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PREFACE

These notes are outgrowth of the Concentrated Advanced Course
on Lévy Processes, MaPhySto, University of Aarhus, January 24-28,
2000. The course started with the definition of Lévy processes and
discussed their elementary properties and their transformations. It was
based on the book

K. Sato, Lévy Processes and Infinitely Divisible Distribu-
tions, 1999, Cambridge University Press.

One of the subjects in the course was the density transformation of
Lévy processes. This is also discussed in Chapter 6 of the book, but
I treated it in a different way in the course, fully utilizing the power
of the Hellinger—Kakutani inner product and distance of order a.. This
method was adopted by C. M. Newman in 1972-73 but it is not widely
known. In pursuing this method, I found that the Lebesgue decomposi-
tion of path space measures of Lévy processes could be obtained easily.
Together with the description of the Radon—Nikodym densities of the
absolutely continuous parts, this clarifies the relationship of the path
space measures on a finite time interval of two given Lévy processes
on R?. The main part of these notes concentrates on this subject and
gives the results with complete proofs.

The other parts of the lectures of the course are attached here as
Appendix A.

I express my hearty thanks to Ole Barndorff-Nielsen, Goran Peskir,
Sgren Hansen, and Elisa Nicolato for their helpful advice that I got
while working on these notes.

Ken-iti Sato
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1. INTRODUCTION

A stochastic process {X;: ¢t > 0} on the Euclidean space R? defined
on a probability space (Q, F, P) is called a Lévy process if !

(1) it has independent increments,

(2) Xo=0a.s,,

(3) the distribution of X,;; — X does not depend on s,

(4) it is stochastically continuous, that is, continuous in probability,

(5) there is Qy € F with P[] = 1 such that, for any w € Qp, X;(w)
is right-continuous with left limits as a function of ¢.

Let D = D([0,0),R?) be the space of functions w: [0,00) — R?
right-continuous with left limits. Let X;(w) = w(t) and let F_ and
F° be the o-algebras generated by {X,: 0 < s < t} and {X,: 0 <
s < oo}, respectively. By the condition (5) above, any Lévy process
on R? induces a probability measure P on (D, F°). Thus {X;} on the
probability space (D, F°, P) is identical in law with the original Lévy
process. In these notes, except in the appendices, we use the following
terminology. By saying that ({X}}, P) is a Lévy process, we mean that
{X;:t > 0} is a Lévy process under the probability measure P on
(D, F?). The restriction of P to F} is denoted by P* = [P]z.
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We study the following problems. By <, ~, and | we mean “is
absolutely continuous with respect to”, “is mutually absolutely contin-
uous with”, and “is mutually singular with”, respectively (Definition
2.1).

1. Given two Lévy processes ({X:}, P1) and ({X}}, P»), find nec-
essary and sufficient conditions for P} <« P}, for P} ~ P}, and for
Pl P

2. Given two Lévy processes ({X:}, P1) and ({X:}, %), describe
the Lebesgue decomposition (that is, decomposition into the absolutely
continuous part and the singular part) of P} with respect to P}.

3. In the case where P! <« P}, find the Radon—Nikodym density of
P} with respect to P;.

IThe space R? is the set of column d-vectors, (z,y) = > x;y; for = (z;) and
y = (y;), and |z| = (z, z)1/2.



4. Find the Radon—Nikodym density of the absolutely continuous
part of P} with respect to P}.

5. Given a Lévy process ({X;}, P1), construct P, such that P} <
P! and that ({X;}, ) is a second Lévy process having a prescribed
property. This we call the density transformation from ({X;}, P;) to
({Xt}7 P, 2)'

6. Study special cases of the density transformation such as the
Cameron—Martin transformation, the exponential (Esscher) transfor-
mation, the deletion of jumps, and the truncation of supports of Lévy
measures.

The problems 1 and 3 were solved by Skorokhod (1957, 60, 61), Ku-
nita and S. Watanabe (1967), and Newman (1972, 73). As we will see
in these notes, the problems 2 and 4 can be solved in their lines. We
mention also Brody (1971) and Memin and Shiryayev (1985) as related
papers. In Chapter 6 of [S]? the case of mutual absolute continuity
is thoroughly treated, but the other cases are not studied. Newman
(1972, 73) showed that the Hellinger—-Kakutani inner product and dis-
tance of order a for o-finite measures are powerful tools in attacking
these problems. In treating the problem 1, we closely follow Newman
(1973), but Lemma 2.15 and its systematic use are new. The results
on the problem 3 are embedded in the more general discussions by the
above-mentioned authors and they are not easy to follow. Often they
are based on the general theory of semimartingales. Thus it would be
worth-while to give independent proofs of the results in the case of
Lévy processes. Further the problems 2 and 4 have not been treated
explicitly in the literature, as far as we know.

In Section 2 we give results on the Hellinger—-Kakutani inner product
and distance of order a for o-finite measures on general measurable
spaces. Main results on the problems 1-4 are formulated as Theorems A
and B in Section 3 and their corollaries are proved. For Gaussian Lévy
processes those results are special cases of the well-known dichotomy
theorem for Gaussian processes. They are given in Section 4 and used in

2[S] refers to the following book: Sato, K. (1999) Lévy Processes and Infinitely
Diuvisible Distributions, Cambridge Univ. Press., Cambridge.

5



the proof of our theorems. Sections 5 and 6 contain proofs of Theorems
A and B, respectively. The density transformation and its special cases
are studied in Section 7.



2. HELLINGER—KAKUTANI INNER PRODUCT AND DISTANCE

Let us introduce the notions of the Hellinger-Kakutani inner prod-
uct and distance for o-finite measures on a general measurable space
and study their properties. These are basic tools in the following sec-
tions. Given a measure 4 and a nonnegative measurable function f, we
denote by fu the measure defined as

(tuB) = [ fau

The restriction of a measure p to a measurable set C is denoted by
[1]c, that is,
[Wlo(B) = w(C N B) = (1ou)(B).

Definition 2.1. Given two measures p; and py on a measurable space
(0, B), we write py < py if py is absolutely continuous with respect to
p1 (that is, p1(B) = 0 implies po(B) = 0), and p1 = ps if p1 < po
and ps < p1. When p; =~ py, we say that p; and py are mutually
absolutely continuous (some authors say that they are equivalent). We
write p1 L pe and call them orthogonal or mutually singular if pq is
singular with respect to py (equivalently, p, is singular with respect to
p1), that is, there is a set B € B such that pi(B) = p2(B€) = 0. Here
we denote B¢ =0\ B.

Definition 2.2. Let 0 < a < 1. For o-finite measures p;, p2 on (0, B),
we define

dp \* (dps\'°
2.1 H _ (den) (4
2 lon,£2) (dp) (dp) &

that is,

dﬂ1)a (dm)l_a
Ho(pp)B) = [ (222) (%2) 4o, BeB
ooe®) = [ () (%) ao

where p is a o-finite measure such that p;, po < p (for example, p =
p1+ p2) and dp;/dp and dpy/dp are the Radon—Nikodym densities. We
call Hy(p1, p2) the Hellinger—Kakutani inner product of order o of py
and py; it is a o-finite measure by the remark below. Sometimes a
symbolic expression

dH,(p1, p2) = (dp1)*(dpz)'°
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is used. The total mass of H,(p1, p2) is written as

(2.2) ha(p1, p2) = /@dHa(m,pa)-

Kakutani (1948) made an ingenius use of hijs(p1,p2), and also
k1/2(p1, p2) to be given in Definition 2.12, in the study of equivalence
and orthogonality of infinite product measures.

Remark 2.3. We have

(2.3) Hy(p1, p2) < apr+ (1 — a)pe,
because, for fi, fo >0,

/B fofiedp < ( /B fldp)a ( /B f2dp>1_a

Sa/BfldP+(1_a)/Bf2dP

by Holder’s inequality and by the concavity of log .

Remark 2.4. H,(p1, p2) is independent of the choice of p. To see this,
let H! (p1, p2) be the one defined by using p’ instead of p. Let p = p+ ¢/
and let H,(p1, p2) be the one using p. Then

Folonpn) = (02)" (A22\ " 52 (erde)* (dp2dp) ™"
dpi\“ (dpa te
= (=) (= = Ha(p1, p2)-
(dp) (dp) p (Pl P2)

Similarly Ho(p1,p2) = Hy(p1, p2)-

Remark 2.5. We have p; L py if and only if hy(p1, p2) = 0. To see
this, let p = p1 + p2. If p1 L po, then choose B such that p1(B) =
0 and po(B¢) = 0 and see that dp;/dp = 1p. and dps/dp = 1p,
which implies hy(p1,p2) = 0. Conversely, if hy(p1,p2) = 0, then
(dp1/dp)*(dpa/dp)'=® = 0 p-a.e. and hence, for some B, dp;/dp = 0
p-a.e. on B and dpy/dp = 0 p-a.e. on B

Example 2.6. Let p; and ps be Gaussian distributions on R with a
common variance A > 0. Let 7q, 72 be the means of uq, u2. Then

Ho (1, p2) = (exp[—(24) " am® + (1 — )72 — 75"} s,
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where v3 = a7y + (1 — @)y, and p3 is Gaussian on R with variance A
and mean 3. For we have

T — expl-(24)7 (@ = ) + 24) (o — )"

and

Ho (1, p2) = (dpa/dpsa)® po
= (2mA) " exp[—(24) la(z — 1) = (24) /(1 - )(z — 72)*)de
= (27 A) Y2 exp[—(24) "H2? — 273z + oy ® + (1 — o)y, }]dz.

Similarly, if 41 and pe are nondegenerate Gaussian on R¢ with a com-
mon covariance matrix A and with means v; and -, respectively, then

Ho(p1, p2)

= (exp[—2_1{a(”yl, A7) + (1= a) (2, A ye) — (s, A_1’73>}])M3,
where 3 is Gaussian on R? with covariance A and mean v3 = ay; +
(1—a)y.
Definition 2.7. Given o-finite measures p;, ps on (0, B), define

(2.4) Cu(pr) = {96@ Cii_p>0} Cy(p2) = {06@ Ocli_p>0}

where p is a o-finite measure such that p;, p» < p. We call C,(p1) the
carrier of p1 relative to p and C,(p2) the carrier of ps relative to p. They
depend on the choice of p and versions of the Radon-Nikodym densities.
However, we sometimes write C,(p1) = C(p1) and C,(p2) = C(p2),
suppressing the dependence on p.

The support is defined for a Borel measure on a nice topological
space. It is the smallest closed set that carries the full measure. But
the carrier defined above is a measure-theoretical concept without any
reference to the topology.

Example 2.8. Let © = R, p; = Lebesgue measure restricted to the
interval [0, 1], and ps = §y = the unit mass at 0. If we take p = p1 + po,
then C,(p1) = ((0,1] \ B1) U By, where, by the choice of versions of
dp1/dp, By can be any Borel set in (0, 1] of Lebesgue measure 0 and
By can be any Borel set in R\ [0,1]. If we choose p = p1 + p2 + ps,
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where p3 is a discrete measure concentrated on the set Q of rational
numbers such that every point in Q has a positive ps-measure, then
Co(p1) = (((0,1] \ B1) U By) \ Q, where B; and Bj are as above. If
we take p = p; + p4, where py is the Lebesgue measure on R, then
Cy(p1) = ((0,1]\ B1) U By, where B; and B; are Borel sets of Lebesgue
measure 0, B; C (0,1], and By C R\ [0, 1].

Lemma 2.9. Let po® and po® be, respectively, the absolutely continuous
part and the singular part of po with respect to p1. Then,

(2.5) P2 = lo(p)P2;
(2.6) p2” = 1c(p)eP2,
(2.7) p2"(©) = p2(C(p1)),
(2.8) p2°(©) = p2(C(p1)°),

which are independent of the choice of p and versions of dp/dp and
dpa/dp.
Proof. Let p be the measure in Definition 2.7. We claim that

(2.9) Lo (py) P2 1s absolutely continuous with respect to p;.

Indeed, let G € B be such that p;(G) = 0. Then p(G N C(p1)) = 0,
because p(G N {dp1/dp > 0}) > 0 implies that

/ @d = / d—d > 0.
G{dp: /dp>0} AP

Hence po(G N C(p1)) = 0. Hence we have (2.9). Next notice that

(2.10) Lo(py)ep2 1s singular with respect to p1,

since p1(C(p1)) = p1({dp1r/dp = 0}) = 0. Since py = lg()p2 +
Lo(p)ep2, (2.9) and (2.10) show (2.5) and (2.6). These imply (2.7) and
(2.8). O

Remark 2.10. The following are consequences of Lemma 2.9.
(i) p2 < p1 if and only if pa(C(p1)°) = 0.
(ii) p2 L p1 if and only if po(C(p1)) = 0.
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Lemma 2.11. Suppose that py and py are finite. Then
(2.11) lolﬁ)l ha(p1, p2) = p2(C(p1)),

(2.12) 101%1 ha(p1, p2) = p1(C(p2))-
Proof. Choose p = p1 + p2. We have
dpi\* ((dpa\' ¢
hOé ) d
(p1,p2) = / (dp) (dp) P
- / “do = plCylp)
(p1)

as a | 0 by the bounded convergence theorem. This is (2.11). The
assertion (2.12) is proved similarly. In fact (2.11) and (2.12) are equiv-
alent assertions, since hq(p1, p2) = h1—a(p2, p1)- ]

Lemma 2.11 will be extended in Lemma 2.17.

Definition 2.12. Let 0 < a < 1. For o-finite measures p1, p2 on (6©.5),
we define

(2.13) Kao(p1, p2) = apr + (1 — a)ps — Halp1, p2),

which is a o-finite measure by Remark 2.3. The total mass of K, (p1, p2)
is written as

(2.14) Fa(p1, p2) = /@ dKo(p1, p2),

which we call the Hellinger—Kakutani distance of order a between p;
and ps.

Remark 2.13. The definition of K,(p1,p2) by (2.13) is not precise,
as the right-hand side is possibly co — oo for some sets. The precise
definition is as follows: choose p as in Definition 2.2 and let dp;/dp = f;.
Then

afi+(l—a)fa— fAfI >0 pae
by (2.3). Define

Ko(pr, p2) (B) = / (@fi+ (1— a)fo— FEF)dp

As in Remark 2.4, we can prove that this definition is independent of
the choice of p.
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Remark 2.14. Let ||p; — p2|| be the total variation norm of ||p; — p2||,
admitting infinity. Then

(2.15) [p1 = p2ll = 2 k1/2(p1, p2)-

If p; and py are finite measures, then

(2.16) H,01 — P2|| < Ck1/2(01,02)1/27

where ¢ = 2(p1(0) + p2(©))Y/2. In fact, let p1, po < p and dp;/dp = f;
for j — 1,2. Then, | p1 — pall = J |fs — foldp and

2k1/2(p1, p2) = /f1+f2—2 fif2)dp = /\/ﬁ Vv f2)%dp

< [ 1~ pldp

If p; and po are finite, then
1/2
/Ifl—ledpé (/ V= Vh)d ) ( fr+h) dp)
/2
< (2k1)2(p1, p2)) ( / fi+ fo dﬂ)

= cki/2(p1, p2) 12,
Lemma 2.15. If

(2.17) ko(p1, p2) < 00
for some 0 < a < 1, then it holds for all 0 < oo < 1 and we have
(2.18) p(C(m)) <o, m(Clm)) < oo

Proof. For two nonnegative functions ¢(u), ¥(u), we say that
o(u) < ¥(u) on a set B if there exist two positive constants ¢y, co
such that c1¥(u) < @(u) < exp(u) on B. Fix 0 < a < 1 and let
ou) = a+ (1 — a)e® — el Then ¢(0) = 0 and p(u) > 0 for
u # 0, because e* is strictly convex. Since ¢(u) = (1 — a)u?/2+ o(u?)
as u — 0, we have p(u) < u? on [—1,1]. Obviously, p(u) < € on
(1,00) and ¢(u) < 1 on (—oo, —1). Suppose that ku(p1, p2) < 0o. Let
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p1, p2 <K p and dp;/dp = f; for j = 1,2. Since

ko(p1,p2) = /@(afl +(1—a)fo— fi*f2'"%)dp,

we see that p2({f1 = 0}) + p1({f2 = 0}) < oo, that is, (2.18). Let C' =
{fi > 0and fo > 0}. We have [p1]c = [p2]c. Letting dps/dp1 = f = €9
on C, we have

Ka(p1, p2)(C) = /

C

(a+ (1 —a)f = f7dp = / ©(g)dp1.

C
Hence

(2.19) / g*dp; + / eddp, -|—/ dp1 < o0.
Cn{lg|<1} Cn{g>1} Cn{g<-1}

Conversely, if (2.18) and (2.19) are satisfied, then k,(p1,p2) < 0.
As the conditions (2.18) and (2.19) do not involve «, the assertion
is proved. [

Remark 2.16. The proof of the preceding lemma shows the following.
Let po = e9p; with a measurable function g(x) satisfying —oo < g(z) <
oo on ©. Then k,(p1, p2) < oo for 0 < a < 1 if and only if

(2.20) / g*dp —I—/ eJdp; —I—/ dp; < o0.
lg|<1 g>1 g<—1

The following lemma shows the advantage of using the Hellinger—
Kakutani distance k,(p1, p2) for all orders 0 < a < 1.

