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1 Introduction

We consider the selfadjoint Laplacian L = −y2
(
∂2

∂x2 + ∂2

∂y2

)
in L2

(
FΓ(2)

)
,

where Γ(2) is the main congruence subgroup of the modular group of level 2
and FΓ(2) a fundamental domain of Γ(2). In [B-V] we studied the family of
operators L(α) associated with the group of characters χα on Γ(2) defined by
a singular modular form of weight 2 (the holomorphic Eisenstein series). This
perturbation closes 2 cusps, and the operators L(α) exhibit for α 6= 0 a new
set of resonances ρi (α) which for α→ 1

4
go to -∞, i.e.Re ρi(α)→ −∞ [S]. For

fixed α there are K (α) ·T of these resonances up to height T , asymptotically
as T → ∞. We call these resonances unstable for α → 1

4
. We further

analyze this result, showing that in the limit α → 1
4

the resonances ρ(α)
asymptotically lie on a vertical line and are equidistant, moving horizontally
to −∞ with C(α)→ C for α→ 1

4
.

The question arises, whether instability of resonances is a specific property
of Γ(2) or it may occur for other congruence groups. To study this we consider
first the group Γ′, which has only one cusp form of weight 2. This group has 2
hyperbolic generators and 1 parabolic with one relation, thus a 2-parameter
family of characters χ (α, β). It turns out that even in this case there is a
one-parameter family of points (α, β) of instability, given by f(α, β) = 0,
such that approach to a point on this curve causes resonances to go −∞.
Apart from these points the system is stable, and there is a naturally defined
curve of maximal stability, obtained by letting the hyperbolic generators have

∗Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish
National Research Foundation.

1



opposite phase. However, a character circle starting from the group Γ′ with
trivial character has to pass through a point of instability.

We finally investigate the group Γ2′ = Γ′ ∩Γ(2). This group has 2 hyper-
bolic and 3 parabolic generators with one relation, thus a 3-parameter family
of characters χ(α1, α2, α3) which leave one cusp open. Of these a 2-parameter
family given by g(α1, α2, α3) = 0 are points of instability. Approach to such
a point causes resonances to go to −∞. Otherwise the system is stable, also
for characters which close 2 cusps, which happens except on another surface
in parameter space. There is a natural circle of maximal stability. However,
a circle starting at Γ2′ with trivial character must pass through a point of
instability.

These results are based on explicit calculation of the zeros of the first two
terms of the series for the scattering function ϕ(s) given by (1), (2) of Section
2 in the cases of Γ(2), Γ and Γ2′. The formulas for the zeros are given in
Lemmas 1, 2, 4 of Section 3 and summarized in Theorem 1. Then the rest
of the series is estimated to obtain our result on the asymptotic behaviour
of the poles of the function ϕ(s) formulated in Theorem 2 of Section 4.

Our results indicate that the existence of an unstable family of resonances,
C(α)T in number for T → ∞, corresponding to a character circle χ (α) for
the operator L(Γ) with L(Γ, 0) = L(Γ) is a general feature of Laplacians
L(Γ) for congruence subgroups Γ of the modular group. For the groups Γ′

and Γ2′ there are also stable character circles, which however do not contain
L(Γ′) and L(Γ2′) respectively. We expect this to hold for general congru-
ence groups, which have a cusp form of weight 2. In the case of Γ(2),
the unstable resonances %k(α) of L(Γ(2), χα) are asymptotically given by

%k(α) = −σ(α) + i
(
k π

log 2
+ π
)

for α → 1
4
, where σ(α) → −∞ as α → 1

4
.

The Selberg resonances [S] of L(Γ(2)), which condense of every point of the
continuous spectrum of L(Γ(2)), although asymptotically K ′(α)T in num-
ber, behave very differently and seem to represent a distinct phenomenon of
a different nature, related to the continuous spectrum.

2 General theory

Let Γ be a subgroup of the modular group ΓZ of finite index, acting on the
upper half-plane H. A general such group Γ is given by a canonical system
of generators

A1, A2, ..., Ag, B1, B2, ..., Bg (hyperbolic)
S1, S2, ..., Sh (parabolic)
E1, E2, ..., Ek (elliptic)

2



with relations

[A1, B1] · · · [Ag, Bg] E1 · · ·EkS1 · · ·Sh = 1

En1
1 = En2

2 = ... = Enk
k , where nj = 2 or 3, j = 1, ..., k,

g ≥ 0 is the genus of Γ, h ≥ 1 is the number of cusps of the corresponding
fundamental domain. We recall that [A, B] = ABA−1B−1.

