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Preface

The present notes are based upon a Concentated Advanced Course given
at MaPhySto, Aarhus, in February 1999. An earlier and incomplete version
was written up in connection with a PhD course given at the Department
of Mathematical Statistics, University of Lund, in the spring of 1996.

The aim has been to present some main aspects of simulation methodol-
ogy at a reasonably advanced mathematical level. Some topics like random
variate generation, Markov chains Monte Carlo metods and stochastic opti-
mization are left out or treated briefly, since they form areas in themselves
and extensive treatments are available elsewhere. However, in a later ver-
sion of the notes I expect to complement the treatment in these areas;
sections or chapters marked with a ∗ indicate that more will be filled in
later.

Some general standard textbooks in stochastic simulation are Banks &
Carson [22], Bratley, Fox & Schrage [29], Fishman [52], Law & Kelton [94],
and Morgan [105]. They contain much practically oriented discussion not
at all covered by these notes. References at a somewhat higher mathemat-
ical level are Ripley [126], Ross [131], Rubinstein [132] and Rubinstein &
Melamed [133] (parts of Hammersley & Handscombe [75] are also still worth
to read). However, much of the material in these notes can at present only
be found in research papers or more specialized monographs; references are
given at the appropriate places. In addition to standard journals in statis-
tics and applied probability, the reader interested in pursuing the literature
should be aware of journals like ACM TOMACS (ACM Transactions of
Modeling and Computer Simulation), Management Science, and the IEEE
journals.

The course was held from Monday February 22 to Friday February 26.
Each day had 2–3 hours of lectures, covering main parts of Chapters II,
III, IV, VI and VIII, and in addition there were computer labs on the
afternoons of Tuesday to Friday, based upon some of the assignments given
at the end of the notes. The labs used MatLab; the choice of this was just

v



vi CONTENTS

for convenience since MatLab is the standard at my home institution at
Lund University, and I had the opportunity to have Sofia Andersson from
Lund to guide the labs. The advantage of a package like MatLab is the
availability of many subroutines for random variate generation, graphics
etc. The drawback is that as a general programming language, MatLab is
much slower that say Pascal or C++.

Aarhus and Lund, March 1999
Søren Asmussen



Chapter I

Basics

1 Uniform r.v.’s

The basic vehicle in the area of (stochastic) simulation is a stream of pseu-
dorandom numbers produced by a computer, which is treated a sequence
U1, U2, . . . of i.i.d. r.v.’s with a uniform distribution on (0, 1). In practice,
U1, U2, . . . are typically produced by deterministic recursive algorithms.
The most popular ones today are linear congruential generators,

Un =
Xn

M
where Xn+1 = (AXn + C) mod M.

Here a particular popular choice, implemented in many computers and in
many software packages, is M = 231 − 1, A = 16807, C = 0.

Being deterministic, no stream of pseudorandom numbers is truly ran-
dom and will fail to pass a sufficiently elaborate statistical goodness–of–fit
test to the i.i.d. uniform setting. The generators used in practice typi-
cally have the property that the marginal empirical distribution of the Un

is uniform (up to rounding errors) and that observations look independent
within a narrow time range. The essence is that the generators work well
in practice. The novice is tempted to blame apparently erroneous simula-
tion output to deficiencies in the generator. However, almost always the
problem is an error of his own.

References: L’Ecuyer [96], Dodge [46] (suggests the decimals of π).

2 Non–uniform r.v.’s

Accepting the Un as i.i.d. uniform, the next step is to use them produce a
r.v. X with a prescribed distribution B. A simple case is a Bernoulli r.v.,

1



2 CHAPTER I . BASICS

IP(X = 1) = 1 − IP(X = 0) = p, where one can just let X = I(U ≤ p).
This construction generalizes in a straightforward way to distributions with
a finite support and is a special case of inversion: if B−1 is the inverse
of the c.d.f. of B, B−1(u) = min {x : F (x) ≥ u}, then X = B−1(U) has
distribution B since

IP(X ≤ x) = IP(B−1(U) ≤ x) = IP(U ≤ B(x)) = B(x) .

For example, if B is exponential with rate δ, then B−1(x) = − log(1−x)/δ
(in practice, one would use X =− log U/δ rather than X =− log(1−U)/δ!).

From exponential r.v.’s, one can build Erlang(p)’s by simply adding p
independent copies. Scaling an exponential r.v. by 2, one obtains a χ2

with 2 degrees of freedom, which is the distribution of the squared radial
part R2 = Y 2

1 + Y 2
2 of independent normal(0,1) variates Y1, Y2. Since the

conditional distribution of Y1, Y2 given R = r is uniform on the circle with
radius r, we obtain the Box–Muller method for generating normal random
variates (in pairs):

Y1 =
√
−2 log U1 sin 2πU2, Y2 =

√
−2 log U1 cos 2πU2.

In a similar vein, a number of standard distributions can be build. However,
there are at least two barriers: efficiency concerns, since the evaluation of
functions like the logarithm, square root, sine or cosine is typically much
more time–consuming than the generation of uniform r.v.’s; and also the
fact that B−1 is not explicitly available in quite a few cases.

A commonly used method is therefore instead acceptance–rejection. The
idea is to start from a r.v. Y with a density g(x) which is easily simulated
and has the property b(x) ≤ Cg(x) where b(x) is the density of X and
C < ∞ is a constant. Given Y = x, one accepts Y and let X = Y
w.p. b(x)/Cg(x). Otherwise, a new Y is generated and one continues until
eventual acceptance. Algorithmically:

1. Generate Y from the density g(x)

2. Generate U as uniform(0,1)

3. If U ≤ b(Y )/Cg(Y ), let X ← Y . Otherwise return to 1.
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That this produces a r.v. with the desired density b(x) follows from

IP(X ∈ dx) = IP(Y ∈ dx|A) =
IP(Y ∈ dx; A)

IPA

=
g(x) · b(x)/Cg(x)∫∞

−∞ g(y) · b(y)/Cg(y) dy
=

b(x)∫∞
−∞ b(y) dy

= b(x),

where A = {U ≤ b(Y )/Cg(Y )} is the event of acceptance. For example,
this applies to the case where b(x) is a bounded density on (0, 1), C =
sup0<x<1 b(x) and Y is uniform on (0, 1).

Here are some more elaborate examples or variants of the acceptance–
rejection idea:

Example 2.1 (Ratio of uniforms*) See Ripley [126]. 2

Example 2.2 (Inhomogeneous Poisson processes) The epochs σn

of a standard Poisson process {Nt} with rate β are easily generated by
noting that the interarrival times Tn = σn − σn−1 can be generated as
i.i.d. exponential. However, in many situations it would be reasonable to
assume that the Poisson process {N∗t } has a rate β(t) depending on time.
Assuming β(t) ≤ β for some constant β <∞, {N∗t } can then be constructed
by thinning {Nt} with retention probability β(t)/β at time t. That is,
an epoch σn of {Nt} is accepted (retained) as an epoch σ∗m of {N∗t } w.p.
β(σn)/β. Algorithmically:

1. Let n← 0, n∗ ← 0, σ ← 0, σ∗ ← 0

2. Generate T as exponential with rate β;
let σ ← σ + T , n← n + 1

3. Generate U as uniform(0,1);
if U ≤ β(σ)/β, let n∗ ← n∗ + 1, σ∗ ← σ; item Return to 2

That this produces the correct intensity β∗(t) for {N∗t } follows from

β∗(t)dt = IP(σ∗m ∈ [t, t + dt] for some m = 0, 1 . . . )

= IP(σn ∈ [t, t + dt] for some n = 0, 1 . . . ) · β(t)

β

= βdt · β(t)

β
= β(t)dt.

2



4 CHAPTER I . BASICS

Example 2.3 (Uniformization of Markov processes) Let {Jt}t≥0
be a Markov process with a finite state space E and intensity matrix Λ =
(λij)i,j∈E. One can simulate {Jt} at transition epochs by noting that the
holding time of state i is exponential with rate λi = −λii, and that the next
state j is chosen w.p. λij/λi:

1. Let t← 0, J ← i0

2. Let i← J ;
Generate T as exponential with rate λi and K with IP(K = j) = λij/λi,
j 6= i;

3. Let t← t + T , J ← K and return to 2

In this way, the rate λi of an event being created depends on the current
state i = Jt. The uniformization algorithm creates instead events at a
uniform rate η. A transition from i to j 6= i then occurs w.p. λij/η (thus,
η should satisfy η ≥ maxi∈E λi) when the current state is i = Jt; if η > λi,
this leaves the possibility of a dummy transition i → i (t is rejected as
transition epoch). Algorithmically:

1. Let t← 0, J ← i0

2. Let i← J ;
Generate T as exponential with rate η and K with IP(K = j) = λij/η,
j 6= i, and IP(K = i) = λi/η;

3. Let t← t + T , J ← K and return to 2

The algorithm makes the event times a homogeneous Poisson process with
rate η, and the corresponding values of {Jt} a Markov chain with transition
matrix I + Λ/η.

The method applies also to the countable case provided supi∈E λi <∞.
2

Example 2.4 (Markov–modulated Poisson processes)

Consider a Markov–modulated Poisson process with arrival rate βi when
Jt = i (here {Jt} is Markov with transition rates λij as in Example 2.3).
The intensity of an event (a transition i→ j or a Poisson arrival) is λi + βi

when Jt = i. Thus, choosing η ≥ maxi∈E(λi + βi) and letting ∆ be some
point 6∈ E (marking an arrival), we may generate the arrival epochs σ as
follows:
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1. Let t← 0, J ← i0, σ ← 0

2. Let i← J ;
Generate T as exponential with rate η and K with

IP(K = j) =


βi
η

j = ∆
λij
η

j ∈ E, j 6= i
η−λi−βi

η j = i

Let t← t + T

3. If K = ∆, let σ ← t;
otherwise, let J ← K and return to 2

2

Generation of bivariate normal r.v.’s

The goal is to generate X1, X2 with a joint normal distribution and means
µ1, µ2, variances σ2

1, σ2
2 and covariance ρσ1σ2 (ρ = Corr(X1, X2)).

Assume first µ1 = µ2 = 0, σ1 = σ2 = 1. Take Y1, Y2, Y3 independent
N (0, 1) and

X1 =
√

1− |ρ|Y1 +
√
|ρ|Y3, X2 =

√
1− |ρ|Y2 ±

√
|ρ|Y3

where + is for ρ ≥ 0, − for ρ ≤ 0. In the general case, let

X1 ←− µ1 + σ1X1, X2 ←− µ2 + σ2X2 .

We discuss multivariate normals in Chapter VIII in connection with
Gaussian processes.

How to efficiently generate non–uiform random numbers is an area in
itself; see for example Devroye [44]. It should be stressed that for the
average user, optimal efficiency is not necessarily a major concern, and that
one may want to use a naive but easily programmed method rather than
invoking more sophisticated methods or various library packages. The same
remark applies to special simulation programming languages like Simula,
Simscript, GPSP etc.

3 Discrete events systems and GSMP’s*

Glynn [64].
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Chapter II

Output analysis

1 The crude Monte Carlo method

Let Z be some random variable and assume that we want to evaluate z =
IEZ, in a situation where z is not available analytically but Z can be simu-
lated. The crude Monte Carlo (CMC) method then amounts to simulating
i.i.d. replicates Z1, . . . , Zn, estimating z by the empirical mean

ẑ =
1

n
(Z1 + · · ·+ Zn)

and the variance σ2 = σ2
Z = VarZ of Z by the empirical variance

σ̂2 =
1

n− 1

n∑
i=1

(Zi − ẑ)2 =
1

n− 1

(
n∑

i=1

Z2
i − nẑ2

)
(1.1)

[the occurence of n− 1 rather than n follows statistical tradition; in most
Monte Carlo experiments, n is very large and the difference is minor]. Ac-
cording to standard central limit theory,

√
n(ẑ − z)

D→ N
(
0, σ2) . (1.2)

Hence

ẑ ± 1.96 σ̂√
n

=

[
ẑ − 1.96 σ̂√

n
, ẑ +

1.96 σ̂√
n

]
(1.3)

is an asymptotic 95% confidence interval, and this is the form in which the
result of the simulation experiment is commonly reported.

Remark 1.1 The choice of 95% is common, but other values are, of course,
possible. Say 99%, corresponding to ẑ ± 2.58 σ̂/

√
n. Also one–sided con-

fidence intervals may sometimes be relevant. Assume for example that Z

7



8 CHAPTER II . OUTPUT ANALYSIS

is an indicator function telling whether a certain system failure occurs or
not and z the corresponding failure probability. Then ẑ + 1.64σ̂/

√
n is an

upper 95% confidence limit for z. 2

Remark 1.2 In some examples, Z has a simple form and can be generated
very quickly. A classical toy example is estimation of z = π by simulating
U1, U2 independent and uniform on (−1, 1) and letting Z = 4I(U2

1 +U2
2 < 1).

In many situations, the representation of the number z of interest as IEZ
may, however, involve considerable sophistication, and the generation of a
single Z may be time–consuming.

For an example, consider rare events problems, cf. Chapter IV, where
A is a rare event (of small probability). A common terminology is then
that CMC refers to the case Z = I(A). However, we will consider more
sophisticated choices like likelihood ratio estimators. In these notes, we
adapt therefore the terminology that ’CMC’ means that output analysis is
performed as above and that the term does not involve the way in which
Z is chosen. 2

Remark 1.3 (Run length considerations)

An often asked question is how large n should be to achieve a given pre-
cision. Here ’precision’ can be understood for example as the half–width
1.96 σ/

√
n of the confidence interval, and the answer is then straightfor-

ward: aiming for a precision of ε (say ε = 0.01), one should take n = nε =
1.962σ2/ε2. In particular, it is seen that nε is proportional to σ2.

In practice, σ2 is of course unknown. A common procedure is then to
start the simulation with a short pilot series with np replications, give an
estimate σ2

p based upon this, and then choose n as 1.962σ2
p/ε

2..

It may appear that the variance is the universal measure of efficiency
of a CMC estimator. In particular, given the choice between two CMC
schemes based upon r.v.’s Z, Z ′ with variances σ2

Z, σ2
Z ′, one should choose

the one with smallest variance. However, this argument cheats because it
does not take into account that the expected CPU times T, T ′ required to
generate one replicate may be very different. Instead, one can formulate the
problem in terms of a simulation budget t: given we are prepared to spend
t units CPU time for the simulation, will Z or Z ′ give the lower variance?
The answer is that by renewal theory, the number of replications obtained
within time t will be n ∼ t/T , resp. n′ ∼ t/T ′, and so the variances on
the estimates are σ2

ZT/t, resp. σ2
Z ′T

′/t (that the appropriate CLT holds
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also for such random sample sizes follows from Anscombe’s theorem, cf. the
Appendix). Thus, we should prefer Z if σ2

ZT < σ2
Z ′T

′ and Z ′ otherwise.
2

Remark 1.4 (Bias and mean square error)

Let more generally z be an unknown number to be estimated by sim-
ulation and consider an asymptotical scheme (n → ∞) where ẑn is an

estimator obeying a CLT of the form (1.2), i.e.
√

n(ẑn− IEẑn)
D→ N

(
0, σ2

)
,

and having bias δn = IEẑn−z; such bias occurs widely since it is often hard
to produce an estimator ẑn such that the relation IEẑn = z holds exactly
(for an example, consider steady–state simulation, cf. Chapter III). Assume
further that a natural variance estimator σ̂2

n with the property σ̂2
n → σ2 is

available.
Without explicit knowledge of the bias, it is obviously impossible to

produce an asymptotic confidence interval for z. The only reasonable can-
didate is ẑn ± 1.96σ̂n/

√
n, and this is in fact asymptotically valid provided√

nδn → 0. Thus, one has the general principle: the standard deviation
should dominate the bias in order that confidence intervals are meaningful.

Quite often, one can show that nδn → δ for some δ (most often not
available analytically!), which is sufficient for

√
nδn → 0.

In the presence of non–negliglible bias, it is common to measure the
efficiency of a simulation estimator in terms of the mean square error IE(ẑn−
z)2 rather than the variance. Note that the mean square error can be
written as the sum of the variance and the squared bias,

IE(ẑn − z)2 = Var(ẑn) + (IEẑn − z)2. (1.4)

2

Remark 1.5 (Confidence intervals based upon the t distribu-

tion*) 2

2 Some applications of the Delta method

We consider some further aspects and extensions of the CMC method in
the notation of Section 1.

Estimating a function

In some cases, one is interested in estimating not z, but some function f(z).
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Example 2.1 Let Z1, Z2, . . . be i.i.d. failure times of some system. Then
f(z) = 1/z = 1/IEZ is the long–run failure intensity. 2

Consider thus an estimator ẑn obeying a CLT of the form (1.2) (not
necessarily based upon the CMC method and with a possible non–zero bias
δn). We can then write

f(ẑn)− f(z) = f ′(z)(ẑn − z) +
f ′′(z)

2
(ẑn − z)2 + o((ẑn − z)2). (2.1)

Multiplying by
√

n, the two last terms on the r.h.s. are negliglible from the
point of view of distributions, and so we conclude that

√
n(f(ẑn)− f(z))

D→ N
(
0, ω2)

where ω2 = f ′(z)2σ2; this is the essence of the Delta method in its simplest
form. We have the obvious estimator ω̂2 = f ′(ẑ)2σ̂2 for ω2, and hence
ẑn ± 1.96 ω̂/

√
n is an asymptotic 95% confidence interval.

If the bias δn is of order δ/n, taking expectations in (2.1) yields the
following asymptotics for the bias of ẑn

1

IE[f(ẑn)− f(z)] ∼ 1

n

(
δf ′(z) +

σ2f ′′(z)

2

)
. (2.2)

One implication is that even if ẑn is unbiased, f(ẑn) is not: taking a non–
linear function typically introduces a bias of order 1/n.

Multivariate output

Let next Z =
(
Z(1), . . . , Z(k)

)
be a random vector with possibly dependent

component so that σij = Cov(Z(i), Z(j)) may be non–zero for i 6= j, and
assume that we want to estimate f = f

(
z(1), . . . , z(k)

)
where z(i) = IEZ(i)

(we will meet the example IEZ(2)/IEZ(1) in connection with regenerative
simulation). We then simulate n i.i.d. replications

Z1 =
(
Z

(1)
1 , . . . , Z

(k)
1

)
, . . . ,Zn =

(
Z(1)

n , . . . , Z(k)
n

)
1Whereas the derivation of the CLT is rigorous, this argument is not; one needs various types of

uniform integrability assumptions. The point is just to give an idea of what type of result can typically
be expected.
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of Z and let f̂ = f(ẑ(1), . . . , ẑ(k)) where

ẑ(i) =
Z

(i)
1 + · · ·+ Z

(i)
n

n
, σ̂ij =

1

n− 1

n∑
m=1

(Z(i)
m − ẑ(i))(Z(j)

m − ẑ(j)) .

Then
√

n(f̂ − f)
D→ N

(
0, ω2

)
where

ω2 =
k∑

i,j=1

∂f

∂z(i)

(
z(1), . . . , z(k)

) ∂f

∂z(j)

(
z(1), . . . , z(k)

)
σij

and our confidence interval is f̂ ± 1.96 ω̂/
√

n where

ω̂2 =
k∑

i,j=1

∂f

∂z(i)

(
ẑ(1), . . . , ẑ(k)

) ∂f

∂z(j)

(
ẑ(1), . . . , ẑ(k)

)
σ̂ij .

The variance of the variance estimator σ̂2

Given the choice between two CMC schemes based upon r.v.’s Z, Z ′ with
variances σ2

Z, σ2
Z ′, the first concern would be to obtain minimal variance for

a given CPU time (simulation budget) t as discussed in Section 1.
If the variances σ2

ZT , σ2
Z ′T

′ per unit CPU time are roughly the same
(in particular, if σ2

Z and σ2
Z ′ are roughly the same and T, T ′ are roughly

the same), the next concern might be to choose the method with the most
reliable variance estimate. We go next through the computations relevant
for this comparison. Write mk = IEZk (then z = m1, σ2 = m2 −m2

1).

Proposition 2.2
√

n

(
ẑ − z

σ̂2 − σ2

)
D→

N2

((
0
0

)
,

(
σ2 = m2 −m2

1 2m3
1 + m3 − 3m1m2

2m3
1 + m3 − 3m1m2 −4m4

1 + 8m2
1m2 + m4 −m2

2 − 4m1m3

))
Proof Let Z =

∑n
1 Zi/n = ẑ, Z2 =

∑n
1 Z2

i /n.. Obviously,

√
n

(
Z −m1

Z2 −m2

)
D→ N2

((
0
0

)
, Σ

)
where

Σ =

(
Var(Z) Cov(Z, Z2)

Cov(Z, Z2) Var(Z2)

)
=

(
σ2 = m2 −m2

1 m3 −m1m2

m3 −m1m2 m4 −m2
2

)
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Letting f(x, y) = (x, y − x2), (ẑ, σ̂2) has the same asymptotics as f(Z, Z2)
so the result follows by the Delta method, with the asymptotic covariance
matrix

Df(m1, m2)Σ Df(m1, m2)
′ =

(
1 0

−2m1 1

)
Σ

(
1 −2m1

0 1

)
which is the same as asserted. 2

3 Simulations driven by empirical distributions

Most often, the r.v. Z in the CMC method is produced from other r.v.’s
belonging to parametric distributions. Say in a queueing simulation one
uses a Gamma service time distribution. In this example, the exact form
is, however, seldom known but some statistical observations are available,
and it is then appealing not to fit a parametric distribution but to simulate
directly from the empirical distribution of the observed service times.

To illustrate how to perform output analysis in such situations, we con-
sider a simple case where u1, . . . , um are i.i.d. observations from an un-
known distribution F . The aim is to estimate ψ(F ) = IEFg(U1, U2, . . . )
where U1, U2, . . . are i.i.d. with distribution F , by simulation based upon
drawings from the empirical distribution Fm of u1, . . . , um (Fm is the dis-
tribution putting mass 1/m at each uk). Say g is the length of the busy
period in a D/G/1 queue with service time distribution F and constant
interarrival times, or max1≤r≤R Wr, where R is fixed and Wj the waiting
time of customer j.

The naive procedure is to use CMC with Zi = g(uK(i,1), uK(i,2), . . . ) where
the K(i, j) are i.i.d and uniform on {1, . . . , m}. The problem is that z =
IEZ = ψ(Fm) so that the confidence interval produced in this way is a
confidence interval for ψ(Fm), not ψ(F ) as desired: the stochastic variation
in ψ(Fm) is ignored.

To resolve this problem, note that typically ψ(Fm) has an asymptotic
normal distribution with mean ψ(F ) and variance of the form ω2/m for
some ω2 as m → ∞. More precisely, the program for rigorously verifying
this is to find a Banach space (V, ‖ · ‖) of (signed) measures such that one
is willing to assume that F ∈ V , that Fn ∈ V and that ψ is defined on all
of V and Frechet– or Hadamard differentiable at F . See, e.g., Gill [56] for
a good survey.
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It follows that in the CMC setting, we can write

ẑ = ψ(Fm) +
σFm√

n
X1 = ψ(F ) +

σFm√
n

X1 +
ω√
m

X2

where X1, X2 are independent and asymptotically standard normal when
both n and m are large. To produce a confidence interval, wee need there-
fore an additional estimate of ω2. In some cases, ω2 has been evaluated
analytically (see, e.g., Grübel [73]), but typically, an estimate needs to be
produced by simulation and to this end a variant of the CMC method is
required.

The idea is to divide the m observations into groups, say k groups of size `
(assuming for convenience that m can be written as m = k`) and to perform
p (say) simulations within each group, using the empirical distribution F`,i

in group i. For each group, we thus in a straightforward way obtain an
estimate ψ̂(F`,i) of ψ(F`,i) and an associated estimate σ̂2

F`,i
of σ2

F`,i
. The

estimator of ψ(F ) is

ψ̂ =
1

k

(
ψ̂(F`,1) + · · ·+ ψ̂(F`,k)

)
.

We can write

ψ̂(F`,i) = ψ(F`,i) +
σF`,i√

p
X1,i = ψ(F ) +

σF`,i√
p

X1,i +
ω√
`
X2,i

where the Xij are independent and asymptotically standard normal when
both p and ` are large. When ` is large, we can replace σ2

F`,i
by σ2 = σ2

F ,

and so the asymptotic variance of ψ̂ becomes

σ2

kp
+

ω2

k`
(3.1)

The natural estimates of σ2, ω2 are

σ̂2 =
1

k

(
σ̂2

F`,1
+ · · ·+ σ̂2

F`,k

)
, ω̂2 =

`

k − 1

k∑
i=1

(
ψ̂(F`,i)− ψ̂

)2

and so the confidence interval is

ψ̂ ± 1.96

√
σ̂2

kp
+

ω̂2

k`
(3.2)
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An obvious question is how k and p should be chosen based upon a
budget of t drawings from an empirical distribution. Clearly, t = kp so since
both t and m = k` are fixed, (3.1) shows that in terms of minimizing the
variance, the answer is that the choice is unimportant. However, consider
next the variance of the variance estimator. Since Var(σ̂2) ∼ c1/kp = c1/t,
Var(ω̂2) ∼ c2`/k,

Var

(
σ̂2

kp
+

ω̂2

k`

)
∼ c1

t3
+

c2`
2

m3 .

This indicates that choosing ` small or, equivalently, the number of groups
k large, is preferable. But note that the largest possible choice k = m is
not feasible because the asymptotics used in the arguments requires that
also ` = m/k is sufficiently large for the CLT for ψ(F`) to be in force.

4 Variance reduction methods

setcounterequation0

The aim of variance reduction is to produce an alternative estimator
ẑVR of a number z having hopefully much smaller variance than the CMC
estimator ẑCMC. The study of such methods is a classical area in simulation
and the literature is considerable.

It should be noted that variance reduction is typically most readily avail-
able in well structured problems. Also, variance reduction typically involves
a fair amount of both theoretical study of the problem in question and added
programming effort. For this reason, variance reduction is most often only
worthwhile if it is substantial. Assume for example that a sophisticated
method reduces the variance with 25%, i.e. σ2

VR = 0.75σ2
CMC and con-

sider the numbers nCMC, nVR to obtain a given precision (say in terms of
halfwidth of the confidence interval). Then

ε =
1.96σCMC√

nCMC
=

1.96σVR√
nVR

, nVR =
σ2

VR

σ2
CMC

nCMC = 0.75 nCMC

so that at best (assuming that the expected CPU times TCMC, TVR for one
replication are about equal) one can only reduce the computer time by
25% which is most cases is of no relevance compared to the additional
effort to develop and implement the variance reduction method. If TVR >
TCMC/0.75, as may easily be the case, there is no gain at all.
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We concentrate here upon two methods, importance sampling and con-
trol variates, for which there is a large number of examples where the vari-
ance reduction has turned out to be considerable, but briefly mention also
some further classical methods. The examples we give are at a toy level,
but we will meet more substantial examples later in the text.

