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Abstract

Different types of two- and three-dimensional representations of a finite metric
space are studied that focus on the accurate representation of the linear order
among the distances rather than their actual values. Lower and upper bounds for
representability probabilities are produced by experiments including random gen-
eration, a rubber-band algorithm for accuracy optimization, and automatic proof
generation. It is proved that bothfarthest neighbour representationsandcluster
tree representationsalways exist in the plane. Moreover, a measure oforder accu-
racy is introduced, and some lower bound on the possible accuracy is proved using
some clustering method and a result on maximal cuts in graphs.

1 Introduction

The question of how distance information might be visualized is of importance for
many sciences including physics, medicine, sociology, and others. Mathematicians
have early studied the possibility ofembeddinga finite metric spaceX into other, in
some sense better spaces like the Euclidean plane or 3-space. Beginning with Menger
[Men28], who gave the precise criteria forX to beisometricallyembeddable (that is,
under exact preservation of the distances) into some Euclidean space, most of them
have focused on mappings that mapX into some standard space in a “quantitative”
manner. The goal in this field of research, known under the namemetric scaling,is to
preserve thevaluesof the distances as good as possible, that is, to minimize a certain
error, known as “stress” (cf. [She62]).

The aim of this paper is to study more “qualitative” kinds of visualization of dis-
tance data. In contrast to metric scaling, we will not be interested in the actual values
of distances but rather in their comparison. Considering only the linearorder among
the distances instead of their value, a measure oforder accuracyof a representation is
introduced. Unlike stress, order accuracy has an easy interpretation as a certain proba-
bility of correctness. After an experimental exploration of different types of represen-
tations, a lower bound on the possible accuracy of plane representations will be proved
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using some clustering method and a result on maximal cuts in graphs. The experimen-
tal methods include random generation, optimization of accuracy by a rubber-band
algorithm, and automatic proof generation. All results are summarized in Table 1.

2 Order accuracy

Throughout this paper,X = (X, d) is a finite metric space,that is,X is finite, and
d : X2 → [0,∞] fulfils d(x, y) = d(y, x), d(x, y)+d(y, z) > d(x, z), andd(x, y) = 0
if and only if x = y. However, one advantage of the following approach is that it also
applies to anyfinite, symmetric distance setin the sense of [Hei98] and [Hei], which
is a far more general type of object than a metric space. For the sake of simplicity,
we will also assume thatX equals the setn = {0, . . . , n − 1} of non-negative inte-
gers, and that the pairwise distances between the points ofX are all different, that is,
d(x, y) = d(x′, y′) > 0 implies{x, y} = {x′, y′}. In particular, eachx ∈ X has ex-
actly onenearest neighbournn(x) ∈ X and onefarthest neighbourfn(x) which fulfil
d(x,nn(x)) < d(x, y) < d(x, fn(x)) for all y ∈ X \ {x,nn(x), fn(x)}.

We will be mostly interested in representing the points ofX by points of either
some Euclidean spaceEm, that is, the real vector spaceRm with Euclidean distance,
or theL1-planeM2, that is, the setR2 with the “Manhattan”-distanced(x, y) = |x1 −
y1|+ |x2 − y2|.

Theorder accuracyα(f) of a mapf from X into some metric spaceY = (Y, e)
is defined as the probability that, of two randomly chosen pairs{x, y} and{z, w} of
elements ofX, the one with the larger distance in the “representation”f also has the
larger “original” distance. More formally,

α(f) =
((n

2

)
2

)−1

·
∣∣∣{{{x, y}, {z, w}} ⊆ P(X) :

x 6= y, z 6= w, {x, y} 6= {z, w}, and

d(x, y) < d(z, w)⇐⇒ e(fx, fy) < e(fz, fw)
}∣∣∣.

Note that2α(f) − 1 is just Kendall’s rank correlation coefficient% between the two
linear orders on the

(
n
2

)
pairs{x, y} that result when these pairs are compared with

respect to either their original or their image distance. Using a variant of the merge-
sort algorithm,% can be computed in linear-times-logarithmic time, henceα(f) can be
computed inO(n2 log n) time.

