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Foreword

This booklet contains information on the Conference on \L�evy Processes: Theory and
Applications", held 18-22 January 1999 at Department of Mathematical Sciences, Uni-
versity of Aarhus, and organized by MaPhySto { Centre for Mathematical Physics and
Stochastics | a research centre under the Danish National Research Foundation.

L�evy processes, introduced by Paul L�evy in the thirties and forties have for decades been
subject to intensive theoretical studies. But up until recently the general L�evy process
were widely regarded to be of little applied relevance. However, a variety of recent devel-
opments has changed this perception rather dramatically. More and more applications of
such processes are found. The understanding of the nature of these processes is also still
increasing, and at least two monographs on the theory of L�evy processes, by Bertoin and
by Sato, as well as other material of a similar character, have recently been published or
are about to appear.

The time therefore seemed ripe for an international conference devoted to this area of
research, and, to our delight, the interest in the conference well exceeded our expectations.
The present collection of extended abstracts of the talks presented at the conference shows
that the �eld of L�evy processes is in a prosperous state with rami�cations in many di�erent
directions and steady expansion of the central body of the theory.

We are grateful to the participants for their willingness to produce these extended ab-
stracts, and we hope that many readers will �nd them useful and will feel some of the
excitement for the developments that was present among the participants at the confer-
ence.

Aarhus in April 1999 Ole E. Barndor�-Nielsen
Svend Erik Graversen

Thomas Mikosch
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2 Conference Program
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14.00-14.30
Michael Braverman:

The supremum of L�evy processes with light tail.

14.40-15.10
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Slow points of local times.
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Ernst Eberlein:

Term structure models driven by general L�evy processes.
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16.10-16.40
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ights: using the generalized central limit
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4 Extended abstracts

On the following pages you will �nd (in alphabetical order after the author who presented
the work) the (extended and/or revised) abstracts submitted to the organizers.
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LEVY PROCESSES IN LIE GROUPS AND

MANIFOLDS

DAVID APPLEBAUM

1. Introduction

For the last twenty years there has been an explosive development
in the subject of stochastic di�erential geometry which has been based
mainly around the notion of Brownian motion in a Riemannian mani-
fold . Of course, Brownian motion is a natural object to look at on a
manifold as its generator is the Laplace-Beltrami operator which car-
ries a lot of geometric information. However from the Euclidean space
point of view it is just one member of the class of Levy processes and
so it is natural to ask the question

Does it make sense to talk of a
\Levy process on a Riemannian manifold" ?

We'll answer this question in three stages, the �rst of which is

1.1. Levy Processes in Lie Groups. Let G be a �nite dimensional
Lie group with identity e. A Levy process X(t) taking values in G is
simply a stochastically continuous process with stationary and inde-
pendent (left) increments such that X(0) = e (a.s). Of course we are
adopting a convention here. We could equally well take increments on
the right however it can be shown that if X(t) is a left Levy process
then its inverse is a right Levy process.
These processes were �rst studied in a very important paper by

G.Hunt in 1956 ([1]) who characterised their in�nitesimal generators
as a sum of a second order di�erential operator manufactured from
the Lie algebra basis and a suitably renormalised integral operator ex-
pressing translations averaged using a Levy measure. Several obscure
points in Hunt's proof were clari�ed by Ramaswami ([2]) and these
were incorporated into the seminal treatise of Heyer ([3]) (see Chapter
4).
More recently, using martingale methods, H.Kunita and the present

author ([4]) were able to show that every Levy process on G could
be obtained as the solution of a stochastic di�erential equation (SDE)
driven by a Brownian motion on the Lie algebra and an independent
Poisson random measure on the group. Using these ideas, Kunita was
able to develop a theory of stable processes on simply connected nilpo-
tent Lie groups ([5]).
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LEVY PROCESSES IN LIE GROUPS AND MANIFOLDS 19

In [6], it was shown that an analogue of the Levy-Ito decomposition
holds for Levy processes in Lie groups i.e. each such process can be
realised as the almost-sure limit of a sequence of Brownian motions
(with drift) interlaced with the jumps from a sequence of compound
Poisson process. This generalised an earlier result of Gangolli ([7]) in
the spherically symmetric case (see below).
Stochastic 
ows of di�eomorphisms arising from SDEs driven by

Levy processes are called Levy 
ows. These are essentially Levy pro-
cesses on the in�nite-dimensional Lie group Di�(M). For work on these
see [4] and references therein.
In passing, it should be noted that Levy processes in general locally

compact groups are also of interest. In particular, there has recently
been some activity in the totally disconnected case ([8], [9])

1.2. Levy Processes in Symmetric Spaces. A Riemannian mani-
fold M is a globally symmetric space if every point is an isolated �xed
point of an involutive isometry. All such manifolds can be realised (up
to di�eomorphism) as homogeneous spaces M = G/K where G is a
connected Lie group and K is a compact subgroup. In this case it is
natural to de�ne a Levy process on M as the image of a Levy process
on G under the canonical surjection. The most interesting class of such
processes are those which are spherically symmetric i.e. their laws are
invariant under the left-action of K on M and so are projections of
processes in G whose laws are bi-invariant under K. Harmonic analysis
can be used to investigate these processes via the spherical transform
of Harish-Chandra. This was �rst appreciated by Gangolli who inves-
tigated these processes in two ground-breaking papers ([7], [10]) where
he established a Levy-Khinchine formula for the spherical transform.
In [6], using the stochastic di�erential equation techniques of [4] the

author was able to simplify and extend Gangolli's work. It should be
emphasised that the spherical transform is a very powerful tool which
allows us to generalise many of the features of the Euclidean case, for
example, subordination preserves the class of spherically symmetric
Levy processes ([11]).
The general form of spherically symmetric Levy processes is that of

a Brownian motion on M (without drift) interlaced with jumps along
geodesics and this gives us a strong hint as to how we should proceed
in more general manifolds.

2. Levy Processes in Riemannian Manifolds

We begin by recalling the case of Brownian motion in a Riemannian
manifold M.
Although the idea of a process with "increments" breaks down this

can be de�ned to be a Markov process B(t) whose in�nitesimal genera-
tor is the Laplace-Beltrami operator � and this clearly generalises the
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Euclidean case. If the manifold fails to be parallelisable, then � cannot
be written globally as the sum of squares of smooth vector �elds and
so B(t) cannot be obtained as the solution of a globally de�ned SDE.
Using the fact that on the bundle of orthonormal frames over M the
horizontal Laplacian projects onto �, Eels and Elworthy were able to
obtain B(t) as the projection of the solution to an SDE in O(M) driven
by the canonical horizontal vector �eld (see e.g. [12]).
A simplistic attempt to imitate this construction for Levy processes

was attempted in [13] and found not to work in general. In fact there
is no obstacle to constructing a "canonical horizontal Levy process"
in O(M). The di�culty arises through the projection which is not a
homogeneous Markov process and depends on the choice of initial frame
in O(M). To overcome this di�culty A.Estrade and the present author
de�ned an isotropic Levy process in M to be one whose horizontal
lift is the solution to an SDE driven by a spherically symmetric Levy
process in Euclidean space ([14]). In this case we obtain a process
which can be realised as a Brownian motion on M interlaced with
jumps along geodesics. This then generalises the case of spherically
symmetric processes on symmetric spaces. Furthermore the process
has in�nite lifetime (a.s) when the manifold is compact.
So we have a positive answer to our original question. However note

that we are unable to include a global drift in our processes.
Current research by the author is focussing on Levy processes in

principal �bre bundles where it is hoped to make some contact with
gauge theory, perhaps via stochastic quantisation.
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In the last ten years, the generalized central limit theorem established by Paul L�evy

in the thirties has been found more and more relevant in physics. Physicists call

'L�evy 
ights' random walks for which the probability density of the jump lenghts

x decays as 1=x1+� with � < 2 for large x. We give here a glimpse of L�evy


ights in physics through two examples, without going into technical details. We

�rst introduce a simple toy model, the Arrhenius cascade. We then present an

important physical process, subrecoil laser cooling of atomic gases, in which L�evy


ights play an essential role.
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1 Introduction

The 'usual' central limit theorem (CLT) is an essential tool in physics and in other sciences.
Indeed, one often knows the probability density f(x) of a quantity x associated with single
events. Then, one wants to derive the probability density f(XN ) for a sum XN

XN =
NX
i=1

xi (1)

of a large number N of such events, considered as independent1. In simple terms, the
usual CLT tells that the density of (XN �Nhxi)=pN tends to a gaussian distribution at
large N and that this distribution is determined only by the average value hxi and the
second moment hx2i, provided that these quantities are �nite2. The condition for applying
the usual CLT (�niteness of hx2i) is so frequently satis�ed that most physicists implicitely
believe that this theorem applies universally.

However, physical phenomena can exhibit statistical properties that are beyond the
usual CLT. In particular, densities f(x) with power law tails:

f(x) � 1

x1+�
for x!1 (2)

(with � > 0 to ensure normalizability) are simple laws that tend to appear frequently.
If � > 2, hx2i is �nite and the usual CLT applies. On the contrary, if � � 2, hx2i
diverges3 and the usual CLT does not apply. If � � 1, even hxi diverges. As stated by
the 'generalized' CLT, if 0 < � < 2, the density of XN (properly renormalized) still tends
to a stable law, which is not a gaussian but a L�evy law. After Mandelbrot, we call 'L�evy

ight' a random walk in which the probability density of jump lengths is given by Eq. (2)
with � < 2.

The generalized CLT was already available in the thirties but, surprisingly, it has had
a limited in
uence on physics for a long time. Most physicists were certainly not aware of
it and those who were aware probably doubted that in�nite average values hxi or second
moments hx2i could make sense in a real phenomenon. Note that few cases which come
under the generalized CLT were known, but they remained isolated cases (such as the
density of �rst return times � in one dimension which decays as 1=�3=2 for large � 's).

In the recent years, it has been more and more recognized that the generalized CLT
could shed an interesting light on many physical processes: random walks in solutions
of micelles [OBL90], turbulent and chaotic transport [SZK93, SWS93], glassy dynam-
ics [Shl88, BoD95], di�usion of spectral lines in disordered solids [ZuK94], thermodynam-
ics [TLS95, Tsa95, ZaA95], granular 
ows [BoC97], laser trapped ions [MEZ96, KSW97]
... For reviews, see [Shl88, BoG90, KSZ96, Tsa97].

The interest of the physics community for the generalized CLT seems to be stimulated
by two important arguments.

First, the phenomena obeying only the generalized form of the CLT, i.e. those with
asymptotic power laws for f(x) with � < 2, exhibit a statistical behaviour which is

1For simplicity, any sum of independent events is called a 'L�evy sum' below.
2If hx2i is �nite, we say that f(x) is a 'narrow' probability density.
3We then say that f(x) is a 'broad' probability density.
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markedly di�erent from the behaviour of the phenomena obeying the usual CLT. It is
thus important to identify whether a physical process comes under the generalized form
of the CLT (in the �rst place to avoid the use of natural but irrelevant concepts, such as
the average value, derived from the usual CLT). This is illustrated in section 2 with the
simple model of the Arrhenius cascade.

Second, the generalized CLT provides an eÆcient tool for the quantitative study of
some physical problems. This is illustrated in section 3 with a L�evy 
ight theory of
laser cooling of atomic gases. In this case, it is worth noting that the ideas derived from
the generalized CLT have had practical consequences, leading to more eÆcient cooling
strategies and to record low temperatures.

Finally, the generalized CLT also provides a useful qualitative insight for some random
walks even when it is not strictly valid. This is discussed brie
y in section 4.

Note that this contribution presents the point of view of a physicist and, as such, might not be

rigorous on all mathematical aspects.

2 The Arrhenius cascade

We present the model of the Arrhenius cascade in section 2.1, which is shown to exhibit
an unexpected statistical behaviour in section 2.2, analyzed with the generalized CLT in
section 2.3. This toy model presents generic e�ects of the generalized CLT in physics.

2.1 The model

We consider a physical system placed in the potential landscape schematized in �gure 1
and submitted to thermal 
uctuations. This model is called here the Arrhenius cascade.
It is inspired from studies of disordered systems, like glasses relaxing towards low energy
states [Shl88, BoD95], which obey similar equations.

x0

Figure 1. The Arrhenius cascade.

The potential U(x) is a tilted random 'washboard'. It presents n local minima or 'wells',
labelled by i, separated from the next minimum i+1 by a potential 'hill' of random height
Ui (the Ui's are independent variables). We assume an exponential probability density
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f(U) for the hills Ui:

f(U) =
1

U0
e�U=U0 ; (3)

where U0 is the average height of the potential hills. The variable x may be a position
coordinate or any coordinate of the system.

At any time, the physical system is trapped in one of the local potential wells. Due to
thermal 
uctuations, the system performs sudden jumps from one well to the other one
downwards. The global tilt of the potential hill U(x) is large enough to prevent the system
from performing upward jumps. Therefore, the system can only cascade downwards. The
trapping time �i in the well i is related to Ui by the Arrhenius law4:

�i = �0 e
Ui=(kBT ) ; (4)

where �0 is a characteristic time, kB is the Boltzmann constant and T is the temperature.
We consider a gedanken experiment in which the experimentalist wants to know the

average trapping time in a single well, but can only measure the time tn needed to go
through all the n wells of the system:

tn =
nX
i=1

�i � (5)

To reduce the measurement uncertainty, he can repeat m times his measurement of tn. We
assume that, between each measurement, the realization of the disorder changes, i.e. the
numbers U1; :::Un change (and thus �1; :::�n change accordingly). His estimation �exp(N)
of the average trapping time will therefore be:

�exp(N) =
1

N

mX
j=1

tn =
1

N

NX
i=1

�i ; (6)

where N = m � n is the total number of explored wells and the �i's are independent
random variables de�ned by Eq. (3) and (4).

2.2 Behaviour of the Arrhenius cascade

Simulated measurements of �exp(N) are represented in �gure 2 for two di�erent temper-
atures. For a temperature T = 3U0=kB, �exp(N) converges nicely to the average value
hxi when N increases, after exhibiting reasonable 
uctuations at small N . This is the
expected, standard behaviour.

For a lower temperature T = 0:5U0=kB, the behaviour of �exp(N) is markedly di�er-
ent. The measured �exp(N)'s do not seem to converge towards any constant value but
rather to diverge in a very 
uctuating way with increasing N . A detailed analysis would
reveal that the tn's also 
uctuate very much from one measurement to the other. This
unusual statistical behaviour would puzzle most experimentalists: large 
uctuations and
irreproducibility are usually considered as the indication of a problem in the experimental
procedure, arising from poorly controlled parameters. But here, one would �nd that the
experimental setup works apparently well 5.

4In a realistic model, �i is not deterministically �xed by Ui and the expression (4) gives only the average
value of �i. Taking into account the 
uctuations of �i for a given Ui would not change qualitatively the
discussion presented here.

5A closely related situation has recently appeared in a quantum tunneling problem. See section 4.
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Figure 2. Simulated measurements of the estimated �exp(N). We have chosen
n = 10 and �0 = 1. The quantity �exp(N) for the case kBT = 3U0 has been
multiplied by 30 to be more visible.

2.3 Application of the generalized CLT

Let us see how the generalized CLT can shed light on the previous observations. We
�rst easily calculate the probability density f(�) of the trapping times. It is given by the
relation f(�)d� = f(U)dU , which leads immediately to

f(�) = �
��0
�1+�

with � =
kBT

U0
� (7)

Having a power law for f(�), the probability densities of �exp(N) at large N are provided
for any � by the generalized CLT.

In the high temperature case (T = 3U0=kB), we have � = 3 which is larger than 2.
Thus h�2i is �nite and the usual CLT applies: �exp(N) is gaussianly distributed at large N
and tends to h�i. This agrees with the observations (�gure 2) and does not need further
discussion.

In the low temperature case (T = 0:5U0=kB), on the contrary, we have � = 0:5 which
is smaller than 1. The usual CLT does not hold anymore and the speci�c features of the
generalized CLT will play a crucial role. The generalized CLT tells us that we should
consider the quantity ZN =

PN
i=1 �i=N

1=� and that the density f(ZN ) tends to a L�evy law
L�(ZN ) at large N . This theorem has several important physical consequences: scaling
of the L�evy sums, domination of the L�evy sums by a single term and large 
uctuations of
the L�evy sums (most of these consequences are presented in [BoG90]). We only treat here
the case � < 1 (and not 1 � � � 2) for which the consequences of the generalized CLT
depart most strongly from the ones of the usual CLT. These consequences are:

� The most probable value of the sum TN =
PN

i=1 �i scales as

TN � N1=� ; (8)

and not as N which is more usual. Practically, this implies that the time tn spent in
an Arrhenius cascade of n wells does not scale with the size n of the cascade, but more
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rapidly due to the generalized CLT6. Similarly, the experimental value �exp(N) =
1

m�n

Pm
j=1 tn does not tend to a constant for a large number of measurements m

but diverges with m, as m�1+1=�. This explains the observed behaviour in �gure 2.
Thus, the size of the system and the number of measurements play a non trivial role
in the measured values, an unusual situation in physics.

� The notion of average value is irrelevant here since h�i = 1. One can somehow
replace it by the notion of typical value, i.e. most probable value. When � < 1,
the typical terms xi of a L�evy sum XN =

PN
i=1 xi are not all of the same order (as

they are when f(x) is a narrow density) but present a hierarchical structure. In
particular, the typical largest term xmax of the sum can be shown to be of the same

order of magnitude as the sum itself

XN =
NX
i=1

xi ' xmax ; (9)

however large N might be (Eq. (9) is valid within prefactors that do not depend on

N). This domination of a sum by a single term, or by a small number of terms, is a
signature of L�evy statistics in a physical problem (see �gure 3 below).

It can be used cleverly in physical experiments as a 'L�evy microscope': by mea-
suring a macroscopic quantity XN =

PN
i=1 xi, one may obtain an easy access to a

microscopic information, xmax, while the direct measurement of xmax (i.e. in the
Arrhenius cascade, the direct study of a single well) can be physically impossible.
Such advantageous use of the statistical domination of a single term has been made
implicitly, for instance in studies of quantum tunneling [RoB84].

� A L�evy sum XN =
PN

i=1 xi 
uctuates as much as a single term, when � < 1. This
is a direct consequence of the domination of the sum by a single term. It can also
be seen as a consequence of the fact that the tail of the L�evy law L�(ZN ), which

determines the 
uctuations, decays as 1=Z
1=�
N , exactly as the tail of f(x). This

explains the highly 
uctuating �exp(N) obtained in �gure 2 as being intrinsically due
to the type of involved statistics and not to some technical experimental problem.
Thus, 
uctuations do not vanish as usual with the increase of the size N of the
statistical sample. The sums XN retain an intrinsically large irreproducibility. This
is in contradiction with a traditional motivation for applying statistical methods: to
go beyond the irreproducibility of individual events in order to obtain quasi-perfect
reproducibility for large ensembles of events. However, the generalized CLT still
allows for some predictibility in the statistical sense, since it predicts the stable form
of the probability density of ZN .

Physics has incorporated two new types of randomness during this century: quan-
tum uncertainty and deterministic chaos. It seems to us that the non-averaging
out of 
uctuations in L�evy 
ights can also be recognized as an important type of
randomness7.

6Such 'anomalous' scaling with the system size appears in some complex phenomena like phase transi-
tions near a critical point. What is striking here is to obtain such scaling in a very simple problem.

7J.P. Bouchaud speaks of a 'science of irreproducible results'. B. Mandelbrot uses the term 'wild
randomness'.
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3 Subrecoil laser cooling of atomic gases

In the Arrhenius cascade (section 2), a sum of N independent terms was directly measured
and the generalized CLT could be applied directly to analyze the results. In this section,
we proceed a step further by studying a richer physical problem, called subrecoil laser
cooling. In this case, L�evy sums |and their properties dictated by the generalized CLT|
play an essential role, although they are not measured directly.

We introduce subrecoil laser cooling in section 3.1. In section 3.2, we show that power
law densities of time variables appear, which implies the non-ergodicity of the process.
In section 3.3, the generalized CLT is used to get some insight on the cooling eÆciency.
In section 3.4, quantitative predictions are derived, using the 'sprinkling density'. In sec-
tion 3.5, we indicate how the insight provided by the generalized CLT enables to optimize
the cooling strategy.

The starting point of the approach presented here has been presented in [BBE94] and
[Bar95]. A detailed description of the theory will appear in [BBA99].

3.1 Subrecoil laser cooling

Laser cooling of atomic gases is based on the momentum exchanges between photons and
atoms. In standard (not subrecoil) laser cooling, laser con�gurations and atomic transitions
are carefully chosen so that these momentum exchanges lead to a friction force. This
friction force damps the thermal atomic momenta p, thereby reducing the momentum
spread (standard deviation) Æp of the atomic gas, which is equivalent to reducing the
e�ective temperature T de�ned by

kBT = Æp2=M (10)

where kB is the Boltzmann constant and M is the mass of the atoms. Temperatures
commonly achieved in the last ten years are in the range of a few microkelvins, 8 orders of
magnitude below room temperature. This has opened exciting new possibilities for atomic
and quantum physics and has been a key ingredient in the realization, in 1995, of a new
state of matter called Bose-Einstein condensate. The 1997 Nobel prize of physics was
attributed to S. Chu, C. Cohen-Tannoudji and W. Phillips for their contributions to laser
cooling.

Standard laser cooling mechanisms are fundamentally limited to temperatures larger
than the so-called 'recoil temperature'. Indeed, among the momentum exchanges between
atoms and photons, some |the ones due to spontaneous emission| occur in a random
direction. Each spontaneous emission of a photon by an atom thus results in an uncon-
trollable random recoil of the atomic momentum ~p by a quantity �h~k, where �h~k is the
momentum of a single photon. Therefore, the standard deviation Æp of the atoms is ex-
pected to be always larger than �hk. This implies (cf. Eq. (10)) laser cooling temperatures
T larger than the recoil temperature de�ned by TR = (�hk)2=(kBM). The recoil tempera-
ture TR is on the order of one microkelvin for the con�gurations frequently used.

To sum up, the randomness of spontaneous emission, which is essential for the cooling
since it provides a dissipative contribution to the atomic evolution, is also harmful to
the cooling since it implies a limit temperature. As spontaneous emission of photons by
atoms placed in laser light seems unavoidable, the recoil temperature was for some time
considered as an absolute limit for laser cooling.
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Subrecoil laser cooling, i.e. T < TR, is however possible. Indeed, although spontaneous
emission of photons is an intrinsically random quantum process, it can be partly controlled.
The key idea is to create a spontaneous emission rate R(p) which depends on the atomic
momentum p (�gure 3) and which vanishes at p = 0. This was �rst proposed and realised
in 1988 [AAK88, AAK89] using a nice quantum e�ect called a 'dark resonance', because
a resonance occurs at p = 0 which prevents the spontaneous emission. Today, record
low temperatures reached experimentally with dark resonances approach TR=1000, which
corresponds to a few nanokelvins only.

p

δ−δ p

0

0

Figure 3. Principle of subrecoil cooling. a) The spontaneous emission rate
R(p) vanishes at momentum p = 0. b) The atoms perform a momentum
random walk and accumulate in the vicinity of p = 0.

One can follow the evolution of an atom with an initially non-zero momentum p. The
spontaneous emission rate8 R(p) being large, the atom will spontaneously emit photons9

and therefore its momentum will change in a random way. This random walk will eventu-
ally lead by chance the atom in the vicinity of p = 0 where the spontaneous emission rate
is very small (see �gure 3). There, the atom stops exchanging momentum with photons
and it remains so-to-speak 'trapped' in what is called a 'dark state'. The time �(p) of
residence at momentum p is

�(p) =
1

R(p)
; (11)

the time interval between two spontaneous emissions. If this residence time is long enough,
the atom keeps the same small momentum till the end of the experiment. If not, it emits
a spontaneous photon, which starts a new momentum di�usion process and gives to the
atom another chance to reach the vicinity of p = 0. Thus atoms accumulate in the vicinity

8The spontaneous emission rate R(p) can be simply seen as a di�usion coeÆcient that has the peculiarity
of varying with the momentum p.

9Before each spontaneous emission, the atom absorbs a laser photon. The recoil e�ects of photon
absorption, which is a deterministic process, are not essential here and are therefore ignored.
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of p = 0 in long-lived states: a cooling e�ect occurs. This cooling relies on a random walk
of the atomic momentum, unlike standard laser cooling which rests on friction forces.

The most important question for a cooling process is to determine the typical momen-
tum Æp at the end of the random walk or, equivalently the temperature T (cf. Eq. (10)). It
is diÆcult to answer it with the usual analytical or numerical methods of atomic physics10

because very di�erent momentum and time scales are present in the problem. A conjec-
ture was proposed in 1988 in which the interaction time �, de�ned as the time the atoms
interact with the lasers, plays a crucial role. Consider an atom reaching a momentum p
such that the residence time �(p) is larger than the interaction time �. This atom will
thus keep its momentum p till the end of the experiment and will be detected with this
momentum p. The conjecture consists in assuming that only the atoms such that

�(p) � � (12)

keep their momentum till the end of the experiment. Obviously, this can not be strictly
true: some atoms will reach a small momentum p after a signi�cant time t has elapsed
from the beginning of the interaction with the lasers so that, for them, the condition to
stay at momentum p would rather be �(p) � �� t. But let us assume that condition (12)
is the relevant criterion for the trapping of atoms. This predicts that a momentum peak
will form with a width Æp� given by

�(Æp�) ' � � (13)

Moreover, it can be shown that the residence time �(p) varies as

�(p) / 1=p2 � (14)

Introducing this relation into Eq. (13) gives the conjectured momentum scale Æp� which
is reached after an interaction time �:

Æp� / 1p
�

(15)

or, for the temperature T� / (Æp�)
2 (cf. Eq. (10)),

T� / 1

�
� (16)

This result is both interesting and surprising. Interestingly, it predicts that the tem-
perature can be reduced towards lower and lower values when the interaction time � is
increased. The recoil temperature limit, which arises in standard laser cooling from spon-
taneous emission, is no more a limit here. Here indeed, spontaneous emission is present
to create a random walk that brings the atoms to p ' 0, but spontaneous emission stops
when the atoms reach a small enough momentum. Surprisingly, there does not seem to be
any limit for the cooling.

10However, in one particular case, analytical solutions based on the usual methods have been
found [AlK96, SSY97]. Numerical approaches have also been developped [CBA91] using a new type of
quantum simulations.
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This has motivated a series of experiments with longer and longer interaction times
�. The recoil limit was �rst overcome in 1988, reaching T� ' TR=2 [AAK88]. Longer
interaction times allowed to reach T� ' TR=40 in 1994 [BSL94, Bar95] and T� ' TR=800
in 1997 [SHK97], establishing a new temperature record each time. Moreover, these ex-
periments agree well with the conjectured temperature dependence of Eq. (16).

However, one obviously needs a better understanding of what determines the temper-
ature T�. A related question is the proportion of cooled atoms: can a random walk with
no driving force lead to an accumulation of all the atoms in the vicinity of p = 0? Is
there rather only a small proportion of cooled atoms? How does this fraction vary with
the interaction time � and with the number of dimensions of the random walk? As we
will see below, random walk techniques and the generalized CLT provide answers to these
questions.

3.2 Trapping time densities and non-ergodicity

Recently developped quantum simulations [DCM92, DZR92, Car93, CBA91] allow to
follow the momentum random walk of a single atom in the process of subrecoil cool-
ing [CBA91, BBE94, Bar95]. An example of such a random walk is represented in �g-
ure 4. We see how the random evolution of the atomic momentum sometimes leads to
p ' 0 states where the atom remains for a long time because the spontaneous emission
rate R(p) = 1=�(p) vanishes in p = 0: this is the principle of subrecoil cooling at work.
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Figure 4. (a) Example of a momentum random walk resulting from a Monte-
Carlo simulation of subrecoil cooling of metastable helium atoms. The unit of
atomic momentum p is the momentum �hk of the photons. The zoom (b) of
the beginning of the time evolution is statistically analogous to the evolution
at large scale, a fractal property typical of a L�evy 
ight.

More importantly, �gure 4 presents an interesting statistical feature that triggered the
L�evy 
ight approach of laser cooling. The single largest residence time �max amounts to
70 % of the total time � while the atom has occupied 4000 di�erent momentum states
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during this total time. Thus a single event dominates a sum of a large number of events,
which is an indication of a L�evy 
ight.

Is there really a L�evy 
ight in the problem? Let us estimate the probability density f(�)
of trapping times � , de�ned as the times spent by an atom in an interval [�ptrap; +ptrap]
called the "trap" of size ptrap smaller than the size �hk of a random momentum step11. The
probability density �(p) for an atom reaching the trap to fall in a state of momentum p
can then be considered as independent of p (in one dimension):

�(p) ' 1

2ptrap
� (17)

The trapping time density f(�), given by f(�)d� = �(p)dp, is easily obtained using
Eq. (14):

f(�) / 1

�1+�
with � =

1

2
� (18)

Thus, if we consider as a �rst step that the interaction time � is the sum of trapping
times �i with the density (18)12, the time � is indeed a L�evy sum, whose behaviour is
dictated by the generalized CLT with � < 1. We have a L�evy 
ight in time, which imme-
diately accounts for the domination of a single trapping event in �gure 4 (see section 2.3).

There is a deep physical consequence of this L�evy 
ight, the absence of ergodicity. The
ergodic hypothesis, an important ingredient in statistical physics, is the assumption that
time averaging of a physical quantity yields the same result as ensemble averaging. Time
averaging requires following a particle over a time much larger than all characteristic times
of the problem. This is impossible here. Indeed, as the time � gets larger, larger trapping
time scales (up to �) appear and the time averaging procedure does not converge. This is
re
ected in the fact that we have a L�evy 
ight on a time variable �13, with in�nite average
trapping times. Thus, subrecoil cooling is a non-ergodic process. The non-ergodicity is
associated to the absence of cooling limits. The cooling goes on for ever because larger and
larger trapping times �(p), corresponding to lower and lower momenta p, can be reached
with increasing �.

3.3 Trapping, recycling and the generalized CLT

The history of an atom over a time �N can be seen a series of N trapping times �i
interrupted by N times �̂i spent out of the trap

14. The times �̂i are the usual '�rst return
times'. We also call them 'recycling times' because the atoms coming out of the trap are
given another opportunity to reach the trap, they are 'recycled'.

Thus, the interaction time �N writes as

�N = �1 + �̂1 + :::+ �N + �̂N = TN + T̂N ; (19)

11Under these conditions, the trapping times � (p) are simply the residence times � (p) of Eq. (11) and
Eq. (14) in the region [�ptrap; +ptrap].

12We neglect here the times �̂i spent outside the trap. These will be taken into account in the following
section.

13Thus, the same non-ergodic properties occur for the Arrhenius cascade at law temperatures (see sec-
tion 2).

14Note that the initial problem is a momentum random walk, which we treat eÆciently by considering
the associated random walk in time, a standard method for these problems.
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where

TN =
NX
i=1

�i (20)

is the total trapping time, and

T̂N =
NX
i=1

�̂i (21)

is the total recycling time. Both TN and T̂N are sums of independent variables. The
application of the generalized CLT to these sums gives in a simple way a qualitative
answer for the proportion of cooled atoms, as we discuss now.

Consider �rst the case in which the spontaneous emission rate R(p) tends to a non-
vanishing constant at large p. Then, at large p, we have a standard random walk with
a constant di�usion rate. For a 1D problem, the probability density f̂(�̂ ) of �rst return
times �̂ is known to decay at large �̂ as

f̂(�̂ ) / 1

�̂1+�̂
with �̂ =

1

2
� (22)

It thus decays exactly in the same way as f(�). According to the generalized CLT, for
large N 's, the sums TN and T̂N behave as

TN � N1=� = N2 ; (23)

T̂N � N1=�̂ = N2 � (24)

Therefore, for long times (cf. large N 's), one has TN � T̂N : the atoms spend a �nite
fraction of their time in the trap and a �nite fraction outside the trap. We thus expect the
proportion of cooled atoms to tend to a constant, strictly between 0 and 1. More elaborate
calculations con�rm this non-trivial result.

Consider now the case in which a friction mechanism is added to prevent the atoms to
di�use to too large momenta p. This friction con�nes the momentum di�usion in a �nite
zone. In this case, f̂(�̂ ) is a narrow probability density with a �nite average value. Thus,
according to the usual CLT:

T̂N ' Nh�̂i � (25)

Comparing this to Eq. (23) which is still valid here, one has

TN � T̂N (26)

for large N . This implies that all the atoms will be cooled, which is again con�rmed by
more elaborate calculations.

More complicated cases can be considered by including di�usion in 2 or 3 dimensions
or by including the 'Doppler e�ect' which modi�es the rate R(p) at large p. In each case,
the generalized CLT provides the asymptotic behaviours of the sums TN and T̂N which
yield immediately the qualitative asymptotic proportion of cooled atoms.
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3.4 Momentum distribution

Up to now, we have presented mostly qualitative results. We want to sketch here how
some quantitative results are obtained.

The main features of the cooling process are given by the momentum distribution
(probability density) P(p; �) of trapped atoms at time �. This momentum distribution
P(p; �) writes as an integral over the times tl at which the atoms enter the trap for the
last time:

P(p; �) = �(p)

Z �

0
dtlSR(tl) (� � tljp) � (27)

The quantity �(p) is the probability density for an atom entering the trap to reach the
momentum p (in one dimension, we have seen in Eq. (17) that �(p) = 1=(2ptrap)). The
quantity SR(t) called here the 'sprinkling density' is the probability density for an atom to
return into the trap at time t, regardless of the number of times the atom has entered the
trap before. The quantity  (� jp) = R1� f(� 0)d� 0 is the probability that an atom remains
in the trap during a time longer than � (where f(�) is the trapping time density de�ned
in section 3.2).

The momentum distribution can be calculated explicitly. For instance, in a simple 1D
model with in�nite h�i and �nite h�̂ i, one obtains

P(p; �) = h(�)G(Ap
p
�) (28)

where h(�) / p
� is the height of the cooled peak at p = 0, A is a constant. The function

G(q) is given by G(q) = 1 for q � 1 and by G(q) = 1� (1 � q�2)1=� for q � 1. The width
Æp� of P(p; �) decays as 1=

p
�, which proves the 1988 conjecture of a temperature decrease

without any fundamental limit (cf. Eq. (16)). This calculation can also be done for more
complicated cases in any dimension where it is very useful. For instance, one can study
the in
uence of the exponent � in the spontaneous emission rate R(p) / p�, as described
in the next section.

The key point to obtain the momentum distribution is the calculation of the sprin-
kling density SR(t). The sprinkling density is obtained relatively easily with a Laplace
transform15. The result is interesting. If h�i and h�̂i are �nite, then SR(t) tends to a
constant at large times. This is an expected 'ergodic' result: the rate of return events is
asymptotically constant16. On the contrary, if h�i or h�̂i is in�nite, then SR(t) decays to 0
at large times. This is a signature of non-ergodicity: at large times, the density of return
events go to 0 because the longer and longer �i's or �̂i's which tend to appear slow down
the di�usion. Such a process has a 'history': the measurement of SR(t) at any time tells
when the di�usion has started.

3.5 Optimizing laser cooling with the generalized CLT

A remarkable outcome of the usual CLT is that the statistical behaviour of L�evy sums XN

at large N is determined only by two parameters, hxi and hx2i. Thus, the detailed features
of f(x) can be forgotten if one is interested only in the large N properties of the L�evy
sums. Similarly, with the generalized CLT in the cases � � 2, only the asymptotic power

15In fact, the generalized CLT is not explicitly used in the derivation of Eq. (28).
16In a Poisson process, this rate is constant at any time scale.
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law behaviour of f(x) is relevant to determine the behaviour of L�evy sums at large N . For
a positive variable x, for instance, this power law is described by two parameters only, the
exponent � and the prefactor of the power law. This can provide a useful insight when
confronted to a complex physical phenomenon with many parameters: the generalized
CLT shows that the many physical parameters combine into only two relevant statistical
parameters.

