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Abstract

A way of making Bayesian inference for concave distribution functions is
introduced. This is done by uniquely transforming a mixture of Dirichlet pro-
cesses on the space of distribution functions to the space of concave distribution
functions. The approach also gives a way of making Bayesian analysis of mul-
tiplicatively censored data. We give a method for sampling from the posterior
distribution by use of a Pélya urn scheme in combination with a Markov chain
Monte Carlo algorithm. The methods are extended to estimation of concave
distribution functions for incompletely observed data. Finally, consistency is-
sues are touched upon.
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1 Introduction

In many situations one faces data where there is reason to believe that they arise
from a distribution with a decreasing density, or equivalently with a concave distribu-
tion function. In our Bayesian framework we use prior distributions concentrated on
the space of probability measures on the positive real line with concave distribution
functions.

Our motivation for the concavity assumption on distribution functions arose from
potential applications in statistical inference for renewal processes and spatial statis-
tics.
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Think of k£ independent stationary renewal processes with lifetime distribution
(G. Assume that the processes are inspected at an arbitrary time and then each
process is surveyed for a fixed period of time 7" or until the next replacement. The
distribution of the residual lifetimes are denoted F'. It is possible to prove that the
residual lifetimes are multiplicatively censored lifetimes whereby the distribution of
F' is concave. The application of concavity assumptions on the distribution function
and multiplicative censoring with respect to renewal processes was noted already by
Laslett (1982) and Vardi (1989).

A similar problem arises in spatial statistics, see e.g. Hansen et al. (1996) and
Hansen (1996). Imagine standing in a forest and considering the range of vision in a
particular direction. The distribution of this range, usually denoted the linear contact
distribution, is of interest in many spatial statistical applications, see e.g. Stoyan et
al. (1995). An estimator is usually constructed from a series of sampling points in an
observation window, and then using the empirical distribution function of the distance
from the sampling points to the random set in a given direction. When the sampling
points are placed independently of the random set under study, the distances to the
random set may be considered as the residual lifetimes of a renewal process, where
the distribution of the renewal time corresponds to the chord length distribution of
the random set. So the linear contact distribution is necessarily concave.

Let Xi,...,X, be a random sample from an unknown (cumulative) distribution
function (cdf) F' on the positive halfline [0, 00). When no plausible assumption about
the functional form of F is available the empirical distribution function (edf) F,,(z) =
nt YT (oo (X;) is a natural estimator to use. However, when one introduces prior
information it is possible to find better estimators. Let for instance X1,...,X,, be a
random sample from a concave cdf, F'. Grenander (1956) proved that the maximum
likelihood estimator of F' is the concave majorant of the edf. Various properties of this
estimator have been studied in Groeneboom (1985) and Groeneboom and Lopuhad
(1993).

The problem of constructing nonparametric Bayes estimators for F' involves con-
structing a probability distribution on the space of cdfs. Ferguson (1973, 1974) and
Antoniak (1974) suggested respectively Dirichlet process priors and mixtures of them.

In the present paper we use a mixture of Dirichlet processes on the space of
probability distributions on R, , and then exploit the unique correspondence between
probability distributions on Ry and concave cumulative distribution functions on Ry
through their representation as mixtures of uniform distributions. The posterior dis-
tribution seems analytically intractable, so computations are performed using Markov
chain Monte Carlo methods.

Both parametric and nonparametric estimators under various censoring models
have been studied extensively in the literature. The most common case of censoring



is right censoring. For this case the nonparametric maximum likelihood estimator
is the well known Kaplan and Meier (1958) estimator. Turnbull (1974, 1976) gives
a way of obtaining a nonparametric maximum likelihood estimator of a distribution
function F' for the general case of interval censoring. Susarla and van Ryzin (1976)
and Hjort (1990) and later Daimen et al. (1996) and Laud et al. (1996) used a Bayesian
approach presenting nonparametric Bayes estimators based on right-censored data.
In Muliere and Walker (1997) the idea of placing a Polya tree prior distribution on
the space of probability measures, introduced by Ferguson (1974), is extended to right
censored data. The Bayesian approach was also explored by Doss (1994) who uses
Gibbs sampling to compute with the posterior distribution. The present paper uses
an approach similar to Doss (1994) but exploits concavity.