Importance sampling

The idea is to compute z = IEZ by simulating from a probability measure
ĨP different from the given probability measure IP and having the property
that there exists a r.v. L such that

z = IEZ = ĨE[LZ]. (4.3)

Thus, using the CMC method one generates (Z1, L1), . . . , (Zn, Ln) from ĨP
and uses the estimator

ẑIS =
1

n

n∑
i=1

LiZi

and the confidence interval

ẑIS ±
1.96 sIS√

n
where s2

IS =
1

n− 1

n∑
i=1

(LiZi − ẑIS)2 .

In order to achieve (4.3), the obvious possibility is to take IP and ĨP mutually
equivalent in the Radon–Nikodym sense and L = dIP/dĨP as the likelihood
ratio.

Variance reduction may or may not be obtained: it depends on the choice
of the alternative measure ĨP, and the problem is to make an efficient choice.

To this end, a crucial observation is that there is an optimal choice of
ĨP: define ĨP by dĨP/dIP = Z/IEZ = Z/z, i.e. L = z/Z (the event {Z = 0}
is not a concern because ĨP(Z = 0) = 0). Then

Var(LZ) = ĨE(LZ)2 −
[
ĨE(LZ)

]2
= IE

(
z2

Z2Z
2
)
−

[
IE

( z

Z
Z

)]2

= z2 − z2 = 0.

Thus, it appears that we have produced an estimator with variance zero.
However, the argument cheats because we are simulating since z is not
avaliable analytically. Thus we cannot compute L = Z/z.
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Nevertheless, even if the optimal change of measure is not practical, it
gives a guidance: choose ĨP such that dĨP/dIP is as proportional to Z as
possible. This may also be difficult to assess, but tentatively, one would
try to choose ĨP to make large values of Z more likely; from this, the term
importance sampling.

Example 4.1 (Monte Carlo integration) Assume that z =
∫ 1

0 g(x) dx
where the integral is not available analytically. We can then use the CMC
method by taking Z = g(U) with U uniform(0, 1).

For importance sampling, the idea of choosing dĨP/dIP close to Z/z
leads to taking dĨP/dIP = g̃(U)/z̃ where g̃ is close to g and z̃ = IEg̃(U) is
analytically available. This means that

ZIS = g(Ũ)
z̃

g̃(Ũ)

where Ũ is simulated from the density g̃/z̃.
In simple examples like this, Monte Carlo integration is inferior to nu-

merical integration but the method plays a role above all in problems of
high dimensionality. 2

Example 4.2 (Likelihood ratio calculations) If ĨP is obtained by
changing the density of a single r.v. U from f(x) to f̃(x), we have L =
f(U)/f̃(U). If more generally Z has the form g(U0, U1, . . . , Uτ) where τ is
a constant or a stopping time and U0, U1, . . . are i.i.d. with density f , then

L =
τ∏

n=0

f(Un)

f̃(Un)
.

If instead the Un form a countable Markov chain with transition probabil-
ities pij and ĨP corresponds to by changing the pij to a different set p̃ij of
transition probabilities, then

L =
τ−1∏
n=0

pUnUn+1

p̃UnUn+1

.

2

Control variates

The idea is to look for a r.v. W which has a strong correlation (positive
or negative) with Z and a known mean w, generate (Z1, W1), . . . , (Zn, Wn)
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rather than Z1, . . . , Zn and combine the empirical means ẑ, ŵ to an esti-
mator with lower variance than ẑ.

The naive method is to choose some arbitrary constant α and consider
the estimator ẑ + α(ŵ − w). The point is that since w is known, we are in
position to just add a term with mean zero so that the mean of the new
estimator still is z. The variance is

σ2
Z + α2σ2

W + 2ασ2
ZW , (4.4)

where

σ2
Z = VarZ, σ2

W = VarW, σ2
ZW = Cov(Z, W ).

In general, nothing can be said about how (4.4) compares to the variance
σ2

Z of the CMC estimator ẑ (though sometimes a naive choice like α = 1
works to produce a lower variance). However, it is easily seen that (4.4) is
minimized for α = −σ2

ZW/σ2
W , and that the minimum value is

σ2
Z(1− ρ2) where ρ = Corr(Z, W ) =

σ2
ZW√

σ2
Zσ2

W

(4.5)

One then simply estimates the optimal α via the empirical covariance ma-
trix,

α̂ = −s2
ZW

s2
W

,

where

s2
Z = s2 =

1

n− 1

n∑
i=1

(Zi − ẑ)2, s2
W =

1

n− 1

n∑
i=1

(Wi − ŵ)2,

s2
ZW =

1

n− 1

n∑
i=1

(Zi − ẑ)(Wi − ŵ),

and uses the estimator ẑCV = ẑ + α̂(ŵ−w) which has the same asymptotic
properties as ẑ + α(ŵ − w); in the particular, the asymptotic variance is
σ2

Z(1 − ρ2)/n, and a confidence interval is constructed by replacing σ2
Z, ρ2

by their empirical values s2
Z , s4

ZW/s2
Zs2

W .

The procedure reduces the variance by a factor 1− ρ2. Thus, one needs
to look for a control variate W with |ρ| as close to 1 as possible. The exact
value of ρ will be difficult to asses apriori, so that in practice one would
just try to make W and Z as dependent as possible (in some vague sense).
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It is, however, an appealing feature that even if one is not very succesful,
the resulting variance is never increased.

There is also an interesting relation to standard regression analysis. In
fact, the calculation of ẑCV amounts to use a regression of Z upon W ,
fit a regression line by least squares and calculate the level of the line at
the known value w of IEW ; see Fig. II.4.1. This is seen as follows: the
assumption underlying the regression (viewing the Wi as constants and not
r.v.’s) is

IEZi = m′ + βWi = m + β(Wi − ŵ) (4.6)

(m = m′ + βŵ), with least squares estimates

m̂ = ẑ, β̂ =

∑n
1(Zi − ẑ)(Wi − ŵ)∑n

1(Wi − ŵ)2 = −α̂ ,

so that the level of the fitted regression line at w is

m̂ + β̂(w − ŵ) = ẑCV .

-
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Figure II.4.1

For this reason, often the term regression–adjusted control variates is used.
The similarity is, however, formal: regression analysis via least squares is
based upon the assumption of linear dependence (and preferably normal
errors) whereas nothing like this is needed for regression–adjusted control
variates (one may, however view the method as inference in the limiting
bivariate normal distribution of (ẑ, ŵ)). The literature pays quite a lot
of attention to control variates without regression–adjustment (i.e., α is
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assigned some arbitrary value), but to the present author’s mind, it is
difficult to imagine situations where one would prefer this to regression–
adjustment.

Example 4.3 Consider again the Monte Carlo integration problem in Ex-
ample 4.1. A suitable control for Z = g(U) is then W = f(U) with where
f is close to g (to get |ρ| close to 1) and w = IEf(U) =

∫ 1
0 f(x) dx is

analytically available. 2

Antithetic sampling

Here one generates Z1, . . . , Zn not as i.i.d. but as pairwise dependent and
as negatively correlated as possible. That is, one takes n = 2m and gen-
erates m i.i.d. random pairs (Z1, Z2), (Z3, Z4), . . . , (Zn−1, Zn) such that the
marginal distribution of Zi is the same (as for the CMC method) for all i
(even and uneven) but Z2j−1 and Z2j may be dependent. The estimator is
ẑAnth = (Z1 + · · ·+ Zn)/n with variance

1

n
σ2

Anth =
1

m
Var

(
Z1 + Z2

2

)
=

1

4m
(σ2

CMC + σ2
CMC + 2σ2

CMCρ)

=
1

n
σ2

CMC(1 + ρ)

where ρ = Corr(Z1, Z2). Thus, ρ should be negative for obtaining variance
reduction, and preferably as close to -1 as possible for the method to be
efficient.

For example, in Monte Carlo integration (Example 4.1) one could take
Z1 = g(U), Z2 = g(−U). If g is monotone, Chebycheff’s covariance in-
equality2 then yields ρ ≤ 0.

We know of no example where the variance reduction obtained by anti-
thetic sampling is dramatic.

Conditional Monte Carlo

Here ZCMC is replaced by ZCond = IE[ZCMC|W ] for some r.v. W (more gener-
ally, one could consider IE[ZCMC|G] for some σ–field G). Clearly, IEZCond =
IEZCMC = z. Since

σ2
CMC = Var(ZCMC) = Var(IE[ZCMC|W ]) + IE(Var[ZCMC|W ])

= σ2
Cond + IE(Var[ZCMC|W ]) ≥ σ2

Cond,

2stating that Corr(f1(X), f2(X)) ≥ 0 if X is a r.v. and f1, f2 non–decreasing functions
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conditional Monte Carlo always provides variance reduction which is ap-
pealing. The difficulty is to find W such that the conditional expectation
is computable.

Example 4.4 Consider the estimation of z = π as in Remark 1.2 via
ZCMC = 4I(U1(2+U2

2 < 1) with U1, U2 independent and uniform on (−1, 1).
We can then take

ZCond = IE[ZCMC|U1] = 4IP(U2
2 < 1− U2

1 |U2) = 4
√

1− U2
1 .

2

Example 4.5 Let z = IP(X1+X2 > x) where X1, X2 are independent with
distribution F (F is known, one can simulate from F but the convolution
F ∗2 is not available). Then ZCMC = I(X1 + X2 > x) and taking W = X1,
we get ZCond = F (x−X1).

For a related algorithm, see Section IV.2c. 2

Common random numbers*

Stratification*

Isolating known components

In many cases, some parts of the expectation z of Z can be evaluated
analytically. One may then attempt to organize the output analysis so that
these known parts need not be simulated.

Example 4.6 Let T1, T2, . . . be i.i.d. and non–negative, and let
Z = sup {n : Sn ≤ t} be the number of renewals up to time t where Sn =
T1 + · · · + Tn (z = IEZ is then the renewal function at t). Letting τ =
inf {n : Sn > t}, we then have Z = τ − 1. By Wald’s identity,

IESτ = µIEτ = µ(z + 1).

But we can write Sτ = t + ξ where ξ = Sτ − t is the overshoot. This yields

z =
t + IEξ

µ
− 1

and an alternative estimator is

Z̃ =
t + ξ

µ
− 1.
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For example, if the Ti are standard exponential and t = 50, then Z is
Poisson(50) so that VarZ = 50. In contrast, since ξ is again standard
exponential, VarZ̃ = 1. 2

For a further example, see the Minh–Sorli algorithm in IX.1.
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Chapter III

Steady–state simulation

Let {Xt} be a stochastic process in discrete or continuous time, and assume
that Xt converges in distribution as t → ∞, say with limit distribution π.
The problem we study is to obtain information on π from a simulated (in
general non–stationary) version of {Xt}.

The ideal is of course to generate a r.v. Z with distribution π. However,
there are no obvious general methods for doing this. In Section 1, we study
to which extent this is possible for Markov chains with a discrete state space
E. The answer is that algorithms exist for E finite (|E| < ∞) but not in
general for E countably infinite.

The case |E| < ∞ is, however, quite special and even there the algo-
rithms are often prohibitively inefficient in terms of computer time. Thus,
the prominent methods in the area of steady–state simulation are based
on alternative representations of functionals z like the mean

∫
xπ(dx). In

particular, we look at estimators based upon sample averages in various
variants (Section 2) and regenerative simulation (Section 3).

1 Exact simulation

Let {Xn} be a Markov chain with state space E (finite or countable), tran-
sition probabilities pij and stationary distribution π (assuming ergodicity,
i.e. irreducibility, positive recurrence and aperiodicity):

πj =
∑
i∈E

πipij .

We are interested in the problem of whether it is possible to generate a r.v.
Z with distribution π. If so, we speak of exact simulation, sometimes also
called perfect simulation.

23
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E finite

It is not apriori obvious whether exact simulation is possible. However, the
answer is positive in the case of a finite Markov chain. The first algorithm
for generating a r.v. Z with exactly the stationary distribution seems to be
that of Asmussen, Glynn & Thorisson [14] but was prohibitively inefficient
in terms of computer time. We describe here some algorithms developed
by Propp & Wilson [121]. Write E = {1, . . . , p}.

It will be convenient to represent the Markov chain simulation in terms
of an updating rule. By this we understand a random vector

Y = (Y (1), . . . , Y (p))

such that Y (i) has distribution pi·, IP(Y (i) = j) = pij (note that the p
components of Y are not necessarily independent; we return to this point
later). From Y , we construct a doubly infinite sequence (Y n)n=0,±1,±2,... of
i.i.d. random vectors distributed as Y . We can then construct {Xn}n=0,1,...

recursively by Xn+1 = Yn(Xn) and X0 = i where i is the initial state.
More generally, we can for each N ∈ Z and each i ∈ E define a version{
XN

n (i)
}

n=N,N+1,...
of {Xn} starting at i at time N by

XN
N (i) = i

XN
N+1(i) = YN (i) = YN

(
XN

N (i)
)
, . . . , XN

n+1(i) = Yn

(
XN

n (i)
)

.

Note the important point that if N, N ′ ≤ n, then the updatings of XN (i)
and XN ′(i′) from n to n + 1 use the same Y n.

The forwards coupling time is defined as

τ+ = inf
{
n = 1, 2, . . . : X0

n(1) = . . . = X0
n(p)

}
.

i.e., as the first time where the Markov chains{
X0

n(1)
}

n=0,1,...
, . . . ,

{
X0

n(p)
}

n=0,1,...

started at time 0 in the p different states coalesce. See Fig. III.1.1.
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Figure III.1.1: The forwards coupling
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Whether this forward coupling time is a.s. finite or not depends on the
updating rule, i.e. the specific dependence between the p components of Y n.
Call the updating rule independent if these p components are independent.

Proposition 1.1 In the case of independent updating, IP(τ+ <∞) = 1.

Proof Let p
(n)
ij = IP(Xn = j |X0 = i) be the n–step transition probabilities.

Since p
(n)
ij → πj > 0, n → ∞, we can choose first some arbitrary state j

and next N such that p
(N)
ij > ε > 0 for all i ∈ E. Since the probability of

coalescence before N is at least the probability that p independent Markov
chains starting at time 0 in the p different states will all be in state j at
time N , we get IP(τ+ ≤ N) ≥ εk. Similarly, IP(τ+ ≤ 2N |τ+ > N) ≥ εk so
(’geometric trial argument’)

IP(τ+ > N) ≤ 1− εk, IP(τ+ > 2N) ≤ (1− εk)2, . . .

which implies that τ+ <∞ a.s. 2

Rather than forwards coupling, the Propp–Wilson algorithm uses cou-
pling from the past. The backwards coupling time is defined as

τ = inf
{
n = 1, 2, . . . : X−n

0 (1) = . . . = X−n
0 (p)

}
,

i.e., as the first time where the Markov chains X−n(1), X−n(p) started at
time −n in the p different states coalesce. Equivalently, coalescence means
that the value set {

X−n
0 (1), . . . , X−n

0 (p)
}

contains only one point (note that the cardinality of this set is a non–
increasing function of n). See Fig. III.1.2.
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Figure III.1.2: The backwards coupling

Theorem 1.2 Assume that the updating rule is such that τ+ < ∞ a.s.
Then τ < ∞ a.s. as well, Z = X−τ

0 (i) does not depend on i and Z has
distribution π.
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Proof The first statement follows since IP(τ ≤ k) = IP(τ+ ≤ k) goes to 1 as
k →∞. That Z does not depend on i is immediate from the definition of
τ .

Now consider X−n
0 (i) for some fixed i. On τ ≤ n, we have X−n

0 (i) = Z
and hence IP(X−n

0 (i) = j) → IP(Z = j) for all j. On the other hand,
IP(X−n

0 (i) = j) = pn
ij → πj. Hence IP(Z = j) = πj as desired. 2

Remark 1.3 The forwards coupling time only enters as a tool to show that
the backwards coupling time is finite. It is definitely not correct that X0

τ+
(i)

has the stationary distribution! 2

Corollary 1.4 (general Markov chain, independent updating)

In the case of independent updating, τ < ∞ a.s., Z = X−τ
0 (i) does not

depend on i and Z has distribution π.

Now assume that there is defined some partial order � on {1, . . . , p},
such that 1 is minimal element and p maximal, 1 � i � p for all i = 1, . . . , p.

Recall that X = {Xn} is called stochastically monotone if i � j implies
that X0

1(i) � X0
1(j) in stochastic order. Im terms of transition probabilities:

for any `, ∑
k: `�k

pik ≤
∑

k: `�k

pjk if i � j

Example 1.5 An example of a monotonous Markov chain is a random
walk reflected at the barriers 0 and p,

Xn+1 = min(p, max(0, Xn + Un))

where U1, U2, . . . are i.i.d. on Z. Such chains show up in many finite buffer
queuing problems. A particular case is Moran’s model for the dam, where
Xn is the content of a water reservoir at time n and Un = Vn −m where
Vn is the amount of water flowing into the reservoir at time n and m the
maximal amount of water which can be released. 2

Example 1.6 In many applications in mathematical physics and image
analysis, the state space E is set of all 0, 1 configurations on a finite lattice,
say {0, . . . , N}2. See Fig. 1.3 where the filled circles correspond to spin 1
at a site and the unfilled ones to spin 0.
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Figure III.1.3

Thus, the number of states is 2N2

. The order is defined componentwise so
that if we identify the configuration of all 1’s with state 1 and the configu-
ration of all 0’s with state p = 2N2

, we have 1 � i � p for all configurations
i. 2

Under such monotonicity assumptions, a variant of the Propp–Wilson
algorithm is often more efficient. It is defined by monotone updating, re-
quiring

Y (i) � Y (j) if i � j.

This implies XN
n (i) � XN

n (j) for all N and all n ≥ N , in particular

XN
n (1) � XN

n (i) � XN
n (p) (1.1)

for all i and all n ≥ N . For example, in Example 1.5 the natural monotone
updating rule is Y (i) = min(p, max(0, i + U)) with the same U for all i (in
the case of independent updating, one would need to take the U ′s to be
independent for different i). We define

τm = inf
{
n = 1, 2, . . . : X−n

0 (1) = X−n
0 (p)

}
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Corollary 1.7 (stochastically monotone Markov chain, mono-

tone updating) In the case of monotone updating, τm = τ < ∞ a.s.,
Z = X−τm

0 (i) does not depend on i and Z has distribution π.

Proof That τ+ <∞ a.s. follows since τ(p, 1) = inf
{
n : X0

n(p) = 1
}

is finite
by recurrence and X0

τ(p,1)(i) = 1 for all i by (1.1).

Clearly, by definition τm ≤ τ . On the other hand, X−τm

0 (i) = X−τm

0 (1) =
X−τm

0 (p) for all i by (1.1). 2

Remark 1.8 In the monotone case, Propp & Wilson suggest to take alter-
natively

τ̃m = inf
{
n = 1, 2, 4, 8, . . . : X−n

0 (1) = X−n
0 (p)

}
,

Z̃ = X−τ̃m

0 (1) = X−τ̃m

0 (1). That τ̃m < ∞ follows since τ̃m ≤ 2k when
τm = τ ≤ 2k, and IP(Z̃ = j) = πj then follows exactly as above. For the
advantages of using monotone updating and Z̃, see the original paper [121].

2

Some further interesting papers related to the Propp–Wilson algorithm
are Fill [51], Foss & Tweedie [53], Møller [106] and Propp & Wilson [122].

E countably infinite

We will say that the stationary distribution for a class P of ergodic tran-
sition matrices on E (i.e., a class of ergodic Markov chains) is simulatable
if there exists a (randomized) stopping time σ for {Xn} and a r.v. Z, mea-
surable w.r.t. Fσ where Fn = σ(X0, . . . , Xn, U0, . . . , Un) with U0, U1, . . .
uniform(0, 1) and independent of {Xn}, such that

IPP (Z ∈ A) = πP (A) for all A ⊆ E and all P ∈ P (1.2)

where IPP indicates that {Xn} is simulated according to P and πP is the
stationary distribution for P .

Remark 1.9 The ’rules of the game’ are thus to use nothing more than
a simulated version of {Xt} and some possible additional randomization.
In particular, the algorithm is not allowed to use analytic information on
the pij. The purpose of this restriction is two–fold: first, if the pij are ana-
lytically available, one can argue that there exist deterministic algorithms
for computing π by solving linear equations. Next, the natural description
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of a Markov chain is most often in terms of an updating rule rather than
the pij, and one would simulate directly from the updating rule rather than
use it to compute the pij. For an example, consider the Kiefer–Wolfowitz

vector W n =
(
W

(1)
n , . . . , W

(c)
n

)
in a GI/G/c queue (the components give

the workload at the c servers in non–descending order at the nth arrival)..
Here the updating rule is

W n+1 = R
([

W (1)
n + Un − Tn

]+
,
[
W (2)

n − Tn

]+
, . . . ,

[
W (c)

n − Tn

]+
)

where Un is the service time of customer n, Tn the nth interarrival time,
and R : [0,∞)c → [0,∞)c the operator rearranging the components in
non–descending order. 2

It follows from Section 2 that:

Theorem 1.10 If E is finite, then the stationary distribution for the class
PE of all ergodic transition matrices on E is simulatable.

However (Asmussen, Glynn & Thorisson [14]):

Theorem 1.11 If E is countably infinite, then the stationary distribution
for the class PE of all ergodic transition matrices on E is not simulatable.

Proof We argue by contradiction by assuming that (1.2) holds for P = PE.
Assume w.l.o.g. that E = {0, 1, 2, . . .}.

Let P (0) = (p
(0)
ij )i,j∈E be arbitrary, write IP0 = IPP (0), π(0) = πP (0) and

choose K < ∞ such that IP0(Z ≤ K, M ≤ K) > 1 − ε where M =
maxn≤σ Xn and 0 < ε < 1/2. For α ∈ (0, 1), define

p
(α)
ij =


p

(0)
ij i ≤ K

α + (1− α)p
(0)
ij i = j > K

(1− α)p
(0)
ij i > K, i 6= j

That is, P (α) is obtained from P (0) by adding a geometric number (with
parameter α) of ’self–loops’ in states i > K; on states i ≤ K, the transitions
are just the same and hence

IPα(Z ≤ K, M ≤ K) = IP0(Z ≤ K, M ≤ K) > 1− ε .

Write IPα = IPP (α), π(α) = πP (α).
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Let τ = inf {n > 0 : Xn = 0 | X0 = 0} and recall the formula

πi =
1

IEτ
IE

τ−1∑
i=0

I(Xn = i)

for the stationary distribution of a Markov chain. For i ≤ K, this yields

π
(α)
i =

1

IEατ
IEα

τ−1∑
i=0

I(Xn = i) =
1

IEατ
IE0

τ−1∑
i=0

I(Xn = i)

=
IE0τ

IEατ
π

(0)
i . (1.3)

From the self–loop property it follows that

IEατ ≥ 1

1− α
IPα

(
max
0≤n<τ

Xn > K

)
=

1

1− α
IP0

(
max
0≤n<τ

Xn > K

)
(1.4)

As α ↑ 1, the r.h.s. of (1.4) goes to ∞, and hence (1.3) goes to 0. Hence
with A = {1, . . . , K}, we have π(α)(A) < ε for all α close enough to 1, and
get

IPα(Z ∈ A)− π(α)(A) ≥ IPα(Z ≤ K, M ≤ K)− π(α)(A)

≥ 1− ε− ε > 0 ,

contradicting (1.2). 2

The implication of Theorem (1.11) is not necessarily that one should
consider exact simulation impossible when faced with a particular non–finite
Markov chain {Xn}. Rather, Theorem (1.11) says that exact simulation
cannot be based upon simulated values of {Xn} alone but one needs to
combine with some specific properties of {Xn}, i.e. to involve knowledge of
the form P ∈ P0 where P0 ⊂ PE. Examples are in Foss & Tweedie [53]
in the framework of Harris chains, in [14] in a regenerative setting, and in
Ensor & Glynn [49] for the GI/G/1 waiting time (see further IX.1 for the
algorithm of [49]).

Example 1.12 In the notation of the proof of Theorem (1.11), the cycle
length τ is obviously simulatable. Assume also that the stationary excess
variable τ ∗ with distribution IP(τ ∗ = n) = IP(τ > n)/IEτ is simulatable.
Then it is shown in [14] that exact simulation from π is possible.
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Theorem 1.11 shows that τ ∗ is not in general simulatable even if τ is so
(consider Xn = the residual cycle at time n). However, let P0 be the class of
Markov chains such that IP(τ > n) ≤ Cg(n) for some variable but explicit
constant C and some fixed function g, w.l.o.g. satisfying g(0) + g(1) + · · ·
= 1. By a result of Keane & O’Brien [87], it is then possible to generate
τ ∗ from an i.i.d. sequence of r.v.’s distributed as τ . I.e., τ ∗ and hence π is
simulatable. 2

2 Sample averages

For simplicity, we consider the discrete time case (usually, the continuous
time is only notationally different). Let {Xn}n=0,1,2,... be a stochastic process
in discrete time and with state space [0,∞) with limit distribution π as
n → ∞. We consider the problem of estimating the mean z of π, using a
budget of t simulated values of {Xn}.

The process {Yn} to be simulated could be more complicated and Xn a
function of Yn.

The most obvious estimator is the Cesaro average

ẑt =
1

t

t−1∑
n=0

Xn . (2.1)

The reason for this is that ẑt
a.s.→ z, t→∞, (consistency) under very general

conditions. In fact, it is sometimes argued that it is this property which
makes z a relevant performance measure, not the interpretation in terms of
stationarity.

Further typical asymptotic properties of (2.1) are a CLT with variance
constant σ2/t,

√
t(ẑt − z)

D→ N
(
0, σ2) (2.2)

where

σ2 = lim
t→∞

tVar(ẑt) , (2.3)

and a bias of order 1/t,

IEẑt = z +
u

t
+ o

(
1

t

)
(2.4)

for some constant u.
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2a Asymptotics

We start by the bias relation (2.4) which is elementary to obtain:

Proposition 2.1 Define un = IEXn − z and assume
∑∞

1 |un| <∞. Then
(2.4) holds with u =

∑∞
1 un.