Such an insight has been applied in practice to improve a subrecoil laser cooling mech-
anism called Raman cooling [KaC92]. Raman cooling, like the dark resonance cooling
described in section 3.1, rests on a p-dependent spontaneous emission rate R(p) analogous
to the one in �gure 3a. The main di�erence is that the rate R(p) results from the su-
perposition of pulses that can be chosen nearly arbitrarily. This gives 
exibility to this
mechanism and makes it a good case study for cooling optimization. On the other hand,
the large number of parameters (' 30 for the initially used sequence of pulses) to be
optimized makes it necessary to �nd simplifying guidelines.

By carefully using the generalized CLT, we have proposed a new very simple sequence
of pulses [RBB95]: it relies on 4 pulses only (compared to 14 initially); the shape of the
pulses is the simplest possible while the initially used pulses were sophisticated Blackman
pulses.

The results are eloquent. With the initially used sequence of 14 pulses, the temperature
T� varied as T� / 1=

p
� with the interaction time �. With the new sequence of 4 pulses,

the new shape (which changes the exponent � of the rate R(p) ' p� from � = 4 to � = 2)
leads to T� / 1=�, a much faster cooling. Moreover, with this new shape, if the pulses
parameters (width and position) are adapted to the considered interaction time �, one
obtains an even faster cooling T� / 1=�4=3 [RBB95, Rei96].

These predictions have been successfully tested experimentally and led to record low
temperatures (2:8 � 0:5 nK) for a cesium gas. This shows how the generalized CLT can
have signi�cant practical consequences.

4 Imperfect L�evy 
ights

We have presented in sections 2 and 3 two examples where the generalized CLT applied
perfectly. However, there are many physical cases where the generalized CLT is useful
although the conditions to apply it are not, strictly speaking, mathematically ful�lled.
This may occur either because the asymptotic decay of f(x) is not purely a power law or
because f(x) is a truncated power law.

Let us �rst discuss the truncation problem17, i.e. the cases in which f(x) decays as
1=x1+� for x < x0 and decays more rapidly for x > x0 so that hxi and hx2i are �nite. In
the mathematical sense, the usual CLT applies. However, due to the power law tail, the
convergence to the asymptotic gaussian for the probability density of the L�evy sums can be

extremely slow, being reached for N typically of 103 or larger [MaS94], while in most cases
for which the usual CLT applies, the approximate convergence to a gaussian is obtained

17In section 3, the sums TN =
P

N

i=1
�i were limited by the available interaction time � which is also

a kind of truncation. However, this truncation of the sum itself by an experimental parameter (here the
interaction time, in other cases the system size) does not prevent the appearance of all the important
e�ects of the generalized CLT; on the contrary, the fact that the truncation value, however large it may
be, has an e�ect on the measured value is a signature of the generalized CLT. The truncations dealt with
in section 4 bear on the density f(x) itself and imply a departure from the generalized CLT.
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very rapidly, with typically N ' 4 � 5. As, in practice, one often deals with sums of a
moderately large number N of terms, the behaviour of the L�evy sums is often dictated
by the L�evy laws for relevant N values, while the gaussian behaviour is recovered only for
irrelevantly large N values.

Second, there are broad probability densities which decay only approximately as power
laws. An example is provided by broad lognormal distributions, which have of course a
�nite second moment. They can be rewritten as power laws 1=x1+�(x) with a logarith-
mically varying exponent �(x). If the logarithmic part of �(x) is small enough, then the
generalized CLT gives at least some qualitative guidelines for the behaviour of the L�evy
sums. We have used such guidelines to study the tunneling of electrons through a thin
layer of insulator, a problem which has both basic and applied interests. The striking
�nding related to the generalized CLT has been that the typical current density varies by
more than 200 depending on the scale at which it is measured [Bar97, DBB98, DHB98]
(see also [LaB93]), while the typical current density should be scale independent if there
were no tails in the probability density of the current.
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Superposition of Ornstein - Uhlenbeck Type Processes

Ole E. Barndor�-Nielsen
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Abstract

A class of superpositions of Ornstein-Uhlenbeck type processes is
constructed, in terms of integrals with respect to independently
scattered random measures. Under speci�ed conditions the re-
sulting processes exhibit long range dependence. By integration
the superpositions yield cumulative processes with stationary in-
crements, and integration with respect to processes of the latter
type is de�ned. A limiting procedure results in processes that, in
the case of square integrability, are second order selfsimilar with
stationary increments. Certain other of the limiting processes are
stable and selfsimilar with stationary increments.

1 Introduction

In studying observational processes that show signi�cant dependence over
long time periods a possible approach is to try to model the process or pro-
cesses at hand by means of superposition of independent processes with short
range dependence.

Cox (1984), in a review of the roles of long range dependence and selfsimi-
larity in statistics, introduced, on a heuristic basis, a method for construction
of processes with long range dependence by weighted integration of processes
with short range dependence. In Cox (1991) this was applied in a study of the
relations of nonlinearity and time irreversibility to long range dependence.
A somewhat similar, rigorously based, method was proposed in Barndor�-
Nielsen, Jensen and S�rensen (1990) and there applied to the modelling of
velocity �elds in stationary turbulence, cf. also Barndor�-Nielsen, Jensen
and S�rensen (1993, 1998).

Recent work on modelling observational series of �nancial assets have
described log price processes as following a di�usion type model where the
squared di�usion coe�cient itself obeys a stochastic di�erential equation and

1MaPhySto - Centre for Mathematical Physics and Stochastics, funded by a grant from

The Danish National Research Foundation
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constitutes a stationary process. In extension of this, weighted sums of such
stationary processes were used in order to capture the timewise dependen-
cies in the price developments that are an essential feature of the �nancial
markets. More speci�cally, superposition of independent Ornstein-Uhlenbeck
type processes have provided 
exible and analytically tractable parametric
models. The integrated squared volatility process equals the quadratic vari-
ation of the log price process and plays an essential role in the analysis and
applications of the models. See Barndor�-Nielsen (1998b) and Barndor�-
Nielsen and Shephard (1998a,b,c).

It should also be noted that questions of moduli of continuity and large
increments of in�nite sums of classical, i.e. Gaussian, Ornstein-Uhlenbeck
processes have been discussed in papers by Cs�aki, Cs�org~o, Lin and R�evesz
(1991) and Lin (1995). See also Walsh (1981).

These developments have motivated the present study of superposition
of Ornstein-Uhlenbeck type processes and their integrals, based on the the-
ory of independently scattered random measures. An overall aim is to de-
velop 
exible classes of processes that incorporate long range dependence
and selfsimilarity-like properties and are capable, furthermore, of describing
some of the other key distributional features of typical data in �nance, turbu-
lence and other �elds. We note that, in several respects, the class of strictly
selfsimilar processes is too limited in scope for such modelling purposes. In
particular, they cannot simultaneously show semiheavy tailed behaviour for
short time lags and close to Gaussian behaviour for large time lags, such as
do typical observational series from both �nance and turbulence.

We recall that a stationary process x = fx(t)gt2R is said to exhibit long
range dependence if the correlation function r of x behaves as

r(u) � L(u)u�2
�H

for u!1 and where L is a slowly varying function and �H 2 (0; 1
2
). Through-

out we shall write H = 1� �H and we assume that H 2 (0; 1]. When x is long
range dependent the cumulative process, x� say, derived from x is approx-
imately second order selfsimilar, see for instance Cox (1984) or Barndor�-
Nielsen, Jensen and S�rensen (1990).

A process x� = fx�(t)g0�t is selfsimilar with exponent H if

fx�(ct)gt2R+
L
= cHfx�(t)gt2R+

for all c > 0. In that case one says that x� is H-ss, and if, moreover, x�

has stationary increments we write H-sssi. For a comprehensive discussion
of selfsimilarity, see Samorodnitsky and Taqqu (1994).
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An H-ss process whose increments are stationary to second order (at
least) will be referred to as an H-sssi2 process. A class of such processes,
driven by bivariate L�evy processes, is discussed in Barndor�-Nielsen and
P�erez-Abreu (1998).

Further, if a process has stationary increments and is square integrable
with the same type of covariance function as if it was selfsimilar we write
H-ss2si.

In the sequel we shall use the following notation for cumulant and Laplace
transforms of a random variate x:

Cf� z xg = logEfei�xg

�Kfu z xg = logEfe�uxg

For instance, if x is a random variable of the form x = �" where � and
" are independent with " standard normal and � positive (a form of key
importance in �nance) then

Cf� z xg = �Kf�2=2 z �2g

Section 2 summarizes results on L�evy processes, selfdecomposability, Ornstein-
Uhlenbeck type processes, and independently scattered random measures,
needed in the subsequent sections. In Section 3 a class of superpositions, in
terms of integrals, of Ornstein-Uhlenbeck type processes is introduced; under
certain conditions the resulting processes will exhibit long range dependence.
By integration the superpositions yield cumulative processes with stationary
increments and these are investigated in Section 4. Integration of real func-
tions with respect to the cumulative processes is considered in Section 5. A
limiting procedure, discussed in Section 6, results in processes that, in the
case of square integrability, are second order selfsimilar with stationary in-
crements, i.e. H-ss2si. Certain other of the limiting processes are stable and
(strictly) selfsimilar with stationary increments.
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Burgers has introduced the equation

@tu+ @x
�
u2=2

�
= "@2xxu

as a simple model of hydrodynamic turbulence for compressible 
uids, where the parameter
" > 0 describes the viscosity of the 
uid, and the solution is meant to represent the velocity of a

uid particle located at x at time t. Roughly, the dynamic of the system of particles corresponds
to completely inelastic shocks, in the sense that if two (clumps of) particles collide at a given
time, then they form a larger clump of particles in such a way that mass and momentum are
preserved. Although it is known that this is not an accurate model for turbulence, Burgers
equation is still widely used in physical problems such as for instance the study of shock wave
formation in compressible 
uids, or that of the formation of large clusters in the universe, or
also as a simpli�ed version of more elaborate models of turbulence (e.g. the Navier-Stokes
equation). To present this work with some mathematical rigor, we �rst review some classical
material on the Burgers turbulence that can be found for instance in [5] or [6].

1 Some basic features on Burgers equation

Given an initial velocity, Burgers equation with viscosity " > 0 possesses a unique solution
u", and that u" converges as " ! 0+ to a solution u0 = u to the inviscid equation, which is
usually referred to as the Hopf-Cole (or entropic) solution. The Hopf-Cole solution has a simple
expression in terms of potential functions. If we introduce  by u = �@x , then the potential
at time t is expressed in terms of the Legendre transform of the function a!  (a; 0)� a2=2t:

 (x; t) = sup
a2R

(
 (a; 0)�

(x� a)2

2t

)
: (1)

Of course, we implicitly supposed that

 (a; 0) = o(a2) as jaj ! 1 ; (2)
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so that the quantity in (1) is �nite. Note also that the formula (1) makes sense whenever the
initial velocity u(�; 0) = �@x (�; 0) is the derivative (in the sense of Schwartz) of a function.
To that end, we shall merely assume that the initial potential  (�; 0) has only discontinuities of
the �rst kind, i.e. there exists left and right limits at each point; and it will then be convenient
to work with the version that is right-continuous.

For the sake of simplicity, we shall focus on time t = 1 in the sequel. Of course, our results
are valid at any positive time; this can be easily checked by a simple scaling argument.

The structure of the shocks in Burgers turbulence is conveniently described in terms of the
inverse Lagrangian function which we now introduce. We denote by a(x) is the largest location
a at which the supremum in (1) is reached, i.e.

a(x) = sup

(
a 2 R : sup

b�a

 
 (b; 0)�

(x� b)2

2

!
= sup

b2R

 
 (b; 0)�

(x� b)2

2

!)
:

We stress that the inverse Lagrangian function x ! a(x) is right-continuous and increasing.
Its right-continuous inverse a! x(a), which is given by

x(a) = inf fy 2 R : a(y) > ag ;

is called the Lagrangian function; alternatively, it can be viewed as the (right) derivative of
the convex hull of the function a! � (a; 0) + a2=2. From the point of view of hydrodynamic
turbulence, the Lagrangian function describes the position at time 1 of the 
uid particle initially
located at a.

We see that if a discontinuity of the inverse Lagrangian function occurs at some point x, i.e.

lim
y!x�

a(y) := a(x�) < a(x) ;

then the Lagrangian function is constant on the interval [a(x�); a(x)), which means that at
time 1, there is a clump located at x which is formed by all the particles that were initially
in the interval [a(x�); a(x)). Similarly, if the inverse Lagrangian function stays constant on
some interval [x; y), then the Lagrangian function never takes values in the open interval (x; y),
which means that at time 1, there are no 
uid particle in (x; y).

This motivates the following de�nition. We �rst introduce the closed range of the inverse
Lagrangian function,

A = fy = a(x) or y = a(x�) for some x 2 Rg :

The open set R � A has a canonical decomposition into disjoint open intervals of the type
((a(x�); a(x)); their closures [a(x�); a(x)] are called the shock intervals. A Lagrangian shock
point is a point that belongs to some shock interval. A Lagrangian regular point is a point in
A that is isolated neither to its left nor to its right in A. We thus have a natural partition
of R into the set of Lagrangian regular points and the set of Lagrangian shock points. From
the point of view of hydrodynamic turbulence for compressible 
uids, a Lagrangian shock
point (respectively, a Lagrangian regular point) represents the initial location of a particle that
belongs to some clump at time 1 (respectively, that has not been involved in the shocks induced
by the turbulence before time 1).
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One says that the shock structure is discrete if A is a discrete set. This means that there
are only �nitely many shock intervals in a given compact set and there exists no Lagrangian
regular points. Finally one calls (x; y) is a rarefaction interval if the inverse Lagragian function
stays constant on [x; y).

2 Stable noise initial data

There is an abundant literature on the inviscid Burgers equation with random initial data.
An interesting problem in this �eld is to obtain qualitative results on the shock structure.
Sinai [6] has proven that when the initial velocity is given by a Brownian motion, then the set
of Lagrangian regular points has Hausdor� dimension 1=2 and that there are no rarefaction
intervals. When the initial velocity is a Gaussian white noise, Avellaneda and E [1] have shown
that the shock structure is discrete, in the sense that at time t > 0, there are no Lagrangian
regular points and only �nitely many clumps of particles are left in a given compact set. Quite
recently, numerical simulations led Janicki and Woyczynski [4] to the conjecture that when
the initial velocity is a stable L�evy process of index � 2 (1; 2], the Hausdor� dimension of
Lagrangian regular points is 1=� (this conjecture has been proven mathematically in [2] when
the L�evy process has no positive jumps).

We consider here the case when the initial velocity is given by a stable L�evy noise. Specif-
ically, if we introduce the initial potential  (�; 0), which is formally de�ned by @x (x; 0) =
�u(x; 0), then the process  (�; 0) has independent and homogeneous increments and its one-
dimensional distributions are stable laws with index � 2 (1=2; 2]. This situation naturally
appears as limit in a large class of renormalized potentials, see [3].

Here are our main results in this setting.

Theorem 1

Suppose that initial potential  (�; 0) is a stable L�evy process with index � 2 (1=2; 2]. If either

(i) � 2 (1=2; 1) and  (�; 0) is completely asymmetric (i.e. has monotone paths)

or

(ii) � 2 (1; 2] ;

then the shock structure is discrete a.s. Otherwise (i.e. if � 2 (1=2; 1] and the noise is not
completely asymmetric) the probability that there exists Lagrangian regular points is one, but
the probability that a �xed point (say, 0) is regular is zero.

Informally, Theorem 1 suggests that for � > 1, the shocks induced by Burgers turbulence are
numerous and strong enough to involve every single 
uid particle at any time t > 0 and to
create only �nitely many clusters on any given compact interval. For � 2 (1=2; 1], the initial
data is not as rough. However in the completely asymmetric case, the monotonicity of the initial
potential implies that all the particles are moving in the same direction, and this explains why
again the shock structure is discrete. On the other hand, when the noise is not completely
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asymmetric, the monotonicity is lost and thanks to compensations that occur when clumps
of particles with opposite velocity collide, some exceptional particles are not involved in the
turbulence.

Theorem 2

Suppose that initial potential  (�; 0) is a Cauchy process. Then with probability one there are
no rarefaction intervals.

The absence of rarefaction intervals means that the Lagrangian function a! x(a) is continuous.
On the other hand, it only increases on the set of Lagrangian regular points, and it follows
from Theorem 1 and Tonelli's theorem that the latter has Lebesgue measure zero a.s. In
the terminology used by Sinai [6], one says that the Lagrangian function is a complete devil
staircase.

In the case � 2 (1=2; 1], the proofs essentially rely on known sample path properties of
stable L�evy processes which have been obtained in the 70's by Fristedt, Hawkes, Monrad and
Silverstein. The argument to establish that the shock structure is discrete when � 2 (1; 2] is
less direct; it requires some material on 
uctuation theory for L�evy processes.
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THE SUPREMUM OF LEVY PROCESS WITH LIGHT

TAIL

MICHAEL BRAVERMAN

Let X(t); 0 < t < 1, be a L�evy process. We consider the problem
about tail behavior of the supfX(t) : 0 < t < 1g. For Brownian motion
the famous L�evy's result states that the distribution of the supremum is
the same as the distribution of jX(1)j. Later some authors proved that
under some additional conditions the tail P (fsupX(t) : 0 < t < 1g >

x) is equivalent to the right tail of X(1) (S.Berman (1986), E.Willekens
(1987), M.Marcus (1987), J.Rosinski and G.Samorodnitsky (1993), J.Albin
(1993), M.Braverman and G.Samorodnitsky (1995), M.Braverman (1997)).
The main request is that the tail of X(1) is to be heavy enough.
Here we consider the same question for L�evy processes with \light"

tails, which means that for the corresponding L�evy measure L, the
right tail of the convolution L � L is heavier then the right tail of L.
We show that if X(t) is a Poisson process without drift and with such
a tail, then the mentioned above relation holds. An example is given
for which the tails of supremun and of X(1) are incomparable.
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We present an abridged version whithout proofs of several results related

to the Cauchy principal value of a L�evy process focusing on an application that

leads to the construction of continuous processes with arbitrary p-variation.

We will work with a recurrent real valued L�evy process (Xt : t � 0) with

no negative jumps and gaussian coe�cient zero. Let  denote its laplace

exponent,

E
0(exp��Xt) = exp (t (�)) ; t; � � 0 (1)

We know that the recurrence of X is equivalent to

lim
�!0

 (�)

�
= 0 (2)

This enables us to have the following L�evy-Khinchine formula for  :

 (�) =

Z 1

0

�
e��x � 1 + �x

�
�(dx) (3)
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with � the L�evy measure of X on (0;1) such that

Z 1

0

�
l ^ x2

�
�(dx) <1.

We shall also assume that Z 1 d�

 (x)
<1 : (4)

This condition implies that lim
x!1

 (�)
�

=1, since  is increasing. This last

condition on  is a necessary and su�cient condition for 0 to be regular for

itself, and this allows us to de�ne the local time at level zero as the occupation

density at 0:

L�t = lim
"!0+

1

2"

Z t

0

1fjXsj<"gds :

The inverse �(t) = inffs � 0 : L�s > tg t � 0, is a subordinator. All

these results can be found in [2].

Using Itô's theory of excursions we introduce the excursion process corre-

sponding to the local time just speci�ed, (es : s � 0) de�ned by

es : [0; �s]! R

es(t) = X�(s�)+t t 2 [0; �s]

where �s is the duration of the excursion.

We also use the fact that, in this case, the characteristic measure n of the

excursions away from 0 of X is supported by the set of excursions that �rst

stay negative then jump across 0 and then they stay positive until they return

to 0. (See [1]).

Let

gt = sup fs < t : Xs = 0g = �(Lt�)

dt = inf fs > t : Xs = 0g = �(Lt)

so that [gt; dt] is an excursion interval.

Construction of the process:

The following results can be found in [3].
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1. The condition (4) is a necessary and su�cient condition for the absolute

convergence of

�s :=

Z �(s)

�(s�)

dt

Xt

=

Z �s

0

dt

es(t)

2. (�s : s � 0) is a Poisson point process with characteristic measure x�2dx.

Let

�+
s :=

Z �s

0

1fes(t)>0g
dt

es(t)
=

Z �(s)


s

dt

Xt

��
s :=

Z �s

0

1fes(t)<0g
dt

es(t)
=

Z 
(s)

�(s�)

dt

Xt

:

Here 
s = inffu > �(s�) : Xu > 0g is the time when process jumps

across zero.

Then (�+
s : s � 0) and (��

s : s � 0) are also Poisson point processes and

if �+; �� are the corresponding characteristic measures we deduce their

distributions from Theorem 3.4 in [3], and we get:

�+ ([t;1)) = �� ([t;1)) =
 ('(t))

'(t)
t > 0

where ' is the inverse function of f : (0;1)! (0;1), f(t) :=

Z 1

t

d�

 (�)
which under our hypothesis is a bijection .

We follow [4] in order to de�ne (Ct : t � 0) as

Ct := Cgt +

Z t

gt

ds

Xs

= C�(L�
t
) +

Z t

gt

ds

Xs

= Cdt �

Z dt

t

ds

Xs

= C�(Lt) �

Z dt

t

ds

Xs

where

C�(s) = lim
"!0+

X
0�t�s

1fj�tj>"g�t s � 0

C�(s) = lim
"!0+

X
0�t�s

1fj�tj>"�t s � 0 :
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In [3] we �nd the following result:�
C�(s) : s � 0

�
is a Cauchy process with parameter �.

This is a remarkable fact since it agrees with the similar result in the

following cases:

(i) X is a Brownian Motion (see [5])

(ii) X is a Symmetric L�evy process (see [6])

(iii) X is a L�evy process with su�ciently smooth local times (see [2])

Observe that in these three cases the construction the Cauchy principal

value of X is based on the existence and smothness of (L(t; x) : t � 0; x 2 R)

on the space variable. The local times of X in our case do not have this

condition and that is why we give this alternative construction of C, which

can be done thanks to the results in [3].

Regularity properties of (Ct : t � 0).

(1) (Ct : t � 0) is a continuous process.

(2) For every T > 0, we have the following inequality for the p-variation of C.

mp

 X
s�T

(�+
s ) +

X
s�T

(��
s )

p

!
� V

p

�(T )(C)

� Mp

 
V
p
T

�
C�(�)

�
+
X
s�T

�
�+
s

�p
+
X
s�T

�
��
s

�p!

where mp;Mp are constants which depend only on p.

Recall that, V p
t (h) = sup

�

V
p
t [h; � ] = sup

�

f
Pn

i=1 jh(ti)� h(ti�1)j
pg where

h : [0; t]! R is a function and � runs over all partitions of [0; t]).

Since the p variation of a Cauchy process is well known (it is �nitefor

any p > 1), the variation of C will only depend on the p variation of the

Poisson point process (�+
t : t � 0) and (��

t : t � 0). These facts allows

us to prove.
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(3) Theorem. For any p > 1, T > 0,

(a) If

Z 1

a:s:

(f(x))p�1
dx

x
<1 then C has �nite p-variation on [0; T ] a.s.

(a) If

Z 1

(f(x))p�1
dx

x
= 1 then C has in�nite p-variation on [0; T ]

a.s.

For the proofs of these results and for examples see [4]
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Exponential functionals of L�evy processes

P. Carmona, F. Petit and M. Yor

What is a perpetuity ?

Assume that

� at each time period you are given one euro ;

� the value at time n of one euro given at time n+ 1, is Xn.

Then, the perpetuity is de�ned to be the the value at time t = 0 of everything
you receive

Y = 1 +X1 +X1X2 + � � � =
X
n

Y
i�n

Xi :

The continuous time analogue is, for iid Xn's, the exponential functional

A1 =

Z 1

0

e�s ds

In a more general model you are given Bi at time t = i so that

Y =
X
n

Bn
Y
i�n

Xi :

The continuous time analogue is, for �; � independent L�evy processes,

A1(�; �) =

Z 1

0

e�s d�s:

We shall give three ways of determining the law of A1.

1. The law of A1 is the invariant probability law of a Markov process.

2. Moments formulae

E
�
A�1
�
=

�

�(�)
E
�
A��11

�
; with E

�
e��t

�
= e�t�(�)

3. Martingale methods.

The perpetuity equation

Let T be a �nite stopping time. Then ��t = �t+T � �t, ��t = �t+T � �t are L�evy
processes independent of FT . Since

A1(�; �) = AT (�; �) + e�TA1(��; ��);
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therefore A1 is a solution of the perpetuity equation

X
d
=UX + V X?(U; V ):

An extensive study of this equation has been done by Verwaat [10]. One open
problem is to prove, for solutions of this equation, an analogue of Jurek's [5]
random integral representation of self decomposable laws:

X =

Z 1

0
e�s d�s E [log(1 + j�1j)] < +1:

The underlying Markov process

De�ne, for x 2 R,
V xt (�) = e�t

�
x+

Z t

0
e��s ds

�
:

If � is a semimartingale then V is the solution of the stochastic di�erential
equation

dVt = dt+ Vtd�t :

In the general case, V is still an homogeneous Markov process. Furthermore, as
a consequence of the time reversal property of L�evy processes, we have

1. for all t > 0 : Vt
d
= e�tx+ At.

2. If a.s. �t ! �1 and A1 < 1, then the law of A1 is the invariant
probability law of V .

3. The generator of V is given by

LV f(x) = f 0(x) + L�(fx)(0) withfx(u) = f(xeu) ; f 2 S ;

where S denotes the Schwarz space of rapidly decreasing functions.

Theorem 1. If � is nice, then A1 has a density k solution of

�k0(x) + 1

x
L��(~k)(logx) = 0 x > 0; ~k(u) = euk(eu) :

Examples

1. Dufresne [3] identity For Brownian motion with drift

�t = �Bt � ct (c > 0)

k is the solution of the di�erential equation

��
2

2

d

dx
(x2k(x)) + ((

�2

2
� c) + 1)k(x) = 0

and so A1 has the law of the inverse of a Gamma random variable

A1
d
=

2

�2Z2c=�2
Za � 
(a)
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2. The opposite of a subordinator with drift :

�t = �(ct + �+t ) with : c+

Z 1

0
��+(x) dx > 0. k satis�es the integral equation

(1� cx)k(x) =

Z 1

x

��+(log(u=x)) k(u)du :

We consider the case ��+(x) = ae�bx where a > 0; b > 0 and E [��1] = c +
(a=b) > 0.

A1
d
=

8><
>:

1
cZb+1;a=c if c > 0 ;
1
a
Zb+1 if c = 0 ;
1
jcj

Zb+1
Z(a=jcj)�b

if c < 0,

P(Z�;� 2 dx) = dx

B(�; �)
x��1 (1� x)��1 1(0<x<1) :

The generalized moving average processes

This model is inspired by works of Novikov [7], Samorodnitsky and Taqqu [9].
Given two independent L�evy processes � and � we de�ne

Vt = V xt (�; �) = e�t(x+

Z t

0

e��s d�s) :

When � and � are semimartingales, the process V is the unique solution of the
stochastic di�erential equation:

dVt = d�t + Vtd�t :

V is an homogeneous Markov process whose semi group is characterized by

Ex

�
eiuVt

�
= E

�
exp(iuxe�t +

Z t

0

 (ue�s ) ds)

�

with E
�
eiu�t

�
= et (u)

Furthermore,

1. for every �xed time t : Vt
d
= e�tx+At.

2. If a.s. �t ! �1 and A1 < 1, then the law of A1 is the invariant
probability law of V .

3. The generator of V is given on S by

LV f(x) = L�f(x) + L�(fx)(0) with fx(u) = f(xeu) :

Theorem 2. If � and � are nice, then A1 has a density k solution of

L��k(x) +
1

x
L��(~k)(logx) = 0 x > 0;

where ~k(u) = euk(eu).
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Example: Paulsen [8] W �;W � being two independent Brownian motions, we
let:

�t = �rt+ ��W
�
t ; �t = pt+ ��W

�
t ; (r > �2� ):

Then,

k(x) = K(�� + ��x
2)�(1=2+r=�

2
�) exp

�
2p

����
arctan(

��x

��
)

�

Generalized Ornstein-Uhlenbeck processes

We think that they were introduced by Hadjiev [4]. If (Xt ; t � 0 )is an H self
similar Markov process and � an independent L�evy process, then

Ut = eH�tX

�Z t

0

e��s ds

�

is an homogeneous Markov process.

When do we have Ornstein-Uhlenbeck
d
= Moving Average ?

Theorem 3. If (�t ; t � 0 ) is an �-stable L�evy process then the two following

Markov processes have the same law.

Ut = e
1
� �t(x+ �(

Z t

0
e��s ds))

Vt = e
1
� �t(x+

Z t

0

e�
1
� �s� d�s)

The moments formulas

Theorem 4. For � � 1 or 0 < � < 1 and �(�) > 0

E
�
A�1
�
=

�

�(�)
E
�
A��11

�
; with E

�
e��t

�
= e�t�(�)

If �0(0+) > 0, then
E
�
A�11

�
= �0(0+)(= �E [�1]):

To give an idea of the proof, we establish �rst that

E
�
A�t
�
= �

Z t

0

e�v�(�)E
�
A��1t�v

�
dv

and then we let t go to +1.

Theorem 5. If �� is a subordinator, then the law of A1 is determined by its

moments

E [An1] =
n!Q

1�j�n �(j)

E
�
e�A1

�
< +1; for 0 < � < �(+1)
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Theorem 6. Under nice assumptions the characteristic function f(u) = E
�
eiuA1

�
is a solution of

L�fu(0) + f(u) (u) = 0

fu(x) = f(uex) E
�
eiu�t

�
= et (u)

Example Let (Bt ; t � 0 ) be a Brownian motion and (Nt ; t � 0 ) be an inde-

pendent Poisson process. We let �t = �Bt � rt, �t =
PNt

i=! Si, where Si are iid

of law exp(�). Then

A1
d
=
X

Y
; X

d
= 
(b; �); Y

d
= �(a; 1 + b)

where a = 2r=�2, b = 2=a(
p
1 + �a � 1), X and Y are independent.

References

[1] Ph. Carmona, Some complements on : On the distribution and asymptotic

results for exponential functionals of L�evy processes, Unpublished, sep 96.

[2] Ph. Carmona, F. Petit, and M. Yor, On the distribution and asymp-

totic results for exponential functionals of L�evy processes, Exponential func-
tionals and principal values related to Brownian motion, Biblioteca de la
Revista Matematica Ibero-Americana, 1998.

[3] D. Dufresne, The distribution of a perpetuity, with application to risk

theory and pension funding, Scandinavian Actuarial Journal (1990), 39{79.

[4] D.I.Hadjiev, The �rst passage problem for generalized Ornstein-Uhlenbeck

processes with non-positive jumps, S�eminaire de Probabilit�es XIX, Lecture
Notes in Mathematics 1123, Springer, 1985.

[5] Z.J. Jurek, Random integral representations for classes of limit distribu-

tions similar to L�evy class L0, Probability Theory and Related Fields 78
(1988), 473{490.

[6] T. Nilsen and J. Paulsen, On the distribution of a randomly discounted

compound Poisson process, Stochastic Processes and their Applications 61
(1996), 305{310.

[7] A.A. Novikov, On the �rst passage time of an autoregressive process over

a level and an application to a disorder problem, Theory Probab. Appl. 35
(1987), 269{279.

[8] J. Paulsen, Risk theory in a stochastic economic environment, Stochastic
Processes and their Applications 46 (1993), 327{361.

[9] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian random pro-

cesses, Stochastic Modelling, Chapman and Hall, New York, London, 1994.

[10] W. Vervaat, On a stochastic di�erence equation and a representation of

non negative in�nitely divisible random variables, AAP 11 (1979), 750{783.

59



TERM STRUCTURE MODELS DRIVEN BY GENERAL

L�EVY PROCESSES

ERNST EBERLEIN AND SEBASTIAN RAIBLE

Empirical investigations ([2], [3]) showed that purely discontinuous
L�evy processes allow more realistic modeling of stock returns. This
motivates a similar generalization of Gaussian term structure models.
We present a new class of bond price models that can be driven by a
wide range of L�evy processes (Lt). We do not just replace Brownian
motion (Bt) in the standard di�usion model for the price of a zero
coupon bond with maturity T

dP (t; T ) = P (t; T )(r(t)dt+ �(t; T ) dBt)

by (Lt). As the result we would get the Dol�eans-Dade exponential.
Instead we introduce (Lt) in the solution of this equation, which can
be written in the form

P (t; T ) = P (0; T ) �

�Z t

0

r(s)ds

� exp

�Z t

0

�(s; T )dBs

�

E

�
exp

�Z t

0

�(s; T )dBs

��
This is consistent with martingale modeling. In order to guarantee exis-
tence of the corresponding moment generating functions, which appear
in the denominator, the only restriction one needs is an integrability
assumption for the tails of the L�evy measure of L(L1).

After some analysis we get the derived forward rate process f(t; T )
in the form

f(t; T ) = f(0; T ) +

Z t

0

�0(�(s; T ))�2(s; T )ds�

Z t

0

�2(s; T )dLs:

Here �(u) = log(E[exp(uL1)]) denotes the log of the moment gener-
ating function of L(L1) and �2 the partial derivative of � with respect
to maturity. If r(t) = f(t; t) denotes the short rate process we �nally
get the following representation for the bond price process
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P (t; T ) = P (0; T ) � exp

�Z t

0

(r(s)� �(�(s; T ))) ds+

Z t

0

�(s; T )dLs

�
:

By Ito's formula for semimartingales this process satis�es the following
stochastic di�erential equation

dP (t; T ) = P (t�; T ) �
�
r(t)dt+

� c
2
�2(t; T )� �(�(t; T ))

�
dt

+ �(t; T )dLt +
�
e�(t;T )�Lt � 1� �(t; T )�Lt

��
In [1] Bj�ork, di Masi, Kabanov and Runggaldier introduce a general
semimartingale model for the term structure. Its forward rate dynamics
is given by

f(t; T ) = f(0; T ) +

Z t

0

�(s; T )ds+

Z t

0

�(s; T )dBs + �(s; x; T ) � (�� �):

Here � is a �-�nite random measure with absolutely continuous com-
pensator
�(!; dt; dx) = �t(!; x)dt and �; � and � satisfy certain measurability
and integrability conditions. Since the L�evy processes considered above
are special semimartingales, by using the canonical representation

Lt = �t + �Bt + x � (�L
� �L)

one sees that our model �ts into their framework. In particular our
model satis�es the generalized Heath-Jarrow-Morton drift condition
derived in [1].