Lemma 2.17. Suppose that ko (p1, p2) < 0o. Then

(2.21) lim ka(p1, p2) = p2(C(p1))
and
(2.22) 10%1 ka(p1, p2) = p1(C(p2)°)

Proof. Since kq(p1,p2) = ki—a(p2,p1), (2.21) and (2.22) say the
same thing. Let us prove (2.21). Look at the proof of Lemma 2.15.
There we have

ka(p1, p2) = api(C(p2)%) + (1 — a)p2(C (1)) + /C va(g)dpr,
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where o (u) = a + (1 — a)e* — =% and C is the set defined there.
Hence, in order to show (2.21), it is enough to prove that

(2.23) lim | ¢a(g)dp1 = 0.
all Jo

We claim that there are constants aq, as, ag independent of 0 < a < 1
such that

(2.24) 0o(u) < aju? for |u| <1,
(2.25) vo(u) < age” for u > 1,
(2.26) vo(u) < ag for u < —1.

Indeed, ¢,(0) = ¢, (0) = 0 and ¢/ (u) = (1 — a)e* — (1 — a)2e-o,
which is bounded with respect to a € (0,1) and u € [0,1]. This gives
(2.24) by Taylor’s theorem. (2.26) is obvious. (2.25) is also obvious,
since p,(u)e™ = 1 — a+ ae™ — e * is bounded with respect to
a € (0,1) and u > 1. Now we can use the bounded convergence theorem
by (2.24)—(2.26) and (2.19). Thus (2.23) follows from lim, o ¢q(u) =
0. ]

For any signed measure o, we denote by |o| the total variation
measure of p. For z € R?, |z| is the Euclidean norm of z. I hope no
confusion arises.

Lemma 2.18. Let v; and vy be measures on R¢ having no mass at the
origin and [p.(|z|> A 1)dvj < oo for j =1,2. If

(2.27) ko(v1,v2) < o0,
then
(2.28) / |z|d|vy — va| < o0,
|z[<1
(2.29) /||<1 |z|d|v; — Hq(v1,12)| < 00, j=1,2.

Proof. By Lemma 2.15, we have kjjp(v1,v2) < 0o. Let v, 1p < v
and dv;/dv = f;. Write {|z| < 1} = D. Since

m= vl =1 = ol = I = BEIR 4 1,
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we have
1/2
[ Jaldn = < ( [ /R =R [ ek f1+¢?2>2du)
D D

1/2
< (4k1/2<u1,u2) /D Iar|2(f1+fz)dV> < o0,

as in Remark 2.14. That is, (2.28) is true. We get (2.29) from (2.28),
since

v1 — Ho(v1,12) = Ko(v1,12) + (1 — @) (v1 — 1),
vy — Hy(v1,12) = Ko(v1, 1) — a(v1 — 1),
Note that f|$|<1 |z|dK (11, 1) is bounded by ke (11, v9). O]

We prepare some more lemmas on the properties of H,(p1, p2). We
say that {B,} is a measurable partition of B € B, if {B,} is a finite
or countably infinite family of disjoint sets in B such that |J,, B, = B.
We denote by Pp the collection of all measurable partitions of B.

Lemma 2.19 (Brody (1971)). Let p1 and p2 be o-finite measures. For
any B € B and 0 < a < 1 we have

(2.30) H.(p1,p2)(B) = inf Zpl(Bn)o‘pg(Bn)l_a.
Proof. Let p1 p2 < p and dp;/dp = f;. Since

Ha(py, p2) (B / FEfdp < pr(Ba)pa(Ba) '

by Hélder’s inequality as in Remark 2.3, H,(p1, p2)(B) is less than
or equal to the right-hand side of (2.30). Let us show the reverse
inequality.
Let ¢ > 1 and let
Bim=1{0€B:cd < fi()* <d and " < f(0)'7* < ™Y,
B'={6 € B: f1(8) =0 or f»(f) = 0}.
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Then {Bj,,: l,m € Z} U{B'} € Pp and

Ha(ph ,02)(Bl,m) 2 Cl+mp(Bl,m)7
pl(Bl,m) < C(l+1)/ap(Blm)7

7

p2(Bl m) < C(m+1)/(1_a)p(Bl,m)-

)

Hence
Ho(p1, p2)(Bim) > ¢ p(Bim)® ¢ p(Bim)'
> ¢ ?p1(Bim)*p2(Bim)' ™,
and we get
Ho(p1,p2)(B) > ¢ p1(Bim)®pa(Bim)' ™
I,m
= i, S B )

since Hy(p1,p2)(B’) = 0 and p1(B')%p2(B)!™® = 0. As ¢ > 1 is arbi-
trary, this finishes the proof. ]

Let (©',B’') be another measurable space and let p: © — © be
a measurable mapping. For a measure p on © we denote by pp~!
the measure on ©' induced by p through ¢, that is, (pp~1)(B’) =
p(61(B") for B € B.
Lemma 2.20. We have, for any o-finite measures py, po,

(2.31) ha(pre™ p20™") > ha(p1,p2)  for0<a <1
Proof. By Lemma 2.19, we have

ha(pro™, pae™) = inf Y (p1o ") (Ba)*(pae ™) (Bn) ™

{BH}GP@/ n
— inf —1B o —lB 1—047
s P@Zﬂ:pl(w n)“p2(¢™ Bn)
which is bigger than or equal to H,(p1,p2)(0©), since {¢~1B,} is a
measurable partition of ©. O
For finite Borel measures p and pq, p2,... on a metric space, we

write p, — p if [ fdp, — [ fdp for all bounded continuous functions
f.
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Lemma 2.21 (Newman (1973)). Let © be a metric space and B be the
Borel o-algebra. Let py,, u, v,, v, and p be finite measures on B. Fiz
O0<a<l Ifu,—p, vp— v, Hy(n,vn) — p, and inf, ho(pin, vy) >
ho(p,v), then Hy(u,v) = p.

Proof. For any bounded continuous function f, we have

[ Fat ) < ( / fdun>a ( / den>1_a

again by Holder’s inequality. Hence

o< (fsan) (fs00)

It follows that, for any B € B, p(B) < u(B)%/(B)'™®. Hence, by
Lemma 2.19, p < H,(u,v). On the other hand, it follows from
Ho(tn, vn) — p and from hg(pin, vn) > ho(p, v) that

p(@) = h_>m hoz(,una Vn) > ha(,ua V)-
It follows that p(©) = H,(u,v)(0). Hence p = H,(p, v). O

The following fact will not be needed in our discussion, but it is an
important property of hq(p1, p2).

Proposition 2.22 (Brody (1971)). Let B,, be an increasing sequence
of o-algebras on © such that B is generated by ., By,. Then, for any
finite measures p; and ps, we have

(2.32) ha(p1, p2) = nh_g)lo ho([p1]B,, [P2]B,) (decreasing limit).

Proof. Let ¢ be the identity mapping on ©. Then, for any n < m,
¢ is a measurable mapping from (0, B,,) to (6, B,,). Hence, by Lemma
2.20, ho([p1]B,, [p2]s,) is decreasing in n. It is bigger than or equal to
ha(p1, p2) by the same reason. Hence we have (2.32) with < in place of
=. Let us prove that the equality actually holds.

Let € > 0. By Lemma 2.19, we can find a partition {B;} of © in B
such that

)%p2(B1)' = < ha(p1, p2) + €.

||M8
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Choose N such that

o0

Y pi(B)<e forj=1,2.
I=N+1

For each [ =1,..., N, let § > 0 be such that § < 27¢ and
(01(B1) + 81)* (p2(Br) + 6)' ™ < pr(B1)*pa(Br) ™ + 27 €.
There is n such that, we can find sets C) € B,, satisfying
pi(Br ACy) < b, pABroCy)<é forl=1,...,N.

Here B; A C; = (B;\ C)) U(C\ By), the symmetric difference of B; and

Cl. Let
N-1
Dy =Ci, Dy=0Cy\C, ..., Dy=Cn\ | JC.
=1
Then D; € B,, and we have

N N N N
P1(U D) = Pl(U Cr) > P1(U(Cl N By)) Z (p1(By) — 27 %)
=1 =1 =1 I=1

Z pl(@) — 2¢
and

pr(JD1) > p2(8) - 2.

I=1
Letting Dyy1 = ©\ Ufil Dy, consider the partition {D;: [ =1,..., N+
1}. Then
p1(Dn11)® pa(Dn+1)' ™ < (26)*(26)' 7% = 2e.
We have
N

Z p1(Di)* pa(Dy)' @ <
=1 I

p1(C1)* p2(Cp)'

] =

1

(pr(By) + 61) (p2(By) + &)

™=

l

1

p1(B)® p2(B1)' ™ + & < ha(pr, p2) + 2¢.

M=

~
I
[y
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Hence
N+1

> p1(D)® pa(D1)' = < ha(p1, p2) + 4e.
=1

By Lemma 2.19, we get

ho([p1]B,, [P2]B,) < ha(p1, p2) + 4e,
completing the proof.
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3. MAIN RESULTS

The definition of Lévy processes on R? is given in Section 1. The
following two theorems are basic in the theory of Lévy processes.

Theorem 3.1 (Lévy—Khintchine representation). (i) If {X;} is a Lévy
process on RY, then

(3.1) E[ei=X0] = exp [t (—%(z, Az) + i{y, 2)

+ /R (e -1z, x>1{|m|§1}(a:))1/(dzc)>],
for z € R, where

A 18 a symmetric nonnegative-definite d X d matriz,
(3.2) v € R, v is a measure on RY satisfying v({0}) = 0
and [z (|z]* A 1)v(dz) < .

These A, v, and v are uniquely determined by {X;}.

(ii) For any A, v, and v satisfying (3.2), there is a Lévy process
{X:} satisfying (3.1). It is unique in law.

This is a combination of [S] Theorems 7.10, 8.1, and 11.5. We call
(A, v, ) the generating triplet, A the Gaussian covariance matriz, and
v the Lévy measure of the Lévy process {X;}.

To state the second theorem, we give a definition and a proposition
concerning Poisson random measures.

Definition 3.2. Let (O, B, p) be a o-finite measure space. A family
of random variables {N(B): B € B}, defined on a probability space
(Q,F, P) and taking values in {0,1,2,...,400}, is called a Poisson
random measure with intensity measure p if

(1) for every B, N(B) has Poisson distribution® with mean p(B),

(2) for any n and for any disjoint By, ..., B,, the random variables

N(B),...,N(B,) are independent,
(3) for every fixed w, N(B,w), B € B, is a measure.

3We use the following convention: Poisson distributions with means 0 and oo are,
respectively, dy and d,,. In general, we denote by ¢, the unit mass concentrated at a.
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Proposition 3.3. Let (©, B, p) be a measure space with p(©) < oo and
{N(B): B € B} be a Poisson random measure with intensity measure
p. Let g be a measurable function from © to R" and define

Y(w) = /@ G(O)N(d8, o).

Then'Y is a random variable on R" with compound Poisson distribution
and

Bl = exp ([ (600~ 1)p(a0) )

—exp ([ (@6 = 1) (a7 a0))
for z e R".

This is [S] Proposition 19.5.

Theorem 3.4 (Lévy-It6 decomposition of sample functions). Let {X;}
be a Lévy process on R¢ defined on a probability space (Q, F, P) with
generating triplet (A,v,v). For any G € B c)xr and w € {2 let*
J(G) = J(G,w) be the number of s > 0 such that (s, Xs(w)—X,s-(w)) €
G. Then {J(G): G € B(g)xra} is a Poisson random measure with
intensity measure v, where U is the product measure ds X v(dz). We
can define, a. s.,

(3.3) Xi(w) zlif(r)l {zJ(d(s,z),w) — zv(d(s,z))}
0 (0,8 x{e<(z[<1}

T / 2 J(d(s,2), ),
(O,t]x{|m|>1}

where the convergence in the right-hand side is uniform in t in any finite

time interval a.s. The process {X{} is a Lévy process with generating
triplet (0,v,0). Let

(3-4) Xi (w) = Xy(w) = Xi(w).

Then { X'} is a Lévy process continuous int a. s. with generating triplet
(A,0,7). The two processes {X;} and {X['} are independent.

48(0700)de is the class of Borel sets in (0,00) x R,
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This is [S] Theorem 19.2.

As is explained in Section 1, when we say that ({X;}, P) is a Lévy
process on R?, we mean that P is a probability measure on (D, F)
and {X;} is a Lévy process under the measure P, where D and F°, and
Xi(w) are introduced in Section 1; in particular, X;(w) is the coordinate
mapping from D to R?.

In this section we consider two Lévy processes ({X:},P;) and
({X:}, ) on R?. Keep in mind that D, F°, and {X;} are common
and only the measures P, and P, are different. The generating triplets
of ({X:}, P1) and ({X.}, P») are denoted by (A1, vy, 71) and (As, va,72),
respectively. When A; = Ay, we write Ay = Ay = A. In this case define

R(A) = {Az: z € RY},
the range of the mapping of x to Azxz. We write
Pl =[Pz and Py =[Py,
where F} is also introduced in Section 1.
The following Theorem A was given by Newman (1972, 73) together
with Corollaries 3.6, 3.8, and 3.9.

Theorem A. (i) Suppose that

(NS) ko(v1,19) < 00, A;= Ay and 79 € R(A),
where

(3.5) Vo1 = Y2 — V1 — /||<1 zd(vy — 11).

Then )

(3.6) H,(P!,P)Y=e™Pl fort>0 0<a<]l,
where

(3.7) Ly = 30(1 — a)(n, An) + kq(v1,12)

with n satisfying An = 91, and P, is the probability measure for which
({X:}, P.) is the Lévy process generated by (A, Ho(v1, v9),Va) with

(3.8) Yo =0av1+ (1 —a)y — / zd Ky (v1, 1).

|z|<1
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(i) Suppose that (NS) is not satisfied, then
3.9 Hy(PL,P)=0 fort>00<a<1.
1,472

Notice that, by Lemma 2.15, the finiteness of k,(v1,v2) does not
depend on «, and that, if k,(v1,12) < o0, then 79 is well-defined
by virtue of (2.28) of Lemma 2.18. Also, H,(v1,12) can be the Lévy
measure of a Lévy process by the property (2.3) in Remark 2.3. The
quantity L, does not depend on the choice of n satisfying An = 791,
since An = An' implies

(n, An) = (n, An') = (An,n) = (An',n) = (n, An)
by the symmetry of A. We call (NS) the nonsingularity condition.
When we say that (NS) is not satisfied, we mean that one of the fol-
lowing holds:
(3.10) ko(v1,v5) = 00;
(311) ]Ca(lll, 1/2) < oo and A 7& AQ,
(312) ka(l/l, 1/2) < 00, Al = AQ, and Y21 € %(A)
Note that, if k,(v1,v5) = 00, then 79; may not be defined.

Remark 3.5. Suppose that fmg |z|v1(dz) < oo and flwlsl |z|ve(dz) <
oo. Then, for j = 1, 2, the Lévy—Khintchine representation is written
as

EPI[elX0] — exp lt (—%(z, Ajz) + (0, 2) + /]Rd G (dw))]

with some 7p; € R¢. The vector Yo; is called the drift of the Lévy
process ({X:}, P;) and we have

Yoj = Vi — / zv;(dz).
|lz|<1

Hence we have

(3-13) Y21 = Y02 — 7Yo1-

The proof of Theorem A is postponed to Section 5. Here we study
some consequences of Theorem A.
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Corollary 3.6. Fiz t > 0. P} and P} are not mutually singular if and
only if Condition (NS) is satisfied.
Proof. By Remark 2.5, P L P} if and only if (3.9) holds. By

Theorem A, (NS) does not hold if and only if (3.9) holds. O

Corollary 3.7. If P} 1L P} for somet >0, then Pt L P} for allt > 0.
Proof. Condition (NS) does not involve t. O

Corollary 3.8. Fizt > 0. If P} and P} are not mutually singular, then

(3.14) n(C(1)°) <oco and 1 (C(1rr)°) < o0

and

(3.15)  PY(C(P])=e ™M) and  PC(PY) = e MO,

Proof. We assume that P} and P} are not mutually singular. Then
Condition (NS) holds. In particular, k,(vi,v2) < oco. Hence (3.14)
holds by Lemma 2.15, and

léﬁ)l ko(v1, v2) = 12(C(11)°)

by Lemma 2.17. Hence, as o | 0, L, tends to the same limit. The
identity (3.6) of Theorem A implies that

(3.16) ho (P!, P) = ethe,
By Lemma 2.11, ho(Pf, P) tends to P{(C(P})) as a | 0. Thus we
obtain the first identity of (3.15). The second is similar. [

Corollary 3.9. Fizt > 0. P < P} if and only if the condition vs < 11
and Condition (NS) are both satisfied.

Proof. By Remark 2.10, P} < P} if and only if Pi(C(P})®) = 0,
that is, PI{(C(P})) = 1. Hence, if P} < P!, then vy(C(v1)¢) = 0 by
Corollary 3.8, that is, vy < v1 by Remark 2.10. Conversely, if 1, < 14
and (NS) holds, then v5(C(v1)¢) = 0 and P} and P} are not mutually
singular by Corollary 3.6, hence Pi(C(P})) =1 by Corollary 3.8. [
Corollary 3.10. If Pt < P} for some t > 0, then P} < P} for all
t > 0.

Proof. Use Corollary 3.9. O
Corollary 3.11. Fizt > 0. P! ~ P} if and only if the condition vs =~ 11
and Condition (NS) are both satisfied.
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Proof. Immediate from Corollary 3.9.
Corollary 3.12. If P} ~ P} for somet > 0, then P ~ P} for allt > 0.
Proof. Immediate from Corollary 3.10 or 3.11.

Corollary 3.13 (dichotomy). If vy ~ vy, then either Pi ~ P} for all
t>0or P L P forallt>O0.

Proof. Assume vo = vy. If (NS) is satisfied, then P} ~ P} by
Corollary 3.9. Otherwise Pi 1 P} by Corollary 3.6. O

Corollary 3.8 combined with Lemma 2.9 shows that, in general,
there is a case where P} and P} are neither mutually absolutely contin-
uous nor mutually singular. The Lebesgue decomposition of P} with
respect to P! will be given in Theorem B.