We now introduce a one-dimensional unitary representation χ of the
group Γ, which we also call a character. We recall the definition of a singular
character. The character χ is singular at the parabolic generator %j (or in the
cusp of the fundamental domain, which corresponds to Sj) if χ(Sj) 6= 1, it is
non-singular at Sj if χ(Sj) = 1. A character χ is singular if it is singular in
at least one cusp. In this paper we will mostly consider singular characters χ
of Γ, which are non-singular in just one cusp. Let us assume that χ(S1) = 1.
Then there exists a fractional linear transformation g1 ∈ P − SL(2,R) such
that

g−1
1 S1g1z = z + 1 for Im z > 0.

Let us denote by Γ̃ the group Γ̃ = g−1
1 Γg1.

We recall the definition of the scattering matrix for the automorphic
Laplacian A(Γ, χ). Let H = {z ∈ C |z = x + iy | y > 0} be the upper
half-plane of C . We consider H as the hyperbolic plane with the Poincaré
metric

ds2 =
dx2 + dy2

y2
.

Let ∆ = y2
(
∂2

∂x2 + ∂2

∂y2

)
be the Laplacian associated with the metric ds2. We

define as usual the automorphic Laplacian A(Γ, χ) in the Hilbert-space H(Γ)
of complex-valued functions f , which are (Γ, χ)−automorphic (i.e. f(γz) =
χ(γ)f(z) for all γ ∈ Γ and z ∈ H) and which satisfy

‖ f ‖2

∫
F

|f(z)|2 dµ(z) <∞.

Here F is the fundamental domain of Γ in H and dµ is the invariant Rie-
mannian measure on H defined by the metric ds and given by

dµ(z) =
dxdy

y2
.
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A′(Γ, χ) is defined on the space of smooth, (Γ, χ)−automorphic functions
f ∈ H(Γ) by the formula

A′(Γ, χ)f = −∆f.

We identify A′(Γ, χ) with the restriction A′F (Γ, χ) of A′(Γ, χ) to the space
of functions f |F , where f runs over all smooth, (Γ, χ)-automorphic functions
f . The closure of A′(Γ, x) in H(Γ) is a non-negative, selfadjoint operator,
which we denote by A(Γ, χ).

In the case of (Γ, χ) considered here, where χ leaves open only one cusp
S, A(Γ, χ) has the absolutely continuous spectrum

[
1
4
,∞
]

of multiplicity
one. This continuous spectrum is related to the generalized eigenfunctions of
A(Γ, x), which are defined by analytic continuation of the Eisenstein series
E(z, s) given for Re s > 1 by

E(z, s) = E(z, s, Γ, x) =
∑

γ∈Γ1\Γ

ys(g−1
1 γz)x(γ)

where y(z) denotes Im s, Γ1 ⊂ Γ is the group generated by S1 and γ is the
coset Γ1γ of Γ with respect to Γ1. The series is absolutely convergent for
Re s > 1, and there exists an analytic continuation to the whole complex
plane as a meromorphic function of s. For s = 1

2
+ it, t ∈ R, it constitutes

the full system of generalized eigenfunctions of the continuous spectrum of
the operator A(Γ, x). We recall the definition of the automorphic scattering
matrix (function) in this case. We have

E(g1z, s) =
∞∑

k=−∞
aj(y, s)e2πikx, z = x + iy

a0(y, s) = ys + ϕ(s)y1−s, ϕ(s, Γ, x).

The function ϕ(s) is called the automorphic scattering function (n×n matrix
if we have n open cusps). It is well known that ϕ(s) is meromorphic in C

and holomorphic in the line Re s = 1
2

and satisfies the functional equation

ϕ(s)ϕ(1− s) = 1.

This function is important for establishing the analytic continuation and
the functional equation for the Eisenstein series given by

E(z, 1− s) = E(z, s)ϕ(1− s).
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For our purposes another representation of ϕ(s) is important, given by
the series over double cosets. Let Γ∞ be the infinite cyclic group generated
by the map z → z + 1. Then we have

Γ∞\g−1
1 Γg1/Γ∞ = Γ∞\Γ̃/Γ∞ = Γ∞ ∪

{
∪
c>0

∪
d(mod c)

Γ∞

(
∗ ∗
c d

)
Γ∞

}
where (

∗ ∗
c d

)
=

(
a b
c d

∈ Γ̃.