3 Order and weaker representations

An order representationof X in Y is some mapf : X → Y with α(f) = 1, that
is, with d(x, y) < d(z, w) ⇐⇒ e(fx, fy) < e(fz, fw). Likewise, anorder repre-
sentationof a (strict) linear order< on the setB(X) of two-element subsets ofX is
a mapf : X → Y with {x, y} < {z, w} ⇐⇒ e(fx, fy) < e(fz, fw). It will be
convenient to identify the metric spaceX with its associated linear order< which is
given by{x, y} < {z, w} :⇐⇒ d(x, y) < d(z, w) here.
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ForY = En−2, there is always an order representation—there is even a mapf for
whiche(fx, fy) = d(x, y) +C for some constantC > 0. This was proved by Cailliez
[Cai83]. A random generation of five-element subsets ofE3 confirmed this result for
n = 5, and a similar experiment showed that all four-element metric spaces not only
have an order representation inE2 but also inM2.

To get a feeling how probable aplaneorder representation is for a five-element met-
ric space, I also repeatedly drew five-element samples from the uniform distribution on
the unit square and determined the resulting order among the ten pairwise distances.
In this way, of the10! = 3 628 800 linear orders onB(5), at least53.8% [resp.65.2%]
were found to have an order representation inR2 with the Euclidean [resp. “Manhat-
tan”] metric. Moreover, at least66.7% [resp.67.7%] had alocal order representation,
that is, a mapf : X → R

2 such that{x, y} < {x, z} ⇐⇒ e(fx, fy) < e(fx, fz) for
all x, y, z, where againe was the Euclidean [resp. “Manhattan”] metric. Judging from
these empirical numbers, order representability seems to be considerably stronger than
local order representability in the Euclidean case, but not in the “Manhattan” case.

Considering only the information coded in the functionsnn and fn, it was also
found that at least88.3% of the10! orders had a planeextremal neighbours representa-
tion, that is, a mapf : X → E2 such thatnn(fx) = f(nn(x)) andfn(fx) = f(fn(x))
for all x ∈ X. Likewise, at least93.3% allowed for a map under which both the nearest
and second-nearest neighbours were represented accurately, and another3% allowed
for a map under which at least the information about which points were the two nearest
to x was represented accurately for allx (see Table 1).

In view of the quickly growing number
(
n
2

)
! of orders onB(n) and the limited

space for storing the list of orders already found, such a random generation did not
make much sense forn > 5. It is, however, possible to estimate some similar lower
bounds at least forn ∈ {6, 7} from the following experiment.

4 Representation by accuracy optimization

Starting with a randomly generatedf : X → Em, an order representation of a linear
order< on B(X) can often be produced by a stepwise maximization of order accu-
racy. The following optimization step proved useful: for each pair{x, y}, {z, w} with
{x, y} < {z, w} ande(fx, fy) > e(fz, fw), movex, y towards each other by some
fixed fraction ofe(fx, fy), and movez, w away from each other by the same fixed
fraction ofe(fz, fw). I have tested this kind of rubber-band algorithm in several ways:

(i) When< was taken to be the order that corresponded to 8 or 25 independently
uniformly distributed random points in the unit square, the algorithm found an order
representation of< in E2 in about96% of all cases, no matter if 8 or 25 points were
taken. For 25 points, the resulting representations were almost similar to the original
sets. More precisely, for each edge the quotient between its original length and its
length in the representation was determined, and on average the relative difference
between maximal and minimal quotient was less than5% (compared to12% for 15
points and over60% for 8 points).

(ii) When < was taken from a uniform distribution of all linear orders onB(5),
the algorithm succeeded in only45% of the cases. Since, as mentioned before, more
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than53% of the orders actually have an order representation, this indicates that the
algorithm is susceptible to being caught in a local optimum.

However, in both (i) and (ii), the success of the algorithm did not seem to depend
on the initial state: when a cluster representation (see below) instead of a random initial
state was used, only the average number of iterations needed shrinked slightly.

(iii) As in (i), but for five points in a 100-dimensional cube. Here the success rate
was about79%. Such finite subspaces of high-dimensional spaces frequently occur in
multivariate statistics, for example.

(iv) Generating the orders as in (ii), an order representation inE3 of six-point metric
spaces was found in about65% of 1000 cases, but of seven-point spaces in only10.5%
of 7000 cases.

The rubber-band algorithm has also been implemented as a Java applet which can
be tested at

http://www-ifm.math.uni-hannover.de/ ∼heitzig/distance.