Under additional assumptions we characterize volatility structures
�(t; T ) which lead to Markovian short rates. The key property here is
a factorization of the partial derivative of the volatility of the form

�2(t; T ) = �(t) � �(T )

for C1-functions � and �. In the Markovian case the forward rates
turn out to be deterministic functions of the current short rate r(t). If
� is stationary the only candidates which remain are the Vasi�cek and
the Ho-Lee structure. For the Vasi�cek volatility structure the short rate
process is mean-reverting and satis�es a stochastic di�erential equation
of the form

dr(t) = a(%(t)� r(t))dt� b�dLs:

The mean % is a deterministic process and a and b� are the parameters
of the Vasi�cek structure.
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Numerically we investigate the case where the driving process is a
hyperbolic L�evy motion (Lt). Hyperbolic forward rates turn out to be
higher than Gaussian rates. Finally we price options on bonds. Since
the underlying measure is a martingale measure which is unique, by
construction no change of measure is necessary here. The resulting op-
tion prices, plotted as a function of the forward price-strike ratio, show
a characteristic, W-shaped deviation from option prices in the Gaussian
model. Similarly structured deviations were observed, when hyperbolic
stock option prices were compared to standard Black-Scholes prices.
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INFERENCE ON L�EVY MEASURE PARAMETERS:

LOCAL ASYMPTOTICS IN NEIGHBOURHOODS OF

d-DIMENSIONAL STABLE PROCESSES

REINHARD H�OPFNER

L�evy-measures of d-dimensional stable processes X = (Xt)t�0 are �-
�nite measures ��;� on E:=IRdnf0g, with Borel-�-�eld E , of form

��;�(f x2E : jxj>r ; xjxj2A g) = r���(A) (1)

for all r>0, A2S, where � is some �nite measure on the unit sphere S
of IRd, with Borel-�-�eld S, and 0<�<2 is a stability parameter (L�evy
1954). More generally, consider L�evy processes X where �, � as above
appear only asymptotically in the L�evy measure � (e.g., Greenwood
and Resnick 1978):

�(f x2E : jxj>r ; xjxj2A g) � r���(A) as r!1 (2)

for all A2S. Assume that stability parameter �, total mass �:=�(S)
of � and angular distribution �(A):=��1�(A), A2S, are unknown and
are to be estimated from observation of all big jumps of the process
which have occurred over some long time interval. The statistical prob-
lem is the following. We do know estimators for (�; �; �) in the stable
process context (1) which are e�cient in a certain asymptotic sense
(cf. LeCam 1969, H�ajek 1970, LeCam and Yang 1990). Do their prop-
erties carry over to neighbourhood models of type (2) where (�; �; �) are
only tail parameters, and which conditions are needed to ensure that
a neighbourhood model (2) is su�ciently close (in a sense of Hellinger
distance) to (1) in order to inherit its statistical properties ?

Observing big jumps of X over some long time interval means the fol-
lowing. Let �X(dt; dx) denote the point process of jumps of X which is
Poisson random measure on (0;1)�E with intensity dt��;�(dx) under
(1), and dt�(dx) under (2). Then we observe �X(dt; dx) in a window
of type [0; T ]�fx2E:jxj�Y g, for suitably de�ned Y , T . We are inter-
ested in asymptotics, so Y=Yn and T=Tn increase to 1. One of these
bounds is always deterministic, either the spatial threshold Yn or the

Editors note: R. H�opfner was unfortunately unable to attend the Conference.

We reproduce here the abstract of his planned talk.
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observation time Tn, the other is then random and de�ned sequentially
such that the window Kn := [0; Tn]�fx2E:jxj�Yng contains exactly n
points of �X(dt; dx). We write P n

�;�;�, P
n
�
for the law of the restricted

point process 1Kn
(s; x)�X(dt; dx) under ��;�, �, and

dn(�) = H2(P n
�
; P n

�;�;�) (3)

for their squared Hellinger distance in case (2).

Disintegrate a measure � on (E; E) meeting (2) into its radial com-
ponent G(dr) and a conditional law K(r; ds) of its angular compo-
nent. If �=��;�, K(r; ds)=�(ds) is clearly independent of r, and we
write G�;�(dr) for the radial component ��x���1dx. Under (2), let
(LG=G�;� ; NG=G�;�) denote a Lebesgue decomposition of G with respect
to G�;�, and write h�(r) for the squared Hellinger distance between
K(r; �) and �. We say that � admits (�; �; �) as tail parameters if

�2
�
(r) := maxf h�(r); j

q
LG=G�;�(r)� 1j2; r�G(NG=G�;�\[r;1)) g

vanishes as r!1. Recall that a function  : (0;1)!(0;1) varies reg-
ularly at 1 with index �, �2IR, if  (u) = l(u) u� for some l(�) varying
slowly at 1, see Bingham, Goldie and Teugels (1987).

De�nition: Consider a function  : (0;1)!(0;1) varying regularly
at1 with negative index, and a family T of measures (2) which admit
tail parameters. Write Q for the family of corresponding ��;�, with
(�; �; �) ranging over the class of tail parameters arising in T . Then
T is called a  -neighbourhood of Q if the following holds, for �xed
constants 1�M;M 0<1:

��(r) �M  (r) Lebesgue�a:s: on [M 0;1) ; 8 �2T
in case of windows (Kn)n with deterministic observation time (Tn)n,
and

��(r) �M  (r�) Lebesgue�a:s: on [M 0;1) ; 8 �2T
in case of deterministic spatial thresholds (Yn)n.

The following is our main result; it compares En := fP n
�
: �2T g, the

statistical experiment of type (2) at stage n, to its 'stable' counterpart
Fn := fP n

�;�;� : ��;�2Qg in terms of Hellinger distances (3). Below we
say that T has tail parameters bounded away from 0 and 1 if all tail
parameters (�; �) corresponding to measures � in T are contained in
some compact subset of (0;1)�(0;1). The Hill estimator sequence
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for � in (En)n or (Fn)n is

b�n = [
1

n

nX
j=1

(logRn;j � logRn;n)]
�1

where Rn;1>Rn;2>:::>Rn;n is the decreasing rearrangement of abso-
lute values fjZjj : 1�j�ng coming from the n points (Sj; Zj)1�j�n of
�X(ds; dz) in Kn. In the classical iid setting of extreme value the-
ory, this estimator has been extensively studied since Hill (1975), Hall
(1982), Hall and Welsh (1985).

Theorem 1: Assume Yn!1 if (Yn)n is deterministic, and Tn
n
!1 in

case where (Tn)n is deterministic. Assume that T is a  -neighbourhood
of Q.
a) The following chain of inclusions i))ii))iii) holds:
i) (Kn)n tends to 1 fast enough, i.e.: one has

p
n (Yn) ! 0 if (Yn)n

is deterministic, and
p
n (Tn

n
)! 0 if (Tn)n is deterministic, as n!1;

ii) (En)n is an accompanying sequence for (Fn)n in the sense that

supfdn(�) : �2T0g ! 0 as n!1
for every subset T0�T having tail parameters bounded away from 0
and 1;
iii) the Hill sequence (�̂n)n is asymptotically normal in (En)n :

8 �2T ; L(
p
n

�
(b�n��) jP n

�
) ! N (0; 1) as n!1 :

b) Equivalence of i)-iii) holds if there are measures � in the family T
related to their tail parameters in the following way:

G([r;1)) = (1+c (r)+o( (r))) � r�� as r!1
if (Yn)n is deterministic, for some c j=0, respectively

G([r;1)) = (1+c (r�)+o( (r�))) � r�� as r!1
in case where (Tn)n is deterministic.

As a consequence, results for tail parameter estimation available
in (Fn)n (strong consistency, asymptotic normality, e�ciency within
classes of regular estimators, notions of regularity, ..., see H�opfner and
Jacod (1994), H�opfner (1997), or Marohn (1995) for corresponding re-
sults in classical iid extreme value theory) immediately carry over to
(En)n.
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THE SYMBOL OF A MARKOV PROCESS

NIELS JACOB

Let us start with a L�evy process (Yt)t�0 with state space Rn. We
denote its corresponding semigroup by (St)t�0, i. e.

Stu(x) = Ex(u(Yt)) =

Z
Rn

u(x+ y)�t(dy);(1)

where (�t)t�0 is the convolution semigroup on Rn which determines
(Yt)t�0. The Fourier transforms �̂t are given by

�̂t(�) = (2�)�n=2
Z
Rn

e �ix� ��t (dy) = (2�)�n=2e�t  (�);(2)

where  : Rn ! C is a continuous negative de�nite function, i. e. we
have the L�evy-Khinchin representation

 (�) = c + i d � � +Q (�) +

Z
Rnnf0g

�
1� e�i y�� �

i y � �

1 + jyj2

�
1 + jyj2

jyj2
�(dy)

(3)

with c � 0; d 2 Rn; a positive semide�nite, symmetric quadratic form
Q and a �nite Borel measure � on Rn n f0g: The convolution theorem
yields for u 2 S(Rn) (for simplicity)

Stu(x) = (2�)�n=2
Z
Rn

eix��e�t (�)û(�)d�;(4)

and for the generator of (St)t�0 (with respect to the sup-norm) we �nd

Au(x) = � (D)u(x) = �(2�)�n=2
Z
Rn

eix�� (�)û(�)dy:(5)

Thus both, the operators St; t � 0; and A are in the language of anal-
ysis pseudo di�erential operators with symbols

�t(�) = e�ix��Ex(eiYt��) = E0(eiYt��) = e�t (�)(6)
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and

� (�) =
d

dt
�t(�)jt=0;(7)

respectively. The formulas (6) and (7) say that the symbols �t and � 
can be obtained directly from the process (Yt)t�0 with obvious inter-
pretation: �t is nothing but the characteristic function of the random
variable Yt and  is the characteristic exponent of the L�evy process
(Yt)t�0. It is a well known fact that �t; t � 0, and especially  are
very useful to describe properties of the corresponding L�evy process
(Yt)t�0. In fact Bochner's approach, see [2], to these processes goes
systematically along this line.
Let us mention some properties of (Yt)t�0 determined by the charac-

teristic exponent: conservativeness, transience, recurrence, Hausdor�
dimensions of sample paths, local and gobal regularity properties of
sample paths, ...
We refer to the existing literature, especially to the monographs by J.

Bertoin [1] and K.-I. Sato [21] for a comprehensive discussion of L�evy
processes. Using the L�evy-Khinchin formula (3) we may obtain also
a pathwise decomposition of the process (Yt)t�0. For example in the
one-dimensional, conservative case, i. e.  (0) = 0, we have

Yt = 
 0 t+Bt +

Z
fjxj<1g

x fNt(�; dx)� t
�
� (dx)g+

X
0<s�t

�Ys�fj�Ysj�1g;

(8)

with a drift coe�cient 
 0, a Brownian motion (Bt)t�0, the L�evy measure
�
� and a suitable kernel Nt(�; dy): We refer to Ph. Protter [20] for
a discussion of the formula (8). The L�evy decomposition (8) opens
the gate to a stochastic analysis, i.e. to an analysis on the path space
of a L�evy process, while concentrating on the characteristic exponent
emphasis more the potential theoretical aspect in the theory of Markov
processes. Both aspects are complementary, neither compete nor do
exclude each other.
Now let us look on a general Markov process (Xt)t�0 with state

space Rn: For simplicity let us assume (Xt)t�0 to be a Feller process.
A lot of work is done on the stochastic analysis of these processes,
especially by J. Jacod, see [12] and [13], and the references therein.
Our aim is to show that there is a natural analytic approach to these
processes analogous to the approach to L�evy processes by characteristic
exponents. The following considerations are taken from our paper [10],
we refer also to R.L. Schilling's paper [24] who could reduce some of
our earlier assumptions.
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In order not to overload this report, we are a little unprecise in stating
exact technical conditions on the processes under consideration.
By de�nition (Xt)t�0 is a Feller process with state space Rn if the

semigroup

Ttu(x) = Ex(u(Xt))(9)

is a Feller semigroup, i. e. a positivity preserving strongly continuous
contraction semigroup on C1(R

n): De�ning the function

�t(x; �) = Ex(ei(Xt�x)��);(10)

a straightforward calculation leads (let us say on S(Rn))
to

Ttu(x) = (2�)�n=2
Z
Rn

e ix� ��t (x; �) û (�) d �:(11)

Thus, Tt; t � 0; is a pseudo di�erential operator and its symbol
�t(x; �) is given by the family of the characteristic functions of (Xt; P

x)x2Rn:

Further, a more involved calculation shows for the generator A of
(Tt)t�0 (again on S(Rn) ) that it is a pseudo di�erential operator

Au(x) = �(2�)�n=2
Z
Rn

e ix � �
d

dt
�t (x;�)jt=0 û(�) d �(12)

= �(2�)�n=2
Z
Rn

e ix � � q(x; �)û (�)d �

=: �q(x;D) u (x);

with symbol

�q(x; �) =
d

dt
� t (x; �)jt=0(13)

Clearly, q(x; �) cannot be arbitrary. While the regularity of x !
q(x; �) is determined by some mapping properties of (Tt)t�0 (or equiv-
alently of A), the function � ! q(x; �) must be a continuous negative
de�nite function, which can be experssed by the formula
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q(x; �) = c(x) + i d (x) � � +
nP

k; l=1

akl(x) �k �l

+

Z
Rnnf0g

�
1� e�i y � � �

i y � �

1 + jyj2

�
1 + jyj2

jyj2
�(x; dy)

(14)

with (say continuous) functions c � 0; d , and akl = alk such that
nP

k; l=1

akl(x) �k�l � 0; and an appropriate �nite kernel �(x; dy).

Now, �rst note that (Xt)t�0 determines q(x; �) uniquely. But since
�q(x;D) determines (Xt)t�0 uniquely and is itself determined by q(x; �);
we have to conclude that q(x; �) determines uniquely the process (Xt)t�0:
Note further that if (Xt)t�0 is a L�evy process, q(x; �) will be x-independent,
thus q(x; �) =  (�) is nothing but the characterstic exponent of this
L�evy process. Thus q(x; �) generalizes the concept of the characteris-
tic exponent to processes which have not independent and stationary
increments. In the analysis of pseudo di�erential operators �q(x; �)
is called the symbol of �q(x;D): For this reason we call q(x; �) the
symbol of the process (Xt)t�0:

Now let us collect some results which show that we may derive prop-
erties of the process (Xt)t�0 from its symbol q(x; �).

1. (R. L. Schilling [22] and [26]) Let q(x; �) be the symbol of a Feller
process (Xt)t�0 and  (�) be the symbol (characteristic exponent) of a
L�evy process (Yt)t�0 .
Suppose further that jq(xi�)j � c(1 +  (�)) holds for all � 2 Rn.

Denote by� the upper index of the L�evy process (Yt)t�0 , i. e.

� = inff� > 0; lim
j�j!1

j 1(�)j

j�j�
= 0g(15)

Then we have for every Borel set E � [0; 1] P x � a:s::

dimHfXt(w); t 2 Eg � � dimHE:(16)

2. ( R. L. Schilling [25] ) Let (Xt)t�0 be a Feller process with symbol
q(x; �) and set

�0 := sup f� � 0; lim
j�j!0

sup y2Rnj q(y; �)j

j�j�
= 0g(17)

and
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�x1 := inff� > 0; lim
j�j!1

sup jx�yj� 2

j�j
j q(x; �)j

j�j�
= 0g:(18)

.
Then P x � a:s: we have for the components (X

(j)
t )t�0 of (Xt)t�0

(t! Xx_0(w))
(j) 2 Bs

pq(R; (1 + j � j
2)��=2);(19)

where s 2 R; p; q � 1 such that s > (1
p
� 1)+; � > 1

p
+ 1

�0
and

s(p_q_�x1) < 1; or s > (1
p
�1)+; � >

1
p
+ 1

p0
; q =1 and s(p_�x1) < 1.

Here Bs
pq(R; (1+ j � j

2)��=2) denotes a weighted Besov space. Analogous
results do hold for weighted Triebel-Lizorkin spaces.

3. (W. Hoh [6]) Let  : Rn ! R be a continuous negative de�nite
function such that  (0) = 0 and de�ne

A (%) := sup
j�j� 1

%

 (�) ; % > 0:(20)

Further let q : Rn � Rn ! R be a continuous function such that
� ! q(x; �) is negative de�nite and satisfying q(x; 0) = 0:
If

q(x; �) � C
1

A (jxj)
 (�) for jxj � 1;(21)

then for any initial distribution � 2 M1(R
n) there is a solution to the

martingal problem for �q(x;D).

These results taken from our former student's work show the usefulness
of the concept of the symbol of a Feller process. Finally let us mention
that there are now a lot of results proving that under certain assump-
tions we may start with a continuous function q : Rn �Rn ! C such
that � ! q(x; �) is negative de�nite and construct the Feller process
having q(x; �) as symbol. We refer to the deep papers of W. Hoh [3]
- [6] and earlier work of the author [7] - [9], and [11] as well as the
achievements of our Japanese colleagues K. Kikuchi, T. Komatsu, A.
Negoro and M. Tsuchiya.

References

[1] Bertoin, J., L�evy processes. Cambridge University Press, Cambridge 1996.
[2] Bochner, S., Harmonic analysis and the theory of probability. University of

California Press, Berkeley 1955.
[3] Hoh, W., The martingale problem for a class of pseudo di�erential operators.

Math. Ann. 300 (1994) 121-147.



72 NIELS JACOB

[4] Hoh, W., Pseudo di�erential operators with negative de�nite symbols and the
martingale problem. Stoch. and Stoch. Rep. 55 (1995) 225-252.

[5] Hoh, W., A symbolic calculus for pseudo di�erential operators generating Feller
semigroups. Osaka J. Math. (in press)

[6] Hoh, W., Pseudo di�erential operators generating Markov processes. Habilita-
tionsschrift, Universit�at Bielefeld, 1998.

[7] Jacob, N., Feller semigroups, Dirichlet forms, and pseudo-di�erential opera-
tors. Forum Math. 4 (1992) 433-446.

[8] Jacob, N., A class of Feller semigroups generated by pseudo-di�erential oper-
ators. Math. Z. 215 (1994) 151-166.

[9] Jacob, N., Pseudo-di�erential operators and Markov processes. Akademie Ver-
lag, Berlin 1996.

[10] Jacob, N., Characteristic functions and symbols in the theory of Feller pro-
cesses. Potential Anal. 8 (1998) 61-68.

[11] Jacob, N., and H.-G. Leopold, Pseudo-di�erential operators with variable order
of di�erentiation generating Feller semigroups. Integr. Equat. Oper. Th. 17
(1993) 544-553.

[12] Jacod, J., Calcul stochastique et probl�emes de martingales. Springer Verlag,
Berlin 1979.

[13] Jacod, J., and A. N. Shiryaev, Limit theorems for stochastic processes. Springer
Verlag, Berlin 1987.

[14] Kikuchi, K., and A. Negoro, On Markov processes generated by pseudodi�er-
ential operators of variable order. Osaka J. Math. 34 (1997) 319-335.

[15] Komatsu, T., Pseudo-di�erential operators and Markov processes. J. Math.
Soc. Japan 36 (1984) 387-418.

[16] Komatsu, T., Uniform estimates for fundamental solutions associated with
non-local Dirichlet forms. Osaka J. Math. 32 (1995) 833-860.

[17] Komatsu, T., On stable-like processes. In: Proc. 7th Japan-Russian-Symp-
Prob. Th. Math. Statistics 1995, World Scienti�c, Singapore 1996.

[18] Negoro, A., Stable-like processes: Construction of the transition density and
the behavior of sample paths near t = 0. Osaka J. Math. 31(1994) 189-214.

[19] Negoro, A., and M. Tsuchiya, Stochastic processes and semigroups associated
with degenerate L�evy generating operators. Stoch. and Stoch. Rep. 26 (1989)
29-61.

[20] Protter, Ph., Stochastic integration and di�erential equations. Springer Verlag,
Berlin 1990.

[21] Sato, K.-J., Additive Processes (in Japanese) Kinokuniya, Tokyo 1990.
[22] Schilling, R. L., Feller processes generated by pseudo-di�erential operators:

On the Hausdor� dimension of their sample paths. J. Theoretical Probab. 11
(1998) 303-330.

[23] Schilling, R. L., Conservativeness and extensions of Feller semigroups. Posi-
tivity 2 (1998) 239-256.

[24] Schilling, R. L., Conservativeness of semigroups by pseudo di�erential opera-
tors. Potential Anal. 9 (1998) 91-104.

[25] Schilling, R. L., Function spaces as path spaces of Feller processes. Math.
Nachr. (in press).

[26] Schilling, R. L., Growth and H�older conditions for the sample paths of Feller
processes. Probab. Theory Relat. Fields 112 (1998) 565-611.



THE SYMBOL OF A MARKOV PROCESS 73

Universit�at der Bundeswehr M�unchen, Fakult�at f�ur Informatik, In-

stitut f�ur Theoretische Informatik und Mathematik, Werner-Heisenberg-

Weg 39, 85577 Neubiberg, Germany

E-mail address : jacob@laplace.informatik.unibw-muenchen.de



Multifractal analysis of L�evy processes and

L�evy-Chentsov random �elds

St�ephane Ja�ard�

Let us �rst recall some basic de�nitions concerning multifractal func-
tions. The starting point is the de�nition of the pointwiseH�older regularity
criterium C l(t0). Let t0 2 IRd and let l be a positive real number. A function
f(t) : IRd ! IR is C l(t0) if there exists a constant C > 0 and a polynomial
Pt0 of degree at most [l] such that in a neighbourhood of t0

jf(t)� Pt0(t)j � Cjt� t0j
l;

therefore, this de�nition is local and involves no uniform regularity. The
H�older exponent of f at t0 is

hf (t0) = supfl : f 2 C l(t0)g

(note that the H�older exponent is not sensitive to logarithmic corrections in
the modulus of continuity).

The multifractal analysis is concerned in the study of the (usually fractal)
sets Sh where a function f has a given H�older exponent h and in particular
in the determination of the Hausdor� dimension d(h) of Sh. The function
d(h) is called the spectrum of singularities of f . The notion of `multifractal
functions' was �rst introduced by physicists in the context of fully developed
turbulence, see [4]. It is now used in several applications such as �nance,
tra�c data analysis, image analysis...

The Brownian motion is an example of L�evy process that can be quali�ed
as monofractal: Indeed, the H�older exponent of the Brownian motion is

�D�epartement de Math�ematiques, Universit�e Paris XII, Facult�e des Sciences et Tech-

nologie, 61 Av. du Gal. de Gaulle, 94010 Cr�eteil Cedex, France
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everywhere 1=2 (the variations of its regularity are only of a logarithmic
order of magnitude). This example is not typical: we will see that the other
L�evy processes are multifractal provided that their L�evy measure is neither
too small nor too large near zero. Furthermore almost every sample path has
the same spectrum of singularities which depends precisely on the growth of
the L�evy measure near the origin.

When the L�evy measure �(dx) of a L�evy process Xt satis�es �(IRd) =
+1, its growth near the origin can be estimated using the upper index

� = inff
 � 0 :
Z
jxj�1

jxj
�(dx) <1g:

This index was introduced by R. Blumenthal and R. Getoor in [2]. W. Pruitt
in [9] showed that the H�older exponent of L�evy processes (without Brownian
component) at t = 0 is 1=�.

Let
d�(h) = �h if h 2 [0; 1=�]

= �1 else,

and
Cj =

Z
2�j�1�jxj�2�j

�(dx);

the exponent � can also be de�ned using the Cj's by

� = sup

 
0; lim sup

j!1

logCj

j log 2

!
:

The following theorem is proved in [5].

Theorem 1 Let Xt be a L�evy process of L�evy measure �(dx) satisfying � > 0
and X

2�j
q
Cj log(1 + Cj) <1: (1)

If Xt has no Brownian component, the spectrum of singularities of almost

every sample path of Xt is d�(h).

Remarks:

1. Condition (1) fails only when � = 2; thus all L�evy processes of upper
index � such that 0 < � < 2 satisfy the assumptions of Theorem 1,
and in particular all stable L�evy processes are covered by this theorem.
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2. In [8], S. Orey and S. J. Taylor proved that if Xt is a stable symetric

L�evy process, the Hausdor� dimension of the set of points where the
H�older exponent of Xt is at most h is �h. Note however that their
method cannot give regularity results at these points.

3. The assertion expressed in the theorem is stronger than stating that,
for each h, d(h) has almost surely a given value, which would not be
su�cient to determine the spectrum of singularities of almost every
sample path.

4. The almost everywhere H�older exponent of L�evy processes without
Brownian component is 1=�, see [9], which of course agrees with the
theorem (case where h = 1=�).

5. Many results have been proved concerning the fractal nature of the
range of L�evy processes, see for instance [10], or [6] for references con-
cerning `L�evy 
ights', or [1] for results concerning the range of subor-
dinators.

Our next interest is to generalize these results to L�evy-Chentsov ran-
dom �elds. These �elds are a very natural multi-dimensional generalization
of L�evy processes since they have the following simple geometric property:
Their traces on half-lines are L�evy processes (up to a constant). More pre-
cisely, if (Xt)t2IRd is a L�evy-Chentsov �eld, for any a and b in IRd, the function
de�ned on IR+ by u ! Xau+b �Xb is a L�evy process. Furthermore, if Xt is
a L�evy-Chentsov �eld and if � is an a�ne transformation, X�(t) is a L�evy-
Chentsov �eld.

The �rst example was given Paul L�evy's construction of the several di-
mensional Brownian process. The next step was taken by Chentsov who
gave an hyperplane based construction of this Brownian �eld. This idea was
generalized by Mori, Sato et al., see [7] or [11] for instance, who gave the
general construction of a L�evy Chentsov �eld as sums of Poisson processe
with jumps on hyperplanes. These �elds have properties that are very sim-
ilar to L�evy processes; for instance, if they have no Brownian component,
their characteristic function satis�es

IE(ei�Xt) = exp
�Z

Sd�1

Z
IR
ht j �i

�
ei�x � 1� i�x1jxj<1

�
�(d�; dx)

�
; (2)
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Sd�1 is the d� 1 dimensional unit sphere and �(d�; dx) is the L�evy measure
of Xt, i.e. a positive Radon measure satisfyingZ

(1 ^ jxj2)�(Sd�1 � dx) <1: (3)

The growth of the L�evy measure near the origin can be estimated using the
upper index

� = inff
 � 0 :
Z
jxj�1

jxj
�(Sd�1 � dx) <1g:

Condition (3) implies that 0 � � � 2.

Let us brie
y describe the construction of these �elds as sums of Poisson
processes having jumps on hyperplanes. Such a Poisson process is de�ned as
follows.

One constructs �rst a Poisson hyperplane process associated with a �nite
measure m(d�) on Sd�1 by considering a Poisson point process on IR� Sd�1

of Poisson measure dr � m(d�) and by associating to each point (r; �) the
hyperplane orthogonal to the direction � and at distance r from the origin.
If �(d�; dx) is �nite, the Poisson hyperplan process is obtained by �rst con-
structing the Poisson hyperplane process of measure m(d�) =

R
x �(d�; dx)

and then by making the process jump on this hyperplane, the size of the
jump being chosen with the probability ��(dx) such that the following con-
ditioning equality holdsZ Z

��(dx)m(d�) =
Z Z

�(d�; dx):

The L�evy Chentsov �elds on IRd are then constructed by splitting the
L�evy measure on domains 2�j � x < 2�j+1 and by summing up independent
copies of the corresponding Poisson hyperplane processes obtained with these
restricted (hence �nite) L�evy measures.

Let
d0�(h) = �h+ d� 1 if h 2 [0; 1=�]

= �1 else;

The following theorem is proved in [3].

Theorem 2 Let Xt be a L�evy Chentsov �eld with no Brownian part, taking

values in IR, of L�evy measure �(d�; dx) satisfying 0 < � < 2. The spectrum

of singularities of almost every sample path of Xt is d
0
�(h).
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On the asymptotic error in approximation of L�evy

processes by discretizations1

Adam Jakubowski

Nicholas Copernicus University

Extended abstract

Let fXtgt2[0;1]; X0 = 0; be a L�evy process with nontrivial jump part and
characteristic function �(�):

E exp(i�Xt) = �(�)t; t 2 [0; 1]: (1)

Let fXn
t gt2[0;1] be a discretization of fXtg:

Xn
t = X[nt]=n(= Xk=n if k=n � t < (k + 1)=n); (2)

and let
Y n
t = Xt �Xn

t (3)

be \the error of the approximation".
It is well-known that

Xn ! X

in Skorokhod's J1-topology, but not in the uniform topology. It is also easy to
show that

Y n
t ! 0 a:s:

for aech t 2 [0; 1], while due to the \incompatible" location of jumps of X and
Xn's

Y n 6! 0

in J1-topology. By the same reason, if �n !1 then the sequence

Un = �n sup
0�t�1

jY n(t)j

is not bounded in probability.
It follows that in general there is no \rate of convergence" of Yn's to 0, in the

sense that there is no �n !1 such that the sequence �n �Yn converges in distri-
bution or at least remains tight with respect to some suitable (and interesting)
topology on ID([0; 1]).

1Research supported by Komitet Bada�n Naukowych under Grant PB 483/P03/97/12, and
completed while the author was visiting Universit�e Paris VI
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The crucial observation for the present paper is that \smoothing" by means
of integration gives

Zn
t =

Z t

0

Y n(s) ds! 0 a:s: and uniformly in t; (4)

and that the scaled processes n � Zn converge in the sense of �nite dimensional
distributions:

n � Zn �!
f:d:

Z0 (5)

where Z0 is a L�evy process with characteristic function given by the formula

E exp(i�Z0
t ) = exp(t �

Z 1

0

log�(�s) ds): (6)

The marginal laws of Z0 belong to so called class U of in�nitely divisible laws.
We refer to Jurek (1985) for de�nitions, properties and further references.

The trajectories of n � Zn are continuous, while Z0 has discontinuous tra-
jectories. Hence it is impossible that n � Zn converges to Z0 functionally when
ID([0; 1]) is equipped with Skorokhod's J1 topology. If we weaken the topology
then we are able to strengthen the �nite dimensional convergence (5) to functional
convergence.

Theorem
n � Zn �!

S
Z0 (7)

Here S stands for the topology formally de�ned in Jakubowski (1997). The
topology S arises naturally in limit theorems for stochastic integrals (see Jaku-
bowski (1996)) and has good continuity properties with respect to the Skorokhod
Problem for convex domains. Since S is not commonly known we shall summarize
its properties.

� Write xn �!S x0 if for every " > 0 one can �nd functions vn;" of bounded
variation on [0; 1], which are "-uniformly close to xn's and weakly-� conver-
gent:

sup
t2[0;1]

jxn(t)� vn;"(t)j � "; n = 0; 1; 2; : : : ;

vn;" �!
w

v0;"; as n!1:

� The topology S is sequential (i.e. de�ned in terms of convergent sequences
xn �!S x0) and cannot be metricized.

80



� K � D ([0; 1]) is relatively S-compact if, and only if, the following conditions
hold.

sup
x2K

sup
t2[0;1]

jx(t)j � CK < +1:

sup
x2K

N�(x) � C� < +1; � > 0;

where N�(x) is the number of �-oscillations of x: N�(x) � k i� one can �nd
numbers 0 � t1 � t2 � : : : � t2k�1 � t2k � 1 such that jx(t2i�1)� x(t2i)j >
�, i = 1; 2; : : : ; k.

� If xn �!S x0, then xn(t)! x0(t) for each t except for a countable set.

� If xn(t) ! x0(t) for each t in a dense set containing 0 and 1 and fxng
is S-relatively compact then xn �!S x0 (not true for the convergence in
measure!).

� There exists a countable family of S-continuous functions which separate
points in D ([0; 1]).

� The �-�eld BS of Borel subsets for S coincides with the usual �-�eld gen-
erated by projections (or evaluations) on D ([0; 1]): BS = �(�t : t 2 [0; 1]).

� The set P(D ([0; 1]); S) of S-tight probability measures is exactly the set of
distributions of stochastic processes with trajectories in D ([0; 1]).

� S is weaker than Skorohod's M1 and J1 topologies. Since J1 is Polish,
S is Lusin in the sense of Fernique. But we do not know whether it is
(completely) regular.

Let us emphasize that ID([0; 1]) equipped with S-topology has equally good
properties as Polish spaces: there exists the a.s. Skorokhod representation and
both the direct and the converse Prohorov's theorems are valid. However, it
should be pointed out that topology S is advantageous when we are interested
in existence problems (this is typical for weak topologies). In problems of the
type considered above its usefulness is moderate. For example the functional
ID 3 x 7! supt2[0;1] jx(t)j is only lower semicontinuous in all x 2 ID. On the
contrary, this functional is continuous in topology J1 in each x 2 ID for which
x(�1) = x(1). The same property holds for another topology,M1, also introduced
by Skorokhod (1956), which seems to be more suitable here. For a long time it
was neglected (see, however, Kasahara and Kotani (1979) and Avram and Taqqu
(1992)). Recently there seems to be growing interest in this topology for it is
expected to be applicable in continuous approximations of L�evy processes arising
in models of heavy tra�c networks - see Konstantopoulos and Lin (1998). For
completness we list below basic properties of topology M1.
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� A sequence xn converges to x0 in M1-topology (xn �!M1
x0) if one can

�nd continuous parametrizations (�n(s); �n(s)), s 2 [0; 1], n = 0; 1; 2; : : : ; of
(extended) graphs of xn's such that

lim
n!1

sup
s2[0;1]

j�n(s)� �0(s)j+ j�n(s)� �0(s)j = 0 (8)

� The topology M1 is metric and separable. It is weaker than the usual
topology J1.

� K � D ([0; 1]) is relatively M1-compact if, and only if, the following condi-
tions hold.

sup
x2K

sup
t2[0;1]

jx(t)j � CK < +1:

lim
"&0

sup
x2K

�M1
("; x) = 0;

where
�M1

(�; x) = sup
0�s<t<u<s+")^1

H(x(s); x(t); x(u))

and for y1; y2; y3 2 R
d , H(y1; y2; y3) is the distance of y2 from the segment

[y1; y3].

� If xn �!S x0, then xn(t)! x0(t) in each point of continuity of x0 .

� The �-�eld BS of Borel subsets for S coincides with the usual �-�eld gen-
erated by projections (or evaluations) on D ([0; 1]): BS = �(�t : t 2 [0; 1]).

� The set P(D ([0; 1]); S) of S-tight probability measures is exactly the set of
distributions of stochastic processes with trajectories in D ([0; 1]).

We conjecture that our Theorem can be improved to

Conjecture
n � Zn �!

M1

Z0 (9)

Finally, let us notice that our result complements in some sense the consider-
ations contained in Jacod and Protter (1998).
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DIFFERENT ASPECTS OF

SELFDECOMPOSABILITY

Zbigniew J. Jurek (University of Wroc law, Poland)

A SELFDECOMPOSABLE rv X (or its probability distribution or its
characteristic function �) is de�ned as a limit of normalized partial sums of
independent rv. Of course, stable rv S are selfdecomposable { they corre-
spond to i.i.d. summands in the above partial sums. On the other hand, all
selfdecomposable rv are in�nitely divisible (denoted by ID). Letting L be
the class of all selfdecomposable rv we get inclusions S � L � ID. Usually
the �rst characterization of selfdecomposability is as follows:

� 2 L i� 8(0 < c < 1)9(char:f: c) �(�) = �(c�) c(�): (1)

In terms of rv we have

X 2 L i� 8(0 < c < 1)9(Xc � X) X
d
= cX +Xc; (2)

where \
d
=" means equality in distribution and \�" means stochastic inde-

pendence . \Solving" equation (2) one gets

X 2 L i� X
d
=

Z
(0;1)

e�sdY (s); with Eflog(1 + jY (1)j)g <1; (3)

where Y (�) is a L�evy process called the background driving L�evy process; in
short: Y is the BDLP of X or X is driven by Y . Cf. [14], [15], [16], [18].

A. Identi�cation of BDLP's. Class L is quite rich and contains
among others: gamma 
�;�, t-Student, F -Fisher, log-normal, inverse Gaus-
sian, Barndor�-Nielsen generalized hyperbolic, generalized gamma, etc., cf.
[15], [16], [3]. However, �nding explicitly their BDLP's might be rather di�-
cult. Stable laws are driven by stable processes ([18], Thm 4.4.2.), compound
Poisson processes are BDLP for gamma ([14], [15]), but BDLP for normal
inverse Gaussian is a sum of three independent L�evy processes ([2], [3], Thm
3.1). Similarly, for inverse Gaussian distribution the driving process is a sum
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of inverse Gaussian L�evy process and compound Poisson process; [2], p.18.
[Proposition 1.1. in [15] shows that a class L distribution may appear in
its own BDLP]. For BDLP identi�cation purposes it might also be useful to
observe that from (3) follows

log�(t) =

Z t

0

log (u)
du

u
; t 6= 0; (4)

where � is char.f. of X and  is char.f. of Y (1). Hence we conclude that

 (t) = exp[t(log�(t))0]: (5)

In particular, class L char.f. are di�erentiable for t 6= 0 and  2 ID with
�nite logarithmic moment.