)
The general Kloosterman sums are introduced by

S(m, n; c; Γ; x) = S(m, n; c) =
∑

d(mod c)

χ̄

(
a b
c d

)
e2πima+nd

c , m, n ∈ Z.

Then we have

ϕ(s) =
√

π
Γ(s− 1

2

Γ(s)

∑
c>0

S(0, 0; c

c2s
(1)

The series (1) is absolutely convergent for Re s > 1 and has an analytic
continuation to the whole of C as a mesomorphic function. We make an
ordering of the set of coefficients c from Γ∞\Γ̃/Γ∞, c1 < c2 < · · · . Then we
can write the series of (1) in the form∑

c>0

S(0, 0; c)

c2s
=

l1
c2s

1

+
l2
c2s

2

+ · · · (2)

where lj = lj(Γ, χ), j = 1, 2.
In order to study the problem of instability of resonances, which are the

poles to the left of {Re s = 1
2
}, we will calculate these two first coefficients for

several instructive examples of Γ and χ. What we can say generally about
this problem now is the following. For any group with one cusp of F only
and for the trivial representation χ(γ) = 1, all zeros of the series (2) are
located in a strip {1

2
< Re s < a} for some a. That follows from (2) because

for Re s >> 1 the dominant term is l1
c2s1

(l1 6= 0). Since the trivial factor

Γ(s− 1
2
)/Γ(s) has no zeros in {Re s > 1

2
}, the zeros of ϕ(s) in {Re s > 1

2
} are

precisely the zeros of the series (2). From the functional equation for ϕ(s) it
then follows that all resonances are located in the strip {1− a < Re s < 1

2
}.
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In the presence of non-trivial characters the situation becomes more com-
plicated. For any fixed character χ(α) the same holds, and the proof is sim-
ilar. When we consider a family of characters, usually a group, the question
arises whether the sets of resonances of A(Γ, χ(α)) remain bounded below,
uniformly for all α.

In order to analyze this problem we consider three particularly important
and interesting examples, the groups Γ(2) (a singular perturbation closing 2
cusps), Γ′ (one cusp form) and Γ2′ (a mixture of singular perturbation and
cusp form).

3 Explicit calculations of the coefficients l1
and l2 for the groups Γ(2), Γ′ and Γ2′

a) The group Γ(2)
Let Γ(2) be the principal congruence subgroup of P −SL(2,Z) of level 2.

Γ(2) is a normal subgroup of the modular group of index 6. By definition,
for n ∈ Z+

Γ(n) =

{
γ ∈ P − SL(2,R) | γ =

(
a b
c d

)
≡
(

1 0
0 1

)
(mod n)

}
Γ(2) is a cofinite group of genus zero, generated by the three parabolic gen-
erators A, B, S with one relation,

ABS = 1 (the unity of the group).

We have

A =

(
1 2
0 1

)
, B =

(
1 0
−2 1

)
, AB =

(
−3 2
−2 1

)
= S−1 , S =

(
−1 2
−2 3

)
.

We identify elements of Γ(2), which differ by a factor -1. The family of
characters χα of Γ(2) is defined on the generators A, B, S as follows,

χα(A) = 1, χα(B) = e2πiα, χα(S) = e−2πiα, 0 ≤ α ≤ 1 (3)

This family of characters is nonsingular only in the cusp, which corresponds
to the generator A.

Let us calculate now the two first terms l1
c2s1

and l2
c2s1

of the series (2). If

γ =

(
a b
c d

)
∈ Γ = Γ(2), then γ̃ =

(
a b/2
2c d

)
∈ Γ̃.
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The minimal positive value of c̃ = 2c when γ̃ ∈ Γ̃ is c̃ = c1 = 4, and the
next value of c̃ is c2 = 8 by definition of the group Γ(2). In order to calculate
the coefficients l1, l2 in the series (2) we have to find representatives of all
double cosets Γ∞\Γ̃/Γ∞ with c̃ = 4 and c̃ = 8, respectively. Necessary

conditions for this on the matrix γ̃ =

(
a b
c d

)
∈ Γ̃ are

for l1(c̃ = 4) : a is mod 4, d is mod 4

for l2(c̃ = 8) : a is mod 8, d is mod 8.