Despite the algorithm’s lack of optimality, we can use these results to estimate lower
bounds for the fraction of representable orders. As the samples were large enough, one
can use the approximate confidence bound that arises from the approximation of the
actual binomial distribution by a normal distribution (see [Kre91]). For a sample of
sizeN , s+ 1/2 successes, and confidence niveauβ, it has the form

s+ c2

2 − c
√
s− s2

N + c2

4

N + c2
with c = Φ−1(β).

Takingβ = 0.995, this leads to the following conjectured bounds:

Conjecture 1 In E3, a six- [seven-] element metric space has an order representation
with probability at least60% [9.5%].

For six points inE2, the same method gives a conjectured lower bound of only2% (see
Table 1).

5 Disproving local order representability

A local order representation can also be characterized as a map that preserves the or-
der among the three sides of any triangle. More precisely,f : X → Y is a local
order representation if and only if for each three distinct pointsx, y, z ∈ X with
d(x, y) < d(y, z) < d(z, x), alsoe(fx, fy) < e(fy, fz) < e(fz, fx). Using el-
ementary geometry, one sees that, in the Euclidean plane, the latter is equivalent to
∠fx fz fy < ∠fy fx fz < ∠fz fy fx (?).

Therefore, the existence of a plane local order representation for some order< can
be disproved by showing that a certain set of inequalities between angles in the plane
has no solution. The advantage of using angles instead of distances is that the additional
equations and inequalities which everyn-point subset of the plane must fulfil are all
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linear in the angles:

(i) ∠abc ∈ [0, π]
(ii) ∠abc+ ∠bca+ ∠cab = π

(iii) ∠azc 6 ∠azb+ ∠bzc
(iv) ∠azb+ ∠bzc+ ∠cza = 2π if z is in the convex hull ofa, b, c,

(v) ∠azc = ∠azb+ ∠bzc if b is “between”a andc as seen fromz.

In search of a local order representation forX, these linear relations together with those
of type (?) enable us, starting with the largest interval[0, π], to successively narrow
down the interval of possible values of each angle. If some angle’s interval becomes
empty, there can be no local order representation of this order<. This method can
also be used to disprove the existence of even weaker kinds of representations such as
extremal neighbours representations.

Example 2 Figure 1 shows a computer generated proof that the order{d, e} <
{a, d} < · · · < {b, d} (listed on top) cannot occur among the distances between five
points in the plane. Lines 1, 2, and 3 state that certain angles are smaller than60◦,
smaller than90◦, or larger than60◦ because they are the smallest, second smallest, or
largest in their corresponding triangle, respectively. Line 4 states that onlyc can be in
the convex interior of the five points, since each of the remaining four is the farthest
neighbour of some other. Lines 5–7 apply the “tripod” inequality (iii), using bounds
already known from lines 1 and 2, this dependence being logged at the end of the lines.
Line 8 notices a violation of (iv) so thatc cannot be in the convex hull ofa, b, d. Simi-
larly, line 9 states that alsob cannot be betweena andd as seen fromc. In line 11, (ii)
is used to derive a lower bound for a second smallest angle from an upper bound for a
largest angle. This is the only kind of argument the algorithm can use to derive bounds
that are not just multiples of30◦. The rest of the proof shall be clear now.

Note that the premises in lines 1–4 already follow from the information coded in
the mapsnn andfn alone, hence the order under consideration does not even have an
extremal neighbours representation.

There is a similar example which shows that it may also be impossible in the plane
to accurately represent the set of two nearest neighbours of five points. Since for dis-
joint five-element subsets of some metric spaceX, the distribution of the orders that
correspond to these subsets are independent, we have:

Corollary 3 For ann-element metric space, the probability of a plane extremal neigh-
bours representation shrinks exponentially forn→∞.

To get explicit upper bounds for local representability, I tested several thousand
randomly generated orders with this algorithm. For five points, 795 out of 10 000
orders could be shown to have no plane local order representation in this way. Using
again estimated confidence bounds withβ = .995, this results in an estimated upper
bound of.928 for the fraction of plane locally order representable orders onB(5). For
n = 6, 7, 8, and9, the corresponding numbers were 4156 out of 10 000, 3627 out of
4500, 11 690 out of 12 000, and 9990 out of 10 000, respectively, resulting in the upper
bounds shown in Table 1.
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Figure 1: A computer generated non-representability proof.

