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Abstract

We consider estimating functions for discretely observed diffusion processes of the fol-
lowing type: For one part of the parameter of interest we propose to use a simple and
explicit estimating function of the type studied by Kessler (1996); for the remaining part of
the parameter we use a martingale estimating function. Such an approach is particularly
useful in practical applications when the parameter is high-dimensional. It is also often
necessary to supplement a simple estimating function by another type of estimating func-
tion because only the part of the parameter on which the invariant measure depends can
be estimated by a simple estimating function. Under regularity conditions the resulting
estimators are consistent and asymptotically normal. Several examples are considered in
order to demonstrate the idea of the estimating procedure. The method is applied to two
data sets comprising wind velocities and stock prices. In one example we also propose a
general method for constructing diffusion models with a prescribed marginal distribution
which have a flexible dependence structure.
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1 Introduction

A satisfactory description of complex dynamical systems by means of stochastic differential
equations often leads to a parametric model with a high-dimensional parameter. In this situ-
ation likelihood methods typically fail because the likelihood function is not explicitly known.
However, martingale estimating functions provide a good alternative, see Bibby & Sgrensen
(1995), Kessler (1995), Kessler & Sgrensen (1995), Bibby & Sgrensen (1996), and Sgrensen
(1997a).

Optimal martingale estimating functions tend to be complex in cases with many parameters.
Often simplifications and computer intensive methods are necessary in practice. See Bibby
& Sgrensen (1997) for an example of the problems encountered in connection with applying
martingale estimating functions to a complex diffusion model for financial data.

A considerable simplification of the estimation procedure is obtained if one part of the parame-
ter vector can be estimated well without involving the remaining part of the parameter, which
must then be estimated using a martingale estimating function. An example of this is maximum
pseudo likelihood estimation for ergodic diffusions; introduced by Kessler (1996). The pseudo
likelihood function is obtained by pretending that the observations are independent and identi-
cally distributed following the invariant distribution. Thus the pseudo likelihood is the product
of invariant densities evaluated at the data points. Often the invariant measure depends only
on a part of the parameter vector that can then be estimated using the pseudo likelihood func-
tion. Kessler (1996) also introduced other types of simple and explicit estimating functions; see
in addition Hansen & Scheinkman (1995). Typically only the part of the parameter vector on
which the invariant measure depends can be estimated from the simple estimating functions,
which therefore must be supplemented by, for instance, a martingale estimating function as
discussed in this paper.

In Section 2 we define the class of diffusion processes that we will study. In Section 3 we
propose the estimating procedure and give the asymptotic properties of the resulting estimators.
Finally, in Section 4 we look at some examples, namely the Ornstein-Uhlenbeck process, the
Cox-Ingersoll-Ross model, and a class of hyperbolic diffusions. We also consider two data sets:
One consisting of wind velocities, the other of stock prices.

2 The general model

We consider statistical inference for a class of one-dimensional diffusion processes defined as
the solutions of the following class of stochastic differential equations

dXt = b(Xt,H,lb)dt-i-O'(Xt,e, @b)th, X() = Xy, (21)

where W is a standard Wiener process. We assume that the drift b and the diffusion coefficient
o are known apart from the parameters (6,1) € © x ¥, where © C IR” while ¥ C IR?. The
functions b and o are, for all (6,1) € © x ¥, assumed to be sufficiently smooth that a unique
weak solution exists. The state space is denoted by S = (I,r), where —oco < I < r < oo, and
we assume that o(x;0,n) > 0 for all z € S and all (6,9) € © x V.



The scale measure of the solution to (2.1) has density

Zz

s(z;0,¢) = exp —2/

x*

b(y,0,7)

mdy , X € (l,?"), (22)

with respect to the Lebesgue measure for some arbitrary, but fixed, z* € (I,7). We restrict our
attention to diffusions that fulfill the following condition.