B. Class L Ising models. De Coninck (1984) had observed that in
some classical Ising models of ferromagnetism the partition function is of the
form of an in�nite product of (1 + a2nt

2). Thus

�(t) =
1Y
n=1

(1 + a2nt
2)�1 2 L (6)

and this corresponds to a random series
P

n an�n, where (�n) are i.i.d. Laplace/double
exponential distributions. Later, in [7] class L Ising models are de�ned as
those for which the free energy function

g(�; h) :� ���1 lim
�"Zd

j�j�1 logZ�(�; �h) exists; (7)

and

�(�; h) � �(h) := exp[�(g(�; h)� g(�; 0)] 2 L: (8)

Here Z�(�; �h) is the partition function corresponding to a Hamiltonian with
pairwise interaction and h is the external �eld and � is the inverse of a tem-
perature. Using the BDLP corresponding to �, in (8), one gets formulae for
spontaneous magnetization, critical exponents, etc., for class L Ising models.
Also, from the Schoenberg Thm, we get new inequalities for Ursell functions
un(h) := ��@nhg(�; h). An open problem is to give an intrinsic characteri-
zation of those class L distribution that arise from in�nite series of Laplace
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distributions (as in (6)), their sums and week limits. Also let us quote here
Remark 3.1. from [7], that Y�(1), which is from the BDLP for �(�; �), satis�es
a weak law of large numbers for � < �c := critical temperature.

C. Perpetuities and autoregression. Let (A;B), (An; Bn), n > 1, be
i.i.d. random vectors in R2 and de�ne a stochastic di�erence equation

Zn+1 = AnZn +Bn; n = 1; 2; : : : : (9)

Putting Z0 = 0 and assuming that (Zn) converges to Z we get the distribu-
tional equation

Z
d
= AZ +B; (10)

i.e. Z is a �xed-point of a random a�ne mapping x 7! Ax + B. Laws of Z
satsifying (10) are called perpetuities. Iterating (9) we easily obtain that

Z
d
=

1X
k=1

BkA1A2 : : : Ak�1; (11)

and in actuarial science (insurance mathematics) it represents \the present
value of a permanent commitment to make a payment annually into the
future forever". Cf. [8], [9]. Using the BDLP of a selfdecomposable X one
can prove that

X
d
=

Z
(0;1)

e�sdY (s) = e��

Z
(0;1)

e�sdY (s+ �) +

Z
(0;� ]

e�sdY (s); (12)

for any stopping time � with respect to Ft := �(Y (s) : s � t); cf. [15],
Corollary 2. Since the second integral in (12) has the same law as the �rst
one we conclude :

all selfdecomposable distributions are perpetuities: (13)

(Of course here it is important that A in (13) is a random variable.) In [15]
there is a method how to "generate" the innovation process in autoregressions
with An = c = constant.

D. Dirichlet series and gamma distributions. In the analytic num-
ber theory an important role is played by so called generalized Dirichlet
series. These are series of the form

w(z) :=
X
n

an exp[��nz]; z 2 C (14)
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with R 3 �n ! 1; cf. [1], Chapter 8. A special case of [14] was already
noticed in [15], Remark 2.

For 
�;� a rv with density ��=�(�)x��1e��x, we have that its characteristic
function b
�;�(t) is of the form

b
�;�(t) = (1� it=�)�� = exp

�Z
(0;1)

(eitx � 1)�e��x=xdx

�
; t 2 R: (15)

Hence for a series
P

n

�

�n;�n of independent and symmetrized gamma rv, if

it converges a.s., to say G, then G 2 L and its char.f. is

bG(t) =
1Y
n=1

(1 + t2=�2n)��n = exp

"Z
Rnf0g

(cos tx� 1)

 
1X
n=1

�ne
��njxj=jxj

!
dx

#
:

(16)

This means that in the L�evy-Khintchine formula for G its L�evy spectral
measure M (describing the average number of jumps) has density given by
generalized Dirichlet series

dM(x) =
1X
n=1

�ne
��njxj=jxjdx; x 6= 0: (17)

On the other hand, since G 2 L it has a BDLP Y such that Y (1) has L�evy
spectral measure N given by

dN(x) =
1X
n=1

�n�ne
��njxjdx: (18)

In particular, if X
n

V ar[
�

�n;�n ] = 2

X
n

�n

�2n
<1; ; (19)

then by Kolomogorov's Thm, the random series of symmetrized gamma rv
converges a.s. (in distribution, in probability), i.e. G is well de�ned. Con-
sequently the Dirichlet series in (17) and (18) are summable. Conversely, if
the Dirichlet series converges and (17) or (18) are L�evy spectral measures
then the random series of gamma rv converges. This \stochastic" approach
allow to view some of Dirichlet series via the BDLP corresponding to sums of
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random variables. Of course, the most interesting examples are those where
the sums are given explicitly.

E. C-decomposabilty and cocycle equations. The property of being
a selfdecomposable char.f. means that the factorization property (1) holds
for all c 2 (0; 1). For a closed multiplicative semigroup C (in the unit interval)
one may say that a char.f. � is C-decomposable if

8(c 2 C) 9(char:f: c) �(�) = �(c�) c(�): (20)

[Note that in this case  c is not necessarily ID, as opposed to the case
C = (0; 1) and (1).] Ref. [5], [19], [20] are devoted to this line of investiga-
tions. It seems that there are not too many explicitly given C-decomposable
distributions. Also it is an open problem to �nd a random integral represen-
tation of C-decomosable measures analogous to the formula (3).

From (20), assuming that  c(t) 6= 0, c 2 C, t 2 R, we get the following
equation:

 c1�c2(t) =  c1(c2t) c2(t); for all c1; c2 2 C; t 2 R: (21)

Here we recognize a cocycle equation with values in probability measures.
Can cohomology methods be used to "solve" (21)?. In [12] a special case
was solved. Furthermore, in [10] a slightly di�erent equation than (21) was
solved using random integrals.

CONCLUDING REMARKS

(a) Many of the above results or questions have natural extensions for Ba-
nach space valued rv.
(b) W. Hazod, H. Kunita, G. Pap and others have generalized selfdecompos-
ability to the Lie group case. Those results are not mentioned here but they
also consitute a new aspect of selfdecomposability.
(c) Relations to statistical physics, analytic number theory and cohomology
algebra may have impact on those areas of mathematics. But at the same
time they may provide new tools for better understanding of the probabilistic
notion of selfdecomposability.
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Tweedie Models: a Generalization of Stable
Distributions

Bent Jørgensen∗

April 20, 1999

The class of Tweedie exponential dispersion models were introduced by Tweedie
(1984) as a useful class of statistical models, which later found applications in for
example insurance (Jørgensen and de Souza, 1994) and many other areas. See
Jørgensen (1997) for background on exponential dispersion models and a survey
of Tweedie models.

Let us denote the Tweedie models by Twp(µ, σ
2), where µ > 0 is the mean (the

domain is R when p = 0), σ2 > 0 is the dispersion parameter, and p is a shape
parameter. To make the connection with stable distributions, let us introduce the
parameter α = (p−2)/(p−1). For α ∈ (0, 2], the corresponding Tweedie model is
the natural exponential family generated by either an extreme stable or positive
stable distribution with index α, the stable case corresponding to either µ = ∞
or 0. However, the Tweedie family contains further cases, namely the gamma
distribution (p = 2 or α = 0), a class of compound Poisson distributions (α < 0
or p ∈ (1, 2)) and the Poisson distribution (p = 1). In the latter case, Tw1(µ, σ

2)
corresponds to the distribution σ2Po(µ/σ2), a scaled Poisson distribution.

In which sense do the Tweedie distributions generalize the (positive and ex-
treme) stable distributions? In order to explain this, let us introduce two proper-
ties of the Tweedie models. First, we have the scale transformation property:

cTwp(µ, σ
2) = Twp(cµ, c

2−pσ2) for c > 0.

Second, ifX1, . . . , Xn are independent and identically distributed Twp(µ, σ
2), then

the sample average X has distribution Twp(µ, n
−1σ2), the reproductive property.

∗Department of Statistics and Demography, University of Southern Denmark at Odense,
Campusvej 55, DK-5230 Odense M, Denmark, bentj@statdem.ou.dk



Combining these properties, and taking c = n1/(2−p), we obtain

n1/(2−p)X ∼ Twp(n
1/(2−p)µ, σ2). (1)

The left-hand side of (1) is n−1/α times the sum of the Xs, which shows that (1)
generalizes the definition of the strictly stable distributions.

For µ finite and non-zero, the property (1) is not so useful, because of the
dependence of the mean on n. But if we now take µ to be a function of n,

µ = µ(n) = µ0n
−1/(2−p),

say, the right-hand side of (1) is fixed and equal to Twp(µ0, σ
2). In other words,

we now have a distributional invariance involving the average of independent
and identically distributed random variables, and this invariance has a domain of
attraction reached for n tending to infinity, as first shown by Jørgensen, Mart́inez
and Tsao (1994), although their formulation was slightly different. We call this
result the Tweedie Convergence Theorem.

A possible interpretation of the theorem is that the following two operations
commute: 1. generating a natural exponential family and 2. convergence of the
standardized sum. This result that was also conjectured by Wentzell, and has now
been made precise and proved by Vinogradov (1998). A connection with critical
regimes in large deviation theory, with applications to risk theory, was explored
by Jørgensen and Vinogradov (1997).

An interesting aspect of the Tweedie convergence theorem is that the two
extremes α = 2 and α = −∞ correspond to respectively the classical central limit
theorem and Bortkiewicz’s Poisson convergence theorem, thereby tying together
these two famous results within a single framework.

The Tweedie models, being infinitely divisible, generate Lévy processes, which
deserve special attention because of the properties of the Tweedie models, and
because of several important special cases, ranging from Brownian motion to the
Poisson process. These processes have a property that generalizes the idea of
long-range dependence. Also, Jørgensen and Mart́inez (1996) have shown that
the canonical measures corresponding to the Tweedie family are proportional to
the gamma densities. Furthermore, Jørgensen and Mart́inez (1997) have shown
a kind of Tauber theory for infinitely divisible exponential dispersion models,
linking the asymptotic behaviour of the variance function of the model to that of
the Lévy measure.
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On inverse local times, spectral measures
and life-time distributions of
one-dimensional di�usions

Extended Abstract

Uwe K�uchler, Humboldt University Berlin

Suppose X = (
;F ; (Ft); Xt; �; Px) is a (regular) di�usion on [0; L) with
lifetime �, speed measure m(�) and scale s(�) in the sense of Ito, McKean
(1974). Assume s(0) = m(0�) = 0; s(L�) = 1 and let 0 be a killing,
elastic killing or re
ecting boundary. (The following notions and proper-
ties can easily be extended to gap di�usions.)

The in�nitesimale generator A of X in L2(m) can be given by the re-
striction of the generalized second order di�erential operator DmDs to

DA := ff 2 L2(m)jDmDsf 2 L2(m); a �D�
s f(0) = f(0)g;

where a 2 [0;1] is �xed. (The number a is connected with the killing
rate of X at zero.)
Because of s(L�) =1 we have for a <1 that

Px(� <1; X�� = 0) � 1:

For every complex � and a 2 [0;1] let 'a be the solution of

DmDs� + �� = 0

satisfying the boundary conditions

'a(0; �) = 1; D�
s 'a(0; �) =

1

a
if a 2 (0;1];

'0(0; �) = 0; D�
s '0(0; �) = 1:

De�ne

�(x; �) := '1(x; �)

LZ
x

'�2
1 (u; �)s(du); x 2 [0; L); � 2 K� := Kn[0;1):

(K denotes the set of complex numbers.)
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The function G(�) given by

G(�) := �(0; �); � 2 K�

is called the characteristic function of (m; s) (more precisely, of m� s�1).
By assumption we have

G(0) := lim
�"0

G(�) = s(L�) =1:

Moreover, it holds

�(x; �) = G(�)'1(x; �)� '0(x; �); x 2 [0; L); � 2 K�:

The Laplace transform of the �rst hitting time �y of y satis�es

Ex exp(��y) = �(y; �)=�(x; �); � < 0; x; y 2 [0; L)

with

� = 'a if x � y and � = � if x � y:

We have Px(� < 1; X�� = 0) = 1 if 0 � a < 1 and Px(� � 1) = 1 if
a =1. Moreover, it holds for 0 < a � 1

Ex exp[��] =
�(x; y)

�(0; �)
�

1
a

1
a
+ 1

G(�)

x 2 [0; L); � < 0:

For every a 2 (0;1] the inverse local time l�1(t; 0) is a L�evy-process with

E0 exp[�l
�1(t; 0)] = exp[�t

�
1

a
+

1

G(�)

�
); � < 0:

For every a 2 [0;1] there exists the transition density p(a)(t; x; y):

Px(Xt 2 dy) = p(a)(t; x; y)m(dy); t > 0; x; y 2 [0; L):

De�ne the resolvent kernel

r
(a)
� (x; y) :=

1Z
0

e�tp(a)(t; x; y)dt; � 2 K�; x; y 2 [0; L):

It holds

r
(a)
� (x; y) =

'(a)(x ^ y; �)�(x _ y; �)

W (�)
; x; y 2 [0; L); � < 0

where W (�) denotes the Wronskian of '(a) and �.
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For every a 2 [0;1] the spectral measure � = �a of DmDsjDA is de�ned
to be a measure on [0;1) (on (0;1) if a <1) with

r
(a)
� (x; y) =

1Z
0

'a(x; u)'a(y; u)

u� �
�a(du); � < 0; x; y 2 [0; L):

It exists and is uniquely determined. Moreover, it holds

�
1

a
+

1

G(�)

��1

= r
(a)
� (0; 0) =

1Z
0

�a(du)

u� �
; � < 0; a 2 (0;1] (�)

and

1

G(�)
=

1Z
0

�
1

u
�

1

u� �

�
�0(du):

We have

G(�) = r
(1)
� (0; 0) =

1Z
0

�1(du)

u� �
; � < 0;

and using G(0�) =1 we get from (�)

1Z
0

�a(du)

u
= a; a 2 (0;1]:

Now it follows that for 0 < a <1

P0(� 2 dt) =
1

a

1Z
0

u exp[�ut]
�a(du)

u
dt; t > 0 (��)

(mixed exponential distribution).

Let l = l(t; 0) be the local time of X at zero. The inverse local time
l�1(t; 0); t � 0, is a process with independend stationary increments hav-
ing the L�evy-measure

�(du) =

1Z
0

eul�0(dl)du; u > 0:

We have

E0 exp[�l
�1(t; 0)] = exp[�

t

a
] � exp

�
� t

1Z
0

(1� eu�)�(du)
�
; t � 0:
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In the following �x an a 2 (0;1). Then it holds Px(� <1; X�� = 0) �
1 and for every # < 0

h(#)(x) := Ex exp[#�]; x 2 [0; L)

de�nes an #-exessive function. The h(#)-transformed di�usion X(#) on
[0; L) can be described by the scale ds(#)(x) = G2(#)

�2(x;#)
� ds(x), the speed

measure dm(#)(x) = x2(x;#)
G2(#)

dm(x) and the boundary coe�cient at zero

a# =
�
1
a
+ 1

G(#)

��1

. Its characteristic function G(#)(�) satis�es

1

G(#)(�)
=

1

G(�+ #)
�

1

G(#)
; � 2 K�:

For the spectral measure � (#)a#
it holds

� (#)a#
(du) = �a(du+ f#g):

Theorem Fix an a 2 (0;1). For the family (X(#); # � 0) of di�usions
the following properties hold:

(i) Assume 0 � y < x < L. Then the �rst hitting time distributions

(P (#)
x (�y 2 dt)); # � 0

form an exponential familiy of distributions:

P (#)
x (�y 2 dt) =

exp(#t)Px(�y 2 dt)
1R
0
exp(#s)Px(�y 2 ds)

(ii) For every x 2 [0; L) the life-time distributions

(P (#)
x (� 2 dt); # � 0)

form an exponential family of distributions:

P (#)
x (� 2 dt) =

exp(#t)Px(� 2 dt)

h(#)(x)

where Px(� 2 dt) is given by (��).

If x = 0 then we have

P
(#)
0 (� 2 dt) =

1

a#

1Z
0

ueut
�a(du+ f#g)

u
dt; t > 0; # � 0;

with 1
a#

= 1
a
+ 1

G(#)
(mixed exponential distribution).
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(iii) The inverse local times (l�1
# (t; 0); t � 0) of X(#) at zero form an ex-

ponential family of increasing processes with independent stationary
increments, and their L�evy-measures �# are given by

�#(du) = e#u�(du) = e#u
1Z
0

e�us�0(ds)du:

The process (l�1
# (t; 0)); t � 0 is killed with constant killing rate a#.
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SEMI-SELFDECOMPOSABILITY AND SEMI-SELFSIMILARITY

MAKOTO MAEJIMA

Keio University

In this talk, we first discuss the class of semi-selfdecomposable distributions

as a natural extension of that of selfdecomposable distributions, and its nested

subclasses. Then we introduce a new notion of semi-selfsimilarity of stochastic

processes. We conclude the talk with marginal and joint distributions of semi-

selfsimilar processes with independent increments, and we see how the class of

semi-selfdecomposable distributions and its nested subclasses are connected to

distributions of semi-selfsimilar processes with independent increments.

This talk is based on several recent works jointly done by Y. Naito, K.

Sato and T. Watanabe ([MN98], [MS99], [MSW98], [MSW99a], [MSW99b] and

[MSW99c]).

1. The class of semi-selfdecomposable distributions and its nested

subclasses

Stable distributions are characterized as limiting distributions of normal-

ized partial sums of independent and identically distributed random variables.

Self-decomposable distributions are natural extensions of stable distributions

and are given by limiting distributions of normalized partial sums of independent

random variables, which are not necessarily identically distributed but satisfy

the infinitesimal condition.

On the other hand, semi-stable distributions have also been well studied

as extensions of stable distributions. As is well known, semi-stable distribu-

tions are characterized as limiting distributions of some geometrically increasing

subsequences of normalized partial sums of independent
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and identically distributed random variables. However, although selfde-

composable distributions are natural extensions of stable distributions, it seems

that the distributions extending semi-stable distributions in the same way have

not been well recognized. We start by defining semi-selfdecomposable distribu-

tions as limiting distributions of some subsequences of normalized partial sums of

independent random variables, which are not necessarily identically distributed

but satisfy the infinitesimal condition.

We use the following notation. P(Rd) is the class of all probability distri-

butions on Rd, I(Rd) is the class of all infinitely divisible distributions on Rd,

L(Rd) is the class of all selfdecomposable distributions on Rd, µ̂(z) is the charac-

teristic function of µ ∈ P(Rd), L(X) is the law of X, 〈 , 〉 is the Euclidean inner

product in Rd, | · | is the norm induced by 〈 , 〉 in Rd, S = {x ∈ Rd : |x| = 1}
and D = {x ∈ Rd : |x| ≤ 1}.

Most of results in this section are proved in [MN98]. We first introduce

a way of making a new class of limiting distributions derived from a class of

distributions,

Definition 1.1. Let C ⊂ P(Rd) and 0 < b < 1. µ ∈ P(Rd) is said to

belong to the class K(C, b) if there exist independent Rd-valued random vectors

{Xj}, an > 0, ↑ ∞, cn ∈ Rd, {kn} ⊂ N, kn ↑ ∞ such that

lim
n→∞

an/an+1 = b,

L(Xj) ∈ C,

L

a−1
n

kn∑
j=1

Xj + cn

→ µ, (1.1)

lim
n→∞

max
1≤j≤kn

P{|a−1
n Xj | > ε} = 0, ∀ε > 0. (1.2)

Remark 1.1.

(i) When (1.2) is satisfied, we say that random variables {a−1
n Xj, 1 ≤ j ≤ kn, n =

1, 2, · · · } satisfy the infinitesimal condition.
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(ii) If we take kn = n, (then automatically b = 1), then the above class is turned

out to be the one which Sato [S80] studied.

(iii) Although we are dealing with Rd-valued random variables {Xj}, the nor-

malization in (1.1) is scalar. The normalization by linear operators might be

natural in higher dimensions. Generalization to the linear operator normaliza-

tion is discussed in [MSW98] and [MSW99a].

Theorem 1.1. K(C, b) ⊂ I(Rd).

Proof. Obvious from Definition 1.1.

Definition 1.2. C ⊂ P(Rd) is said to be completely closed if C is closed under

weak convergence, convolution and type equivalence. Here C is said to be closed

under type equivalence if L(X) ∈ C implies L(aX + c) ∈ C for any a > 0 and

c ∈ Rd.

Theorem 1.2. Let 0 < b < 1 and suppose that C is completely closed. Then

K(C, b) ⊂ C.

Proof. Easy from the definitions.

Definition 1.3. For each b ∈ (0, 1), define L0(b) = K(P(Rd), b). If µ belongs

to L0(b) for some b ∈ (0, 1), it is called semi-selfdecomposable.

Theorem 1.3. L(Rd) =
⋂

0<b<1 L0(b).

Proof. It is known that µ ∈ L(Rd) if and only if for any b ∈ (0, 1), there

exists ρb ∈ I(Rd) such that µ̂(z) = µ̂(bz)ρ̂b(z), ∀z ∈ Rd, (see [S80]). Hence, th4

statement is obvious from Theorem 1.4 below.

We now give the first characterization of the class L0(b) in terms of decom-

posability.

Theorem 1.4 ([MN98]). A necessary and sufficient condition for that µ ∈ L0(b)

is that there exists ρ0 ∈ I(Rd) such that µ̂(z) = µ̂(bz)ρ̂0(z), ∀z ∈ Rd.

We next give the second characterization of L0(b). Any µ ∈ L0(b) is in-
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finitely divisible and its characteristic function µ̂(z) has the following Lévy-

Khintchine representation:

µ̂(z) = exp

{
i〈z, γ〉 − 1

2
〈Az, z〉+

∫
Rd\{0}

g(z, x)ν(dx)

}
,

where ν is the Lévy measure of µ, A is the Gaussian covariance matrix, γ ∈ Rd

and g(z, x) = ei〈z,x〉 − 1− i〈z, x〉1D(x).

Theorem 1.5 ([MN98]). Let 0 < b < 1. A necessary and sufficient condition

for that µ ∈ L0(b) is that µ ∈ I(Rd) and its Lévy measure is ν ≡ 0 or

ν(EB) = −
∫
B

λ(dξ)
∫
E

dFξ(r), E ∈ B((0,∞)), B ∈ B(S),

where λ is a probability measure on S, for each r > 0, Fξ(r) is ξ-measurable, and

for each ξ ∈ S, Fξ(r) is right continuous and nonincreasing, limr→∞ Fξ(r) = 0,

Fξ(b(r + δ))− Fξ(br) ≤ Fξ(r + δ)− Fξ(r) ≤ 0

for every δ > 0 and r > 0, and for each ξ ∈ S

0 < −
∫ ∞

0

(1 ∧ r2)dFξ(r) =
∫

Rd\{0}
(1 ∧ ‖x‖2)ν(dx) =: K <∞.

Here the value K is independent of ξ. This representation is unique in the follow-

ing sense. If ν 6≡ 0 and two pairs (λ, Fξ) and (λ̃, F̃ξ) satisfy the above conditions,

then λ = λ̃ and Fξ = F̃ξ for λ-a.e. ξ. (We call Fξ, uniquely determined in this

sense, the F -function of µ ∈ L0(b).)

We now define the nested subclasses of L0(b).

Definition 1.4. For each b ∈ (0, 1), define

Lm(b) = K(Lm−1(b), b), m = 1, 2, · · · , and L∞(b) =
∞⋂
m=0

Lm(b).

Theorem 1.6. (Nested classes.) Let 0 < b < 1. The we have

I(Rd) ⊃ L0(b) ⊃ · · · ⊃ Lm(b) ⊃ · · · ⊃ L∞(b),
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and all inclusions are strict.

Proof. Easy from Definition 1.4 and Theorem 1.2.

Theorem 1.7 ([MN98]). (Characterization of Lm(b) by decomposability.) Let

0 < b < 1 and m = 1, 2, · · · ,∞.

(i) A necessary and sufficient condition for that µ ∈ Lm(b) is that there exists

ρm ∈ Lm−1(b) such that µ̂(z) = µ̂(bz)ρ̂m(z), ∀z ∈ Rd, where m − 1 = ∞ when

m =∞.

(ii) L∞(b) = K(L∞(b), b), and furthermore L∞(b) is the largest class among the

classes which are invariant under the K(·, b)-operation.

We next give a characterization of Lm(b) in terms of F -function of µ ∈
L0(b). We need one more definition.

Definition 1.5. Let 0 < b < 1. For a function F : (0,∞)→ R, define EbF (s) =

F (bs) − F (s) and its m-th iteration Emb F (s) =
∑m
j=0(−1)m−j

(
m
j

)
F (bjs). Also

define, for δ > 0, ∆δf(s) = f(s+ δ)−f(s). Then we say that F has the property

(m, b) if ∆δEjbF (s) ≤ 0, 1 ≤ ∀j ≤ m, ∀s > 0, ∀δ > 0. When F has the property

(m, b) for any m ≥ 1, then we say that it has the property (∞, b).

Theorem 1.8 ([MN98]). Let 0 < b < 1 and m = 0, 1, 2, · · · ,∞. A necessary

and sufficient condition for that µ ∈ Lm(b) is that µ ∈ L0(b), and if ν 6≡ 0, then

the F -function, Fξ, of µ has the property (m + 1, b) for λ-a.e. ξ.

The relationship between semi-selfdecomposability and semi-stability is the

following.

Theorem 1.9 ([MN98]). Let µ is semi-stable, namely suppose that for some

a, b ∈ (0, 1) and c ∈ Rd, µ̂(z)a = µ̂(bz)ei〈z,c〉, ∀z ∈ Rd. Then µ ∈ L∞(b).

Hence if we define, for each b ∈ (0, 1), SS(b) as the set of all µ ∈ I(Rd)

such that µ̂(z)a = µ̂(bz)ei〈c,z〉 for some a ∈ (0, 1) and c ∈ Rd, then we have

I(Rd) ⊃ L0(b) ⊃ · · · ⊃ Lm(b) ⊃ · · · ⊃ L∞(b) ⊃ SS(b).
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Another important characterization of L∞(b) connected to SS(b) is the

following.

Theorem 1.10 ([MSW98]). For each b ∈ (0, 1), L∞(b) is the closure of SS(b)

under the operations of type equivalence, convolution and raising to the t-th

convolution for every t > 0, and weak convergence.

Let us define classes L̃m(b), m = 0, 1, 2, ...,∞ in the same as we have defined

Lm(b) but without infinitesimal condition (1.2). Loève ([Lo45]) (for m = 0) and

Bunge ([Bu97]) (for general m) studied these classes. They are also nested classes

namely

P(Rd) ⊃ L̃0(b) ⊃ · · · ⊃ L̃m(b) ⊃ · · · ⊃ L̃∞(b).

Trivially from their definitions, L̃m(b) ⊃ Lm(b). But, Bunge ([Bu97]) showed

that L̃m(b) ∩ (I(Rd))c 6= ∅, for finite m, when d = 1. Namely, L̃m(b) is strictly

bigger than Lm(b) for finite m. On the other hand, he also showed that L̃∞ ⊂
I(Rd), when d = 1. We can also show the same assertions for the case d ≥ 2

([MSW99a]). Then a natural question arises, how L̃∞(b) is related to Lm(b).

The answer is the following.

Theorem 1.11 ([MSW99a]). L∞(b) = L̃∞(b).

2. Semi-selfsimilar processes

An Rd-valued Lévy process {X(t), t ≥ 0} with strictly α-semi-stable mar-

ginal distribution at each t is, in general, not selfsimilar, but it has the following

property: For some a ∈ (0, 1) ∪ (1,∞),

{X(at), t ≥ 0} d= {a1/αX(t), t ≥ 0}, (2.1)

where d= denotes the equality in all finite-dimensional distributions. Here, by a

Lévy process, we mean a stochastically continuous process starting at the origin

with independent and stationary increments.
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Being motivated by the property (2.1), we introduce a new notion of semi-

selfsimilarity as follows.

Definition 2.1. An Rd-valued stochastic process {X(t), t ≥ 0} is said to be

semi-selfsimilar if there exist a ∈ (0, 1) ∪ (1,∞) and b > 0 such that

{X(at), t ≥ 0} d= {bX(t), t ≥ 0}. (2.2)

We can define semi-selfsimilar processes allowing a drift function on the

right hand side of (2.2), which we call wide-sense semi-selfsimilar. The results in

this section remain true for wide-sense semi-selfsimilar processes. (For details,

see [MS99].)

Recall that {X(t)} is said to be selfsimilar if, for every a > 0, there is

b = b(a) > 0 satisfying (2.2). Thus the notion of semi-selfsimilarity extends that

of selfsimilarity. Besides semi-stable Lévy processes, processes with property

(2.2) are found in the literature about diffusions on Sierpinski gaskets (Example

2.1 below).

One of the important results on selfsimilar processes is the existence of

exponent. Namely, if {X(t)} is selfsimilar, we know that there exists an H,

exponent of the selfsimilarity, so that b in (2.2) has the form b = aH . (See

[La62].) The first theorem in this section is that the same conclusion remains

true for semi-selfsimilar processes.

Definition 2.2. An Rd-valued random variable X is called degenerate if it is a

constant a. s. An Rd-valued process {X(t)} is called trivial if X(t) is degenerate

for every t.

Theorem 2.1. Let {X(t), t ≥ 0} be a nontrivial semi-selfsimilar Rd-valued

process such that it is stochastically continuous at t = 0. Then the following

statements hold.

(i) ([MSW99b]) There exists a unique H ≥ 0 such that if a > 0 and b > 0 satisfy

(2.2), then b = aH . H > 0 if and only if X(0) = 0 a. s.
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(ii) ([MS99]) Suppose furthermore that {X(t)} is stochastically continuous at

any t ≥ 0. Let Γ be the set of a > 0 such that there is b > 0 satisfying (2.2).

Then Γ∩ (1,∞) is nonempty. Denote the infimum of Γ∩ (1,∞) by a0. If a0 > 1,

then Γ = {a0
n: n ∈ Z}, and {X(t)} is not selfsimilar. If a0 = 1, then Γ = (0,∞),

and {X(t)} is actually selfsimilar.

The real number H is called exponent of the semi-selfsimilar process. In

order to signify it, we call {X(t)} H-semi-selfsimilar. It is worthwhile to remark

that (ii) of Theorem 2.1 implies that if a stochastically continuous process {X(t)}
satisfies (2.2) for some a1 and a2 such that log a1/ log a2 is irrational, then it is

selfsimilar.

As is well known, selfsimilar processes are realized as scaling limits of sto-

chastic processes. We show that semi-selfsimilar processes are characterized as

limiting processes of some subsequences

of usually normalized processes.

Theorem 2.2 ([MS99]).

(i) Suppose that an Rd-valued process {X(t), t ≥ 0} is stochastically continuous

at t = 0. Suppose that there exist another Rd-valued process {Y (t), t ≥ 0},
0 < bn ↑ ∞, 0 < an ↑ ∞ such that, for some a > 1,

lim
n→∞

an+1

an
= a, (2.3)

1
bn
{Y (an+1t)− Y (a · ant)} → 0 in probability, (2.4){

1
bn

Y (ant), t ≥ 0
}

d⇒ {X(t), t ≥ 0},

where d⇒ denotes the convergence in all finite-dimensional distributions. Suppose

further that there exists t0 > 0 such that X(t0) and X(at0) are nondegenerate.

Then {X(t)} is H-semi-selfsimilar with some H > 0.

(ii) Conversely, if {X(t)} is nontrivial, H-semi-selfsimilar with H > 0, and

stochastically continuous at t = 0, then {X(t)} is such a limit.
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We remark that if an = an with a > 1, then (2.3) and (2.4) are automati-

cally satisfied.

Example 2.1. The diffusions on Sierpinski gaskets {X(t)} on Rd are con-

structed as {
1
2n

Y ((d + 3)nt)
}

d⇒ {X(t)}

for some {Y (t)} and X(t) is shown to be nondegenerate for t > 0. (See [K87],

[G87] and [BaP88].) Hence by Theorem 2.2, {X(t)} is semi-selfsimilar. We can

see that the exponent H of {X(t)} is log 2/ log(d + 3).

The connection between the semi-selfsimilarity and the semi-stability of

Lévy processes is as follows.

Theorem 2.3 ([MS99]). Let {X(t), t ≥ 0} be an Rd-valued Lévy process. Then

{X(t)} is semi-selfsimilar if and only if L(X(1)) is strictly semi-stable.

3. Marginal and joint distributions of semi-selfsimilar processes with

independent increments

Theorem 3.1 ([MS99]). Suppose that {X(t), t ≥ 0} is a nontrivial, stochas-

tically continuous, H-semi-selfsimilar Rd-valued process with independent in-

crements, where H > 0. Choose a ∈ Γ ∩ (1,∞). Then L(X(t)) is semi-

selfdecomposable for any t ≥ 0. Actually it belongs to the class L0(a−H). For

any t > 0, L(X(t)) is nondegenerate.

Theorem 3.2 ([MS99]). Let a > 1 and H > 0. Suppose that µ is semi-

selfdecomposable and µ ∈ L0(a−H). Then there exists a nontrivial, stochasti-

cally continuous, H-semi-selfsimilar Rd-valued process {X(t), t ≥ 0} with inde-

pendent increments such that a ∈ Γ ∩ (1,∞) and L(X(1)) = µ

A process {X(t)} constructed in Theorem 3.2 is not unique. However,

if we are given a set of semi-selfdecomposable distributions {µt, 1 ≤ t < a}
with certain conditions, then there exists uniquely in law such a semi-selfsimilar
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process {X(t)} satisfying L(X(t)) = µt, 1 ≤ t < a.

We now give conditions for the joint distributions of semi-selfsimilar pro-

cesses with independent increments to be semi-selfdecomposable, and further,

conditions for them to belong to the subclasses Lm.

Theorem 3.3 ([MSW99c]). Let {X(t), t ≥ 0} and H be the same as in Theorem

3.1 and let

a0 = inf Γ ∩ (1,∞) > 1. Let m be a positive integer or ∞. Then the

following two statements are equivalent. We understand m− 1 =∞ if m =∞.

(i) L(X(t)) ∈ Lm(a−H0 ,Rd), ∀t ≥ 0.

(ii) L((X(u1t), · · · , X(unt))) ∈ Lm−1(a−H0 ,Rnd), ∀n, ∀t ≥ 0, ∀u1, · · · , un ∈ Γ.

Let us compare the situation with the case of selfsimilar processes. The

class of selfdecomposable distributions on Rd is denoted by L0(Rd). A sequence

of its subclasses Lm(Rd), m = 0, 1, · · · ,∞, is studied in [U72], [U73], [S80] and

others. A description of the classes is as follows. A distribution µ ∈ P(Rd)

belongs to L0(Rd) if and only if, for any b ∈ (0, 1), there is ρb ∈ P(Rd) such

that

µ̂(z) = µ̂(bz)ρ̂b(z), ∀z ∈ Rd. (3.1)

Let m be a positive integer. A distribution µ ∈ P(Rd) belongs to Lm(Rd) if and

only if µ ∈ L0(Rd) and, for every b ∈ (0, 1), ρb in (3.1) belongs to Lm−1(Rd).

