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1 Introduction

In August, 1990, at the Second International Congress of the Bernoulli
Society in Uppsala (Sweden), I made a short report entitled “Every-
thing about Kolmogorov was unusual . . . ”. I said: “Andrei Niko-
laevich Kolmogorov was one of a selected group of people, who made
you feel that you had met an unusual, great and extraordinary person.
That was the feeling of having met a wonder.

Everything about Kolmogorov was unusual: his entire life, his school
and university years, his pioneering discoveries in many areas of math-
ematics and in such disciplines as meteorology, hydrodynamics, his-
tory, linguistics, . . . pedagogy . . . His interests were unusually diverse
including music, architecture, poetry and travelling. His erudition was
unusual: he had a qualified opinion about everything”.

This paper was prepared for the workshop “Turbulence and Fi-
nance” organized by MaPhySto (5-7 May, 1999, Aarhus) with a view
to “discuss the striking similarities as well as the differences between
key empirical features observed in the financial markets and the tur-
bulence of fluids”.

In the last few years the connection between these two disciplines
has been stressed by several authors. In October 1995 O. E. Barndorff-
Nielsen gave at Columbia University a talk “Probability and Statistics:
Self-decomposability, Finance and Turbulence”where he discussed “key
features of empirical data from finance and turbulence” which “are
widely recognized as being essential for understanding and modelling
within these two, quite different, subject areas”, {10}.

In unison, with these words the journal “Nature” (Vol. 38, June,
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1996) used on its cover the term

FINANCIAL TURBULENCE.

publishing in this issue the article “Turbulent Cascades in Foreign
Exchange Markets” by five authors S. Ghashghaie, W. Breymann, J.
Peinke, P. Talkner and Y. Dodge. The article shows the similarity
in the statistical behaviour of financial data and turbulent data. In
the abstract to the article, the authors note that: “The availability
of high frequency data for financial markets has made it possible to
study market dynamics on timescales shorter than a day. For foreign
exchange (FX) rates, V. A. Muller et. al. (J. Banking Fin., 1990, 14,
1189-1208) have shown that there is a net flow of information from
long to short timescales: the behaviour of long-term traders (who watch
the markets only from time to time) influences the behaviour of short-
time traders. Motivated by this hierarchical feature, we have studied
FX market dynamics in greater detail and will show here an analogy
between the dynamic and the hydrodynamic turbulence. Specifically,
the relationship between the probability density of FX price changes
(∆X) and the time delay (∆t) (Fig. 1a) is much the same as the
relationship between the probability density of the velocity differences
(∆V ) of two points in a turbulent flow and their spatial separation ∆r
(Fig. 1b).

Guided by this similarity, we claim that there is an information cas-
cade in FX market dynamics that corresponds to the energy cascade
in the hydrodynamic turbulence . . . The analogy gives a conceptual
framework for understanding the short-term dynamics of speculative
markets”. At the end of their article the authors conclude optimisti-
cally: “ . . . We have reason to believe that the qualitative picture of
turbulence that has been developed during the past 70 years, will help
our understanding of the apparently remote field of financial markets”.
(See also Chapters III and IV in {11}.)

In the present report, I am not going to compare the statistical data
of the turbulence and of the finance. I would like to give a review of
Kolmogorov’s different periods of the turbulence study as well as of his
main conceptions and the results achieved in this field, that influenced
the later development of hydrodynamics.

There are three periods when Kolmogorov studied the turbulence.
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The first period lasted from the late 30-s to the early 40-s. In that
period he published his classical works (see also {1}):

[1] The local structure of turbulence in an incompressible fluid at
very high Reynolds numbers. Dokl. Acad. Nauk USSR, 30
(1941), p. 299-303.

[2] The logarithmically normal distribution of the size of particles
under the fragmentation. Dokl. Acad. Nauk USSR, 31 (1941),
p. 99-101.

[3] The decay of isotropic turbulence in an incompressible viscous
fluid. Dokl. Acad. Nauk USSR 31 (1941), p. 538-541.

[4] Energy dissipation in locally isotropic turbulence. Dokl. Acad.
Nauk USSR, 32 (1941), p. 19-21.

On January 26, 1942, Kolmogorov presented his works on the tur-
bulence at the Joint Meeting arranged in Kazan by the Department
of Physics and Mathematics of the USSR Academy of Sciences.

[5] Equations of turbulent motion of an incompressible fluid. Izv.
Acad. Nauk USSR, ser. Fiz. 6(1942), p. 56-58.

P.A. Kapitza and L.D. Landau took part in the discussion. Landau
pointed out that “A.N. Kolmogorov was the first to give the right
conception of the local structure of the turbulent flow”.