This corresponds to the following conditions on γ =

(
a b
c d

)
∈ Γ,

for l1 : c = 2, a mod 4, d mod 4

for l2 : c = 4, a mod 8, d mod 8.

A simple calculation shows that in case 1 a full set of representatives is
given by

γ1 =

(
1 0
2 1

)
, γ2 =

(
3 4
2 3

)
,

and we obtain also

γ1 = B−1, A−1γ2A
−1 = B.

Then

χ(γ1) = e−2πiα, χ(γ2) = e2πiα

and the coefficient l1 is given by

l1 = χ̄(γ1) + χ̄(γ2) = 2 cos 2πα.

In case 2 we have 4 representatives

γ1 =

(
1 0
4 1

)
, γ2 =

(
3 2
4 3

)
, γ3 =

(
5 6
4 5

)
, γ4 =

(
7 12
4 7

)
.

Then it is not difficult to obtain the relations

γ1 = B−2, Bγ2B = A−1, A−1γ3A
−1 = γ−1

2 , A−1γ4A
−1 = B2.
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From this follows

χ(γ1) = e−4πiα, χ(γ2) = e−4πiα, χ)γ3) = e4πiα, χ(γ4) = e4πiα.

Thus the second coefficient l2 is given by

l2 = 4 cos 4πα.

We have proved the following lemma.

Lemma 1 For the group Γ(2) with character χ = χa given by (3) we have
the following formulae for the coefficients l1 = l1(Γ, χ) and l2 = l2(Γ, χ),

l1 = 2 cos 2πα, l2 = 4 cos 4πα.

b) The group Γ′.
Let Γ′ be the commutator subgroup of the modular group ΓZ = P −

SL(2,Z). Like Γ(2) it is a normal subgroup of ΓZ of index 6. Γ′ is a group
of genus 1, generated by two hyperbolic generators X, Y and one parabolic
S̃, with one relation

[X, Y ] S̃ = 1.

X =

(
2 −1
−1 1

)
, Y =

(
2 1
1 1

)
, S̃ = A3 =

(
1 6
0 1

)
.

The two parameter family of character χ = χα,β is defined on the gener-
ators X, Y, S̃ as follows

χα,β(X) = e2πiα, χα,β(Y ) = e2πiβ , χα,β(S̃) = 1,

α, β ∈ [0, 1] . This family of characters is always non-singular in the cusp,
which corresponds to generator S̃.

Let us find now the first two terms of the series (2). If

γ =

(
a b
c d

)
∈ Γ = Γ′, then γ̃ =

(
a b/6
6c d

)
∈ Γ̃

becomes the width of the only cusp for the canonical fundamental domain
for Γ′ is 6. The minimal positive value of c̃ = bc when γ̃ ∈ Γ̃ is c1 = 6 and
the next is c2 = 12. Again, in order to calculate the coefficients l1, l2 in the
series (2) we have to find a full set of representatives of all double co-sets
Γ∞\Γ̃/Γ∞ with given c̃ = 6 and c̃ = 12. Necessary conditions for that are
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1) a and d are mod 6. 2) a and d are mod 12.

For γ ∈ Γ
(
γ̃ ∈ Γ∞\Γ̃/Γ∞

)
we obtain

1) c = 1, a (mod 6), d (mod 6). 2) c = 2, a (mod 12), d (mod 12).
There is an important classical characterization of the elements of Γ = Γ′

(see [R],

γ =

(
a b
c d

)
∈ Γ′ ⊂ ΓZ⇔

{
ad− bc = 1
ab + 3bc + cd ≡ 0 (mod 6)

(4)

Case 1. We have c = 1, b = ad − 1, and the second condition of (4)
becomes a(ad− 1) + 3(ad− 1) + d ≡ 0 (mod 6) where a = 0, 1, 2, 3, 4, 5 and
d = 0, 1, 2, 3, 4, 5. We obtain only 6 matrices which satisfy these conditions

γ1 =

(
0 −1
1 3

)
, γ2 =

(
1 1
1 2

)
, γ3 =

(
2 1
1 1

)
γ4 =

(
3 −1
1 0

)
, γ5 =

(
4 19
1 5

)
, γ6 =

(
5 19
1 4

)
 (5)

Let us calculate now the values of the character χ = χα,β on these matri-
ces. We obtain

γ1 = (XY )−1, γ2 = X−1, γ3 = Y , γ4 = Y X,

γ5S̃
−1X−1 = S̃, X−1S̃−1γ6 = γ1.