TEST OF EDGE ORDER de < ad < ac < ab < ce < be < bc < cd < ae < bd
USING ONLY EXTREMAL NEIGHBOURS INFORMATION

legend: points are labeled a,b,c,d,e
xy is a segment, xyz is a triangle, x:yz is the angle in xyz at vertex x
x:ywz means that x:yz=x:yw+x:wz

follows
line type proposition from

---------------------------------------------------------------------------------
1. smallest a:de,b:ad,b:de,c:ad,c:de,d:bc,e:ab,e:ac < 60
2. dominated a:be,a:ce,b:ac,b:cd,c:ab,d:ab,d:ac,d:be,d:ce,e:ad < 90
3. largest a:bc,a:bd,a:cd,b:ae,c:ae,c:bd,d:ae,e:bd,e:cd > 60
4. on bndry a,b,d,e since in fn[X]
5. tripod a:bd <=a:be+a:de < 90+60= 150 2.1.
6. tripod a:cd <=a:ce+a:de < 90+60= 150 2.1.
7. tripod b:ae <=b:ad+b:de < 60+60= 120 1.1.
8. not c in abd since c:ad+c:bd+c:ab<360 1.0.2.
9. not c:abd since c:ad<c:ab+c:bd 1.0.3.

10. tripod c:ae <=c:ad+c:de < 60+60= 120 1.1.
11. larger a:be > (180-b:ae)/2>(180-120)/2= 30 7.
12. larger a:ce > (180-c:ae)/2>(180-120)/2= 30 10.
13. not a:cbe since a:ce<a:bc+a:be 2.3.11.
14. not a:bce since a:be<a:ce+a:bc 2.12.3.
15. hence a:bec 4.13.14.

CASE ANALYSIS using points a,bcd:

16. (i) ASSUMING a:bcd...
17. sum a:bd =a:bc+a:cd > 60+60= 120 16.3.3.
18. sum a:bc =a:bd-a:cd < 150-60= 90 16.5.3.
19. tripod a:be >=a:bd-a:de > 120-60= 60 17.1.
20. not a:bec since a:bc<a:ce+a:be 18.12.19.
21. hence a in bce 14.13.20.
22. contradiction! 21.4.
23. (ii) ASSUMING a:cbd...
24. sum a:cd =a:bc+a:bd > 60+60= 120 23.3.3.
25. sum a:bc =a:cd-a:bd < 150-60= 90 23.6.3.
26. tripod a:ce >=a:cd-a:de > 120-60= 60 24.1.
27. not a:bec since a:bc<a:be+a:ce 25.11.26.
28. hence a in bce 13.14.27.
29. contradiction! 28.4.
30. (iii) ASSUMING a:bdc...
31. not d:acb since a:bdc 30.
32. not d:abc since a:bdc 30.
33. hence d:bac 31.4.32.
34. not c:bad since a:bdc 30.
35. hence c:adb 8.9.34.
36. new sum c:abd since ad diag in cabd 30.33.
37. new circ d in abc since a:bdc and c:adb 30.35.
38. contradiction! 37.4.
39. (iv) ASSUMING a in bcd...
40. contradiction! 39.4.

CONTRADICTION in all four cases!
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Figure 2: A “universal” nearest neighbour graph of nine points in the plane
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Conjecture 4 In E2, a six-element metric space has a local order representation with
probability at most60%.

This fast vanishing of the probability of plane local order representability on the one
hand shows that the above algorithm is quite successful, and on the other hand moti-
vates the study of even weaker kinds of plane representation.

6 Nearest and
farthest neighbour representations

The directed graphGnn(X) with vertex setV (G) = X and edge setE(G) =
{(x,nn(x)) : x ∈ X} is known as thenearest neighbour graphof X. Asymptotic
properties of nearest neighbour graphs of subsets of the plane have been studied in
[EPY97]. Thefarthest neighbour graphof X is defined similarly. By adown-treeI
mean a finite connected digraph all of whose vertices have out-degree one, except for
a root vertex with out-degree zero.

Proposition 5 A finite digraphG is a nearest [farthest] neighbour graph of a metric
space if and only if each of its components is a disjoint union of two down-trees whose
roots are joined by a double edge.

Since theproof is easy but quite technical, it is omitted here.