Condition 2.1 For all (6,7) € © x ¥,

T z*

/s(x;0,1/1)dx = /s(x;9,1/1)dx = 0.

x* l

Moreover, the speed measure of the solution to (2.1), which has density
1

(z,0,4)0%(z,0,¢)’

with respect to the Lebesgue measure, is assumed to be finite,

m(z;0,1) = . xz € (l,r), (2.3)

M(0,v) = /m(x; 0,v)dr < oo.
1

Under Condition 2.1, the process X is ergodic, and its invariant measure has density

m(z;0,1))

pio.p(2) = MG, 9 (2.4)

with respect to the Lebesgue measure on (I, 7).

We suppose that we have observed the diffusion process X at n distinct time-points that we
for the sake of simplicity assume to be equidistant. We denote the observations Xa, ..., X,a.
3 The estimation method and asymptotic results

The problem is to estimate 6 and 1) based on the observations Xa, ..., X,a. As the likelihood
function is typically not available we consider estimating functions of the form

Gn0,0) = (o)) ). 5.1)

where .
H,(0) =) h(Xia; 0), (3.2)

and . .
K, (0,%) = Z k(A Xgi-1)a, Xia; 0,1). (3.3)



An estimator for # and v is then obtained by solving the equation G, (6,) = 0. We suppose
that A in (3.2) is p-dimensional and satisfies

po.p(h(0)) = 0, (3.4)

for all (0,1) € © x U. Here g, (h(0)) is the integral of h with respect to the invariant measure.
Estimating functions of the type in (3.2) were studied by Kessler (1996). If the density of the
invariant measure only depends on € then the function h can for instance be obtained by
differentiating the logarithm of the density of the invariant measure py, see Kessler (1996). If
h is chosen in this way, H,(6) is the score function that one obtains by pretending that the
data are i.i.d. observations with distribution pg, and the estimator of # obtained by solving
G, (0,) = 0 is the corresponding maximum pseudo likelihood estimator. Equation (3.4) holds
provided that differentiation and integration can be interchanged in the integral [ dpug(x)dz. A
sufficient condition is that dypug(x) is locally dominated integrable with respect to the Lebesgue
measure.

Let y — p(A,x,y;0,1) denote the density with respect to the Lebesgue measure of the transi-
tion distribution of X when the true parameter value is (6,1)), i.e. it is the conditional density
of X given that Xy = z. In (3.3), we suppose that & is g-dimensional and satisfies

/k(A, z,y; 0, 9)p(A, z,y;0,)dy = 0, (3.5)

for all z € S and all (A,v) € © x ¥. This condition exactly amounts to assuming that K, (6, v)
is a martingale estimating function with respect to the natural filtration.

In the proofs of asymptotic results about the estimators obtained from the estimating function
(3.1), we need the ergodic theorem. Provided that @, (f) < oo, it holds under Condition 2.1
that

S F(Xas Xia) = Qiy(), (36
i=1

in probability as n — oo when (6, ¢) are the true parameter values; see e.g. Billingsley (1961b).
The probability measure QgAﬂp is the two-dimensional invariant measure which has density

Qo (%, y) = poy(©)p(A, 2,5 0,1), (3.7)

with respect to the Lebesgue measure on S2. Again Q(,Aﬂﬁ( f) is the integral of f with respect to
QeAﬂp. Condition 2.1 also implies that

Z= DO HA Xoa Xiani,0) 2 N (0. 5:(0,)). (3.8)
i=1

as n — oo when (f,) are the true parameter values; see Billingsley (1961a). Here

32(05 w) = QHAﬂ/) (k(ea w)k(ea ¢)T) :

To ensure asymptotic normality of the estimating function H, which is not a martingale, we
need to impose the following extra condition on our model.



Condition 3.1 For all (6,7) € © x ¥,
min{ limu(x; 0, ), limu(x;0,v¢) } > 0,
T— T—T
where

u(z;0,9) = §[b(x;0,9)%0(x;0,9)7 +V'(;0,7)]
—v' (3 0,9)b(x; 0, ) [v(x; 0,¥) + 3" (5 0,9)* — Ju(z; 0, V)" (0, 9).