Proof Since
∑∞

t un = o(1), we obtain

IEẑt =
1

t

t−1∑
n=0

IEXn = z +
1

t

t−1∑
n=0

un

= z +
u

t
− 1

t

∞∑
n=t

un = z +
u

t
+ o

(
1

t

)
.

2

It should be noted that (not unexpectedly) the constant u is typically
extremely hard to get a hand on except for the following classical case:

Example 2.2 Let {Yn} be a finite Markov chain with transition matrix P
and Xn = f(Yn). Representing π as a row vector π and f as a column
vector f , we then have z = πf . The fundamental matrix (e.g. Kemeny,
Snell & Knapp [89]) is defined as

F = (I − P 1)
−1 =

∞∑
n=0

P n
1

where P 1 = P − eπ and e is the column vector of 1’s. One can check that
the inverse always exists and that P n

1 = P n − eπ. Thus, if ν is the initial
vector for X0, νe = 1 yields

un = νP nf − πf = νP nf − νeπf = ν(P n − eπ)f = νP n
1f

so that

u = νFf . (2.5)

The fundamental matrix also determines the variance constant, see the
Appendix where also some generalizations beyond the finite case are dis-
cussed in the framework of Poisson’s equation. 2
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It follows in particular from (2.2), (2.4) that we have the desirable prop-
erty discussed in II.1 that the standard deviation (= O(1/

√
t)) should dom-

inate the bias (= O(1/t)). Nevertheless, much attention is given in the
literature to controlling the bias.

One approach is to perform exact simulation, when feasible, to generate
X0 acccording to π and then go on simulating X1, . . . , Xt−1 according to
the update rule; then the bias is 0. The reason that one would not just
simulate i.i.d. replications of the stationary r.v. and take the average is that
exact simulation is usually time–consuming. See further Assignment 9.

Another approach is to neglect the observations X0, . . . , Xt0−1 in a suit-
able ’warm–up’ period of length t0 and use the estimator

∑t−1
t0

Xn/(t− t0).
In this way (assuming that t→∞ with t0 fixed), the bias is asymptotically
reduced from u/t to ut0/t where ut0 =

∑∞
t0

un whereas the variance remains
σ2/t. The difficulty is that it is usually very hard to asses for a given pro-
cess how large t0 must be for {Xt0, Xt0+1, . . .} to be ’almost stationary’ in
the sense that ut0 is substantially smaller than u = u0. Nevertheless, the
method is widely used in practice.

Remark 2.3 For say the GI/G/1 waiting time process, one can show that{
(1− ρ)Wt/(1−ρ)2

}
can be approximated by a reflected Brownian motion{

B(t)
}

with negative drift−µ and variance constant σ2, say, when ρ is close
to 1 (heavy traffic). The same holds for many other queueing processes,
and Whitt [154] then suggests to choose t0 such that

{
B(t)

}
has become

’almost stationary at time t0(1− ρ)2. For example when µ = 1, σ2 = 1, the
stationary mean of

{
B(t)

}
is 2, whereas IEB(t) is increasing in t and reaches

95% of its steady–state value 1/2 at time when 2.15. Thus, a possible choice
is t0 = 2.15.

Whitt [154] and Asmussen [9] contain a number of further applications
of heavy traffic analysis in simulation. 2

Now turn to the CLT. Various approaches are available for a rigorous
proof of (2.2) (under suitable conditions). For example:

Proposition 2.4 Assume that {Xn} is regenerative w.r.t. {τn}. Then (2.2)
holds, with σ2 related to the variance constant ω2 in (3.2) via σ2 = ω2IEτ .

The proof is given in connection with regenerative variance estimation be-
low.
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2b Variance estimation methods

The purpose is to obtain an estimate σ̂2
t (based upon X0, . . . , Xt−1) of the

variance constant σ2 in (2.2) which is consistent so that

ẑt ±
1.96σ̂t√

t

is an asymptotic 95% confidence interval.
In the i.i.d. case, the obvious estimator is

σ̂2
t =

1

t− 1

t−1∑
n=0

(Xn − ẑt)
2 . (2.6)

However, in a stochastic process context this estimator is not even consis-
tent: its a.s. limit is the variance of π which is general does not equal σ2.
We shall survey a number of methods valid for dependent data.

The time series method

This is based upon stationary process theory so we will assume for simplicity
that {Xn} is strictly stationary.

Proposition 2.5 Define ρk = Cov(Xn, Xn+k). Then the limit in (2.3)
exists and is given by

σ2 = ρ0 + 2
∞∑

k=1

ρk ,

provided the sum converges absolutely.

[the verification of the CLT (2.2) is in the general stationary setting usually
performed by involving some mixing condition].
Proof

tVar(ẑt) =
1

t

t−1∑
n,m=0

Cov(Xn, Xm)

= ρ0 +
2

t

t−1∑
n=0

t−1∑
m=n+1

Cov(Xn, Xm) = ρ0 +
t−1∑
k=1

t− k

t
ρk

→ ρ0 + 2
∞∑

k=1

ρk,
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using dominated convergence in the last step. 2

To use Proposition 2.5, we estimate ρk by

ρ̂k =
1

t− k

t−k∑
n=1

(Xn − ẑt) (Xn+k − ẑt)

and σ2 by
∑N
−N ρ̂k where N < t goes to ∞ with t. A difficulty is that the

ρ̂k with k close to t are extremely unprecise; this is reflected in that the
rate of convergence of the variance estimator obtained in this way is not
equally good as the one O(t−1/2) obtained say by the regenerative method.

Batch means

The method of batch means is probably the most common practical choice
of variance estimation method. The idea is to divide X0, . . . , Xt−1 into k
groups (’batches’) of ` each (k` = t)

batch 1 batch 2 batch k

0 ` 2` t− 1 = k`

Figure III.2.1

and treat batches as if they were i.i.d. The averages within the k batches
are

V1 =
1

`

`−1∑
n=0

Xn, V2 =
1

`

2`−1∑
n=`

Xn, . . . , Vk =
1

`

t−1∑
n=(k−1)`

Xn ,

and the estimator for z is the grand batch mean

V =
1

k
(V1 + · · ·+ Vk) =

1

k`

t−1∑
n=0

Xn

which is simply the same as the sample average ẑt.
For estimating the variance on V , V1, . . . , Vk are treated as if they were

i.i.d. say with variance ω2. This leads to VarV = ω2/k and, recalling that
Varẑt ≈ σ2/t, k` = t, that σ2 = `ω2. The estimators for ω2, σ2 are

ω̂2 =
1

k − 1

k∑
i=1

(Vi − V )2, resp. σ̂2 = `ω̂2 .
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Under quite general conditions, ω̂2 is consistent when both k and ` go to
∞; see e.g. Damerdji [41], who use strong approximation techniques, and
references there. In Carlstein [34] and Goldsman & Meketon [71], it is shown
that taking ` = O(t1/3) is optimal in the mean square sense. The choice
of k, ` subject to the constraint k` = t is a trade–off: taking k too small
makes ω̂2 an unprecise estimate, taking ` too small makes the assumption
of independence between the Vi bad. The method of batch means leaves
the bias (of order u/t) unaffected since the estimator remains ẑt.

Multiple replications

Again, we perform the simulation in k groups (’replications’) of ` each
(k` = t) but now groups are truly i.i.d., not just approximately as for the
batch means method. The difference is illustrated on Fig. III.2.2.

0 `
replication 1

replication 2

0 `
replication k

Figure III.2.2

Thus the k replications use independent versions
{

X
(1)
n

}
, . . . ,

{
X

(k)
n

}
of {Xn}. The average from the ith replication is

Vi =
1

`

∑̀
n=1

X(i)
n ,

and the estimator for z is V = (V1 + · · · + Vk)/k. The variance is ω2/k,
with ω2 estimated by

∑k
1(Vi − V )2/(k − 1). Since

IEVi = IEẑ` ∼ z +
u

`
,

also IEV ∼ z + u/` so that we have an asymptotic bias of order 1/`. Thus,
the bias is increased compared to the batch mean method but on the other
hand, the Vi are truly independent.
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For asymptotic purposes, we want both k and ` to go to infinity with t,
and in such a way that the standard deviation ω/t1/2 dominates the bias
u/`. Since ω2 ∼ σ2/`, this is achieved if 1/` is much smaller than 1/

√
k`,

i.e. if ` is much larger than k. Since t = k`, the maximal value of ` is t.
However, we cannot choose ` too close to t because k must be sufficiently
large for the appropriate CLT to be in force.

Further asymptotic discussion of the method of replications can be found
in Glynn [63].

3 Regenerative simulation

Let {Xn}n=0,1,2,... be a regenerative process (see the Appendix) in discrete
time (usually, the continuous time is only notationally different), with
regeneration points {τn}, state space [0,∞) and limit distribution π as
n → ∞. We want to estimate the mean z of π and to give a confidence
interval.

Note that in practice, the process {Yn} to be simulated would be more
complicated and Xn a function of Yn. Say Yn is the state of a queueing
network as seen from the view of the nth customer and Xn is his sojourn
time. This is no problem in a regenerative setting: if {Yn} is regenerative
w.r.t. {τn}, then so is {ϕ(Yn)} for any ϕ.

The reason that the regenerative structure is particularly convenient
from the point of view of producing confidence intervals is the independence
of cycles, which allows everything to be reduced to standard i.i.d. theory.
To this end, we recall the formula

z =
1

IEτ
IE

τ−1∑
k=0

Xk . (3.1)

The idea is now to simulate the process until n cycles have been completed,
estimate IEτ by the empirical mean of τ1, . . . , τn, IE

∑τ−1
0 Xk by the empir-

ical mean of the corresponding quantities over the n cycles, and z by the
ratio. A confidence interval can then be build from the i.i.d. structure of
the cycles. The details follow.

To conform with the notation of II.1, we let

Z(1) = τ, Z(2) =
τ−1∑
k=0

Xk, Z =
(
Z(1), Z(2)

)
,
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z(i) = IEZ(i), σij = Cov
(
Z(i), Z(j)

)
, f(x, y) =

y

x

Then z = f
(
z(1), z(2)

)
, and our estimator is

ẑ = f
(
ẑ(1), ẑ(2)

)
=

ẑ(2)

ẑ(1) where ẑ(i) =
Z

(i)
1 + · · ·+ Z

(i)
n

n

with

Z(1)
n = τn − τn−1, Z(2)

n =

τ1+···+τn−1∑
k=τ1+···+τn−1

Xk .

Then
√

n(ẑ − z)
D→ N(0, ω2) where

ω2 =
2∑

i,j=1

∂f

∂z(i)

∂f

∂z(j)σij

=
z(2)2

z(1)4 σ11 +
1

z(1)2 σ22 − 2
z(2)

z(1)3 σ12 , (3.2)

using
∂f

∂x
(x, y) = − y

x2 ,
∂f

∂y
(x, y) =

1

x
.

Our confidence interval is

ẑ ± 1.96 ω̂√
n

(3.3)

where

ω̂2 =
ẑ(2)2

ẑ(1)4 σ̂11 +
1

ẑ(1)2 σ̂22 − 2
ẑ(2)

ẑ(1)3 σ̂12 ,

σ̂ij =
1

n− 1

n∑
m=1

(Z(i)
m − ẑ(i))(Z(j)

m − ẑ(j)) .

Note that since

Z
(1)
1 + · · ·+ Z(1)

n = τn , Z
(2)
1 + · · ·+ Z(2)

n =

τn−1∑
k=0

Xk

the regenerative estimator ẑ can also be interpreted as the sample average
ẑτn with random sample size t = τn. The crux of the regenerative method
is the natural way in which the variance can be estimated.
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Remark 3.1 A sometimes useful twist of regenerative simulation is that is
fact the strict independence of cycles is not all that essential. The relevant
generalization is that of Palm theory ([21] or [150]). Here the assumption
is that the cycles {

Xk+τ1+···+τn−1

}
k=0,... ,τn−τn−1−1

are not i.i.d. but form a strictly stationary sequence (the process {Xk} is
event–stationary w.r.t. {τn}). We can then form a regenerative process{

X̃k

}
by replacing the dependent cycles by i.i.d. cycles with the same

distribution and estimate the variance as above; the practical feasability of
this program of course assumes that the event–stationary distribution of
Xτn can be generated. A particular important case is Harris chains, where
cycles are one–dependent ([6] Ch. VI.3); with one–dependence, one can in
principle write up a natural variance estimator but the approach in terms
of i.i.d. cycles is more straightforward to implement. 2

3a Regenerative variance estimation

We assume here that {Xn} is regenerative. We do not use the regenerative
estimator for z studied above, but just the sample average ẑt. However, the
variance is estimated regeneratively from cycles 1, 2, . . . , Nt − 1 where

Nt = inf {n : τ1 + · · · + τn > t}

(thus, Nt − 1 is the number of cycles copleted by time t).
The first important remark is that ẑt obeys the same CLT as the two

estimators

ẑ
(−)
t =

Z
(2)
1 + · · ·+ Z

(2)
Nt−1

Z
(1)
1 + · · ·+ Z

(1)
Nt−1

, ẑ
(+)
t =

Z
(2)
1 + · · ·+ Z

(2)
Nt

Z
(1)
1 + · · ·+ Z

(1)
Nt

.

Note that ẑ
(−)
t , ẑ

(+)
t are regenerative estimators with a random number

(Nt−1, resp. Nt) of cycles, and that they can also be interpreted as sample
means with random sample sizes (t(−) = τ1 + · · · + τNt−1, resp. t(+) =
τ1 + · · ·+ τNt

) in view of

Z
(1)
1 + · · ·+ Z

(1)
Nt

= t(+) , Z
(2)
1 + · · ·+ Z

(2)
Nt

=
t(+)−1∑
n=0

Xn

(and similarly for ẑ
(−)
t ).
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Proposition 3.2 The estimators ẑt, ẑ
(−)
t , ẑ

(+)
t are asymptotically equiva-

lent in the sense of Definition A.2.

In the proof, we need the following obvious lemma:

Lemma 3.3 The processes

{Xt + · · ·+ Xt(+)−1}t=0,1,2,... ,
{

t(+) − t
}

t=0,1,2,...

are regenerative w.r.t. {τn}, hence convergent in distribution.

Proof of Proposition 3.2. We show that ẑt and ẑ
(+)
t are asymptotically

equivalent (the case of ẑ
(−)
t is similar). Let

ẑ
∗(+)
t =

Z
(2)
1 + · · ·+ Z

(2)
Nt

t
=

t(+)

t
ẑ

(+)
t .

Then
√

t
∣∣∣ẑ(+)

t − ẑ
∗(+)
t

∣∣∣ =
t(+) − t√

t
ẑ

(+)
t

D→ 0 · z ,

using Lemma 3.3 in the last step, so that it suffices to show asymptotic
equivalence of ẑt and ẑ

∗(+)
t . This follows by another application of Lemma

3.3: √
t
∣∣∣ẑ∗(+)

t − ẑt

∣∣∣ =

∣∣∣∣Xt + · · ·+ Xt(+)−1√
t

∣∣∣∣ D→ 0 .

2

We can now complete the
Proof of Proposition 2.4. Since Nt/t

a.s.→ 1/IEτ , a variant of Anscombe’s

theorm yields
√

Nt(ẑ
(+)
t − z)

D→ N(0, ω2) or, equivalently
√

t(ẑ
(+)
t − z)

D→
N(0, σ2) where σ2 = ω2IEτ . Now just appeal to the asymptotic equivalence

of ẑt and ẑ
(+)
t . 2

Remark 3.4 In many examples, there are several possible choices of re-
generation points. Say {τn}, {τ ′n} are two possible choices. Should we then
use {τn} or {τ ′n}?

One may be tempted to think that {τn} is preferable if IEτ < IEτ ′ and
vice versa (more cycles will then be obtained within a fixed simulation bud-
get t). However, since σ2 (as a long-run variance constant) is independent
of the choice of cycle structure, the choice between {τn} and {τ ′n} does not
affect the variance σ2/t on the regenerative estimator.
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The possible difference is therefore in small–sample properties or in the
variance on the variance estimator σ̂2. However, even here there are no
simple rules. The asymptotic variance of σ̂2 can be computed by a similar
but more tedious application of the Delta method as in Proposition II.2.2,
cf. Glynn & Iglehart [66]. The resulting expression is complicated but can
be used to show that taking the smaller expected cycle length does not
necessarily lead to the smaller variance on σ̂2. 2

4 Duality representations

Our starting point is

Example 4.1 In the GI/G/1 queue, we have the representation W
D
= M

where W is the steady–state waiting time, M = supn=0,1,... Sn and {Sn} is a
random walk with increments Xk distributed as the difference between a ser-
vice time and an independent interarrival time, cf. the Appendix. Assume
that we want to estimate z = IP(W > x). We can then write z = IP(M > x)
= IP(τ(x) <∞) where τ(x) = inf {n > 0 : Sn > x}. In this way the prob-
lem of simulating a stationary characteristics is converted to the problem
of simulating a first passage probability.

The difficulty is of course that CMC is not feasible since IP(τ(x) <
∞) < 1 under the stability condition ρ < 1 (equivalent to IEX < 0) and so
I(τ(x) <∞) cannot be generated by simulating {Sn} up to a stopping time.
However, in this example a classical importance sampling technique based
upon exponential change of measure exists and does not only resolve the
infinite horizon problem but does in fact give extremely accurate estimates
also for very large x. We return to this in Chapter IV. 2

Here are two further less standard examples:

Example 4.2 The GI/G/1 queue waiting time process can be viewed as a
random walk reflected at zero in view of the two equivalent representation
Wn+1 = (Wn + Xn)

+ (the Lindley recursion) or Wn = Sn − inf0≤k≤n Sk. In
many problems involving a finite buffer b < ∞, one has instead a random
walk reflected both at 0 and b,

Vn+1 = min(b, max(0, Vn + Xn))

Also in this case, there is a first passage representation of the stationary
r.v. V (Siegmund [148]):

IP(V ≥ z) = IP(Sτ(z−b,z) ≥ b), 0 ≤ z ≤ b,
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where τ(z − b, z) = inf {n > 0 : Sn 6∈ (z − b, z)}. In this example, τ(z −
b, z) <∞ a.s., and hence CMC simulation with Z = I(τ(z − b, z) <∞) is
feasible. 2

Example 4.3 Let {Vt}t≥0 be a storage process with release rule r(x) and

compound Poisson input {At}, At =
∑Nt

1 Ui where {Nt} is a Poisson process
with intensity β and the Ui are independent of {Nt} with distribution B
concentrated on (0,∞),

Vt = At −
∫ t

0
r(As) ds.

Then, similarly to the two preceeding examples, the stationary distribution
can be represented as a first passage probability

IP(V ≥ x) = IP(τ(x) <∞) (4.1)

where τ(x) = inf {t > 0 : Rt ≤ 0 |R0 = x} and {Rt}t≥0 is given by

Rt =

∫ t

0
r(As) ds − At.

Again, there is an infinite horizon problem, and we briefly mention the
relevant importance sampling scheme in Chapter IX. 2

The examples above all fit into a common framework where one has
two processes {Vt}, {Rt} with state space [0,∞], or subintervals, connected
via the formula (4.1). The first such general construction is due to Sieg-
mund [148] in a Markov process context. Starting from {Vt}, Siegmund
constructed {Rt} in terms of its transition probabilities by

IP(Rt ≤ y |R0 = x) = IP(Vt ≥ x |V0 = y). (4.2)

For this to define a transition semi–group, it is necessary and sufficient
that {Vt} is stochastically monotone and that IP(Vt ≥ x |V0 = y) is right–
continuous in y for any fixed x. Note that taking x = y = 0 shows that
state 0 is absorbing for {Rt}. If (4.2) holds, one then obtains (4.1) by taking
y = 0 and letting t → ∞. The processes {Vt} and {Rt} are said to be in
Siegmund duality.

In Example 4.1 with V = W , one can define Rn = x − Sn as long as
x − Sn > 0; when (−∞, 0) is hit, Rn is reset to 0 and remains there for
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ever. Example 4.2 is the same except for a further resetting to ∞ when
(b,∞] is hit. Example 4.3 is also a particular case; a direct verification of
(4.2) was performed in Asmussen & Schock Petersen [19] by sample path
time reversion.

Asmussen & Sigman [20] gave a generalization beyond the Markov case
by considering a recursive discrete time setting where {Vn} is given recur-
sively by V0 = y, Vn+1 = f(Vn, Un) where the driving sequence {Un} is not
i.i.d. as for the Markov case, but strictly stationary, w.l.o.g. with doubly
infinite time (n ∈ Z). Assuming f(v, u) to be non–decreasing in v for fixed
u, one then defines g by letting g(·, u) be a generalized inverse of f(·, u)
and lets R0 = x, Rn+1 = g(Rn, U−n). Then again (4.2) holds and hence so
does (4.1).

Steady–state simulation via (4.1) is typically elegant and (when com-
bined with say importance sampling) efficient when it is feasible. The main
limitation is that monotonicity and existence of the generalized inverse of
f(·, u) (which most often limits the state space to be one–dimensional)
are required; some progress to get beyond this was recently obtained by
Blaszczyszyn & Sigman [27] but the practical usefulness for simulation
seems questionable so far. Also a general non–Markovian theory in contin-
uous time is missing. Some further relevant references for duality are As-
mussen & Rubinstein [17] (simulation aspects) and Asmussen [11] (Markov–
modulated continuous time models)
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Chapter IV

Rare events simulation

1 Introduction

The problem is to estimate z = IPA when z is small, say of the order 10−3

or less. I.e., Z = I(A) and A is a rare event. Examples occur in telecommu-
nications (z = bit loss rate, probability of buffer overflow), reliability (z =
the probability of failure before t), insurance risk (z = the ruin probability)
etc.

The CMC method leads to a variance of σ2
Z = z(1 − z) which tends to

zero as z ↓ 0. However, the issue is not so much that the absolute error is
small as that the relative error is high:

σZ

z
=

√
z(1− z)

z
∼ 1√

z
→ ∞, z ↓ 0.

In other words, a confidence interval of width 10−4 may look small, but if the
point estimate ẑ is of the order 10−5, it does not help telling whether z is of
the magnitude 10−4, 10−5 or even much smaller. Another way to illustrate
the problem is in terms of the sample size n needed to acquire a given
relative precision, say 10%, in terms of the half–width of the confidence
interval. This leads to the equation 1.96σZ/(z

√
n) = 0.1, i.e.

n =
100 · 1.962z(1− z)

z2 ∼ 100 · 1.962

z
(1.1)

increases like z−1 as z ↓ 0. Thus, if z is small, large sample sizes are
required, and when we get to probabilities of the order z ∼ 10−9, which
occurs in many telecomunications applications, CMC simulation is not only
inefficient but in fact impossible.

For a formal set–up allowing to discuss such efficiency concepts, let
{A(x)} be a family of rare events where x ∈ (0,∞) or x ∈ IN, assume

45
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that z(x) = IPA(x)→ 0 as x→∞ and for each x let Z(x) be as estimator
of z(x), i.e. IEZ(x) = z(x). An algorithm is defined as a family {Z(x)} of
such r.v.’s.

The best performance which has been observed in realistic rare events
setting is bounded relative error as x→∞,

lim sup
x→∞

VarZ(x)

z(x)2 < ∞ . (1.2)

In particular, such an algorithm will have the feature that n as computed
in (1.1) (with z(1− z) replaced by VarZ(x)) remains bounded as x→∞.

An efficiency concept slightly weaker than (1.2) is logarithmic efficiency:
Var(Z(x))→ 0 so quickly that

lim sup
x→∞

Var(Z(x))

z(x)2−ε
= 0 (1.3)

for all ε, or, equivalently, that

lim inf
x→∞

| logVar(Z(x))|
| log z(x)2| ≥ 1 . (1.4)

Note that this is slightly weaker than bounded relative error. For exam-
ple, if z(x) ∼ Ce−γx, it allows Var(Z(x)) to decrease like xpe−2γx or even
e−2γx+β

√
n. The reason for working with logaritmic efficiency rather than

bounded relative error is that the difference is minor from a practical point
of view and that logarithmic efficiency often is much easier to verify.

In accordance with discussions of run lengths in Chapter II, it would
have been more logical to replace Var(Z(x)) by T (x)Var(Z(x)) in (1.2),
(1.3). One can check that in the examples we discuss, T (x) grows so slowly
with x that this makes no difference.

Much of the work on rare events simulation is focused on importance
sampling as a potential (though not the only) way to design efficient al-
gorithms; in fact, two of the three algorithms in Section 2 which are our
main examples employ this method. The optimal change of measure (as
discussed generally for importance sampling in II.4) is given by

ĨP(B) = IE

[
Z

z
; B

]
=

1

z
IP(AB) = IP(B|A).
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I.e., the optimal ĨP is the conditional distribution given A. However, just
the same problem as for importance sampling in general comes up: it is
usually not practicable to simulate from IP(·|A), and we cannot compute
the likelihood ratio since z is unknown. Again, we may try to make ĨP
look as much like IP(·|A) as possible; in fact, the two importance sampling
algorithms in Section 2 may be seen in this light.

Some general references on rare events simulation are Heidelberger [77]
and Asmussen & Rubinstein [17].

2 Three efficient algorithms

In this section, we give three examples of algorithms meeting the efficiency
criteria discussed in Section 1. One will note that they all deal with ex-
tremely simple problems. In more complex situations, one should not ex-
pect to be able to find rare events estimators which are say logarithmically
efficient. Rather, the ideas behind algorithms like the ones we study will
then provide guidelines on how to proceed for getting some substantial vari-
ance reduction without necessarily meeting the efficiency criteria in full.

2a Siegmund’s algorithm

Let X1, X2, . . . be i.i.d. with common distribution F not concentrated on
(−∞, 0] or [0,∞), assume that IEX < 0, and define

Sn = X1 + · · ·+ Xn, τ(x) = inf {n : Sn > x} .

The problem is to estimate z(x) = IP(τ(x) <∞) when x is large and hence
z(x) small. This problem has many applications: GI/G/1 waiting times,
ruin probabilities, sequential tests (see the Appendix).

Exponential change of measure

Define the exponential family {Fθ} generated by F as in the Appendix. Ap-
plying Wald’s fundamental identity (Proposition A.1) with A = {τ(x) <∞},
we get

IP(τ(x) <∞) = IEθ

[
Lτ(x),θ; τ(x) <∞

]
(2.1)
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where

Ln,θ =
n∏

k=1

F̂ [θ]

eθXk
= e−θSnF̂ [θ]n.