Then,

χ(γ1) = e−2πi(α+β), χ(γ2) = e−2πiα, χ(γ3) = e2πiβ

χ(γ4) = e2πi(α+β), χ(γ5) = e2πiα, χ(γ6) = e−2πiβ

}
(6)

We obtain the value of l1 as the sum of all these values of characters,

l1 = 2(cos 2πα + cos 2πβ + cos 2π(α + β)) (7)

Case 2. We have c = 2, a (mod 12), d(mod 12), ad−2b = 1, ab+6b+2d ≡
0 (mod 6), or ab + 2d ≡ 0 (mod 6). Then we can see from ad− 2b = 1 that
both a and d are odd. So we reduce the numbers a, d to a = 1, 2, 3, 5, 7, 9, 11
d = 1, 3, 5, 7, 9, 11. Finally we obtain only 6 matrices

γ1 =

(
1 2
2 5

)
γ2 =

(
3 4
2 3

)
γ3

(
5 2
2 1

)
γ4 =

(
7 38
2 22

)
γ5 =

(
9 40
2 9

)
γ6

(
11 38
2 7

)
 (8)
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We now calculate the values of χ = χα,β on the matrices (8). It is not difficult
to see the following relations:

γ1 = X−1Y −1X−1, γ2 = Y X−1, γ3 = Y XY

γ4 = S̃XY XS̃, X−1Y −1γ5XY = γ−1
2 , Y X−1Y −1γ6XY 2 = X−1

From this we obtain

χ(γ1) = e−2πi(2α+β), χ(γ2) = e2πi(β−α), χ(γ3) = e2πi(α+2β),
χ(γ4) = e2πi(2α+β), χ(γ5) = e2πi(α−β), χ(γ6) = e−2πi(α+2β)

}
(9)

To obtain the coefficient l2 we sum all these values of characters,

l2 = 2 [cos 2π(α− β) + cos 2π(α + 2β) + cos 2π(2α + β)] .

We have proved

Lemma 2 For the group Γ = Γ′ with character χ = χα,β given by (9) we have
the following explicit formulae for the coefficients l1 = l1(Γ, χ), l2 = l2(Γ, χ),

l1 = 2 (cos 2πα + cos 2πβ + cos 2π(2α + β))

l2 = 2 [cos 2π(α− β) + cos 2π(α + 2β) + cos 2π(2α + β)]

For the problem of stability of resonances it is important to analyze the set
of points (α, β), where l1(α, β) = 0. This analysis is simplified by introducing
a new set of generators,

Z = XY =

(
3 1
−1 0

)
, W = X−1 =

(
1 1
1 2

)
,

S̃ = XY X−1Y −1 = ZWZ−1W−1 =

(
1 6
0 1

)
.

Set a = α+β
2

, b = α−β
2

, α = ab, β = a− b.
Then

χa,b(Z) = e4πia, χa,b(W ) = e−2πi(a+b), χa,b(S̃) = 1.

The functions l1(α, β) and l2(α, β) of Lemma 2 become

l1(a, b) = 2 [cos 2π(a + b) + cos 2π(a− b) + cos 2π · 2a] = 2
[
2 cos a cos b + 2 cos2 a− 1

]
10



l2(a, b) = 2 [cos 2π(3a + b) + cos 2π(3a− b) + cos 2π · 2b] = 2
[
2 cos 3a cos b + 2 cos2 b− 1

]
.

Let u = cos 2πa, v = cos 2πb. Then

l1(a, b) = 2(2uv + 2u2 − 1), l2(a, b) = 2[cos 3a · v + 2v2 − 1].

We have l1(a, b) = 0 for v(u) =
1
2
−u2

u
, u 6= 0.

In order to obtain v ∈ [−1, 1] u must satisfy −1 ≤
1
2
−u2

u
≤ 1. Since v(u)

is odd, it suffices to consider 0 ≤ u ≤ 1. The function v(u) is decreasing and

maps
[√

3−1
2

, 1
]

onto
[
−1

2
, 1
]
.