In Section 2 we define Dirichlet process priors and study some of their properties.
Representation results for concave distribution functions are given in Section 3. After
this we are ready to describe prior distributions on the space of concave distribution
functions in Section 4. In Section 5 we propose a way of sampling from the poste-
rior distribution by implementing Gibbs sampling via an urn scheme. Convergence
properties of the Gibbs sampler are discussed in Section 6. In Section 7 the tech-
niques are illustrated with data concerning failure of airconditioning equipment. The
methods are, in Section 8, extended to incompletely observed data, and the extension
is illustrated with an analysis of data that are right-censored. Finally, we discuss
consistency problems and mention some possible issues for future research.

2 Prior distributions on spaces of probability mea-
sures

In nonparametric Bayes inference we have to specify a prior distribution on the set
of probability distributions on a given sample space. Here we follow the ideas of
Ferguson (1973) restricted to the problem of placing the prior distribution on the
space of probability measures on the sample space (R, B(Ry)), where R, = [0, 00)
and B(R, ) is the Borel o-field.

First we let « be a finite measure on (R, ,B(R,)). Then a stochastic process P
indexed by elements B of B(R, ), is said to be a Dirichlet process on (R, , B(R;)) with
parameter « if for any measurable partition (By,..., Bg) of R, the random vector
(P(By),...,P(By)) has a Dirichlet distribution with parameter (a(B),...,a(By)).
Hence P may be considered as a random probability measure on (R, B(R,)). Often
we will write shortly P ~ D(a) or F ~ D(a) if F(-) = [;dP is the cumulative
distribution function corresponding to P. For the existence of such probabilities we
refer to Ferguson (1973). Clearly the quantity F(t),t € R, is a random variable and



if we let H = o/a(R;) Ferguson (1973) obtained the following results
1. If F ~ D(«) then E F(t) = H(t)

2. If F ~ D(«) and given F, X1,..., X, is a random sample from F', then

F|X1,...,Xn~D<a+25Xi>

i=1
3. If F ~ D(a) then F is almost surely a discrete distribution function.

Note that property 2. says that the posterior distribution of F' given the data is again
a Dirichlet process, but with an updated parameter measure. Moreover it follows
from 1. and 2. that

a([0,7]) + X8 0x, ([0, 2])
a(Ry)+n

and we see that «(Ry ) represents our relative belief in the prior. Finally we may note
that 1. tells us that H specifies the average behaviour of F.

However, in many situations it is not reasonable to use a fixed parameter mea-
sure « and we then choose F' according to a mixture of Dirichlet distributions, see
Antoniak (1974). In this situation we choose a parametric family Hy, 0 € © C R*
of probability measures and a prior mixing measure v and assume that F' has the
following distribution

E[F(t)]| X1,...,Xn] = (1)

F / D(a(R,)Hy)v(df).
To ease our notation we will use the following expressions
X1,..., X, ~ F,
or
Xi,..., Xp ~ L(F), n>1,

when F' is a random distribution function with distribution £(F) and, given F,
X1,...,X, is a random sample from F'.

3 Representation of concave distribution functions

The idea of the paper relies on the construction of a unique mapping from the space
of distribution functions to the space of concave distribution functions. For this
we exploit a (well-known) representation theorem for concave distribution functions.
First we note the following lemma which can be traced back to A. I. Khincin, see e.g.
Feller (1966, p. 158) for the proof.



Lemma 1 Let F be a distribution function on [0,00). Then F is concave if and
only if F' is the distribution of the product X = YU of two independent random
variables with U distributed uniformly in (0,1) and Y having distribution G for some
distribution function G on [0, 00).

Using this lemma we can easily show the following integral representation for an
arbitrary concave distribution function.

Corollary 1 Let F be a distribution function on [0,00). F is concave if and only if
there exists a distribution function G on [0,00) such that F' admits the representation

F(z) = /[O’oo) F,()G(dy), z€R 2)

where F, s the distribution function corresponding to the uniform distribution on
0,9), ie.

0 <0
Fy(r)=< z/y 0<z<y
1 T > .

Proof If F has the representation (2) it is clearly concave. Assume that F' is
concave. Define G, Y and U as in Lemma 1. It then follows that

F(z) =PUY <2)=G(0)+ | P(U < 2/y)G(dy) = /[0 F,(2)G(dy).