Now consider the choice of θ. The first step is to choose θ such that
IPθ(τ(x) <∞) = 1, i.e. IEθX ≥ 0. Noting that

IEθX = IE
XeθX

F̂ [θ]
=

F̂ ′[θ]

F̂ [θ]
,

this means that θ ≥ γ0 (the solution of F̂ ′[θ] = 0 or, equivalently, the
minimizer of F̂ [θ]; cf. Fig. 2.1). For such a θ, (2.1) becomes

z(x) = IP(τ(x) <∞) = IEθLτ(x),θ . (2.2)

Thus, we may perform the simulation by the CMC method with Z(x) =
Lτ(x),θ.

Figure IV.2.1

The crucial fact is now that typically a certain value γ of θ is superior. We
will assume that there exist a γ > 0 such that F̂ [γ] = 1, F̂ ′[γ] <∞; in view
of IEX < 0 and convexity, this basically only says that enough exponential
moments exist, cf. Fig. 2.1. For this special case, (2.2) becomes

z(x) = IP(τ(x) <∞) = IEγe
−γSτ(x) = e−γxIEγe

−γξ(x) , (2.3)

where ξ(x) = Sτ(x) − x is the overshoot.. Indeed we shall show:
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Theorem 2.1 The algorithm given by Z(x) = e−γxe−γξ(x) [simulated from
IPγ] has bounded relative error.

Example 2.2 Assume that F is N (−µ, 1) where µ > 0.
Then F̂ [s] = exp

{
−µs + s2/2

}
, so that γ solves 0 = −µγ + γ2/2 which in

view of γ > 0 implies γ = 2µ. We then get

F̂γ[s] = F̂ [s + γ] = exp
{
µs + s2/2

}
which shows that Fγ is N (µ, 1). 2

Example 2.3 Assume that X = U − T is the independent difference be-
tween two exponential r.v.’s with rates δ, resp. β (β < δ). This corresponds
to the M/M/1 queue with arrival rate β and service rate δ. Then F̂ [γ] = 1
means

1 = IEeγUIEe−γT =
δ

δ − γ

β

β + γ

which has the positive solution γ = δ − β. We then get

F̂γ[s] = F̂ [s + γ] =
β

β − s

δ

δ + s

which shows that Fγ is the distribution of the independent difference be-
tween two exponential r.v.’s with rates β, resp. δ. I.e., the changed measure
corresponds to the M/M/1 queue with arrival rate δ and service rate β (the
rates are switched). 2

Asymptotics for z(x)

The process {ξ(x)}x≥0 is regenerative (regenerates at each partial maximum

of {Sn}). Thus ξ(x)
D→ ξ and

IEγe
−γξ(x) → C = IEγe

−γξ .

Thus

z(x) = IP(τ(x) <∞) ∼ Ce−γx , (2.4)

a celebrated result going back to Cramér (1930).
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Asymptotics for VarγZ(x)

The calculations are almost the same as for x(x). Recalling that Z =
e−γxe−γξ(x), we get

IEγZ
2 = e−2γxIEγe

−2γξ(x) ≈ C1e
−2γx

where C1 = IEγe
−2γξ. By Jensen’s inequality, C1 > C2, and hence

VarγZ(x) ∼ C1e
−2γx −

(
Ce−γx

)2 ∼ C2e
−2γx , (2.5)

where C2 = C1 − C2 > 0. The relative error is thus√
VarγZ

z(x)
∼ C

1/2
2 e−γx

Ce−γx
= C3

(C3 = C
1/2
2 /C) which does not increase with x, completing the proof of

Theorem 2.1. 2

Note that in this example we have T (x) ∼ IEγτ(x) = O(x).

Uniqueness of the change of measure in Siegmund’s algorithm

Consider as above an importance sampling algorithm for estimating z(x) =
IP(τ(x) < ∞) for a random walk with negative drift µ = µF , with the ex-
tension that we allow an arbitrary candidate G for the changed distribution
of the Xk. That is, we simulate X1, X2, . . . from G and use the estimator

Z(x) = Wτ(x)(F |G) =
dF

dG
(X1) . . .

dF

dG
(Xτ(x)) , (2.6)

where dF/dG means Radon–Nikodym derivative (e.g., if F and G have both
densities f , g w.r..t. Lebesgue measure, then (dF/dG)(x) = f(x)/g(x)).
Note that we must impose two conditions on G: that dF/dG exists and
that G has positive mean µG (otherwise, the simulation does not terminate
in finite time).

Theorem 2.4 The importance sampling algorithm (2.6) is logarithmically
efficient if and only if G = Fγ.

Proof (Asmussen & Rubinstein [17]) Sufficiency [even with the stronger
conclusion of bounded relative error] is contained in Theorem 2.1, so we
assume the IS distribution is G 6= Fγ.
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By the chain rule for Radon–Nikodym derivatives,

IEGZ(x)2 = IEGW 2
τ(x)(F |G) = IEG

[
W 2

τ(x)(F |Fγ)W
2
τ(x)(Fγ|G)

]
= IEγ

[
W 2

τ(x)(F |Fγ)Wτ(x)(Fγ|G)
]

= IEγ exp{K1 + · · ·+ Kτ(x)},

where

Ki = log

(
dFγ

dG
(Xi)

(
dF

dFγ
(Xi)

)2
)

= − log
dG

dFγ
(Xi)− 2γXi.

Here
IEγKi = ε′ − 2γIEFγXi = ε′ − 2γµγ,

where µγ = µFγ > 0 and

ε′ = −IEγ log
dG

dFγ
(Xi) > 0,

by the information inequality (see the Appendix). Since K1, K2, . . . are
i.i.d., Jensen’s inequality and Wald’s identity yield

IEGZ(x)2 ≥ exp
{
IEγ(K1 + · · ·+ Kτ(x))

}
= exp {IEγτ(x)(ε′ − 2γµγ)} .

Since IEFγτ(x)/x→ 1/µγ, it thus follows (using (2.4)) that for 0 < ε′′ < ε′,
0 < ε < ε′′/γµγ,

lim inf
x→∞

IEGZ(x)2

z(x)2−ε
= lim inf

x→∞

IEGZ(x)2

C2−εe−2γx+εγx

≥ lim inf
x→∞

ex(ε′′/µγ−2γ)

C2−εe−2γx+εγx
= ∞,

which completes the proof. 2

2b Efficient simulation of IP(Sn > n(µ + ε))

Consider again a random walk Sn = X1 + · · · + Xn where X1, X2, . . . are
i.i.d. with common distribution F with mean µ. The rare event in question
is now A(n) = {Sn > n(µ + ε)} where ε > 0 [thus the index n is discrete
in this example]. That z(n) = IPA(n)→ 0 as n→∞, and hence that the
event is rare indeed, is immediate from the LLN.

We shall again employ exponential change of measure. Writing F̂ [s] =
eκ(s), i.e. κ(s) = log F̂ [s], we have
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dFθ

dF
(x) = eθx−κ(θ), Ln;θ = e−θSn+nκ(θ) . (2.7)

Thus Z(n) = e−θSn+nκ(θ)I(Sn > n(µ + ε)).

The relevant choice of θ turns out to be as for the saddlepoint method:

IEθX = κ′(θ) = µ + ε (2.8)

which in particular implies θ > 0 (since κ′ is strictly increasing according
to the strict convexity of κ) and I > 0 where I = θ(µ + ε)− κ(θ). Cf. Fig.
IV.2.2.

Figure IV.2.2

Theorem 2.5 The exponential change of measure (2.7), (2.8) is logarit-
mically efficient and the only importance sampling distribution G with this
property.

Lemma 2.6 (Chernoff bound) z(n) ≤ e−nI.

Proof By Wald’s fundamental identity,
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z(n) = IP(A(n)) = IEθ [Ln;θ; A(n)]

= IEθ

[
e−θSn+nκ(θ); Sn > n(µ + ε)

]
= e−nIIEθ

[
e−θ(Sn−n(µ+ε)); Sn > n(µ + ε)

]
(2.9)

≤ e−nI .

2

Lemma 2.7 Varθ Z(n) ≤ e−2nI.

Proof As in (2.9),

IEθZ(n)2 = IEθ

[
e−2θSn+2nκ(θ); Sn > n(µ + ε)

]
= e−2nIIEθ

[
e−2θ(Sn−n(µ+ε)); Sn > n(µ + ε)

]
≤ e−2nI .

2

Lemma 2.8 lim infn→∞

(
enI+θ

√
n
)

z(n) > 0.

Proof Since

Sn − n(µ + ε)√
n

→ N
(
0, σ2

θ

)
in IPθ–distribution (σ2

θ = κ′′(θ) > 0), we have

lim inf
n→∞

IPθ

(
Sn − n(µ + ε)√

n
∈ (0, 1)

)
= Φ

(
1

σθ

)
− Φ(0) := c > 0 .

Hence

lim inf
n→∞

(
enI+θ

√
n
)

z(n)

≥ lim inf
n→∞

enI+θ
√

ne−ηnIEθ

[
e−θ(Sn−n(µ+ε));

Sn − n(µ + ε)√
n

∈ (0, 1)

]
≥ lim inf

n→∞
eθ
√

ne−θ
√

nIPθ

(
Sn − n(µ + ε)√

n
∈ (0, 1)

)
= c > 0 .
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2

The first part of Theorem 2.5 now follows by combining Lemmas 2.7,
2.8. The second (uniquenes of the importance sampling distribution) can
be proved by similar arguments as for Siegmund’s algorithm. See also
Bucklew, Ney & Sadowsky [33]. 2

Remark 2.9 As sharpening of Lemmas 2.6, 2.7, one can prove as one of
the basic results in the theory of saddlepoint approximations that subject
to some smoothness assumptions,

z(n) ∼ e−nI

θκ′′(θ)
√

2πn
,

see e.g. Petrov [119] and Jensen [84] for this and sharper versions. 2

2c An efficient algorithm for heavy–tailed distributions

The problem is to simulate z(x) = IP(Sn > x) where Sn = X1 + · · · + Xn

with X1, X2, . . . i.i.d. with common distribution F with a heavy tail. Here
F is concentrated on (0,∞) and satisfies F (x) = L(x)/xα where L(x) is
slowly varying: L(tx)/L(x) → 1, x → ∞ (e.g. L(x) bounded with a limit
in (0,∞), L(x) = (log x)β or (log log x)β, −∞ < β <∞), and x is large so
that z(x) is small. It is well known and not hard to prove, cf. e.g. Feller [50],
Bingham, Goldie & Teugels [25] or Embrechts, Klüppelberg & Mikosch [48]
that

z(x) ∼ nL(x)/xα, x→∞, (2.10)

(but the approximation requires x to be very large to be precise so that
simulation may be required).

Note that F̂ [s] = ∞ for all s > 0 (otherwise, we could apply the algo-
rithm related to the Chernoff bound, at least if in addition n is large as
well). Here we think of n as fixed and consider the limit x → ∞ rather
than n→∞.

The CMC estimator is Z1(x) = I(Sn > x). By (2.10), its variance
z(x)(1 − z(x)) is of the order of magnitude F (x). We shall consider two
algorithms based upon a conditional Monte Carlo idea.

The first and obvious idea (cf. Example II.4.5) is to condition upon
X1, . . . , Xn−1 which leads to

Z2(x) = IP(Sn > x | X1, . . . , Xn−1) = F (x− Sn−1) .
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Thus, we generate only X1, . . . , Xn−1. As a conditional Monte Carlo esti-
mator, Z2(x) has a smaller variance than Z1(x). However, asymptotically
it presents no improvement: the variance is of the same order of magnitude
F (x). To see this, just note that

IEZ2(x)2 ≥ IE[F (x− Sn−1); X1 > x] = IP(X1 > x) = F (x)

(here we used that by positivity of the Xi, Sn−1 > x when X1 > x, and
that F (y) = 1, y < 0).

The reason that this algorithm does not work well is that the probability
of one single Xi to become large is too big. We avoid this problem by
discarding the largest Xi and considering only the remaining ones. For the
simulation, we thus generate X1, . . . , Xn, form the order statistics

X(1) < X(2) < · · · < X(n) ,

throw away the largest one X(n), and let

Z3(x) = IP(Sn > x | X(1), X(2), . . . , X(n−1)) =
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
,

where S(n−1) = X(1) + X(2) + · · · + X(n−1). To check the formula for the
conditional probability, note first that

IP(X(n) > x|X(1), X(2), . . . , X(n−1)) =
F (X(n−1) ∨ x)

F (X(n−1))
,

We then get

IP(Sn > x|X(1), X(2), . . . , X(n−1))

= IP(X(n) + S(n−1) > x|X(1), X(2), . . . , X(n−1))

= IP(X(n) > x− S(n−1)|X(1), X(2), . . . , X(n−1))

=
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
.

Theorem 2.10 Assume that F (x) = L(x)/xα (α > 1) with L(x) slowly
varying. Then the algorithm given by {Z3(x)} is logarithmically efficient.

The key step in the proof of Theorem 2.10 is the following estimate:
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Lemma 2.11

IE
[
Z3(x)2] ≤ n (n− 1)

[
1

2
F

2
(x

2

)
− F

2
(
x

n
) logF

(x

2

)]
(2.11)

Proof We first recall (e.g. Gut [74] p. 106) that the density fX(n−1)
(y) of the

r.v. X(n−1) is

fX(n−1)
(y) = n (n− 1) F n−2(y) F (y) f(y).

We then get

IE
[
Z3(x)2] = IE

[
F (x− S(n−1))

F (X(n−1))
; X(n−1) ≤

x

n

]2

(2.12)

+IE

[
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
;

x

n
< X(n−1) ≤

x

2

]2

(2.13)

+IE
[
1; X(n−1) >

x

2

]2
. (2.14)

The first summand (2.12) can be bounded as follows. If X(n−1) ≤ x
n then

F (x− S(n−1)) ≤ F (x
n), so that

IE

[
F (x− S(n−1))

F (X(n−1))
; X(n−1) ≤

x

n

]2

≤ F
2
(x

n

)∫ x/n

0

fX(n−1)
(y)

F
2
(y)

dy

≤ n (n− 1) F
2
(x

n

)∫ x/n

0

f(y)

F (y)
dy

= −n (n− 1) F
2
(x

n

)
log F

(x

n

)
.

The second summand (2.13) can be bounded in the same way. For x
n

<
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X(n−1) ≤ x
2 , F ((x− S(n−1)) ∨X(n−1)) ≤ F

(
x
n

)
, yielding

IE

[
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
;

x

n
< X(n−1) ≤

x

2

]2

≤ F
2
(x

n

)∫ x/2

x/n

fX(n−1)
(y)

F
2
(y)

dy

≤ n (n− 1) F
2
(x

n

)∫ x/2

x/n

f(y)

F (y)
dy

= −n (n− 1) F
2
(x

n

) [
log F

(x

2

)
− log F

(x

n

)]
.

To find an upper bound for (2.14) we write

IE
[
1; X(n−1) >

x

2

]2
=

∫ ∞

x/2
fX(n−1)

(y)dy

= n (n− 1)

∫ ∞

x/2
F n−2(y) F (y) f(y)dy

≤ n (n− 1)

∫ ∞

x/2
F (y) f(y)dx

= n (n− 1)
1

2
F

2
(x

2

)
.

Adding the above inequalities leads to the desired result. 2

Proof of Theorem 2.10. It follows from (2.10) and xεL(x)→∞, x−εL(x)→
0, x → ∞, for any ε > 0 that | log z(x)| ∼ α log x. Since L(x/d) ≈ L(x),
we have F (x/d) ≈ dαF , and hence Lemma 2.11 yields

| log V ar Z3(x)| = − log VarZ3(x) ≥ − log IE
[
Z3(x)2]

∼ − log F (x)2 ∼ 2α log x

2

Theorem 2.10 is from Asmussen & Binswanger [12]. The whole area of
rare events simulation for heavy–tailed distributions is largely open. As-
mussen, Binswanger & Højgaard [13] have one more working algorithm in-
volving importance sampling but also a number of counterexamples showing
that the main ideas from the light–tailed case do not carry over.

The current interest in heavy–tailed distributions is considerable. Their
relevance is argued strongly in Embrechts, Klüppelberg & Mikosch [48] in
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the setting of insurance– and finance problems, and by a number of authors
in telecommunication problems, see e.g. Resnick [124] and references there.

3 Conditioned limit theorems

The optimal change of measure for the IS is the conditional distribution
IP(x)(·) = IP(·|A(x)) given A(x). Therefore an obvious way to look for a
good IS distribution is to try to find a simple asymptotic description of
IP(x)(·) and to simulate using this asymptotic description.

For the random walk setting in Section 2a where A(x) = {τ(x) < ∞},
it turns out that an asymptotic description of IP(x)(·) is available. The
results state roughly that up to τ(x), the random walk behaves as if it
changed increment distribution from F to Fγ, which is precisely the type
of behaviour needed to infer (at least heuristically) the optimality of γ.
A variety of precise statements supporting this informal description were
given by Asmussen [4]. For example:

Proposition 3.1 Let {B(x)} be any sequence of events with B(x) ∈ Fτ(x),

B(x) ⊆ {τ(x) <∞}, IPγ(B(x)) → 1, x → ∞. Then IP(x)(B(x)) → 1 as
well.

Proof From Wald’s fundamental identity, we get

IP(x)(Bc(x)) =
IP(Bc(x); τ(x) <∞)

IP(τ(x) <∞)
=

IEγ(Lτ(x); γ; Bc(x))

IP(τ(x) <∞)

≤ e−γxIPγ(B
c(x))

IP(τ(x) <∞)
∼ IPγ(B

c(x))

C
→ 0.

2

As a main example, consider the one–dimensional empirical distribution
of the Xi. Define

F̂ (n)(y) =
1

n

n∑
i=1

I(Xi ≤ y).

Corollary 3.2 As x → ∞, IP(x)
(∥∥∥F̂ (τ(x)) − Fγ

∥∥∥ > ε
)
→ 0, where ‖ · ‖

denote the supremum norm.

Proof By the Glivenko–Cantelli theorem,
∥∥∥F̂ (n) − Fγ

∥∥∥ → 0 IPγ–a.s. as n→
∞. Hence also ‖F̂ (τ(x)) − Fγ‖ → 0, and we can take

B(x) =
{
‖F̂ (τ(x)) − Fγ‖ > ε

}
.
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2

The results of [4] are in fact somewhat more general by allowing inference
also on the dependency structure in the conditional limit. For example, it
is straightforward to show that

1

τ(x)

τ(x)∑
i=1

I(Xi ≤ y1, . . . , Xi+k−1 ≤ yk) → Fγ(y1) . . . Fγ(yk)

in IP(· | τ(x) < ∞)–probability. Perhaps, the most convincing indication
that the Xi are asymptotically conditionally independent is the fact that
variance constants coming up in conditional approximations by Brownian
motion and Brownian bridge are the same as in the unconditional Fγ–
random walk. See [4] for more detail.

A counterexample

It is important to point out that examples have started to show up in the
literature which clearly show that the idea of simulating using an asymptotic
description of IP(x)(·) has its limitations. We give one of them, taken from
Glasserman & Wang [61].

As in Section 2, we consider exceedances in the LLN but this time two–
sided,

A(n) = {Sn > nε or Sn < −nε′}
(taking µ = 0). We choose ε′ such that

IP(Sn > nε)

IP(Sn < −nε′)
→ ∞ (3.1)

so that
IP(n)(·) ∼ IP(· |Sn > nε)

Thus, it is suggested to use the same exponential change of measure as in
Section 2b and

Z(n) = e−θSn+nκ(θ)I(Sn > nε or Sn < −nε′).

However, we will see then that the contribution to VarθZ(n) from the event
{Sn < −nε′} blows up the variance.

Fix ε, and define θ, θ′ as the solutions of κ′(θ) = ε, resp. κ′(θ′) = −ε′ and
let I = θε − κ(θ), I ′ = −θ′ε′ − κ(θ′). We choose ε′ such that I ′ > I (then
(3.1) holds by Lemmas 2.6, 2.7) and

δ′ = θ(ε + ε′) + I − I ′ > 0 (3.2)
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which can be otained by first choosing ε′ such that I ′ = I and next replacing
ε′ by a slightly larger value to get I ′ > I without violating (3.2).

Proposition 3.3 If 0 < δ < δ′, then lim inf
n→∞

VarθZ(n)

z(n)2eδn
= ∞.

Proof

IEθZ(n)2 ≥ IEθ

[
L2

n,θ; Sn < −nε′
]

= IE [Ln,θ; Sn < −nε′]

= IE
[
e−θSn+nκ(θ); Sn < −nε′

]
≥ enθε′+nκ(θ)IP(Sn < −nε′)

≥ c1e
nθε′+nκ(θ)e−nθ′−θ′

√
n

= c1 exp
{
n [θ(ε + ε′)− I − I ′]− θ′

√
n
}

using Lemma 2.7 for the last inequality. Hence by Lemma 2.6

lim inf
n→∞

VarθZ(n)

z(n)2eδn

≥ c1 lim inf
n→∞

exp
{
n [θ(ε + ε′)− I − I ′]− θ′

√
n + 2nI − nδ

}
= c1 lim inf

n→∞
exp

{
n [δ′ − δ]− θ′

√
n
}

= ∞.

2

4 Large deviations

The LD approach to OECM (optimal exponential change of measure) has
several variants. We give one involving the concept of optimal path which
may be seen as an alternative approach to conditioned limit theorems.

We will work in the i.i.d. setting of the Siegmund algorithm and write
κ(θ) = log F̂ [θ]. We first introduce the function

I(y) = sup
θ∈Θ

(θy − κ(θ)), y ∈ Y = {κ′(θ) : θ ∈ Θ} ,

which in the literature goes under names like the LD rate function, the
Legendre transform, the Legendre–Fenchel transform, the Cramér transform
etc. (sometimes the sign is reversed). For simplicity, we assume that the
interval Θ is open. For y ∈ Y, we define θ(y) (the saddlepoint of y) by
κ′(θ(y)) = y so that I(y) = θ(y)y − κ(θ(y)). Note that we have already
encountered I(y) once, in Section 2b, where I = I(µ + ε).

It is not to hard to show that I is non–negative, convex and attains its
minimum 0 for y = κ′(0) = µ. The crucial fact for OECM is
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Lemma 4.1 min
0<y<∞

I(y)

y
is attained for y∗ = κ′(γ).

Proof Obviously, I(y)/y →∞ as y ↓ 0 and (cf. (4.3) below) I(y)/y is non–
decreasing for large y so that the minimum is attained. By straightforward
differentiation, we get

I ′(y) = θ′(y)y + θ(y)− θ′(y)κ′(θ(y)) = θ(y),

d

dy

I(y)

y
=

yI ′(y)− I(y)

y2 =
yθ(y)− θ(y)y + κ(θ(y))

y2

=
κ(θ(y))

y2 . (4.3)

Putting the last expression equal to 0 yields θ(y∗) = γ (since we look at
minimum values for y > 0 only, θ(y∗) = 0 is excluded) from which we
immediately get y∗ = κ′(γ). 2

One of the main themes of LD theory is to give estimates of the prob-
ability that the random walk (or some more general process) follows an
atypical path. In the random walk setting, this means that S(n)(·) follows
a path different from the one ϕ0(t) = µt given by the LLN where S(n)(t) =
Sbntc/n, 0 ≤ t ≤ 1 (here b·c = integer part). The LD results state that
under appropriate regularity conditions,

IP(S(n)(·) ∈ S) ∼ exp

{
−n inf

ϕ∈S

∫ 1

0
I (ϕ′(t)) dt

}
(4.4)

for suitable subsets S of continuous paths with ϕ0 6∈ S. In many examples,
there is a single path ϕ∗ for which the minimum is attained, and this is the
optimal path.

In order to understand how the random walk reaches the high level x, we
perform the optimization not only over ϕ but also over n. We then write
x in the form x = ny and let S be the set of continuous functions on [0, 1]
with ϕ(0) = 0, ϕ(1) = y. Then (4.4) takes the form

IP(Sn ∼ x) ∼ exp

{
−x

1

y
inf
ϕ∈S

∫ 1

0
I (ϕ′(t)) dt

}
(4.5)

By Jensen’s inequality and the convexity of I,∫ 1

0
I (ϕ′(t))dt ≥ I

(∫ 1

0
ϕ′(t)dt

)
= I(y),
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with equality if and only ϕ(t) = ty. Hence for fixed n,

IP(Sn ∼ x) ∼ exp

{
−x

I(y)

y

}
.

Viewing x as fixed, taking into the account that minimizing over n is the
same as minimizing over y, we obtain by Lemma 4.1 that the minimizer is
y∗ = κ′(γ). In conclusion, if x is large, the most likely way in which the
random walk can cross level x is by crossing at time

τ(x) = n =
x

y
=

x

κ′(γ)

and by moving linearly at rate y = κ′(γ) up to that time. But this is
precisely the same way as in which the random walk with increment distri-
bution Fγ crosses level x, which motivates that the conditional distribution
given the rare event τ(x) <∞ is the one of the random walk with increment
distribution Fγ.

Notice that the LD argument is somewhat more heuristic than the ones in
the preceding subsections (an obvious gap is that it identifies the optimal IS
only in terms of its mean). Also, in simple settings LD results are typically
not the strongest possible, involving only logarithmic asymptotics.

However, the motivation for the LD approach is its generality and the
fact that the mathematical state of the area is very advanced, providing
a considerable body of theory to draw upon. The philosophy is that once
it has been understood how to the paraphraze the optimality properties of
OECM for simple systems in LD language, the generality of LD theory will
allow to find suitable IS distributions also in more complicated settings.

At least in the present authors’ opinion, the success in implementing this
program has been slightly more moderate than sometimes claimed. As we
see it:

1. The alternative approaches to OECM (in the sense of how to derive it
and how to study its optimality properties) in simple models are both
simpler, more precise and lead to stronger conclusions. Actually, one
can argue from many specific cases that the use of LD’s theory say for
the GI/G/1 queue most often shoots over the goal.

2. When getting to more complex (and thereby also more realistic and
practically challenging!) models, LD theory leads into variational prob-
lems which do not have an explicit solution. Thus, LD theory allows
to identify explicitly the OECM for simple models only..
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3. Counterexamples like the one in Section 3 are worrying and seem to
indicate that care is needed when applying the LD approach beyond
simple problems.