The class L∞(Rd) is the intersection of the classes Lm(Rd), m = 0, 1, · · · . Thus

we have I(Rd) ⊃ L0(Rd) ⊃ L1(Rd) ⊃ · · · ⊃ L∞(Rd).

Theorem 3.4 ([MSW99c]. Let {X(t), t ≥ 0} be a stochastically continuous,

selfsimilar Rd-valued process with independent increments and X(0) = 0 a.s.

Let m be a positive integer or∞. Then the following statements are equivalent.

(i) L(X(t)) ∈ Lm(Rd), ∀t ≥ 0.

(ii) L((X(t1), · · · , X(tn))) ∈ Lm−1(Rnd), ∀n, ∀t1, · · · , tn ≥ 0.

Comparing Theorems 3.3 and 3.4, one might ask whether in Theorem 3.3
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the condition (i) implies that all n× d-dimensional joint distributions of {X(t)}
are in Lm−1(a−H0 ,Rnd), without any restriction on choosing t1, ..., tn. However,

the answer is negative.

Example 3.1 ([MSW99c]). For d = 1, we can construct a semi-selfsimilar

process with independent increments {X(t)} such that L(X(t)) ∈ L1(b,R), 1 <

t < a0, but L((X(t), X(1))) /∈ L0(b,R2), 1 < t < 1 + ε, for some small ε > 0.
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Abstract { Fractional calculus allows to generalize the standard (linear and one
dimensional) di�usion equation by replacing the second-order space derivative by a
derivative of fractional order. If this is taken as the pseudo-di�erential operator introduced
by Feller in 1952 the fundamental solution of the resulting di�usion equation is a
probability density evolving in time and stable in the sense of L�evy. Like the standard
di�usion equation through its fundamental solution, the Gaussian density, yields the well-
known Brownian motion, so the Feller di�usion equation yields the so called L�evy stable
motions, whose increments are independent and stably distributed. We show how to
approximate each of these motions by a discrete-time, discrete-space random walk model,
which is based on an integer-valued random variable lying in the domain of attraction of
the corresponding L�evy probability distribution.

Keywords { Fractional calculus, di�usion equation, stable distributions, random-walk.

1. Introduction

The purposes of this lecture are to outline the role of generalized di�usion equations
of fractional order in generating the probability density functions (pdf 0s) of the L�evy
stable distributions and to construct some models of random walks, discrete in space
and time, related to L�evy stable motions.

For the standard di�usion equation

@

@t
u(x; t) =

@2

@x2
u(x; t) ; �1 < x < +1 ; t � 0 ; (1:1)

it is well known that the fundamental solution (the Green function) of the Cauchy
problem provides the pdf of the Gaussian or normal distribution with variance
proportional to time. Feller (1952) considered the problem of generating all the L�evy
stable pdf 0s (satisfying his special parameterization) evolving in time, through the Green
function of the Cauchy problem for a generalized di�usion equation. Feller's essential
idea is to replace the second-order space derivative of the standard di�usion equation
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with a special pseudo-di�erential operator. In our notation the corresponding stable
densities are denoted as g�(x; t; �) ; whose spatial Fourier transform (the characteristic
functions) read

cg�(�; t; �) = Z +1

�1

e i�x g�(x; t; �) dx = exp
�
�tj�j� e i(sign�)��=2

�
; (1:2)

where x ; � 2 IR ; t > 0 : The two relevant parameters, � ; called the index of stability,
and � (related to the asymmetry), improperly referred to as the skewness, are real
numbers subject to the conditions

0 < � � 2 ; j�j �
�
� ; if 0 < � � 1 ;
2� � ; if 1 < � � 2 ;

(1:3)

whereas time t plays the role of a scale parameter. For � = 2 and � = 1 (with � = 0)
we recover the standard Gaussian and Cauchy pdf 0s

g2(x; t; 0) =
1

2
p
�
t�1=2 exp

�
�x2

4t

�
; g1(x; t; 0) =

1

�

t

x2 + t2
: (1:4)

By introducing the similarity variable x t�1=� ; we can write g�(x; t; �) =
t�1=� p�(x t�1=�; �) ; where p�(x; �) is the stable pdf at t = 1 :

The speci�c Feller form of the characteristic function (1.2) allows us to easily
recognize g�(x; t; �) as the Green function of the Cauchy problem

@

@t
u(x; t) = D�

� u(x; t) ; u(x; 0) = �(x) ; x 2 IR ; t > 0 ; (1:5)

where with � denotes the Dirac generalized function and D�
� is the Feller pseudo-

di�erential operator acting with respect to the space variable x ; with symbol

cD�
� = �j�j� e i(sign�)��=2 : (1:6)

Let us recall that a generic pseudo-di�erential operator A, acting with respect
to the variable x 2 IR ; is de�ned through its Fourier representation, namelyR+1
�1

e i�xA�(x) dx = bA(�) b�(�) ; where �(x) denotes a su�ciently well-behaved

function in IR ; and bA(�) is referred to as symbol of A ; given as Â(�) =
�
A e�i�x

�
e+i�x :

The n-th derivative operator Dn = dn

dxn is a special case with symbol cDn = (�i�)n :
Honouring both L�evy and Feller for their essential contributions, see e.g. L�evy (1924,

1925, 1954), Feller (1952, 1971), we call the pseudo-di�erential operator D�
� Feller

fractional derivative of order � and the process described by (1.5) L�evy-Feller di�usion.
Recently, Goren
o and Mainardi (1998a, 1998b, 1999) have revised Feller's original

arguments by interpreting (1.5) as a space-fractional di�usion equation (of order �
and skewness �) and have provided a variety of related random walk models, discrete
in space and time, which by properly scaled transition to vanishing space and time
steps converge to the corresponding continuous Markovian processes. In other words
the discrete probability distributions generated by the random walk models have been
proved to belong to the domain of attraction of the corresponding stable distribution.

Here we would like to summarize some results of our theory and exhibit a few
numerical case studies for random walks related to L�evy stable motions.
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2. The Feller fractional derivative

We now give a brief account of the Feller fractional derivative. Then, starting from
its explicit expression we shall provide a discretized approximation useful to obtain our
random walk models. For details we refer the reader to our original works.

The explicit expression of the Feller pseudo-di�erential operator D�
� acting on a

function �(x) can be obtained if we �rst de�ne the Weyl fractional derivatives D�
� and

the Hilbert transform operator H :

For the Weyl fractional derivatives we have

D�
� �(x) =

��(D1 I1��� )�(x) ; if 0 < � < 1 ;

(D2 I2��� )�(x) ; if 1 < � < 2 ;
(2:1)

where I�� denote the Weyl fractional integrals of order � > 0 ; which are de�ned as

8>><
>>:
I�+ �(x) =

1

�(�)

Z x

�1

(x � �)��1 �(�) d� ;

I�� �(x) =
1

�(�)

Z +1

x

(� � x)��1 �(�) d� :

(2:2)

For continuity we get
D1
� = �D1 ; D2

� = D2 : (2:3)

For the Hilbert transform we have

H �(x) =
1

�

Z +1

�1

�(�)

x � �
d� =

1

�

Z +1

�1

�(x � �)

�
d� ; (2:4)

the integral understood in the Cauchy principal value sense. Incidentally, we note that
H�1 = �H ; so, in view of this peculiar property, the Hilbert transform operator is by
some authors de�ned with the opposite sign in the kernel, i.e. writing � � x instead of
x � � in the �rst integral in (2.4).

We then can prove that the Feller fractional derivatives turns out to be

D�
� �(x) =

8<
:
� �

c+(�; �)D�
+ + c�(�; �)D�

�

�
�(x) ; if � 6= 1 ;

�
cos(��=2) (D1 H) + sin(��=2)D1

�
�(x) ; if � = 1 ;

(2:5)

where

c+(�; �) =
sin[(� � �)�=2]

sin(��)
; c�(�; �) =

sin[(�+ �)�=2]

sin(��)
: (2:6)

Note that the case � = 2 is obtained from the passage to the limit with � = 0 for which
c+(2; 0) = c�(2; 0) = �1=2 ; and D2

0 = D2 :
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Henceforth, for ease of notation, we shall omit the arguments of the coe�cients
c+ = c+(�; �) and c� = c�(�; �). We have

c�

� � 0 ; if 0 < � < 1 ;
� 0 ; if 1 < � � 2 ;

c+ + c� =
cos (��=2)

cos (��=2)

�
> 0 ; if 0 < � < 1 ;
< 0 ; if 1 < � � 2 :

(2:7)

In the symmetric case (� = 0) the Feller fractional derivative reduces to

D�
0 �(x) =

8><
>:
� D�

+ +D�
�

2 cos(��=2)
�(x) ; if � 6= 1 ;

� (D1H)�(x) ; if � = 1 :

(2:8)

We can verify the validity of (2.5-6) [and (2.8)] by playing with symbols of the operators
and, consequently, by proving the identity (1.6). For this purpose it su�ces to note that

dD�
� = (�i�)� = j�j� e�i (sign�)��=2 ; bH = i (sign�) : (2:9)

It is interesting to note that for � = 1 the generalized di�usion equation (1.5) reduces
to

@

@t
u(x; t) =

@

@x

�
cos(��=2)

1

�

Z +1

�1

u(�; t)

� � x
d� + sin(��=2)u(x; t)

�
; (2:10)

and the corresponding stable pdf (its fundamental solution) turns out to be

g1(x; t; �) =
1

�

t cos(��=2)

[x+ t sin(��=2)]2 + [t cos(��=2)]2
; j�j < 1 : (2:11)

We note that in the extremal cases � = �1 we get D1
�1 = �D1 ; so (2.10) degenerates

into kinematic (i.e. �rst-order) wave equations and the corresponding stable densities
(2.11) reduce to g1(x; t;�1) = �(x � t) :

3. Outline of the random walk approach

In this section we de�ne a random variable Y assuming only integers as values, its
probability distribution depending on three parameters �; �, proper of the stable pdf 0s
as seen in (1.3), and �, a scale parameter, to be introduced later. By aid of this random
variable we de�ne a random walk on an equidistant grid fjhj j 2 Zg with a space-step
h > 0. We show that after introduction of a suitable time-step � > 0 this random walk
admits an interpretation as an explicit di�erence scheme, convergent and stable in the
limit as h! 0 in a sense to be seen later, for the Cauchy problem (1.5).

Let Y be an integer-valued random variable and let the random variables Y1; Y2; Y3; : : :
be independent identically distributed, all having their probability distribution common
with Y .
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We de�ne a spatial-temporal grid f(xj ; tn) j j 2 Z ; n 2 IN0g by xj = xj (h) = j h ;
tn = tn(� ) = n � ; where h > 0 and � > 0 : Then we consider the sequence of random
variables

Sn = hY1 + hY2 + : : :+ hYn; n 2 IN ; (3:1)

with (for convenience) S0 = 0 ; and interpret it as follows. A particle, sitting in x =
x0 = 0 at time t = t0 = 0 �nds itself at a later instant t = tn in point x = Sn which
is an integer multiple of h : We recognize the pk = P (Y = k) (for k 2 Z) as transition
probabilities: pk is the probability of a particle jumping from a point xj = Sn to a point
xj+k = Sn+1 as time proceeds from tn to tn+1 : All pk are non-negative, and their sum
equals 1.

The probability yj(tn) of sojourn of our particle in point xj at instant tn obeys the
transition law

yj(tn+1) =
+1X

k=�1

pk yj�k(tn) ; yj(0) = �j 0 ; j 2 Z ; n 2 IN0 : (3:2)

which has the form of a discrete convolution. Hence, introducing generating functions

ep(z) = +1X
j=�1

pjz
j ; eyn(z) = +1X

j=�1

yj (tn)z
j ; (3:3)

we obtain eyn(z) = ey0(z) � [ep(z)]n = [ep(z)]n ; n 2 IN0 : (3:4)

The power series in (3.3) and (3.4) are absolutely and uniformly convergent on jzj = 1
and assume the value 1 at z = 1 : Putting z = ei�h ; � 2 IR ; and observing zj =
ei�(jh) = ei�xj ; we recognize bp(�;h) = ep(ei�h) and by(�; tn;h) = eyn(ei�h) as characteristic
functions of the random variables hY and Sn ; respectively.

Our aim is to approximate the L�evy-Feller di�usion process, which is governed by
the evolution equation (1.5), arbitrarily well. To this purpose we introduce a strictly
monotonic scaling relation � = �(h) ! 0 as h ! 0 : We will �x t > 0 and let h (and
likewise � ) go to zero over such values that always n = t=� = t=�(h) is a positive integer.
Then we have the equivalences

n!1 () h! 0 () � ! 0 ;

and h depends on � , �nally on n, so that h = h(n) :

Replacing h by h(n) in (3.1) we obtain a sequence of random variables Xn with
characteristic functions by(�; tn;h) = [ep(ei�h)]n (note that now tn = t is �xed). Invoking
the Continuity Theorem, see e.g. Lukacs (1960), Th. 3.6.1, what remains to be shown

is that by(�; t;h) ! exp
�
�tj�j� ei(sign �)��=2

�
as h ! 0 ; the characteristic function of

the corresponding L�evy-Feller process. For this it su�ces that, for �xed � 6= 0 ;

log [ŷ(�; t;h)] � t

�(h)
log

�
~p(ei�h)

�! �t j�j� ei(sign�)��=2 ; as h! 0 : (3:5)
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Our random walk can be interpreted as a "di�erence scheme" to approximate the
evolution equation (1.5), if we write (3.2) in the equivalent form, observing the scaling
relation,

yj (tn+1)� yj(tn)

�
=

1

�(h)

�
(p0 � 1) yj (tn) +

X
k 6=0

pk yj�k(tn)
�
; (3:6)

In fact, after division by the spatial mesh-width h, the L.H.S. is the forward
discrete approximation of @

@tu(x; t) ; and the R.H.S can be considered as a discrete
approximation to the space pseudo-di�erential termD�

� u(x; t) ; provided we mean yj(tn)

to approximate
R xj+h=2
xj�h=2

u(x; tn) dx � hu(xj ; tn) with yj (0) = �j 0 ; and dispose of �(h)

as an appropriate function of h :

4. The random walk models

From the previous Section we have learnt that, in order to construct discrete random
walk models which are convergent (in distribution) to the stable pdf 0s, the clue points
are: 1) to guess a suitable generating function ~p(z) ; whose coe�cients of its power series
expansion provide the transition probabilities, 2) to determine the corresponding scaling
relation � = �(h) which ensures the required convergence.

In the classical case of the Gaussian distribution (� = 2) the matter is easily treated if
we remember that the corresponding density is the fundamental solution of the standard
di�usion equation, which is known to be well approximated via the �nite-di�erence
equation

yj(tn+1) � yj(tn)

�
=

yj+1(tn)� 2yj(tn) + yj�1(tn)

h2
; yj (0) = �j 0 : (4:1)

In this case, introducing the scaling parameter � = �=h2 ; so � = �(h) = �h2 ; the
transition probabilities turn out to be

p0 = 1� 2� ; p�1 = � ; p�k = 0 ; k = 2; 3 : : : ; : (4:2)

subject to the condition 0 < � � 1=2 : Thus the generating function is

ep(z) = 1 + �[z � 2 + z�1] : (4:3)

The proof of the convergence to the Gaussian is simple since one easily �nds
[t=(�h2)] log[ep(ei�h]!�t�2 as h! 0 : The scheme (4.2) means that for approximation
of the standard Gaussian process the corresponding random walk model exhibits only
jumps of one step to the right or one to the left or jumps of width zero. For the stable
non Gaussian processes we expect to �nd a non-polynomial generating function with
in�nitely many transition coe�cients which imply the occurrence of arbitrarily large
jumps. It is common practice to refer to the corresponding random walks as L�evy


ights, to stress the relation to the L�evy stable distributions and the occurrence of large
jumps.
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In general the essential idea for meeting the clue point 1) is to provide a discrete
approximation of the pseudo-di�erential operator D�

� ; that we denote by hD
�
� ; where

h refers to the spatial mesh-width. If we de�ne the spatial translation operator T� by
T� �(x) := �(x + �) ; we note that our complex variable z = ei�h can be interpreted as

the symbol of the backward shift operator T�h, namely dT�h = e+i�h = z : Similarly we

get the symbol of the forward shift operator T+h, dT+h = e�i�h = z�1 = �z : We then

recognize from the considerations in x3, specially from (3.6), that the symbol dhD�
� is

related to the generating function by the identity

ep(z) � 1

�
= d

hD�
� ; (4:4)

The identity (4.4) is easily veri�ed for the classical case of the standard di�usion where
(4.3) is valid. In fact, from

D2 �(x) = lim
h!0

�(x + h)� 2�(x) + �(x � h)

h2
; (4:5)

we recognize in the Fourier domain

d
hD2 = h�2 (z�1 � 2 + z) = h�2 [z�1 (1 � z)2] = h�2 [z (1� z�1)2] : (4:6)

For the fractional di�usion (� 6= 2) we may have di�erent ways of discretization for

hD
�
� ; which lead to di�erent generating functions and, consequently, di�erent classes

of discrete random walks. Here we limit ourselves to show the results for a single class
distinguishing the cases � 6= 1 and � = 1 :

For � 6= 1 the starting point is the Gr�unwald-Letnikov scheme for the Weyl fractional
derivatives on which the reader can inform himself in the treatises on fractional calculus,
see e.g. Oldham and Spanier (1974), Samko, Kilbas and Marichev (1993), Miller and
Ross (1993), Podlubny (1999) or in the review article by Goren
o (1997). This scheme,
suitably improved, leads to the generating function

ep(z) =
8<
:
1� � [c+ (1� z)� + c�(1 � z�1)�] ; if 0 < � < 1 ;

1� � [c+ z�1 (1� z)�) + c� z (1� z�1)�)] ; if 1 < � � 2 ;
(4:7)

where � = �=h� and the c� are given by (2.6). We note that the expression (4.3) for the
classical case � = 2 is recovered taking into account that in the limit c+ = c� = �1=2 :

The transition probabilities turn out to be8>><
>>:
p0 = 1� � (c+ + c�) = 1� �

cos (��=2)

cos (��=2)
;

p�k = (�1)k+1�
�
�

k

�
c� = k = 1; 2; : : :

0 < � < 1 ; (4:8a)
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8>>>>>>><
>>>>>>>:

p0 = 1 + �

�
�

1

�
(c+ + c�) = 1� ��

cos (��=2)

j cos (��=2)j ;

p�1 = ��
��

�

2

�
c� + c�

�
;

p�k = (�1)k �
�

�

k + 1

�
c� ; k = 2; 3; : : :

1 < � � 2 : (4:8b)

In both cases the scaling relation is � = �(h) = �h� ; where � is restricted as follows

0 < � �

8>><
>>:

cos (��=2)

cos (��=2)
in the case (a),

1

�

j cos (��=2j
cos (��=2)

in the case (b).
(4:9)

For the case � = 1 we can limit ourselves to the symmetric case � = 0 for which the
starting point is the discretization of the Hilbert transform operator. For 0 < j�j < 1
we have to add to the symmetric random walk, weighted with cos(��=2), a pure drift
to right or to left, weighted with sin(��=2), as we can see from (2.5). We obtain

ep(z) = 1� �

�
[(1� z�1) log(1� z) + (1� z) log(1 � z�1)] ; � = 1 ; � = 0 ; (4:10)

p0 = 1� 2�

�
; p�k =

�

�

1

k(k + 1)
; k = 1; 2; 3; 4; : : : ; � = 1 ; � = 0 ; (4:11)

where 0 < � = �=h � �=2 :

We see how the generating function (4.10) cannot be obtained from (4.7) with � = 0
by a passage to the limit � ! 1 : Indeed, in both the limits � ! 1� and � ! 1+

the permissible range of the scaling factor � is vanishing. In order to get a continuous
transition for � = 1 we need to consider di�erent approaches, but we loose the continuity
as �! 2� ; for this we refer the interested reader to Goren
o, De Fabritiis and Mainardi
(1999).

5 Numerical results

In general the randomwalk models are not only valuable from the conceptual point of
view for visualizing what the di�usion means but also for numerical calculations, either
as Monte Carlo simulation of particle paths in a di�usion process or as discrete imitation
of the process in form of redistribution (from one time level to the next) of clumps of
an extensive quantity (across the spatial grid points). Our models can be used in at
least three di�erent ways: (a) as �nite di�erence schemes for approximate calculation
of symmetric stable densities; (b) for producing sample paths of individual particles
performing the randomwalk; (c) for producing histograms of the approximate realization
of the densities g� by simulating many individual paths with the same number of time
steps and making statistics of the �nal positions of the particles.

118



For numerical simulations of stable random variables di�erent algorithms have been
provided by a number of specialists, including Chambers, Mallows and Stuck (1976),
Bartels (1978), Mantegna (1994), Janicki and Weron (1994), Samorodnitsky and Taqqu
(1994), Nolan (1997). Our present approach for treating L�evy statistics has been carried
out independently from all the above references but uniquely based on the random walk
model presented here, so, as far as we know, our results are original.
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Fig. 1 Sample path (left) and histogram (right) for � = 1 : (Cauchy)
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Fig. 2 Sample path (left) and histogram (right) for � = 1:5 :
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Having preliminarily checked a su�cient level of accuracy for our �nite difference
schemes with the existing tables of stable densities, here we report some results, recently
obtained by Goren
o, De Fabritiis and Mainardi (1999), on the simulation of the sample
paths and histograms corresponding to some typical values of the index of stability,
namely � = 1; 1:5; 2 : In practice, in our numerical studies there is required truncation
in two ways. It is impossible to simulate all in�nitely many discrete probabilities, so the
size of possible jumps must be limited to a maximal possible jump length. The other
truncation is required if a priori one wants a de�nite region of space to be considered
in which the walk takes place. Then, particles leaving this space have been ignored.
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Fig. 3 Sample path (left) and histogram (right) for � = 2 : (Gauss)

Our simulations, based on one million of realizations, have been carried out in the
interval jxj � 4 : All the histograms refer to stable densities at t = 1 for jxj � 3 ; the
space interval being reduced to avoid the border e�ects. The sample paths are plotted
against the time steps, up to 1200 for � = 1 and up to 2000 for � = 1:5 ; 2 ; so they refer
to di�erent �nal times, namely t = 1:87; 1:33; 0:8 ; respectively.

The transition probabilities have been chosen from our random walk model as follows:
� = 1 from (4.11) with scaling parameter � = �=4 ; � = 1:5 from (4.8b) with � =
(2=3) cos(3�=4) ; for � = 2 from (4.2) with � = 1=4 :

The cases � = 1 (Cauchy process) and � = 2 (normal process) have been considered
for a possible comparison with the standard and accurate algorithms existing in the
literature, whereas � = 1:5 has been chosen in view of possible applications in
econophysics where usually the index of stability ranges from 1.4 to 1.7, see e.g.

Mandelbrot(1997), Mantegna and Stanley (1997).
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6. Conclusions

For the simulation of Markovian processes characterized by L�evy probability densities
evolving in time we have presented a random walk model, discrete in space and time,
by giving its transition probabilities. We have displayed preliminary results of a few
numerical case studies concerning sample paths and histograms to check the e�ciency
of our algorithms. From the sample paths one can recognize the "wild" character of the
L�evy 
ights with respect to the "tame" character of the Brownian motion.

We expect that our arguments can be relevant in di�erent �elds of physics including
the emerging one of econophysics, where stable distributions are becoming more and
more common. In statistical physics the stable distributions play a key role in the
(wonderful) world of random walks constructed by the late Montroll and continued
through his school, see e.g. Montroll and West (1979), Montroll and Shlesinger (1984),
Klafter, Shlesinger and Zumofen (1996). Here we have pointed out their relation to
space-fractional di�usion equations. However, they turn out to be related also to time-
fractional di�usion equations, see e.g. Engler (1997), Mainardi and Tomirotti (1997)
and Mainardi, Paradisi and Goren
o (1999). Furthermore, this topic is relevant for
fractal phenomena, where di�erential equations of fractional order are usually adopted
to describe their evolution, see e.g. Carpinteri and Mainardi (1997), Zaslavsky (1998),
Hilfer (1999), and reference therein.
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Local times and other continuous additive

functionals of L�evy processes

Michael B. Marcus
�

This talk is a survey of some of the results that Jay Rosen and I have
obtained over the last ten years. These results apply to strongly symmet-
ric Markov processes. For the purposes of this talk it is su�cient to say
that these processes have symmetric transition probability density functions.
Furthermore, since this is a conference on L�evy processes we will restrict our
attention to symmetric L�evy processes.

Let X be a symmetric L�evy process with values in S, where S is either
Rm or Tm, (the m dimensional torus) and m = 1; 2; 3. Let � 2 S. We write
the characteristic function of X in the form

Eei�Xt = e�t (�):(1)

Let pt(x; y) denote the transition probability density for X.
Let x 2 S and A be a measurable set in S. Consider the occupation

measure of the set A up to time t, i.e.

�t(A)
def
=

Z t

0

I[Xs2A] ds:(2)

When �t is absolutely continuous with respect to Lebesgue measure on S, we
can write this as

�t(A)
def
=

Z
A

Lxt dx:(3)

Lxt is the local time of X at x up to time t. Now let f�( � ) be an approximate
�{function at zero. We prefer to think of Lxt as

Lxt
def
= lim

�!0

Z t

0

f�(X(s)� x) ds:(4)

�Department of Mathematics, The City College of CUNY, New York, NY 10031,
mbmarcus@earthlink.net, http://home.earthlink.net/embmarcus/. This research was sup-
ported, in part, by grants from the National Science Foundation and PSC-CUNY.
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Both of these de�nitions can be made rigorous under certain conditions.
Consider the 1-potential density of X

u1(x; y) =

Z 1

0

pt(x; y)e
�t dt:(5)

Note that pt(x; y) is positive de�nite, this is a simple consequence of the
Chapman{Kolmogorov equation and uses the fact that pt(x; y) is symmetric.
Consequently, so is u1.

Let G = fG(x); x 2 Sg be a mean zero Gaussian process with

EG(x)G(y) = u1(x; y):(6)

The next theorem relates the continuity of the local time of X with that of
G.

Theorem 0.1 (Barlow{Hawkes [1]) L = fLxt ; (x; t) 2 S�R
+g is continuous

almost surely if and only if fG(x); x 2 Sg is continuous almost surely.

Actually, in [1] necessary and su�cient conditions are given for the con-
tinuity of the local time process for all L�evy processes not only symmetric
L�evy processes. For processes that are not symmetric these conditions can
not be described in terms of Gaussian processes since u1 in (6), as the co-
variance of a Gaussian process, must be symmetric. Also, in [1] Theorem
0.1 is not expressed this way. This is the way Theorem 1, in [8] is stated.
The contribution of the latter theorem is that it holds for Markov processes
with symmetric transition probability density functions, not just for sym-
metric L�evy processes. (For symmetric L�evy processes pt(x; y) is a function
of jx � yj.). There is another important di�erence in the work in [1] and
the work in [8]. In [1] concrete conditions for continuity are obtained which
imply Theorem 0.1 as stated. In [8] the comparison between local times
of L�evy processes and Gaussian process is obtained abstractly, without ob-
taining any conditions to verify when either class of processes is continuous.
However, since necessary and su�cient conditions for the continuity of Gaus-
sian processes are known we don't need to. This is the theme of all the work
discussed in this survey. Equivalencies are obtained between properties of
continuous additive functionals of L�evy processes and associated Gaussian
and Gaussian chaos processes. Then concrete results about the Gaussian
and Gaussian chaos processes are used to give concrete conditions for the
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functionals of L�evy processes to have certain properties. In this survey the
property we consider is continuity.

The major tool in all this work is an isomorphism theorem of Dynkin and
various generalizations of it that we have obtained. It is not simple to describe
Dynkin's theorem or how we use it. See the papers in the bibliography for
details.

The class of L�evy processes with continuous local times is really quite

small. A symmetric L�evy process has a local time if and only if u1(x; x)
def
=

u1(0) <1. (We also sometimes write u1(x� y) for u1(x; y).) Since

u1(x; y) =
2

�

Z
S

cos(� � (x� y))

1 +  (�)
d�(7)

and  (�) � C(j�j2_1), we see that u1(0) =1 in Rm or Tm, for m � 2. Thus
for a local time to exist X must take values in R1 or T 1. Also, for stable
processes in R1, i. e.  (�) = j�j� in (1), we must have � > 1.

When X does not have a local time, equivalently, when u1(0) = 1, we
can consider di�erent continuous additive functionals of X. The ones we
describe now may be thought of as weighted occupation measures. Let � be
a positive measure on S. Consider

L
�
t
def
= lim

�!0

Z t

0

Z
S

f�(X(s)� x) d�(x) ds:(8)

This limit exists in L2 whenZ Z
(u1(x� y))2 d�(x) d�(y) <1(9)

Let A � S and de�ne �y(A) = �(A + y). As a generalization of the local
time process we consider

fL
�y
t ; (y; t) 2 S � R+g:(10)

The local time process is of this form when � = �0, the delta function at
zero.

Just as local time processes are related to Gaussian processes, the more
general class of processes in (10) are related to second order Gaussian chaos
processes. Here is how such processes are de�ned. Let u1 be the 1-potential
of a symmetric L�evy process such that u1(0) = 1. Take a positive de�nite
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function u1�(x) such that u1�(0) <1 and lim�!0 u
1
�(x) = u1(x). De�ne G�(x)

to be a mean zero Gaussian process with covariance EG�(x)G�(y) = u1�(x�y)
and

H(�y) = lim
�!0

Z
: G2

�(x) : d�y(x)(11)

where : G2
�(x) :

def
= G2

�(x)� EG2
�(x) is the second degree Hermite polynomial

in G�(x) with leading coe�cient one. (: G2 : is called the Wick square of G.)
H(�y) is a second order Gaussian chaos process, i.e. it is equivalent

to a process of the form
P

j;kfgjgk � �j;kg�j;k(y) where fgjg are independent
identically distributed normal random variables with mean zero and variance
one. To see this write a Karhunen{Loeve expansion, G�(x) =

P
j gj�j(x; �).

Then Z
: G2

�(x) : d�y =
X
j;k

fgjgk � �j;kg

Z
�j(x; �)�k(x; �) d�y(x)(12)

and pass to the limit as � goes to zero.
Let

d2(x; y) = E (H(�x)�H(�y))
2(13)

=

Z Z
(u1(s� t))2 d(�x(s)� d�y(s)) d(�x(t)� d�y(t))

=

Z Z
�2
x�y;x�y(u

1(s� t))2 d�(s) d�(t)

where

�2
b;b(u

1(s� t))2
def
= 2u1(s� t))2 � u1(s� t + b))2 � u1(s� t� b))2:(14)

Let Nd([0; 1]
m; �) denote the minimum number of balls of radius � in the

metric d that covers [0; 1]m.
Consider the following �ve assertions:

1.
R
(logNd([0; 1]

m; �)) d� <1.

2.
R
(logNd([0; 1]

m; �))1=2 d� <1.

3. fH(�y); y 2 Sg is continuous almost surely.

4. fL
�y
t ; (y; t) 2 S � R+g is continuous almost surely.
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5.
R
S
u1(x) d�(x) <1.

The next theorem is contained in [10].

Theorem 0.2 1. ) 3. ) 4. ) 5.

The implication 3. ) 5, is a necessary condition for the continuity of
second order Gaussian chaos processes, of the type described here, that we
can only obtain by going through 4., that is, by considering the related con-
tinuous additive functionals L

�y
t and using Dynkin's isomorphism theorem.

Necessary and su�cient conditions are not known for the continuity of
second order Gaussian chaos processes. However, if we consider L�evy process
with values in Tm, with smooth 1-potential densities and restrict our atten-
tion to chaoses associated with these processes and consider smooth measures
�, (i.e. measures on Tm with regularly behaving Fourier coe�cients) we can
sharpen Theorem 0.2.

Theorem 0.3 ([10]) For a large class of L�evy processes in Tm, m=1,2,3 and
for smooth measures � (in terms of b�(k))

2:, 3:, 4:, 5:(15)

with S replaced by Tm.

Note that given a L�evy process X on Rm one can de�ne a L�evy processeX on Tm by simply taking X modulo [0; 2�]m. Equivalently, one can de�ne

transition densities for eX as ept(x; y) = P1
k=�1 pt(x; y + 2k�), when m = 1

and similarly for m > 1.
In addition to results in [10], Theorem 0.3 uses results from [2] and [12],

which show that 2. and 3. are equivalent for certain second order Gaussian
chaoses on Tm and certain measures �. We don't know how to obtain these
results for Rm. (We use explicit representations of the process which we have
when the processes are on Tm.) The class of processes included in Theorem
0.3 include Brownian motion and other stable processes as well as processes
in their domains of attraction.

We now consider the question of n{fold self intersections of a L�evy process
in Rm or Tm, m = 1; 2. This is done by studying their intersection local
times. These random functionals \measure" the amount of self-intersections
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of a stochastic process. To de�ne an n�fold self-intersection local time, the
natural approach is to set

�n;�(�; t)
def
=Z Z

f0�t1�����tn�tg

f�(X(t1)� x)
nY
j=2

f�(X(tj)�X(tj�1)) dt1 � � � dtn d�(x)(16)

where f� is an approximate ��function at zero, and take the limit as �! 0.
Intuitively, this gives a measure of the set of times (t1; : : : ; tn) such that

X(t1) = � � � = X(tn) = x

where the \n{multiple points" x 2 Rm are weighted by the measure �.
However, in general, this limit does not exist because of the e�ect of the
integral in the neighborhood of the diagonals in (t1; : : : ; tn) 2 (Rm)n, i.e.
any point in (Rm)n where ti = tj, for some i 6= j. The method used to
compensate for this is called renormalization. One subtracts from �n;�(�; t)
terms involving lower order intersections �k;�(�; t) for k < n, in such a way
that a �nite limit results.

For technical reasons we replace t by � in (16), where � is an exponential
random variable with mean one, independent of X.

Let

u1�(x) =

Z
f�(x� y)u1(y) dy(17)

and note that

u1�(0) = E0
�

�Z �

0

f�(Xt) dt

�
:(18)

Let


n;�(�) =
n�1X
k=0

(�1)k
�
n� 1

k

�
(u1�(0))

k�n�k;�(�; �):(19)

Heuristically, one may think of 
n;�(�) as being equal toZ Z
f0�t1�����tn��g

f�(X(t1)� x)(20)

nY
j=2

(f�(X(tj)�X(tj�1))� �(tj � tj�1)) u
1
�(0) dt1 � � � dtn d�(x):
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In this formulation the �-functions compensate for the singularities that occur
when various of the ti are close to each other.

Let 
n(�x)
def
= lim�!0 
n;�(�x). This limit exists in L2 wheneverZ Z

(u1(x� y))2n d�(x) d�(y) <1:(21)

Similarly to (11), de�ne

H2n(�x) = lim
�!0

Z
: G2n

� (y) : d�x(y):(22)

This limit also exists in L2 when (21) holds. H2n(�x) is a 2n{th order Gaus-
sian chaos. The next theorem is from [5].

Theorem 0.4 For a large class of L�evy processes in S, with m=1 or 2;
if fH2n(�x); x 2 Sg is continuous almost surely then f
n(�x); x 2 Sg is
continuous almost surely.

A well known su�cient condition for the continuity of fH2n(�x); x 2 Sg,
in terms of metric entropy, shows thatZ Z

jx�yj��

(u1(x� y))2n
�
log

1

jx� yj

�2n+�

d�(x) d�(y) <1(23)

for any �; � > 0, is a su�cient condition for the continuity of f
n(�x); x 2 Sg.
Here u1 is the 1{potential density of the L�evy process whose intersection local
times we are studying. One sees that very little more than (21) is needed to
prove continuity. This result is from [4].