Let us consider P; and P, on the whole F.
Corollary 3.14. P2 1 Pl ’I,f P2 75 Pl.

Proof. Assume that P, # P;. We claim that ho (P, P») = 0. Ap-
plying Lemma 2.20 to the identity mapping of D, we get

ha(Pfa P2t) 2 ha(Ph PQ)

If Condition (NS) does not hold, then h, (P}, P;) = 0 by Theorem A and
there is nothing to prove. Assume that (NS) holds. Then h, (P}, Pi) =
e 'La by Theorem A. If L, > 0, then ho (P}, P) can be arbitrarily small,
which implies that h,(P;, P,) = 0. Suppose now that L, = 0. Then
ko(v1,v9) = 0 and (n, An) = 0 with An = 79;. Since we can choose «
as we like, let us fix it as @ = 1/2. Then

0 = kijo(v1, 12) / (VA =V fo) dv

with v; < v and f; = dyj/dv for j = 1,2. Hence fi = f» v-a.e,
that is, 11 = 5. Hence 91 = 79 — 71. Since A is symmetric and
nonnegative-definite, there is a symmetric nonnegative-definite matrix
R such that R? = A. We have |Rn|*> = (n, An) = 0, hence Rnp = 0 and
An = RRn = 0, hence 79 = 1. Thus (Ay,v1,71) = (A2, v, 72), which
contradicts the assumption P; # P,. This shows that the case L, = 0
does not occur. ]
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Corollary 3.15. Suppose that P and P} are not mutually singular for
somet > 0. Then the following are true.

(i) If v1(R?) < oo, then v9(R?) < co.

(ii) If v1(RY) = oo and f|m|51 |z|v1(dz) < oo, then v3(RY) = co and
f|$|S1 |z|ve(dz) < 0.

(iii) If f|¢v|S1 |z|v1(dz) = oo, then flw|51 |z|ve(dz) = 0.

Proof. (i) Assume that v (R?) < co. Let A = {w: there are s, | 0
such that X, (w) # X5 _(w)}. That is, A is the event that jumping
times are accumulated at 0 from above. If v5(R?) = 0o, then P}(A) =1
and P}(A) = 0 (see [S] Theorem 21.3), which implies P} 1 P}, contrary
to the assumption.

(if) We have kq(v1,2) < oo by Corollary 3.6. Hence [,

v1| < oo by Lemma 2.18. Therefore, if flwl<1 |z|dv1 < oo, then

/ |z|dry < / |z|dy —I—/ |z|d|ve — 11| < 0.
|lz|<1 lz|<1 lz|<1

Interchanging the roles of vy and v, and using (i), we see that, if
v1(R?) = oo, then 1(RY) = co.
(iii) The assertion is that f|$|<1 |z|dve < oo implies flwl<1 |z|dv < 0.

|£E|d|1/2 —

This is a consequence of (i) and (ii), if we interchange the roles of 1,
and vs. O]

Theorem A and its corollaries above solve the problem 1 in the
introduction. The following theorem solves the problems 2, 3, and 4.

Let us denote by (P%)* and (P%)* the absolutely continuous part
and the singular part, respectively, in the Lebesgue decomposition of
P with respect to P{. Also, denote by 15% and 1,® the absolutely
continuous part and the singular part, respectively, of 5 with respect
to v1. Let v = v; + 5. Choose the versions
dl/j .

(3.17) i~

[ for =1, 2
satisfying
(3.18) f1 >0, f,>0, and fi+ fo=1 everywhere on R%.
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Denote
Ci={fi=1and f; =0},
(3.19) Co ={fi =0and f, = 1},
C ={f1 >0and fs > 0}.
Thus

(3.20) 1" =1crvy and 1’ = 1eg,ve = louc,V2

and dv,®/dv; has the following version:

(3 21) dl/gac _ f2/f1 on C
. dvy 0 on C7 U (5.
Define
log(f2/f1) onC
3.22 =
( ) g(x) {—OO on Cl U CQ.
- g(z) onC
3.23 =
( ) g(x) {0 on Cl U 02.

As in Theorem 3.4, let J(G,w) be the number of s > 0 such that
(s, Xs(w) — X,_(w)) € G. Define A; € F by
(3.24) Ay ={J((0,t] x (CLUCy)) =0}
= {XS — X, Q/ CiUCsy for all s € (O,ﬂ}

Theorem B. Suppose that Pi and P} are not mutually singular. Then
the following are true.

(i) For 0 <t < oo the Lebesgue decomposition of Pi with respect to
P! is given by
(3.25) (P} = 14,P%,
(3.26) (P3)° = 1p\a,Ps.

(ii) Define®

(3.27) V, = 13¢r51< > 9(Xs — X,-)
(5,X5—X;5_)e(0,t]x{|z|>e}

SNotice that, in (3.27), both g(z) and g(z) are used.
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— 9@ _ 1 (dz) |
t/|$|>€< Din(d >>,

the right-hand side exists Py-a.s. and the convergence is uniform on
any bounded time interval P;-a. s.
(iii) Let n € R? and define
t
where { X'} is the continuous process derived from the process ({X;}, Py)
in Theorem 3.4. Then {U;} is, under Pi, a Lévy process on R with gen-

erating triplet (Ay, vy, yu) given by

(3.29) Ay = (n, An),
330 w(B) = [ lalg@)n(ds) for B € Bago,
(3.31) Yo = —1(n, An)

_ /Rd (eg(w) —1— g(:v)1{|g($)|§}(x))u1(dx)

The processes {U;} and {J((0,t] x (C1 U Cy)): t > 0} are independent
under Py. We have Pi(A;) = e7™(C) and Py(A;) = e (€2,
(iv) Choose n so that An = ~y21. Then the Radon—Nikodym density
of (P}) is given by
P
dP}
Let Q be the probability measure on (D, F°) for which ({X;}, Q) is the
Lévy process with generating triplet (A, 9%, vyo — f|x|§1 zdvy®). Then

(3.33) (Ph)® = e~t2(2)Q,

(3.32) — e t(R)HUg,

We will prove Theorem B in Section 6.

Remark 3.16. The process {U;} does not depend on the choice of n
satisfying An = vo1. If An = An/, then

t t
(n, X{') — 5 {1 An) =ty m) = (n', X/) - §<n’,An’> — t(y1,7'),
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/

Pi-a.s. In fact, we have (n, An) = (1, A}, as is remarked after Theo-
rem A. To see that (n, X}") —t(y1,n) = (0, X]') —t(y1,7'), Pi-a.s., note
that ¥; = (n — 0, X{') — t{(71,n — ') is, under P, a Lévy process Wlth

EP1 [equt] — 6_(t/2)< u(n—n')udi(n-n")) _ 1,

and hence Y; =0, P;-a.s.

Remark 3.17. The proof that A; € F} is as follows. Let ¢, ;(w) be
the jth jumping time with jumping height X, — X, in {1/n < |z| <
1/(n —1)} if such a jump exists. Let ¢, j(w) = oo if such a jump does
not exist. Then {t, ;(w)}n>1,j>1 is the collection of all jumping times
of w and, possibly, co. Each t,; is F’-measurable ([S] Lemma 20.9).
Hence X, and X;, _ are also F’-measurable. Since

J(( ] (C]- U 02 Z Z 1 Ot 7.7 1CIUC2 (X n] - th,j_)’
n=1 j=1

J((0,%] x (Cy U Cy),w) is F-measurable. We can see that it is Fp-
measurable, using the fact that A € F? if and only if the following two
conditions are satisfied:

(1) A e FY,

(2) if w € A and X (w) = X(w') for s € [0,¢], then ' € A.
See the first 9 lines of 3.2 of It6 and McKean (1965). Thus A; € F,.

Corollary 3.18. Let t > 0. Suppose that P; < P} (hence vy < v1).

Let
dl/2

dl/1
where g is a version satisfying —oo < g < oo everywhere on RY. Let
C={-c0<g<oo}and Cy = {g=—0}. Define g and A; by (3.23)
and (3.24) with Cy = (), and then V; and U; by (3.27) and (3.28) with
n satisfying An = vy91. Then

:eg,

dP}
(3.34) —2 = ¢ltyy,.
dP}

Here {U;: t > 0} and {14,: t > 0} are independent. {U;} is a Lévy
process on R under Py, and Py(Ay) = e () Py(Ay) = 1.
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Proof. We have v = v; + v, = (1 + €9)v;. Hence we can choose

fi=1/(1+¢%) and fo =€e9/(1+ €?), and Theorem B applies. O
Remark 3.19. The expression (3.34) of Corollary 3.18 can be written
as
dP} ok
3.35 272 _ U (W)
( ) de € Y
where

U = (n,X/) — Ln, Ain) — t{m,n)

+ lim Z 9(Xs — Xs-) —t/ (eg(x) — 1)y (dw)
=0 (8,Xs—Xs_)€(0,t] x{|z|>e} |z|>e
If Xs - Xs— S 01 at time S, then U;k = —o0 and eU;k =0 for all u > s.

Remark 3.20. Let us consider another expression of (3.34) of Corol-
lary 3.18. Define the o-algebra Fp, as FY, = (.o Frie- Let

(3.36) T =inf{s >0: X, — X,_ € C1}.
It follows from the definition of A; that
(3.37) {t<T}C A C{t<T}.

We know that A; € F? by Remark 3.17. Since, for the general w,
jumping times with heights in C; possibly accumulate at T" from above,
the relation of 7" and {F}} is delicate. We claim that

(3.38) {t<T}eF), and {t<T}eF .

Let us use ¢, j(w) in Remark 3.17. We have {T < t} € F? since

(T <t} = J{tnj <tand X, , - X, € C1}.
n,J
Further we have {T' < t} € F}, as we can check the conditions (1) and
(2) of Remark 3.17. Hence {t < T} € F;. Since

{t<T}:U{t—I—%§T} for any ng > 1,

n=no

we see {t < T} € F?,.. Thus (3.38) is proved. Theorem 3.4 says that,
under Py, {J((0,¢] x Cy): t > 0} is a Poisson process with parameter
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v1(C1). We have v1(C) < oo by Lemma 2.15, because the assumption
P! <« P} implies k4 (v1,v2) < oo by Corollary 3.9. Since T is the first
jumping time of the process {J((0,t] x Cy): ¢t > 0}, T" has exponential
distribution with parameter v (C7) under P, if 141(Cy) > 0. If 11(Ch) =
0, then T' = oo, Pj-a.s. Hence P(t = T') = 0, which implies that the
three sets in (3.37) differ only by sets of P;-measure 0. Therefore, the
expression (3.34) can be written as

PQ(B) = / €Ut1Ath1 = / eUtl{t<T}dP1 = / eUtl{tST}de B € f,?
B B B

But "1 7y does not give dPi/dP}, since it is beyond F}. Notice
that both {J((0,%¢] x C1)} and T are independent of {U,} under P, by
Theorem 3.4, because {U;} is determined by {X/} and by jumps of
heights in C.

Example 3.21. Suppose that 0 < v1(R?) < co. Then, P} and P} are
not mutually singular if and only if

0< I/Q(Rd) < 00, A2 = Al, and Y21 € SR(A)

This follows from Corollaries 3.6 and 3.15. In this case y21 = Y02 — Vo1
by (3.13), where 7y;, 7 = 1, 2, are the drifts.

Suppose that 0 < v (R?) < oo and that P} and P} are not mutually
singular. By (3.33),

(P2t)ac(D) _ e—tuf(]Rd).

We consider two special cases.

Case 1: vy <K v1. We have P! < P! and P} = eV'1,, P! with U; and
A defined by (3.24) and (3.27)—(3.28), since v5(Cy) = 0.

Case 2: vy 1 v;. We have g = —oo and § = 0 on R¢. Thus

Ay = {J((0,#] x RY) = 0} = {w: X,(w) is continuous in s € [0,%]},
V, = tul(Rd),
(PQt)ac _ e—ty2(]Rd)+Ut1AtP1t7
(Pg)aC(D) _ (R
If v91 =0, then
(PQt)ac — et(”l(Rd)_”z(Rd))lAtPf.
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Remark 3.22. Ifv; | vy and v1(RY) = oo, then P and P! are mutually
singular. Indeed, if vo L v; and if P} and P} are not mutually singular,
then k,(v1,2) < oo by Condition (NS) and v, L vy implies that

ko(v1,v9) = al/l(]Rd) +(1-— a)ug(Rd).
Example 3.23. Consider two scaled Poisson processes with drift. That
is, for j =1, 2,
ETi[e*X] = exp [t (bj(e 5% 1) + dryg;2 z)], z€R,

with b; > 0, a; € R\{0}, and p; € R. Thus v; = b;d,,. This is a special
case of the preceding example, but this was independently studied by
Dvoretzky, Kiefer, and Wolfowitz (1953)%. Thus P{ and P! are not
mutually singular if and only if v92 = 1. Suppose that v92 = 791 and
consider two cases.

Case 1: as = a;. We can choose C; = Cy = () and thus A; = D. We
have P} =~ P}. Since g = g = log(b2/b1), we have

Ut = V;g = Nt log(b2/b1) — t(bQ — bl),
where N; = Ny(w) is the number of jumps of X(w) for s < ¢. Hence
= (bQ/bl)Nte_t(b2_b1)P1t.

Case 2: as # a;. We can choose C; = {a;} and Cy = {az}, and

g=—oc0 and g = 0 on C; UCy. We have
A ={Xs; — Xs— # ag,a; for s € (0,¢]}
and U; = V; = tb;. Hence
(PQt)ac _ t(b1—b2) ]-AtPf7
(P)(D) = e,

6The author thanks Goran Peskir for calling his attention to this reference.
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4. (GAUSSIAN CASE

The following theorem is a special case of the results of Cameron
and Martin. On the other hand it is a special case of the results stated
in Section 3, when both ({X:}, P1) and ({X:}, P») are Gaussian Lévy
processes. We prove this first and use it in the proof of Theorem A. So
we have to avoid to use the results in Section 3.

Theorem 4.1. Suppose that ({X;}, P1) and ({X:}, P») are Lévy pro-
cesses on RY with generating triplets (A1,0,7v1) and (As,0,72), respec-
twely. Fixt > 0.

(i) The dichotomy holds: either P ~ P} or P} 1| P}.

(i) Pi =~ P} if and only if

(NS¢) A=Ay and 72— € R(A4).
(iii) If P{ =~ P}, then, for 0 < a < 1,
(4.1) Hy (P}, P}) = e thapl

where P, is the probability measure for which ({X:}, Py) is the Lévy
process generated by (A,0,7,) with v, = ay1 + (1 — a)vye, and

(4.2) Lo = ja(1 — a)(n, An)

with n satisfying An = v9 — 1.
(iv) If Pt ~ P}, then

Py 4
(43) d—Plt =€,
where

with n satisfying An = v9 — 1.

Here we are continuing to write A; = Ay = A whenever A; = As.

Proof. Step 1. Let us prove that, if (NSg) holds, then P} ~ P} and
(4.3) holds. Define U; by (4.4) with Anp = v, — 71 and set

QY (B) = / eV P (dw), Be F.
B
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This is a well-defined finite measure on (D, F?), since E/1[e¥] < oo
for any ¢ > 0. For z € R? we have

EP [l X040 = exp [—%t(z, Az) + it(ve, z)] ,
since the left-hand side equals

exp [—4t(n, An) — t(y1,n)] B [el{=Xa+(n.Xe)]
and

Eh [e“z’XtH(”’Xt)] = exp [%t(zz +n, Atz +n)) + t(y, 12 + 77)]
= exp [3t(—(z, Az) + 2i(z, An) + (n, An)) + it(v1, z) + t{y,n)] -

See Theorem A4.3 of Appendix A. Thus, letting z = 0, we get ET1[eV!] =
1, that is, Q¥ (D) = 1. If 0 < s < t, then, for 21,z € R?,

£ [eifanXo)ilea Xi= X)) — Jolok [ei(zl,Xs)]EQ“) [eH{e2:Xi-s)]

)

since ({U;}, P1) is a Lévy process and since

left-hand side = BT [ei<z1’XS>+i<227Xt_XS>+Ut:|

— EP1 [ei<Z1,Xs>+Us] EP1 [ei<z2;Xt—Xs>+Ut_Us:|

— gh [ei<Z17Xs>+Us]EP1 [ei<22;Xt—s)+Ut—s]_

We can make a similar calculation for 0 < sy < --- < s, < t. Therefore
({X,: 0 < s <t},QWY) is a stochastically continuous process with sta-
tionary independent increments, having generating triplet (Asz,0,2).
Hence Q® and P, coincide on F?. It means that P} < P! and (4.3)
holds. As the density is positive, we have P! ~ P}.

Step 2. We prove that, if Ay # Aj, then Pi 1 P!. We can find
2y € R? such that (29, Aszy) # (20, A120). Let Y; = (29, X;). Then
({Y:}, Pj) is a Lévy process on R with generating triplet (a;,0,b;) for
each j = 1,2, where a; = (29, 4,20) and b; = (v;, 20) . We claim that

n

(4.5) Z(Y}ct/n — Y(k_l)t/n)2 — a;t in probability (P;)
k=1
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as n — 0o. Indeed, if a; > 0, let Z; = aj_l/z(Y;- —bjt). Then ({Z;}, P))

is the Brownian motion on R and we have

n 2
E {Z(Zkt/n — Zgo—tyiyn)” — t}

k=1
n

=Y E{(Zin — Zgp—1yyn)’ —n 't} = 207" = 0.

k=1
Hence
Z(Zkt/n — Z(k'—l)t/n)2 — t in probability (PJ)
k=1
Since
Z(Zkt/n — Ze—1yt/n)’
k=1

n
= aj_l Z(th/" — Y(k_l)t/n)z — 2aj_1bjtn_1Y} + aj_lb?n_ltz,
k=1
we get (4.5). If a; = 0, then Y; = b;t and (4.5) is trivial. Now it follows
that, via some common subsequence {n’}, (4.5) holds in almost sure
(P;) convergence for j = 1 and 2. Let

Aj = {wi > Vg = Yoeryym)* = ajt} :
k=1

Then, A1 ﬂAQ = @, Pl[Al] = 1, PQ[AQ] = 1, and hence PQ[Al] = 0. Thus
we have P} | P}.