(0700) ,00

which was to be shown. O

The result above could also be phrased in terms of the general theory of Choquet, see
e.g. Phelps (1966), and this was indeed done by Johansen (1967): The set of concave
distribution functions is convex, F, are the extreme points of this set, and the integral
representation in (2) is expressing an arbitrary element of the convex set as a mixture
of its extreme points. The convex set is in fact a simplex, i.e. the mixing measure G
is uniquely determined by F'. The uniqueness can be established directly:

Theorem 1 If F is concave and represented by G as in (2) then G is uniquely de-
termined by F' through the relation

G(z) = F(z) — xf(x),

where f = DV F is the derivative of F' from the right.



Proof Assume that G satisfies (2). A direct argument gives that

(Fy(z + h) = Fy(2))

f(z) = DYF(z) = lim

G(y) = [ - Glay).

If we use the expression for the function F, we get from (2) that
T
F)= [ F@GE)=[ G+ [ =6(dy)=06)+f()

and the result follows. O

4 Prior distributions on concave distribution func-
tions and Bayesian inference

4.1 Concave distribution functions

Let X = (Xi,...,X,) be a random sample from an unknown concave distribution
function F'
XZNF, 7,:1,,77, (3)

In our Bayesian model specification we include a prior distribution on F' by the
relation

F— /0  F,G(dy) (4)

where G is a random cumulative distribution function distributed as a mixture of
Dirichlet process

G ~ [ D(a(R,)Hy)u(d0). (5)

By Corollary 1, F' will be a random concave cdf, and we obtain in this way a prior
distribution on the subspace of concave cdfs. The purpose is here to make inference
about the concave distribution function F' given data X = (X1,..., X,).

4.2 Multiplicative censoring model

There is another way of expressing the model given by (3), (4), and (5), namely by
the multiplicative censoring model of Vardi (1989). Let Y = (Y3,...,Y,) be a random
sample from the distribution function G

Y, ~ @G, i=1,...,n (6)



where G is a random distribution function assumed to be distributed as
G ~ [ Dla(R,)H)v(d). (7)

Now, let U = (Uy,...,U,) be a random sample of uniformly distributed random
variables over the unit interval (0,1). Finally let

Then by Lemma 1 and Theorem 1, the vector X = (Xy,...,X,) will be a random
sample from F', specified in (4). Notice, that G is again a mixture of Dirichlet distri-
butions, see equation (5). The task is here to make inference about the distribution
function G given the incomplete data X = (Xi,...,X,).

4.3 Graphical representation

Both models (3)—(5) and (6)—(8) specifies a joint distribution of model parameters and
data by a few conditional distributions. This implicit assumption of independence
among unspecified submodels is called the directed Markov assumption (Lauritzen
et al., 1990).

A convenient way of illustrating directed Markov models (Gilks et al., 1994) and
thereby the models (3)-(5) and (6)—(8) is via a directed acyclic graph (DAG) as
shown in Figure 1. Each quantity in the model appears as a node in the graph and
directed edges correspond to direct dependencies. Round nodes denote unobservable
quantities in prior distributions, square nodes with a single border denote observed
random variables and square nodes with a double border denote fixed quantities. The
graph is directed because each edge between nodes is directed and acyclic because by
following the arrows one cannot return to a node after leaving it.

General introductions to graphical modelling can be found in the monographs by
Whittaker (1990) and Lauritzen (1996). DAG models provide a rich class of models
which are particularly amenable to analysis by Gibbs sampling, see Section 5.

4.4 Bayesian inference

Next we wish to obtain the posterior distribution of F' (or G) given the data X.
The posterior distribution appears analytically intractable. Therefore we develop an
algorithm for generating Z®*) = (Z{k), e Zj(\ff)) ~G® k=1,... K from a sample
of random distribution functions, G®), k = 1,..., K, with common distribution
L(G| X). This enables us to approximate the implicitely given distribution functions

G®) by the edf for the random sample Z(*). Hereby, again for a reasonably large
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Figure 1: Graphical representations of the models suggested for concave distribution
functions: (a) by a mixture; (b) by multiplicative censoring.

sample size M, it would be possible to obtain observations from distributions such
as L(mean(G) | X) or L(median(G) | X) and thereby give us a method for making
Bayesian inference for the multiplicative censoring model. Furthermore, by noticing
that if

G~ L(G| X) (9)

then
P = /Fyé(dy) ~ L(F| X), (10)

we are also able to generate a random distribution function from £(F'| X). This makes
it possible, as before, to obtain observations from distributions such as £(mean(F) | X),
L(median(F) | X) or make an estimate of E [F'| X].