There is a considerable bibliography related to these results. Here I am
only giving references to the papers mentioned above and to all my work with
Jay Rosen that uses Dynkin's isomorphism theorem and its generalizations to
explore the relationship between functionals of L�evy processes and Gaussian
chaoses. Please see the bibliographies of the papers below for additional
references.
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SLOW POINTS OF LOCAL TIMES

LAURENCE MARSALLE

If B denotes a real Brownian motion, it is well-known that it speed
at the origin is s 7!

p
2s log j log sj (law of the iterarted logarithm).

Dvoretzky and Kahane proved the existence of exceptional times where
the speed was s 7! c

p
jsj for some c > 0, and that this speed was the

minimal one. Such times are called slow points of Brownian motion.
We are now interested in L, local time at 0 of a real Markov process

M . That is L is an increasing continuous process and roughly speaking
Lt represents the amount of time spent byM at 0 till time t. For most of
local times, there exists a law of the iterated logarithm which speci�es
the speed at the origin to be s 7! log j log sj

�(s�1 log j log sj)
. Here � denotes the

Laplace exponent of the subordinator X, right-continuous inverse of L.
Under mild conditions on �, we prove the existence of non-trivial slow

points for L, and precise the minimal speed of L to be s 7! c(�(jsj�1))�1

(c some positive constant).
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On the Concept of Market Force:
From Smoluchowski’s Approximation

to Burgers’ Equation

GORAN PESKIR�

The lectures given under the title above evolved into a paper�� entitled “Market Forces and
Dynamic Asset Pricing”. This paper consists of the following sections:

1. Introduction
2. Description of the model
3. Brownian motion and Newtonian mechanics
4. Market force and the specialist’s optimisation revisited
5. Solution of the investor’s problem
6. Solution of the specialist’s problem
7. Concluding remarks and open questions

In order to provide some insight into this material, we first give a tentative abstract of the paper and
then review relevant details from Section 2. The exposition finishes with a short list of references,
which is incomplete and subject to change.

Abstract

We study a dynamic model of asset pricing which is driven by two characteristic
market features: the law of investor demand (e.g. ‘buy low, sell high’) and the law
of the market institution (which codifies the trading rules under which the market
operates). We demonstrate in a simple investor-specialist trading model that these
features are sufficient to guarantee an equilibrium where investors’ trading strategies
and the specialist’s rule of price adjustments are best responses to each other. The
drift term appearing in the resulting equation of the asset price movement may be
interpreted using Newtonian mechanics as the acceleration of a ”market force”.

The idea that a market price fluctuates around a ”fundamental” value is classic, and the extent
to which stock prices would tend to revert to their mean values over long time horisons has been
the subject of long-standing attention in the finance literature. The popular model of Black and
Scholes (1973) suggests that the stock priceSt follows a geometric Brownian motion:

(2.1) dSt = St

�
�dt + �dWt

�

where thedrift rate �2 IR and volatility � > 0 are assumed constant, andW = (Wt)t�0 is

�Centre for Mathematical Physics and Stochastics, supported by the Danish National Research Foundation.
��Jointly with J. Shorish, Department of Economics, Aarhus.
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a standard Brownian motion. Clearly, this approach is an idealisation of real world phenomena.
To overcome disagreements of this assumption with observation, much attention in (2.1) has been
given to generalising both the�-term (leading tostochastic volatilitymodels) or to thedWt-term
(leading toLévy processmodels). Less attention, however, has been given to the form of the
�-term, and this is one of the foci of the present work.

More specifically, and in view of the mean-reversion puzzle stated above, we focus on the
dynamicalaspect of this question: What is� to be, where does it originate, and how is it
determined? It should be emphasised that although for simplicity we leave the volatility� constant,
and the noise term equal todWt , a more realistic picture will be obtained if� is allowed to
be random, anddWt is replaced by dLt where (Lt)t�0 is a Lévy process. We did not want
the technical complexity of these more general assumptions to obscure the clarity of the dynamical
issue we concentrate upon. It seems more likely, moreover, that these two quantities are to be
determined by statistical observations of the real-world stock price (cf. Barndorff-Nielsen 1998).

Our main aim in this study is to describe dynamical aspects of the stock price movement
and initiate a theory which is aimed at uniting its kinematics and dynamics, and which is built
upon analogies with the laws of classical mechanics. The central new concept which arises in this
attempt is the concept of themarket force.

1. Description of the Model. We consider a model of asset pricing which is driven by two
characteristic market features: (i)the law of investor demand(e.g. ’buy low, sell high’) and (ii)the
law of the market institution(which codifies the trading rules under which the market operates).
Thus, the market participants are: (i)an investor(who can be also seen as arepresentative investor,
i.e. an aggregate of ’small’ investors) and (ii)a specialist(who can be identified with the trading
mechanism of the market institution). There exists a risky asset (stock) and the investor is assumed
to has at his disposal a risk-free asset (bond). The bond continuously compounds at a constant
interest rate r > 0 .

The dividend Dt paid by the stock is assumed to evolve according to:

(2.2) dDt = �Dt dWt

where � > 0 (volatility) and (Wt)t�0 is standard Brownian motion (a source of randomness).
The fundamental stock priceis then defined to be the expected value of all future dividends:

(2.3) Sot = E

�Z 1

t

e�r(s�t)Ds ds
�� FW

t

�

where FW
t = �(fWs j 0�s� tg) is the information set available at timet (Lucas 1978).

In deciding how to revise the stock price, the specialist faces constraints specified by the
market institution (see e.g. Ait-Sahalia 1998, Madhavan and Smidt 1993). It will be assumed that
the specialist adjusts the stock price through relative returns according to the following rule:

(2.6)
dSt
St

= �tdt +
dSot
So
t

where dSt=St is the relative return of the market price,dSot =S
o
t is the relative return of the

fundamental price, and�t is the drift chosen by the specialist. Thus, the specialist ’controls’ the
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market price through the choice of�t . For simplicity, we deal withMarkov controls�t = �(t; St) ,
but other treatments may also be of interest.

We note in (2.6) that�t � 0 if and only if (St)t�0 = (So
t )t�0 if and only if there is no

control exercised by the specialist, andif and only if there is no ’external’ force (influence) exerted.
In this case the price is an ’inertial equilibrium’. These facts reveal some analogy withNewton’s
first law of motion (see Section 3 for more details).

The specialist’s aim is to determine an optimal�� = ��(t; s) from this class. If we now
consider thelog-price:

(2.9) Xt = log
�
St
�

it follows by Itô’s formula that Xt solves:

(2.10) dXt = b�(t; Xt)dt + �dWt

where b�(t; x) = �(t; ex)��2=2 , and this holds for any admissible� = �(t; s) . Thus, by
Smoluchowski’s argument(reviewed in Section 3), once the optimal�� = ��(t; s) is found, we
may think of it asthe acceleration of the market forcebeing exerted as a superposition of external
influences by the market players. Thus, formally we can write:

(2.11) ��(t; s) � the accelerationof the market force.

These considerations are clarified in Sections 4 and 5.

2. The Specialist’s Optimisation. How does the specialist determine the optimal adjustment�t ?
We suppose that given a demand function
t as the number of shares of the stock required by an
investor, by the rule of the market institutionthe specialist must take the opposite side of the trade.
That is, she must clear the market and hold�
t shares of the stock. We note in passing that this
rule is connected withNewton’s third law of motion(see Section 3).

Depending upon the choice of discounting (which is analysed at some length in Section 4), we
study two possible formulations of the specialist’s optimisation problem. (The formulations imply
markedly different consequences for the asset price process.) Setting:

(2.13) S�t = e�rtSt

the first specialist’s formulationis to solve:

(2.14) sup
�

E

�Z 1

t

(�
s) dS
�
s

�� Ft

�

where Ft represents the information set available at timet , and 
s is an optimal investor’s
demand at time s (to be specified below).

The second specialist’s formulationis to solve:

(2.15) sup
�

E

�Z 1

t

e�rs(�
s) dSs
�� Ft

�

with Ft as above. Thus, in this case the discounting is applied before thed-sign and not after.
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In both formulations the supremum is taken over all� = (�s)s�t from an admissible class
for which (2.6) makes sense; in this work we study Markov controls�t = �(t; St) , but other
controls are also of interest.

The crucial role in the treatment of the specialist’s problems (2.14) and (2.15) is played by the
Markovian structure of the process(St; Zt) . This will enable us to reformulate problems (2.14)
and (2.15) as stochastic control problems which can then be solved explicitly (Section 6).

3. The Investor’s Optimisation. To formulate the investor’s problem assume that his initial wealth
is z>0 , and that he is free to transfer his holdings continuously in time from one investment to
another without paying transaction costs. There is no restriction on borrowing or lending, and short
sales are allowed. We assume that the investor has at his disposal two investment possibilities: the
stock given by (2.6) above, and the risk-free bond satisfying:

(2.16) dBt = rBt dt

with B0 = 1 . Thus Bt = ert continuously compounds at the constant interest rater>0 .
The fraction of investor’s wealth held at timet in the stock is conveniently denoted by

(2.17) ut =
Yt

Xt + Yt

where Yt is the wealth held in the stock (may be positive or negative), andZt := Xt + Yt is
the total wealth held both in the stock and the bond.

Given a consumption ratect , the investor’s wealth processZ=(Zt)t�0 is assumed to satisfy
to following budgetequation:

(2.18) dZt = (1�ut) rZt dt + utZt

�
�tdt + �dWt

�
� ctdt

where (1�ut)rZt dt is the fraction of wealth held in the bond,utZt

�
�tdt+�dWt

�
is the fraction

of wealth held in the stock, andctdt is the fraction of wealth consumed. By writing (2.18) in
this form we are actually imposing aself-financingproperty on the strategy of the investor. (This
is addressed in more detail in Section 4.)

In the sequel we will avoid dealing withthe time of bankruptcy:

(2.19) � = inf f t > 0 j Zt = 0 g

and replace it with atransversality condition(specified later) which will imply that at the ’end of
time’ the wealth must be non-negative (i.e. the investor cannot ’die’ holding a debt).

Given a utility function U = U(c) , the investor’s aim is to solve:

(2.20) sup
u;c

E

�Z 1

t

e��sU(cs) ds
�� Ft

�

where Ft represents the information set available at timet .
The utility function of the investor is assumed to be:

(2.21) U
(c) =
c
�1



(0< 
 < 1)
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which has anArrow-Pratt coefficientof relative risk aversiongiven by �cU 00(c)=U 0(c) = 1�
 .
We shall also deal with thelogarithmic utility function:

(2.22) U0(c) = log(c)

which is obtained as a limit of (2.21) for
 # 0 . These utility functions will be sufficient to
grasp most of the essentials offered by the model. The problem (2.20) in this case reduces to the
problem posed and solved by Merton (1969).

4. Concluding Remarks. Thus, if it is known (from the trading rules specified by the market
institution) that the stock priceSt will be driven as in (2.6) for some admissible�t , then the
specialist-investor equilibrium is achieved as follows. The investor takes any admissible�t as
given, and solves her optimisation problem (2.20), thus obtaining an optimal demand
t (which
depends on�t ). Given this demand function the specialist solves her optimisation problem (2.14)
or (2.15) and obtains the optimal drift��

t
. As the optimal 
t found by the investor applies

to any �t , it will also apply to the optimal ��

t
, thus leading to the optimal demand function


�

t
. This procedure gives the equilibrium actions(��

t
; 
�

t
) , which are mutual best responses. In

accordance with our considerations taken up in the next section, and as already stated in (2.11),
this solution establishes a ’dynamic equilibrium’ defined by a ’market force’ with ’ acceleration’
��

t
. This identification utilizesNewton’s second law of motion(the principle of ’superposition’

of forces). In this cases the forces are anaction forceof the investor and areaction forceof the
specialist (see Section 3 for more details).

Note. While we are aware of the Hodges-Carverhill-Selby result (The Economic Journal, 103,
1993, 395-405, and in “Mathematics of Derivative Securities”, Cambridge Univ. Press 1997, 41-52),
which in the context above reads ”consistency with ’equilibrium’ is achieved if the acceleration
solvesBurger’s equation”, we do not make any use of this interesting fact in the paper.
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SERIES EXPANSIONS WITHOUT COMPENSATION

FOR INFINITELY DIVISIBLE PROCESSES

Jan Rosiński

University of Tennessee, Knoxville

Throughout this note {Γn}n≥1 will stand for the sequence of the consecutive
arrival times in a Poisson process of unit rate, {ξn}n≥1 will denote a sequence
of i.i.d. random elements in a suitable measurable space, and {Un}n≥1 will be a
sequence of i.i.d. uniform on [0, 1] r.v.’s. It is assumed that the sequences {Γn}n≥1,
{ξn}n≥1, and {Un}n≥1 are independent of each other.

1. Representations of stable Lévy processes.

Let {X(t), 0 ≤ t ≤ 1} be an α-stable Lévy process with the skewness parameter
β ∈ [−1, 1], the scale parameter 1, and the shift parameter 0 (X(1) ∼ Sα(1, β, 0) in
the notation of [ST94]). This process admits the following series expansions (see
[ST94], Example 3.10.3), for 0 < α < 1

(1.1) {X(t), 0 ≤ t ≤ 1} d={C1/α
α

∞∑
n=1

ξnΓ−1/α
n 1(Un ≤ t), 0 ≤ t ≤ 1},

for 1 < α < 2

(1.2) {X(t), 0 ≤ t ≤ 1} d={C1/α
α

∞∑
n=1

[ξnΓ−1/α
n 1(Un ≤ t)− βb(α)

n t], 0 ≤ t ≤ 1},

and for α = 1,
(1.3)

{X(t), 0 ≤ t ≤ 1} d={ 2
π

∞∑
n=1

[ξnΓ−1
n 1(Un ≤ t)− βant] + (β

2
π

ln
2
π

)t, 0 ≤ t ≤ 1},

where ξn has the distribution given by

(1.4) P (ξn = 1) = 1− P (ξn = −1) =
1 + β

2
,

and an =
∫ (n−1)−1

n−1 x−2 sinx dx, b
(α)
n = α

α−1 (n
α−1
α −(n−1)

α−1
α ); Cα = (

∫∞
0 x−α sinx dx)−1.

One can view series (1.2) and (1.3) as integrals with respect a marked Pois-
son point process M =

∑
δ(Γn,ξn,Un) with compensation; indeed E[ξnΓ

−1/α
n 1(Un ≤

Typeset by AMS-TEX
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t)] ∼ βb
(α)
n t and E[ξnΓ−1

n 1(Un ≤ t)] ∼ βant ([ST94], Remark 5, page 30). However,
it is more desirable and simpler to work with series expansions without compen-
sation, such as (1.1). This is obviously the case when β = 0 (symmetric α-stable
processes). But it is also possible to avoid compensation when X is not totally
skewed, that is |β| < 1 and α 6= 1. Indeed, using a representation from [JW94] we
have the following.

Proposition 1.1. Let {X(t), 0 ≤ t ≤ 1} be an α-stable Lévy process with α 6= 1,
the skewness parameter β ∈ (−1, 1), the scale parameter 1, and the shift parameter
0. Then

(1.5) {X(t), 0 ≤ t ≤ 1} d={C1/α
α

∞∑
n=1

ξnΓ−1/α
n 1(Un ≤ t), 0 ≤ t ≤ 1},

provided the distribution of ξn is given by

(1.6) P (ξn = a) = 1− P (ξn = −b) =
b

a + b

where a =
[

1+β
2 (( 1+β

1−β )1/(α−1) + 1)
]1/α

and b =
[

1−β
2 (( 1−β

1+β )1/(α−1) + 1)
]1/α

.

Representation (1.5) can not be extended to skewed 1-stable processes. This
follows from the next lemma.

Lemma 1.2. If
∑∞
n=1 ξnΓ−1

n converges a.s., where {ξn} is an arbitrary i.i.d. se-
quence, then

∑∞
n=1 ξnΓ−1

n has a Cauchy distribution, i.e., α = 1 and β = 0.

Therefore, we need to look at different forms of series expansions to represent
without compensation skewed 1-stable processes. We obtain the following repre-
sentation.

Theorem 1.3. Let {X(t), 0 ≤ t ≤ 1} be a 1-stable Lévy processes with the
skewness parameter β ∈ (−1, 1), the scale parameter 1, and the shift parameter 0.
Let {ξn} be an i.i.d. sequence with the common probability density function of the
form

f(x) =
{

A(1 + β)x−2g(x1+β), x > 0
A(1− β)x−2g(|x|1−β), x < 0

where A > 0 and g : R+ → R+ are subject to the conditions: g(x) > 0 for x > 0
and

∫∞
−∞ f(x) dx = 1. Then

(1.7) {X(t), 0 ≤ t ≤ 1} d={(πA)−1
∞∑
n=1

ξn1(h(ξn) ≤ Γ−1
n )1(Un ≤ t), 0 ≤ t ≤ 1},

where h(x) = g(x1+β)1(x > 0) + g(|x|1−β)1(x < 0). The series converges uncondi-
tionally a.s. and uniformly with respect to t ∈ [0, 1].

Proposition 2.4 provides a wide latitude in the choice of the common distribution
of ξn’s. A counterpart to Proposition 1.1 is the following.
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Theorem 1.4. Let {X(t), 0 ≤ t ≤ 1} be an α-stable Lévy process with α 6= 1, the
skewness parameter β ∈ (−1, 1), the scale parameter 1, and the shift parameter 0.
Let {ξn} be an i.i.d. sequence with the common probability density function of the
form

f(x) =

{
A(1 + β)x−α−1g((1 + β)

1
1−α x), x > 0

A(1− β)|x|−α−1g((1− β)
1

1−α |x|), x < 0

where A > 0 and g : R+ → R+ are subject to the conditions: g(x) > 0 for x > 0
and

∫∞
−∞ f(x) dx = 1. Then

(1.8) {X(t), 0 ≤ t ≤ 1} d={Kα

∞∑
n=1

ξn1(h(ξn) ≤ Γ−1
n )1(Un ≤ t), 0 ≤ t ≤ 1},

where Kα = (αCα/(2A))1/α and h(x) = g((1 + β)
1

1−α x)1(x > 0) + g((1 −
β)

1
1−α |x|)1(x < 0). The series converges unconditionally a.s. and uniformly with

respect to t ∈ [0, 1].

Notice that the series in (1.7) and (1.8) have exactly the same form. They are
obtained by a random thinning of an i.i.d. sequence {ξn}.

2. Random thinning of i.i.d. sequences.

The idea of representing infinitely divisible random vectors by series of randomly
thinned i.i.d. sequences was introduced in [R90a]. Such series were applied to the
study of sample paths of infinitely divisible processes in [R90b], [Ta92], [Ta92]. The
simplest way to present this idea is a construction of a Poisson point process with
a given σ-finite intensity measure ν on a measurable space S. Namely, choose any
probability measure µ on S such that ν is absolutely continuous with respect to
µ, and let {ξn} be an i.i.d. sequence of random elements in S with the common
distribution µ. Define

(2.1) g(x) =
dν

dµ
(x) x ∈ S.

Then

(2.2) N(dx) =
∞∑
n=1

1(g(ξn) ≥ Γn)δξn(dx)

is a Poisson point process on S with the intensity measure ν. Here a Poisson point
process N is constructed ”at once” as opposed to the usual construction based on
a partition of S into sets of finite ν-measure and pasting the corresponding Poisson
point processes on those sets. N is obtained by a random thinning of i.i.d. points
{ξn} and again, we have a wide selection of their common distribution µ.
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3. Representations of Lévy processes without compensation.

Here we will only give a general result on series representations without compen-
sation for Lévy processes. Specific methods of defining the common distribution of
ξn’s, depending on the underlying Lévy measure, and extensions to nonstationary
increment processes and to infinitely divisible random measures, will be given in
[Ro98].

Theorem 3.1. Let {X(t), 0 ≤ t ≤ 1} be a Lévy processes with Lévy measure ν
of L(X(1)). Suppose that either both integrals

(3.1)
∫ 1

0

x ν(dx) and

∫ 0

−1

|x| ν(dx)

are finite or both are infinite. Then this process admits a representation of the form

(3.2) {X(t), 0 ≤ t ≤ 1} d={
∞∑
n=1

w(ξn, Γn)1(Un ≤ t) + ct, 0 ≤ t ≤ 1},

for a suitably chosen w : R ×R+ → R, an i.i.d. sequence {ξn}, and c ∈ R. The
series converges unconditionally a.s. and uniformly with respect to t ∈ [0, 1].

Remark 3.2. Simultaneous convergence or divergence of integrals (3.1) is also
necessary for (3.2).
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[R90b] ROSIŃSKI, J. (1990), An application of series representations for zero-one laws for
infinitely divisible random vectors, Probability in Banach Spaces 7, Progress in Probability,
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CERTAIN PROBABILISTIC ASPECTS OF

SEMISTABLE LAWS

GENNADY SAMORODNITSKY

The law � of a non-Gaussian random vector X in <d (or even in a
more general space) is called semistable if it is in�nitely divisible and
there exist r; b 2 (0; 1) [ (1;1) and c 2 <d such that

��r = �(b�) � �c; (1:1)

where for positive r, ��r stands for the rth convolution power of �, �
means the convolution of two measures, and �c is the point mass at c.
It is well known that there exists an � 2 (0; 2) depending only on X
such that b in (1.1) is expressed as b = r�1=�, namely

��r = �(r�1=�
�) � �

c
:

Thus � is a characteristic of X and is called the index of X.
Suppose X is semistable with index �. Let � be the collection of

all r 2 (0;1) for which X satis�es (1.1) for some c in <d. Then �
is a closed multiplicative subgroup of (0;1). We will say that X is
�{semistable index �.
A �-semistable index � random vector X for which � = (0;1) (this

follows automatically if � contains a sequence of r's approaching 1) is
�-stable. Since �-stable random vectors, 0 < � < 2, are often viewed
as heavy tailed analogs of Gaussian random vectors, the dependence
structure of �-stable random vectors and processes has been exten-
sively studied. The tails of semistable random variables are similar
(even though not necessarily strictly comparable) to those of stable
random variables, and since the family of �-stable laws is, from many
points of view, a small subset of the family of all semistable index �

laws, the latter o�er higher 
exibility in stochastic modeling than the
former. This fact points to potential uses of semistable laws in applied
probability. The �rst step in realizing such potential is to understand
the probabilistic structures of semistable laws.
We concentrate on two issues, that are of interest in clarifying the

place of semistable laws among all the in�nitely divisible laws. First,
we discuss the extent to which the property of semistability of a ran-
dom vector in <d is determined by the property of semistability of its

This is a joint work with Makoto Maejima.
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marginals, and then we clarify which of the semistable random variables
in < are of type G, and which of them are, in fact, sub{stable.

Cornell University, School of Operations Research and Industrial

Engineering, 206 Rhodes Hall, Ithaca, NY 14853-3801, U.S.A.

E-mail address : gennady@orie.cornell.edu



RECURRENCE AND TRANSIENCE OF L�EVY PROCESSES

AND SOME PROCESSES WITH NONSTATIONARY

INDEPENDENT INCREMENTS

KEN-ITI SATO

In the �rst half of this talk we discuss criteria of recurrence and transience for

L�evy processes. In the second half we introduce selfsimilar additive processes and

report on the problem of recurrence and transience for those processes.

Terminology. A L�evy process fXt; t � 0g on Rd is de�ned to be a stochasti-

cally continuous process with stationary independent increments with X0 = 0 and

with sample functions right-continuous with left limits. Dropping the stationarity

requirement for increments, we de�ne an additive process. A L�evy process fXtg is

called recurrent if

lim inf
t!1

jXtj = 0 a: s:;(0.1)

it is called transient if

lim
t!1

jXtj =1 a: s:(0.2)

An additive process fXtg is called recurrent if, for every s � 0,

lim inf
t!1

jXt �Xsj = 0 a: s:(0.3)

or, equivalently,

P
h
lim inf
t!1

jXt �Xsj = 0 for every s � 0
i
= 1;(0.4)

it is called transient if (0.2) holds. For a L�evy process (0.1) and (0.4) are equivalent

but there are additive processes satisfying (0.1), but not (0.4).

A stochastic process fXt; t � 0g on Rd is called selfsimilar if, for every a > 0,

there is b > 0 such that

fXat; t � 0g
d
= fbXt; t � 0g;(0.5)

where
d
= means identity in �nite-dimensional distributions.

The distribution of X is denoted by L(X).
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An in�nitely divisible distribution � on Rd has the characteristic function b�(z),
z 2 Rd, expressible by the L�evy{Khintchine representation

b�(z) = exp

�
�
1

2
hz; Azi + h
; zi+

Z
Rdnf0g

(eihz;xi � 1� ihz; xi1fjxj�1g(x)) �(dx)

�
;

where A is a nonnegative-de�nite symmetric operator, 
 2 Rd, and � (called L�evy

measure) is a measure on Rd with �(f0g) = 0 and
R
(1 ^ jxj2)�(dx) < 1. We call

(A; �; 
) the generating triplet of �. When fXtg is a L�evy process, the generating

triplet of � = L(X1) is called that of fXtg.

A probability measure � is called selfdecomposable if, for every b > 1, there is a

probability measure �b such that

b�(z) = b�(b�1z)b�b(z):(0.6)

1. Recurrence and transience of L�evy processes

It is well-known that a L�evy process fXtg is either recurrent or transient and that

they are expressible, respectively, by in�niteness of mean sojourn times on open

neighborhoods of 0 or by �niteness of mean sojourn times on compact sets. They

can be described by the behavior of log b�(z) near the origin. The following result

is a consequence of Chung and Fuchs [1], Spitzer [13], Ornstein [5], Stone [14], and

Port and Stone [6].

Theorem 1.1. Fix " > 0. A L�evy process fXtg on Rd is recurrent if and only ifZ
jzj<"

Re
� 1

� (z)

�
dz =1;(1.1)

where  (z) = log b�(z) with � = L(X1).

This is a de�nitive result. We call it Spitzer type criterion. However, it is hard for

us to decide whether (1.1) holds or not, looking at the generating triplet (A; �; 
).

To be more speci�c, how do the properties of the L�evy measure � outside compact

sets in
uence recurrence and transience? Only in symmetric case we can handle this

question using the technique of Shepp [11, 12].

We restrict ourselves to one dimension, d = 1, in the rest of this section. If

EjXtj <1 for t > 0, a necessary and su�cient condition for recurrence is EXt = 0.

Therefore, any symmetric L�evy process with EjXtj <1 is recurrent. Let �1 and �2

be measures on R. We say that �2 has an identical tail with �1 if there is x0 such

that, for any x � x0,
R
jyj>x

�2(dy) =
R
jyj>x

�1(dy). We say that �2 has a bigger tail
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than �1 if there is x0 such that, for any x � x0,
R
jyj>x

�2(dy) �
R
jyj>x

�1(dy). The

following three theorems are analogues of Shepp's results on random walks. Proofs

are given in Sato [9].

Theorem 1.2. Let fXtg and fYtg be symmetric L�evy processes.

(i) If their L�evy measures �X and �Y satisfyZ 1

0

x2j�X � �Y j(dx) <1;(1.2)

then recurrence of fXtg is equivalent to that of fYtg. Here j�X��Y j is the variation

of the signed measure �X � �Y .

(ii) If �Y has a bigger tail than �X and if �Y is unimodal with mode 0, then

transience of fXtg implies that of fYtg.

In particular, in symmetric case, if �Y has an identical tail with �X , then the

conclusion in (i) is true. The Gaussian part is irrelevant. Even without symmetry,

it is plausible that, under the condition that EjXtj =1 for t > 0, or under a more

stringent condition, recurrence of fXtg is determined only by the behavior of �X

outside any compact set.

Theorem 1.3. For an arbitrarily given symmetric �nite measure � on R, there

exists a recurrent symmetric L�evy process fXtg such that its L�evy measure � has a

bigger tail than �.

This shows that, in Theorem 1.2(ii), the assumption of unimodality of �Y is es-

sential.

Theorem 1.4. Let fXtg be a symmetric L�evy process with L�evy measure �. De�ne

R(r; x) = �

 
1[
n=0

(2nr + x; 2(n + 1)r � x] \ (1;1)

!
for r � x � 0;(1.3)

N(x) = �
�
(x _ 1;1)

�
for x � 0:(1.4)

Let c > 0 be �xed. Then transience of fXtg is equivalent toZ 1

c

�Z r

0

xR(r; x)dx

��1

dr <1:(1.5)

If � is unimodal with mode 0, then transience of fXtg is equivalent toZ 1

c

�Z r

0

xN(x)dx

��1

dr <1:(1.6)
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Even without unimodality of �, transience implies the condition (1.6), since

N(x) � R(r; x). But, in general, (1.6) does not imply transience, because, if it

does, Theorem 1.3 is not true.

It is known that, if fXtg is symmetric, then unimodality of � with mode 0 is

equivalent to unimodality of the distribution of Xt with mode 0 for every t.

We add some consequences of Theorem 1.1 concerning relations between symmet-

ric and non-symmetric L�evy processes. See [8] for the proof.

Proposition 1.5. Let fXtg and fYtg be independent L�evy processes. If fXtg is

transient and symmetric, then fXt + Ytg is transient.

Proposition 1.6. If fXtg is recurrent, then its symmetrization is recurrent.

If fXtg is non-symmetric stable process with index 1, then it is transient but its

symmetrization is recurrent.

Proposition 1.7. Let fXtg and fYtg be independent L�evy processes. Suppose that

fXtg is symmetric and that

lim inf
z#0

z�1

Z 1

0

(1� cos zx) �X(dx) > 0:(1.7)

Suppose that EjYtj <1 for t > 0. If fXtg is recurrent, then fXt+Ytg is recurrent.

The condition (1.7) is determined only by the tail of �X . It implies that EjXtj =1

for t > 0. An example of fXtg is the Cauchy process. It is well-known that the

Cauchy process plus a drift 
t is still recurrent. Proposition 1.7 is an extension of

this fact.

2. Recurrence and transience of selfsimilar additive processes

For the class of additive processes we do not have the dichotomy of recurrence

and transience. Namely, there are additive processes that are neither recurrent nor

transient. Let us restrict our attention to selfsimilar additive processes.

Theorem 2.1 (Sato and Yamamuro [10]). If fXtg is a selfsimilar additive process

on Rd, then it is either recurrent or transient.

The following fact shows that mean sojourn times are irrelevant to recurrence and

transience.
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Proposition 2.2. There is a recurrent selfsimilar additive process fXtg such that

E
�R1

s
1fjxj�rg(Xt � Xs)dt

�
< 1 for all r > 0 and s � 0. There is a transient

selfsimilar additive process fYtg such that E
�R1

s
1fjxj�rg(Yt � Ys)dt

�
= 1 for all

r > 0 and s � 0.

If fXtg is a nonzero, selfsimilar, stochastically continuous process on Rd with

X0 = 0, then it has a unique exponent H > 0, that is, for any a > 0, the b in (0.5)

is expressed as b = aH . A nonzero process is selfsimilar L�evy with exponent H if

and only if it is strictly stable with index � = 1=H. It is known that a strictly

stable process with index � on R is recurrent if and only if � � 1. But, in case of

selfsimilar additive processes, the exponents have no relation with recurrence and

transience. In fact, if fXtg is a selfsimilar additive process with exponent H, then,

for any 
 > 0, fXt
g is a selfsimilar additive process with exponent 
H; we can

freely change the exponent, not a�ecting recurrence or transience.

Selfsimilar additive processes correspond to selfdecomposable distributions as fol-

lows.

Theorem 2.3 (Sato [7]). If fXtg is a selfsimilar additive process on Rd, then, for

any t � 0, L(Xt) is selfdecomposable. Conversely, if � is a selfdecomposable distri-

bution on Rd, not being the unit mass at 0, then, for any H > 0, there is, uniquely in

law, a selfsimilar additive process fX
(H)
t g with exponent H such that L(X

(H)
1 ) = �.

A probability measure � on R is selfdecomposable if and only if it is in�nitely

divisible and its L�evy measure � is such that �(dx) = k(x)jxj�1dx with k(x) being

increasing on (�1; 0), decreasing on (0;1), and nonnegative.

Recurrence or transience of the process fX
(H)
t g in Theorem 2.3 is determined by

� and independent of H. But we do not know any result of the type of Theorem

1.1. Given a selfdecomposable distribution �, we have the process fX(H)
t g on one

hand and the L�evy process fYtg with L(Y1) = � on the other. We are interested in

the comparison of these two processes.

Example 2.4 (Sato and Yamamuro [10]). Let � be a Gaussian on R with mean


 6= 0 and variance 1. Then Yt = Bt+ 
t and X
(H)
t = Bt2H + 
tH , where fBtg is the

Brownian motion on R. The process fYtg is transient but fX
(H)
t g is recurrent.

Example 2.5 (Sato and Yamamuro [10]). Let � be a selfdecomposable distribution

on R such that b�(z) = exp
�R1

�1
(eizx � 1)k(x)jxj�1dx

�
with 0 <

R 0

�1
k(x)dx =
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R1
0
k(x)dx <1, k(0�) <1, and k(0+) <1. Then fYtg is recurrent, but fX

(H)
t g

is transient.

Theorem 2.6 (Yamamuro [15]). If d � 3, then any nondegenerate selfsimilar ad-

ditive process on Rd is transient.

Theorem 2.7 (Yamamuro [15]). Let d = 1. Let fXtg be a nondegenerate selfsimi-

lar additive process on R with L(X1) = �.

(i) If � has nondegenerate Gaussian part, then fXtg is recurrent.

(ii) If b�(z) = exp
�R1

�1
(eizx � 1)k(x)jxj�1dx

�
with k(0�) < 1 and k(0+) < 1,

then fXtg is transient.

(iii) If b�(z) = exp
�R1

0
(eizx�1)k(x)x�1dx+ i
0z

�
with

R 1

0
k(x)dx <1 and 
0 < 0,

then fXtg is recurrent.

(iv) If b�(z) = exp
�R1

0
(eizx�1�izx1(0;1](x))k(x)x

�1dx+i
z
�
with

R 1

0
k(x)dx =1,

then fXtg is recurrent.

The recurrence-transience classi�cation of selfsimilar additive processes on R and

on R2 is an open problem. An interesting example of selfsimilar additive process is

the Brownian escape process of Getoor [2].

3. Remarks on generalizations

The notion of selfsimilarity is extended in a few ways: broad-sense selfsimilar,

semi-selfsimilar, and broad-sense semi-selfsimilar.

A process fXtg on R
d is called broad-sense selfsimilar if, for any a > 0, there are

b > 0 and a function c(t) such that

fXatg
d
= fbXt + c(t)g:(3.1)

A L�evy process is broad-sense selfsimilar if and only if it is a stable process. The class

of stable processes is richer than that of strictly stable processes. However, broad-

sense selfsimilar additive processes are reducible to selfsimilar additive processes as

follows.

Theorem 3.1 (Sato [7]). If fXtg is a broad-sense selfsimilar additive process on

Rd, then, there is a function k(t) such that fXt�k(t)g is selfsimilar additive process.

Note that if fXtg in the theorem above is a broad-sense selfsimilar L�evy process,

the process fXt � k(t)g is not always a L�evy process, since k(t) may not be linear.
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A process fXtg on Rd is called semi-selfsimilar if, for some a > 1, there is b > 0

such that (0.5) holds. This a is called an epoch. Epochs are not unique, but, if

fXtg is nonzero, semi-selfsimilar, stochastically continuous and X0 = 0, then there

is H > 0, called the exponent, such that b = aH for all epochs a. The notions are

introduced in Maejima and Sato [4]. A L�evy process is semi-selfsimilar if and only if

it is a strictly semi-stable process. Strictly semi-stable distributions are studied by

L�evy himself together with stable. Semi-selfsimilar additive processes are connected

to semi-selfdecomposable distributions, which are de�ned by Maejima and Naito [3]

in the following way. A probability measure � on Rd is semi-selfdecomposable if, for

some b > 1, there is an in�nitely divisible distribution �b satisfying (0.6). This b is

called a span.