It follows that for u ∈
(
−
√

3−1
2

,
√

3−1
2

)
and v ∈ [−1, 1] , l1(a, b) 6= 0. For

u ∈
[
−1,−

√
3−1
2

]
∪
[√

3−1
2

, 1
]

and v =
1
2
−u2

u
, l1(a, b) = 0.

The points on this curve C where l2(a, b) = 0 can be determined from
the expression l2(a, b) = wv + v2 + −1

2
, w = cos 2π3a. We have l1(a, b) =

l2(a, b) = 0 if w =
1
2
−v2

v
, v =

1
2
−u2

u
. Expressing w algebraically by u we

obtain (at most) a finite number of points (a, b) on the above curve where
also l2(a, b) = 0.

c) The group Γ2′. This is a more difficult example of a subgroup of
the modular group ΓZ. By definition, Γ2′ is the commutator subgroup of Γ2,
which in turn is the subgroup of ΓZ generated by all squares γ2 ∈ ΓZ. The
canonical fundamental domain of Γ2′ has genus 1, three cusps and no elliptic
singularities. This group can also be written as the intersection of the two
groups considered above, Γ2′ ∈ Γ(2) ∩ Γ′. Because of the importance of this
fact we remind of the proof of this.

Lemma 3 Γ2′ = Γ(2) ∩ Γ′.

Proof. It is known that Γ2′ is a normal subgroup in Γ′ of index 3 and
also Γ2′ is normal in Γ(2) of index 3. It is easy to see that the quotients
Γ′/Γ2′ and Γ(2)/Γ2′ can be given by the matrices

Γ′/Γ2′ =

{(
1 0
0 1

)
,

(
1 1
1 2

)
= γ1,

(
2 1
1 1

)
= γ2

}
11



Γ(2)/Γ2′ =

{(
1 0
0 1

)
,

(
1 2
0 1

)
= δ1,

(
1 4
0 1

)
= δ2

}
.

Then we have Γ(2) = Γ2′ ∪Γ2′γ1 ∪Γ2′γ2, Γ′ = Γ2′ ∪Γ2′δ1 ∪Γ2′δ2. In order to
prove Lemma 3 it is enough to prove that all intersections

Γ2′δiγ
−1
j ∩ Γ2′ i = 1, 2 j = 1, 2

are empty sets. We obtain

δ1γ
−1
1 =

(
1 2
0 1

)(
2 −1
−1 1

)
=

(
0 1
−1 1

)
/∈ Γ2′

δ1γ
−1
2 =

(
1 2
0 1

)(
1 −1
−1 2

)
=

(
−1 3
−1 2

)
/∈ Γ2′

δ2γ
−1
1 =

(
1 4
0 1

)(
2 −1
−1 1

)
=

(
−2 3
−1 1

)
/∈ Γ2′

δ2γ
−1
2 =

(
1 4
0 1

)(
1 −1
−1 2

)
=

(
−3 7
−1 2

)
/∈ Γ2′

because all of these products are elliptic elements if third order, and Γ2′ is
free from elliptic elements. We have proved lemma 3. �

The group Γ2′ is generated by 4 hyperbolic (non-canonical) generators
(see [R]),(

1 −2
−2 5

)
,

(
3 −2
−4 3

)
,

(
3 −4
−2 3

)
,

(
5 −2
−2 1

)
.

The arithmetical description of matrices γ from Γ2′ is the following: γ ∈
Γ2′ ⇔ Γ ∈ ΓZ and at least one of the following relations is valid,

γ ≡
(

1 −2
−2 5

)
,

(
5 −2
−2 1

)
,

(
3 −2
−4 3

)
,

(
1 0
0 1

)
mod 6 (10)

For our purposes it is better to take as generators the inverse matrices

H1 =

(
1 2
2 5

)
, H2 =

(
3 4
2 3

)
, H3 =

(
5 2
2 1

)
, H4 =

(
3 2
4 3

)
. (11)
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We can find now the canonical system of generators of Γ2′ , related to the
generators chosen for Γ(2) and Γ′. It is easy to see that A3, B3 and S3 belong
to Γ2′. Then we find the following relation.

Let

S1 = (H3H1H
−1
2 )S−3(H3H1H

−1
2 )−1

S2 = H3B
−3H−1

3

S3 = H1A
−3H−1

1

Then we have one relation between the 2 hyperbolic and 3 parabolic
generators,

[H1, H3] S1S2S3 = 1. (12)

The following formulas are useful,

A3 = H3H
−1
4 H, B3 = H−1

3 H2H
−1
1 , S3 = H4H

−1
2 .