Kolmogorov explained his interest in the turbulence as follows: “I
took an interest in the study of turbulent flows of liquids and gases
in the late thirties. It was clear to me from the very beginning that
the main mathematical instrument in this study must be the theory of
random functions of several variables (random fields) which had only
then originated. Moreover, it soon became clear to me that there was
no chance of developing a purely closed mathematical theory. Due
to the lack of such a theory, it was necessary to use some hypotheses
based on the results of the treatment of the experimental data. There-
fore, it was important to find talented collaborators who were able to
combine theoretical studies with the analysis of the experimental re-
sults. In this respect, I was quite successful”. (Kolmogorov mentioned
his students A. M. Obukhov, M. D. Millionshchikov, A. S. Monin and
A. M. Yaglom; see {1})
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The “Law of two-thirds” is the pearl of the first investigations
by A.N. Kolmogorov.This is a universal law of the turbulence nature,
supported by the experiments made for the fluids with high Reynolds
numbers (see {1}).

The second period of Kolmogorovs’s investigation of the turbulence
started in the early 60-s. It was mainly related to his participation
(with a group of his followers A. N. Obukhov, M. D. Millionschikov,
A. M. Yaglom) in the two International Meetings on the Mechanics of
Turbulence, arranged in Marseilles by the IUTAM (The International
Union of Theoretical and Applied Mechanics) and the IUGG (The
International Union of Geodesy and Geophysics).

The main ideas of Kolmogorov’s report were presented in his two
articles (see also {1}):

[6] Les Précesions sur la structure locale de la turbulence dans un
flux visqueux aux nombres de Reynolds elevés. En Méchanique
de la Turbulence. Coll. Int. du CNRS à Marseille, p. 447-458,
Paris, CNRS, (1962).

[7] A refinement of previous hypotheses concerning the local struc-
ture of turbulence in a viscous incompressible fluid at high Reynolds
numbers. J. Fluid Mech, 13 (1962), 82-85.

It can be seen from the titles of these articles that they are con-
cerned with the refinement of the results obtained in the early 40-s.
The verifications were mostly due to L.D. Landau’s remarks made on
the report [5] in 1942. Landau emphasized the fact that “the velocity
rotor in the turbulent flow exists only in the restricted part of the
space”. These articles are closely connected with the report by A.M.
Obukhov {3} that included new ideas about the development of the
locally isotropic turbulence theory (see the last section of the article
[5] and §6.4 in the book {3}).

Finally, the third (not widely known) period of Kolmogorov’s study
of the turbulence is related to his participation in the expeditions on
board the “Dmitry Mendeleev” research ship (the 2nd and the 5th

voyages).

The first expedition lasted from June 23 to September 18, 1969. Its
duration was 87 days. The route was as follows:
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Kaliningrad→Reykjavik (the capital of Iceland)→ Rio-de Janeiro
(with a call at Konakri (Guinea))→ Dakar (Senegal)→Gibraltar
→ Kaliningrad.

The second expedition lasted from January 20 to May 12, 1971
(26 132 sea miles were covered). In fact, that was a round-the-world
journey: by train from Moscow to Kaliningrad and a long voyage
aboard the “Dmitry Mendeleev” ship. The route was as follows:

Kaliningrad → The Kiel Canal → Pas de Calais → The Bay
of Biscay → The Sargasso Sea → across The Gulf Stream to
Cape Canaveral (The State of Florida) → The port of Kingston
(Jamaica) → The Panama Canal → The Galapagos Islands (a
territory possessed by Ecuador where Ch. Darwin elaborated his
theory of the Origins of the Species)→ The port of Honolulu (The
Hawaii) → the passage to the South along the 159o meridian of
the western longitude → the coral Atoll of Fanning (Brit.) →
the crossing of the Equator→ the bay of Avarua on the island of
Rapotong (the central island in the Cook Archipelago protected
by New Zealand)→ the passage to the West → the port of Suva
(the Fiji Islands) → the port of Vila (Esratos Island), Touman
Island, Malecula Island (the New Hebrides) → the port of Yoko-
hama (Japan) → Vladivostok. Then Andrei Nikolaevich came
back to Moscow by train. The picture on the front-page of this
paper was taken at the Moscow train station.

In both voyages A. N. Kolmogorov was the Assistant Director in
research. Prof. A. Monin, the Director of the expedition in 1971,
wrote (see {5}): “Andrei Nikolaevich was responsible for the geophys-
ical oceanic investigations. Five teams were engaged in that work,
equipped with various devices. Some of the devices were new and
did not function properly. Kolmogorov spared no effort and time in
checking the measurement accuracy and the calibration of the devices
as well as in revealing the interferences that distorted the readings.”