Step 3. Further let us see that, if Ay = A1, o — 7 € R(A), then
Pl 1 Pl. Fixt > 0. We have Pj[X; € R(A) +tvy;] =1 for j = 1,2.
It follows from 7o — y1 & R(A) that (R(A) + t71) N (R(A) + ty2) = 0.
Hence Po[X; € R(A) + ty1] = 0. Hence Pi 1 P}.

Now the assertions (i), (ii), and (iv) follow from these three steps.
It remains to show (iii).

Step 4. Let us prove the assertion (iii). We assume P} ~ P}. The
Lévy process ({X;}, P,) has generating triplet (A, 0,7,), and v, — 71 =
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(1-a)(y2—m) = (1 —a)An. Hence P! ~ P} by (ii), and we know the
density from (iv):

Z]; = exp[(1 - a){n, Xe) — 3#((1 — @), A1~ a)r)

—t(1 = o) {71, m)].

Thus we have

dPi\ '
Ha (P, PY) = (ﬁ) Pl = el
exp [(1—a)(n, X;) — 5t(1 — a)(n, An) — t(1 — a)(y1,n)| P}
e—%t(l—a)a(n,An) Pé — e_tL“P;.

This completes the proof. ]
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5. PROOF OF THEOREM A

We follow Newman (1973) in the proof of Theorem A. Let D; =
D([0,],R?), the space of w: [0,%] — R? right-continuous with left lim-
its. Let Xs(w) = w(s) and FO(D;) = 0(X,: 0 < s < t). Since F; and
FO(Dy) are naturally identified, any measure on (D, F}) is identified
with a measure on (Dy, F°(Dy)), and vice versa. Thus we consider P,
7 = 1,2, as measures on (Dy, F°(D;)). As before, ({X;}, P;) is a Lévy
process with generating triplet (A;, v}, ;) for each j =1, 2.

We can define the addition in D;:

(wW+)(t) =w(t)+d'(t) forw, o' €Dy

The addition is measurable from FY(D;) x F°(D;) to F°(D;). Hence
we can define the convolution p;*py of finite measures p; and ps on

(Dy, F(Dy)) by

poea(B) = [[ 1 @)l

Define J(G,w) for w € D;. That is, J(G,w) is the number of
€ (0,?] such that (s, Xs(w) — X;_(w)) € G for G € Bgxprs. Let
Vo = Hyo(11,12) and Uy = ds X v,. Let

(5.1) Y. s(w) :/(0 e Kl}{x,](d(u,x),w) — 2V (d(u, x))}

+/ zJ(d(u,z),w), 0<s5<t,
(0,8]x{|z|>1}
(5.2) Z. s(w) = Xg(w) — Yz 5(w), 0<s<t,

for 0 < e < 1. Let Qt . and Rt denote, respectively, the probability
measures on (Dy, (D )) induced by ({Yzs}, P) and ({Z s}, P;). Here

we have suppressed to write the dependence on o of Y, 4, Z, , z,j, and
R ;.

Lemma 5.1. We have

(5.3) Pl =QLxR.;,,  j=1,2

and

(5-4) Ho(Py, Py) = Ho(Qz 1, Qc o)+ Ha(Rz 4, R o)-
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This lemma remains true if we replace v, by any measure finite on
{|z| > €}. But this form is convenient for us.

Proof. Since The processes {Y- s} and {Z, s} are independent both
under P} and under P} by Theorem 3.4. Since X; = Y. s+ Z. 5, we have
(5.3). To see (5.4), notice that the paths Y, ; and Z, 5, 0 < s < ¢, are
determined by X, 0 < s <t. Let

D, = {w € D;: X (w) = Y s(w) for s € [0,1]}

D!, = {w e D;: | X,(w) — X,_(w)| < e for s € (0,1]}.
Let ¢: Dy — D, x D, be defined by p(w) = (', w"), where X,(w') =
Y. s(w) and X,(w") = Z; s(w). Then ¢ is bijective, measurable, and its

inverse ¢! is also measurable. Any finite measures p’ and p” on D’

and DY, respectively, can be considered as measures on D;. With this

identification, we have (o' x p")(pB) = (p'*p")(B) for B € F°(Dy).
Thus Pfgo_l = :.7]- X Rﬁ.jj. Hence,
H,(P{, P3) = Ho(Plo™", Pyp™ ") = Hq( 2,1 X Rf;,la f:,z X R2,2)<P
= (Haf 2,11 22) X Ha(Ri,hRé,Q))@
= Ha( 2,1’ 2,2)*HQ(R§,17RZ,2)'

This proves (5.4). O

Lemma 5.2. Let P, be the probability measure given in Theorem A.
Let Q! , be the probability measure on (Dy, F°(Dy)) induced by ({Yz s},
PY). Then

(55)  Ha(Q'1, Q') = exp [—t /| | dKa<u1,u2>] Q.
xTr|>€

for0<a<land0<e<1.
Proof. Form =1,2,..., let D;)t(m) be the set of w € D¢, such that

m
X (w) :lel[om)(s—sl)—s/ zdy, for0<s<t
=1 e<|z|<1

with some 0 < s; < -+ < s, < tand |z;| >, 1 =1,...,m. By the
mapping w > (81, .., Sm, L1, - -, Tm), Déjt(m) is identified with the set
(51,2 8m): 0 < 51 < -+ < 8 <t} x {Jz| > e}™. Let M\™ be the
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measure induced on D;,t(m) by [(ds)™]{0<s1<<sm<ty X ([Vjl{jz)>e})™- Let

D’S,t(o) be the set consisting of only one path X (w) = —s zdv,,

e<|z|<L1
0 <s<t, and let M](O) be the unit mass concentrated at this path.
Then M(m) has total mass (m!)~'™c;™, where ¢; = v;({|z| > &}).

Under Q! j» X5 has characteristic function

exp [s/ (5 — 1)v;(dz) — is </ zdv,, z>]
|z|>e e<|z|<1

and we have
()
o —te; m
(5.6) Qij=e9) M
m=0
since X (w), 0 < s < t, has exactly m jumps with probability
e—tcj (m!)—ltmcjm

and, given that this occurs, the conditional distribution of jumping

times and jumping heights is m!¢™"¢; ™™ M (m), Hence,

(6.¢]
@ @) = 1, (0 3 a”).
m=0
which is calculated in the followmg way. We have
Ho(M™ M™) =0 for m #m/,
since Ml(m) and Mz(ml) have disjoint carriers. We claim that
Ho (M, M) = M,

where Mo(ém) is the measure defined similarly, using v, in place of v;.
Indeed,

Ho (M, M{™)

ds)m]{0<sl<---<sm§t} X (Ha([’/l}{|x|>e}a [V2]{|x|>e}))m
ds m}{0<sl<---<sm§t} X ([Ha(Vh V2)}{|:c|>e})m

m

It
It

In conclusion,
00
t t _ t(aci+(1—a)er) 2 : )
Ha( g, 5,2) HOé )
m=0
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— e—t(acl—}—(l—a)cQ) Z Mém)
m=0

_ —tHaa+(1—a)ca—cq) Nt
=e€ E,0

with ¢, = vo({|z| > €}). This shows (5.5). O
Assuming k, (v, v5) < 00, define
Yo,s(w) = lim Ve s(w),

where the convergence is uniform in s € [0,#], Pj-a.s. This follows from
Theorem 3.4 and Lemma 2.18 and we have

Yos(w) = X ,(w) + s/ zd(v; — va), P} —a.s.,

|2|<1
where X  (w) is defined by (3.3) with v; in place of v. Further define
Zos(w) = Xs(w) = Yo,6(w),
?E,S(w) = Ze,s(w) - ZO,s(w) = YE),S(W) - Yv&,s(“’)a

and let Qé,j, Rf],j, and @ZJ be the distributions of {Yy,}, {Zos}, and
{Y. s} under P}.

Lemma 5.3. Assume that k,(v1, ) < co. Then

(5.7) Pj = Qo %R,
= QL*Q. xRy forj=1,2,

and

(5.8) Ha(Plta P2t) = Hy( 6,17 6,2)*Ha(R6,17 R6,2)
= Ha(Qk 1, Qo)+ Ha(QL 1, Qo p)* Ha(Rb 1, RS )
= Ha(QZ,I’@ZJ)*HO&( Z,l*Ré,b Q2,2*R6,2)-

Proof. We have X, = Yy, + Zps = Yo, + ?5,3 + Zps, sums of
independent terms under P}. Therefore we get (5.7). Similarly to the
proof of Lemma, 5.1, consider

Dy; = {w € D;: Y, 4(w) converges uniformly in s € [0,¢] as ¢ | 0},
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Ot—{wEDOt Xs(w ):liﬁ)lYe,s(w) for 0 < s < t},

Dy, = {w € Dy;: X,(w) is continuous in s}.

We can prove the first equality in (5.8) in the same way as in the proof
of Lemma 5.1. Furthermore, by Lemma 5.1 itself,

Ha(QS,hQé,z) = Ha( el )*H (Qa 17Q52)

and

Ha(Qi,l*Ré,l, Qt Z*R 5) = Hal 217 ) (Ro 15 Ré,z)-
Hence we get the second and third equalities in (5.8). ]

Proof of Theorem A. Step 1. Let us show that, if ky(v1,12) = o0,
then Pi L P{. We have

(5.9) ha(P, Py) = ha(@Qc 1, Qe 2)ha(RLy, RE )

by Lemma 5.1. Remark 2.3 shows that ha(Rﬁjl, R!,) <1, while Lemma
5.2 shows that

ha( 2,17 22) = exp [—t/ dKa(VhV?)] )
|z|>e

which tends to 0 as € | 0. Hence hq (P}, Pi) = 0, that is, Pi 1 Pf.
Step 2. Next we see that, if ko (v1, ) < 00 and As # A;, then P} L
P{. In fact, the process under Rj; has generating triplet (A;,0,~; —
f|m|<1:cd(1/j — v,)). Since A1 # Ay, we have ho(Rj;, Rj,) = 0 by
Theorem 4.1. Hence hy (P}, P}) = 0 by (5.8) of Lemma 5.3.
Step 3. [fka(lll, 1/2) < 00, Ay = Al, and Y21 g %(Al), then Pzt 1 Pf,
because we can use Theorem 4.1 again, observing that

(72 - /IarISI zd(vy — Va)) - (71 - /lesl zd(v; — ya)> = o1 & M(A).

These three steps prove the part (ii) of the theorem.

Step 4. Suppose that (NS) is satisfied. Let us prove (3.6). This will
prove the part (i). We have Y., — 0, and hence Y., + Zos — Xj,
uniformly in s € [0,] Pj-a.s. as ¢ | 0. Hence these converge in the
Skorohod metric. Hence we have, as € | 0, Qt *R — Pf as the
weak convergence of probability measures on the metrlc space D;. See
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Section 14 of Billingsley (1968) for relevant material; especially, F°(D;)
is identical with the o-algebra generated by the open sets. It follows
from the third expression of H, (P}, P}) in (5.8) that

ha(Plt, Pzt) < ha( 2,1*36,1,QZ,2*R6,2)-

Hence, if we show that H,(QL,*Rf, QL,*Rj,) tends to some p as
e | 0, then p = H,(P}, P}) by Lemma 2.21. Now, by Lemma 5.2 and
Theorem 4.1,

Ho( 2,1 * Rf),h Q§,2*R6,2) = Hy( 2,17 2,2)*Ha(R6,1a R3,2)

1
= €exp [_t/ dKa(Vh VQ)] Z,a* exp [—5156!(1 _ O[) <777 An>] RZH
|z|>e

where R, corresponds to the Gaussian Lévy process generated by (A4, 0,
Vo) With

o=a (- [ - )} + 1= a) (2 - [ - )

=ay+ (1 —a)y — / zd Ky (11, 12)

|z[<1
and An = 1. As € | 0, the measure Q! , tends to the measure Qj
that has triplet (0,v,,0), since Q¢ , is the distribution of {Y.,} seen
under P}. Noticing that Qf xR}, = P., which has triplet (4, va, 7a),
we see that Ho(QL *R} 1, QLo+ Rp ) tends to
p = exp [—tkq(v1,v2) — 2ta(l — a)(n, An)| P,

as € | 0. This completes the proof. [
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6. PROOF OF THEOREM B

Let us prove Theorem B. We can now use the assertions of Theo-
rem A and Corollaries 3.6-3.14 freely. We prepare two lemmas. They
are [S] Lemmas 33.6 and 33.7, but we give their proofs here, as they
are essential parts of the proof of Theorem B. As in Theorem 3.4, let
J(G,w) be the number of s > 0 such that (s, X(w) — X;—(w)) € G for
G € By,oo)xre and let 71 = ds x vy(dz). We continue to assume that
we are given two Lévy processes ({X;}, P1) and ({X;}, P») with gener-
ating triplets (A1, v1,71) and (As,va,72), respectively. Recall that, if
Ay = Ay, then we write A; = Ay = A.

Lemma 6.1. Consider only the process ({ X}, P1) with generating trip-

let (A1, v1,7). Let g(z) = g(z) be a finite-valued measurable function
on R?® satisfying

(6.1) / g*din —l—/ edd —|—/ dvy < o0.
lgl<1 g>1 g<—1

Then the right-hand side of (3.27) exists Py-a.s. and the convergence
is uniform on any bounded time interval Pi-a.s. Let n € R? and define
U by (3.28) with Ay replacing A. Then ({U;}, P1) is a Lévy process
on R, that is, {U;} is, under Py, a Lévy process on R. Its generating
triplet (Au, vy, yu) s given by (3.29)—(3.31). We have

(6.2) ER[e] = 1.
Proof. Let
B.o={z: |z| > ¢ and |g(z)| < 1},
B ={z: |z| > € and |g(z)| > 1}
and let

e ) [ gfe)n

(S,Xs 0 t]XBEO

/Oth Td(s, ) - 7r(d(s, ),
V; = Z (Xs - Xs—)

(8,X5—X5-)€(0,t]xBe1
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= [ s@)se))
(0,t]x Be1
e /| () 1@ (o))

Then (3.27) is written as
(6.3 V= lim(50 + V7 4 tc.)

Since {J(G): G € By )xre ) is, under Pi, a Poisson random measure
with intensity measure v; by Theorem 3.4, we have

BP ) = exp [t [ (€)1~ iug(a)m(an)|.
L BEO

EP [eiqul] = exp t/ (eiug(w) — 1)1/1(dx)]
L le

for u € R by Proposition 3.3. Since v1({|g(z)| > 1}) is finite, J((0,¢] x
{lg(z)| > 1}) is finite Pj-a.s. Hence V' converges uniformly on any
bounded interval Pj-a.s. as € | 0. Since

-/|( - 9@ — 1 — jug(z)| v1(dz) < oo
g(@)|<

by (6.1), the term V0 also converges uniformly on any bounded in-
terval Pj-a.s. as € | 0, which can be verified in a way similar to the
proof of Theorem 3.4 (see [S] Lemmas 20.6 and 20.7). The term tc,
is nonrandom and tends to a finite limit as € | 0, by virtue of (6.1).
Therefore the right-hand side of (6.3) is convergent uniformly on any
bounded interval Pj-a.s. and

(6.4) EN[e""] =exp [t (/Rd (ei“g(m) — 1 —dug(z)1i_1 y(9(z)))vi(dz)

s [ (@ 1= g () )|

Since { X'} and {V;°+V;?1} are independent under P; by Theorem 3.4,
{X/} and {V;} are independent under P;. Thus, noticing that

EP [l X0)] = gHblum Alwn)) iy um)
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we get

(6.5) ER[eiul] = ot(—5u”(nAm=5m,4n) pP[giuy]

Since {V;} is right-continuous with left limits, has independent incre-
ments, and satisfies (6.4), it is a Lévy process. Hence {U;} is a Lévy
process. The formulas (6.4) and (6.5) show that the generating triplet
(Av, vy, vu) has expression (3.29)-(3.31). Since f w1 € (g~ D(dy) <
0o, we see, by Theorem A4.3 in Appendix A, that EP 1[eY] is finite and
equal to e¥v®) where

2

w
Upy(w) = 7AU + /]R(ew — 1 —wzli_(z))vy(ds) + wyy.

Hence Uy(1) = 0 and (6.2) holds. O

Lemma 6.2. Let t > 0. Suppose that Pi ~ P} (hence vy = v1). Choose
fi, fa of (3.17) and (3.18) satisfying C = R? and C; = Cy = 0. Define
g =g by (3.22). Then the right-hand side of (3.27) exists Pi-a.s. and
the convergence is uniform on any bounded time interval Pi-a.s. Let
n € R? be such that An = 91 and define {U;} by (3.28), using this 7.
Then

(6.6) Py(B) = EN[eV1p] for Be F, t €]0,00).

Proof. We have v = €91y and ko (v1, 1) < co. Hence, by Remark
2.16, g satisfies (6.1). Hence, by Lemma 6.1, V; can be defined by (3.27)
with the convergence being uniform on any bounded interval P;-a.s.