Here v(x;0,v) = 0%(x;0,%), and a prime denotes differentiation with respect to x.
Condition 3.1 implies, see e.g. Kessler (1996), that
1 n
—=D_h(Xias0) = N (0, Bi(6,v)), (3.9)
i=1

as n — oo when (,v) are the true parameter values, and where

Bi(8,9) = Qg (al8,9)a(8,%)") (3.10)

with
a(z,y;0,v) = Ugyph(y; 0) — Upph(z;0) 4+ h(z;0). (3.11)

Here Uy, denotes the potential of X, defined by

Ug ¢f Z Emp zA |X0 - x)

for f € L(up,y), where L3(ugy) is the set of real functions on (/,7) that are square integrable
with expectation zero under yp,,. The sum converges in L?(fig,y).
)

Condition 3.1 also implies convergence in distribution of G, (6, 7)/+/n. Specifically,

1 D
— N(0,% 12
as n — oo when (0,v) are the true parameter values. The asymptotic covariance matrix is
given by
Bl (0, ¢) 0(07 1/))T )
Y(0,¢) = , 3.13

where the ¢ x p-matrix C(6,1) is given by

The weak convergence result (3.12) follows by applying the martingale central limit theorem
for ergodic processes, Billingsley (1961a), to the martingale

Z (A X!z 1A, ZA,O ¢)
G(0,v) = ;
Kn(6,v)

5



for details, see Kessler (1996).

It is usually difficult to find an explicit expression for the potential operator Uy, and hence for
the asymptotic covariance matrix X(6, ). In practice, one would therefore have to estimate
¥(6,%) from the data. In Sgrensen (1997b) this problem was studied in the case of pseudo
likelihood with the invariant measure belonging to an exponential family.

To prove asymptotic results about our estimators we finally make the following assumption
about our estimating function. In the rest of the section we denote the true parameter value
by (6o, o). Moreover, h; and k; denotes the ith coordinate of h and k respectively.

Condition 3.2

(1) The function h is twice continuously differentiable with respect to 0 for all x, and the
function k is twice continuously differentiable with respect to (0,1) for all z,y.

(2) The functions

x = hi(z;0), i=1,...,p,
T = Ophi(z;0), i,5=1,...,p,
T = 89i69jhl(x; 0), i,j,l = 1, ..oy Dy

are all locally dominated integrable with respect to g, 4., and the functions x — h;(x;6),
i=1,...,p are in L*(ug,,) for all 6 € ©.

(8) The functions

ki(z,y;0,9), i=1,...,q,

Op,ki(w,y;0,%), i=1,...,q, j=1,...,p,
Op;ki(x,y;0,7), i,7=1,...,4q,
0,09, ki (x,y;0,9), i,7=1,...,p, l=1,...,q,
0,0y, ki(,y;0,9), i=1,...,p, j,l=1,...,4q,
= Oy, Oy ki(2,y50,7), 4,5,l=1,...,q,

are all locally dominated integrable with respect to Qﬁ),wo’ and the functions (x,y) —
ki(z,y;0,4¢), i=1,...,q are in LQ(QQA(WO) for all (6,7) € © x V.

8 8 &8 8
11111

A/&?A/-\/—\/—\
L=
N N N N N N

Z,

(4) The following (p+ q) X (p + q)-matriz is non-singular:

_ AT (60, 0) 0
M(("”%)‘( D (B, o) AQ_I(QO,%))’ (8.15)

where the p x p-matriz A7 (0o, is given by

AT (00, 10) = { 160,00 (D9, hi(00)) } (3.16)
the q x q-matriz A (0y,100) is given by
Ay (00,%0) = {Qf s (O, Ki(Bo,%00)) } (3.17)
and the q x p-matriz D(6, ) is given by
D(6y, o) = { Q4 o (90, i(B0,%0)) } (3.18)



Under the conditions imposed, the next theorem follows from general results in Sgrensen (1998)
about estimators obtained from estimating equations by arguments analogous to the proof of
Theorem 3.6 in that paper; see also Bibby & Sgrensen (1995).