Theorem 3.2 (Maejima and Sato [4]). If fXtg is a nonzero semi-selfsimilar addi-

tive process on Rd with exponent H and with a as an epoch, then, for any t � 0,

L(Xt) is semi-selfdecomposable having aH as a span. Conversely, if � is semi-

selfdecomposable with b as a span and if � is not the unit mass at 0, then, for any

H > 0, there is a semi-selfsimilar additive process fXtg having H as the exponent

and b1=H as an epoch such that L(X1) = �. This fXtg is not determined by � and

H uniquely in law. Given H > 0, it is determined uniquely in law by the system

fL(Xt) : 1 � t < b1=Hg.

Is there the dichotomy of recurrence and transience for semi-selfsimilar additive

processes? We know that the answer is a�rmative for d = 1 (Sato and Yamamuro

[10]). We do not know the answer for d � 2.

A process fXtg on Rd is called broad-sense semi-selfsimilar if there are a > 1,

b > 0, and a function c(t) satisfying (3.1). If fXtg is nontrivial, broad-sense semi-

selfsimilar, stochastically continuous and X0 = 0, then there is H > 0 such that

b = aH whenever (3.1) is satis�ed.

Theorem 3.3 (Maejima and Sato [4]). Theorem 3.1 remains true if \self-similar"

in the assumption and the conclusion is replaced by \semi-selfsimilar".
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L�evy processes and function spaces

Ren�e L. Schilling

The Nottingham Trent University, Mathematics Department, Burton Street

Nottingham NG1 4BU, U.K., email: rls@maths.ntu.ac.uk

With the exception of Brownian motions, L�evy processes are typical examples of jump
processes. Many aspects of L�evy processes, their potential theory, and their path be-
haviour are well-known. L�evy processes have discontinuous, c�adl�ag paths, the distri-
bution of the jumps and their semimartingale decomposition are well understood. But
how c�adl�ag are the paths really? The question of the smoothness of the per se dis-
continuous paths was only recently asked. The �rst results in this direction were the
papers by Z. Ciesielski, G. Kerkyacharian, and B. Roynette [6] (for stable and Gaussian
processes) and by B. Roynette [12] (for Brownian motions). These authors proposed to
use a tool familiar to most analysts who have to measure smoothness: function spaces,
in particular Besov spaces. Here we give a full characterization of smoothness of L�evy
processes in terms of Besov and Triebel-Lizorkin spaces, based on the papers [14, 15, 16]

1. Some notions from probability theory. A L�evy process fXtgt�0 on R
n is a

stochastic process with stationary and independent increments that is continuous in
probability. L�evy processes can be described in terms of their Fourier transforms,

E
0(eih�;Xti) = e�t (�); t � 0; � 2 R

n ;(1)

where the characteristic exponent  : Rn ! C is given by the following L�evy-Khinchine-
formula

 (�) = ih`; �i+ hQ�; �i+

Z
y 6=0

�
1� e�ih�;yi �

ih�; yi

1 + jyj2

�
�(dy):(2)

The triplet (`; Q; �) consisting of a vector ` 2 Rn , a symmetric, positive semide�nite
matrix Q 2 R

n�n , and the L�evy measure � on R
n n f0g,

R
y 6=0

jyj2=(1 + jyj2) �(dy) <1,
gives a one-to-one characterization of all possible characteristic exponents.
Since  gives a full characterization of the process fXtgt�0, it contains all relevant
information on the process, and many (probabilistic) properties of the process should
be available through the (Fourier-analytic) study of the characteristic exponent. Such
reasoning was the beginning of a success story dating back to S. Bochner [3, 4]. For an
up-to-date account we refer to the books by J. Bertoin [2] and K. Sato [13]. For our
purposes we recall the de�nition of certain indices that take into account the growth
behaviour of  at in�nity,

� = �1 = inf

�
� > 0 : lim

j�j!1

 (�)

j�j�
= 0

�
(3)

and at the origin

�0 = sup

�
� � 0 : lim

j�j!0

 (�)

j�j�
= 0

�
; �0 = sup

�
� � 0 : lim inf

j�j!0

 (�)

j�j�
= 0

�
:(4)
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The index �1 was introduced by R. Blumenthal and R. Getoor in their 1961 paper
[5] in order to study H�older properties of the paths of Xt in small time. Twenty years
later, B. Pruitt proposed to study �0 and �0. (His original de�nition was in terms of
the triplet (`; Q; �). The above form can be found, e.g., in [15]). Provided that there is
no dominating drift, he showed that

lim
t!1

t�1=� sup
s�t

jXt � xj = 0 or 1; a.s. (Px)(5)

according to � < �0 or � > �0. Note that this implies the bound

sup
s�t

jXs � xj � c� (1 + t)1=�; � < �0;(6)

with an a.s. �nite random variable c = c(!) depending on �.
The limits (5) can be easily proved by a Borel-Cantelli argument and estimates of the
type

P
x(sup

s�t
jXs � xj > R) � cn t sup

j�j�1

��� � �
R

����(7)

P
x(sup

s�t
jXs � xj � R) � c�

1

t supj�j�1
�� � �

4R�

���(8)

where in (8) we have to assume that jIm (�)j � �Re (�), i.e. that there is no domi-
nating deterministic drift. These estimates are implicit in [11], see also [15].

2. Function spaces. Function spaces are widely used in analysis, especially in the anal-
ysis of partial di�erential equations, in order to describe mapping properties of operators
and smoothness of functions. Usually, smoothness of a function means di�erentiability
or at least continuity properties which can be measured in scales of Sobolev/Bessel-
potential spaces W s

p ; H
s
p or H�older/Zygmund spaces Cs; Cs. In the 1960s and 1970s

Besov- Bs
pq and Triebel-Lizorkin spaces F s

pq were developed that made it possible to
give a uni�ed and systematic approach to the above classical spaces. However, these
new spaces have one additional feature: their scales go beyond continuity and allow us
to describe the \smoothness" of, say, c�adl�ag functions. This is the application we have
in mind here. In order to keep technicalities at a minimum, we restrict ourselves to
Besov spaces.
Following H. Triebel [17, 18] we give a Fourier-analytic description of Besov spaces.
Let f�jgj2N be a smooth, dyadic partition of unity, i.e., �j 2 C1(Rn), supp �0 � f� :

j�j � 2g, supp �j � f� : 2j � j�j � 2j+1g, supj;� j2
jj�jD��jj < 1 for all � 2 Nn0 andP

j �j � 1. Denote by Fu the Fourier transform of u. For 0 < p; q � 1, s 2 R we set

kujBs
pq(R

n)k :=

 
1X
j=0

2jsq


F�1(�jFu)



q
Lp(Rn)

!1=q

(9)

(with the usual modi�cation if p = 1 and/or q = 1). Clearly, for u 2 S 0(Rn) (9)
is well-de�ned and|in case it is �nite|independent of the particular choice of the
partition f�jgj2N.
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De�nition. Let 0 < p; q � 1 and s 2 R. The Besov space Bs
pq(R

n) consists of all
tempered distributions u 2 S 0(Rn) such that (9) is �nite.

Equipped with the norms (9) Besov spaces are Banach spaces (quasi-Banach spaces if
p < 1 or q < 1) that arise naturally as real interpolation spaces between the classical
Lp-Sobolev spaces Wm

p (Rn). It is, therefore, not surprising that we have the following
alternative description of Besov norms,

kujBs
pq(R

n)k � kukLp(Rn) +

 Z �

0

r�sq sup
0<jhj�r

k�M
h uk

q
Lp(Rn)

dr

r

!1=q

(10)

(with the usual modi�cation for q =1) whenever n(1
p
� 1)+ < s < M , M 2 N suitably

chosen, where �M
h u is theM -fold repeated di�erence of step h, �hu(x) = u(x+h)�u(x),

and � > 0 is arbitrary. The � in (10) indicates that (10) and (9) are equivalent (quasi-)
norms for the admissible scope of s and M .

Remarks. (A) Replacing Lp(Rn) = Lp(Rn ; dx) through the space Lp(Rn ; ��(x) dx)
with weight function ��(x) = (1 + jxj2)�=2 gives polynomially weighted Besov spaces

Bs
pq(R

n ; ��). (B) A function u is said to be locally in Bs
pq(R

n ; ��), if for some test-
function � 2 C1

c (Rn) the product �u 2 Bs
pq(R

n). (C) Besov spaces give a uni�ed
approach to various scales of function spaces. If, for example, p � 1 holds, then
Bs
pp = W s

p (s 6= integer, Sobolev-Slobodeckij scale \W"), Bs
2 2 = Hs

2 = W s
2 (Bessel-

potential or Liouville scale \H"), or Bs
11 = Cs (H�older-Zygmund scale). (D) One has

the following analogue of the Sobolev embedding theorem: B
s+n=p
pq (Rn) � Cs(Rn). In

particular,

Bt
pq(R

n) � C(Rn) for all t >
n

p
:(11)

As usual \�" means continuous embedding. (E) The smoothness index s dominates
the other two indices p; q in the following sense

Bs+�
pq (Rn) � Bs

pr(R
n) for all � > 0; 0 < p; q; r � 1:(12)

Lemma 1. Let f : R ! R be a compactly supported c�adl�ag function and write �f(x) :=
f(x)� limy"x f(y) for its jump at x. Then

� X
x2suppf

j�f(x)jp
�1=p

� Cp kf jB
1=p
p1(R)k(13)

holds true for all 0 < p <1 with some Cp > 0 given by the norm-equivalence (10).

Proof. Choose M =
�
1
p

�
+1 and observe that �M

h f(x) =
PM

k=0(�1)
M�k

�
M
k

�
f(x+ kh):

Therefore, we get for h < 0

lim
h"0

�M
h f(x) = (�1)Mf(x) + lim

h"0

MX
k=1

(�1)M�k

�
M

k

�
f(x+ kh) = (�1)M(f(x)� f(x�)):
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Since f is c�adl�ag and compactly supported, there are for a �xed 0 < � < 1 at most
N(�) 2 N0 jumps of size j�f(x)j > �; denote the corresponding sites by x1; x2; : : : ; xN(�)

and set Ut(xj) =
�
xj; xj +

t
2

�
, t < t0 < � so small that f jUt(xj) is right continuous at

xj. Together with (10) we have

Cp kf jB
1=p
p1(R)k

p � sup
0<t��

�
1

t
sup

0<jhj�t

Z
R

j�M
h f(x)j

p dx

�

� sup
0<t�t0=M

�
1

t
sup

�t<h�0

N(�)X
j=1

Z
Ut(xj)

j�M
h f(x)j

p dx

�

� sup
0<t�t0=M

�
1

2

N(�)X
j=1

inf
x2Ut(xj)

j�M
�tf(x)j

p

�

�
1

2

N(�)X
j=1

lim inf
t!0

inf
x2Ut(xj)

j�M
�tf(x)j

p

where the last estimate follows from Fatou's lemma. By de�nition, x 2 Ut(xj) satis�es
x � xj, thus f(x) ! f(xj) as x ! xj, whereas x � kt � xj +

t
2
� kt � xj �

t
2
< xj,

for all k = 1; 2; : : : ;M . Hence f(x� kt) ! f(xj�) as t ! 0 (and, a fortiori, x ! xj).
Therefore,

kf jB1=p
p1k

p � c0p

N(�)X
j=1

jf(xj)� f(xj�)j
p

and the assertion follows as �! 0.

3. L�evy processes with paths in Besov spaces. We can now turn back to the
question: How smooth are the paths of L�evy processes? An answer to this question would
be to identify the sample paths as elements of certain Besov spaces. Since the paths of
a L�evy process grow at a polynomial rate, there is no chance that t 7! Xt_0 2 Bs

pq(R)
globally. The natural spaces are, therefore, either localized spaces Bs;loc

pq (R) or weighted
spaces. As we have already observed,

sup
s�t

jXs(!)� xj � c(!) (1 + t2)1=(2�); a.s. Px for � < �0;

and the natural spaces to look at are polynomially weighted spaces.
To show the actual embedding, we have to prove that the norms (9) are �nite. For this,
set 
k := f! : c(!) < kg and observe that limk!1 Px(
k) = 1. The major technical
step is now contained in the following lemma.

Lemma 2. ([16, Lemma 2.5]) Let fXtgt�0 be as above. ThenZ

k

sup
jhj�r

��[�M
h X�_0(!)

�
(t)jp Px(d!) � C r (1 + t2)p=(2�)(14)

for � < �0 and p > �1. The constant C depends on p; �1; �0; k; �;M .
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The proof of the above lemma uses essentially the estimate (7).
We are now in a position to state our main result. See the last section for further
comments.

Theorem ([14] and [16]). Let fXtgt�0 be a L�evy process with characteristic exponent

 and indices �0; �1 as given above, and let 0 < p; q � 1 and s 2 R.

(A) ft 7! Xt_0g 2 L
p(R; (1 + t2)��=2) almost surely Px for all � > 1

�0
+ 1

p
.

(B) ft 7! Xt_0g 2 B
s
pq(R; (1+t

2)��=2) almost surely Px for all � > 1
�0
+ 1

p
, s > (1

p
�1)+

and either q <1; smaxfp; q; �1g < 1 or q =1; smaxfp; �1g < 1.

(C) ft 7! Xt_0g 2 Bs;loc
pq (R) almost surely Px for all s > (1

p
� 1)+ and either q <

1; smaxfp; q; �1g < 1 or q =1; smaxfp; �1g < 1.

(D) ft 7! Xt_0g 62 B
s;loc
pq (R) almost surely if either sp > 1 or sp = 1 and 0 < q � 1.

In order to prove (B) and (C) we have to check the �niteness of the norms (9). Having
established Lemma 2 above, this is a straightforward calculation whenever q 6= 1.
The case q = 1 is special, as it requires a Borel-Cantelli-trick. See [16] for details.
The assertion (D) follows from embedding considerations: for sp > 1 Besov spaces are
contained in spaces of continuous functions, hence cannot contain L�evy paths that are
with probability 1 jump functions. The borderline case ps = 1 is, in general, di�cult
to answer. In the presence of scaling properties, e.g., for stable processes, Ciesielski,
Kerkyacharian, and Roynette [6] showed a non-embedding result for q =1 and �1 > 1.

Corollary 1. The assertions of the above Theorem hold for all s � 0 without the

restriction s > (1
p
� 1)+.

Proof. Use the fact that Bs
pq � Bt

pr if s > t.

0.5

1

1.5

2

p

0.5

1

1.5

2

q

0.5

1

1.5

2

0.5

1

1.5p

The graph shows the parameter s as a func-

tion of p and q. The area below the graph

s = maxfp; q; �1g�1 represents the region of

admissible parameters (s; p; q) for embedding

into Bs;loc
pq with q 6=1.

For this picture we chose �1 = 0:50, i.e., the

plateau occurs at 1=�1 = 2:00.

Corollary 2. Let fXtgt�0 be as in the Theorem. Then

ft 7! Xt_0(!)g 2 B
1=p;loc
p1 (R) almost surely Px for all p > �1:
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Proof. We refer to the proof in [16, Corollary 4.3, Case 1]. If we have the strict

inequality p > �1 and q = 1, s = 1=p, we can �nd a 0 < � < 1 such that p� > �1
and sp� = � < 1. We can now proceed along the lines of the proof in [16]: instead of
using Jensen's inequality for the �nite measure hti�p� dt, we use Jensen's inequality for
the concave function x 7! jxj�, � < 1, and the expectation Ex . This yields Ex

�
jY j�

�
�

(Ex(jY j))�. The other arguments in [14] need not be changed.

Corollary 3. Let fXtgt�0 be as in the Theorem and denote by �Xt := Xt � Xt� the

jump at time t. ThenX
t�1

j�Xtj
p <1 almost surely Px for all p > �1:

Proof. Combine Corollary 2 and estimate (13)

Remarks. (A) The above Theorem and its Corollaries generalize to all Feller processes
that are generated by pseudo-di�erential operators cf. [14, 16] and the notes below. (B)
The assertions of the Theorem and Corollary 1 remain valid for (weighted) spaces of
Triebel-Lizorkin type F s

pq, cf. [16].

4. Concluding remarks. Some remarks on the development of the above theorem
seem to be in order. Originally, assertion (C) of the theorem was proved by Ciesiel-
ski, Kerkyacharian, Roynette [6] both for certain Gaussian and symmetric �-stable
L�evy processes with index � > 1 and for q = 1. Their method used essentially
the scaling property of stable processes and an atomic decomposition of Besov spaces.
Subsequently, V. Herren generalized this result (using the same technique) to any L�evy
process with index �1 > 1. In [14], the present author studied a class of Feller processes
that are generated by pseudo-di�erential operators

�p(x;D)u(x) = �(2�)�n=2
Z
Rn

eih�;xip(x; �)Fu(�) d�; u 2 C1
c (Rn);(15)

where � 7! p(x; �) is given by a L�evy-Khinchine formula (depending on the parameter
x)|cf. the talk of N. Jacob or [9]. (It is known that every Feller process whose generator
has a domain containing the test functions C1

c (Rn) is already of this type, cf. [7]; L�evy
processes are exactly those processes where p(x; �) =  (�), i.e., independent of x.) In
the paper [14] assertion (C) is proved for this class of processes; as a by-product, (C)
could be shown to hold for all L�evy processes, and the restriction �1 > 1 of [8] could
be removed.
In [15, 16] we proved the global embedding for Feller processes (and, in particular,
L�evy processes) as stated in the theorem above. The approach used in these papers
is basically the one sketched here. The advantage of this approach is that it is more

exible and allows us to include also spaces of Triebel-Lizorkin type.
In the recently published paper [1], Orlicz spaces were used to describe the paths of
L�evy processes, see also [10].

Acknowledgement. I am grateful to my colleague D. Kaye, Nottingham, for produc-
ing the 3-d plot included in this note.
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DISTRIBUTION OF THE FIRST LADDER HEIGHT OF

A STATIONARY RISK PROCESS PERTURBED BY

L�EVY MOTION

HANSPETER SCHMIDLI

Consider a stationary and ergodic marked point process (smpp)M =
(�i; Ui;Mi) on a probability space (
;F ; P ) with event times � � � <
��1 < �0 � 0 < �1 < �2 < � � � and marks (Ui;Mi) 2 (0;1)� E. Here
E is a Polish space and Mi is interpreted as an environmental variable.
Let

Nt =

8>>><
>>>:

1X
i=1

1I0<�i�t; if t > 0;

�
1X
i=0

1It<�
�i�0; if t � 0:

We call M a compound Poisson model if E = f0g, i.e. there are no
environmental marks, and : : : ; ��1���2; �0���1;��0; �1; �2��1; : : :
are iid exponentially distributed random variables and (Ui) is an iid
sequence of positive random variables independent of (�i). In this
paper we consider the process

St =
NtX
i=1

Ui � t+ �Bt(1)

where � > 0 is some constant and (Bt) is a zero-mean L�evy process
with no downward jumps.
Let � = E[N1] and � = ��1E[

P
N1

i=1 Ui] be be the intensity of the
claim arrivals and the mean value of a typical claim. We assume the net
pro�t condition � = �� � 1. This implies that lim inft!1 St = �1.
Let mt = supfSs : 0 � s < tg, �+ = inff�k : k > 0; S�k > m�k

g,
Lc = m�+ and Ld = S�+ � Lc. �+ is then the �rst time where a
jump of the unperturbed model (� = 0) leads to a new maximum of
the process (St). We will call �+ the �rst (modi�ed) ladder epoch.
Let G denote the distribution function with density ��1P [Ui > �] and
by H the distribution function of sup(�Bt � t : t � 0). Note that
G is also the distribution of Ld in the unperturbed case. If (Bt) is
a Brownian motion and M is a compound Poisson model Dufresne
and Gerber (1991) showed and that P [�+ < 1] = � and that Lc has
distribution H. Moreover, given �+ < 1, Lc and Ld are independent
with distribution functions H and G, respectively. Hence it follows
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that

P
h
sup
t�0

St � u
i
= (1� �)

1X
n=0

�n(G�n �H�(n+1))(u) :(2)

Furrer (1998) proved that (2) also holds for perturbation by an �-stable
L�evy motion with no downward jumps as long as M is a compound
Poisson process. His approach did, however, not show whether or not
H and G still can be interpreted as the distribution functions of Lc and
Ld. We will show that, for any zero-mean L�evy process with no down-
ward jumps and any smmp P [�+ <1] = � and that Lc has distribution
H. Given �+ <1, Lc and Ld are independent with distribution func-
tions H and G, respectively. This again proves the result of Dufresne
and Gerber (1991) and Furrer (1998) in the case of compound Poisson
process, because this process always is in its stationary state after a
jump.

Department of Theoretical Statistics, Departments of Mathemati-

cal Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
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1 Introduction

A class of stochastic volatility models, discussed in Barndor�-Nielsen and Shephard (1998), in-

corporates a number of the well-established common features of observational series of �nancial

assets, in particular series of stock prices and of exchange rates. One fairly important such styl-

ized feature, the so called leverage e�ect, was however not covered. This is where negative return
sequences are associated with increases in the volatility of stock returns. Such asymmetries are

not usually observed for exchange rates.

The leverage e�ect was studied in some early work by Black (1976), while it motivated

the introduction of the EGARCH model of Nelson (1991) and the threshold ARCH model of

Glosten, Jagannathan, and Runkle (1993). An economic theory behind such e�ects is discussed

by Campbell and Kyle (1993).

In the present note we indicate a way of extending the type of models referred to so that

they re
ect the leverage e�ect, and we calculate a few of the consequences. Only the simplest,

one-dimensional, version of the models will be considered here.

2 Incorporating leverage

2.1 Model construction

As a model for the log price process of, for instance, a stock we consider a stochastic process

x�(t), 0 � t <1, de�ned by a stochastic di�erential equation

dx�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t) + �d�z(�t) (1)

where w is the Wiener process, �z is the centered version of a L�evy process �z (that is �z(t) =
�z(t)�E�z(t)), and � is a stationary process de�ned, also in terms of �z, by the stochastic di�erential
equation

d�2(t) = ���2(t)dt+ d�z(�t) (2)

with 0 < � < 1. This volatility process is thus of Ornstein-Uhlenbeck (OU) type although

it will not have Gaussian increments. The process �z is a homogeneous L�evy process (so it has

independent and stationary increments) with positive increments (also termed a subordinator).

As it is the driving process for the OU process we call it a background driving L�evy process

�MaPhySto is funded by the Danish National Research foundation
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(BDLP). The �ltration determined by w and �z jointly will be denoted by F = fF t : 0 � t <1g.
Throughout we will assume � = � = 0 for simplicity of exposition as these terms raise no new

issues.

Although we have focused on the simplest OU volatility process, our model extends to where

volatility follows a weighted sum of independent Ornstein-Uhlenbeck processes with di�erent

persistence rates. That is

�2(t) =
mX
j=1

w�j�
2
j (t); where

mX
j=1

w�j = 1;

with

d�2j (t) = ��j�
2
j (t)dt+ d�zj(�jt);

where the f�zj(t)g are independent (not necessarily identically distributed) BDLPs. Hence some
of the components of the volatility may represent short term variation in the process while others
represent long term movements. In such a case we would have a process for the price of the type

dx�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t) +

mX
j=1

�jd�zj(�jt);

where the leverage e�ect could be di�erent for the various components of volatility. As this type

of extension will raise no new technical issues we will not deal with it in this note and instead

focus on the case where m = 1 and so the model is made up of (1) and (2).

For � = 0 this setup reduces to the elemental version of the models studied in the earlier paper

(Barndor�-Nielsen and Shephard (1998)). If � is negative a positive (in�nitesimal) increment

d�z(�t) in the volatility process �2(t) will have a negative e�ect on the stock price. This expresses,
at least qualitatively, the stylized leverage e�ect | that negative returns are associated with

increases in observed volatility. Notice however that there is no feedback from the x� process to
the volatility process �2 in our model - the innovations from �z a�ects x� and �2 simultaneously.
Hence this model di�ers from the EGARCH and threshold ARCH models of leverage referenced

above. However, it is in keeping with the non-symmetrical stochastic volatility models of leverage
previously discussed in the literature (see, for example, the review in Ghysels, Harvey, and

Renault (1996)). A typical example of that style of models is where

d log �2(t) = ��
�
log �2(t)� �

	
dt+ {ds(t);

a geometric Gaussian Ornstein-Uhlenbeck process, whose increments of the standard Brownian

motion s(t) are correlated with those of w(t). Our construction is mathematically more tractable.

2.2 Volatility and the BDLP

Denoting the cumulants and moments of �z(1) (when they exist) respectively by ��m and ��m
(m = 1; 2; :::) we have

�z(t) = �z(t)� t��1 = �z(t)� t� (3)

where for brevity we have written � = ��1. For some purposes it maybe helpful to note that
�z(t) is bounded from below and that the (marginal) cumulants of �2(t) follow directly from the

cumulants of �z(1). In particular, if we write the cumulants of �2 as ��m (m = 1; 2; :::) then it

follows (see the proof in Barndor�-Nielsen (1998)) that

��m = m��m; m = 1; 2; :::

It will be helpful later to establish the notation that the corresponding cumulant generating

functions will be written as �k(�) = log
�
Eexp

�
��2(t)

	�
and �k(�) = log fEexp (��z(1))g for �2(t)

162



and �z(1) respectively. Indeed they are related by the fundamental equality (Barndor�-Nielsen
(1998))

�k(�) =

Z
1

0

�k(�e�s)ds; (4)

which can be reexpressed as
�k(�) = ��k0(�) (5)

(where �k0(�) = �d�k(�)=d�). The common feature of this notation is the BDLP objects, �z(1),
have graves over them while the volatility itself , �2(t), have acutes. This style of notation will

be maintained throughout this note. Important special cases of this are

��1 = Ef�2(t)g = ��1 = � and

��2 = 2Varf�2(t)g = 2��2 = 2!2.

Now, let

x�0(t) =

Z t

0

�(s)dw(s); (6)

which is the log-price process minus the leverage e�ect. The solution of the equation (1) is then

x�(t) = x�0(t) + ��z(�t) (7)

2.3 Moments of returns

As in the previous paper, we shall determine some of the properties of the increments over time

spans of length � of the model process x�. Thus, let

yn = x�(�n)� x� f�(n� 1)g

= y0n + ��zn

where

�zn = �z(��n)� �z f��(n� 1)g � ���

and

y0n = x�0(�n)� x�0 f�(n� 1)g : (8)

The implication is that

ynj�
2
n; �zn � N(��zn; �

2
n); (9)

where integrated volatility in
uences the distribution of returns through

�2n = �2�(�n)� �2� f�(n� 1)g (10)

and

�2�(t) =

Z t

0

�2(u)du: (11)

We will write

�zn = �z(��n)� �z f��(n� 1)g ; (12)

and

�zn = �2 (�n)� �2 f�(n� 1)g :

Then an important implication (Barndor�-Nielsen and Shephard (1998)) of these constructions

is that

�2n = ��1 (�zn � �zn) : (13)
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It is this linear structure which will allow us to perform a number of analytic calculations which
are not possible for other models.

The formula for the returns (9) is informative for it shows that the e�ect of the leverage is

to shift the distribution. If the volatility innovations are unexpected large and � is negative,

then the mean return will be negative. Hence negative returns are associated with increases in

volatility. Likewise small innovations in the volatility process will happen at the same time as

positive returns.

We now de�ne

�zn = �zn � ��� (14)

��2n = �2n � E
�
�2n
�
= �2n ���: (15)

Further, let

��2(t) = �2(t)� �:

After these preparations we have that

Efy2ng = ��(� + �2��2) (16)

and

Varfy2ng = Varfy20ng+ 2�2f2�2�2���2 + 3(e��� � 1 + ��)��3g+ �4��(��4 + 2����22); (17)

where the expression for

Varfy20ng = 6Var
�
�2(t)

	
��2

�
e��� � 1 + ��

�
+ 2�2�2

= 3��2�
�2
�
e��� � 1 + ��

�
+ 2�2�2

was derived in Barndor�-Nielsen and Shephard (1998).

Likewise, for s = 1; 2; ::: we derive that

Efynyn+sg = 0; (18)

Cov
�
yn; y

2
n+s

�
= Efyny

2
n+sg = ���2(1� e���)2 exp f���(s� 1)g (19)

Cov(y2n; y
2
n+s) = Cov(y20n; y

2
0n+s) + �2(1� e���)2 exp f���(s� 1)g ��3 (20)

where the expression

Cov(y20n; y
2
0n+s) = Var

�
�2(t)

	
��2(1� e���)2 exp f���(s� 1)g

=
��2
2�2

(1� e���)2 exp f���(s� 1)g

is given in Barndor�-Nielsen and Shephard (1998). We note then that there is some simpli�cation

as

Cov(y2n; y
2
n+s) =

�
��2
2�2

+ �2��3

�
(1� e���)2 exp f���(s� 1)g :

Only the formulae (17), (19) and (20) require some steps of calculation, which we place in the

appendix.

The e�ect of the leverage on the dynamic properties of discrete time returns is made quite

clear by these formulae. First both E
�
yny

2
n+s

�
and Cov(y2n; y

2
n+s) damp down exponentially

with the lag length. In other words, the leverage e�ect diminishes exponentially with s. The

e�ect of the leverage on the covariance between the squares is to increase (decrease) volatility

clustering if the BDLP is positively (negatively) skewed. In practice we would expect the BDLP

to be highly positively skewed.
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We should note that exactly the same dynamic structure was found by Sentana (1991) in his
work on the discrete time quadratic ARCH model (QARCH). Hence we can think of the QARCH

model as a discrete time representation of our continuous time leverage model, generalising the

unleveraged result associated with the work of Drost and Nijman (1993) and Drost and Werker

(1996).

The simplicity of the e�ect of the leverage term means that we can still compute analytically

the spectrum of squared returns. We may write this as

f( ) =

1X
s=�1

corfy2ny
2
n+sg cos(s )

= 1� c��1 + c��1a( ;�)

where � = exp(���),

a( ;�) =
1� �2

1� 2� cos + �2

and

c =
(1� e���)2(��2!2 + �2��3)

Varfy2ng
;

which generalises the previous result of Barndor�-Nielsen and Shephard (1998).

3 Rest of the paper

In the rest of the paper we discuss extensions of this work and focus on designing simulation

methods to enable us to sample return sequences from these types of processes.
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Abstract

We extend the well known P. L�evy theorem on the distributional iden-

tity (Mt � Bt;Mt) ' (jBtj; L(B)t), where (Bt) is a standard Brownian
Motion and (Mt) = (sup0�s�tBs) to the case of Brownian Motion with

drift �. Processes of the type

dX�
t = ��sgn(X�

t ) dt+ dBt

appears naturally in the generalisation.

Key Words: Brownian Motion, Local Time, Markov Processes.

1 Introduction

A classical result of Paul L�evy states that if B = (Bt)0�t�1 is a standard Brownian
motion (B0 = 0; EBt = 0; EB2

t = t) then

(M �B;M)
law
= (jBj; L(B)) (1)

�This note is an excerpt from the MaPhySto Research Report No. 1998-22 \An extension
of P. L�evy's distributional properties to the case of a Brownian motion with drift" (to appear
in Bernoulli). For the proof of the main theorem and derived results, we refer to the full paper.

yMaPhySto { Centre for Mathematical Physics and Stochastics, funded by a grant from The
Danish National Research Foundation.
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i.e. ((Mt � Bt;Mt); 0 � t � 1)
law
= (jBtj; L(B)t; 0 � t � 1) where M = (Mt)0�t�1,

Mt = max0�s�tBs, and L(B) = (L(B)t)0�t�1 is the local time of B at zero:

L(B)t = lim
�#0

1

2�

Z t

0
1(jBsj��) ds: (2)

( See, for example, [Revuz�Yor (1994);Ch.VI].)

The main aim of this note is to give an extension of the distributional property
(1) to the case of a Brownian motion with drift B� where B� = (B�

t )0�t�1; B
�
t =

Bt + �t. Let's denote M� = (M�
t )0�t�1; M

�
t = max0�s�tB

�
s .

For our presentation the following process X� = (X�
t )0�t�1 de�ned as the

unique strong solution of the stochastic di�erential equation

dX�
t = �� sgnX�

t dt+ dBt; X�
0 = 0; (3)

plays a key role. (Here sgn x is de�ned to be 1 on <+; �1 on <� and 0 at 0.)
In particular we shall see that the process jX�j = (jX�

t j)0�t�1 realizes an explicit
construction of the process RBM(��) i.e. a re
ecting Brownian motion with drift

(��t):

2 Main result

Theorem 1 For any � 2 <

(M� � B�;M�)
law
= (jX�j; L(X�)) (4)

i.e. (M�
t � B�

t ;M
�
t ); 0 � t � 1)

law
= (jX�

t j; L(X
�)t); 0 � t � 1) where

L(X�)t = lim
�#0

1

2�

Z t

0
1(jX�

s j��)
ds:

3 Some remarks

The theorem of P. L�evy (1) and its extension (4) given above have both "two-
dimensional" character in the sense that they are statements for pairs of processes
((M� � B�);M�) and (jX�j; L(X�)).
M.Yor has pointed out the connection between Theorem 1 and 2 above and
the results in the papers [Kinkladze (1982)] and [Fitzsimmons (1987)]. From pa-
per [Kinkladze (1982)] one may obtain easily the corresponding following "one-

dimensional" result saying thatM��B� law
= RBM(��). (For the notion of RBM(��)

see De�nition 1 in [Kinkladze (1982)]). Indeed by Theorem 1 and 2 in [Kin-
kladze (1982)] the process Y � �RBM(��) can be realized with some Brownian
motion B in the form

Y �
t = sup

0�s�t
(��(t� s)� (Bt �Bs)); t � 0:
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So, Y �
t = sup0�s�t((�s + Bs) � (�t + Bt) and as a corollary Y � � M� � B�

with B�
t = �t + Bt. Together with formula (21) of Theorem 2 we obtain that

M��B� law
= jX�j. In connection with this formula it is usefull to remark that the

process X� has appeared in many di�erent problems however the very natural

property RBM(��)
law
= jX�j, apparently, was not noted before.

It is very reasonable to ask about possible extensions of the result M� � B� law
=

jX�j for more general class of processes Z = (Zt)t�0 besides the processes B
� =

(B�
t )t�0; � 2 <. According to [Fitzsimmons (1987)] if Z = (Zt)t�0 is a conserva-

tive real valued di�usion process and the process maxZ�Z is a time homogenuous
strong Markov process then necessarily Z = B�;�, where B�;�

t = �t + �Bt with
� 2 <; � > 0. So, this result shows that in some sense a direct extension of the
P. L�evy's result is possible only for Brownian motion with drift. That is, exactly
the framework of Theorem 1 above.
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Multiparameter Levy Stable Noise and a

Selection Procedure

A. R. Soltani
�

Let Z be a random measure on bounded Borel sets in RN with values

in a Banach space of jointly symmetric �-stable random variables for which

E[exp(i
Z(B))] = exp(�c�(B)j
j�); 
 2 R; � 2 (0; 2]; �(B) is the Lebesgue

measure of B. De�ne Z(t) to be restriction of the random measure Z to the

rectangle (0; t] =
Q
(0; tj]; i:e:; Z(t) = Z((0; t]); t 2 RN+, then Z(t); t 2 RN+;

de�nes a multiparameter Levy stable noise which is a random �eld with in-

dependent increments. Processes of this type have been the center of many

research activities, [1], [2], [3], [4]. From the work in [1] concerning the exis-

tence of a jointly continuous version of local time for d-dimensional Levy stable

�elds we were motivated to prove the following:

let Q = (0; v] be a rectangle in RN+, then for each positive integer m and each

(t1; : : : ; t2m) 2 Q2m; � 2 (1; 2],

Z
R2m

jE[exp(i
2mX
j=1


jZ(t
j))]j

2mY
j=1

j
jj
�d
j � c(m)

NY
k=1

2mY
j=1

(t
(j)
k � t

(j�1)
k )�(1+�)=�;

(1:1)

where t
(j)
k is the jth order statistic of t1k; : : : ; t

2m
k ; j = 1; : : : ; 2m; k = 1; : : : ; N;

c(m) is a conctant, and � > 0 subject to (1 + �)=� < 1.