Define X*( ) (th( ))1§j§d+1 € R for w € D by (X:j(w))lﬁjﬁd
= Xy(w) and X},;(w) = Uy(w). Then ({X/}, P) is a Lévy process

n R™!. In fact, the proof of Lemma 6.1 shows that it satisfies the
defining conditions of a Lévy process in Section 1. Let us calculate
its characteristic function. Let By = {|z| < 1}, By = {|z| > 1},
Co ={z: |g(z)| < 1}, and C; = {z: |g(x)| > 1}. We claim that, for
z€R? and u € R,

: . 1
(6.7) ED [l X0+l — exp [t (F — 5(2 + un, A(z + un))

1
S\ A77>u

+ {71, 2) — 2<
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—iu [ (@ =1 g o)) )|

where

F = /Rd (el=a)tiug(@) _ 1 _ (7 2)1p,(z) — iug(z)1-1,1(g9(x)))vi(dz).

Let us denote

Fp = / |ei<z’w>+i“9(m) —1—4(z,z)1p,(z) — z'ug(x)1[_1,1](g(x))|1/1(dzc)
B

for B € Bga. Let us check that Fre < co. Using (6.1), we have

P < 5 [ () + (@) (de)

< |Z|2/ |z>v1(dz) +u2/ g(z)*v1(dz) < oo,
By Co
}730001 = / |(ez<z,$) —1—= Z(Z, x))eiug(m) + (eiug(x) . 1)
Boﬂcl
+ iz, ) (™) — 1) |y (dz)

1
< L.p |a:|21/1(d:1:)—|—2/ v (dz)
2 Bo G

+ 202 (/B |a:|21/1(d33)>1/2 (/C yl(dx)>1/2 < 00,

P = [ 1) 1 iug(a)) + (¢ 1)
B1nNCy

§ (€52~ 1)iug(e) i (do)
L 2
< U /Cog(a:) v (dz) + 2/31 v1(dz)

+ 2y (/Cog(x)zul(dx))m (/B Vl(dm)>1/2 < o,

FB,ne, < 2/ v1(dz) < 0.
B
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Hence Fre < 0o and we can define F in (6.7). To prove (6.7), use the
notation in the proof of Lemma 6.1 and let

X:= X4 Y (K- Xeo) - t/ e (de),
(8, Xs—X,_)€(0,t]x B. e<|z|<1

¢
Ui = (n, X{) — 5 An) — (7, m) + VO + VA +tee,

where B, = {|z| > ¢} = B,y U Bs. Then, X — X; and U — U,
Pj-a.s., as € | 0. We have
EP1 [ez'(z,Xf)-i-iuUf] _ klgmg,
where
L= gh [ei<Z+un7Xt”>}

Y

. = EN [exp (z :/(O,t]xBE(<Z7 z) +ug(x))J(d(s, m)))] :

m. = exp (—z’t /lelg(z, z)v1(dz) + itu (c. — 5(n, An) — (v1,m))

_itu /B ! g(x)zq(da:)) |

k = exp(—5(z + un, A(z + un)) + it(n, 2 + un))
and, by Proposition 3.3,

lc = exp (t/B (elzartug(@) _ 1)1/1(d:1:)> :

Letting € | 0, we get (6.7). Tile identity (6.7) shows that the generating
triplet (A*, v*,v*) of the Lévy process ({X;*}, P;) on R¥*! is such that
(2%, A*2%) = (2 +un, A(z + un))

for 2* = (z,u) € R¥*! with z € R? and
v =,
where f is a mapping from R? into R¥*! defined as f(z) = (z,g(z))

for z € RY. We apply Theorem A4.3 of Appendix A to the (d + 1)-
dimensional Lévy process {X;*}. Since ET: [e<z*’Xt*)] = Ef[el] < oo

We have
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with 2* = (0,...,0,1) € R¥*! by Lemma 6.1, the result is

: ~ 1
Jolid [eZ<Z,Xt>+Ut] — exp lt (F + 5(7,3 +n, A(iz + 1)) + {1, 2)

om0 1 gt o))

F = Ad(ei<z’$>+g(x) —1—1i(z,2)1p,(z) — g(x)1j_1,1)(9(z)))v1(dz).

The finiteness of this integral is checked as before. Now we have

, 1
EP [eZ<Z,Xt)+Ut] = exp [t (—§<z, Az)

+ / (ei®® — 1 —i(z, 2)1p,(z))e? D (dz)
Re

+1 (71, 2) +i(An, 2) + Z/ (z,)(e9® — 1)1/1(da:)>] :

By
That is,

. 1
(6.8) ER[ei®X0+0] — exp [t (—5(2, Az) +1i(72, 2)

n fRJe“Z’“") ~1-i( w>130<w)>eg(””)’/1<d"”)>] ’

since An = 91 = Yo — 11 — f|x|<1x(eg($) — Dwvy(dz). The process
{Xs: 0 < s < t} under the probability measure eVt P, has indepen-
dent increments and satisfies (6.8). It follows that {X,: 0 < s < ¢t}

under eVt P, has stationary increments and its generating triplet equals
(A, va,72). Therefore

Py(B) = EN[eY1p] for B € F,
which completes the proof of the lemma. ]

Our proof of Theorem B will be made in two steps. The first is a
proof in the case where P{ < P}. The second is a proof of the general
case by the reduction to the first step.
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Proof of Theorem B under the condition that P < P{. We have
ve < vy by Corollary 3.9. Hence v,5(C3) = 0. By (3.19), 1»(Ci) =
v1(C2) = 0. Hence Py(A;) = 1 by Theorem 3.4, and the assertion (i)
and the identity (3.33) are trivially true.

It follows from k,(v1, v2) < oo that v1(C1) < oo by Lemmas 2.9 and
2.15. Let

= egl/l = Vs + 1011/1.

Then 15 ~ 14, since ¢ is finite-valued. We have
ko(v1,v9) = /(a + (1 - a)eg — e(l_a)g)dz/l = ko(v1,12) — avi(CY),

which is finite. Hence

(6.9) 7 diy —i—/ eIdv, +/ dv; < o0
lg1<1 g>1 g<-1
by Remark 2.16. Hence we can apply Lemma 6.1. Namely, we have
(6.10) V, = leiﬁ)l< > 3(Xs — X,)
(5, X5~ X, )€(0,t]x {|z|>€}

_ @ _ 1o (da
t/m»( D (d >),

where the convergence is uniform on any bounded interval P;-a.s. Let

(6.11) U, = (n, X)) — Ln, An) — t(m1,n) + V.
Then ({5}}, Py) is a Lévy process with generating triplet
(6.12) Az = (n, An),

(6.13) v(B) =wi(g~'B) for B € Bro},

(6.14) vz = —5(n, An) — /R (e =1 = §(2) gy <y (2)) wa(dz).

Since

(6.15) /| () D) = / (%) — 1)1y (dz)

|z|>e

+/|m|>6 Lo, ()i (dz),
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the right-hand side of (3.27) also exists P-a.s. and the convergence is
uniform on any finite time interval P;-a.s. We have

(6.16) Vi=Vi+tn(C),  Uy=U,+ti(Cy).

Hence ({U}, P1) is also a Lévy process and Ay = Ay, vy = vy, and
Yo = 5 +v1(Ch). It follows that, for B € Bg (o,

w(B) = [ 16(3@)n(dz) = [ 16lg(@)(ds) = (g B

and

N[

Y = —s(n, An) — /Rd(eg(x) —1- §($)1{|§($)|§1}(56))1/1(6156) + v1(CY)

= —3(n, An) — /Rd(eg(m) — 1= 9(2)1{jy)<1y ()1 (da).

These prove (3.29)—(3.31). The independence of {U;} and {J((0,¢] x
(C1UCy))} under P, follows from Theorem 3.4. From the properties of
Poisson random measures we have P;(A;) = e7™i(%) for j = 1, 2. Thus
we have proved (ii) and (iii).
Let us prove (iv). We use vy, V,, and U, defined above. We choose
n so that
Anz*m =Y " —/ ZIS‘d(I/Q—l/l).

a]<1

c= / zle, (z)dvy.
|z[<1

A?]Z’)/Q—’)/l—/ zd(vy — 11) + c.
lz|<1

Denote

It follows that

Choose

Yo=72+c
and let ({X;}, P,) be the Lévy process with generating triplet (A, 7a, ).
The relation between ({X;}, P,) and ({X;}, P») is exactly that which is
treated in Lemma 6.2. By this lemma we have

(6.17) Py(B) = / el'dP, for B € F
B
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where U, is given by (6.10) and (6.11). That is, by (6.16),
(6.18) Py(B) = e / eV'dP, for B € F).
B

Next we consider the relation between ({X;}, P5) and ({X;}, P,).
The Lévy measure of the latter is a truncation of that of the former,
that is, v = 1¢,c9 = 1ovs. Let A; be defined by (3.24). We claim that

(6.19) E" [ei5 X1y ] = e @) BReieX0] for » € RY,
Indeed, let

Y, = lim Z (X, — X,_) —t / zdvy |,

el0
' (8,Xs—X,_)€(0,t]xG. e<|z|<1

Z; = lim Z (X5 — Xs-) — t/ zle (z)dvy |,

(8,X5—X,_)€(0,t]xH e<|z|<1

where Ge = {|z| > e}NC and H, = {|z| > e} N(C1UC3). Then Y; + Z,
is the jump part of ({X}}, 132) in Theorem 3.4. Let W; = X; — Y, — Z,.
Then W is the continuous part of ({X;}, P,) in Theorem 3.4. By their
independence,

EﬁQ [ei(z,Xt)lAt] _ EﬁQ [ei(z,YH—Wt)]EﬁQ [€i<z’Zt>].At].
But Z; = —tc on A; and ]32(At) = ¢~ ™(C) Hence, writing
r(z,z) = eilem) 1 _ iz, m>1{|m|§1}($),

we get

E§2 [ei(Z,Xt) 1At] = exp lt( — %<Z, AZ> + i(%?) Z>

+/r(z,rv)'/2(d$) —ilez) - VI(CI))]'

Since 43 — ¢ = 79, this means (6.19). Next, let us show that, for
0<s<Ht,

(620) Ej% [6i<2,Xs>+i(w,Xt—Xs) 1AJ — e_tl/l(Cl)EPQ [ez'(z,Xs)—}—i(w,Xt—Xs)}
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for z,w € R?%. Indeed,

left-hand side of (6.20)
= EP[iaYet Wa)iw Yt WYo W) pPa[gile, Za)+ilw 2= Za) ] ]

_ exp [s(—%(z, AZ) +i(Fa, 2) + / r(z,az)uz(da:))
(= 9) (b du) + il 0+ [ rtw, o)
—is(e, ) — i(t — 8){c,w) — tz/l(Cl)]

— oxp [s(—%(z, Az) + (2, 2) + / r(z,w)w(dax))
(= 9)(—hwdw) +ilm,w)+ [ rtw, opma)

— tul(Cl)]
= right-hand side of (6.20).

In the same way we can prove that, for 0 = sy < s1 < -+ < s, <
Sp4+1 = t)

(6.21) EP

n+1
14, H exp(i(zj, X, — ij1>)]
j=1

— e—tV1 (01)EP2

H exp(i(zj, ij - X3j1>)]

J=1

for z1,...,2,41 € R?. Tt follows that

(6.22) EP

14, H exp(i(z;, X8j>)]

J=1

— e—tl/1 (Cl)EP2

] explitz;, ij))]

j=1
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for 21, ..., zn4y1 € R%. Therefore
(6.23) Py(BNA;) = eI Py(B) for all B € F.
Hence
Py(B) = e IPy(BNA,) = / eVdP,.
BNA,

The last equality is by (6.18) and by the fact A; € F? in Remark 3.17.
Thus we have obtained (3.32) with (P})% = PX.

Proof of Theorem B in the general case. Condition (NS) of Theorem
A holds by Corollary 3.6 from the assumption that P} and P} are not
mutually singular. Thus k,(v1, v2) < oo, which implies v (C1) < oo and
v2(C2) < oo by Lemmas 2.9 and 2.15. Since 19 = ey, the function g
satisfies (6.1) by (2.19) in the proof of Lemma 2.15. Hence the function
g defined by (3.23) satisfies (6.9). Apply Lemma 6.1 to the function
§. Then we sce that we can define V; and U, formally by (6.10) and
(6.11). Since we have (6.15), this means that the assertion (ii) on V; is
true and that

Vi, = V;—l—tul(Cl) and U; = Ut—l—tul(Cl)

where V; and Uy are defined by (3.27) and (3.28). The process {U,} is,
under P, a Lévy process on R. Its generating triplet is expressed by
(3.29)—(3.31) by the same argument as in the case where P} < Pf. The
assertion (iii) is thus proved.

Let us prove (i) and (iv). Let @ be the probability measure on
(D, F°) for which ({X;}, Q) is the Lévy process on R? with generating
triplet (A, 1%, vg), where

7Q = V2 — / rdvy®.
|z[<1

Let us compare () with P; on the one hand and with P, on the other.
Choose 1 so that An = ;. We have

ka(v1,12%) = /Rd(ozfl +(1—a)lefe = f7 " 1c)dy

= / dKa(I/l, 1/2) -+ owl(Cl) < 00
C
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and

YQ — 71 — /|| ﬂid(l/zac - V1) =7 —"— / ZBd(V2 - Vl) = An.
z|<1

|z|<1

Hence, applying the theorem in the absolutely continuous case, we have
(6.24) —— = ey,

where U; and A; are the same as those defined by (3.24), (3.27), and
(3.28) (note that 141(Cy) = 0, so that the deletion of v5* does not affect
U; and A; when we look at them under P;). On the other hand,

ka(va, 12") = /d(afz + (1 —a)lefo — folo)dv = avy(Cy) < o0
R
and
vo == [ adws =) =0.
lz|<1

h(x)—{o on C

—00 on C71 U s

Hence, letting

and 71(93) = 0 on R? and again applying the theorem in the absolutely
continuous case, we get

dQ? ¥
2 7 = t 1
(6 5) dP2t € At7
where
UF = _t / ("@ _ 1)y(dz) = tn(Ch).
Rd
It follows from (6.24) and (6.25) that, if B € F) satisfies B C Ay, then

/ eV'd P, = (%2 py(B).
B

Therefore, 15, P! is absolutely continuous with respect to Pf. We al-
ready know that (P})% has total mass e~%2(¢2) by Corollary 3.8 com-
bined with Lemma 2.9. Since {J(G): G € By c)xri} is a Poisson
random measure under P, with intensity measure dt v5(dz), we have

PQt(At) = P2 (At) = e_t”2(c2).
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Hence, (P%)% = 14, P%, which proves the assertion (i). Since (6.25) says
that Qf = et2(“2)1,, P, we have (3.33). Now (3.32) follows from (6.24).
The proof is complete.
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7. DENSITY TRANSFORMATION

We start from one Lévy process ({X;}, P1) on R? with generating
triplet (Aj,v1,71). Suppose that we are given a measurable function
g(z) with values —oo < g(7) < oo and a vector n € R? such that

(7.1) / (I 1Y (d) < oo

Define (As, v2,72) by ’

Ay = A1, w(dz) =e'Duy(de), y=m+ /||<1 zd(vy — v1) + Ain.
Notice that (7.1) means that ky/o(v1,v2) < oo a,;ld hence, by Lemma

2.15, ko (v1,19) < oo for all 0 < a < 1. The condition (7.1) is equivalent
to the property that

(7.2) / g’ din —I—/ eddy; +/ dry < o0
lg|<1 g>1 g<—1

by Remark 2.16. We have
(7.3) /(1 A lz[2)(dz) < oo,

since (7.2) implies that

/(1 Alz?)eddy, < e/ (1A |z[*)dv, —l—/ eldy; < 0.
g<l1 g>1

It follows that (Asg,vs,72) is the generating triplet of a Lévy process
({X:}, ;) on RY. Define Cy, Cy, C, g, G, Vi, U, and A; by (3.19)-
(3.24) and (3.27)—(3.28) with Cy = ) and A = A;. Define

(7.4) QY (B) = / eV 1,,dP, for B € F.
B

Then Q1 is a probability measure on F°. The family {Q®: ¢ € (0,00)}
is compatible in the sense that, if s < ¢ and B € F?, then Q®¥(B) =
Q® (B). There exists a unique probability measure on F° such that its
restriction to F} coincides with Q®. Indeed, Theorem B shows that
this probability measure is just P, and that Q® equals the restriction
P} of P, to F). We call this procedure to get ({X;}, P2) from ({X;}, P,
the density transformation.
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Example 7.1 (Deletion of jumps). When can we make g(z) = —oo,
that is, o = 0 7 A necessary and sufficient condition in order that we
can make Ay = A; and v, = 0 with some 75 through density transfor-
mation is that v;(R?) < co. This is because

ko(v1,0) = av (RY).

The admissible 75 is of the form
Yo =1 — / xdvy + An
|z[<1

with n € R?. Hence, if A; has full rank, then v, can be any vector in
R¢. But, if A; is degenerate, then not all 7, are admissible. In any
case, Yo = Y| — f|$|<1 zdy, is possible. We have

U = (n, X)) — £(n, Aim) — t{y1,m) + tv (RY)

and T of (3.36) is the first jumping time. The distribution of T is
exponential with parameter vy (R?).

Example 7.2 (Truncation of the support of Lévy measure). For what
set C' = R? \ C1 can we make vy = 1¢vy, that is, throw away 1gvq 7
We have

ko(v1,1lovr) = /(a + (1 —a)le — 1¢)dvy = ary(Ch).