It is a pity that a great mathematician had to waste time on solving
insignificant problems. But he rejected any attempts to release him
from his duties and would check himself the quality of the measure-
ments.

I have known before that such an attitude was natural for An-
drei Nikolaevich. He expressed it best in his last interview with a
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documentary-film maker A.N. Marutyan: “In fact, when the math-
ematician solves, for example, a hydrodynamics problem (I myself
was dealing with the hydrodynamics of the ocean), it means that a
hydrodynamics problem is solved by mathematical means. The math-
ematicians always want that their mathematics should be pure, that
is, strict and provable, wherever possible. However, the most interest-
ing and realistic problems could not usually be solved in that manner.
Therefore, it is very important that the mathematician should be able
to find the approximative (not necessarily strict but effective) ways
of solving such problems. At any rate, I’ve always done it by this
means... If turbulence is an object of my studies, I am dealing with
the turbulence. I rate highly those mathematicians who, as a mat-
ter of fact, cannot be called “pure” mathematicians. They just solve
applied problems by strict methods, if possible, or by making “hy-
potheses”.

– So, you are in favor of the flexibility of thinking?

– And in favor of the direct participation, where possible, in the
experiments together with the physicists”.

2 Locally Isotropic Turbulence. The Law of 2/3.

The articles [1]–[5] were published during the first period of Kol-
mogorov’s study of the turbulence in the early 40-s. These articles
were preceded by the following two papers (see also {1}):

[8] Curves in a Hilbert space that are invariant under the one-parameter
group of motions. Dokl. Acad. Nauk USSR, 26 (1940), p. 6-9.

[9] Wienersche Spiralen und einige andere interessante Kurven in
Hilbertschen Raum. Dokl. Acad. Nauk USSR, 26 (1940), p.
115-118.

These articles are closely connected both with the turbulence and
the general theory of random processes as well as with the stochastic
finance.

We will now give some definitions and facts concerning homoge-
neous random processes and fields, in order to describe the mathe-
matical notions of these papers.
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Let S = {s} be a homogeneous space of points s with a transitive
group G = {g} of transformations mapping the space S into itself
(S → gS).

Let (Ω,F , P) be a probability space and let X = X(s), s ∈ S be a
random field on this probability space, that is, X(s) = X(s, ω), ω ∈ Ω,
s ∈ S is a family of (complex-valued) random variables.

The random field X = X(s), s ∈ S is called (wide-sense) homoge-
neous if

E |X(s)|2 <∞,

EX(s) = EX(gs),

EX(s)X(t) = EX(gs)X(gt)

for all s, t ∈ S and g ∈ G.

The following special case is of particular importance: S = R
k and

G is the group of parallel shifts. The homogeneous random field is
often defined as a field of this type.

If G is a group of isometric transformations on S = R
k (generated

by the parallel shifts, the rotations and the reflections), then X =
X(s), s ∈ Rk is called the homogeneous isotropic random field.

The special case of the homogeneous field is a (wide-sense) station-
ary process X(s), s ∈ R where E |X(s)|2 < ∞, EX(s) = m(= const)
and EX(s)X(t) depends only on the difference t− s.

Assume m = 0 and denote by

R(t) = EX(s + t)X(s) (1)

the correlation function of the process X.

Due to the Bochner-Khinchin theorem (for the mean-square con-
tinuous processes X), this function admits the spectral representation

R(t) =

∞∫
−∞

eiλt F (dλ) (2)

Here, F = F (A) is a finite measure on the Borel sets A ∈ B(R). This
measure is called the spectral measure, and the function

F (λ) =

λ∫
−∞

F (dν) (= F (−∞, λ]) (3)
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is called the spectral function. If F ′(λ) exists, then f(λ) = F ′(λ)
is called the spectral density or the energy spectrum, or simply the
spectrum. The magnitude f(λ) dλ can be described as follows: it is a
contribution to the “energy” of the harmonics whose frequencies are
within the interval (λ, λ + dλ).

It is important to note that (2) implies

E[X(t)−X(s)]2 = 2

∞∫
−∞

(
1− eiλ(t−s)

)
F (dλ) (4)

If X is a real-valued process, then R(t) = R(−t) and

R(t) =

∞∫
−∞

cos(λt) F (dλ), (5)

∞∫
−∞

sin(λt) F (dλ) = 0. (6)

Thus, the spectral function is symmetric with respect to the point
λ = 0.

Set

G(λ) = F (λ)− F (−λ) (=

∫
|ν|≤λ

F (dν)).