Note that as
Q2m
j=1 j
jj

� is not integrable, one can not neglect the characteristic

�Department of Statistics College of Sciences, Shiraz University, Shiraz, Iran
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function term of the integrand in (1.1), and has to estimate it properly.

In this work we present a proof for (1.1). It happens to be an interesting

problem. No advanced theorem is used. To make readers curious to go through

the detail of the proof, for m = 2 and for di�erent choices of points t 2 Q the

integral splites into sum of 104 elementary integrals that each has to be treated

in a certain way; for m=3 the number of elementary integrals exceeds 1000. A

selection procedure is performed to take care of the integration procedure, it

is a two dimensional selection procedure which is new. At this stage we only

sketch the method and the procedure for N = 2.

Step1: Small rectangles. we may assume that t11; t
2
1; : : : ; t

2m
1 are or-

dered, i.e. 0 < t11 < t21 < : : : < t2m1 � v1. Let each � be a permuta-

tion on f1; : : : ; 2mg: we use � to identify the positions of the 2th compo-

nents of tj; j = 1; : : : ; 2m; i.e. tj2 is the �(j)th order statistic of t12; : : : ; t
2m
2 :

The lines which are parallel to the coordinate axes and pass through each

tj; j = 1; : : : ; 2m partition each rectangle [0; tj] into j � �(j) disjoint rectan-

gles. Let us call these disjoint rectangles small rectangles. If a small rectangle

D is contained in [0; tj], the number j is assigned to it, j = 1; : : : ; 2m: The

index set of a small rectangle D is de�ned to be the set of all numbers in

f1; 2; : : : ; 2mg which are assigned to D and is denoted by I(D):

Step2: Properties of Z. Since Z(:) has independent increments we may

write

Z(tj) =
X

fD:j2I(D)g

Z(D);

where the terms are independent of each other. This implies that
2mX
j=1


jZ(t
j) =

X
D

(
X

j2I(D)


j)Z(D);

which in turn implies that

jE[exp

0
@i

2mX
j=1


jZ(t
j)

1
A]j =Y

D

exp(�

������
X

j2I(D)


j

������
�

�(D)): (1:2)
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Step 3: Change of variable. let Ij = fk : k � j : �(k) � �(j)g and

I�j = Ij � fjg and let

�j =
X
k2Ij


k; �j =
X
k2I�

j


k: (1:3)

Now 
j = �j � �j, therefore
Q2m
j=1 j
jj

� � 2�
P0Q2m

j=1 c
�
j , where cj is either j�jj

or j�jj; j = 1; : : : ; 2m � 1; c2m = j�2mj. If I�j = �; then cj = j�jj. Thus the

integral in (1.1) is dominated by

2�
0XZ

R2m

Y
D

exp

0
@�

������
X

j2I(D)


j

������
�

�(D)

1
A 2mY

j=1

c�jd�j: (1:4)

Step 4: Integration and estimation. (I). If cj = j�jj, then we choose a

small rectangle D in the column [j� 1; j]� [0; v2] for which I(D) = I�j and use

the inequality that for a > 0; � > 0; e�ax
�

x� � (�=�)�=�a��=� for all x � 0 to

estimate

exp

0
@�

������
X

j2I(D)


j

������
�

�(D)

1
A
������
X
k2Ij�


k

������
�

� (�=�)�=�[�(D)]��=�: (1:5)

In this case we also use the small rectangle with upper right vertex tj, Dj, to

perform the following integration

Z
R
exp(�j�jj

��(Dj))d�j � k0[�(Dj)]
�1=�; (1:6)

where k0 =
R
R exp(�jyj

�)dy, note that I(Dj) = Ij .

(II). If cj = j�jj; then we must decide on either using the small rectangle Dj

to obtain Z
R
exp(�j�jj

��(Dj))j�jj
�d�j � k1[�(Dj)]

�(1+�)=�; (1:7)

where k1 =
R
R exp(�jyj

�)jyj�dy, or using Dj as in (1.6) and look for a small

rectangle D in [j; j � 1]� [0; v2]�Dj to obtain that

exp(�j�jj
��(D))j�jj

� � (�=�)�=�[�(D)]��=� (1:8)
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For performing this procedure for j = 1; : : : ; 2m a special caution is needed

for choosing each small rectangle. Namely if at stage j; Dj is used in (1.7),

then no other small rectangle which has an edge length as Dj should be used

in cases I or II in other stages. Also if at stage j a small rectangle D is used for

(1.5) or (1.8) then any small rectangle which has an edge length as D is only

allowed to be used for (1.6) in other stages. Finally, if at stage j Dj is used for

(1.6), then any small rectangle which has an edge length as Dj is only allowed

to be used for (1.5) or (1.8) in other stages.

The product in (1.4) is over all small rectangles and at most 2�2m small rect-

angles are used in the procedure given above. Each small rectangle Dj; j =

1; : : : ; 2m is used in the procedure. For those small rectangles which are of no

use in our procedure; we use the estimate that exp(�j
P

j2I(D) 
jj
��(D)) � 1:

Now, based on the above procedure, we need a direction for choosing our

desired small rectangles and to prove that always our desired rectangles are

available. Our two dimensional selection procedure provides the right direc-

tion.
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Optimal Consumption and Portfolio in a Jump

Di�usion Market

Nils Christian Framstad1, Bernt �ksendal1;2, Agn�es Sulem3

Extended Abstract - 21/12/98

1 The Model

Let (
;F ; P ) be a probability space with a given �ltration (Ft)t�0. We consider a market

consisting of two securities or investment possibilities of the form:

dX(t) = (rX(t)� c(t))dt; X(0) = x; (1)

dY (t) = �Y (t)dt+ �Y (t)dW (t) + Y (t�)

Z
R

�(�) ~N(dt; d�); Y (0) = y; (2)

where

~N([0; t]� U) = N([0; t]� U)� tm(U)

is the compensator of an (homogeneous) Poisson random measure N([0; t] � U) on R+ � R

with intensity measure m([0; t] � U) = E[N([0; t] � U)] = t�(U), where d�(�) is a �-�nite

measure on the Borel set U of R. We also assume that �(�) � 0 everywhere (see [3]). Here

c(t) = c(t; !) � 0 is our consumption rate process, which can be chosen optimally at any

instant of time t.
1Dept. of Mathematics, University of Oslo, P. O. Box 1053 Blindern, N{0316 Oslo,

Norway, email: oksendal@math.uio.no
2Norwegian School of Economics and Business Administration, Helleveien 30, N{5035
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2 No transaction costs.

In this case, we assume that at any time t, the investor is free to transfer money from one

investment to another without transaction fees. Such a portfolio is conveniently characterised

by the fraction

u(t) =
Y (t)

X(t) + Y (t)
(3)

of the total wealth

Z(t) = X(t) + Y (t) (4)

invested in the risky asset at time t. With such a portfolio choice u = u(t; !) and consumption

rate c = c(t; !), the wealth process Z(t) = Zc;u(t) is given by the stochastic di�erential

equation:

dZ(t) = (r(1�u)+�u)Z(t)dt�c(t)dt+�uZ(t)dW (t)+uZ(t�)

Z
R

�(�) ~N(dt; d�); Z(0) = z = x+y:

De�ne the performance criterion by

Jc;u(s; z) = Ez(

Z �

0

e��(s+t) c

(t)



dt) (5)

where 0 < 
 < 1 is a constant and

� = �(!) = infft > 0;Z(t) � 0g (6)

is the time of bankruptcy. We want to �nd �(s; z) and c�; u� such that

�(s; z) = sup
c;u

Jc;u(s; z) = Jc�;u�(s; z): (7)

In the no jump case (�(�) � 0), this is the well-known Merton problem which was solved by

Merton [4]. He proved that if

� > 
(r +
(�� r)2

2�2(1� 
)
) (8)
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then the optimal strategy is :

c�0(s; z) = (
K0)
1


�1 z; u�0(s; z) =
�� r

�2(1� 
)
(9)

and this leads to the value function

�0(s; z) = e��sK0z

 (10)

with

K0 =
1




�
1

1� 

(� � 
r �


(�� r)2

2�2(1� 
)
)

�
�1

(11)

(see also Davis and Norman [2, section 2]. We prove that in the jump di�usion model, the

problem has a similar solution. More precisely, we have:

Theorem 2.1. Let V = u�
� be the solution of the equation

�� r + V �2(
 � 1) +

Z
R

�
(1 + V �(�))
�1 � 1

�
�(�)d�(�) = 0 (12)

and suppose that

� := ��(r+(��r)u�
�)
+

1

2
�2(u�

�)2
(
�1)+

Z
R

�
(1 + u�

��(�))
�1 � 1� u�
�
�(�)

�
d�(�) > 0:

Then, the value function � = �� of problem (7) is given by

��(s; z) = e��sKz
 (13)

where K is the solution of the equation

1� 




(K
)





�1 �K� = 0: (14)

The corresponding optimal portfolio is the constant fraction u�� and the optimal consumtion

rate is given by

c�� = (
K)
1


�1 z: (15)
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3 Proportional Transaction Costs

We consider now the case when the investor pays fractions � and � of the amount transacted

on stock, on purchase and sale respectively. This leads to the equations:

dX(t) = (rX(t)� c(t))dt� (1 + �)dLt + (1� �)dMt; X(0) = x; (16)

dY (t) = �Y (t)dt+ �Y (t)dW (t) + Y (t�)

Z
R

�(�) ~N(dt; d�) + dLt � dMt; Y (0) = y;(17)

where Lt andMt are cadlag non decreasing processes representing the cumulative purchase

and sale amounts of stock up to time t respectively. In this case, we de�ne the bankruptcy

time T by

T = infft > 0; (X(t); Y (t)) =2 Sg

where S is the solvency region

S = f(x; y) 2 R
2 ; x+ (1� �)y � 0 and x + (1 + �)y � 0g:

The performance criterion for a consumption c and a portfolio (L;M) is given by

Jc;L;M(x; y) = Ex;y(

Z T

0

e��t
c
(t)



dt):

In the no-jump case (�(�) � 0), this problem was solved in [2] and [1]. Let v(x; y) be the

value function that is

�(x; y) = sup
c;L;M

Jc;L;M(x; y) = Jc�;L�;M�

(x; y): (18)

The variational inequality associated to this problem is

max

�
A� +max

c�0
(�c

@�

@x
+
c




) +

Z
R

(�(x; y + �(�)y)� �(x; y)� �(�)y
@�

@y
)d�(�); L�;M�

�
= 0 in

�

S

� = 0 on @

where

A� =
1

2
�2y2

@2�

@y2
+ �y

@�

@y
+ rx

@�

@x
� ��; (19)
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L� = �(1 + �)
@�

@x
+
@�

@y
; (20)

M� = (1� �)
@�

@x
�
@�

@y
: (21)

The value function � has, like in the no jump case, the homothetic property

�(�x; �y) = �
�(x; y) 8� > 0:

This enables to reduce the dimension of the problem.
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ON STOCHASTIC DIFFERENTIAL EQUATIONS
DRIVEN BY CAUCHY PROCESS AND THE OTHER

α–STABLE MOTIONS

P.A. Zanzotto

Dipartimento di Matematica – Università di Pisa
Via F. Buonarroti, 2 – 56127 Pisa, Italy

First recall the Engelbert and Schmidt characterization ([1]) of weak existence and
uniqueness for the one–dimensional SDE

(0) dXt = b(Xt)dWt , t ≥ 0

where b is Borel measurable and W denotes Wiener process (cf. also [3], Theorems 5.4,
5.7). It is given in terms of the singularity sets

I = {x ∈ IR :
∫ x+

x−
b−2(y)dy =∞} , N = {x ∈ IR : b(x) = 0}.

Theorem (Engelbert and Schmidt). Weak existence holds for equation (0) with arbitrary
initial distribution if and only if I ⊂ N . In that case uniqueness in law holds for every
initial distribution if and only if I = N .

In this talk we consider the following generalization of the above SDE

(1) dXt = b(Xt−)dZt , t ≥ 0

where b is a Borel measurable real function and Z denotes a strictly α–stable Lévy process,
0 < α ≤ 2, a symmetric Cauchy process when α = 1, starting from 0.

In the following we will omit the adjective “strictly”. Moreover, when we consider
such equation driven by Z with parameter α 6= 1, 2, we always make the assumption that
either Z is symmetric or b is non–negative; however, for the sake of shortness we will omit
it in the statements. In the same way, we will simply write “Cauchy process” to mean
symmetric Cauchy process.

For the above class of equations with α 6= 1 and Z symmetric, weak solutions were
already investigated in [4]. Here we pursue that study and improve the results obtained
there from various point of view (see [6]).

First of all, we extend the above recalled weak existence and uniqueness exact criteria
of Engelbert and Schmidt (corresponding to the case α = 2), to the class of the above
equations driven by Z with parameter α, 1 < α ≤ 2.

More precisely, for a fixed α, 1 < α ≤ 2, define the singularity set

(2) I(α) = {x ∈ IR :
∫ x+

x−
|b(y)|−αdy =∞}
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(while N still denotes the set of zeros of b). Then we have the following result.

Theorem 1. ([6], (3.5), (3.21)). The above assumptions being in force, for a fixed α, 1 <
α ≤ 2 consider equation (1) driven by Z with parameter α: then weak existence holds for
every initial distribution if and only if I(α) ⊂ N . In that case uniqueness in law holds for
every initial distribution if and only if I(α) = N .

The existence part of the above Theorem is to be compared with the following result
that deals with nontrivial solutions, a solution being termed trivial if a.s., Xt = X0 for all
t; it was obtained in [4].

Theorem ([4], Th. (2.32)). Consider equation (1) driven by a symmetric Z with α, 1 <
α ≤ 2. Then the following properties are equivalent:
a) For every x ∈ IR there exists a nontrivial solution starting from x.

(b) Function |b|−α is locally integrable.

Such existence criterion is clearly restrictive for the coefficient b, since in general I(α)
is not empty.

Sufficient existence conditions with a fixed starting point are based in [4] on the
condition expressed in the following

Definition. Let x ∈ IR.. The coefficient b in (1) is said to satisfy condition (H) with
respect to x (for short (H)(x)) if

∫ t

0

ds

(∫
|y|<L

1
|b(x + y)|α f(s, y)dy

)
<∞ for all t > 0, L > 0,

f denoting the α–stable transition density (0 < α ≤ 2). (We set |b(x)|−α = +∞ if
b(x) = 0).

It turns out that condition H(x) can be used also in the case of a driving Cauchy process.
So we have the following theorem which improves Th. (2.5) in [4] including the case α = 1
(and removing the symmetry assumption when α 6= 1, 0 < α < 2).

Theorem 2 ([6], (4.3)). Consider equation (1). Let x ∈ IR and assume that b satisfies
condition (H) with respect to x.

(a) Let 1 ≤ α ≤ 2. Under the stated assumptions there exists a nontrivial solution of (1)
starting from x.

(b) Let 0 < α < 1. In addition to the above assumptions, we suppose that there exists
U > 0 such that the set {x ∈ IR : |b(x)| > U} has finite Lebesgue measure. Then there
exists a nontrivial solution of (1) starting from x.

Condition (H) is related with integrability conditions of b alone. So in particular from
Th. 2 we deduce the following
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Theorem 3 ([6], (4.14)). Consider equation (1) driven by a Cauchy process. Assume that
there exists a real number δ > 1 such that |b|−δ is locally integrable. Then for any law µ
on IR, there exists a nontrivial solution with initial distribution µ.

A process is termed a solution of (1) on an interval if it solves the equation up to
the first exit time of the interval (“local” solution). For the study of “local” solutions, we
employ the following “local” version of (H):

Definition. Let x be a real number. We say that the coefficient b in (1) satisfies condition
(LH) with respect to x (for short (LH)(x)) if there exists a real number ε > 0 such that∫ ε

0

ds

(∫
|y|≤ε

1
|b(x + y)|α f(s, y)dy

)
<∞ .

As a sufficient existence condition for “local” nontrivial solutions starting from a fixed
point x, condition (LH)(x) completely unifies the cases of equation (1) driven by processes
Z’s with different α, 0 < α ≤ 2:

Theorem 4 ([6], (4.17)). Consider equation (1) driven by an α–stable Lévy process Z,
0 < α ≤ 2 (a Cauchy process when α = 1). Assume that the coefficient b satisfies condition
(LH) with respect to a real number x. Then there exists a nontrivial solution of (1) on the
interval [x− ε, x+ ε] starting from x, ε denoting any number such that the relation defining
(LH)(x) be satisfied.

When 1 < α ≤ 2, condition (LH)(x) is also necessary for the existence of a “global”
(i.e. defined for all t) or of a “local” nontrivial solution starting from x.

Proposition. Consider (1) driven by Z, 1 < α ≤ 2. Then condition (LH)(x) is necessary
for the existence of a nontrivial “local” solution (and so also for the existence of a nontrivial
solution) starting from x.

When 0 < α ≤ 1, we do not know if a similar necessity property holds for condition
(LH)(x): however, from examples it seems that condition (LH)(x) is not far from a
necessary one, also in this case.

Condition (H)(x) is, in a sense, a basic one because, also in the “local” existence
case, sufficiency of (LH)(x) goes back to results involving (H)(x). However H(x) is not
necessary in general, as one sees from examples.

The following result illustrates the role of condition H(x) in the case 1 < α ≤ 2: it
improves the above recalled Th. (2.32) as well as Th. (3.17) of [4].

Theorem 5 ([6], (4.22)). Consider equation (1) driven by an α–stable Lévy process Z, 1 <
α ≤ 2. Then the following propositions are equivalent.

(a) There exists x0 ∈ IR such that b satisfies condition (H) with respect to x0;
(b) Coefficient b satisfies condition (H) with respect to any x;
(c) Coefficient b satisfies condition (LH) with respect to any x;
(d) The set I(α) is empty;
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(e) Function |b|−α is locally integrable;
(f) For every x there exists a nontrivial solution starting from x;
(g) For every x there exists a compact non degenerate or an open interval Ax containing x
in the interior and a nontrivial solution on Ax starting from x.
(h) For every law η on IR, there exists a nontrivial solution with initial law η.

As to the tools, we mention here the criteria of integrability with respect to α–stable
Lévy processes in [2] as well as some representation properties in [5]. There we characterize
the class of quadratic pure jump semimartingales (i.e. SM with vanishing continuous
martingale part) which can be represented as a stochastic integral with respect to stable
Lévy processes.

Consider a semimartingale X and suppose that there exists a predictable process H
and an α–stable Lévy process Z (0 < α < 2) such that

(3) Xt =
∫ t

0

HsdZs , t ≥ 0 :

then the jump–measure of X has compensator

π(ds, dx) = |Hs|αqα(ds, dx)

where qα is the compensator of the jump–measure of Z i.e. qα(ds, dx) = ds ⊗ ν(dx), ν
denoting Lévy measure.

It turns out that the above condition is also sufficient to have a representation formula
of the form (3). Indeed, still denoting by π the compensator of the jump–measure µ of a
generic semimartingale, let us introduce the following condition

(4). There is a predictable process H(s, ω) such that

π(ω, ds, dx) = |H(s, ω)|αqα(ds, dx)

where qα(ds, dx) = ds⊗ ν(dx), ν denoting the Lévy measure of an α–stable Lévy process.

Then we have the following

Theorem 6. ([5], Th. 1). a) Let X be a quadratic pure jump semimartingale X satisfying
condition (4) with α = 1 and such that, for all t

Xt =
∫

]0,t]

∫
|x|≤1

x(µ− π)(ds, dx) +
∫

]0,t]

∫
|x|>1

xµ(ds, dx) + aAt

where a ∈ IR and At(ω) =
∫ t

0
|Hs(ω)|ds.

Then there is an 1–stable Lévy process Z with Lévy measure ν and drift at, possibly
defined on some extension of the original probability space, such that

Xt =
∫ t

0

|Hs|dZs , t ≥ 0.
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b) The assumptions are the same as above, except for the process A that now is such that
At(ω) =

∫ t
0

Hs(ω)ds, t ≥ 0.
Then the following representation formula holds

Xt =
∫ t

0

HsdZ
∗
s , t ≥ 0,

where Z∗ denotes a process with the same law as Z in a), possibly defined on some extension
of the original probability space.

Theorem 7 ([5], Th. 2). a) Let X be a purely discontinuous local martingale (resp. be
of pure jump type with locally finite variation paths). Assume that it verifies condition (4)
with α, 1 < α < 2 (resp. with α, 0 < α < 1).

Then there is an α–stable Lévy process Z with Lévy measure ν, possibly defined on
some extension of the original probability space, such that

Xt =
∫ t

0

|Hs|dZs , t ≥ 0.

b) All the assumptions in a) hold. In addition we assume that ν in (4) is symmetric. Then
we have also the representation formula

Xt =
∫ t

0

HsdZ
∗
s , t ≥ 0,

where Z∗ is like Z in a).
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1. Extended abstract

Let Bt(ω) = B(t, ω); t ≥ 0, ω ∈ Ω be a 1-dimensional Wiener process (Brownian motion)
on a probability space (Ω,F , P ) such that B(0, ω) = 0 a.s. P . For t ≥ 0 let Ft be the
σ-algebra generated by {B(s, ·); s ≤ t}. Fix T > 0. The Clark-Ocone theorem states that
if F = F (ω) ∈ L2(P ) is FT -measurable and F ∈ D1,2 (see definitions below), then

(1.1) F (ω) = E[F ] +
∫ T

0

E[DtF |Ft](ω)dBt(ω)

where DtF = dF
dω (t) denotes the Malliavin derivative of F at t. This result and its general-

izations have important applications in economics, where (basically) E[DtF |Ft] represents
the replicating portfolio of a given T -claim F . (See, e.g., [KO], [Ø])

Usually this result is presented and proved in the context of analysis on the Wiener space
Ω = C0([0, T ]), the space of all real continuous functions on [0, T ] starting at 0. Then
one can identify each Wiener process path B(·, ω) with one element ω(·) ∈ Ω, which is
a computational advantage. It is in this setting that the Malliavin derivative and its
properties are usually studied. See, e.g., [N], [U]. However, the drawback with this setting
is that the Malliavin derivative only exists for F ∈ D1,2. This excludes many interesting
applications. For example, in mathematical finance one is interested in computing the
replicating portfolios of a given T -claim F . If, say, the claim is a digital option of the form

(1.2) F (ω) = X[K,∞)(BT (ω)) =
{

1 if BT (ω) ≥ K
0 if BT (ω) < K

then DtF does not exist and formula (1.1) cannot be applied. The purpose of this paper
is to present a new proof of the Clark-Ocone formula in the setting of white noise anal-
ysis. One of the advantages with this approach is that it allows a generalization of the
Clark-Ocone formula which is valid for all FT -measurable F ∈ G∗, a space of stochastic
distributions which contains L2(µ), where µ is the white noise probability measure (µ cor-
responds to P in the Wiener space setting). The generalization has the form (See Theorem
3.15)
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(1.3) F (ω) = E[F ] +
∫ T

0

E[DtF |Ft] �Wtdt

where � denotes the Wick product and Wt ∈ (S)∗ is white noise. E[F ] is the generalized
expectation of F ∈ G∗, E[DtF |Ft] is the generalized expectation and the integral on the
right hand side is an (S)∗-valued (Bochner) integral. In view of the identity

(1.4)
∫ T

0

Y (t, ω)δB(t) =
∫ T

0

Y (t, ω) �Wtdt

valid for all Skorohod integrable processes Y (t, ω), we see that (1.3) is indeed a general-
ization of (1.1). In fact, if F ∈ L2(µ) then (1.3) simplifies to

(1.5) F (ω) = E[F ] +
∫ T

0

E[DtF |Ft]dB(t)

where DtF ∈ G∗, E[DtF |Ft] ∈ L2(µ) for a.a. t and

(1.6) E
[ ∫ T

0

E[DtF |Ft]2dt
]

<∞ (Theorem 3.11)

We emphasize that in the Wiener space setting another generalization of (1.1) has been
obtained by S. Ustunel [U, Theorem 1 p.44]. His generalization is valid for all F ∈ D−∞,
the Meyer-Watanabe distributions. Since D−∞⊂6=G∗, our result is more general. Moreover,
our approach is entirely different. Recently other approaches to the Malliavin calculus and
the Clark-Ocone theorem have been given by F. E. Benth [B], M. de Faria, M. J. Oliveira
& L. Streit [dOS], and G. V̊age [V].

Our white noise setup can be easily modified to cover more general situations. This is
demonstrated in Sections 4-6. In Section 4 we prove the following multidimensional version
of the generalized Clark-Ocone theorem:

Let B(t, ω) := (B1(t, ω1), . . . , Bm(t, ωm)); ω = (ω1, . . . , ωm) ∈ Ω be m-dimensional Brown-
ian motion with filtration F (m)

T . Then if F ∈ (G∗)m is F (m)
T -measurable, we have

(1.7) F (ω) = E[F ] +
∫ T

0

 m∑
j=1

E

[
∂F

∂ωj
(t, ω)

∣∣∣F (m)
T

]
�Wj(t, ωj)

 dt

where we have used the notation
(
∂F
∂ω1

, . . . , ∂F
∂ωm

)
for the Malliavin gradient of F at t

(Theorem 4.2).
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If we replace the Gaussian white noise probability measure µ by the Poissonian white
noise probability measure ν (on the same underlying space S′(R)), then we obtain a
similar theory where Gaussian white noise W (t) is replaced by Poissonian white noise
V (t) and Brownian motion B(t) is replaced by compensated Poisson process Q(t). The
spaces G∗ = G∗(ν) can be defined in a similar way as for the Gaussian case and the
Malliavin gradient too. Thus we obtain the following generalized Clark-Ocone theorem for
the compensated Poisson process:

If F ∈ G∗(νm) is measurable with respect to the filtration H(m)
t of the m-dimensional

compensated Poisson process Q(t), then

F (ω) = E[F ] +
∫ T

0

 m∑
j=1

E

[
∂F

∂ωj
(t, ω)

∣∣∣H(m)
T

]
� Vj(t, ωj)

 dt

This result is proved in Section 5 (See Theorem 5.2).

Then, in Section 6 we point out how the above theory can be modified to cover the case
with combinations of Gaussian and Poissonian noises.

Finally, in Section 7 we apply our results to compute the replicating portfolios for the
European call option in a Poisson Black and Scholes type market:
Consider a market X(t) = (A(t), S(t)) consisting of two investment possibilities:

(i) a bank account, where the price A(t) at time t is given by

(7.1) dA(t) = ρ(t)A(t)dt ; A(0) = 1

(ii) a stock, where the price S(t) at time t is given by

(7.2) dS(t) = µ(t)S(t)dt + σ(t)S(t)dQ(t) ; S(0) = x > 0

where ρ(t), µ(t), and σ(t) are deterministic functions in L2[0, T ] (T > 0 constant), σ(t) ≥ ε
for some ε > 0. As before Q(t) = P (t)− t is the compensated Poisson process. It is well
known (see, e.g., [HØ, Example 2.2]) that the solution of (7.2) is given by

(7.3) S(t) = x exp
[∫ t

0

ln[1 + σ(s)]dQ(s) +
∫ t

0

(µ(s)− σ(s) + ln[1 + σ(s)])ds

]
Let (ξ(t, ω), η(t, ω)) be a portfolio, i.e., ξ(t), η(t) gives the number of units of investments
#1, #2, respectively, held by an agent at time t. The total value V (t) at time t of such a
portfolio is then given by
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(7.4) V (t) = ξ(t)A(t) + η(t)S(t)

Assume that the portfolio is self-financing, in the sense that

(7.5) dV (t) = ξ(t)dA(t) + η(t)dS(t)

¿From (7.4) we get

(7.6) ξ(t) =
V (t)− η(t)S(t)

A(t)

which substituted in (7.5) gives

(7.7) dV (t) = ρ(t)V (t)dt + σ(t)η(t)S(t)
(

µ(t)− ρ(t)
σ(t)

dt + dQ(t)
)

Define

(7.8) u(t) =
µ(t)− ρ(t)

σ(t)

Suppose

(7.9) u(t) ≤ 1− ε1 for some ε1 > 0

Our main result in this section is the following:

THEOREM 7.1

The replicating portfolio ξ(t), η(t) for a European call option with payoff

F (ω) = (S(T )−K)+

in the Poissonian market defined by (7.1), (7.2) and satisfying (7.9), is given by (7.6) and

(7.25) η(t) = e
−
∫ T
t
ρ(s)ds

σ(t)−1S(t)−1 ln[1 + σ(t)]Eν[X[K,∞)(Y y(T − t))Y y(T − t)]y=S(T )

with Y y(t) given by

Y y(t) = y exp
[∫ t

0

ln[1 + σ(s)]dQ(s) +
∫ t

0

(µ(s)− σ(s) + ln[1 + σ(s)](1− u(s)))ds

]
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REMARK

The hedging formula (7.25) appears to be new. Note that the alternative approach often
used to compute hedging strategies (the PDE approach) seems difficult to apply here
because it involves the calculation of

∂f

∂x
(T − t, x)

where f(T − t, x) is the price at time T − t if S(t) = x. One can express f in terms of
an expectation with respect to ν and this leads to a series expansion for f . This series,
however, cannot be differentiated term by term. Pricing in models described by diffusions
plus jumps is treated in [CG]. However, that paper does not study the question of finding
replicating portfolios.
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Itô, K. (1956). Spectral type of the shift transformation of di�erential processes with
stationary increments, Trans. Amer. Math. Soc. 81: 253{263.

K�uchler, U. & S�rensen, M. (1994). Exponential families of stochastic processes and L�evy
processes, J. Statist. Plann. Inference 39(2): 211{237.

Le Gall, J.-F. & Le Jan, Y. (1998a). Branching processes in L�evy processes: Laplace
functionals of snakes and superprocesses, Ann. Probab. 26(4): 1407{1432.

Le Gall, J.-F. & Le Jan, Y. (1998b). Branching processes in L�evy processes: the explo-
ration process, Ann. Probab. 26(1): 213{252.

Leblanc, B. & Yor, M. (1998). L�evy processes in �nance: A remedy to the non-stationarity
of continuous martingales, Finance Stoch. 2: 399{408.

Lee, M.-L. T. & Whitmore, G. A. (1993). Stochastic processes directed by randomized
time, J. Appl. Prob. 30: 302{314.

L�evy, P. (1934). Sur les int�egrales dont les �el�ements sont des variables al�eatoires
ind�ependantes, Ann. Scuola Norm. Sup. Pisa (2) 3: 217{218.

L�evy, P. (1939). Sur certains processus stochastiques homog�enes, Compositio Math.
7: 283{339.

L�evy, P. (1954). Th�eorie de l'addition des variables al�eatoires, Gauthier-Villars & Cie,
Paris. Suivi d'une note de M. Lo�eve. Deuxi�eme �edition revue et augment�ee.

L�evy, P. (1965). Processus stochastiques et mouvement brownien, Gauthier-Villars & Cie,
Paris. Suivi d'une note de M. Lo�eve. Deuxi�eme �edition revue et augment�ee.

Lyons, R. (1996). Probabilistic aspects of in�nite trees and some applications, Trees
(Versailles, 1995), Birkh�auser, Basel, pp. 81{94.

Maejima, M. (1996). Limit theorems related to a class of operator-self-similar processes,
Nagoya Math. J. 142: 161{181.

Pakes, A. G. (1996). A hitting time for L�evy processes, with applications to dams and
branching processes, Ann. Fac. Sci. Toulouse Math. (6) 5(3): 521{544.

Protter, P. & Talay, D. (1997). The Euler scheme for L�evy driven stochastic di�erential
equations, Ann. Probab. 25(1): 393{423.

Rentzsch, C. (1999). L�evy-Khintchine representation on local Sturm-Liouville hyper-
groups, In�n. Dimens. Anal. Quantum Probab. Relat. Top. 2(1): 79{104.

192



Rogers, L. C. G. (1984). A new identity for real L�evy processes, Ann. Inst. Henri Poincar�e
20: 21{34.

Rosi�nski, J. (1991). On a class of in�nitely divisible processes represented as mix-
tures of Gaussian processes, Stable processes and related topics (Ithaca, NY, 1990),
Birkh�auser Boston, Boston, MA, pp. 27{41.

Sato, K.-i. (1990). Subordination depending on a parameter, Probability theory and math-
ematical statistics, Vol. II (Vilnius, 1989), \Mokslas", Vilnius, pp. 372{382.

Sato, K.-i. (1998). Multivariate distributions with selfdecomposable projections, J. Korean
Math. Soc. 35(3): 783{791.

Sato, K.-i. & Steutel, F. W. (1998). Note on the continuity of in�nitely divisible distri-
butions and canonical measures, Statistics .

Sato, K.-i., Watanabe, T., Yamamuro, K. & Yamazato, M. (1996). Multidimensional
process of Ornstein-Uhlenbeck type with nondiagonalizable matrix in linear drift
terms, Nagoya Math. J. 141: 45{78.

Sato, K.-i., Watanabe, T. & Yamazato, M. (1994). Recurrence conditions for multidimen-
sional processes of Ornstein-Uhlenbeck type, J. Math. Soc. Japan 46(2): 245{265.

Sato, K.-i. & Yamamuro, K. (1998). On selfsimilar and semi-selfsimilar processes with
independent increments, J. Korean Math. Soc. 35: 207{224.

Sato, K.-i. & Yamazoto, M. (1984). Operator-selfdecomposable distributions as limit dis-
tributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17: 73{
100.

Schoutens, W. & Teugels, J. L. (1998). L�evy processes, polynomials and martingales,
Comm. Statist. Stochastic Models 14(1-2): 335{349.

Shieh, N.-R. (1998). Multiple points of dilation-stable L�evy processes, Ann. Probab.
26(3): 1341{1355.

Skorohod, A. V. (1991). Random processes with independent increments, Kluwer Academic
Publishers Group, Dordrecht.

Soltani, A. R. & Moeanaddin, R. (1994). On dispersion of stable random vectors and
its application in the prediction of multivariate stable processes, J. Appl. Probab.
31(3): 691{699.

Szulga, J. (1991). Multiple stochastic integrals with respect to symmetric in�nitely divis-
ible random measures, Ann. Probab. 19(3): 1145{1156.

Urbanik, K. (1996). Autoregressive Laplace functionals on stochastic processes, Probab.
Math. Statist. 16(2): 243{260.

193



Us, G. F. (1997). Towards a coloured noise analysis, Methods Funct. Anal. Topology
3(2): 83{99.

Walker, S. G., Damien, P., Laud, P. W. & Smith, A. F. (1999). Bayesian nonparametric
inference for random distributions and related functions, J.R. Statist. Soc. B 61: 1{
26.

Wolpert, R. L. & Ickstadt, K. (1998). Poisson/gamma random �eld models for spatial
statistics, Biometrika 85(2): 251{267.

Zanzotto, P. A. (1997). On solutions of one-dimensional stochastic di�erential equations
driven by stable L�evy motion, Stochastic Process. Appl. 68(2): 209{228.

194