In the present paper we only consider the case with M = 1 and construct an



estimate of E [G | X] by using the edf of the sample (Z(),..., Z(K)) and letting

1 K .
= 2 2 1cwa(2). (1)
k=1

Then a natural estimate of E [F'| X] is obtained from the edf G as

/F dGK ZFz(k) (12)

leading to an estimate of the decreasing density of E [F' | X| by

. 1 & 1
fr(t) = sz_:l Z@) Hzt>1)-

5 An urn scheme for sampling from the posterior
distribution

In Bayesian statistics one often faces analytically intractable posterior distributions.
A popular way of handling this problem is to construct a Markov chain whose limiting
distribution is the required posterior distribution, i.e. in our case L(F'| X) or L(G | X).
Methods of this type are denoted Markov chain Monte Carlo methods (MCMC).
There is a wealth of related but different MCMC algorithms and in this paper we,
similar to Doss (1994), use Gibbs sampling, introduced in this form by Geman and
Geman (1984). For a general description and survey, see for example the papers by
Gelfand and Smith (1990), Smith and Roberts (1993), and Besag and Green (1993).

In the present context we are interested in the distribution of the unknown vari-
ables in Figure 1 given the observation X denoted by £(6,G,Y | X), whence a Gibbs
sampler can proceed as follows: Pick an arbitrary starting value Y% satisfying the
constraints of the data, i.e. VA > X, for : = 1,...,n and make successive draws

7
from the set of full conditional distributions in the following way:

For k=1,2,...
(a) Draw (8%, G®)) ~ £(0,G | Y*1, X)
(b) Draw Y® ~ £(¥ [0, G, X)

It is then seen that (%), G®) Y (*)) forms a Markov chain and that £(6,G,Y | X)
is a stationary distribution of the chaln for more details cf. e.g. Tierney (1994, Section



2.2). If one can establish that the chain converges to its stationary distribution (see
Section 6), then for large &, (6%%), G®)| Y (%)) has a distribution which is approximately
equal to £(6,G,Y | X). Thus by repeating the algorithm a large number K of times,
one obtains (), G®) YR k=1,... K.

In fact we will not carry out step (a) directly; instead we will sample #%*) from
the distribution £(#|Y* 1 X), and use a simple urn scheme to obtain a direct
sample Z®*) from a random distribution G drawn from the conditional distribution
L(G 6% YE=1)X) which is then used to get Y*¥) by a rejection step. Thus we do
not explicitly represent G itself. See Sections 5.2 and 5.3 below for details.

This procedure allows for both step (b) to be performed but also to use the samples
ZO_ .., Z0 from GO, ..., G to obtain an estimator as descibed in Section 4.4.
Note that the Markov property of the DAG in Figure 1(b) gives that

L£0,GY*D X)=L£0,G|Y* V) and LY 6%, GH X)) = LYV |GW, X).

5.1 Initialization

To start the algorithm we only need Y(® and it is desirable to generate it from a
distribution which is close to the stationary distribution in order to make convergence
happen quickly. It seems reasonable to let § ~ v and to generate Y;(O), 1=1,...,n
as independent observations from Hy restricted to the set [X;,00), i =1,...,n. This
is done by rejection sampling (see Ripley (1987, pp. 60)) in the following way

Draw 0 ~ v
Fori=1,...,n
Repeat
Draw U ~ U(0,1)
Draw Y;(O) ~ Hy
Until ¥ > X; and UY,? < X,

5.2 Sampling from £(4,G|Y# Y X)

As mentioned above this step is not carried out as it stands. Instead we sample §*)
from the distribution £(6 | Y*~Y, X) = £(0|Y*~V) and identify £(G |§®), Y ¢~ X) =
L(G| 6% Y*=1)) which allows us to apply the Polya sequence in Section 5.3 below.
We need the following reformulation of Lemma 1 in Antoniak (1974), (see also Doss
(1994, Theorem 1)).