Then we obtain

G(λ) = 2F (λ)−R(0),

G(λ) =
2

π

∞∫
0

sin(λt)

t
R(t) dt

and

R(t) =

∞∫
0

cos(λt) G(dλ), (7)

E |X(t)−X(s)|2 = 2

∞∫
0

(1− cos(λ(t− s)) G(dλ). (8)
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Essentially, the same is true for the homogeneous one-dimensional
random real-valued fields X(s), s ∈ R

k (with the group G of parallel
shifts). Here, the spectral representation (2) is reformulated in the fol-
lowing way: for the mean-square continuous complex-valued random
field X = X(s), s ∈ R

k , the covariance function (or the correlation
function in the case of centered random fields) R(t) admits the repre-
sentation

R(t) =

∫
Rk

ei(t,λ)F (dλ) (9)

where F = F (dλ) is a finite (uniquely determined) non-negative mea-
sure on B

(
R
k
)
.

For the homogeneous isotropic fields, the covariance function R(t),
t = (t1, . . . , tk) is defined as a function of ‖t‖ =

√
t2
1 + . . . + t2

k: R(t) =
R(‖t‖). In this case, the integration over Rk in (9) is replaced by the
integration over R+. To be more precise, we have

R(u) = 2
k−2

2 Γ

(
k

2

) ∞∫
−∞

Ik−2
2

(λu)

(λu)
k−2

2

Q(dλ) (10)

where Iν(x) is the Bessel function of index ν, Q is a non-negative
random measure on B(R+) such that Q(R+) = G(Rk) = R(0).

Similar results are true for the homogeneous isotropic vector fields
(defined on R

k with values in R
l) (see, for example, {6}, {7}).

It is remarkable that for the (wide-sense) stationary mean-square
continuous random processes X = X(t), t ∈ R , the spectral repre-
sentation is valid both for the correlation function R(t) and for the
process X. The following result is due to Karhunen, Kolmogorov and
Cramér: there exists a complex-valued random measure Z = Z(A)
(or Z = Z(A; ω)) with orthogonal values (that is, EZ(A)Z(B) = 0 if
A ∩ B = ∅), such that

X(t) =

∞∫
−∞

eiλtZ(dλ). (11)

Moreover, E |Z(A)|2 = F (A).

The similar representation is valid for the homogeneous (both one-
dimensional and vector) random fields on R

k with values in R
l .
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The role of the homogeneous random fields in the turbulence was
for the first time emphasized by Taylor in {8}. This paper deals with
the statistical theory of the turbulence. It was in this paper that
Taylor introduced the important notion of the isotropic turbulence.

A.N. Kolmogorov pointed out in [1] that “Taylor’s isotropy hypoth-
esis has a good experimental support for the turbulence generated by
the flow passing through the grating. In most other cases of practical
interest, this hypothesis can be considered as a very rough approx-
imation even for small areas . . . and for extremely high Reynolds
numbers”.

It was mentioned above that the first of Kolmogorov’s work on the
turbulence was preceded by the papers [8], [9], in which he made the
first step towards introducing the notion of locally homogeneous ran-
dom fields. This notion (together with the notion of local isotropy)
became the main mathematical means in analyzing the turbulent phe-
nomena (especially in the case of high Reynolds numbers).

In [8], A.N. Kolmogorov considered a random field on R
1 with val-

ues in R
1 . Such fields Y (s), s ∈ R , are the random processes with

(wide-sense) stationary or homogeneous increments.

For such processes, the increments

∆rY (t) = Y (t)− Y (t− r)

(rather than the values of Y (t)) are supposed to be such that the func-
tion E∆rY (t) depends only on r (E∆rY (t) = m(r)) and the function
E∆r1Y (t + s)∆r2Y (s) does not depend on s for any s, t, r1, r2. This
will be stressed by the notation

E∆r1Y (t + s)∆r2Y (s) = D(t, r1, r2)

The function D(t, r1, r2) is called the structural function of the process
Y .

Due to the equality

(a− b)(c− d) =
1

2

[
(a− d)2 + (b− c)2 − (a− c)2 − (b− d)2] ,

the structural function D(t, r1, r2) can be represented as a function of
one variable:

D(r) ≡ D(0, r, r) = E |∆Yr(t)|2 , (12)

10



which is also called the structural function.

Kolmogorov obtained in [8] the following spectral representation
for D(r) and D(t, r1, r2):

D(r) = 2

∫
R\{0}

(1− cosλr)Φ(dλ) + ar2 (13)

and

D(t, r1, r2) =

∫
R\{0}

eiλt
(
1− e−iλr1

) (
1− eiλr2

)
Φ(dλ) + ar2. (14)

Here, a is a constant, a ≥ m2, m satisfies the equality m = m(r) (= E∆r
Y (t))

and Φ is a measure on R\{0} such that∫
R\{0}

λ2Φ(dλ)

1 + λ2 <∞. (15)

Remark. The comparison of formula (13) for a = 0 and formula (8)
shows that they are very similar (this is not true for the covariance
functions of X and Y ).