The digraphs characterized by this result will be calledbi-rooted forestsin the se-
quel, and a pair of roots will be called abi-root for short. Aproper childof a vertexx
in a digraph is a vertexy for which there is an edge(y, x) but no edge(x, y).

Proposition 6 A bi-rooted forest of size at most nine occurs as a nearest neighbour
graph in the plane if and only if no vertex has more than four proper children.
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Proof. LetG be a bi-rooted forest with|V (G)| 6 9. If some vertexx has five proper
childrenx1, . . . , x5, there is no nearest neighbour representation inE2. Otherwise, for
i 6= j, the longest side of the trianglexixjx would bexixj , hence the angle between
the segmentsxix andxjx would be larger thanπ/3. Likewise, the longest side of the
trianglexixnn(x) is xi nn(x), hence the angle∠xixnn(x) would also be larger than
π/3 which is impossible in the plane.

On the other hand, one can verify that all bi-rooted forests with at most nine vertices
and without vertices that have more than four proper children fit into the “universal”
forest sketched in Figure 2. Each of its four components is constructed from its two
roots (joined by a double edge of length 100) by successively adding children, where
the edges originating from children of ordern have length100 + n and share a mutual
angle of(65 + i − n)◦ if they are neighboured. Since in that figure, each edge points
towards the nearest neighbour, the proposition is proved. �

Using this result, it was possible to calculate the fractions of linear orders onB(n)
with a plane nearest neighbour representation shown in Table 1. Note that forn = 10,
the analogue of the above proposition is false, a counter-example being the bi-rooted
forest consisting of two connected roots with four children each.

As for nearest neighbour representations inE3, it was proved by Fejes T́oth [FT43]
that ofn points on a unit sphere inE3, at least two must have a distance of at most

δn :=
√

4− cosec2
n

n− 2
π

6
.

In particular,δ14 ≈ 0.98, hence there exist no fourteen points on the unit sphere with
pairwise distance larger than one. In other words, of fourteen rays inE3 with a common
source, at least two have an angle of at most60◦. Therefore, a bi-rooted forest with a
root that has thirteen children cannot have a representation inE3. In particular, not all
linear orders onB(15) have a nearest neighbour representation inE3. However, one
may hope that at least all linear orders onB(13) have a representation since there exist
twelve such points on the sphere.

Conjecture 7 Every metric space of up to thirteen elements has a nearest neighbour
representation inE3.

Note thatδ13 ≈ 1.014 > 1, and the empirically supported conjecture that there are no
thirteen such points is still unproved—this might show that questions of representabil-
ity of larger sets might also be quite difficult.

Surprisingly, a small degree at all vertices of the nearest neighbour graph does not
assure plane nearest neighbour representability: Eppstein, Paterson, and Yao [EPY97]
could show that for a subsetX of E2, |X| = O(D(Gnn(X))5), whereD(G) is the
depthofG, that is, the maximal length of a path from a vertex to the corresponding root.
Using their exact bounds, one can show that for example the complete binary bi-rooted
tree with266 − 2 ≈ 1020 vertices does not have a nearest neighbour representation in
E2. However, it seems likely that already far smaller binary trees fail to have one.

Eppstein et al. also showed that the expected number of components ofGnn(X) is
asymptotic to approximately0.31|X| if the points ofX are independently uniformly
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distributed in the unit square. More precisely, the probability for a vertex to belong to
a bi-root is6π/(8π + 3

√
3) ≈ 0.6215 in that case. From this it is also clear that the

expected fraction of elements ofX that are not the nearest neighbour of some other
element is at most0.2785. However, the smallest exact upper bound to this fraction is
far larger:

Proposition 8 In any finite subset ofE2, at most7/9 of its elements are not a nearest
neighbour of some other element, and this bound is sharp.

Proof. It is quite easy to see that the bi-rooted forest consisting of a root with four and
another with three children has a nearest neighbour representation inE2, hence7/9 is
possible.

On the other hand, letC be a component of the nearest neighbour graph of a finite
subset of the plane. Then its rootsr andq together havek 6 7 children, andC can be
constructed from thesek + 2 vertices by subsequently addingki 6 4 children to some
end vertex, thereby increasing the number of end vertices byki− 1 in stepi. Thus, the
final fraction of end vertices inC is

k +
∑
i(ki − 1)

(k + 2) +
∑
i ki
6

7
9

since7(k+2+
∑
i ki)−9(k+

∑
i(ki−1)) = 14−2k+9s−2

∑
i ki > 9s−2·4s > 0,

wheres is the number of steps needed. �

In view of these facts about nearest neighbour graphs, the following might be a bit
surprising:

Theorem 9 Every finite metric space has a farthest neighbour representation inE2.