Despite of these remarks, the LD approach is often the natural one and the
only feasible one.

Some relevant references on the LD point of view in simulation are Cot-
trell et al. [38], Bucklew et al. [33], Sadowsky & Bucklew [140], Sadowsky
[136] - [138] and Lehtonen & Nyrhinen [97], [98]. For LD theory in general,
we refer to Bucklew [32], Dembo & Zeitouni [43] and Shwartz & Weiss [146].

5 Multilevel splitting

Splitting is a set of ideas for estimating the probability z(x) that a Markov
chain {Xn} hits a rare set B(x) in a regenerative cycle. There are many
variants of the method around. Some main early references are Kahn &
Harris [85], Hammersley & Handscomb [75] and Bayes [23], and some more
recent ones Villén–Altamirano [152], [153] (RESTART), Glasserman et al
[58], [59], [60] and Haraszti & Townsend [76].

The method uses a decomposition of the state space E into subsets
E0, . . . , Em with Em = B(x), see Fig. 5.1.
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Figure IV.5.1

Think of 0 = (0, 0) as the regeneration point (0 ∈ E0) and that the event
of hitting Em occurs through succesive hits of the Ek. That is, define

τk = inf {n : Xn ∈ Ek ∪Ek+1 ∪ . . . ∪Em} .
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We then assume

IPi(Xτk ∈ Ek | τk <∞) = 1, i ∈ Ek−1, (5.1)

which implies

z(x) = p1p2 . . . pm (5.2)

where z(x) = IP0(τm < C) with C = inf {n > 0 : Xn = 0} the regenerative
cycle and pk = IP0(τk <∞| τk−1 <∞).

For the simulation, we generate n1 sample paths
{
X

(i)
n

}
starting from

X0 = 0; out of these, N1 =
∑n1

1 I
(
τ

(i)
1 < C(i)

)
will hit E1 before returning

to 0, and we have the obvious estimate p̂1 = N1/n1. For the N1 successes,
we let ν1 denote the empirical distribution of the entrance state in E1,

ν1(j) =
1

N1

n1∑
i=1

I
(
X

τ
(i)
1

= j, τ
(i)
1 < C(i)

)
.

We then generate n1 copies of {Xn} with initial distribution ν1, and let N2

be the number of copies entering E2 before returning to 0, ν2 the corre-
sponding empirical distribution of the successful hits of E2, p̂2 = N2/n2,
and so on. The estimator is ẑ = ẑ(x) = p̂1 . . . p̂m.

The generation of a copy of {Xn} with initial distribution ν1 (and simi-
larly in the following steps) can be performed in more than one way. One
approach is to choose the initial value X0 by randomly sampling from the
succesful hits of E1. Another is to use each such hit, say at x ∈ E1, to
generate a new number n′1 of paths starting from x. Thus n2 = n′1N1; from
this, the term splitting. Irrespective of the choice:

Proposition 5.1 ẑ is an unbiased estimator of z.

Proof Let F = σ
(
X

(i)
n : i = 1, . . . , n1, n = 0, . . . , τ

(i)
1

)
, q2(y) = IPy(τ2 <

C), y ∈ E1. Then for m = 2,

IE[p̂2|F ] =

∫
E1

q2(y) ν1(dy) =
1

N1

n1∑
i=1

I
(
τ

(i)
1 < C(i)

)
q2

(
X

τ
(i)
1

)
,

IEẑ = IE p̂1p̂2 = IE [p̂1IE[p̂2|F ]]

=
1

n1
IE

n1∑
i=1

I
(
τ

(i)
1 < C(i)

)
q2

(
X

τ
(i)
1

)
= p1p2 = z.
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The case m > 2 follows similarly by induction. 2

With the right choice of m and the Ek, the splitting algorithm can be
highly efficient. We illustrate this via a simple example, a birth–death chain
on E = {0, . . . , x} with transition matrix

b0 a0 0 0 . . . 0 0 0
b1 0 a1 0 0 0 0
0 b2 0 a2 0 0 0
... . . . ...
0 0 0 0 bx−1 0 ax−1

0 0 0 0 . . . 0 bx ax


(ai + bi = 1). The rare set is B(x) = x and thus

x = z(x) = IP0(Xn = x for some n < C).

The level sets are Ek = {xk, xk+1, . . . , xk+1 − 1} where 0 = x0 < x1 < . . . <
xm−1 < xm = x.

Proposition 5.2 For a fixed imulation budget

n = n1 + · · ·+ nk, (5.3)

Varẑ is asymptotically minimized by taking

pk ∼ e−2 ≈ 0.135, m ∼ − log z/2.

For this choice,

Varẑ ∼ (ez log z)2

4n
.

In particular, ẑ is logarithmically efficient.

Proof We follow Garvels & Kroese [54] (see also Villén–Altamirano [153]).
We consider the fixed effort variant where nk is non–random. Note that νk

is concentrated at xk and thus the p̂k are simply obtained by independent
binomial sampling so that

IEẑ2 =
m∏

k=1

IEp̂2
k =

m∏
k=1

{
pk(1− pk)

nk
+ p2

k

}
= z2

m∏
k=1

{
b2
k

nk
+ 1

}
(5.4)
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where b2
k = (1− pk)/pk.

Consider first the miniaztion of (5.4) subject to (5.3). If the nk are
large, this means that we must minimize

∑m
1 b2

k/nk. Using the principle of
Lagrange multipliers1 and treating the nk as continuous variables, we get

0 = − b2
k

n2
k

+ K = − b2
`

n2
`

+ K,
nk

n`
=

bk

b`
, nk = n

bk

sb

where sb = b1 + · · · + bm. Then

IEẑ2 ∼ z2
m∑
1

b2
k

nk
= z2

m∑
1

bk
sb

n
=

1

n
z2s2

b .

Thus, the optimal partitioning {xk} is obtained by minimizing

sb =
m∑

k=1

√
1− pk

pk

subject to p1 . . . pm = z. Another use of Lagrange multipliers yields

0 =
1

2pk

√
(1− pk)/pk

+ K
z

pk
,

√
(1− pk)/pk =

√
(1− p`)/p`,

so that the pk must be equal, pk = z1/m. Then

IEẑ2 ∼ 1

n
z2

(
m∑

k=1

√
1− z1/m

z1/m

)2

=
1

n
z2m

2(1− z1/m)

z1/m
.

This is minimized by taking m = − log z/2, and we then get pk = z1/m =
e−2,

IEẑ2 ∼ (ez log z)2

4n
.

2

In practice, one can at best hope to get close to logarithmic efficiency.
First, because the pk are not known given the xk. Second, because the pk

are not continuous variables since the xk are not so. Thus, one should think
of Proposition 5.2 as a guideline only.

1stating that to minimize f(y1, . . . , ym) subject to g(y1, . . . , ym) = 0, we must look for a K satisfying
hk(y1, . . . , ym) = 0, Kg(y1, . . . , ym) = 0 where h = f + Kg and hk is the kth partial derivative.
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6 Reliability*

Not implemented in this version. Some references are Anantharam et al.
[3], Chang et al. [36], Goyal et al. [72], Heidelberger [77], Heidelberger,
Shahabuddin & Nicola [78], Nakayama [107], [108] and Shahabuddin [144].
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Chapter V

Markov chain Monte Carlo methods*

Not implemented in this version. A good reference is Gilks, Richardson &
Spiegelhalter [55].
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Chapter VI

Gradient estimation

We consider a stochastic system and assume (highly simplified) that its
performance can be summarized as a single real number z, which typically
can be expressed as IEZ for some r.v. Z. For example, in a PERT net
Z can be the (random) length of the maximal path, in a data network
Z can be the steady–state delay of a packet or z the probability that a
packet is transmitted without errors, in an insurance risk model z can be
the probability IP(C > x) that the claims C within one year exceeds a
large value x (typically, C =

∑N
1 Ui where N is the number of claims and

U1, U2, . . . the claim sizes) and so on.
In all these examples, z will typically depend on a number of param-

eters (for example in the insurance risk model, N could be Poisson with
rate parameter β and the claims having a distribution Bθ depending on a
parameter θ). One could then be interested not only in the performance z
but also in its derivatives

zβ =
∂

∂β
z, , zθ =

∂

∂θ
z, . . .

w.r.t. the parameters β, θ, . . . . Here zβ is called the sensitivity of z w.r.t. β
(and similarly for zθ etc.), and the vector (zβ, zθ, . . . ) is the gradient. The
problem we address in this chapter is how to estimate such sensitivities by
simulation.

There are numerous reasons for being interested in the sensitivities, in
particular:

1. For identifying the most important system parameters;

2. To asses the effect of a small change of a parameter;

3. To produce confidence intervals for z if some parameters are not com-
pletely known but estimated. For example, if β is a Poisson parameter
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estimated as the empirical rate β = NT/T of Poisson events in [0, T ],
then β is asymptotically normal N(β, β/T ) as T → ∞. So, if z(β) is
analytically available

z(β) ± 1.96
β|zβ|√

T

is an asymptotic 95% confidence interval for z(β). More generally, if
z(β) needs to be evaluated by simulation, the confidence interval is

ẑ(β) ± 1.96

√
β

2
ẑ2
β

T
+

σ̂2

n

where ẑ(β) of z(β) is a CMC estimator based upon n replications
and with associated variance estimator σ̂2, and ẑβ an estimator of the
sensitivity. See further Heidelberger & Towsley [79] and Rubinstein &
Shapiro [134] pp. 96–100.

4. In stochastic optimization, where we want to find the maximum (or
minimum) of z = z(θ) w.r.t. some parameter θ, most algorithms re-
quire knowledge of zθ (see Chapter VII).

5. Finally there are examples where the sensitivities are of intrinsic in-
terest, e.g. in financial mathematics.

1 Finite differences

Assume that for each θ we are in a position to generate a r.v. Z(θ) with
expectation z(θ). We want a simulation estimate of zθ = z′(θ).

The starting point for the method of finite differences is the formulas

f ′(θ) = lim
h↓0

f(θ + h)− f(θ)

h
= lim

h↓0

f(θ + h/2)− f(θ − h/2)

h
(1.1)

for the derivative of a deterministic function f(θ). In the context of simu-
lation, this suggests to perform a CMC experiment with either

Z̃θ =
Z(θ + h)− Z(θ)

h
or Zθ =

Z(θ + h/2)− Z(θ − h/2)

h
(1.2)

for some small h, where we take Z(θ + h), Z(θ) as independent for Z̃θ and
Z(θ + h/2), Z(θ− h/2) for Zθ.
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A first important observations is that the second formula in (1.1) is
preferable for numerical differentiation because

f(θ + h)− f(θ)

h
= f ′(θ) +

h

2
f ′′(θ) + O(h2),

f(θ + h/2)− f(θ − h/2)

h
= f ′(θ) +

h2

24
f ′′′(θ) + O(h3)

as follows by straightforward Taylor expansions. In the simulation context,
just the same calculation shows that the bias of Zθ is an order of magnitude
lower than that of Z̃θ, so that obviously Zθ should be preferred.

The choice of h is left open. If the number of replications is n and ẑθ the
corresponding average of the Zθ, it seems reasonable that h = hn should go
to zero as n → ∞ to reduce bias. On the other hand, taking a smaller h
increases variance so there is a trade–off. The answer is that h should be
of order n−1/6:

Proposition 1.1 The mean square error IE(ẑθ−zθ)
2 is asymptotically min-

imized by letting

h = hn =
1

n1/6

[576Var(Z(θ)]1/6∣∣ d3

dθ3 IEZ(θ)
∣∣1/3

Proof Clearly, Var(Zθ) ∼ 2Var(Z(θ))/h2 so

IE(ẑθ − zθ)
2 = Var(ẑθ) + (IEẑθ − zθ)

2

∼ 2

nh2Var(Z(θ)) +

(
h2

24

d3

dθ3 IEZ(θ)

)2

Now the function a/x + bx2 of x is minimized for x = (a/2b)1/3. Letting

x = h2, a = 2Var(Z(θ))/n, b =

(
d3

dθ3 IEZ(θ)/24

)2

,

the result follows. 2

In L’Ecuyer & Perron [95], it is shown that the finite differences method
performs substantially better when combined with common random num-
bers and that the rate of convergence then is as good as the more sophisti-
cated method of IPA to be discussed next. Of course, a main disadvantage
of the method of finite differences is its bias.
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2 Infinitesimal perturbation analysis

The idea of this method is sample path derivatives: we write z = z(θ) as
IEZ(θ) for some r.v. depending on θ, and estimate zθ via

Y = Y (θ) =
∂

∂θ
Z(θ) ,

evaluated at θ = θ0 where θ0 is the parameter of the given system. Thus
we simulate n i.i.d. copies Y1, . . . , Yn of Y and use the estimator

ẑθ =
Y1 + · · ·+ Yn

n
, (2.1)

with the obvious confidence interval based upon the empirical variance of
the Yi. What is needed for consistency of ẑθ is

∂

∂θ
IEZ(θ) = IE

∂

∂θ
Z(θ) . (2.2)

We illustrate the approach via an example (a simplified version of what
is needed for a PERT net):

Example 2.1 Assume that Z = max(X1, X2) where θ is a scale parameter
for X2 (thus, the given system corresponds to θ0 = 1). That is,

Z(θ) = max(X1, θX2) =

{
X1 X1 > θX2

θX2 X1 < θX2
.

It follows that

Y (θ) =

{
0 X1 > θX2

X2 X1 < θX2
,

so that Y = Y (θ0) = X2I(X1 < X2). The check of (2.2) goes as follows:
with F1, F2 the c.d.f.’s of f1, f2, we get

z(θ) = IE max(X1, θX2) =

∫ ∞

0
IP(max(X1, θX2) > x) dx

=

∫ ∞

0
(1− F1(x)F2(x/θ)) dx

and by differentiation under the integral sign

zθ =

∫ ∞

0
F1(x)

x

θ2 f2(x/θ) dx

θ=1
=

∫ ∞

0
IP(X1 < x) x f2(x) dx = IEY .
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In general, the assumption (2.2) appears to be rather innocent, requiring
differentiation and integration to be interchangeable. However, the follow-
ing examples show that one has to be careful:

Example 2.2 Consider max(X1, X2) as in Example 2.1 but assume now
that the relevant performance is z = IP(X2 > X1). Then Z(θ) = I(θX2 >
X1) (see Figure 2.1), which is differentiable with derivative 0 except at
θ = X1/X2.

-

X2/X1
θ

Z(θ)

Figure VI.2.1

Since IP(X1 = X2) = 0, it follows that

Y =
∂

∂θ
Z(θ)

∣∣∣∣
θ=1

= 0 a.s.

so that 0 = IEY 6= zθ. 2

The same phenomenon occurs often when discrete r.v. s are involved (say
the Poisson r.v. N in the insurance risk example). Here is a counterexample
of a somewhat different type.

Example 2.3 (Shortest job first*) 2

A key reference for infinitesimal perturbation analysis is Glasserman [57].

3 The likelihood ratio method

We illustrate the method via the same example as used for IPA:

Example 3.1 Assume again that z(θ) = IE max(X1, θX2) and that we are
interested in θ = θ0 = 1. With f1, f2 the densities of X1, X2, we can write
the density of θX2 as

f(x, θ) =
1

θ
f2

(x

θ

)



76 CHAPTER VI . GRADIENT ESTIMATION

and get

z(θ) =

∫ ∫
max(x1, x2) f1(x)f(x2, θ) dx1dx2

Differentiation under the integral sign yields

zθ =

∫ ∫
max(x1, x2) f1(x1)

∂

∂θ
f(x2, θ) dx1dx2

=

∫ ∫
max(x1, x2) f1(x1)f2(x, θ)

(∂f/∂θ)(x2, θ)

f(x2, θ)
dx1dx2

= IEθ[ZS]

where

S = Sθ(X2) =
(∂f/∂θ)(X2, θ)

f(X2, θ)
=

∂

∂θ
log f(X2, θ)

is the score function familiar from statistics. 2

Just the same calculation yields:

Proposition 3.2 If z(θ) = IEθ[Z] where Z is a function of τ i.i.d. r.v.’s
X1, X2, . . . with density f(x, θ) and τ is a constant or a stopping time, then

zθ =
d

dθ
z(θ) = IEθ[ZS]

where

S =
τ∑

i=1

d log f(Xi, θ)

dθ
.

Note in particular the convenient feature that the score function is additive.
Example 3.1 and Proposition 3.2 again contain an implicit condition,

namely that differentation and expectation can be interchanged. I.e., we
want a formula of the type

d

dθ

∫
h(x)f(x, θ) dx =

∫
h(x)

d

dθ
f(x, θ) dx

to be valid. However, this is basically a regularity condition on the density
and holds in practice in much greater generality than the condition (2.2)
needed for IPA to be valid.

A key reference for likelihood ratio gradient estimation is Rubinstein &
Shapiro [134].
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3a Rare events*

Nakayama [108], Asmussen & Rubinstein [18].

4 Examples and special methods*
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Chapter VII

Stochastic optimization*

Not implemented in this version. Good references are Pflug [120] and Ru-
binstein & Shapiro [134].

1 The Robbins-Monro algorithm*

2 Response surfaces*
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Chapter VIII

Simulation of some special processes

Let {X(t)} be a stochastic process in discrete or continuous time. We are
interested in generating a sample path {x(t)}0≤t≤T by simulation where T
is a fixed number (say T = 1) or a stopping time.

The methods that we survey in this chapter are highly dependent on the
type of process in question, and also on the type of application (what is the
sample path to be used for?). In some cases like Lévy– or stable processes,
it may even be non–trivial or impossible to generate one –dimensional dis-
tributions (i.e., x(T ) for a fixed T ); we are then faced with a particular
problem in random variate generation. In other situations like stationary
Gaussian processes, the generation of x(T ) for one T may be easy but the
dependence structure may make it difficult to generate finite–dimensional
distributions (the random vector (x(0), x(1), . . . , x(T )) in discrete time, or
a discrete skeleton (xT/n(kT/n))0≤k≤n in continuous time), in particular
when the order is high. A method which is suitable for a fixed T may not
be suitable if T is a stopping time; say the method is based upon generating
discrete skeletons by bisection, starting with generating (x(0), x(T )), then
(x(0), x(T/2), x(T )), next (x(0), x(T/4), x(T/2), x(3T/4), x(T )) and so on.
In continuous time, it may be straightforward to generate a discrete skele-
ton with the correct finite dimensional distributions (say in the case of
Brownian motion) but using a discrete skeleton may introduce errors in
the specific application, say we are interested in characteristics of the first
passage time inf {t > 0 : X(t) ≥ x}.

The error criteria to be used depend on the type of application. If one
is interested in just generating x(T ) sufficiently accurate, an appropriate
error criterion for may be

sup
f∈H
|IEf(x(T ))− IEf(X(T ))| (0.1)
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for a suitable classH of smooth functions. The accuracy of the sample path
approximation can be measured by criteria like

IE sup
0≤t≤T

|x(t)−X(t)| (0.2)

or, for some suitably chosen p,

IE

∫ T

0
|x(t)−X(t)|p dt, IE

T∑
n=0

|xn −Xn|p (0.3)

in continuous, resp. discrete, time, assuming there is a natural way to rep-
resent {x(t)} and {X(t)} on the same probability space.

For some continuous time processes such as work loads or queue lengths
in queues, compound Poisson processes (with a possibly added linear drift)
etc., there is an embedded sequence of points which determines the evo-
lution of the process as a whole. For many interesting processes such as
general Lévy processes or solutions to SDE’s, this is not the case, and the
process is then usually generated from a discrete skeleton. Sometimes it
then works quite well to define {x(t)} by linear interpolation in between
grid points or by x(t) = x(kT/n), kT/n ≤ t < (k + 1)T/n, but in other
cases such procedures may be clearly unreasonable.

1 Brownian motion

Let {W (t)}t≥0 be standard Brownian motion (BM). The generation of the
process along a discrete skeleton 0, h, 2h, . . . is straightforward: just gener-
ate the increments

W (h) = W (h)−W (0), W (2h)−W (h), W (3h)−W (2h), . . .

as i.i.d. N (0, h) variables.

In view of the simplicity of this procedure, there is not much literature
on the simulation of Brownian motion. A notable exception is Knuth [92].

The error from linear interpolation

To generate a continuous time version of BM is intrinsically impossible
because of the nature of the paths. This creates the problem that most
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Brownian functionals cannot be generated exactly from neither a discrete
skeleton nor from other obvious discrete events schemes.

An obvious procedure is to define {wh(t)} by linear interpolation in be-
tween grid points 0, h, 2h, . . . . Note that we can take the increments of
{wh(t)} as the increments of {W (t)} so assume w.l.o.g. that wh(kh) =
W (kh). It is then natural to ask how far the linearly interpolated process
{wh(t)} is from {W (t)}. We consider the criteria (0.2), (0.3).

Proposition 1.1 Let h = 1/n. Then as n→∞

IE

∫ 1

0
|w1/n(t)−W (t)| dt =

c

n1/2

lim inf
n→∞

IE sup0≤t≤1 |w1/n(t)−W (t)|√
log n/n1/2

> 0.

Proof Let BT (t) = W (t) − (t/T )W (t), 0 ≤ t ≤ T , denote the Brownian
bridge up to time T . Then

∫ 1
0 |w1/n(t)−W (t)| dt has the same distribution

as the sum of n independent copies of
∫ 1/n

0 |B1/n(t)| dt. By standard scaling
properties of Brownian motion,

{
BT (tT )

}
0≤t≤1 has the same distribution

as
{√

TB1(t)
}

0≤t≤1
, and so

IE

∫ 1

0
|w1/n(t)−W (t)| dt

= nIE

∫ 1/n

0
|B1/n(t)| dt = IE

∫ 1

0
|B1/n(t/n)| dt

= n−1/2IE

∫ 1

0
|B1(t)| dt.

The second assertion follows by extreme value theory. First as above,
sup0≤t≤1 |w1/n(t) −W (t)| has the same distribution as the maximum of n
independent copies of sup0≤t≤1/n |B1/n(t)| which in turn has the same distri-

bution as the maximum of n independent copies of sup0≤t≤1 |B1(t)|/n1/2. By
extreme value theory, this maximum grows in distribution like

√
log n/n1/2.

2

Note that the rate of convergence in Proposition 1.1 is much slower
than in the deterministic case: if f(t) is a function of t ∈ [0, 1] and f1/n

the function obtained by linear interpolation with grid points 0, 1/n, . . . , 1,
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then ∫ 1

0
|f1/n(t)− f(t)| dt ∼ 1

12n2

∫ 1

0
|f ′′(t)| dt,

sup
0≤t≤1

|f1/n(t)− f(t)| ∼ 1

4n2 sup
0≤t≤1

|f ′′(t)|.

This is an important point in understanding for example the care which
must be taken in the simulation of SDE’s.

Bisection

Assume for example that we are interested in characteristics associated with
the first passage time τ(x) = inf {t ≥ 0 : W (t) ≥ x}. We can then simulate
a discrete skeleton

{
w1/n(k/n)

}
k=0,1,...

and use

τn(x) = inf
{
t = 1/n, 2/n, . . . : w1/n(t) ≥ x

}
as approximation. However, this obviously overestimates τ(x) so one could
consider to make the skeleton finer and finer to judge whether such a discrete
approximation is sufficiently accurate, and we proceed to give the details
for such an algorithm.

Consider {W (t)} in the time interval [0, 1]. The goal is then to generate
a set of r.v.’s

wk(0), wk(1/2k), . . . , wk((2
k − 1)/2k), wk(1)

which have the same joint distribution as

W (0), W (1/2k), . . . , W ((2k − 1)/2k), W (1)

and the sample path consistency property

wk(j/2k−1) = wk−1(j/2k−1) , j = 0, 1, . . . , 2k−1 . (1.1)

First generate w0(0), w0(1) by taking w0(0) = 0, w0(1) ∼ N (0, 1). Next
use the fact that

W (t/2) | W (t) ∼ N (W (t)/2, t/4) .

I.e., if the wk−1(j/2k−1) have been generated, define wk(i/2k) by (1.1) for
i = 2j. For i = 2j + 1, take wk(i/2k) ∼ N

(
y, 2−k−1

)
where

y =
1

2

(
wk−1(j/2k−1) + wk−1((j + 1)/2k−1)

)
.
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Reflected Brownian motion with or without drift

Brownian motion {Wµ(t)} with drift µ is defined by Wµ(t) = W (t) +
µt where {W (t)} is standard Brownian motion.. Obviously, {Wµ(t)} is
straightforward to simulate among a discrete skeleton by just adding a lin-
ear term to {W (t)}.

Reflected Brownian motion with drift µ is defined as

W µ(t) = Wµ(t)− inf
0≤s≤t

Wµ(s).

If µ = 0,
{
W 0(t)

}
has the same distribution as {|W (t)|} and so simulating

along a discrete grid is easy and there is no error at the grid points. If
µ 6= 0, it seems natural to simulate first a discrete skeleton

{
wµ,1/n(k/n)

}
of {Wµ(t)} and let

{
wµ,1/n(k/n)

}
be the reflected version defined by

wµ,1/n(k/n) = wµ,1/n(k/n)− min
`=0,... ,k

wµ,1/n(`/n). (1.2)

However, now there is an error also at the grid points because even if{
wµ,1/n(k/n)

}
fits exactly, the minimum is taken over too small a set and

so wµ,1/n(k/n) is smaller than W µ(k/n).
A careful analysis of this situation was given by Asmussen, Glynn &

Pitman [15], who showed that the error at the grid points is of order n−1/2

and gave precise asymptotics. In [15], some algorithms which improve upon
(1.2) are also discussed.

The first is as follows. For fixed T > 0, the joint density of(
Wµ(T ),− min

0≤t≤T
Wµ(t)

)
(1.3)

is known. For simulation purposes, a convenient representation of this
distribution is to note that marginally, Wµ(T ) is normal (µT, T ), and that
by a result of Lévy,

Fy(x) = IP

(
− min

0≤t≤T
Wµ(t)− y ≤ x

∣∣∣∣ Wµ(T ) = y

)
= 1− e−2x(y+x)/T .

By easy calculus,

F−1
y (z) =

−y +
√

y2 − 2T log(1− z)

2
.

Thus, we may first generate Wµ(T ) as normal (µT, T ) and next let

− min
0≤t≤T

Wµ(t) = −Wµ(T )

2
+

√
Wµ(T )2 − 2T log(U)

2
,
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where U is uniform on (0, 1).