Hence, in order that we can make Ay = A; and vy = 1oy by density
transformation, it is necessary and sufficient that v;(C;) < oco. The
admissible 75 is

Yo = — / zlc, (z)dvr + A1
BS!

with n € R?. This time
Ut - <777 Xt{/> - %<777 A17I> - t<717 77> + tVl(Cl)

and T of (3.36) is the first jumping time with jump height in Cj.

Example 7.3 (Esscher transformation). Consider the density trans-
formation of a given Lévy process ({X;}, P1) on R? using the function
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g(z) = (¢, z) with £ € R?\ {0}. The vector £ must be chosen to satisfy
(7.1) or, equivalently, (7.2). Since

/ g*dv; < |f|2/ |z|2dv -I—/ dvi < oo,
lg|<1 lz|<1 |z[>1

/ dv; < / dry < 00,
g<-1 |z[>1/1¢]

the condition (7.2) is equivalent to

and

(7.5) / ey (dz) < oco.
(&)
This condition is equivalent to
(7.6) /|| 1 ey (dz) < oo,
x|>

since f<§ 21 f]<1 € el&?) dy; and fga: <1jz[>1€ e!$2) dy, are finite. Further,
by Theorem A4.3 of Appendix A, the condition (7.6) is equivalent to

(7.7) EP %] < oo

for some ¢t > 0 (or, equivalently, for all ¢ > 0). Now assume that ¢ is
chosen so that (7.6) is satisfied and, letting n = &, consider the density
transformation of ({X;}, P1). Since

(€, X7)

+1€1£(I)1< Z (f,XS—XS_>—t/
(s, Xs—X

(e — 1>u1<dw>)
s—)€(0,t] x{|z|>€} |z|>e
by Theorem 3.4, we have

(7.8) Uy = (€, Xy) — t¥1(8),

where

(T9)  Ti(&) = (& Ar8) + (1, )
+ /Rd (e(&x) —1- <€,$>1{|x|§1}(x))y1(dx).
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We have A; = D. The second Lévy process ({X;}, P») is obtained by

(7.10) Py(B) = ¢ 11 / eXdp, Be F.
B
It has generating triplet (As, v2,72), where
(7.11) Ay = Ay,
(7.12) vy = e<§’m)u1,
(7.13) Yo =+ / z(e$? — 1)vy(dz) + A€
|z]<1

Its distribution at time ¢ is such that

(7.14)  Py(X, € B) =1 / e P(X, € dz), B € Bga.
B

The identity (6.2) in this case is no other than
ER [e<§’Xt>] — t%1(8)

)

which is given also in Theorem A4.3.

This transformation is called FEsscher transformation or exponen-
tial transformation. It was introduced by Esscher (1932) in compound
Poisson processes on R and utilized by Cramér (1938) in the study of
large deviations. It was formulated in Sato (1990) for general Lévy
processes on R%.

Example 7.4 (Esscher transformation in subordinators). Let the orig-
inal process ({X:}, P1) be a subordinator, that is, an increasing Lévy
process on R (see Theorem A2.1). Thus, 4; = 0, »1((—00,0)) = 0,
f(O,l] zv1(dz) < 0o, and o1 > 0. Let

& <O.

Then & satisfies (7.6) obviously. Let ({X:}, P») be the new Lévy process
on R obtained by Esscher transformation from ({X}}, P1) using this &.
Then (7.11)—(7.13) show that ({X}}, P») is again a subordinator. Its
drift 7po is identical with ~g;. Let us consider their Laplace transforms:
for j =1, 2,

EPi [e—uXt] — et\I'j(—u)7 u >0,
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with

W)= [ (= 1uy(de) + w0
We have o
(7.15) Uo(—u) = ¥i(—u+£) — ¥1(§),
which follows from (7.14). As in the general Esscher transformation,
we have the notable relations

vy = 1y

and

Py(X, € B) = e 11®) / P (X; € dz), B € Bg.
B

In particular, suppose that ({X;}, P,) is a strictly a-stable subordi-
nator. Then, 0 < a < 1 and

EP1 [e—uXt} — e—tc’u"" u >0
with some ¢ > 0 (see Example following Theorem A2.1). Thus
EP: [e—uXt] — 6—750'((u—§)0‘—ua)7 u>0
in this case. If @ = 1/2, then
td

P(X B) = —(tc')?/ (4x) —3/2d
(Xe€ B) 2y/m Bﬂ(O,oo)e o

tc ! 1/2 "2
Py(X; € B) = -t (-9 /B . )ef$—<tc>/<4$)x—3/2dx

2/ ¢
for B € Bg. The distribution of X; under P, is called ‘nverse Gaussian.

Example 7.5 (Drift transformation). Given a Lévy process ({X:}, P1)
on R? with generating triplet (A1, 71, 1), how can we change the term
~v1 by density transformation while retaining the Gaussian covariance
matrix and the Lévy measure unchanged? We should consider the
density transformation with ¢ = 0. Thus we get

(7.16) vo = + Aip  with n € R
The transformation is given by A; = D, V; =0, and
(7.17) U = (0, X)) — 5(n, Aim) — t{v1,m)
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as in (3.28). Thus we have

(7.18) P! = eV pl.

We call this procedure the drift transformation. Notice that here we are

using the continuous part ({X/'}, P1) of the process ({X:}, P1) while,

in the case of the Esscher transformation, we use {X;} itself in (7.10).
If R(A;) = RY, that is, if A; has full rank, then we can make ~;

equal to any vector in R?. If A; = 0, then 7, cannot be other than ~;.

These are consequences of (7.16). In the case of the Brownian motion,

this transformation is a special case of the absolutely continuous change

of measures discovered by Cameron and Martin (1944).
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APPENDIX A. A COURSE ON LEVY PROCESSES

The following are lectures of the Concentrated Advanced Course on
Lévy Processes, MaPhySto, January 24-28, 2000, with some material
added. The section on density transformation is deleted.

A.1. Characterization of Lévy and stable processes. Lévy pro-
cesses are processes with stationary independent increments satisfy-
ing stochastic continuity. In other words, they are time homogeneous
Markov processes with spatial homogeneity. They are basic in the study
of stochastic processes admitting jumps.

Brownian motion, Poisson process, Cauchy process, and I'-process
are examples of Lévy processes. Stable processes are also examples.
The class of Lévy processes includes more irregular (in some sense)
processes such as a process whose distribution at time ¢ is continuous
and singular for all ¢ > 0 or a process whose distribution at time ¢ is
continuous and singular until some time ¢y and absolutely continuous
after tg.

Definition. ([S] Def.1.6) A stochastic process {X;: t > 0} on R?
defined on a probability space (2, F, P) is a Lévy process if

(1) it has independent increments, that is, for any n > 1 and for
any choice of 0 < t) < t; < --- < t,, the random variables
Xit,, Xty — X4y, - -, Xy, — Xy, _, are independent,

(2) Xo=0 a.s,,

(3) L(Xs++ — X5), the distribution of X, — X, does not depend on
s (time homogeneity),

(4) it is stochastically continuous, that is, lim;,o P[| X — Xs| >
e] = 0 for every € > 0,

(5) there is Qy € F with P[Qy] = 1 such that, for every w € Qy,
Xi(w) is right-continuous with left limits as a function of ¢.

{X:} is a Lévy process in law if (1), (2), (3), and (4) are satisfied.
{X:} is an additive process if (1), (2), (4), and (5) are satisfied.
{X;} is an additive process in law if (1), (2), and (4) are satisfied.

1
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The convolution of two finite measures pq, po on R? is the finite

measure p defined by p(B) = [[ea, g 18(z + y)p1(dz)p2(dy), B € Bga,
denoted as p = p1*ps.

Definition. ([S] Def.7.1) A probability measure p on R? is infinitely
divisible if, for every positive integer n, there is a probability measure
pn, on R™ such that p = p,™ = pp* ... xu, (n times).

Remark. If {X;} is a Lévy process in law, then for every ¢ > 0 L(X}),
the distribution of X}, is infinitely divisible. This is a consequence of

(1), (2), and (3).

Denote the characteristic function of u by 7i(z), 2 € RY. Thus
= [p e u(dz) and the characteristic function of L(X) is

E [ <z X>]. See [S] Prop.2.5 for basic properties of characteristic func-
tions. They are continuous functions. If u = py*ue, then p(z) =
f1(2)a2(z). Denote the weak convergence of a sequence of probability
measures f,, n = 1,2,..., to a probability measure u by u, — u. We
have p, — p if and only if %, (2) — 7i(2) on RZ.
Lemma. ([S] Lem.7.5) If p is infinitely divisible, then p(z) # 0 for
every z € RY.
Lemma. ([S] Lem.7.6) Let ¢(z) be a complez-valued continuous func-
tion on R? with ©(0) = 1 and p(z) # 0 for every z. Then,

(1) there is a unique complez-valued continuous function f(z) on R
(called the distinguished logarithm of ¢) such that f(0) = 0 and

ef(2) — ©(2);
(2) for each positive integer n there is a unique complez-valued con-
tinuous function g,(z) on R (called the distinguished n-th root

of ¢) such that ¢,(0) = 1 and g,(2)" = p(2).

We denote the distinguished logarithm f of ¢ by f = logy. Note
that g,(z) = e(l/M1089() By the two lemmas above, for the character-
istic function zi(z) of an infinitely divisible distribution y, we can define
its distinguished logarithm.

Corollary. If u is infinitely divisible, then the n-th root p, of p in
convolution sense is unique.

63



Lemma. ([S] Lem.7.8) If u, are infinitely divisible, u is a probability
measure, and [, — W, then u is infinitely divisible.

Corollary. ([S] Lem.7.9) If u is infinitely divisible, then, for every t >
0, there is a unique probability measure y; such that fiy(z) = et1o8H(),
This s 1s infinitely divisible. We denote w; by p*, and jz(2) by 1(2)".
Theorem A1.1. ([S] Th.7.10) (i) If {X.} is a Lévy process in law on
R? with L(X1) = u, then p is infinitely divisible and L£(X;) = pt.

(ii) If p is infinitely divisible on R?, then there is a Lévy process in
law {X;} on R? such that L(X1) = u. This {X;} is unique in law.
Remark. ([S] Rem.7.11) If { X} satisfies (1), (2), and (3) in the defini-
tion of a Lévy process in law, £(X}) is infinitely divisible, but it is not
necessarily equal to u* unless the stochastic continuity (4) is assumed.
Theorem A1.2. ([S] Th.11.5) (Regularity of sample functions) If { X;}
is a Lévy process in law on R?, then there is a Lévy process {X|} such
that, for every t > 0, P[X; = X;] = 1.

Thus there is a correspondence between infinitely divisible distribu-
tions p on R? and Lévy processes {X;} on R? by the relation £(X;) = p.
Here {X;} is determined by p uniquely in law.

The following result is fundamental in the theory of Lévy processes.

Theorem A1.3. ([S] Th.8.1) (Lévy—Khintchine representation) (i) If
w 1s infinitely divisible on R, then

(AL1) fi(2) = exp [—%@, Az)

+ (v, z) + '/Rd(<ei<z’$> — 1 —i(z,2) Ljjp<1y(z))v(dz) |,

where
A 15 a symmetric nonnegative-definite d X d matriz,
(A1.2) v € R, v is a measure on R? satisfying v({0}) = 0,
and [z (|z]* A 1)v(dz) < oo.
These A, v, and v are unique.

(ii) For any A, v, and v satisfying (Al1.2), there is an infinitely
divisible distribution u on R? satisfying (A1.1).
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Definition. (A,v,7) in the theorem above is called the generating
triplet of u or of the corresponding Lévy process. The matrix A is
called its Gaussian covariance matriz, and v is called its Lévy measure.

Remark. Note that

for fixed z. Hence the left-hand side is v-integrable. If fm < lzlv(de) <
oo, then (Al.1) is written as

1 .
(A1.3)  fi(z) = exp [—§<Z,AZ> + i{0, 2) + / (&%) — D (dz)|,
R4
with v = v — flwl<1 zv(dz). This g is called the drift of pu or of the
corresponding Lévy process. We write the new triplet as (A, v, v9)o. If
Jiajs1 [2lv(dz) < oo, then (A1.1) is written as

(A1.4) p(z) = exp [—%(z, Az) 4+ i(m, 2)

O(|z|*) asz —0,

O(1) as |z| — oo

+ /Rd(ez'(z,m) — 1= ’L<Z, x))V(diU) )

with v1 = v + f|m|>1 zv(dz). This ~ is called the center of u or of the
corresponding Lévy process. We write the new triplet as (A, v, 7)1. In
this case we can prove that [, |2|p(dz) < oo and v = [ zpu(dz), the
mean of p. ([S] Ex.25.12)

Interpretation of the Lévy—Khintchine representation of (the infin-
itely divisible distribution corresponding to) a Lévy process in terms
of its sample function behavior is given by the Lévy-Itdo decomposition
of its sample functions. This is Theorem 3.4 in the main part of these
lecture notes.

It is convenient to introduce the function

(A1.5) U(w) = %(w, Aw) + (v, w)

+ /Rd (6(“1:33) —1—- <w, $>1{|$|§1}($))1/(d$)
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for w € C% such that’ f|$|>1 e |y(dz) < co. Here (w,v) = 2?21 W,

for w = (w;) and v = (v;) in C¢. Thus

E[e!®X0] = Y02 for 2 € RY,

Definition. A Lévy process {X;} with generating triplet (A, v, ) is
called of type A if A = 0 and v(R?) < oo; of type Bif A = 0, v(R?) = o0,
and fIa:ISl |z|v(dz) < oo; of type Cif A # 0 or f|:c|§1 |z|v(dz) = oo. {X}}
is called Gaussian if v = 0; purely non-Gaussian if A = 0.
Examples.
1. Brownian motion. E[e"*X)] = exp(—1%|z|?). Generating triplet
is (1, 0,0), where I is the identity matrix. X;(w) is continuous in ¢, a.s.
2. Poisson process with parameter ¢ > 0 is on R with E[e!*Y] =
exp(tc(e’*® — 1)). The generating triplet is (0, cd1,0)o. X;(w) is a step
function of ¢ with jump height 1, a.s., and the first jumping time 7'(w)
has exponential distribution with parameter c, that is, P[T > t] = e™“.
3. Compound Poisson process on R¢ is a Lévy process with gener-

ating triplet (0, co,0)g, where ¢ > 0 and o is a probability measure on
R? with ¢({0}) = 0. That is,

B[] = exp (tc/ (ef2) — 1)a(dw)) :
Rd

X (w) is a step function of ¢, a.s., and the first jumping time T'(w) has
exponential distribution with parameter c. Jumping times and jumping
heights are independent. Jumping heights have distribution o. £(X})
is called a compound Poisson distribution.

4. I'-process with parameter ¢ > 0 corresponds to the exponential
distribution with parameter ¢, that is, I'-distribution with parameters
1, g. Its distribution at time ¢ is I'-distribution with parameters %, g.
See Exercise 1.3.

Remark. ([S] Th.21.1,21.3,21.9) Let {X;} be a Lévy process on R?
with (A,v,7). Its sample functions are continuous a.s. if and only if
it is Gaussian. Its sample functions are of finite variation on every
finite time interval, a.s., if and only if it is of type A or B. Its sample

C is the set of complex numbers.
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functions are of infinite variation on every nonempty time interval, a.s.,
if and only if it is of type C. The number of jumps is finite on every
finite time interval, a.s., if and only if V(Rd) < 00. Jumping times are
dense in [0, 00) if and only if v(R?) = co.

Definition. A distribution x on R? is stable if, for every positive
integer n, there are b > 0 and ¢ € R? such that 7i(2)" = fi(bz)e .
It is strictly stable if ¢ can be chosen to be 0. If u is stable, then it is
infinitely divisible and, for every a > 0, there are b > 0 and ¢ € R?
such that 7i(2)® = fi(bz)e**). Here c can be chosen to be 0 for every
a if p is strictly stable. A Lévy process {X;} is a stable process if it
corresponds to a stable distribution. It is a strictly stable process if it
corresponds to a strictly stable distribution.

In other words, strictly stable processes are selfstmilar Lévy pro-
cesses.

We say that a distribution g on R? is trivial if u = 6, for some
c € R?, that is, concentrated at c. A Lévy process {X;} is trivial if
L(X}) is trivial for every t or, equivalently, if X; = tc a.s. for some

c e R,
Remark. If u is stable and nontrivial, then b and ¢ in the definition
are uniquely determined by a.

Theorem A1.4. ([S] Prop.13.5, Th.13.11, Th.13.15) If y is stable and
nontrivial on R, then there is a unique o € (0, 2] such that, for every
a > 0, there is ¢ € R? satisfying 1i(2)* = 1i(a/*2)e’e?) . If u is strictly
stable and nontrivial, then there is a unique o € (0,2] such that, for
every a > 0, 1i(2)* = fi(a'/*z).

This « is called the indez of a (strictly) stable distribution or pro-
cess. Sometimes we say (strictly) a-stable instead of (strictly) stable
with index a.

Stable distributions in one dimension are described as follows.

Theorem A1.5. ([S] Th.14.1,14.3,14.15) Let p be infinitely divisible
and nontrivial on R with generating triplet (A, v, 7).

(1) p is 2-stable if and only if v = 0, that is, p is Gaussian.

(i) Let 0 < a < 2. The following three statements are equivalent.
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(1) p is a-stable.

(2) A=0 and v = (c11(p,00) (%) + c21(—000)(2))|2]| 1"z with ¢; > 0,
ce >0, and c1 + c3 > 0.

(3) Either

a#1 and [(z) =exp |—c|z|*(1 —iftan T sgn z) + it2] ,
or
a=1 and [i(z) =exp [—c(|z| +iB2zlog|z|) +iTz],
where ¢ >0, —1 < <1, and T €R.