Proof. LetG := Gfn(X) be the corresponding farthest neighbour graph,D its depth,
and define an infinite bi-rooted forestH as follows. The vertices ofH are labelled
ajt andbjt, wherej is a non-negative integer andt runs over all tuples of at mostD
non-negative integers, including the empty tuple∅. The bi-roots are the pairs{aj∅, bj∅}
with non-negative integerj, each vertexaj(...,k,m) is a child ofaj(...,k), and each vertex
bj(...,k,m) is a child of bj(...,k). In other words,H has countably many isomorphic
components (numbered byj), and each vertex has countably many children, up to
depthD. This digraphH contains an isomorphic copy ofG, hence it suffices to give
a representation ofH. To address points of the plane, it will be convenient to identify
R

2 with the setC of complex numbers in the usual way.
For each non-negative integerj, let Cj0 andCj1 be the circles of radius 2 with

centrescj0 := e2−j−1πi andcj1 := e(1+2−j−1)πi, respectively. These curves can be
parametrized using the following functions, where the coefficientsλj > 0 will be
determined later:

fj0(ξ) := cj0 + 2e(2−j−1+λjξ)π and fj1(ξ) := cj1 + 2e(1+2−j−1+λjξ)π.

In particular,fj0(0) = 3cj0, fj1(0) = 3cj1,Fj0 := fj0[I] ⊆ Cj0, andFj1 := fj1[I] ⊆
Cj1, whereI = [−2D, 2D] ⊆ R. Now the coefficientsλj are chosen small enough so
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that2Dλj < π/2 and so that the smallest distance between the setsFj0 andFj1 is still
larger than the largest distance between a point inFj0 ∪ Fj1 and a point inFk0 ∪ Fk1

for any k 6= j. This ensures that, forq ∈ {0, 1} and all ξ ∈ I, the unique point
in
⋃
k Fk0 ∪ Fk1 that is farthest away from the pointfjq(ξ) is the pointfj,1−q(ξ/2).

More generally, givenq ∈ {0, 1} andξ, β, γ ∈ I, we have

|fjq(ξ)− fj,1−q(β)| > |fjq(ξ)− fj,1−q(γ)| ⇐⇒ |β − ξ/2| < |γ − ξ/2| (?).

Using this equivalence, one sees that the following recursive definition results in a
farthest neighbour representationf of H:

f(ajt) := fj,q(t)(ξ(t)) and f(bjt) := fj,1−q(t)(−ξ(t)),

where the bi-roots haveq(∅) := 0 andξ(∅) := 0, their children haveq((m)) := 1 and
ξ((m)) := 1 + 2−m, and all others haveq((. . . , k,m)) := 1− q((. . . , k)) and

ξ((. . . , k,m)) := 2ξ((. . . , k))− (1− 2−m)
(
ξ((. . . , k))− ξ((. . . , k + 1))

)
= (1 + 2−m)ξ((. . . , k)) + (1− 2−m)ξ((. . . , k + 1)).

Because of(?), we need only verify that (i)|0− ξ((m))/2| < |ξ((k, `))− ξ((m))/2|,
which is true because ofξ((m)) < 2 < ξ((k, `)), and that (ii)

|2ξ((. . . , k))− ξ((. . . , k,m))| < |2ξ((. . . , k ± 1))− ξ((. . . , k,m))|,

where the left hand side equals(1− 2−m)c with c =
(
ξ((. . . , k))− ξ((. . . , k + 1))

)
,

and the right hand side is the absolute value ofc+ 2
(
ξ((. . . , k± 1))− ξ((. . . , k,m))