A.N. Kolmogorov obtained in [8] the following spectral representa-
tion for the process Y :

Y (t) =

∞∫
−∞

(
eiλt − 1

)
Z(dλ) + ut + v (16)

where u and v are random variables with finite second moments; Z =
Z(A), A ∈ B(R) is a random measure with orthogonal values and such
that

E |Z(A)|2 = Φ(A), A ∈ B(R).

If the process Y is (wide-sense) stationary, then the spectral decom-
position (11) can be derived from (16). Similarly to the passage from
the stationary processes (which are automatically isotropic in the one-
dimensional case) to the homogeneous fields, one can pass from the
processes with the stationary increments to the locally homogeneous
and locally isotropic R l -valued vector fields

Y = Y (t) = (Y1(t), . . . , Yl(t)).
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Let ∥∥Dij(t, r1, r2)
∥∥ =

∥∥E∆r1Yi(t + s)∆r2Yj(s)
∥∥

and

Dij(r) = Dij(0, r, r).

For the locally homogeneous and locally isotropic fields, one has

Dij(r) = [Dll(r)−Dkk(r)]
rirj
r2 + Dkk(r)δij

where r = ‖r‖ and Dll(r), Dkk(r) are the longitudinal and transverse
structural functions:

Dll(r) = E
∣∣Yl(t + r)− Yl(t)

∣∣2 , Dkk(r) = E
∣∣Yk(t + r)− Yk(t)

∣∣2 .

Here, Yl(t) is a projection of the vector Y (t) on the direction r and
Yk(t) is a projection of the same vector on the direction orthogonal to
r.

Remark. The functions Dij(r) are simpler than the functions
Dij(t, r1, r2). Therefore, it is important to find out whether the latter
functions can be expressed by the former ones (that is, through Dll(r)
and Dkk(r)). This can be done under the condition Dij(t, r1, r2)→ 0,
|t| → ∞ (see {6}). In particular, this can be done in all the applica-
tions to the turbulence of the locally homogeneous and locally isotropic
random vector fields (for details, see {6}, p. 315 ).

We will now consider the paper [9], which is closely connected with
the paper [8]. A.N. Kolmogorov investigates in [9] the structure of the
continuous Gaussian processes X(t), t ≥ 0 with stationary increments
and with the self-similarity property, that is, for any a > 0, there
exists b > 0 such that

Law (X(at); t ≥ 0) = Law (bX(t); t ≥ 0) .

It turns out that such processes with the zero mean have a special
correlation function:

EX(t)X(s) =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
(17)

where 0 < H < 1.
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Kolmogorov called such Gaussian processes the “Wiener Spirals”.
Later they were named the Fractional Brownian Motion.

Note that

E‖X(t)−X(s)‖2 = |t− s|2H . (18)

The parameter H was called the Hurst parameter.

Let us now turn to the main results of the papers [1]–[4], which
contain the “law of two-thirds”.

Let u(x) = (u1(x1, x2, x3), u2(x1, x2, x3), u3(x1, x2, x3)) be a field of
velocities of the turbulent flow at the point x = (x1, x2, x3).

Kolmogorov assumes that this field is locally homogeneous and is
locally isotropic. So, unlike Taylor, he introduces the idea of locality.
This reduces the analysis to the study of the structure of increments

u(x + r)− u(r).

Further, Kolmogorov introduces “the first hypothesis” of similar-
ity. Using this hypothesis, he deduces that the longitudinal structural
function Dll(r) has the form rm for a wide range of values r (compare
with (18)).

In order to find the value m, Kolmogorov introduces “the second
hypothesis” of similarity, which, together with the first one, yields
m = 2/3. Therefore,

Dll(r) ∼ r2/3. (19)

Kolmogorov formulates this result more precisely in the following
way: if the dissipation rate ε of the kinematic energy is constant,
then for the turbulent movements with a very high Reynolds number
(Re = Lv

ν
where L and v are length and velocity scales for the whole

movement, the so-called typical scales, and ν is kinematic viscosity)
and in the “inertia” interval of scales

λ� r � L

where λ = ε1/4ν−3/4 (“Kolmogorov’s interior scale”), one has the fol-
lowing approximation:

Dll(r) ≈ C(εr)2/3 (20)

13



where C is a constant. Moreover, Dkk(r) ≈ 3
4Dll(r).