10



Lemma 2 Assume that for each 0 € ©, Hy is absolutely continuous, with a density
he that is continuous on R. If the prior on G is given by (7), then the posterior
distribution of 0 given Y = (Y1,...,Y,) is given by the measure vy which is absolutely
continuous with respect to v and s defined by

(ap(Ry))#YIT (ap(R;))
[(ag(Ry) +n)

where the “«” in the product indicates that the product is taken over distinct values
only, “#” the number of distinct values, T is the gamma function, and C(Y) is a
normalizing constant. Moreover the conditional distribution of G given 6 and Y is
given by

vy (d6) = C(Y) (ﬁ he(Yi)> v (df)

G|0,Y~’D<a9+z(5yi>.

i=1
The lemma enables us in principle to perform the step by the following

Draw 6%) ~ Vy (k—1)

Draw G®) ~ D (Ofe(k) + >y 5Y(k—1))

5.3 Sampling from L(Y |G®), X)

We will perform this in two steps by first considering a way to generate observations
from G®) ~ D (C\fg(k) +>0, 61/.(’“1)) without actually expressing G explicitly and

then use a simple rejection method to generate observations from £(Y | G®), X). Doss
(1994) used a constructive representation of the Dirichlet prior due to Sethuraman
(1994), but we chose instead to use the urn scheme introduced by Blackwell and
MacQueen (1973) to simulate from a Dirichlet process.

Let p be a finite measure on (R,B(Ry))) and {Z;}2; be a sequence of random
variables in R, , drawn according to the following scheme:

Zy ~D(p)
and
Zl+1|Z1,...,ZlND(/Ll), l:2,3,

where j; = p+ Y\_, 62,. Using the terminology of Blackwell and MacQueen (1973),
{Z;}32, is a Pélya sequence on R, with parameter p. Blackwell and MacQueen (1973)
show that

21, Zg, ... ~D(p).

11



As L(G|6®), Y *=1) has a D(apw + iy 6,1 )-distribution it is easy to sam-
ple variables by using a Pdlya sequence. As we actually want sample values from
LY |G® X) we use the following rejection scheme

=1
fori=1,...,n
Repeat
Draw Z; ~ (agu-n + Xy 0y 6-n + Y2102,/ (ege—n (Ry) +n 4 (1 - 1))
l=1+1

Draw U ~ U(0,1)
Until Z;,U < X, and Z; > X,
Y(k) =7

Note that, the sequence {Z;} represents successive draws from an urn with a contin-
uum of colours (R, ) with different ‘chances’ of being drawn attached to them. Initially

the urn has n balls of colours V¥, ... Y/®~1) each with probability 1/(cyx—1) + 1)
of being drawn and a continuum of colours R, with a chance of being drawn given
by the density aye-1)/(gr-1) +n). After each draw the ball is replaced and another
ball of its same colour is added to the urn.

5.4 Final algorithm

The algorithm can now altogether be formulated as

Algorithm
Draw 0 ~ v
fori=1,...,n

Repeat
Draw U ~ U(0,1)
Draw V% ~ H,
Until V¥ > X; and UY,? < X;

fork=1,...,.K
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Draw 6®) ~ p{F=

=1
fori=1,...,n
Repeat
Draw Z; ~ (agw + Xitg Oy e-n + Xiz1 0z) /(0o (Re) + 0+ (1 - 1))
l=1+1

Draw U ~ U(0, 1)
until ZlU S Xz and Zl Z Xz
Y-(k) =7

The algorithm is computationally straightforward and the sampling process results in
approximate draws from a random distribution function G with distribution £(G | X).
We briefly discuss the convergence properties of the algorithm below.

6 Convergence of the algorithm

To start the algorithm we first choose 6 ~ v and then generate Y;(O) ~ Hpy; indepen-
dently for s = 1,...,n, where Hy; is Hy constrained to the data. Assume that for
each 0 € ©, Hy is absolutely continuous, with a density hg. Then Hy; is absolutely
continuous with a density hy; proportional to

ho,i(y) oc ==

Let 7 denote the distribution of Y0 = (Yl(o), ..., YOY)ie 7is the product measure
T = Hpy X --- X Hypp. Recall that the Markov chain constructed in the algorithm is
specified by

Draw YO ~ 7
For k=1,2,...