)
which is larger thanc in the “−” case and smaller than−c in the “+” case. �

7 Cluster representations,
and lower bounds for accuracy

A important question in applications of finite metric spaces is that of clustering the
elements into homogeneous, mutually heterogeneous groups. Formally, a hierarchical
clustering ofX produces what I will call acluster treehere, which can be formalized
as a chain of partitionsP1, . . . ,Pn onX, whereP1 = {{x} : x ∈ X} is the discrete
andPn = {X} the indiscrete partition, and eachPk+1 with k < n arises fromPk by
joining two clusters, that is, replacing someA,B ∈ Pk by their unionA ∪ B. Most
common clustering methods fulfil the following property (?): if k < n, A,B ∈ Pk,
A 6= B, and for alla ∈ A, b ∈ B, andx, y ∈ X, eitherx, y ∈ A ∪ B, or x, y ∈ C
for someC ∈ Pk, or d(a, b) < d(x, y), thenA ∪ B ∈ Pk+1. In other words, when all
distances between members ofA andB are smaller than all distances between points
of other clusters, thenA andB are joined next. Now, a cluster tree forX is said to
have acluster representationf : X → Y when all clustering methods that fulfil (?)
reproduce this cluster tree when they are applied to the metric spaceX ′ := (X, d′)
with d′(x, y) := e(fx, fy).
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Proposition 10 Every cluster treeP1, . . . ,Pn for a finite setX has a cluster repre-
sentation in{0, . . . , b(1 +

√
2)n/4c} with Euclidean distance.

Proof. Inductively, we construct mapsfi : X → Z and integersδi such thatfn is a
cluster representation, and eachfi is already “correct” for allC ∈ Pi. ForC ∈ Pi, the
convex hull offi[C] will be the interval[0, wi(C)]. ForA,B ∈ Pi andA∪B ∈ Pi+1,
fi+1[A ∪ B] will be constructed by placingfi[A] andfi[B] besides each other at a
distanceδi that is larger than the diameter of anyC ∈ Pi, that is, withδi > wi(C).

We start withf1(a) := 0 for all a ∈ X, so thatw1(A) = 0 for all A ∈ P1, and put
δ1 := 1. For i > 1, letAi, Bi ∈ Pi be those elements withCi := Ai ∪Bi ∈ Pi+1 and
minAi < minBi. Now put

fi+1(a) := fi(a) for all a ∈ Ai,
fi+1(b) := fi(b) + δi + wi(A) for all b ∈ Bi,
fi+1(x) := fi(x) for all x /∈ Ci,

andδi+1 := wi+1(Ci)+1, where, by construction,wi+1(Ci) = δi+wi(Ai)+wi(Bi).
Then the convex hull offi+1[Ci] is [0, wi+1(Ci)] as proposed. For allC ∈ Pi+1

different fromCi, we haveC ∈ Pi and thusδi+1 > δi > wi(C) = wi+1(C) as
required. In case thati > 2, one ofAi, Bi is inPi−1, hence eitherwi(Ai) = wi−1(Ai)
or wi(Bi) = wi−1(Bi). Puttingmi := max{wi(A) : A ∈ Pi}, this givesmi+1 6
2mi+mi−1+1. It is easy to verify that the corresponding recursive upper boundbi with
bi+1 = 2bi+bi−1+1 and initial conditionsb1 = 0 andb2 = 1 is bi = ((1+

√
2)i+(1−√

2)i)/4−1/2 = b(1+
√

2)i/4c. In particular,wn(X) = mn 6 bn = b(1+
√

2)n/4c.
Finally, fn is a cluster representation: leti 6 n, a ∈ Ai, b ∈ Bi, A′ 6= B′ ∈ Pi

with {A′, B′} 6= {Ai, Bi}, anda′ ∈ A′, b′ ∈ B′. Then the smallest indexj for which
there isC ∈ Pj with a′, b′ ∈ C is at leasti + 1, hencedfn(a, b) = dfi(a, b) < δi 6
δj−1 6 dfj(a′, b′) = dfn(a′, b′). �

Finally, this construction can be used to show that the following lower bound on
order accuracy for maps into the real line:

Theorem 11 For everyn-element metric spaceX with n = 2p for some integerp,
there is a mapf : X → E1 with order accuracy at least3/7−O(1/n).

Proof. We iteratively define a binary cluster tree. Fork < n, Pk is constructed from
Pk+1 as follows: choose someC ∈ Pk+1 of maximal size, and letwC({x, y}) be the
number of pairs{z, w} ⊆ C with 0 < d(z, w) < d(x, y). In [PT86] it was proved that
there is a partition ofC into two setsA andB of equal size such that

∑
x∈A, y∈B

wC({x, y}) > 1
2
·
∑

{x,y}⊆C

wC({x, y}) =
1
2
·
((|C|

2

)
2

)
.