Along with the above “correlational formulation”, the fundamental
law of the small-scale turbulence (20) permits the spectral formulation.
For Dll(r), one can obtain the spectral representation similar to (13)
(with the spectral measure Φll(dk) = Ell(k)dk). It turns out that

Ell(k) ∼ k−5/3 (21)

for a wide range of frequencies k.

Figure 1: To the law “Ell(k) ∼ k−5/3” (Kolmogorov’s drawing)

In connection with (20) and (21), note that due to the properties
of the Fourier transform for f(λ) = |λ|−α with 1 < α < 3, one has∫ ∞

−∞
(1− eiλτ)f(λ)dλ = τα−1

∫ ∞
−∞

(1− eiλ)|λ|−αdλ,

and therefore, τα−1 = τ 5/3−1 = τ 2/3 for α = 5/3.

14



At the end of the analysis of the main “turbulent” results published
in Kolmogorov’s papers in the 40-s, I would like to stress that Kol-
mogorov made these studies, in fact, as a physicist employing clear
and natural physical assumptions.

Kolmogorov always used the experimental data in order to justify
and verify his hypotheses.

As mentioned above, the second period of Kolmogorov’s study of
the turbulence was in the 60-s. The results of those studies were
published in the papers [6] and [7].

These articles as well as the previous ones are notable for their
physical style. Here, neither mathematical proofs nor complicated an-
alytical calculations are present, but three new hypotheses of similarity
are proposed instead of the two previous hypotheses.

It is interesting to note that the two previous hypotheses of sim-
ilarity are related to the velocity increments while two of the new
hypotheses are formulated in terms of velocity increments ratios.

These two new hypotheses were supplemented by the third hypoth-
esis postulating the logarithmic normality of the energy dissipation
rate ε and indicating the form of the logarithmic variance of the av-
eraged dissipation rate εr (for details, see formulas (1) and (2) in [6]).

It turns out that these three hypotheses make it possible to account
for L.D. Landau’s remark that the variation of the energy dissipation

ε =
ν

2

∑
α,β

(
∂vα
∂xβ

+
∂vβ
∂xα

)2

should infinitely increase if the ratio L : l (between the “exterior” scale
L and “interior” scale l) increases.

3 Kolmogorov’s Oceanographic Expeditions.

In the first expedition on board the “Dmitry Mendeleev” ship in 1969
and in the second expedition in 1971, A.N. Kolmogorov took an active
part in performing the most of the experiments, in carrying out the
programs of the measurements and in making the statistical analysis
of the collected data.
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It should be noted that difficulties are usually encountered in record-
ing the oceanic turbulent fluctuations of flow rate, temperature, elec-
tric conductivity, sound velocity, refraction factor and other hydro-
dynamic parameters. This requires high-sensitivity and low-inertia
devices. Serious problems arose in making the experiments during the
voyage since the records of natural fluctuations were distorted due to
the vibration of the towed devices, caused by the rocking of the ship
and due to electric noises in a high-frequency range.

Another problem was that the frequency ranges of the turbulent
fluctuations and those of the surface and internal waves largely over-
lapped. Thus, it was necessary to filter out mechanical and electric
noises as well as the fluctuations created by the waves.

Kolmogorov wrote in his report: “ My duty, as the Research Direc-
tor of the hydro-physical investigations in the expedition (1971), was
the coordination of the works performed by:

1. the hydrology team;

2. the turbulence team;

3. the small-scale turbulence team;

4. the team of acoustic methods;

5. the team employing the devices to measure the vertical flow of the
moisture.”

During the voyage in 1971, Kolmogorov wrote some articles (un-
published), for instance, “The notes about the mathematical treatment
of the observation results”, “On the techniques employed to obtain in-
tegral spectra”.

In the first of these papers, one of the sections is called “The in-
terpolation in depth and the calculation of gradients”. Here, Kol-
mogorov writes that “these methods were used to treat the data of
the conventional hydrologic station and to test the thermal sonde.
The same methods were useful in restoring the shape of the isotherms
from the data obtained. In all the cases, the scale of the observations
is much larger than the “inner scale” of the turbulence. Therefore, it
is necessary to account for the fact that the variation of the measured
magnitudes will be irregular in depth and hence, that the linear in-
terpolation will be useless. However, the linear interpolation could be
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considered, at least, as “harmless” since it gives intermediate values
for the intermediate horizons. Here we do not lose useful information
if we change the values obtained with the irregular intervals of the
order of 1 m. for the linearly interpolated values on the scale with a
1 m. step.

The quadratic interpolation is also “harmless” in the measurements
made with a conventional hydrologic station when non-standard hori-
zons of the direct observations are close to the corresponding standard
horizons. For example, if we restore the temperature at the 500 m.
horizon from the temperatures at the 407 m., 492 m., 601 m. hori-
zons, we could make the linear interpolation for the 492 m., 601 m.
horizons and the extrapolation for the 407 m., 492 m. horizons. The
quadratic interpolation gives the excessive average of these two results.
By applying the quadratic interpolation, we can gain a lot in accuracy
in the “good” case of smooth temperature curves and lose absolutely
nothing in the “bad” cases.