Theorem 3.3 Suppose Conditions 2.1, 3.1 and 3.2 are satisfied. Then for every n, an estima-
tor ( s ¢n) exists that solves the estimating equation Gy, (0, wn) = 0 with a probability tending

to one as n — oo. M07‘60’U€’I',
( J ) ( )’
¢n wO

as n — 0o, and

V(T ) B NV ),

where

V(8o,%0) = M (8o, %0) "= (80, %0) (M (8o, %0) )7,

Vii Vi
V= ,
( Var Voo >

or more specifically

where
Vvll = AlBlAfa
va = AlCTAg - AlBlA,{DTAg,
(3.19)
‘/21 = Vg;
Vag = AyByAT + AyDABiATDT AT — A,CATDT AT — AyDA,CT AL,

For clarity we have suppressed the arguments (6o, o).

4 Examples

In this section we present some examples that illustrate the theory in the previous section.

Example 4.1 The Ornstein-Uhlenbeck process.

We consider the Ornstein-Uhlenbeck process, that is the solution to the stochastic differential
equation given by
dXt = ﬂXtdt + O'th, X() = X,

where § < 0 and ¢ > 0. The invariant distribution is a N (0, §)-distribution, where

If we pretend that the observations Xa,..., X,a are independent and identically distributed
according to the invariant distribution, we obtain a pseudo likelihood function which is the
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product of N (0, #)-densities evaluated at the data. By differentiating the corresponding pseudo
log-likelihood function with respect to # we get the following estimating function for 6,

n

i=1
If we put 1) = 02, then the stochastic differential equation has the form

Y

dXt == —%

Xydt + \/pdW,, Xo = .

The parameter ¥ can be estimated using the optimal quadratic martingale estimating function,

Ko(0,9) =) (XA + X[ ya) — (1+0%)) XinX_na — nab(1 — o),

i=1 =1

see Bibby & Sgrensen (1996). Here
o= 6_%.

Using these estimating functions it is straightforward to verify that

A1 = —1,
2
Ay = —
? aA(1 + a?)’
2 2
B, — 2°(1+ « )’
1 —a?

B, = 0*(1+a)(1-a?)?,

C =0,
A
D = 1/;—9@(1 +a?) — a(l — o?).

For example, in order to find Bj it is necessary to find a(z,y;0, ) given by (3.11). To do this,
note that Ey (XA —0|Xo = z) = o*(2? —0), which implies that Up ,h(z;6) = (z2—0)/(1—a?),
and hence that

2 2,2
Y —a’x
a(z,y;0,9) = —— — 0.
We get that
2602(1+03) 200%0(1+ad) _ 46}
1-a? 1-a A
V(GO: %) =
200¢0(1+ag) _ 463 293(1+ag) _ 88o%ho 4 463(1—a3)
l—ag A l—ag A AQag

Comparing with the asymptotic variance for the maximum likelihood estimator for (6,) we
note that our simplified estimation method in this case in fact produces an efficient estimator.
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The estimator 6, is not equal to the maximum likelihood estimator, but of course asymptotically
equivalent to it. In fact the maximum likelihood estimator for # is given by

n n n 9
st _ 1< o (S0 X210 ) (S, XE) — (T, X Xna)
n o E : i—1 5 '
n < n " 5
=1 (Zi:l X(%—l)A) - (Zi:l XZAX(’L—I)A)

Example 4.2 The Coz-Ingersoll-Ross process.

We consider the diffusion model proposed by Cox, Ingersoll, Jr. & Ross (1985) to describe
interest rate data. The process is the solution to

dXt = (a + ﬂXt)dt + 0/ Xtth, XO = X9,

where 3 < 0 and o > 0. If we put 1) = 0% and

g
o2’ o2

T
e=(01,02)T:(2“ 25) ,

then the invariant distribution is a I'(6;, 6,)-distribution.

Again pretending that Xa,..., X,ao are independent and identically distributed according to
the invariant distribution results in the following estimating function (pseudo score function)
for 6,

H,(0) = <n(1og 0o — F(61)) + ;mgxm g = ;Xm> :
where [ is the digamma function.