Heresgn z = —1, 0, 1 according as z < 0, = 0, > 0. The parameters
in (3) are uniquely determined by u. We have 8 = (¢; — c2)/(c1 + ¢2).
Hence 3 represents a degree of nonsymmetry of v

Examples. See Exercises 1.1 and 1.2 at the end of this section.

The preceding theorem is a special case of the following result for a
general d. Denote S = {£ € R?: |¢] = 1}, the unit sphere in RY.

Theorem A1.6. ([S] Th.14.1,14.3,14.10) Let p be infinitely divisible
and nontrivial on R? with generating triplet (A, v, 7).
(1) p is 2-stable if and only if p is Gaussian.
(ii) Let 0 < a < 2. The following three statements are equivalent.
1

18 a-stable.

(1) w
(2) A=0 and

v(B) = /S A(de) /0 15(r&)r"'dr, B € Bay,

where X s a uniquely determined finite nonzero measure on S.
(3) Either o # 1 and

¥(i2) = = [ (2. )" (1 = itan  sgn(z, )M (de) +i(r: 2
ora=1 and

W(i2) = = [ (1) + 202, 1og (2, E}) () + i(r, 2),
where A1 is a uniquely determined finite nonzero measure on S.
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The measures A and A; are constant multiples of each other as
follows ([S] E18.8):

A\ = /29— I'((2-a)/2) ‘
al' (14 «)/2)
The parameter 7 in Theorems Al1l.5 and A1.6 is the drift if 0 < aa < 1
and the center if 1 < a < 2.

The conditions for strict stability of stable distributions are as fol-
lows.

Theorem A1.7. ([S] Th.14.2,14.7) Let p be a-stable and nontrivial
on R? with 0 < a < 2. Then, p is strictly a-stable if and only if {o =
2 and vy =0} or {a=1 and [(EN(dE) =0} or {a # 1,2 and T = 0}.

If d = 1, then the condition {& = 1and [({A(d€) = 0} can be
replaced by {a =1 and 8 = 0}.

Definition. A distribution p on R? is selfdecomposable if, for every b >
1, there is a probability measure p, on R? such that 7i(z) = a(b~12)py(2).

Stable distributions and selfdecomposable distributions are impor-
tant in the theory of limit distributions for sums of independent random
variables. ([S] Th.15.3,15.7)

Theorem A1.8. (Prop.15.5,Th.15.10) If u is selfdecomposable, then

it is infinitely divisible. An infinitely divisible distribution p on R? is
selfdecomposable if and only if its Lévy measure v is expressed as

V(B) = /S A(de) /O 1p(ré)ke(r)rdr  for B € Ban oy,

where A is a finite measure on S and ke(r) is a nonnegative function
measurable in & € S and decreasing® in r > 0.

If d =1, then S = {—1, 1} and the condition above is that v(dz) =
k(z)|z|"'dx with k(z) being decreasing on (0,00) and increasing on
(—00,0). Selfdecomposable distributions can have any Gaussian co-
variance matrices A.

8We say that k(r) is decreasing if k(r) > k(s) for r < s; increasing if k(r) < k(s)
for r < s.
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Definition. A Lévy process corresponding to a selfdecomposable dis-
tribution is called a selfdecomposable process.

Selfdecomposable processes are important in connection with self-
similar additive processes and with processes of Ornstein—Uhlenbeck
type. ([S] Th.16.1,17.5)

Examples. Stable distributions on R? are selfdecomposable ([S] Ex.
15.2). Exponential, I'-, and two-sided exponential ([S] Ex.15.14) distri-
butions on R are selfdecomposable and not stable.

Generalization of stability in another direction is semi-stability. An
infinitely divisible distribution g on R? is called semi-stable if there
is @ > 1 such that 7i(2)® = i(bz)e!“* for some b > 0 and ¢ € R%.
A notion which extends both selfdecomposability and semi-stability is
semi-selfdecomposability. It will be introduced in Section A4. See [S]
Chapter 3 for their exposition.

Exercises.
1.1. A Cauchy distribution x on R? is

H(B) = en VLT -+ 1)/2) [ (jo = + )0V
B

for B € Bga, where ¢ > 0 and v € R?. Show that p is strictly 1-stable,
,ZL\(Z) _ e—c|z|+i('y,z)’ = Rd,

and its Lévy measure is

I'((a+d)/2) s B
(d/2)0((2 ~ @)/2) /S)‘O(df) /0 15(ré)r2dr

for B € Bga\fo}, where )\q is the uniform probability measure on the
unit sphere S. ([S] Ex.2.12, Th.14.14, E18.8)

1.2. Let

v(B) =c2"

= 0(27'(')_1/26_02/(2:6)33_3/21(0700)(Cﬁ)dm
with ¢ > 0. Show that it has Laplace transform

1/2

mmo=ﬂ)f”%um=eﬂm w0,
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and characteristic function
fi(z) = e—c|z|1/2(1—isgnz), 2R
Show that it is strictly %—stable and its Lévy measure is
v = c(2m) 227321 g o0 () d.
([S] Ex.2.13,8.11)

1.3. Let p be a I'-distribution with parameters ¢ > 0, and ¢ > 0,
that is,

C

)
Show that it has Laplace transform

L,(u)=(14+q¢ )™ u>0

e Pz (g o) (z)dz.

and characteristic function

~

i(z) = (1—ig '2)"° = exp[—clog(l —ig '2)], z€R,

where log is the principal value (that is, the imaginary part is in
(—m,m]). Show that it is selfdecomposable with generating triplet
(A7 v, 70)0 being A= 0,

V= Ce_qu_l].((],oo)dw,
and vy = 0. ([S] Ex.2.15,8.10)

1.4. A distribution x4 on R? is called symmetric if u(B) = u(—B)
for B € Bga, where —B = {—xz: € B}. Let u be a nontrivial a-stable
distribution on R? with 0 < @ < 2. Show that y is symmetric if and
only if

1) = |- [z oln@)], =ew

with a symmetric finite measure A\ on S. Show that u is rotation
invariant if and only if

f(z) =e " zeR?
with ¢ > 0. ([S] Th.14.13, 14.14)
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A.2. Subordination. In the theory of stochastic processes, the word
subordinator is used in the following meaning. This is connected to the
transformation that we discuss here.

Definition. {Z,;} is a subordinator if it is a Lévy process on R having
increasing sample functions a.s. or, equivalently, if it is a Lévy process
on R corresponding to an infinitely divisible distribution A supported
on [0, c0).

Theorem A2.1. ([S] Th.21.5,24.11) Let {Z;} be a Lévy process on R
with Lévy measure p. Then it is a subordinator if and only if it is of
type A or B, p is supported on [0,00), and the drift 8 is nonnegative.
In this case

E[e"*#] = exp t/ (e — 1)p(ds) + zﬂz] : z € R,
| J(0,00)

Ele %] = exp -t/ (e™ —1)p(ds) — ,Bu] : u > 0.
L J(0,00)

These are the characteristic function and the Laplace transform of
N = L(Z;), respectively.

Example. {Z;} is an a-stable subordinator, or an a-stable process
with increasing sample functions, if and only if

E[e—uZt] — e—t(c’ua+ﬂu) u>0

with0 < a < 1,¢ > 0,and 8 > 0. It is a strictly a-stable subordinator
if and only if 3 = 0. The connection of ¢ and 3 with c1, ¢, ¢, and T
in Theorem A1.5 is as follows: ¢ = o 'I'(1 — a)c; = (cos(ma/2)) e,
c2 =0, and 8 = 7. ([S] Ex.24.12)

Lemma. Let {Z;} be a subordinator with Lévy measure p and drift 3.
Then, for w € C with Rew < 0, we can define

(A2.1) U(w) = /(0 )(ews — 1)p(ds) + Bw

and
E[eth] — et\IJ(w).
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Subordination is a random time change by an independent subor-
dinator. It was introduced by Bochner [41]° in 1949. It transforms
a Markov process to a Markov process and a Lévy process to a Lévy
process.

Theorem A2.2. ([S] Th.30.1) Let {Z;} be a subordinator with Lévy
measure p, drift 3, and L(Z1) = \. Let {X;} be a Lévy process on R?
with generating triplet (A, v,7) and L(X7) = p. Assume that {X;} and
{Z;} are independent. Define
Yi(w) = Xz,)(@).

Then {Y;} is a Lévy process on R and

P(Y; € B) = / W(B)M(ds), B € Bas,

[0,00)
B[] = (t¥00sAC) ¢ RY

The generating triplet (A%, ¥ 4%) of {Y;} is:

AF = BA,

J(B) = Bu(B) + / W (B)o(ds), B € Ban,
(0,00)

f d 5(dx).
v ﬁ7+/(0,oo)p( S)me( z)

Definition. The transformation from {X;} to {Y;} is called subordi-
nation by {Z;}. Any Lévy process identical in law with {Y;} is said to
be subordinate to {X;}.

Remark. ([S] Th.30.1) If 8 =0and [, s2p(ds) < oo, then {Y;} is
of type A or B and has drift 0.

Example. Let {X;} be the Brownian motion on R? and let {Z;} be
a strictly a-stable subordinator, 0 < a < 1. Then the process {Y;}
subordinate to {X;} by {Z;} is a rotation invariant 2a-stable process.
Indeed, fi(z) = exp(—12z?%), ¥(—u) = —c/u® for u > 0 with ¢ > 0, and

E[ei(z,Y{g)] _ et\IJ(logﬁ(z)) _ e—tc’2_a|z|2a.

9The number in square brackets indicates the reference in [9].

73



Proof of Theorem A2.2 uses the following lemma.

Lemma. ([S] Lem.30.3) Let {X;} be a Lévy process on RE. For any
e > 0, there is C = C(e) such that, for any t,

P(|X:| >¢) < Ct.
There are C1,Cy, and Cs such that, for any t,
B[ X% X < 1] < Cit,
|E[XG; | Xy < 1] < Cot,
E[| X5 X < 1] < Cst'?.

Theorem A2.3. ([S] Th.30.4) Let {Z1(t)} and {Z5(t)} be independent
subordinators.

(1) Let Z3(t) = Z1(Z2(t)). Then {Z3(t)} is a subordinator and we
have ¥3(w) = Wo(V(w)). Here the function V(w) of (A2.1) for {Z;(t)}
is denoted by V;(w).

(ii) Let {X;}, {Y;}, and {W;} be Lévy processes on RE. If {Y;} is
subordinate to {X;} by the subordinator {Z;(t)} and {W;} is subordi-
nate to {Y;} by {Zs(t)}, then {W;} is subordinate to {X:} by {Z3(t)}.

Example. If {Z;(t)} and { Z5(t)} are strictly a;- and as-stable subordi-
nators, respectively, then {Z3(¢)} is a strictly ajag-stable subordinator.

Definition. Let {X;} be a Lévy process on R? with p = £(X;). For
g > 0 let

V(B) = / e~ (B)dt = E [ / e‘qtlB(Xt)dt], B € Bas.
0 0

This V? is called the g-potential measure of {X;}. V9 is written as V
and called potential measure of {X;}. Note that V4(R?) = 1/q for ¢ > 0
and VO(RY) = oo.

Theorem A2.4. ([S] Th.30.10, Prop.37.4) For any q > 0, qV'? is in-
finitely divisible, purely non-Gaussian, with Lévy measure I/g equal to

< dt
(B = [ BT, B eBu

and satisfying [(|z| A 1)vi(dz) < co. The drift of ¢V is 0.
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In fact, if we consider the process {Y;} that is subordinate to {X;}
by the I'-process with parameter ¢ > 0, then ¢V'¢ = L(Y}).

Exercises.

2.1. Let {Z;} be the I'-process with parameter ¢ > 0. Let {Y;} be a
Lévy process on R subordinate by {Z;} to a symmetric a-stable process
{X;} with fi(z) = e, 0 < @ < 2. Show that the characteristic
function of Y; is as follows:

B[ = (14 ¢7'[2|) .

The distribution £(Y7) is called Linnik distribution or geometric stable
distribution. ([S] Ex.30.8)

2.2. Let {Y;} be a Lévy process on R? subordinate to the Brownian
motion by a selfdecomposable subordinator {Z;}. Show that {Y;} is a
selfdecomposable process. ([S] E34.3)

A.3. Recurrence and transience. Let us consider long time behav-
ior of Lévy processes.

Definition. A Lévy process {X;} on R? is recurrent if

liminf | X;| =0 a.s.;
t—00
it is transient if
lim | X;| = oo a.s.
t—o0

{S,} is a random walk on R? if Sy =0 and S, = Z; + -+ -+ Z, for n =
1,2,..., where {Z,} is a family of independent identically distributed
random variables on R?. A random walk {S,} is recurrent if

liminf|S,| =0 a.s.;
n—oo
transient if
lim |S,| = o0 a.s.
n—oo
We define
W(B)=) P[S.€B]=E|) 1B(sn)] :
n=1 n=1
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an analogue of the potential measure V. Denote, in the following, the
open disc with center 0 and radius a by

B,={z e R?: |z]| < a}.

Theorem A3.1. ([S] Th.35.3) Let {S,,} be a random walk on R?. Then
the following are true.

(i) It is either recurrent or transient.

(ii) It is recurrent if and only if

W(B,) = for all a > 0.
(iii) It is transient if and only if
W(By) < oo foralla > 0.

Lemma (Kingman [260]). ([S] Lem.35.5) Let {X;} be a Lévy process
on RY. Then there is a function c(g) satisfying c(¢) — 1 as e | 0 such
that, for every t > 0 and every a > 0,

P [/ 1p,,(Xs)ds > | > c(e)P[| Xt+s| < a for some s > 0].
t

Theorem A3.2. ([S] Th.35.4) Let {X;} be a Lévy process on R?. Then
the following are true.

(1) It is either recurrent or transient.

(ii) It is recurrent if and only if

(A3.1) V(B,) =00  foralla>0.

(iii) It is recurrent if and only if
(A3.2) / 1p,(Xp)dt =00 a.s. for all a > 0.
0

(iv) It is transient if and only if
(A3.3) V(By) <oo  foralla > 0.
(v) It is transient if and only if

(A3.4) / 1p,(Xp)dt < 0 a.s. for all a > 0.
0
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(vi) Fiz h > 0 arbitrarily. {X;} is recurrent if and only if the
random walk {X,n: n=0,1,...} is recurrent.

Outline of proof. Step 1. Fix a > 0. It is proved that the following
five statements are equivalent:

(a) P[there are t,, 1 oo such that X; € B,] =1;
(b) Pl [ 1t = o] =1,

0
(c) V (Bag) = 00;

(d) Z P[X,, € Bs,] = oo for all sufficiently small A > 0;
n=1

(e) {Xun:m=0,1,...} is recurrent for all sufficiently small A > 0.

Step 2. The condition (e) does not involve a. Hence, each of the
conditions (a)—(d) is independent of a. But the condition (a) for all
a > 0 is equivalent to the recurrence of {X;}. Hence each of (b)—(e)
is equivalent to the recurrence of {X;}. Also, if (A3.1) does not hold,
then (A3.3) holds.

Step 3. Proof of the theorem by the reduction to Step 2.

Example. Let {X;} be the Brownian motion on R?. If d = 1 or 2,
then it is recurrent. If d > 3, then it is transient. We can check (A3.1)
for d < 2 and (A3.3) for d > 3.

Theorem A3.3 (Chung—Fuchs type criterion). ([S] Th.37.5) Let {X;}
be a Lévy process on R? with p = L(X,), ¥(iz) = logfi(z). Fiz a > 0.
Then {X;} is recurrent if and only if

1
A3.5 limsup/ Re (—) dz = 0.
(439 o o, @)

Corollary. ([S] Cor.37.6) If

z
—— < 00, then {X;} is transient.
5, 19| i

Definition. For any bounded measurable function f and ¢ > 0, let
W) = [ Fer Vi) =8 | [Tt X
Rd 0
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= [ et [ s+ puttan)
0 R4

For any integrable function f, let

(FN)E) = [ ¢ (@)de

U? is the g-potential operator. F is the Fourier transform.

Lemma. ([S] Prop37.4) If f is continuous and integrable on R? and if
Ff is integrable on R%, then, for ¢ > 0,

i{x,z)

e

WD) = @m [ (PA2) g

Re

Definition. A measure p on R? is degenerate if, for some a € R? and
some proper linear subspace L of R¢, the support of y is included in
a+ L. A process is degenerate if, for all ¢, £(X;) is degenerate.

Theorem A3.4. ([S] Th.37.8) If d > 3, then any nondegenerate Lévy
process {X;} on R? is transient.

Proof is given by application of the Chung—Fuchs type criterion.

In the next theorem, the sufficiency of (A3.6) for recurrence is an
easy consequence of Theorem A3.3, but the necessity of (A3.6) is a
hard result proved by Spitzer [438], Ornstein [328], Stone [446], and
Port and Stone [348].

Theorem A3.5 (Spitzer type criterion). Let {X:} be a Lévy process
on R, Fiza > 0. Then {X;} is recurrent if and only if

(A3.6) /B e (_ \Dl(zz)> dz = oo.

Other results for d = 1. ([S] Th.35.8,36.5, 36.6,36.7, Prop.37.10) Let
{X:} be a Lévy process on R with u = L(X}).
L If [;|z|p(dz) < oo and [ zpu(dz) # 0, then {X;} is transient.
2. If [, |z|p(de) < oo and [; zu(dz) = 0, then {X;} is recurrent.
3. More generally than 2, if n™'1X,, — 0 in probability as n = 0, 1,
.. — 00, then {X;} is recurrent.
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4. Iff ) Tp(dz) = 0o andf o) TH(dz) > —oo (or lff ) Tp(d)

< o0 and f o) Th(dz) = —00), then {X;} is transient.