Let Pk := Pk+1 \ {C} ∪ {A,B}. Note thatwC({x, y}) is now the sum of
wA,B({x, y}), the number of pairs{z, w} ⊆ C with 0 < d(z, w) < d(x, y),
z ∈ A, andw ∈ B, and ofw′A,B({x, y}), the number of pairs{z, w} ⊆ C with
0 < d(z, w) < d(x, y) and eitherz, w ∈ A or z, w ∈ B.
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Now we construct a representation as in the previous proposition, except that we
might sometimes usef ′i(a) := wi(Ai)− fi(a) andf ′i(b) := wi(Bi)− fi(b) instead of
fi(a) andfi(b) for the definition offi+1|Ci . More precisely, whenfi has already been
defined andAi, Bi, Ci are as in the proposition, letγ be the number of quadruples
(x, y, z, w) ∈ Ai × Bi × Ai × Bi with 0 < d(z, w) < d(x, y) andfi(w) − fi(z) <
fi(y)−fi(x), and letγ′ be the number of quadruples(x, y, z, w) ∈ Ai×Bi×Ai×Bi
with 0 < d(z, w) < d(x, y) andfi(z) − fi(w) < fi(x) − fi(y). These numbers
tell how many pairs of edges betweenAi andBi will be represented with the correct
order of lengths when eitherfi or f ′i is used for the definition offi+1|Ci . Now put
fi+1(x) := fi(x) for all x /∈ Ci, and either

fi+1(a) := fi(a) for all a ∈ Ai, and

fi+1(b) := fi(b) + δi + wi(A) for all b ∈ Bi
if γ > γ′, or otherwise

fi+1(a) := f ′i(a) for all a ∈ Ai, and

fi+1(b) := f ′i(b) + δi + wi(A) for all b ∈ Bi.

This assures that|fi+1(x) − fi+1(y)| > |fi+1(z) − fi+1(w)| wheneverx ∈ Ai, y ∈
Bi, and eitherz, w ∈ Ai or z, w ∈ Bi. Moreover, since the sum ofγ and γ′ is(|Ai||Bi|

2

)
, their maximum is at least|Ai||Bi|(|Ai||Bi| − 1)/4. Hence, this stepi of the

construction contributes to the overall accuracyα a summandαi with

αi ·
((n

2

)
2

)
>

∑
x∈Ai, y∈Bi

w′Ai,Bi({x, y}) +
|Ai||Bi|(|Ai||Bi| − 1)

4

=
∑

x∈Ai, y∈Bi

(
wCi({x, y})− wAi,Bi({x, y}

)
+
|Ai||Bi|(|Ai||Bi| − 1)

4

=
∑

x∈Ai, y∈Bi

wCi({x, y})−
(
|Ai||Bi|

2

)
+
|Ai||Bi|(|Ai||Bi| − 1)

4

>
1
2
·
((|Ci|

2

)
2

)
− |Ai||Bi|(|Ai||Bi| − 1)

4
=

3
64
|Ci|4 +O(|Ci|3).

Finally, all Ci are of sizen/2q for someq with 0 6 q < p, and there are exactly2q

many of this size. Hence the overall accuracy is

α =
n∑
i=1

αi >
p−1∑
q=0

2q · 3
8

(1/2q)4 +O(1/n) =
3
7
−O(1/n).

�

However, this lower bound is very likely not the best possible. The rank correla-
tion % between two independently chosen linear orders onm elements is nearly nor-
mally distributed with expected value0 and standard deviationO(1/

√
m) (cf. [KG90]).

Hence(%+ 1)/2 has expected value1/2, which motivates the following conjecture.

Conjecture 12 Every finite metric space can be mapped intoE1 with accuracy> 1/2.
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[FT43] L. Fejes T́oth,Abscḧatzung des k̈urzesten Abstandes zweier Punkte eines auf
der Kugelfl̈ache liegenden Punktsystems, Jahresberichte Deutsch. Math.-Ver.
53 (1943), 66–68.

[Hei] Jobst Heitzig,Many familiar categories can be interpreted as categories of
generalized metric spaces, Appl. Categ. Structures, to appear.

[Hei98] Jobst Heitzig,Partially ordered monoids and distance functions, Master’s
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