In terms of # and v the stochastic differential equation describing the Cox-Ingersoll-Ross process
has the form

dX; = (0, — 0:X,)dt + /Y X dW,, Xy = 0.

Using the approximately optimal linear martingale estimating function introduced in Bibby &
Sgrensen (1995) we have

"0 — 0, X 1 .
Kn(0,9) =) = <X,~ - (91 — (61 — 6:X(i_1)a) 6_502A¢)> .

This estimating functions actually yields an explicit estimate for i), namely,

Zn (01—62X(;_1)a)?

.2 . =1 X
"B, A & Zn (01—602X(;_1)a)(01—02X;A) |’

=1 \/X(i—l)A

which exists provided the denominator is positive. However, in this case no explicit expression
for the potential operator is known so efficiency properties of the estimators are hard to study.

In order to explore the estimation procedure for different values of A and n, we made a sim-
ulation study. We simulated 500 or 1000 observations from the Cox-Ingersoll-Ross process for
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values of A ranging from 0.5 and 3.0. For every combination of A and n we made 1000 sim-
ulations and in each case estimated the parameters using the proposed method. In Table 4.1
the empirical mean and standard error is given for the three parameter estimators.

For A = 3.0 we got no estimate for ¢ in 155 cases for n = 500 and in 72 cases for n = 1000.
For all other combinations of A and n there were no problems with estimating .

From Table 4.1 we see that the bias is small for all combinations of A and n. We also see that
the accuracy, with which #; and 6, are estimated, increases with A. The opposite is true for the
accuracy of ¢. This is as could be expected since a large value of A corresponds to a situation
where the observations are close to being independent.

n A 01 02 ¢

500 0.5 | 20.2686 (1.8390) 2.0285 (0.1900) 1.0004 (0.0818

500 1.0 | 20.1839 (1.4382) 2.0171 (0.1455) 1.0090 (0.1011

500 2.0 | 20.0992 (1.2864) 2.0107 (0.1295) 1.0516 (0.2252

0.8719 (0.4706

1000 0.5 | 20.2250 (1.2984) 2.0218 (0.1340) 1.0024 (0.0584

1000 1.0 | 20.0995 (1.0188) 2.0093 (0.1032) 1.0071

(
(
(

500 3.0 | 20.1842 (1.2602
(
( 0.0730
(

(

(

(
2.0193 (0.1292

(

(

(

1000 2.0 | 20.1553 (0.9531) 2.0158 (0.0971) 1.0117 (0.1269

) ) ( )
) ) ( )
) ) ( )
) ) ( )
) ) ( )
) ) ( )
) ) ( )
) ) ( )

1000 3.0 | 20.0017 (0.8927) 1.9995 (0.0901) 0.9766 (0.3743

Table 4.1: Empirical mean and standard error of the 1000 parameter estimates. Here the true
parameter values are #; = 20, #, = 2, and » = 1. In all cases the initial value is xq = 10.

Example 4.3 Modelling wind velocity.

In september 1985 the wind velocity was measured on the beach at Ferring on the Danish West
Coast. This was done using a sonic anemometer on a 30-meter mast. The three-dimensional
wind velocity vector was measured with a 10-Hz frequency but we only consider the stream-wise
component. For details about the experiment see Mikkelsen (1988) and Mikkelsen (1989). The
data are given in Figure 4.1.

The log-histogram of the wind velocity data is given in Figure 4.2 along with a fit using a
hyperbolic density function, see Barndorff-Nielsen (1977). The hyperbolic parameters were
estimated by means of the program HYP, see Blasild & Sgrensen (1992). We propose to
describe the data using a stationary diffusion process with hyperbolic marginal distribution.
We will therefore briefly discuss a way of constructing a class of diffusions with a prescribed
marginal distribution and which has a flexible dependence structure.
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Figure 4.1: The stream-wise wind velocity component in meters per second plotted against
time in seconds.
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Figure 4.2: A log-histogram of the wind velocity data with a fitted curve corresponding to a
hyperbolic density.