Thus, an algorithm for exact simulation of BM W , the minimum M and
thereby RBM W = W −M at the epochs t = 0, 1/n, 2/n . . . is obtained as
follows:

Algorithm 1.A

1. Let t← 0, W ← 0, W ← 0, M ← 0.

2. Generate (T1, T2) from the density (1.3) with T = 1/n;

3. Let t← t + 1/n, M ← min(M, W −T2), W ←W +T1, W ←W −M .

4. Return to 2.

A related algorithm is exact on a random grid associated with a Poisson
process that is run independently of the RBM W . It takes advantage of
the following well-known lemma:

Lemma 1.2 Let T be an exponential r.v. with rate λ which is independent
of {Wµ(t)}. Then the r.v.’s Wµ(T )−min0≤t≤T Wµ(t) and −min0≤t≤T Wµ(t)
are independent and exponentially distributed with rates η and ω respec-
tively, where

η = −µ +
√

µ2 + 2λ, ω = µ +
√

µ2 + 2λ.

Thus, an algorithm for unbiased simulation of BM B, the minimum M
and thereby RBM W ← W −M at the epochs t of a Poisson(λ) grid is
obtained as follows:

Algorithm 1.B

1. Let t← 0, W ← 0, W ← 0, M ← 0.

2. Generate T , S1, S2 as exponential r.v.’s with rates 1, η, ω, respectively.

3. Let t← t+T , M ← min(M, W−S2), W ←W +S1−S2, W ←W−M .

4. Return to 2.

An open problem of considerable interest is too find good algorithms for
simulating reflected Brownian motion in higher dimensional regions, like
the models in Dai, Harrison & Williams [40].
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2 Lévy jump processes

A primer on Lévy processes is given in the Appendix. Recall that such
a process {X(t)}t≥0 is defined as a continuous time process on IR with
stationary independent increments and X(0) = 0, and can be written as an
independent sum X(t) = ct + σW (t) + J(t) of a linear drift ct, a Brownian
component σW (t), and a (possibly compensated) jump process {J(t)} given
in terms of its Lévy measure ν(dx). Since we have discussed Brownian
motion separately, we consider here only the case σ2 = 0. Recall also that∫ ∞

−∞
(y2 ∧ 1) ν(dy) < ∞. (2.1)

and that the paths of {J(t)} are of finite variation (no compensation needed)
if and only if ∫ ∞

−∞
(|y| ∧ 1) ν(dy) < ∞. (2.2)

(say a stable process with 0 < α < 1 or a subordinator).
For simulation, the compound Poisson case is obviously straightforward

from any point of view (provided at least that it is straightforward to sim-
ulate from the probability measure proportional to ν(dy)) and so we con-
centrate in the following on the case

∫∞
−∞ ν(dy) =∞.

Any Lévy jump process {J(t)} can be written as the independent sum

J(t) = J (1)(t) + J (2)(t) (2.3)

where the Lévy measures of
{
J (1)(t)

}
,

{
J (2)(t)

}
are the restrictions ν(1),

ν(2) of ν to (−ε, ε), resp. {y : |y| ≥ ε}. Here ν(2) is finite so
{
J (2)(t)

}
is a

compound Poisson process and simulation is straightforward. As a first at-
tempt, one would then choose ε > 0 so small that

{
J (1)(t)

}
can be neglected

and just simulate
{
J (2)(t)

}
.

As a more refined procedure, it is often suggested (e.g. Bondesson [28],
Rydberg [135]) to replace

{
J (1)(t)

}
by a Brownian motion with the appro-

priate variance σ2
ε =

∫ ε
−ε y2 ν(dy) and mean µε =

∫ ε
−ε y ν(dy) in the finite

variation case (2.2), µε = 0 in the compensated case. The justification for
this is the folklore because small jumps get more and more dominant as ε
becomes small, one should have{(

J (1)(t)− µεt
)

/σε

}
t≥0

D→ {W (t)}t≥0 (2.4)
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as ε ↓ 0. Whereas it seems questionable whether (2.4) holds in complete
generality, the following result covers most cases of practical interest:

Proposition 2.1 Assume that ν has a density of the form L(x)/xα+1 for
all small x where L(x) is slowly varying and 0 < α < 2. Then (2.4) holds.

Proof We show only that J (1)(1), properly normalized, has a limiting stan-
dard normal distribution. By Karamata’s theorem ([25]),

σ2
ε =

∫ ε

−ε

x2 ν(dx) =

∫ ε

−ε

x1−αL(x) dx ∼ L(ε) + L(−ε)

2− α
ε2−α

Since L(ε)εγ → 0, εγ/L(ε) → 0 for any γ > 0 and similarly for L(−ε), we
therefore have ε/σε → 0 so that

log IE exp
{

s
(
J (1)(1)− µεt

)
/σε

}
=

∫ ε

−ε

(esx/σε − 1− sx/σε) ν(dx) =

∫ ε

−ε

(
s2x2

2σ2
ε

+ O

(
|s3x3|

σ3
ε

))
ν(dx)

=
s2

2
+ o(1),

where the last equailty follows from∫ ε

−ε

|x3| ν(dx) ∼ L(ε) + L(−ε)

3− α
ε3−α

2

Discrete skeletons

Because of the property of stationary independent increments, the problem
of simulating a discrete skeleton

{
jT/n(kT/n)

}
of a Lévy jump process

is obviously equivalent to the problem of r.v. generation from a specific
infinitely divisible distribution. In some cases like the Gamma, Cauchy
or inverse Gaussian distributions, the density is available and standard
methods may apply.

For stable distributions, there is standard algorithm due Chambers, Mal-
low and Stuck [35] (see also Samorodnitsky & Taqqu [142]). It has a par-
ticularly simple form for a symmetric stable distribution (β = 0): if Y1, Y2
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are independent such that Y1 is standard exponential and Y2 uniform on
(−π/2, π/2), then

X =
sin(αY2)

(cosY2)1/α

(
cos((1− α)Y2)

Y1

)(1−α)/α

(2.5)

has a Sα(1, 0, 0) distribution. Note that if α = 2, then (2.5) reduces to

X =
√

Y1
sin(2Y2)

cosY2
= 2

√
Y1 sinY2

which is the Box–Muller method for generating a normal r.v. with variance
2. The algorithm is also fairly simple and well working in the asymmetric
case but then of a somewhat more complicated form.

For asymmetric stable distributions and –processes, the right skewed
case β = 1 can be viewed as the building block because of the fact that if
Y1, Y2 are independent and Sα(1, 0, 0) distributed, then

Y = µ + σ

(
1 + β

2

)1/α

Y1 − σ

(
1− β

2

)1/α

Y2

has a Sα(σ, β, µ) distribution.
For general Lévy jump processes, it is the exception rather than the

rule that special methods are available as for the Gamma, Cauchy, inverse
Gaussian and stable cases, and most often the r.v. generation has to be
based directly upon the Lévy measure ν. It is obviously impossible to
generate an infinity of jumps, and so invariably some truncation– or limiting
procedure is involved.

Different algorithms were suggested by Bondesson [28] and Damien,
Laud & Smith [42]. Bondesson’s method is an early instance of ideas re-
lated to the series representations discussed below, and we return to it there.
The starting point of Damien, Laud & Smith is the finite measure θ(dy) =
y2/(1+y2) ν(dy) in the form (A3.7) of the Lévy–Khintchine representation.
Write c =

∫∞
−∞ θ(dy).

Proposition 2.2 ([42]) Let (Ui, Vi), i = 1, . . . , n, be i.i.d. pairs such that U
has distribution θ(dy)/c and the conditional distribution of V given U = y
is Poisson(c(1 + y2)/ny2), and let

Zn =


n∑

i=1

UiVi in the finite variation case.

n∑
i=1

(
UiVi −

c

nUi

)
in the compensated case.
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Then Zn
D→ X1 as n→∞.

Proof Letting λn(y) = c(1+y2)/ny2, we have IE[esUV |U = y] = eλn(y)(esy−1).
Thus in the finite variation case, we get for <s = 0 that

log IEesZn = n log

(∫ ∞

0
eλn(y)(esy−1) y2

c(1 + y2)
ν(dy)

)
= n log

(∫ ∞

0

{
1 + λn(y)(esy − 1) + O(1/n2)

} y2

c(1 + y2)
ν(dy)

)
= n log

(
1 +

1

n

∫ ∞

0
(esy − 1)ν(dy) + O(1/n2)

)
= n log

(
1 +

1

n
ϕ(s) + O(1/n2)

)
→ ϕ(s)

as should be (using that the O(1/n2) term is uniform in y). For the com-
pensated case, see [42]. 2

A particularly appealing case is the Sα(1, 1, 0) case where U can be
generated as

√
1/W − 1 with W having a Beta(α/2, 1− α/2) distribution.

Series representations

A common idea of the methods to be discussed is to avoid the planar point
process N with intensity measure ν(dy) ⊗ dt discussed in the Appendix
and to work instead with a Poisson process M on [0,∞). Sometimes,
the methods improve upon those discussed for discrete skeletons by better
allowing to identify the location of the important jumps which is important,
e.g., for reducing the uniform error (0.2) (note that even in the simple case
of a Poisson process, (0.2) evaluated for a discrete skeleton does not go to
zero). We do not know of practical implementations of most of the series
representations presented below, and it does not seem apriori obvious either
whether they represent an improvement of the simple idea of simulating the
compound Poisson process obtained by truncating the Lévy measure at ε.
Nevertheless, the representations contain potentially useful ideas.

We take the intensity of M to be λ, and denote the nth epoch by Γn

(thus, {Γn − Γn−1}n=1,2,... is a sequence of i.i.d. exponential r.v.’s with mean
1/λ). Let further the sequences {Un}, {ξn} be independent of M and i.i.d.,
such that Un is uniform on (0, 1) and ξn has some distribution varying from
case to case in the following. The representations we consider typically have
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the form { ∞∑
n=1

G(ξn, Γn)I(Un ≤ t)

}
0≤t≤1

in the finite variation case.

We first consider the algorithm of Bondesson [28].

Proposition 2.3 ([28]) Assume that {X(t)} is a subordinator. Then:
(i) There exists a family {H(dy, u)}u≥0 of distributions on [0,∞) and a
λ > 0 such that

λ

∫ ∞

0
H(dy, u) du = ν(dy); (2.6)

(ii) For such a family {H(dy, u)}, let W1, W2, . . . be r.v.’s which are condi-
tionally independent given M , such that Wi has distribution H(·, Γi) given
M . Then X = W1 + W2 + · · · has the same distribution as X1.

Proof Part (i) follows from the proof of Corollaries 2.4 or 2.6 below. For
(ii), we can write the Lévy exponent ϕ(s) = log IEesX1 as

ϕ(s) =

∫ ∞

0
(esy − 1)ν(dy) =

∫ ∞

u=0

∫ ∞

y=0
λ(esy − 1)H(dy, u) du

which we recognize as the c.g.f. of the total reward X∗(∞) in a time–
inhomogeneous compound Poisson process {X∗(t)}0≤t<∞ with constant ar-
rival rate λ and jump size distribution H(·, u) at time u. From this the
result follows. 2

Corollary 2.4 Let λ > 0 and define ν(x) =
∫∞

x+ ν(dy),

g(u) = sup {x : ν(x) > λu}

Then X = g(Γ1) + g(Γ2) + · · · has the same distribution as X1.

Proof Let H(x, u) =
∫∞

x+ H(dy, u). Then (2.6) can be rewritten as

λ

∫ ∞

0
H(x, u) du = ν(x), x ≥ 0. (2.7)

Letting H(·, u) be the degenerate distribution at g(u), we have H(x, u) = 1,
x ≤ g(u), H(x, u) = 0, x < g(u). 2
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Note the similarity of the algorithm of Corollary 2.4 to r.v. generation
by inversion. In [28], several other choices of H are discussed in particular
settings.

Bondesson only considers one–dimensional distributions, not processes,
but in fact:

Corollary 2.5 Under (i) of Proposition 2.3,

{X(t)}0≤t≤1
D
=

{ ∞∑
n=1

WnI(Un ≤ t)

}
0≤t≤1

. (2.8)

Proof Let X̃(t) =
∑∞

n=1 WnI(Un ≤ t). We can then think of X̃(t) as
the total reward in the process obtained from {X∗(t)} from thinning with
retention probability t. Hence as in the proof of Proposition 2.3, with λ
replaced by λt, we get log IEesX̃(t) = tϕ(s), and it only remains to show
independence of increments. But if we split {X∗(t)} into three processes
{X∗(t; 1)}, {X∗(t; 2)}, {X∗(t; 3)} by letting a jump go to the three processes
w.p.’s t, t + s, resp. 1 − t − s according to the Un, these processes are
independent and hence so are the total rewards

X∗(∞; 1) =
∞∑

n=1

WnI(Un ≤ t) = X̃(t),

X∗(∞; 2) =
∞∑

n=1

WnI(t < Un ≤ t + s) = X̃(t + s)− X̃(t).

2

In the following, let λ = 1. There are several series representations
of Lévy processes of similar type as (2.8) around in the literature. For
example, an Sα(1, β, 0) process with α < 1 can be represented as

C1/α
α

∞∑
n=1

ξnΓ−1/α
n I(Un ≤ t) (2.9)

where

Cα =

(∫ ∞

0
x−α sinx dx

)−1

, IP(ξn = 1) = IP(ξn = −1) =
1 + β

2
.

Letting H(·, u) be the distribution of a r.v. which is ±C
1/α
α u−1/α with proba-

bilities (1±β)/2, this representation is as the same form as in Corollary 2.5.
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For 1 ≤ α < 2, there are similar expansion as (2.9) but with certain center-

ing terms tb
(α)
n added for each term (corresponding to compensation). See

[142] for details. Maybe more surprisingly, if the process is not completely
skewed (i.e., |β| 6= 1) then such centering can be avoided. For example, for
α 6= 1 a possible representation is (2.9) with the distribution of ξn changed
to IP(ξn = a±) = 1− a±/(a+ + a−) where

a± = ±
[

1± β

2

(
1 + β

1− β

)±1/(α−1)

+ 1

]1/α

.

Cf. Janicki & Weron [83]. For further studies of series expansions without
compensation, see Rosiński [129]

Here is one more example, random thinning of i.i.d. sequences (Rosiński
[128]); the thinning corresponds to allowing H(·, u) to have an atom at 0
in Proposition 2.3.

Corollary 2.6 Consider the finite variation case. Let the ξn have distribu-
tion F where F a probability distribution on IR/ {0} which is equivalent to
ν in the Radon–Nikodym sense, and let g = dν/dF . Then the process can
be represented as

∞∑
n=1

ξnI(g(ξn) ≥ Γn)I(Un ≤ t).

Proof For y > 0, we get

H(dy, u) = IP(ξn ∈ dy; g(ξn) ≥ u) = F (dy)I(g(y) ≥ u)

Thus g = dν/dF yields∫ ∞

0
H(dy, u) du = F (dy)g(y) = ν(dy).

2

3 Stochastic differential equations

3a Numerical methods for ODE’s

Consider the ODE ẋ(t) = a(t, x(t)) with initial condition x(0) = x0 in
the time interval [0, T ]. A numerical solution is typically implemented via
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discrete approximations: we write T = N∆ and generate the approximation
y∆ by generating

y0 = y∆(0), y1 = y∆(∆), . . . , yn = y∆(n∆), . . . , yN = y∆(T ) = y∆(N∆) .

The error criterion is

e(∆) =
∣∣x(T )− y∆(T )

∣∣ = |x(T )− yN | .
The basic method is the Euler method

y0 = x0, yn+1 = yn + a(n∆, yn)∆ . (3.1)

Under suitable smoothness conditions (which we omit here and in the fol-
lowing), e(∆) = O(∆).

Here are some improvements:

a). Take a Taylor expansion of order k > 1 rather than k = 1 as in (3.1).
For k = 2, this gives

yn+1 = yn + a(n∆, yn)∆ + {at(n∆, yn) + a(n∆, yn)ax(n∆, yn)}
∆2

2
.

Here e(∆) = O(∆2).

b). In

x(∆) = x(0) +

∫ ∆

0
a(t, x(t)) dt ,

approximate the integral by

{a(0, x(0)) + a(∆, x(∆))} ∆

2

(the trapezoidal rule) rather than a(0, x(0))∆ as in (3.1). Here X(∆)
is unknown but can be estimated by (3.1), i.e. predicted by x(0) +
a(0, x(0))∆. This gives y0 = x0,

yn+1 = yn + a(n∆, yn)∆,

yn + 1 = yn + {a(n∆, yn) + a((n + 1)∆, yn+1)}
∆

2
,

which is an example of a predictor–corrector method. Again, e(∆) =
O(∆2).
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3b The Euler methods for SDE’s

In this and the following sections, we consider the SDE X(0) = x0,

dX(t) = a(t, X(t))dt + b(t, X(t)) dW (t) 0 ≤ t ≤ T, (3.1)

where {W (t)}t≥0 is standard Brownian motion.
The numerical methods for SDE’s are modelled after those for ODE’s.

We will start by the Euler method and in the next sections, we study
SDE analogues of methods based upon higher orden Taylor expansion. We
mention for completeness that also say implicit methods have been extended
but shall not give the details (see Kloeden & Platen [90]).

The Euler scheme is T = N∆, y0 = x0,

yn+1 = yn + a(n∆, yn)∆ + b(n∆, yn)(∆Wn) ,

where (∆Wn) = W ((n + 1)∆)−W (n∆). For brevity, we write ∆W in the
following. The (∆Wn) are generated as i.i.d. N(0, ∆) variables.

3c Error criteria

For SDE’s, one may be interested in two types of fit, strong and weak (which
one depends on the type of application):

(s) {yn} should give a good approximation of the sample path of {X(t)}.
This leads to the error criterion

es(∆) = IE |X(T )− yN∆| .

(w) yN∆ should give a good approximation of the distribution of X(T ).
That is, IEg(yN∆) should be close to IEg(X(T )) for sufficiently many
smooth functions g.

We will say that Y ∆ = {yn} converges strongly to X at time T with order
γ > 0 if es(∆) = O(∆γ), and weakly if

|IEg(X(T ))− IEg(yN∆)| = O(∆γ)

for all g such that g′, g′′, . . . , g(2(γ+1) exist [in practice, the relevant values of
γ are γ = 1, 1.5, 2, 2.5, . . . so that 2(γ + 1) is integer] and have polynomial
growth, ∣∣∣g(k)(x)

∣∣∣ ≤ dg,kx
pg,k , k = 0, . . . , 2(γ + 1) .

We state without proof the following main result:
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Theorem 3.1 The Euler scheme (3.1) converges strongly with order γ =
0.5, and weakly with order γ = 1.

3d The Milstein scheme

The idea is that the approximation∫ ∆

0
b(t, X(t)) dW (t) ∼ b(0, X(0))W∆

is the main source of error for the Euler scheme. To improve it, we estimate
the error by Ito’s formula for b(t, X(t)):∫ ∆

0
b(t, X(t)) dW (t) − b(0, X(0))W∆

=

∫ ∆

0
{b(t, X(t))− b(0, X(0))} dW (t)

=

∫ ∆

0

{ ∫ t

0

[
bt(s, X(s)) + a(s, X(s))bx(s, X(s)) +

1

2
b2(s, X(s))bxx(s, X(s))

]
ds

+

∫ t

0
b(s, X(s))bx(s, X(s)) dW (s)

}
dW (t)

∼ O(∆2) + b(0, x0)bx(0, x0)

∫ ∆

0

∫ t

0
dW (s) dW (t)

∼ b(0, x0)bx(0, x0)

∫ ∆

0
W (t) dW (t)

= b(0, x0)bx(0, x0)

{
1

2
W 2

∆ −
1

2
∆

}
.

This leads to the Milstein scheme y0 = x0,

yn+1 = yn + a∆ + b∆W +
1

2
bbx

{
(∆W )2 −∆

}
(3.1)

where a = an = a(n∆, yn) and similarly for b, bx.

Theorem 3.2 The Milstein scheme (3.1) converges strongly with order γ =
1.

3e Ito–Taylor expansions

We proceed by refining the estimate used for the Milstein scheme. For
notational convenience, let, e.g., bx denote bx(0, x0) when occurring outside
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integrals and bx(s, X(s)) when occuring in an integral w.r.t. ds or dW (s).
We get∫ ∆

0
b(t, X(t)) dW (t) − b(0, X(0))W∆

=

∫ ∆

0
b dW (t) − bW∆

=

∫ ∆

0

{∫ t

0

[
bt + abx +

1

2
b2bxx

]
ds +

∫ t

0
bbx dW (s)

}
dW (t) (3.1)

In the last term, we expand bbx = b(s, X(s))bx(s, X(s)) one more time by
Ito’s formula and note that the dW (u) term dominates the du term. Thus
approximately (3.1) is[

bt + abx +
1

2
b2bxx

] ∫ ∆

0
t dW (t) + bbx

∫ ∆

0
W (t) dW (t)

+

∫ ∆

0
dW (t)

∫ t

0
dW (s)

∫ s

0
b

∂

∂x
(bbx) dW (u)

∼
[
bt + abx +

1

2
b2bxx

]
(∆ ·W − Z) +

1

2
(W 2 −∆)

+ b(bbxx + b2
x)

∫ ∆

0

(
1

2
W (t)2 − t

2

)
dW (t) (3.2)

where

Z =

∫ ∆

0
W (s) ds = ∆W −

∫ ∆

0
s dW (s).

Similarly,∫ ∆

0
a(t, X(t)) dt − a(0, X(0))∆

=

∫ ∆

0
a dt − a∆

=

∫ ∆

0

{∫ t

0

[
at + aax +

1

2
b2axx

]
ds +

∫ t

0
bax dW (s)

}
dt

∼ 1

2

[
at + aax +

1

2
b2axx

]
∆2 + bax

∫ ∆

0
W (t) dt

∼ 1

2

[
at + aax +

1

2
b2axx

]
∆2 + baxZ (3.3)
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By evaluating the differential of d(W (t)3/3− tW (t)) by Ito’s formula, it is
seen that the double of the integral in (3.2) is

1

3
W (∆)3 −∆W (∆) =

1

3
W 3 −∆ ·W .

Hence, approximating X(∆) by x0 + a∆ + bW+(3.2)+(3.3), we arrive at
the Ito-Taylor formula

X(∆) ∼ x0 + a∆ + bW +
1

2
bbx(W

2 −∆)

+axbZ +
1

2

[
at + aax +

1

2
b2axx

]
∆2

+

[
bt + abx +

1

2
b2bxx

]
(∆ ·W − Z)

+
1

2

[
b(bbxx + b2

x

](
1

3
W 3 −∆ ·W

)
.

For the following, we note that the covariance matrix of (W, Z) = (W (∆), Z(∆))
is

(
∆ 1

2∆
2

1
2∆

2 1
3∆

3

)
. (3.4)

This follows, e.g., by writing

W =

∫ ∆

0
dW (s), Z =

∫ ∆

0
dt

∫ t

0
dW (s) =

∫ ∆

0
(∆− s)dW (s)

which yields the covariance function as( ∫ ∆
0 ds

∫ ∆
0 (∆− s) ds∫ ∆

0 (∆− s) ds
∫ ∆

0 (∆− s)2 ds

)
,

cf. (A8.4).



4. GAUSSIAN PROCESSES 99

3f Higher order schemes

A scheme of strong order 1.5 is obtained directly from the Ito–Taylor ex-
pansion: y0 = x0,

yn+1 = yn + a∆ + b(∆W ) +
1

2
bbx

{
(∆W )2 −∆

}
+axb(∆Z) +

1

2

[
at + aax +

1

2
b2axx

]
∆2

+

[
bt + abx +

1

2
b2bxx

]
((∆W ) ·∆− (∆Z))

+
b

2

[
bbxx + b2

x

](
1

3
(∆W )3 − (∆W ) ·∆

)
where a = an = a(n∆, yn) etc. and the ((∆W )n, (∆Z)n) are generated as
i.i.d. bivariate normals with mean 0 and covariance matrix (3.4) (cf. also
the extended Box–Muller method in Chapter I for generating dependent
bivariate normals).

A scheme of weak order 2 of a slightly simpler form can be obtained by
deleting the last term.

4 Gaussian processes

Let {X(t)} be a real–valued Gaussian process in discrete or continuous time
as specified with its covariance function γ(s, t) = Cov(X(s), X(t)); it will
not be a restriction for the following to assume that the mean is zero. We
will only consider simulation of discrete skeletons so we adapt a discrete
time notation X0, X1, . . . .

In some cases, a simple description of the dynamics is available which
makes it possible to simulate the process directly. A simple example is a
discrete time ARMA(p, q) process with representation

Xn+1 = β1Xn + β2Xn−1 + · · ·+ βpXn−p+1 + α1εn + · · ·+ αqεn−q+1 (4.1)

where the εn are i.i.d. standard normal variables. However, in many exam-
ples one has to work directly with the covariance function or the spectral
density (see below).
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Cholesky factorization. Prediction

We consider recursive algorithms based upon the covariance function, study-
ing how to generate Xn+1 given X0, . . . , Xn have been generated. Thus we
need to specify the conditional distribution of Xn+1 given X0, . . . , Xn which
is a standard problem in the multivariate normal distribution. Write Γ(n)
for the covariance matrix of X0, . . . , Xn and let γ(n) be the (n+1)–column
vector with γk(n) = γ(n + 1, k), k = 0, . . . , n. Then

Γ(n + 1) =

(
Γ(n) γ(n)
γ(n)′ γ(n + 1, n + 1)

)
.

Therefore by general results on the multivariate normal distribution, the

conditional distribution of Xn+1 given X0, . . . , Xn is N
(
X̂n+1, σ

2
n

)
where

X̂n+1 = γ(n)′Γ(n)−1


X0

X1
...

Xn

 , σ2
n = γ(n+1, n+1)−γ(n)′Γ(n)−1γ(n) ,

and we can just generate Xn+1 according to N
(
X̂n+1, σ

2
n

)
.

Note that in the terminology of time series (e.g. Brockwell & Davis [30]),
X̂n+1 is the best linear predictor for Xn+1 (in terms of minimizing the mean
square error) and σ2

n the corresponding prediction error.
Form the point of simulation, the difficulty is to organize the calculations

economically, say by recursive computation of γ(n)′Γ(n)−1 to avoid matrix
inversion in each step, or by some other method.

