ForA, B € P, andAU B € P41,
fi+1[A U B] will be constructed by placing;[A] and f;[B] besides each other at a
distance); that is larger than the diameter of afiye P;, that is, withd; > w;(C).

We start withf; (a) := 0 for all « € X, so thatw,(A) = 0 for all A € P;, and put
01 :=1. Fori > 1, let A;, B; € P; be those elements withi; := A; U B; € P;; and
min A; < min B;. Now put

fix1(a) = fi(a) foralla e A;,
fi+1(b) = fl(b) +6; + wZ(A) forallb € B;,
fiJrl((E) = fz((E) for all ¢ Ci,

and5i+1 = wiH(CZ-) +1, where, by ConStrUCtiOI’wi+1(CZ‘) = 5l+wl(A2) —‘rU}Z(Bl)
Then the convex hull off;1[C;] is [0,w;4+1(C;)] as proposed. For all' € P;4q
different fromC;, we haveC' € P; and thusd; 11 > §; > w;(C) = w;41(C) as
required. In case that> 2, one ofA;, B; isin P;_1, hence eithew;(A;) = w;—1(4;)
or w;(B;) = w;_1(B;). Puttingm,; := max{w;(A) : A € P;}, this givesm; 1 <
2m;+m,;_1+1. Itis easy to verify that the corresponding recursive upper bépwith
bit1 = 2b;+b;_1 +1 and initial condition$; = 0 andby = 1isb; = ((1+v/2) +(1—
V2))/4—1/2 = [(1++/2)"/4]. In particularuw,, (X) = m, < b, = [(1+v2)"/4].

Finally, f,, is a cluster representation: ket n,a € A;,b € B;, A’ # B' € P;
with {A", B’} # {A;, B;}, anda’ € A’, b’ € B’. Then the smallest indeifor which
there isC' € P; with o/, b’ € C'is at least + 1, hencedf,(a,b) = df;(a,b) < 6; <
6j,1 < dfj(a’7b’) = dfn(a’,b’). I:]

Finally, this construction can be used to show that the following lower bound on
order accuracy for maps into the real line:

Theorem 11 For everyn-element metric spac& with n = 2P for some integep,
there is a mapf : X — E; with order accuracy at least/7 — O(1/n).

Proof. We iteratively define a binary cluster tree. Fok n, Py, is constructed from
Pr+1 as follows: choose som€ € Py, of maximal size, and leb¢({z,y}) be the

number of pairg z, w} C C with 0 < d(z,w) < d(z,y). In [PT86] it was proved that
there is a partition of” into two sets4 and B of equal size such that

IC|

€A, yeB {z,y}CC

Let P := Pr+1 \ {C} U {4,B}. Note thatwc({z,y}) is now the sum of
wa g({z,y}), the number of pairz,w} C C with 0 < d(z,w) < d(z,y),
z € A, andw € B, and ofw/y z({z,y}), the number of pairdz,w} C C with
0 < d(z,w) < d(x,y) and either,w € Aorz,w € B.

12



Now we construct a representation as in the previous proposition, except that we
might sometimes usf/ (a) := w;(A;) — fi(a) and f!(b) := w;(B;) — f;(b) instead of
fi(a) andf;(b) for the definition off;1|c,. More precisely, wherf; has already been
defined and4;, B;, C; are as in the proposition, let be the number of quadruples
(z,y,z,w) € A; x B; x A; x B; With 0 < d(z,w) < d(z,y) and f;(w) — fi(z) <
fi(y) — fi(z), and lety’ be the number of quadruplés, y, z, w) € A; x B; x A; X B;
with 0 < d(z,w) < d(z,y) and f;(z) — fi(w) < fi(z) — fi(y). These numbers
tell how many pairs of edges betwedn and B; will be represented with the correct
order of lengths when eithefi; or f/ is used for the definition of;1|c,. Now put
fix1(z) = fi(z) forall x ¢ C;, and either

fix1(a) = fi(a) foralla € A;, and

fix1(0) = fi(b) +d; +w;(A) forallbe B;
if v > +/, or otherwise

fit1(a) = fl(a) foralla e A;, and

fix1(b) = fI(b)+0; +w;(A) forallb e B;.

This assures thdff;+1(x) — fi+1(v)| > |fix1(2) — fir1(w)| whenever: € A;, y €
B;, and eitherz,w € A; or z,w € B;. Moreover, since the sum of and~’ is
(14:1B:1y, their maximum is at leagtd; || B;|(| A;|| B;] — 1)/4. Hence, this stepof the
construction contributes to the overall accuracg summandy; with
n
- ((3) < , |Ail| Bi|(|Ai]| Bi| — 1)
o (§)> X whsean+ .

2
T€EA;, yEB;

| Ail| Bi| (| Al Bi| — 1)

= > (we,({z,y}) —wa,p,({z.y}) + :
z€A;, yEB;

Ai B,‘ Az Bi Ai Bl -1

- ¥ wcﬁ({x’y})_c ! |)+| I \<|4|| |- 1)
z€A;, yEB;

1 (9N JAlBI(AlBI-1) 3 ;

5‘( 5 )— 1 = |Gl +o(CiP).

Finally, all C; are of sizen/2? for someq with 0 < ¢ < p, and there are exactB#
many of this size. Hence the overall accuracy is

o= ;a > ;2‘1 . 2(1/%1)4 +0(1/n) = % —o(/n).

O

However, this lower bound is very likely not the best possible. The rank correla-
tion ¢ between two independently chosen linear ordersnoelements is nearly nor-
mally distributed with expected valeand standard deviatiad(1/+/m) (cf. [KG90]).
Hence(p + 1)/2 has expected valug/2, which motivates the following conjecture.

Conjecture 12 Every finite metric space can be mapped iB{owith accuracy> 1/2.
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