The canonical generators A3, B3, S3, H1, H3 are important if we like to define
a singular representation of Γ2′. We define the family of characters χ, non-
singular at the cusp which corresponds to A3. By definition, on the generators
Hj

χαj(Hj) = e2παj , αj ∈ [0, 1] , j = 1, 2, 3, 4. (13)

Then χ is extended to the whole group by the multiplicative property.
The condition of non-singularity of A3 is χ(A3) = 1. We have

χ(A3) = χ(H3H
−1
4 H1) = e2πi(α1−α4+α1) = 1⇔ α4 = α1 + α3.

This defines a three parameter family of characters χα1,α2,β3 on Γ2′which
keeps the cusp corresponding to A3 open.

Also we have

χ(B3) = e2πi(α2−α1−α3).

Thus, on the two-dimensional surface in parameter space given by α2 =
α1 + α3 all three cusps remain open.

Let us calculate now the two first terms of the series (2) for Γ2′ and
the three parameter family of characters χα1,α2,α3 defined by (13) and α4 =
α1 + α3. If

γ =

(
a b
c d

)
∈ Γ = Γ2′ , then γ̃ =

(
a b/6
6c d

)
∈ Γ̃ (see Section 2).

13



The minimal positive value of c̃ = 6c for γ̃ ∈ Γ̃ is c̃ = c1 = 12, and the
next one is c2 = 24 by the definitions of the groups Γ(2) and Γ. We shall
now find representatives of all double cosets Γ∞\Γ̃/Γ∞ with given c̃ = 12
and c̃ = 24. Necessary conditions on the matrix elements are

1) c̃ = 12, a is mod 12, d is mod 12
2) c̃ = 24, a is mod 24, d is mod 24.
For γ ∈ Γ (γ̃ ∈ Γ∞\Γ̃/Γ∞) we obtain
1) c = 2, a (mod 12), d (mod 12)
2) c = 4, a (mod 24), d (mod 24).
Finally we have to find integer matrices(

a b
c d

)
with c, a, d like in 1) and 2) and ad− bc = 1,

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2) and ab + 3bc + cd ≡ 0 (mod 6).

where we have used Lemma 3. It is not difficult to see that in case 1) the
desired set of matrices coincides with set (8) because all of these clearly
belong also to the group Γ(2). In case 2) the calculation is longer, because
we have to move the choice from 576 integer matrices. The set of all matrices
which satisfy our conditions are

γ1 =

(
17 4
4 1

)
γ2 =

(
3 2
4 3

)
γ3 =

(
13 16
4 5

)
γ4 =

(
23 40
4 7

)

γ5 =

(
9 20
4 5

)
γ6 =

(
19 52
4 11

)
γ7 =

(
5 16
4 13

)
γ8 =

(
15 56
4 15

)
(14)

γ9 =

(
1 4
4 17

)
γ10 =

(
11 52
4 19

)
γ11 =

(
21 110
4 21

)
γ12 =

(
7 40
4 23

)
.

We now find the value of the characters χ = χα1,α2,α3, α4 = α1 + α3, on
the matrices (8) which correspond to case 1). We have

γ1 = H1, γ2 = H2, γ3 = H3.

Then it is not difficult to see that

H−1
3 γ4A

−3 = H−1
4 , H−1

3 γ5A
−3H2A

−3 = H−1
3 , A−3γ6A

−3 = H−1
3 .
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We can calculate now the values of the characters χ,

χ(γ1) = e2πiα1 χ(γ2) = e2πiα2 χ(γ3) = e2πiα3

χ(γ4) = e−2πi(α1+α3)+2πiα3 = e−2πiα1

χ(γ5) = e−2πiα3+2πiα3−2πiα2 = e−2πiα2

χ(γ6) = e−2πiα3 .

From this follows that

l1(Γ
2′, χ) = l = 2 [cos 2πα1 + cos 2πα2 + cos 2πα3] .