10

5. Suppose that {X:} is non-zero'”. Then it satisfies one of the

following;:
(d*) X — 00 as t — 00, a.s. (drifting to 00);
(d7) X — —ocoast— oo, a.s. (drifting to —o0);

(0) limsup X; = oo and liminf X; = —o0, a.s. (oscillating).
t—00 t—o0

If { X;} is recurrent and non-zero, then it is oscillating. But the converse
is not true. Thus, if {X;} is oscillating and transient, then

P(the set of limit points of X; as t — 0o equals {00, —00}) = 1.
If {X;} is recurrent, then
P(the set of limit points of X; as t — oo equals ) = 1,
where ¥ is the smallest closed set satisfying P(X; € ¥ for all ¢t) = 1.

A criterion for the three cases in 5 was given by Spitzer [436] and
Rogozin [379].

Theorem A3.6. ([S] Th.48.1) Let {X;} be a non-zero Lévy process on
R. Let

I = / t_IP[Xt > O]dt and [~ = / t_IP[Xt < O]dt
1 1
Then (d%) holds if and only if I= < oo; (d~) holds if and only if
It < o0; (0) holds if and only if I = 0o and I~ = oo.

The following theorem is a related result by Kesten [249] and Er-
ickson [115].

Theorem A3.7. ([S] Rem.37.13) Let { X} be a Lévy process on R with
p = L(X1) satisfying

(A3.7) / zp(dr) = o0 and / zp(dz) = —oo.
(0,00) (—00,0)

Then it satisfies one of the following three:
(dd*) t71X; =+ 00 ast — o0, a.s.;
(dd™) t71X; - —c0 ast — o0, a.s.;

10A Lévy process is called non-zero unless it is identically zero a.s.
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(00) limsupt ' X; = co and liminft ' X; = —c0, a.s.
t—o0 t—o0
Further, let v be its Lévy measure and define

K= /(m) ( / ,,<<_oo,y>>dy)‘ly<dx>,
K = /( e (/ " oo))dy)_lwdw).

Then Kt + K~ = oo and the following equivalences are true: (dd™)
holds if and only if {K* = o0 and K~ < oo}; (dd™) holds if and
only if {KT < o0 and K~ = oo}; (00) holds if and only if {K* =
oo and K~ = oo}.

One consequence is that, under the condition (A3.7), the properties
(dd*), (dd~), and (oo) are respectively equivalent to (d¥), (d7), and
(0). We can say, in terms of v, whether the condition (A3.7) holds or
not. When (A3.7) does not hold, we can express [ zu(dz) by v and
v (see Section A4). When (A3.7) holds, we can now distinguish (d),
(d7), and (o) by looking at v, using Theorem A3.7.

Within the class of Lévy processes on R satisfying (o), we have no
general criterion of recurrence and transience in terms of the gener-
ating triplets. But, in symmetric case, Shepp’s results [423,424] have
analogues formulated in the following two theorems by Sato [407].

Definition. ([S] Def.38.1) A symmetric measure on R finite outside
of any neighborhood of the origin is quasi-unimodal if there is £y > 0
such that p((z,00)) is convex for x > zy. It has a bigger tail than a
symmetric measure p’ if there is g > 0 such that p((z, c0)) > p/((z, 00))
for x > x.

Theorem A3.8. ([S] Th.38.2) Suppose that both {X:} and {Y;} are
symmetrict! Lévy processes on R. Let vy and vy be their respective
Lévy measures.

(i) If f(O,oo) r?|lvx — vy|(dz) < oo, then recurrence of {X;} is equiv-
alent to that of {Y}}.

LA process {X,} is called symmetric if {X;} and {—X,} are identical in law.
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(i) If vy has a bigger tail than vx and if vy is quasi-unimodal, then
transience of {X;} implies that of {Y;}.

Theorem A3.9. ([S] Th.38.3,38.4) (i) Let {X:} be a symmetric Lévy
process on R with quast-unimodal Lévy measure vx. Let ¢ > 0 be fized.
Then {X;} is recurrent if and only if

(ii) For any symmetric Lévy process {X;} with Lévy measure vy,
there exists a recurrent symmetric Lévy process {Y;} such that its Lévy
measure vy has a bigger tail than vy.

Some results for d = 2. ([S] Th.36.5,37.14) Let {X;} be a Lévy
process on R? with p = £(X).
1. If [p |z|p(dz) < oo and [g, zpu(dz) # 0, then {X;} is transient.
2. If [o |z]*u(dz) < oo and [p, zp(dz) = 0, then {X;} is recurrent.

Remark. (Sato [406]) Let L,(w) = sup{t: X;(w) € B,}, the last
exit time from the disc B, for a Lévy process {X;} on R?. Transience
means that B, < oo a.s. for every a > 0. The process {X;} is called
strongly transient if E[L,] < oo for every a > 0. If d > 5, then every
nondegenerate Lévy process on R? is strongly transient.

Exercises.

3.1. Let {X;} be a nontrivial a-stable process on R. Show the
following. If 1 < a < 2, then, in order that {X;} be recurrent, it is
necessary and sufficient that it is strictly a-stable. If 0 < o < 1, then
{X}} is transient. ([S] Cor.37.17)

3.2. Let {X;} be a nondegenerate a-stable process on R%. Show that
{X}} is recurrent if and only if it is strictly 2-stable. ([S] Th.37.18)

3.3. Let {X;} be a Cauchy process on R, that is, the Lévy process
corresponding to a Cauchy distribution on R. Let {Y;} be a Lévy
process on R such that {X;} and {Y;} are independent and E|Y;| < 00
for ¢ > 0. Show that {X; + Y;} is recurrent. ([S] E39.8)
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A.4. Distributional properties. It is important to study the prop-
erties of the distribution of a Lévy process at a fixed time in relation
to the properties of its generating triplet. In the case of moments, we
can establish the following relationship.

Definition. Let g(z) be a nonnegative measurable function on R?. We
call [ g(z)u(dz) the g-moment of a measure p on R?. We call E[g(X)]
the g-moment of a random variable X on RY.

Definition. A function g(z) on R? is called submultiplicative if it is
nonnegative and if there is a constant a > 0 such that

g(z +y) < ag(z)g(y) for z,y € R,

Theorem A4.1 (Kruglov). ([S] Th.25.3) Let g be submultiplicative,
measurable, and bounded on every compact set in R?. Let {X;} be a
Lévy process on R? with generating triplet (A,v,v). Then, {X;} has a
finite g-moment for every t > 0 or, equivalently, for somet > 0, if and
only if 1{4>13v has finite g-moment.

This theorem has a wide applicability. For every o > 0 and 0 <
B < 1, the following functions can serve as the function g(z): |z|* V 1,
exp(a|z|?), [log(|z|Ve)]?, [loglog(|z|Ve®)]*, and also, denoting the j-th
component of z by z;, |z;|*V 1, (z; V1)%, exp(a|z;|?), exp(a(z; V 1)),
and so on.

Example. Let {X;} be a Lévy process on R? with generating triplet
(A,v,v). Let v be its Lévy measure. If f|m|>1 |z|v(dz) < oo, then
E|X;| <ocand EX; =1t (7 + f|$|>1 |:c|1/(d:1:)) = ty1, where 71 is given
in (AL4). If [, ., [2[v(dz) = oo, then E|X;| = oo for t > 0. For d = 1,
FE[0V X;] < oo for t > 0 if and only if f(o o) TV (dz) < 0.

Example. Letting g(z) = |z|" with n > 0, we see from Theorem A1.6

that, if u is a-stable on R? with 0 < o < 2, then [ |z|7u(dz) is finite
for 0 < 7 < a and infinite for n > «a.

If g is submultiplicative and bounded on every compact set, then
g(z) < be®! with some b > 0 and ¢ > 0. Theorem A4.1 does not apply
to functions which increase more rapidly than the exponential function.
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But, in the case of g(z) = e®*%8l7l the g-moment is connected to the
size of the support of v.

Theorem A4.2 (Sato). ([S] Th.26.1) Let {X;} be a Lévy process on
R? with generating triplet (A,v,~y). Let

c=inf{a > 0: v({|z| > a}) = 0}
if the support of v is bounded, and let ¢ = oo if the support of v 1is
unbounded. Then E[eX1081X:] s finite fort > 0 if 0 < a < 1/c; it

is infinite for t > 0 if @« > 1/c. Here we understand 1/o00 = 0 and
1/0 = 0.

The case of exponential moments is worth to be mentioned.

Theorem A4.3. ([S] Th.25.17) Let {X;} be a Lévy process on R? with
generating triplet (A, v,~y). Let

C = {c c R%: / ey (dz) < oo} :
|z|>1

(i) The set C is a convez set containing the origin.

(ii) EeleXd) < oo for some t > 0 or, equivalently, for every t > 0,
if and only if c € C.

(iii) If w € C? is such that'> Rew € C, then Ele”?| < co and

E[e<“”Xt)] — (W)
fort > 0, where ¥(w) is defined by (A1.5).
Next let us consider continuity properties.

Definition. Let p be a measure on R, It is discrete if there is a
countable set C' such that u(R?\ C) = 0. It is continuous if u({z}) =0
for every z € R?. It is absolutely continuous or singular if it is so with
respect to the Lebesgue measure on R?.

Theorem A4.4. ([S] Cor.27.5) Let u be infinitely divisible on R? with
generating triplet (A,v,7). Then p is discrete if and only if A = 0,
v(R?) < oo, and v is discrete.

PFor w = (w;)1<j<a € C?, Rew is defined to be the vector (Rew;)i<j<q in R?.
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Theorem A4.5 (Daeblin). ([S] Th.27.4) Let u be infinitely divisible on
R? with generating triplet (A,v,v). Then u is continuous if and only if
A#0 orv(RY) = oo.

Special classes of infinitely divisible distributions are studied.

Theorem A4.6 (Sato). ([S] Th.27.13) Any nondegenerate selfdecom-
posable distribution on R? is absolutely continuous.

It is easy to see that, if #(R?) = co and v is absolutely continuous,
then u is absolutely continuous. But the Lévy measure of a nondegen-
erate selfdecomposable distribution on R? can be singular in the case
d > 2. A necessary and sufficient condition for absolute continuity of
an infinitely divisible distribution is not known.

Are there continuous singular infinitely divisible distributions on R?
The answer is yes. Theorem A4.8 below gives examples.

Definition. A probability measure i on R? is semi-selfdecomposable
if there are a real number b > 1 and an infinitely divisible probability
measure p such that (z) = f(b712)p(2). This b is called a span of p.

If p is semi-selfdecomposable, then u is infinitely divisible and b
and p determine p. In this case the Lévy process corresponding to u is
called a semi-selfdecomposable process.

Theorem A4.7 (Wolfe). ([S] Th.27.15) If u is nontrivial and semi-
selfdecomposable on R, then u is either absolutely continuous or con-
tinuous and singular.

Theorem A4.8 (Watanabe'®). ([S] Th.27.19) Let b be an integer >
2. Let {X;} be a nontrivial Lévy process on R with A = 0 and Lévy

measure
v=3 klp+ > Iy

n=—00 n=—oo
satzsfyzng kn > 0; ln > 0; kn > kn+1; ln > ln+1; supy, kn < o0, and
sup,, I, < 0o. Then L(X;) is continuous and singular for every t > 0.

13[496] by Toshiro Watanabe is to appear in Probab. Theory Related Fields.
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Theorem A4.9 (Watanabe'?). ([S] Rem.27.22) For some choice of a
real number b > 1 we can find a semi-selfdecomposable process on R
with span b with A =0 and

o0

v = Z kO

n=—00
such that, for some finite positive ty, L(X;) is continuous and singular

for 0 <t <ty and absolutely continuous for t > t.

This is a remarkable time evolution in a distributional property of
a Lévy process. Other examples exhibiting this kind of time evolution
are given by Rubin [384], Tucker [478], and Sato [403].

Let us consider unimodality.

Definition. ([S] Def.23.2) A measure p on R is unimodal with mode
a if p = cdy + f(x)dzx with ¢ > 0 and f(z) increasing on (—oo, a) and
decreasing on (a, 00).

Theorem A4.10 (Wolfe and Medgyessy). ([S] Th.54.1,54.2) Let {X;}
be a Lévy process on R with generating triplet (A, v,~) and L(X;) = u’.
Constider the following conditions:

(1) For every t > 0, u' is unimodal.

(2) There are t, > 0, n = 1,2,..., such that t, — 0 and p'™ is
unimodal for each n.

(3) The Lévy measure v is unimodal with mode 0.

In general, (2) implies (3). In the case where {X;} is symmetric, the
conditions (1), (2), and (3) are equivalent.

Here is a nice sufficient condition for unimodality.

Theorem A4.11 (Yamazato). ([S] Th.53.1) Let {X;} be a selfdecom-
posable process on R. Then, for everyt > 0, L(X}) is unimodal.

Corollary. Stable distributions on R are unimodal.
Let us consider another class.
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Theorem A4.12 (Goldie). ([S] Th.51.6) Let u be a probability measure
on R expressible as

u(B) = /( a(B)old), BBy

with a probability measure p on (0,00], where ug is exponential with
parameter 0 for 0 < 8 < 0o and p = dg. Then p is infinitely divisible.

The probability measure p above is called a mizture of {ug}. Mix-
tures of infinitely divisible distributions are not always infinitely divis-
ible (see Exercise 4.2).

Theorem A4.13 (Watanabe!?). ([S] Rem.54.19) Let n be an integer
> 2. Let

p(dz) = 1o o) ( quaj 4,

where g; > 0, 2?21 g = 1, and a4, ...,a, are distinct positive reals.
Let {X:} be the Lévy process with L(X1) = pu. Then there are tg, t1
with 1 <ty < t; < oo such that

(1) L(X}) is unimodal with mode 0 for 0 <t < ty;
(2) L(X}) is at most n-modal for tg <t < ty;
(3) L(X}) is unimodal with a positive mode for t > t;.

Further, if we choose q1,...,qn,a1,...,a, appropriately, there is t €
(to,t1) such that L(X;) is n-modal.

This is a nice example of evolution in unimodality and multimodal-
ity of a Lévy process. In the above we have used the word n-modal,
which means, intuitively, that the density has n peaks. See [S] Def.52.1
for the precise definition of n-modality.

Exercises.

4.1. Let {X;} be a compound Poisson process on R with ¢ = 1 and
o(dz) = e™"1(g x)dx. Show that L£(X;) is unimodal for 0 < ¢ < 2 and
non-unimodal (actually, bimodal) for ¢ > 2. ([S] Ex.23.4, Prop.54.12)

141497] by Toshiro Watanabe has appeared in Japan. J. Math. 25 (1999), 227-256.
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4.2. Let p, be Gaussian with mean a and variance 1 on R. Let
p = (1/2)po + (1/2)pe with a # 0. Show that p is not infinitely
divisible. Hint. Use [S] Lem.7.5.
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APPENDIX B. CORRECTIONS OF THE BOOK Lévy Processes
and Infinitely Divisible Distributions

April 30, 2000

p.11, line 17: read e for e

p-15, line 6: read parameter for mean

p.84, line —3: read and (14.18) give for of (14.18) gives
p. 105, line —5: read E[ei<ajz’Z“J‘_Z“J‘—1>] for elu®%uy=Zu )
p. 120, line 13: read 1.6 for (1.6)

p.164, line 6: read 72 < z,...,Z;1 < z,Z; > z for X; <
z,..., Xj1<z, X;>z

p. 190, line —5: read |u(z)| for |m(2)|

p. 202, line 3: read YZ,2(t) for Yz,

p-221, line 12: delete positive

p- 236, line —5: insert

Newman [324] and

before Brockett
p.236, line —4: delete A = A and
p- 240, insert
Fiz a > 0.

before the first sentence of LEMMA 35.5.
p. 240, line 3: read >0 for a>0
p-253, line —2: read >0 for <0
p- 256, the last two lines should be

K* = [, 02 ([ 2 v(—00,y)dy) " v(dz),

K™ = f(_oo’_2)|:1:|( 1|m|1/(y, oo)dy)_ly(da:).
.287, line 10: read {X;:0<s<t} for {X;:0<s<t}
.288, line —5: read liminf,,, f,(y) for liminf,,, f,(z)
.307, line 11: read Proof of for Proofof
.313, line 16: Move the first word to left.
.327, line —16: read 1ge\(yy for 1g\ (s
.359, line 3: read e for e
.381, line 13: read loglog(1l/u) for loglog(1/s)

jolco ool lolo)
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p.381, line 14: read u for s
p. 384, line 12: the displayed identity should be
E[e—uL_l(l)—vM(L_l(l))]

= exp|—cexp [fooot_ldtf(o C>O)(e_t — e ")t (dw)] ]
p.439, line 13: read Use the result of [337], p. 159, for Use E34.3
p.456: [113] and [114] should be interchanged. Lines 25-28 should be
as follows:

[113] Erdés, P. (1942) On the law of the iterated logarithm, Ann. Math. 43, 419-436.
358

[114] Erdés, P. and Révész, P. (1997) On the radius of the largest ball left empty by
a Wiener process, Stud. Sci. Math. Hungar. 33, 117-125. 368

Consequently, citation of [113] and [114] in pp. 358, 368, 469 should

be changed to [114] and [113], respectively.

p.459, [175]: read (1972) for (1973)

p.464, lines —5, —2 and p. 465, lines 2, 6, 10: read Gauthier for

Gauthie

read 653-662 for 653-664

p.466, [322]: read reversions for reversal

p.466, [324]: read 236; for 236,

p.467, [337): read 234,439 for 234

p.-470, [398]: read Probability for Probabability

p.474, [462]: read walks for waks

p.-474, [469]: read stationary for ststionary
[534]

The author thanks the readers who were kind enough to inform him
of errata in the book.
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