Let f and v be two continuously differentiable strictly positive real functions defined on the
open interval (/,7), where —oo <[ < r < oo. The function f is assumed to be integrable with
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respect to the Lebesgue measure on ([, 7). Furthermore, suppose that
[ @s@) z = [ @) =, (@)
T* l

where z* is a fixed point in (/,7), and that v~' is integrable on any compact subinterval of
(I,7). Then the stochastic differential equation

dX; = 2o(X)log(f(X)v(Xy))]'dt + /v (Xy)dWr, (4.2)

where a prime denotes differentiation, has a unique ergodic Markovian weak solution with
invariant measure proportional to f(z). This follows from results in Engelbert & Schmidt
(1981) after a transformation by the scale function.

We will now consider the class of diffusions obtained by the particular choice v(z) = o%f(z)77,
where 02 > 0 and v € [0, 1]. Obviously, f(z)” is integrable on any compact subinterval of (I, ).
If (I,7) is the real line, it is easy to see that (4.1) is satisfied. Suppose f is unimodal and that
the mode point m belongs to the interior of (I,7). The the diffusion has reversion towards m
when v < 1.

Since we want a diffusion on the real line with hyperbolic marginal distributions, we choose f
proportional to the hyperbolic density function

f() = exp [~ay/o + (@ — w2 + Bz — 1), (4.3)

where o > || > 0 and § > 0. Thus we arrive at a diffusion model given by the stochastic
differential equation

_ Xy — p)
NGEeEnE

If X, is a random variable independent of the Wiener process W and distributed with a density
proportional to (4.3), then X is stationary with the same marginal distribution. If X, = z,,
the marginal distribution of X; will converge in distribution as ¢ — oo to a distribution with
density proportional to (4.3). Note that when v < 1, the diffusion has reversion towards
w+ B0/ a?— % If v = 1, the drift is zero, so only the diffusion term keeps the process
stationary. Therefore, in the latter case, the trajectories can have “spikes” that go far away
from the typical level of the process. Thus the full class where v € [0, 1] spans the whole range
from a process that is kept stationary purely by the effect of reversion (y = 0) to a process
where stationarity is ensured purely by a volatility effect. Between these extremes, both effects
are present with varying weights.

dt + o f(X,) 27 dW,. (4.4)

dX; = 50" (1= 7)f (X)) [ﬁ
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Figure 4.3: A plot of the uniform residuals for the fit of the hyperbolic diffusion model to the
wind velocity data.

Let 0 = (o, 3,6, )T and ¥ = (0,7)T. We estimate 6 pretending that Xa,..., X,a are inde-
pendent and identically distributed according to the invariant distribution. In this case the
program HYP produced the following estimates,

&, = 23.26
B, = —18.89
6, = 0.4790
fn = 8.0946

Using the optimal quadratic martingale estimating function, see Bibby & Sgrensen (1996), in
order to estimate ¢ we get

6, = 0.1556
4, = 0.1534

Figure 4.3 shows the uniform residuals (see Pedersen (1994)) associated with the parameter
estimates. This figure gives no reason to doubt the model.

Example 4.4 Modelling stock prices.

We consider 1563 daily observations (weekends ignored) from the 2nd of October 1989 to
the 29th of December 1995 of the price of VW-stocks. The data are from the Karlsruher

Kapitalmarktdatenbank. Figure 4.4 shows the logarithm of the stock prices minus an estimated
linear trend (de-trended data).
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Figure 4.4: The transformed stock price data for VW plotted as a function of time in days.

In Figure 4.5 the log-histogram of the de-trended stock price data is given along with a fitted
hyperbolic log-density function found by the HYP-program. In Bibby & Sgrensen (1997) the
diffusion process given by (4.4) was used to model de-trended stock prices in the special case
where v = 1. It is therefore of some interest to fit the full model (4.4) to stock price data. The
parameter estimates found by HYP are

&, = 5.393
B, = 1.576
5, = 0.080
fn = 5.842

The estimates found by the optimal quadratic martingale estimating function are given by

6, = 0.0170
Yn = 0.0121

Figure 4.6 shows the uniform residuals associated with the parameter estimates. Also for these
data the model looks reasonable based on Figure 4.6.
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