An established device is Cholesky factorization. This is an algorithm for
writing a given symmetric (n+1)× (n+1) matrix Γ = (γij)i,j=0,... ,n as Γ =
CC ′ where C = (cij)i,j=0,... ,n is (square) lower triangular (cij = 0 for j > i),
and works as follows. By symmetry of Γ and CC ′, it suffices that the ijth
elements of Γ and CC ′ are equal for j ≤ i which means

γ(i, j) =
n∑

k=0

cikcjk =

i∧j∑
k=0

cikcjk =

j∑
k=0

cikcjk, j ≤ i. (4.2)

This determines first c00 by γ(0, 0) = c2
00 (i = j = 0, whereas for i = 1 we

get two equations

γ(1, 0) = c10c00, γ(1, 1) = c2
10 + c2

11
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determining c10, c11. In general, if ci′j has been computed for i′ < i, we get

cij =
1

cjj

(
γ(i, j)−

j−1∑
k=0

cikcjk

)
, j < i, c2

ii =

(
γ(i, i)−

i−1∑
k=0

c2
ik

)
.

(4.3)

For simulation of X0, . . . , Xn, the implication is that we can take Y0, . . . , Yn

to be i.i.d. standard normal, writeY (n) = (Y0 . . . Yn)
′,X(n) = (X0 . . . Xn)

′,
and define C(n) to be the Cholesky factorization of Γ(n). Then the Xi are
generated by X(n) = C(n)Y (n). Component by component,

Xi =
i∑

k=0

cikYk, i = 0, . . . , n. (4.4)

Note that we did not write cik(n) because (4.3) shows that cik(n) does not
depend on n as long as i, k ≤ n. This means in particular that to get
C(n + 1) from C(n), one only needs to compute the last row (i = n + 1).
That X(n) has the correct distribution follows from

Cov(X(n)) = Cov(C(n)Y (n)) = C(n)IC(n)′ = Γ(n).

Remark 4.1 The representation (4.4) shows that Y0, . . . , Yn form a Gram–
Schmidt orthogonalization of X0, . . . , Xn. That is, (in the L2 sense) Y0, . . . , Yn

are orthonormal and span(Y0, . . . , Yk) = span(X0, . . . , Xk). 2

In conclusion, simulation via Cholesky factorization is exact (no approx-
imation is involved) and one does not need to set the time horizon in ad-
vance. Note also that no matrix inversion at all is involved. The drawback
of the method is that is becomes slow and demanding in terms of storage
(one needs to store all cij) as n becomes large.

In general, Cholesky factorization is just a mathematical device for ma-
trix manipulation. However, in the case of Gaussian processes the procedure
can be given an interesting interpretation in terms of the standard problem
of time series analysis of prediction or forecasting: given we have observed
X0, . . . , Xn, we want a predictor of Xn+1. Now the best linear predictor (in
terms of minimizing the mean square error) of Xn+1 is

X̂n+1 = IE[Xn+1 |X0, . . . , Xn] = γ(n)′Γ(n)−1


X0

X1
...

Xn


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and thus algorithms for recursive prediction are potentially useful for sim-
ulation as well.

Two such algorithms are given in [30] Ch. 5, the Durbin–Levinson algo-
rithm and the innovations algorithm. We consider only the latter. The key
is to represent X̂i as a linear combination of the Xk− X̂k with k < i rather
than the Xk,

X̂i =
i−1∑
k=0

θi,i−k(Xk − X̂k) (4.5)

in the notation of [30]. Obviously X̂0 = 0, σ2
n = Var(Xn+1 − X̂n+1), σ2

−1 =

r(0, 0). Define Yk = (Xk − X̂k)/σk−1.

Proposition 4.2 The Yk are i.i.d. standard normal.

Proof All that needs to be shown is independence. Let Hk denote the
subspace of L2 spanned by X0, . . . , Xk and let < X, Y >= IE(XY ) denote
the usual inner product in L2. For i < j we have Xi − X̂i ∈ Hj−1 and
Xj − X̂j ⊥Hj−1 by definition of X̂j. Thus the r.v.’s Yj = Xj − X̂j are
orthogonal, i.e. uncorrelated and independence follows from properties of
the multivariate normal distribution. 2

If we let cik = θi,i−kσk−1, k < i, cii = σi−1, and write Xi = (Xi −
X̂i) + X̂i, (4.5) takes the form (4.4). That is, determining the θi,j needed
for the innovation algorithm involves just the same equations as Cholesky
factorization, and (with the right choice of sign) the Yk in (4.4) can be
interpreted as the (Xk − X̂k)/σk−1 which in turn form a Gram–Schmidt
orthonormalization of the Xk (cf. Remark 4.1).

For a further variant of Cholesky factorization, see Hosking [80].

Spectral simulation. FFT

We will assume that {X(t)} is strictly stationary. Consider first the case
of a discrete time process X0, X1, X2, . . . and write γk = γ(n, n + k) (by
stationary, this does not depend on n). Then the sequence {γk} is positive
definite and so by Herglotz’s theorem, it can be represented as

γk =

∫ 2π

0
eikλ ν(dλ) (4.6)
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for some finite real measure ν on [0, 2π), the spectral measure; the condition
that the process is real–valued is equivalent to∫

A

ν(dλ) =

∫
2π−A

ν(dλ) , A ⊂ (0, π) (4.7)

(if the spectral density s = dν/dλ exists, this simply means that s is sym-
metric around π, s(λ) = s(2π−λ), 0 < λ < π). The spectral representation
of the process is

Xn =

∫ 2π

0
einλ Z(dλ) (4.8)

where {Z(λ)}λ∈[0,2π) is a complex Gaussian process which is traditionally
described by having increments satisfying

IE
[
(Z(λ2)− Z(λ1))(Z(λ4)− Z(λ3))

]
= 0,

IE|Z(λ2)− Z(λ1)|2 = ν(λ1, λ2] (4.9)

for λ1 ≤ λ2 ≤ λ3 ≤ λ4; the integral should be understood as the L2 limit of
approximating step functions (of course, the imaginary part in (4.8) has to
vanish since X is real–valued). See e.g. Cramér & Leadbetter [39].

For simulation, it is then appealing to simulate Z and construct X via
(4.8). However, Z is not completely specified by (4.9). But:

Proposition 4.3 Assume that X is real–valued and define Z(λ) = Z1(λ)+
iZ2(λ) by first taking {Z1(λ)}0≤π, {Z2(λ)}0≤π to be independent real–valued
Gaussian with independent increments satisfying

Var(Zi(λ2)− Zi(λ1)) =
1

2
ν(λ1, λ2] ,

and next letting

Z(π + λ) = Z(π) + Z(π)− Z(π − λ−), 0 < λ < π.

Then (4.8) holds, i.e.

Xn = 2

∫ π

0
cos(nλ)Z1(dλ) + 2

∫ π

0
sin(nλ)Z2(dλ). (4.10)

Note that in the presence of a spectral density s we may rewrite the defi-
nition of the Zi as

dZi(λ) =

√
1

2
s(Zi(λ)) dWi(λ)
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where W1, W2 are independent Brownian motions.

Proof Given Z, we define X by (4.8) By definition, dZ(π + λ) = dZ(π − λ)
so that

∫ 2π

π einλ =
∫ π

0 e−inλ which implies that (4.8) can be written in the
alternative form (4.10). In particular, (4.10) shows that X is real–valued
(and obviously Gaussian) so it suffices to show that the covariance function
is correct. But by (A8.4)

Cov(Xn+k, Xn) = IE[Xn+kXn] = IE
[
Xn+kXn

]
= IE

[∫ 2π

0
ei(n+k)λ Z(dλ) ·

∫ 2π

0
e−inλ Z(dλ)

]
=

∫ 2π

0
ei(n+k)λe−inλ IE|Z(dλ)|2

=

∫ 2π

0
eikλ ν(dλ) = rk.

2

For practical implementation, the stochastic integrals in (4.10) may ei-
ther be computed by SDE schemes as in Section 3, or by discrete approx-
imations as follows. Say that X has discrete spectrum if ν has a finite
support, say mass σ2

k at λk, k = 0, . . . , N − 1. If X is real–valued, this
means by (4.7) that N is of the form 2M and that we can choose λk ≤ π,
λM+k = 2π − λk, k = 0, . . . , M − 1. Then we can write

Zi(λ) =
∑

k:λk≤λ

σkZk,i, 0 ≤ λ ≤ π,

with the Zk,i i.i.d. real normal with variance 1/2, and (4.10) becomes

Xn = 2
M−1∑
k=0

σk {cos(nλk)Zk,1 + sin(nλk)Zk,2} . (4.11)

A process of the form (4.11) is of course straightforward to simulate. In
general, spectral simulation is then performed by approximating the spec-
tral measure by a measure with finite support, which is always possible. But
note that there is no canonical way to perform this discrete approximation,
and that the method is only approximative.

The great advantage of the method is, however, the speed when (4.11)
is implemented via the FFT (fast Fourier transform). This algorithm is
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an extremely fast algorithm for transforming a real or complex sequence
{an}n=0,1,... ,N−1 into its inverse Fourier transform {ân}n=0,1,... ,N−1 when N
is a power of 2, N = 2m. Here

ân =
N−1∑
k=0

ak exp {i2πkn/N}

(note that often alternative ways to write the Fourier sum are encountered
in the literature). One then needs to choose the λk of the form 2πk/N
which again is always possible, let ak = σkZk and take Xn as <ân.

In continuous time, the same method of course applies to simulate any
discrete skeleton X0, Xh, X2h, . . . . One needs then to compute the spectral
measure νh of the skeleton, which is most often performed from formulas
like

νh(dλ) =
∞∑

k=−∞
ν(d(λ + 2kπ/h))

where ν is the spectral measure in the Bochner representation

γ(t) =

∫ ∞

−∞
eitλ ν(dλ) (4.12)

(γ(t) = γ(s, s+ t)). For details and implementation issues, see for example
Appendix D in Lindgren [100].

An idea somewhat related to spectral simulation is to use wavelets. See
e.g. Abry & Sellan [1] for a special case.

ARMA approximations

A stationary Gaussian discrete time process has the ARMA form (4.1) if
and only if the spectral measure is absolutely continuous with density of
the form p(eiλ)/q(eiλ) where p, q are polynomials, cf. Brockwell & Davis
[30] Ch. 4. For a general {Xn}, one can find polynomials pn, qn such that

pn(e
iλ)

qn(eiλ)
dλ

w→ ν(dλ),

see again [30]. This suggests to choose p, q such that the measure with
density p(eiλ)/q(eiλ) is close to ν, and simulate the corresponding ARMA
process as an approximation to {Xn}.

The precise form of p, q is of course subject to choice and arbitrary. See
Krenk & Clausen [93] and Gluver & Krenk [62] for some relevant discussion.
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Some further references relevant for the general problem of simulating
Gaussian processes are Wood & Chan [155] and Dietrich & Newsom [45].

5 Fractional Brownian motion

Mandelbrot & Van Ness [102] defined fractional Brownian motion as a mean
zero Gaussian process {BH(t)}t≥0 with covariance function of the form

r(t, s) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
(5.1)

for some H ∈ (0, ] (the Hurst parameter or self–similarity parameter). For
H = 1/2, we are back to standard Brownian motion. This class of processes
can be characterized as the only self–similar1 Gaussian processes with sta-
tionary increments. There has been a boom of interest in fractional Brown-
ian motion during the last years, mainly because of statistical studies (e.g.
Leland et al. [99] and Paxson & Floyd [118]) of phenomena like internet
traffic which shows long–range dependence (a covariance function decaying
slower than exponentially) and self–similarity. Fractional Brownian mo-
tion is then a natural candidate as a model both because of its intrinsic
properties and because it appears as limit of many more detailed descrip-
tors of network traffic. Some selected references on performance of systems
with fractional Brownian input are Norros [114], Duffield & O’Connell [47]
and Narayan [109]. However, there are virtually no explicit results and so
simulation becomes an important tool.

For simulation, one can use one of the methods discussed in Section 4
for general stationary Gaussian processes (in this setting, the increments
of {BH(t)}). In particular, the Cholesky factorization method has been
implemented by Michna [103]. One should note that the faster methods
of ARMA approximations or FFT are potentially dangerous because they
destroy the long–range dependence.

Special algorithms for fractional Brownian motion could potentially be
based upon some of the many stochastic integral representations of {BH(t)}

1A stochastic process {X(t)} is self–similar if for some H {X(at)} D=
{
aHX(t)

}
for all a ≥ 0.
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which are around. The classical one is

BH(t) = CH

[∫ 0

−∞

{
(t− y)H−1/2 − |y|H−1/2

}
dW (y)

+

∫ t

0
(t− y)H−1/2 dW (y)

]
(5.2)

where

CH =

√
2H

(H − 1/2)Beta(H − 1/2, 2− 2H)

and {W (y)} is a two–sided Brownian motion. However, simulating via (5.2)
faces the same difficulty as above because one has to truncate the integral to
a finite range, thereby destroying long–range dependence. A representation
without this difficulty is

BH(t) =

∫ t

0
K(t, y) dW (y) (5.3)

where

K(t, s) = C ′H s1/2−H

∫ t

s

uH−1/2(u− s)H−3/2 du,

C ′H =

√
H(2H − 1)

Beta(H − 1/2, 2− 2H)

(cf. Norros, Valkeila & Virtamo [116]). However, we do not know of prac-
tical implementations of simulating via (5.3).

Some further references on aspects of simulating fractional Brownian
motion are Mandelbrot [101] (a fast ad hoc method), Abry & Sellan [1]
(wavelets), Paxson [117] (FFT), Norros, Mannersalo & Wang [115] (bisec-
tion with truncated memory), and Michna [103] and Huang et al. [81], [82]
(importance sampling methods).
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Chapter IX

Selected topics

1 Special algorithms for the GI/G/1 queue

1a Exact simulation of W

We consider a random walk maximum M in the notation of the Siegmund
algorithm in IV.2a. Recall in particular that Fγ denotes the probability
measure with density eγx w.r.t. F where γ > 0 is the solution of F̂ [γ] =
1, that τ(x) = inf {n : Sn > x}, ξ(x) = Sτ(x) − x, and that we have the
representation IP(M > x) = IEγe

−γSτ(x) where IPγ is the probability measure
such that the Xn are i.i.d. with distribution Fγ w.r.t. IPγ.

An algorithm for exact simulation of M (which has the same distribution
as the GI/G/1 waiting time W subject to a suitable choice of F ) was
suggested by Ensor & Glynn [49]. It uses an exponential r.v. V with rate
γ (independent of {Sn}) and the ladder heights Sτ+(n) where

τ+(0) = 0, τ+(n + 1) = inf
{
k > τ+(n) : Sk > Sτ+(n)

}
.

Cf. Fig. IX.1.1 where the ladder heights are marked with a •.
The r.v. generated by the simulation is the last ladder height

Z = sup
{
Sτ+(n) : Sτ+(n) ≤ V

}
not exceeding V , see again Fig. IX.1.1.

109
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Figure IX.1.1

Proposition 1.1 The IPγ–distribution of Z is the same as the IP–distribution
of M .

Proof First note that Sτ(x) is necessarily a ladder height. By sample path
inspection, Z > x if and only Sτ(x) ≤ V so that

IPγ(Z > x) = IPγ(Sτ(x) ≤ V ) = IEγ

[
IPγ

(
Sτ(x) ≤ V

∣∣ Sτ(x)
)]

= IEγe
−γSτ(x) = IP(M > x).

2

From exact simulation of the waiting time W
D
= M , one can easily per-

form exact simulation also of the steady–state queue length Q. This follows
from the distributional Little’s law stating that Q has the same distribution
as N(W +U) where W , U , {N(t)} are independent, U has the service time
distribution and {N(t)} is a version of the renewal arrival process. Thus, if
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Z is generated as above and T1, T2, . . . are independent interarrival times,
the r.v.

supn = 0, 1, 2, . . . : T1 + · · ·+ Tn > Z + U

has the same distribution as Q.
For the M/G/1 queue, an obvious alternative exact simulation estimator

for W comes from the Pollaczek–Khintchine formula: W has the same dis-
tribution as U∗1 + · · ·+U∗N where N, U∗1 , U∗2 are independent, N is geometric
with IP(N = n) = (1 − ρ)ρn, n = 0, 1, 2, . . . , and the U∗k have the equilib-
rium service time distribution. In contrast to the Ensor–Glynn estimator,
this estimator can also be used in the case of heavy tails.

1b The Minh–Sorli algorithm

A classical formula for the mean delay due to Marshall is

IEW =
IEU2 + IET 2 − 2IEUIET

2(IET − IEU)
− IEI2

2
(1.1)

where U, T are generic service– and interarrival times and I the idle period.
This is obtained from the recursion Wn+1 = (Wn + Un − Tn)

+ by squaring:
since

IE(Wn + Un − Tn)
2 = IE

[
(Wn + Un − Tn)

+ − (Wn + Un − Tn)
−]2

= IE(Wn + Un − Tn)
+2

+ IE(Wn + Un − Tn)
−2

and (Wn + Un − Tn)
− can be identified with I, we get (assuming {Wn} to

be stationary)

IEW 2 = IE(W + U − T )2 − IEI2

= IEW 2 + IEU2 + IET 2 − 2IEUIET + 2IEW (IEU − IET )− IEI2,

and (1.1) follows.
Minh & Sorli [104] suggested to use (1.1) for simulation by noting that

everything is known except for IEI2. Thus, one can simply simulate a busy
cycle, let Z = I2 and use the CMC method.

As ρ approaches 1, the first term in (1.1) becomes dominant, and hence
one expects the possible variance reduction to be most substantial when ρ is
close to 1. Indeed, in the case of the M/M/1 queue with traffic intensity ρ =
0.9, the variance reduction compared to regenerative simulation is reported
in [8] to be about a factor of 2.000.
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1c A control variate method for IEW

The problem is to estimate z = IEW by simulation. Of course, standard
methods like regenerative simulation apply in a straightforward way to this
problem. For a more sophisticated algorithm, suggested in Asmussen [8],
note first the formula

IEM =

∫ ∞

0
IP(M > x)dx =

∫ ∞

0
IP(τ(x) <∞)dx ,

where τ(x) = inf {n : Sn > x}. Here an extremely efficient (at least for
large x) estimator for IP(τ(x) <∞)dx is provided by Siegmund’s algorithm,
viz. e−γxe−γξ(x), so that it is appealing to try the estimator∫ ∞

0
e−γxe−γξ(x) dx

for IEM . The obvious difficulty is that evaluating ξ(x) for all x would
require an infinitely long simulation. This can be circumvented by truncat-
ing the integral and suitably compensate. I.e., let V > 0 be independent of
{Sn} and define

Z =

∫ V

0

1

IP(V > x)
e−γxe−γξ(x) dx .

Then indeed

IEZ = IE

∫ ∞

0
I(x < V )

1

IP(V > x)
e−γxe−γξ(x) dx

=

∫ ∞

0
IP(x < V )

1

IP(V > x)
e−γxIEe−γξ(x) dx

=

∫ ∞

0
e−γxIEe−γξ(x) dx =

∫ ∞

0
IP(τ(x) <∞ dx = IEM .

Simulation experiments indicate that the variance of Z is reasonably
small but not extremely small. We improve this by introducing

C =

∫ V

0

1

IP(V > x)
e−γx dx

as control variate; note that by the same calculation as for IEZ,
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IEC =

∫ ∞

0
e−γx dx =

1

γ
.

The control variate estimator is

Z − α(C − IEC) (1.2)

where

Z =
1

n
(Z1 + · · ·+ Zn), C =

1

n
(C1 + · · ·+ Cn) ,

C =

∑
(Zi − Z)(Ci − C)∑

(Ci − C)2
.

Indeed the estimator (1.2) does the job: the observed variance reduction is
often a factor of 1.000–25.000!!

Figure IX.1.2
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The relevant choice of the distribution of V turns out to be the expo-
nential distribution with rate γ, IP(V > x) = e−γx, and it can be proved
that this choice is asymptotically optimal in a suitable sense.

Figure IX.1.2 gives an example of the high linear dependence between Z
and C: the correlation is 0.999!!

In the setting of the Ensor–Glynn algorithm in Section 1a, a related idea
is to apply V as control for the r.v. Z generated by exact simulation.

2 Exponential change of measure in

Markov–modulated models

Consider first the discrete time case and let J = {Jn}n=0,1,2,... be an ir-
reducible Markov chain with a finite state space E. A Markov additive
process (MAP) {Sn}n=0,1,2,... is an extension of random walks, defined as
Sn = Y1 + . . .+Yn where the Yn are conditionally independent given J such
that the distribution of Yn is H(ij) given {Jn−1 = i, Jn = j}. The funda-
mental parameters of a MAP are thus the H(ij) and the transition matrix
P = (pij)i,j∈E of J or, equivalently, the F (ij) = pijH

(ij); note that

F (ij)(∞) = pij, F (ij)(y) = IPi(X1 ≤ y, J1 = j).

Of models where discrete time MAP’s play an important role, we mention
in particular Markov chain with transition matrices of GI/M/1 or M/G/1
type, see Neuts [111], [112] or [6] Ch. X.4.

The generalization of the m.g.f. is the E × E matrix F̂ [θ] with ijth
element F̂ (ij)[θ], and as generalization of the cumulant g.f. one can take
the Perron–Frobenius eigenvalue κ(θ) of F̂ [θ]; denote the corresponding

right eigenvector by h(θ) =
(
h

(θ)
i

)
i∈E

, i.e. F̂ [θ]h(θ) = eκ(θ)h(θ). The ECM

corresponding to θ is then given by

P̃ = e−κ(θ)∆−1

h
(θ)F̂ [θ]∆

h
(θ), H̃ij(dx) =

eθx

Ĥij[θ]
Hij(dx),

and the OECM by taking θ = γ where γ is the solution of κ(γ) = 0. Here

∆
h

(θ) is the diagonal matrix with the h
(θ)
i on the diagonal. The likelihood

ratio is

Wn(P |P̃ ) =
h(θ)(J0)

h(θ)(Jn)
e−θSn+nκ(θ). (2.3)
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In continuous time, a MAP with an underlying finite Markov process
{Jt}t≥0 has a simple description, cf. e.g. Neveu [113]. The clue for the
understanding is the structure of a continuous time random walk (process
with stationary independent increments) as the independent sum of a de-
terministic drift, a Brownian component and a pure jump (Levy) process,
see e.g. [6] Ch. III.8. Let the intensity matrix of {Jt} be Λ = (λij)i,j∈E. On
an interval [t, t+ s) where Jt ≡ i, the MAP then {St} evolves like a process
with stationary independent increments with the drift µi, the variance σ2

i

of the Brownian component and the Levy measure νi(dx) depending on i.
In addition, a jump of {Jt} from i to j 6= i has probability qij of giving
rise to a jump of {St} at the same time, the distribution of which has then
some distribution B(ij).

Let F̂ t[θ] be the matrix with ijth element IEi

[
eθSt; Jt = j

]
. It is easy to

see that F̂ t[θ] = etG[θ], where

G(ij)[θ] =

{
qijλijB̂

(ij)[θ] + (1− qij)λij i 6= j
λii + µiθ + 1

2σ
2
i θ

2 +
∫∞

0 eθxνi(dx) i = j
.

We define κ(θ) as the dominant eigenvalue of G[θ] and h(θ) as the cor-
responding right eigenvector. Equivalently, etκ(θ) is the Perron–Frobenius
eigenvalue of F̂ t[θ] and h(θ) the right eigenvector. The ECM corresponding
to θ is then given by

Λ̃ = ∆−1

h
(θ)G[θ]∆

h
(θ) − κ(θ)I, µ̃i = µi + θσ2

i , σ̃2
i = σ2

i ,

νi(dx) = eθxνi(dx), q̃ij =
λijqijB̂ij[θ]

λij + λijqij(B̂ij[θ]− 1)
, B̃ij(dx) =

eθx

B̂ij[θ]
Bij(dx).

In particular, the expression for Λ̃ means

λ̃ij =
h

(θ)
j

h
(θ)
i

λij

[
1 + qij(B̂ij[θ]− 1)

]
, i 6= j

(the diagonal elements are determined by λii = −
∑

j 6=i λij), and if νi(dx)
is compound Poisson, νi(dx) = βiBi(dx) with βi <∞ and Bi a probability
measure, then also ν̃i(dx) is compound Poisson with

β̃i = βiB̂i[θ], B̃i(dx) =
eθx

B̂i[θ]
Bi(dx). (2.4)

The likelihood ratio on [0, T ] is just (2.3) with n replaced by T .
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Example 2.1 If all σ2
i = 0, νi = 0, qij = 0, we have a process with

piecewise linear sample paths with slope µi when Jt = i. This process
(or rather its reflected version, cf. Example 2.4) is a Markovian fluid, a
process of considerable current interest because of its relevance for ATM
technology; for some recent references, see Asmussen [10] and Rogers [127]

. The ECM just means to replace λij with λ̃ij = h
(θ)
j λij/h

(θ)
i for i 6= j

and is therefore another Markovian fluid. For some special structures like
independent sources, the eigenvalue problem determining the OECM (i.e.
γ) can be reduced quite a lot using the concept of effective bandwidth. 2

Example 2.2 Assume that all σ2
i = 0, ri = −1, qij = 0, and that νi =

βiBi(dx) corresponds to the Poisson case with the Bi concentrated on
(0,∞). This process (or rather its reflected version) corresponds to the
work–load process in the Markov–modulated M/G/1 queue with arrival in-
tensity βi and service time distribution Bi of the customer arriving when
Jt = i, and the ECM just means to replace these parameters by the ones
given by (2.4). 2

Example 2.3 Assume that σ2
i = 0, ri = 0, νi = 0, qij = 0 for all i and

that B(ij) is concentrated on {0, 1} for all i, j. Then the MAP is a counting
process, in fact the same as the Markovian point process introduced by
Neuts [110] and increasingly popular as a modeling tool. 2

ECM for Markov additive processes goes back to a series of papers by
Keilson & Wishart and others in the sixties, e.g. [86]. To our knowledge,
the first use of the concept in simulation is Asmussen [7]. Further recent
references are Bucklew [32], Bucklew et al. [33], Lehtonen & Nyrhinen [98]
and Chang et al. [36]. Again, some of the most interesting applications
involve combination with duality ideas, which for infinite buffer problems
just means time reversal.

Example 2.4 Let St be the MAP described in Example 2.1. Then the
fluid model of interest is

Vt = St − min
0≤u≤t

Su.