The situation is different when the interpolation is made at the
center of the interval between the horizons of the direct observations.
We have examples of real data where the quadratic interpolation gives
much worse results than the linear interpolation for rather typical
temperature curves.

One should be even more careful when the interpolation is made by
using the polynomials with the degree higher than two. It is notable,
however, that the temperature curves are very smooth at great depths.
The following exampleis not a single one:

50 14.54
1.24

100 13.30 .54
.70 .18

150 12.60 .36 −.02
.34 .20

200 12.26 .16 −.00
.18 .20

250 12.08 −.04
.22

300 11.86

Here, the third differences are almost constant and the fourth ones
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are almost equal to zero. In this case, we recommend that the inter-
polation should be made with the polynomials of the third degree.

If we restore the temperature at the 150 m. horizon by the linear
interpolation between the 100 m. horizon and 200 m. horizon, we will
get the value of 12.78.

The quadratic interpolation between the 50 m., 100 m., 200 m.
horizons will give the value of 12.54.

The interpolation by the polynomial of the 3rd degree along the 50
m., 100 m., 200 m., 300 m. horizons gives a precise result (with the
accuracy up to 0.01) for the 150 m. horizon.

It would be of interest to find the reasons for getting “smooth” and
“unsmooth” curves. But we recommend that the polynomials of the
third degree should not be used in standard programs of interpolation.

The gradient must be calculated from the linear or the quadratic
approximation of the curve. If the magnitude is measured with a small
step in depth and with a noticeable error of each measurement, then
it is reasonable that the linear or the quadratic approximation of the
curve should be determined by the excessive number of points, using
the least squares method”.

We will now consider in greater detail the mathematical aspects
of the second article “On the techniques employed to obtain integral
spectra”.

The integral spectrum is the following function of the frequency k:

J(k) =

∫ ∞
k

E(k′) dk′. (22)

Here, E = E(k) is the spectral density. By setting

Hk0
(k) =

{
0 if k < k0

1 if k ≥ k0,
(23)

we get

J(k0) =

∫ ∞
0
|Hk0

(k′)|2E(k′) dk′. (24)

The equations like (24) naturally arise in connection with the linear
transformations of the stationary random processes X = X(t), t ∈ R
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having the following spectral representation (compare with (11)):

X(t) =

∫ ∞
−∞

eitk Z(dk) (25)

where E|Z(dk)|2 = E(k) dk.

Indeed, let Y (t) = L{X}(t) be a linear transformation

Y (t) =

∫ ∞
−∞

h(u) X(t− u) du (26)

determined by the weight function h = h(u) with the following Fourier
transform:

H(k) =

∫ ∞
−∞

e−iku h(u) du. (27)

For the physically realizable systems, one has h(u) = 0 if u < 0.

It follows from (25)–(27) that

Y (t) =

∫ ∞
−∞

eitk H(k) Z(dk) (28)

and, obviously,

E|Y (t)|2 =

∫ ∞
−∞
|H(k)|2E(k) dk. (29)

Comparing (24) and (29), we conclude that it would be possible to
estimate the integral spectrum J(k0) properly (using estimates for
E|Y (t)|2 (= E|Y (0)|2)) if the frequency characteristic (transfer func-
tion) H(k) = H(k0, k), of a physically realizable filter is “close” to the
function Hk0

(k) from (23) which corresponds to the non-physically re-
alizable filter. Let us denote by Ĵ(k0) an estimate of the integral in
(29) using some empirical estimator (of type of the arithmetic mean)
for E|Y (t)|2 (= E|Y (0)|2).

Kolmogorov points out that the appropriate selection of functions
H(k) = H(k0, k) should be made with consideration for, at least, a
rough idea of how the spectrum E(k) or the integral spectrum J(k)
behaves.

A characteristic feature of the turbulence is that the following ap-
proximation is rather good for large intervals of the frequency varia-
tion.

J(k) = Cβ · kβ.
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Thus, for the locally isotropic turbulence in the “inertial” range of the
frequencies, one has

J(k) = C · k−2/3

since E(k) ≈ k−5/3.

In practice, it is very easy to apply the physically realizable filters
for which the transfer function H(k0, k) has the following form:

H(k0, k) = H
( k

k0

)
where H = H(ξ) is a function of ξ = k/k0.