Draw (8*), G®) ~ £(0,G | Y+ X)
Draw Y(®) ~ L(Y |6%®), G*®)| X)

The validity of the algorithm requires a proof that £(Y*~1 g*) G*) | y(©) converges
to the stationary distribution of the Markov chain. The result below can be estab-
lished in complete analogy with Doss (1994). We omit the details.
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Let Bg be the Borel o-field on ©, let Bz be the Borel o-field on RF and let Bp
be the Borel o-field on P defined by the smallest o-field on P such that the function
P — P(A) is measurable for each Borel set A.

Theorem 2 Assume there exist a set Ey C © with v(Ey) > 0, a 6 > 0 and for
i=1,...,n disjoint sets E; C (X;, 00) with positive finite Lebesgue measure such that

(A1) vy(Cy) > ov(Cy) for allY € Ey x --- x E, and all Cy C Ej.
(A2) Hy(C;) > 0XNC;) for all € Ey and C; C E;y i=1,...,n.
(A3) vy(Ey) > 0 whenever Y; € (X;, 00).

(A4) Hy(E;) >0 foralli=1,...,n, whenever 6 € Ey.

(A5) There exists n > 0 such that

(a9 (Ry))"T (209(Ry ) + 1)
[(op(Ry) + 2n)

> n for all 6 € Ej.

(A6) For every Y such thatY; € (X;,00), i =1,...,n we have

I 7e(Y:) > 0 for v a.e. 6.
i=1

Then

sup  |[P{(Y*®D g®) g®) e B|YO} - P{(V,0,G) € B| X} —0
BEBRkXB@XBp

for T-almost all Y© .
This, in particular implies the following
Corollary 2 Assume conditions (A1)-(A6) of Theorem 2 are fulfilled. Then

sup |[P{G® € Bly®} - P{G € B|X}| = 0

BeBp

for T-almost all Y© .
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7 Failure of airconditioning equipment

We now discuss an example to illustrate the techniques. The stepfunctions in Fig-
ure 3 give the edfs of the intervals in operating hours between successive failures of
airconditioning equipment in 13 Boeing 720 aircrafts. This data set was presented in
Proschan (1963) and further analyzed by Cox and Lewis (1966).

This is an example where we have several series rather than one. A point of
obvious interest is to find the distribution of the failure-time when one for instance
considers preventive maintenance.

Cox and Lewis (1966) argued that the combined data follow a distribution which
is nearly exponential. Therefore it seems sensible to use a parametric family of expo-
nential distributions as a model for the combined data. If this approach is used one
obtains a maximum likelihood estimate of the reciprocal mean parameter 6, = 0.0107.
However, it seems reasonable as a starting point to assume an individual survival
function for each aircraft, see Cox and Lewis (1966). An alternative to using an
exponential distribution is just to assume a decreasing density.

We analyzed the data set using a prior on F' given by model (3)—(5), where Hy
is an exponential distribution with reciprocal mean parameter 6. With ay(R,) being
constant we chose to consider two cases ay(R;) = 1 and ay(R; ) = 100, representing
essentially a situation of a diffuse prior and a situation where we are rather confident
about our prior. Furthermore we took v to be a gamma distribution with position
parameter 1000 and shape parameter 1000-6y, hence F is centered around the Exp(6y)-
distribution. The reason for taking a gamma prior on € is that it is a conjugate
family for the exponential distribution. If v is the Gamma(a, b)-distribution, then
(see Lemma 2) vy is the Gamma(a + 2n*,b + > * y;)-distribution where n* is the
number of distinct observations in Y and > * y; is the sum of distinct y;’s.

In order to study convergence properties of the algorithm we have chosen to present
a diagnostics plot in Figure 2. For each run of the algorithm we obtain a random
sample Y®) = (v\%_ | Y®) from £(Y|G®,X) which for large k should be a
random sample from £(Y | X). We study convergence properties of the algorithm
by plotting mean(Y®)) = n=t 7, Yi(k) versus k for three independent starts of the
algorithm. From the diagnostics plot we see that for all aircrafts the trace of the
sampled values for each run quickly settled down to a stable level, which we take as
an indication that the stationary regime has been achieved almost from the beginning
of the sampling procedure. Figure 3 shows a plot of different methods for estimating
the distribution function F' for each aircraft. It shows a plot of the distribution
function of a future observation for the cases where ap(Ry) = 1 and ap(R;) = 100.
These were obtained by running the algorithm for a burn-in of 100 iterations and
first obtaining a G from £(G|X), and then generating a random variable Y from
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Algorithm 1.