Define the cycle as C = inf {t > 0 : St = 0} (this definition is only inter-
esting if J0 = i with r0 > 0) and assume that the rare event A(x) is the
event

{
sup0≤t<C Vt ≥ x

}
of buffer overflow within the cycle. Then (noting



3. FURTHER EXAMPLES OF CHANGE OF MEASURE* 117

that St = Vt for t < C) we can just perform the simulation by performing
OECM for the MAP {St} and running it up to it hits either x or 0. If in-
stead A(x) = {V ≥ x} is defined in terms of the steady state, we first note

the well–known representation ([11] and references there) V
D
= max0≤t<∞ S̃t

where
{

S̃t

}
is the MAP we obtain by time–reversing {Jt} (replacing λij

by λ̃ij = πjλij/πi where π is the stationary distribution), leaving the ri

unchanged and letting J̃t have distribution π. Thus α(x) = IP(τ̃(x) < ∞)

where τ̃(x) = inf
{
t : S̃t ≥ x

}
and the simulation is performed by running{

S̃t

}
until it hits x. Similar remarks apply to Example 2.3. 2

The approach can to some extent be generalized beyond finite E. An
example is given in Section 8. Note however, that if E is infinite, a MAP
may be quite complicated (an example is provided by the local time of a
diffusion) and that the existence of dominant eigenvalues for the relevant
integral operator does not always hold.

3 Further examples of change of measure*

Girsanov’s formula*

Many–server queues*

Sadowsky [139], Sadowsky & Spankowsky [141].

Local exponential change of measure*

Cottrell, Fort & Malgoyres [38], Asmussen & Nielsen [16].

Queueing networks*
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Appendix

A1 Some central limit theory

Anscombe’s theorem

Proposition A.1 Let X1, X2, . . . be i.i.d. with mean µ and variance σ2,
let Sn = X1 + · · · + Xn and let Tn ∈ IN be a sequence of random times

satisfying Tn/tn
IP→ 1 for some deterministic sequence {tn} with tn → ∞.

Then (STn − Tnµ)/t
1/2
n

D→ N
(
0, σ2

)
, n→∞.

For a proof, see e.g. Chung [37].

Asymptotic equivalence

Often two estimators ẑ
(1)
t , ẑ

(2)
t for the same number z turn out to be

close modifications of each other so that asymptotically, it is unimportant
whether to use one or the other. Our formal framework in such situations
is the following:

Definition A.2 Let ẑ
(1)
t , ẑ

(2)
t be defined on the same probability space, and

assume that
√

t(ẑ
(1)
t − z)

D→ N
(
0, σ2

1

)
,
√

t(ẑ
(2)
t − z)

D→ N
(
0, σ2

2

)
as t→∞,

where σ2
1 > 0, σ2

1 > 0. Then ẑ
(1)
t , ẑ

(2)
t are asymptotically equivalent if√

t
(
ẑ

(1)
t − ẑ

(2)
t

)
IP→ 0 as t→∞.

It follows easily that then σ2
1 = σ2

2.

A2 Exponential change of measure: the i.i.d. case

Let X1, X2, . . . be i.i.d. with common distribution F having m.g.f.

F̂ [s] = IEesX =

∫ ∞

−∞
esxF (dx) .

The shape of F̂ is as on Fig. A.1 depending on the value of IEX:

119
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Figure A.1.a µ < 0

Figure A.1.b µ = 0
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Figure A.1.c µ > 0

It is well–known that F̂ is convex and logaritmically convex.

The exponential family {Fθ}θ∈Θ generated by F is defined by

Θ =
{
θ ∈ IR : F̂ [θ] <∞

}
,

dFθ

dF
(x) =

eθx

F̂ [θ]

(Radon–Nikodym derivative). In particular, if F has density f(x), then the
density of Fθ is

fθ(x) =
eθxf(x)

F̂ [θ]
.

The m.g.f. F̂θ[s] of Fθ is

F̂θ[s] =

∫
esx Fθ(dx) =

∫
esx dFθ

dF
(x) F (dx) =

∫
esx+θx 1

F̂ [θ]
F (dx)

=
F̂ [s + θ]

F̂ [θ]
.
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The likelihood ratio Ln,θ up to time n, as defined by the requirement

IEg(X1, . . . , Xn) = IEθ [Ln,θg(X1, . . . , Xn)] (A2.1)

for all well–behaved g is

Ln,θ =
f(X1)

fθ(X1)
· · · f(Xn)

fθ(Xn)
= e−θSnF̂ [θ]n .

Equation (A2.1) tells how to compute expectations involving F in terms
of expectations involving Fθ over a fixed time horizon. The method carries
over to stopping times. Let Fn = σ(X1, . . . , Xn).

Proposition A.1 (Wald’s fundamental identity of sequential

analysis) For any stopping time τ ∈ [0,∞] and any event A ∈ Fτ with
A ⊆ {τ <∞},

IP(A) = IEθ [Lτ,θ; A]

Proof Taking g(X1, . . . , Xn) = I(τ = n)I(A), we get

IP(τ = n; A) = IEθ [Ln,θ; τ = n; A] = IEθ [Lτ,θ; ; τ = n; A] .

Summing over n, the conclusion follows. 2

A3 Lévy– and stable processes

A Lévy process {X(t)}t≥0 is defined as a continuous time process on IR with
stationary independent increments and X(0) = 0. This class of processes is
in one–one correspondance with the class of infinitely divisible distributions
via the distribution of X(1), see below.

A Lévy process can be written as an independent sum X(t) = ct +
σW (t) + J(t) of a linear drift ct, a Brownian component σW (t), and a
jump process {J(t)} given in terms of its Lévy measure ν(dx) as will next
be explained. Since we have discussed Brownian motion separately, we
consider here only the case σ2 = 0.

The Lévy measure ν can be any non–negative measure on IR satisfying
ν({0}) = 0 and ∫ ∞

−∞
(y2 ∧ 1) ν(dy) < ∞. (A3.1)
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Equivalently,
∫
|y|>ε ν(dy) and

∫ ε
−ε y2 ν(dy) are finite for some (and then all)

ε > 0. A particular important case is stable processes, where X(1) has an
α–stable Sα(σ, β, 0) distribution corresponding to

dν

dy
=

{
C+

yα+1 y > 0
C−
|y|α+1 y < 0

(A3.2)

with C+, C− depending on σ, β, see further below.
The rough description of {J(t)} is that jumps of size x occur at intensity

ν(dx). In particular, if ν has finite mass λ =
∫∞
−∞ ν(dy), then {J(t)} is

a compound Poisson process with intensity λ and jump size distribution
ν(dy)/λ. In general, for any interval I not having 0 as an endpoint, the
sum of the jumps of size ∈ I in [s, s + t) is a compound Poisson r.v. with
intensity λI =

∫
I ν(dy) and jump size distribution ν(dy)I(y ∈ I)/λI . Jumps

in disjoint intervals are independent, and so we can describe the totality of
jumps by the points in a planar Poisson process N(dy, dt) with intensity
measure ν(dy)⊗ dt. A point of N at (Yi, Ti) then corresponds to a jump of
size Yi at time Ti for {J(t)}. If in addition to (A3.1) one has∫ ∞

−∞
(|y| ∧ 1) ν(dy) < ∞. (A3.3)

(this is equivalent to the paths of {J(t)} to be of finite variation), one can
simply write

J(t) =

∫
IR×[0,t]

yN(dy, dt). (A3.4)

If (A3.3) fails, this Poisson integral does not converge absolutely, and {J(t)}
has to be defined by a compensation (centering) procedure. For example,
letting

Y0(t) =

∫
{y: |y|>1}×[0,t]

yN(dy, dt), Yn(t) =

∫
|y|∈(yn+1,yn]

yN(dy, dt),

one can let

J(t) = Y0(t) +
∞∑

n=1

{Yn(t)− IEYn(t)} (A3.5)

where 1 = y1 > y2 > . . . ↓ 0 (note that IEYn(t) = t
∫ yn

yn+1
y ν(dy)). The series

converges absolutely a.s. since
∞∑

n=1

Var(Yn(t)) =
∞∑

n=1

t

∫
|y|∈(yn+1,yn]

y2ν(dy) =

∫ 1

−1
y2ν(dy) < ∞,
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and the sum is easily seen to be independent of the particular partitioning
{yn}. But note that since the role of the interval [−1, 1] is arbitrary, a
compensated Lévy jump process is only given canonically up to a drift
term.

If J(t) ≥ 0 for all t ≥ 0, then {J(t)} is called a subordinator. The
Lévy measure for a subordinator necessarily satisfies (A3.3), and any Lévy
jump process satisfying (A3.3) can be written as the independent difference
between two subordinators, defined in terms of the restriction of ν to (0,∞),
resp. the reflection of the restriction of ν to (−∞, 0).

The property of stationary independent increments implies that log IEesX(t)

has the form tϕ(s). Here ϕ(s) is called the Lévy exponent; its domain in-
cludes the imaginary axis <s = 0 and frequently larger areas depending
on properties of ν, say {s : <s ≤ 0} in the case of a subordinator. Thus,
ϕ(s) is the cumulant g.f. of an infinitely divisible distribution, having Lévy–
Khintchine representation

ϕ(s) = cs +
σ2s2

2
+

∫ ∞

−∞

(
esy − 1− sy

1 + y2

)
ν(dy) (A3.6)

Different equivalent forms which are often used are

ϕ(s) = cs +
σ2s2

2
+

∫ ∞

−∞

(
esy − 1− sy

1 + y2

)
1 + y2

y2 θ(dy) (A3.7)

where θ(dy) = y2/(1+y2) ν(dy) can be any non–negative finite measure, or

ϕ(s) = c1s +
σ2s2

2
+

∫ ∞

−∞
(esy − 1− syI(|y| ≤ 1) ν(dy) (A3.8)

In the finite variation case (A3.3), σ2 = 0, c = −
∫

y/(1 + y2)ν(dy), and
(A3.6) is often written

ϕ(s) =

∫ ∞

−∞
(esy − 1) ν(dy). (A3.9)

Similarly, in the compensated case (A3.5), c1 = 0 in (A3.8) and σ2 = 0.
A standard reference for Lévy processes is Bertoin [24]. For stable pro-

cesses, see Samorodnitsky & Taqqu [142].

Stable distributions and processes

For 1 < α < 2, α 6= 1, the α–stable Sα(σ, β, µ) distribution is defined as
the distribution with c.g.f. of the form

ϕ(s) = −σα|s|α
(
1− βsign(s/i)) tan

πα

2

)
+ sµ, <s = 0
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for some σ > 0, β ∈ [−1, 1] and µ ∈ IR. There is a similar but somewhat
different expression, which we omit, when α = 1. The reader should note
that the theory is somewhat different according to whether 0 < α < 1,
α = 1 or 1 < α < 2.

If the r.v. Y has a Sα(σ, β, µ) distribution, then Y + a has a Sα(σ, β, µ+
a) distribution and aY a Sα(σ|a|, sign(a)β, µ) distribution. Thus, µ is a
translation parameter and σ a scale parameter. The interpretation of β
is as a skewness parameter, as will be clear from the discussion of stable
processes to follow.

A stable process is defined as a Lévy jump process with a Lévy measure
of the form (A3.2) and X1 having a Sα(σ, β, 0) distribution. If 0 < α < 1,
then (A3.3) holds and the process can be defined by (A3.4). If 1 ≤ α < 2,
compensation is needed and care must be taken to choose the drift term
to get µ = 0. One can reconstruct β from the Lévy measure as β =
(C+ − C−)/(C+ − C−).

A4 Regenerative processes

A stochastic process {Xt} (in discrete or continuous time) is called regen-
erative if it consists of i.i.d. cycles. The model example is discrete recurrent
Markov chains: fixing some reference state i, a cycle starts in state i, the
next at the following visit to i and so on.

For a formal definition, we first consider the zero–delayed case. Here
{Xt} is defined to be regenerative w.r.t. {τn}, a sequence of i.i.d. r.v.’s, if
the τn are i.i.d. and > 0, and, more generally, the segments{

Xτ1+···+τn−1+t

}
0≤t<τn

(A4.1)

are i.i.d. stochastic processes. Here (A4.1) is called the nth cycle and τn its
length.

The crucial property of regenerative processes is that nothing more than
IEτ < ∞ (which we will assume throughout) is sufficient to ensure ergod-
icity in the sense that

1

t

t∑
n=0

f(Xn)
a.s.→ IEf(X) , (A4.2)
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where X is a proper r.v. with distribution given by

IEf(X) =
1

IEτ
IE

τ−1∑
n=0

f(Xn) . (A4.3)

If in addition the distribution of τ is aperiodic, then Xn → X in total
variation (in particular, in distribution).

Example A.1 If {Xn} is an ergodic finite Markov chain, say with station-
ary distribution π = (πi), we can take the τn as the return times to some
fixed state i. If f is the indicator of j and we write τ(i) = τ , (A4.3) then
becomes

πj =
1

IEiτ(i)
IEi

τ(i)∑
n=0

I(Xn = j).

In particular (i = j), πi = 1/IEiτ(i), an expression which is used as the
basic expression for the stationary distribution in many textbooks. 2

A5 The GI/G/1 queue

The GI/G/1 queue is a single server queue with customers n = 0, 1, 2, . . . ,
service time Un of customer n and time Tn between the arrivals of customers
n and n + 1 (usually, it is assumed that customer 0 arrived at time t =
0). The basic GI/G/1 assumption is that the sequences {Un}, {Tn} are
independent and i.i.d., with distribution say B for the service time U and
A for the interarrival time T .

The waiting time (delay) Wn of customer n is the time he spends from
the arrival until he starts service; in contrast, the sojourn time Wn + Un is
the total time in system. It is easy to see that {Wn} satisfies the Lindley
recursion

Wn+1 = (Wn + Un − Tn)
+. (A5.1)

Letting Xn = Un− Tn, Sn = X0 + · · ·+ Xn−1 is a random walk, and (A5.1)
shows that {Wn} may be seen as {Sn} reflected at 0; equivalently, Wn =
Sn −mink=0,... ,n Sk (assuming W0). With Mn = maxk=0,... ,n Sk, this implies

that Wn
D
= Mn.

The traffic intensity is defined as ρ = IEU/IET . If ρ < 1, the queue is
called stable and the processes of waiting time, workload, queue lenght etc.
then converge in distribution. With W the limit of Wn, we get in particular

that W
D
= M where M = limMn = maxk=0,1,2,... Sk.
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A6 Poisson’s equation. The fundamental matrix

Let {Xn} be an ergodic regenerative Markov chain (possibly on a gen-
eral state space) with generic cycle C, transition operator P (Pf(x) =
IExf(X1)) and stationary distribution π (πP = π).

Poisson’s equation is g = f + Pg. Applying π to both sides, we see
that π(f) = 0 is a necessary condition for existence of a solution. If this
condition is met, one can check that a solution is

g(x) = IEx

C−1∑
n=0

f(Xn)

(uniqueness holds under mild conditions).
Poisson’s equation determines both bias– and variance constants in the

CLT for sample averages f̂t =
∑t−1

0 f(Xn)/t:

IExf̂t ∼
g(x)

t
, (A6.1)

Varxf̂t ∼
σ2

t
where σ2 = π(f 2) + 2π(fg). (A6.2)

For (A6.1), note that by Proposition 2.1 tIExf̂t →
∑∞

0 IExf(Xn) = g̃(x)
(say). But obviously

g̃(x) = f(x) +
∞∑

n=1

IExf(Xn) = f(x) + IExIEX1

∞∑
n=0

f(Xn)

= f(x) + IExg̃(X1) = f(x) + Pg̃(x).

For (A6.2), we have by regenerative process theory that

IEC σ2 = IE

(
C−1∑
n=0

f(Xn)

)2

= IE
C−1∑
n=0

f(Xn)
2 + 2 IE

C−1∑
n=0

C−1∑
m=n

f(Xn)f(Xm)

= IEC π(f 2) + 2 IE
C−1∑
n=0

f(Xn)IE

[
C−1∑
m=n

f(Xm)

∣∣∣∣∣ X0, . . . , Xn

]

= IEC π(f 2) + 2 IE
C−1∑
n=0

f(Xn)g(Xn) = IEC π(f 2) + 2 IEC π(fg).
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Note that when applying (A6.1), (A6.2), the condition π(f) = 0 is most
often not met and one has to replace f by f0 = f − π(f) and g by the
solution to g = f0 + Pg.

Example A.1 Let {Yn} be a finite Markov chain with transition matrix
P . Representing π as a row vector π and f as a column vector f , we then
have z = πf .

For solution of Poisson’s equation g = f +Pg, we get formally that g =
(I−P )−1f . However, since 1 is eigenvalue of P , the inverse does not make
sense and has to be replaced by a generalized inverse F = (I −P +eπ)−1,
the fundamental matrix (e.g. Kemeny, Snell & Knapp [89]). To verify that
g = Ff is a solution, we have to check that

f = (I −P + eπ)f + (I −P + eπ)P (I −P + eπ)−1f .

But since P and I − P + eπ commute, the last term is just Pf , and the
assertion follows from π(f) = 0.

Cf. also Example III.2.2. 2

Beyond finite Markov chains, explicit solutions of Poisson’s equation
have been derived in Glynn [65] for the M/G/1 queue and Bladt [26] for
the PH/PH/1 queue.

A7 Sequential tests

Let Y1, Y2, . . . be i.i.d. with common density f(y), and consider the problem
of testing

H0 : f = f0 versus H1 : f = f1 . (A7.1)

For a given fixed n, the usual likelihood ratio test rejects if

Ln =
f1(Y1) . . . f1(Yn)

f0(Y1) . . . f0(Yn)

is large, say Ln > b′n. Letting

Xk = log [f1(Yk)/f0(Yk)] , Sn = X1 + · · ·+ Xn, bn = log b′n ,

this means Sn > bn.
The sequential test is formed by fixing a, b and continue observation

until time τ = inf {n : Sn 6∈ [a, b]}. One rejects if Sτ > b and accepts if
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Sτ < a. The level α is the probability of rejecting a true null hypothesis,
i.e. IP0(Sτ > b).

Note that subject to the null hypothesis, {Sn} is a random walk with
negative drift:

IE0X = IE0 log
f1(Y )

f0(Y )
< 0

by the information inequality. Further, the level α is typically in the range
1%–5% so that {Sτ > b} is (moderately) rare.

A standard reference for sequential analysis is Siegmund [149].

A8 Ito’s formula

If {x(t)}t≥0 is a solution of the ODE

ẋ(t) = a(t, x(t)), i.e. dx(t) = a(t, x(t)) dt

and f is a smooth function of two variables (a is assumed smooth as well),
then the chain rule gives

d f(t, x(t)) = ft(t, x(t)) dt + fx(t, x(t)) dx(t)

= ft(t, x(t)) dt + fx(t, x(t))a(t, x(t)) dt

where ft(t, x) = ∂
∂tf(t, x), fx(t, x) = ∂

∂xf(t, x) denotes the partial deriva-
tives.

Ito’s formula is a similar expression for a function f(t, X(t)) of the so-
lution {X(t)} of the SDE

dX(t) = a(t, X(t))dt + b(t, X(t)) dW (t) (A8.2)

where {W (t)}t≥0 is standard Brownian motion, and states that

df(X(t)) =
{
afx + ft + b2fxx

}
dt + bfx dW (t) (A8.3)

where a, b, ft, fx and fxx (the second partial derivative w.r.t. x) are eval-
uated at (t, X(t)). The precise meaning of this statement is that (A8.2),
(A8.3) should be interpreted as

X(t)−X(0) =

∫ t

0
a(s, X(s)) ds +

∫ t

0
b(s, X(s)) dW (s),
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resp.

f(X(t))− f(X(0)) =∫ t

0

{
a(s, X(s))fx(s, X(s)) + ft(s, X(s)) + b2(s, X(s))fxx(s, X(s))

}
ds

+

∫ t

0
b(s, X(s))fx(s, X(s)) dW (s),

where
∫ t

0 b(s, X(s)) dW (s) etc. denotes the Ito integral.
The proof of (A8.3) can be found in any standard textbook in stochas-

tic integration. The heuristics is the expression (dW (t))2 = dt (compare
to (dt)2 = 0!), which is motivated from quadratic variation properties of
{W (t)}. Thus, compared to ODE’s, one needs to take into account also
the term containing fxx in the second order Taylor expansion to correctly
include all terms of order dt.

A formula that is often used is

Cov

(∫ t

0
f(s) dW (s) ,

∫ t

0
g(s) dW (s)

)
=

∫ t

0
f(s)g(s) ds . (A8.4)

A9 The information inequality

Proposition A.1 (The information inequality) Let f, g be densities.
Then ∫

log g(x)f(x) dx ≤
∫

log f(x) f(x) dx ,

where log 0 · y = 0, 0 ≤ y < ∞. If equality holds, then f and g define the
same probability measure.

Proof Let X be a r.v. with density f(x) and write IEf for the corresponding
expectation. Then by Jensen’s inequality∫

log g(x)f(x) dx −
∫

log f(x) f(x) dx

= IEf log g(X)− IE log f(X) = IEf log
g(X)

f(X)

≤ log

(
IEf

g(X)

f(X)

)
= log

(∫
{f>0}

g(x)

f(x)
f(x) dx

)
= log

(∫
{f>0}

g(x) dx

)
≤ log 1 = 0 ,
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where {f > 0} = {x : f(x) > 0}. If equality holds, then
∫
{f>0} g(x) dx = 1

and g(X) = f(X) a.s. Hence for any A,∫
A

g(x) dx =

∫
A∩{f>0}

g(x) dx

= IEf

[
g(X)

f(X)
; X ∈ A ∩ {f > 0}

]
= IP(X ∈ A ∩ {f > 0}) =

∫
A

f(x) dx .

2
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Assignments

Assignment 1

Consider the GI/G/1 queue with interarrival times T0, T1, . . . and service
times U0, U1, . . . . The waiting time of customer n is them Wn where W0 = 0,

Wn+1 = (Wn + Un − Tn)
+.

We consider here the specific example where Tk ≡ 1 (D/GI/1) and the
service time distribution B(x) = IP(Uk ≤ x) is only known via observations
u1, . . . , um. Your assignment is to produce a point estimate of IEM25 where

M25 = max
n=0,... ,25

Wn

and an associated 95% confidence interval.
Read first II.3 of the notes carefully. You should not try to verify

Hadamard– or Frechet differentiability rigorously but assume this can be
done. You are free to choose the simulation budget t (but note that an ex-
cessively large t does not make sense, not only because of time constraints
but also because the stochastic fluctuations in the empirical distribution
Bm can never be eliminated). Your choice of the number k of groups and
the number p of simulations for each group should be validated through
histograms showing that asymptotic normality is reasonably fulfilled.

Practical MatLab guidance: u1, . . . , um, m = 10.000, can be found on
the file sophia.mat. To access, write ’load sophia’.

Assignment 2

A system develops in i.i.d. cycles. According to whether a certain catas-
trophic event occurs or not within a cycle, the cycle is classified as failed
or non–failed. Denote by p the probability that a cycle is failed, by `1 the
expected length of a cycle given it does not fail, and by `2 the expected
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time until failure in a cycle given it is failed. We are interested in `, the
expected time until a failure occurs.

1. Express ` in terms of p, `1, `2.

2. You are presented with statistics of 1000 cycles, of which 87 failed.
The non–failed cycles had an empirical mean of 20.2 and an empirical
variance of 18.6, and the average time until failure in the failed cycles
was 5.4 with an empirical variance of 3.1. Give a confidence interval
for `.

Assignment 3

Consider a (s, S) inventory system where the number of goods stored at
time t is V (t). Demands arrive (one at a time) according to a Poisson
process with intensity λ. When V (t−) = s + 1, V (t) = s, an order of size
S−s is placed and arrives after a random time Z (the lead time). Demands
arriving while V (t) = 0 are lost. It is assumed that S − s > s.

Write a program for regenerative simulation of p, the long–run proba-
bility that a demand is lost. Use whichever values of s, S, λ you like and
whichever distribution of Z. Save your program for Assignment 4.

Assignment 4

Consider again the model of Assignment 3, but assume that λ is small
compared to Z in the sense that the event that V (t) = 0 in a cycle is rare.

Improve your program for Assignment 3 by combining with a variance
reduction technique.

You can, e.g., use a change of λ depending on the value of Z. Be also
clever and use the fact that the expected number of demands lost in a
cycle only depends on the residual lead time at the time where V (t−) = 1,
V (t) = 0.

Assignment 5

In the model of Assignment 3, give an estimate of the sensitivity of p w.r.t.
λ and an associated confidence interval by the likelihood ratio method.
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Assignment 6

In earthquake modeling, let S(t) be the stress potential at time t (taken to
be left–continuous) and s = 20 a treshold value. At time τ = inf {t : S(t) > s}
an earthquake occurs, and the potential is then reset to 0, S(τ+) = 0. In
between quakes, the stress potential builds up like a subordinator with Lévy
measure

ν(dx) =
x1/2 + 3

x7/4 dx.

Produce a histogram for the severity of an earthquake, as defined by the
r.v. S(τ)− s.

MatLab guidance: a routine for generating a r.v. U with a Pareto tail of
the form

IP(U > x) =

{
1 x ≤ a(
a
x

)α
x ≥ a

is available and is called as sofia2(alpha,a) [you may or may not need this
depending on which method you use].

Assignment 7

Suggest some variance reduction methods for evaluating∫ ∞

0
(x + 0.02x2) exp

{
0.1
√

1 + cosx − x
}

dx

by Monte Carlo integration.

Assignment 8

Perform exact simulation of the Moran dam (Example III.1.5) for the case
where V is geometric with mean 2 and m = 3, and p is variable. Use
both independent updating and monotone updating, and compare the two
methods in terms of for how high values of p you are able to produce Z
within reasonable time.

Assignment 9

Let {Yn} be a Markov chain and Xn = f(Yn). Assume it is possible to
perform exact simulation from {Yn}, say Te units of computer time is needed
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on the average to produce one copy Y ∗ of the stationary r.v. For estimating
f(Y ∗), we start {Yn} with Y0 = Y ∗, run the chain up to time m− 1 and let
Z = Zm =

∑m−1
0 Yn/m.

If one updating of {Yn} requires T units of computer time and the sta-
tionary covariance function of {Xn} has the form ρk = zk with 0 < z < 1
(cf. Proposition III.2.5), how would you choose m to minimize the vari-
ance for a given simulation budget t? Give numerical examples for different
values of z, Te, T , say Te = 10T, 100T, 1000T .