The spectral density E(k) is usually several orders of magnitude
greater for the low frequencies than for the high ones. Therefore, it is
necessary that the filter characteristic H(ξ) should sharply fall at low
frequencies.

The filters H1(ξ) of the DISA company were used in the expedition
in 1971. Kolmogorov compiled the following table for these filters:

ξ 0,01 0,02 0,05 0,1 0,2 0,5 1 2 5

H2
1(ξ) 0,0001 0,0004 0,0025 0,012 0,044 0,21 0,56 0,86 1,00

It is easily seen from this table that the asymptotics H2
1(ξ) ≈ ξ2 is

rather good for ξ ↓ 0. If these two filters H1(ξ) are placed in series,
we obtain the filter H2(ξ) for which H2(ξ) = H2

1(ξ). Then we have

ξ H2
2(ξ) = H4

1(ξ)

0,01 0,00000001
0,02 0,00000016
0,05 0,0000062
0,1 0,00014
0,2 0,0019
0,5 0,044
1 0,31
2 0,74
5 1,00

Figure 2 illustrates the behaviour of H2
1(ξ) and H2

2(ξ).

The curve H2
2(ξ) is offset to the right with respect to H2

1(ξ). There-

fore, if H1(k0, k) = H1

(
k
k0

)
and H2(k0, k) = H2

(
k
k0

)
, then for a wide
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6

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0,05 0,1 0,5 1 2 5

H2
1(ξ)

H2
2(ξ)

ξ

Figure 2: Behaviour of H2
1 (ξ) and H2

2 (ξ)

range of frequencies k,

H1(k0, k) ≈ H2(1, 35k0, k).

In other words, when using the characteristic H2, we deal with the new
“nominal” frequency k′0 ≈ 1, 35k0 instead of k0 (nominal frequency for
H1). This should be remembered when one compares the results of
employing different filters.

Furthermore, Kolmogorov gives a better method to make correc-
tions for the filter properties.

Set

∆(ξ) =

{
H2(ξ), ξ < 1

H2(ξ)− 1, ξ ≥ 1

-

6

-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5

0,05 0,1 0,5 1 2 5 ξ

∆(ξ)

Figure 3: Graph of ∆(ξ)
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Then

Ĵ(k0)− J(k0) =

∫ ∞
0

∆
(k′

k0

)
E(k′) dk′.

The filters under consideration cut the low-frequency components of
the spectrum and pass high frequencies with little distortion. The

factor ∆
(
k′

k0

)
significantly differs from zero in the limited range of the

frequencies k′ close to the frequency k0. If J(k) ≈ Cβ · kβ (β < 0) in
this frequency range, then E(k) ≈ β · Cβ · kβ−1. Set

Mβ =

∫ ∞
0

∆(ξ) ξβ−1 dξ.

Then∫ ∞
0

∆
(k′

k0

)
E(k′) dk′ =

∫ ∞
0

∆(ξ) E(k0ξ) k0 dξ ≈

≈
∫ ∞

0
β Cβ ∆(ξ) (koξ)

β−1k0 dξ = β Cβ kβ0 Mβ

and, therefore,
Ĵ(k0)− J(k0) ≈ β Cβ kβ0 Mβ.

On the other hand, J(k0) ≈ Cβ · kβ0 . Consequently,

Ĵ(k0) ≈ kβ0 Cβ (1 + βMβ).

Since J(k0) ≈ Cβ · kβ0 , we deduce that

Ĵ(k0) ≈ J(k′0)

if
k′0 = k0 (1 + βMβ)

1/β.

In other words, by getting the empirical value of Ĵ(k0), we obtain the
value of the integral spectrum at the “shifted” point k′0 rather than at
k0.

Let
∆(1)(ξ), M

(1)
β

and
∆(2)(ξ), M

(2)
β

denote the variables ∆(ξ) and Mβ for the filters H1(ξ) and H2(ξ), re-

spectively. Then we find the following values for C
(i)
β = (1+βM

(i)
β )1/β:
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β -2 -1,5 -1 -0,5 0

C
(1)
β 0 0,52 0,62 0,72 0,83

and

β -4 -3 -2 -1 0

C
(2)
β 0 0,75 1,00 1,20 1,36

As for the evaluation of β, we have

lnJ(k0) ≈ lnCβ + β ln k0

assuming that J(k0) ≈ Cβ · kβ0 . Therefore, β is evaluated by the slope
at the point k0.

In conclusion, I would like to express my hope that I have illustrated
some of Kolmogorov’s ideas in the statistical theory of turbulence and
also his views and methods of working with real statistical data in
practical situations.

P.-S. Laplace used to address the mathematicians with the words:
“Read Euler, read Euler, he is our common teacher.” We may right-
fully refer these words to Kolmogorov too.
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