16



0.8

0.4

o
=)
0 50 100 150 200 0 100 200 300 400 0 50 100 150 200 250 300
hours hours hours
4 5 6

0.8

0.4

o
=]
0 100 200 300 400 500 0 50 100 150 200 250 300 0 50 100 150 200 250
hours hours hours
7 8 9

0.8

0.4

2
S
0 50 100 150 200 0 50 00 150 200 0 100 200 300 400 500 600
hours hours hours
10 11 12

0.8

0.4

0 50 100 150 200 250 0 100 200 300 400 500 0 100 200 300 400 500
hours hours hours
13

0.8

0.4

0.0

Figure 3: Estimated distribution function for aircraft data. The empirical distribution
function is illustrated by a stepfunction. The fulldrawn and dotted lines corresponds
to weight 1 and 100, respectively. The mean of the prior distribution is illustrated by
a dashed line.

17



this G. This was repeated independently K = 3000 times, yielding a random sample
Yi,...,Yk. An estimate of E[G | X| and E [F' | X| was obtained by using the empirical
distribution function of the random samples, as shown in (11) and (12).

The prior distribution is also displayed. From Figure 3 we see that the Bayes
estimate is concave and provides a smoothed estimate of the distribution function.
For small weights we note that the estimate follows the data quite closely. However,
for larger weights the estimate has a tendency to have a shape more closely resembling
the shape of the prior.

It is straightforward to check theoretical convergence of the algorithm in the
present example by verifying assumption (A1)—(A6) of Section 6.

8 Extensions to further censoring

The graphical model formulation as provided in Figure 1 in combination with Gibbs
sampling provides a powerful tool for Bayesian inference in structured model formula-
tions. In the present section we capitalize on this fact to introduce a straightforward
extension to situations with further censoring.

Assume that our model setup is as specified by (3)—(5) or alternatively by (6)—(8).
Moreover we suppose that the X’s are not directly observed; instead we observe

(Bi,éi):{ ({Xih1), Xig A . _

(4;,0) X ea »i=hoom (13)

where the A;’s are subsets of R, , with positive Lebesgue measure. In case of right-
censored data A; = (¢;,00) and X; is censored on the right by ¢;. We wish to obtain the
posterior distribution of F' given the incomplete data. The model can be interpreted as
incomplete data from a decreasing density or alternatively as multiplicatively censored
data which are incompletely observed. Graphical representations of the suggested
model are shown in Figure 4.

By inspecting the graphical representation in Figure 4 (b) and reading off the con-
ditional independences we can for B = ((By,01), . . ., (Bn, 0,)) formulate the following
general Gibbs sampling scheme

For k=1,2,...

(a) Draw (6®,G®) ~ £(6,G | Y*=D, x*-1) B) = £(6,G | Y *-D)
(b) Draw Y o £(V'| 69, GO, X6, B) = £(¥ | G, X6=1)
(¢) Draw X1 ~ £(X [0, Y®), B) = £(X |Y¥), B)
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(B, di) (B, di)

Figure 4: Graphical representations of the models suggested for Bayesian inference
in the case of incompletely observed data from concave distribution functions repre-
sented (a) by mixtures; (b) by multiplicative censoring.

To illustrate a situation with incomplete data, we have chosen to use the data given
in Kaplan and Meier (1958).

We analyzed the data set using a prior on F' given by the model (3)-(5) and (13).
So in our notation (By,d1) = ({0.8},1), (Bs,d2) = ({3.1},1), (Bs,d3) = ({5.4},1),
(Bi,0) = ({9.2},1), (Bs,05) = ({(1.0,00)},0), (Bs,d6) = ({(2.7,00)},0), (Br,67) =
({(7.0,00)},0), (Bs,ds) = ({(12.1,00)},0). Furthermore we let Hy be the gamma
distribution with shape parameter 2 and position parameter § = 0.12, (which is the
maximum likelihood estimator for the reciprocal mean, if data is assumed to follow
an exponential distribution). We chose ay(R,) = 16 and took v to be a gamma
distribution with position parameter 12 and shape parameter 100. Figure 5 shows
an estimate of the survival function in the case ag(Ry) = 16. This was obtained
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Figure 5: Estimated survival function for the Kaplan-Meier data. The Kaplan-Meier
estimator is illustrated by a stepfunction (KM). The dotted line corresponds to the
nonparametric concave Bayes estimator (NPCB). The two dashed lines correspond to
the prior mean (prior) and Susarla and van Ryzin’s (1978) nonparametric estimator

(SvR).

by running the algorithm for a burn in of 100 iterations and first obtaining a G
from £(G|Z), and then generating a random variable Y from this G. This was
repeated independently K = 3000 times. The Bayes estimate of the survival function
E[l — F | Z] was estimated by 1 — F, where Fi is constructed analogously to (12).
In Figure 5 we have also plotted the Kaplan-Meier estimator of the survival function.
Moreover, the nonparametric Bayes estimator (NPB) as introduced in Susarla and
van Ryzin (1976) with weight § = 16 is plotted. From Figure 5 we see that taking
the concave assumption on the distribution function yields a smooth survival function
compared to the nonparametric approach without concavity assumption. Moreover
we see that the weight 16 seems to yield a rather diffuse prior in the case of concavity
compared to the Bayes approach without concavity assumption.
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9 Discussion

9.1 Consistency

In complex problems such as those dealt with in the present paper, one must often
choose prior distributions for the unknown parameters in a pragmatic and rather
ad hoc fashion. Consequently it is of interest to know whether a sufficiently large
sample will eventually overrule any reasonable choice of prior distribution. In our
context, this amounts to the following question. Let v, Hy and (R, ) represent a
given choice of prior distributions for the unknown (concave) distribution function,
and let the X,..., X, denote a sample from a concave distribution function Fj. Is it
true that the posterior distribution for F' converges (Fy-almost surely in the weak-star
topology) to the measure degenerate at F,? Or, slightly weaker, does the posterior
expectation of F' converge to Fy under similar conditions?

In the uncensored case, without the concavity assumption, the answer to these
questions is positive which follows from the explicit representation of the posterior
distribution, see for example equation (1).

In the censored case, with or without the concavity assumption, the problem is
difficult and the answer clearly depends on the censoring mechanism. If certain parts
of the state space are never observed, the estimate cannot be consistent in the above
sense. And in general the situation could be bad even in the uncensored case with
the concavity assumption. The risk is that the posterior expectation represents an
oversmoothing. See for example Diaconis and Freedman (1986) who show how bad
things could potentially be.

We have not been able to resolve this question in general, but we do believe that in
the case without censoring, or with reasonable censoring patterns, the Bayes estimate
suggested in this paper will be consistent. This conjecture is supported by a small
simulation experiment, the results of which are displayed in Figure 6. Observations X;
were simulated from Fj being uniform on the interval (0, 1), and the Bayes estimate
of F' calculated using a prior distribution similar to that used in Section 7. Thus Hy
is exponential with parameter # and v a gamma distribution with position parameter
1000 and shape parameter 1000 - 8y, where 6y = .75. Different weights were attatched
to the prior by considering the two cases ap(Ry) = 1 and ap(R;) = 100. In a
sense the uniform distribution represents the most difficult case when the main risk is
oversmoothing, as the uniform distributions are extreme points of the set of concave
distribution functions.

The posterior expectation of F' was calculated after 10, 100, and 1000 observations.
It appears from the figure that this posterior expectation gets closer and closer to Fj
as the sample size increases.
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Figure 6: Bayes estimates of a concave distribution function based on 10, 100, and
1000 observations from a uniform distribution. The empirical distribution function
and the prior mean are displayed for comparison.
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9.2 Perspectives

The basic element of the method described is the fact that the class of distributions
in the non-parametric model have a mixture representation in such a way that that
the mixing measure itself can be used to parametrize the distributions. Thus there is
a considerable potential for extension to other cases with a similar structure. Also it
could be of interest to extend the methods to other prior distributions than Dirichlet-
processes, such as for example Polya-tree distributions.
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