For case 2) we have to see the values of χ on the 12 matrices from (14). We
have (α4 = α3 + α1)

H4H
−1
3 γ1H

−1
3 H2 = H1 χ(γ1) = e2πi(α3−α2)

γ2 = H4 χ(γ2) = e2πi(α1+α3)

H−1
3 γ3H

−1
2 = H−1

4 χ(γ3) = e2πi(α2−α1)

γ4H
−1
2 H3 = A3 χ(γ4) = e2πi(α2−α3)

H−1
3 γ5 = H1 χ(γ5) = e2πi(α1+α3)

γ6H
−1
1 H2 = A3 χ(γ6) = e2πi(α1−α2)

H4H
−1
2 γ7 = H1 χ(γ7) = e2πi(α2−α3)

H2
4H−1

3 γ8 = H1 χ(γ8) = e−2πi(α1+α3)

H2H
−1
1 γ9 = A3 χ(γ9) = e2πi(α1−α2)

H−1
3 γ10A

−3 = H−1
2 χ(γ10) = e2πi(α3−α2)

A−3γ11A
−3 = H−1

4 χ(γ11) = e−2πi(α1+α3)

H−1
3 γ12A

−3 = B3 χ(γ12) = e2πi(α2−α1)

(15)

From (15) follows

l2 = 4 [cos 2π(α1 + α3) + cos 2π(α1 − α2) + cos 2π(α2 − α3)] .

We have proved the following lemma.

Lemma 4 For the group Γ2′ with character χ = χα1,α2,α3 given by (13) and
α4 = α1 + α3 we have the following explicit formulae for the coefficients
l1 = l1(Γ, x), l2 = l2(Γ, x),

l1 = 2 [cos 2πα1 + cos 2πα2 + cos 2πα3]

l2 = 4 [cos 2π(α1 + α3) + cos 2π(α1 − α2) + cos 2π(α2 − α3)] .
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For the analysis of stability it is important to consider the set of points
(α1, α2, α3) such that l1(α1, α2, α3) = 0, a surface in parameter space.

The set of points (α1, α2, α3), such that l2(α1, α2, α3) = 0 is a surface
intersecting the set where l1(α1, α2, α3) = 0 in a curve. To see this we note
that

l1

(
1

6
,
1

3
,
1

4

)
= l1

(
1

2
, 0,

1

4

)
= l1

(
1

8
,
3

8
,
1

4

)
= 0

while

l2

(
1

6
,
1

3
,
1

4

)
=

√
3

2
, l2

(
1

2
, 0,

1

4

)
= −1, l2

(
1

8
,
3

8
,
1

4

)
= 0.

From the point of view of stability it is of interest to introduce as char-
acters on Γ2′ the products of the characters defined on groups Γ(2) and Γ′,
which are both well defined on the intersection Γ(2) ∩ Γ′ = Γ2′ .

We now introduce new parameters and new notation, setting χα = χ1, χα,β =
χ2. We have for Γ(2) that χ1 = χ1(a) is defined by its values on generators,

χ1(A) = 1, χ1(B) = e2πia, χ1(S) = e−2πia, a ∈ [0, 1]

and correspondingly for Γ′, χ2 = χ2(a, b) is defined by

χ2(A
3) = 1, χ2(X) = e2πib, χ2(Y ) = e2πic, b, c ∈ [0, 1] .

Then we define χ3 = χ3(a, b, c) on Γ2′ by

χ3(γ) = χ1(γ)χ2(γ), γ ∈ Γ2′, a, b, c ∈ [0, 1] .

We have five generators for Γ2′ : H1, H3, A
3, B3, S3 with one relation.

We obtain H1 = B−1A, H3 = AB−1. Thus

χ1(H1) = e−2πia, χ1(H3) = e−2πia, χ1(A
3) = 1

χ1(B
3) = e6πia, χ1(S

3) = e−6πia

}
. (16)

Also, because all three cusps for Γ2′ are equivalent in the overgroup Γ′, we
have

χ2(A
3) = χ2(B

3) = χ2(S
3) = 1. (17)

Moreover, H1 = X−1Y −1X−1, H3 = Y XY , and we obtain

χ2(H2) = e−2πi(2b+c), χ2(H3) = e−2πi(b+2c). (18)
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Using (16), (17), (18) we obtain

χ3(H1) = e−2πi(a+2b+c) χ3(H3) = e−2πi(a−b−2c)

χ3(A
3) = 1 χ3(B

3) = e6πia χ3(S
3) = e−6πia

}
. (19)

Using these new parameters we collect the results of Lemma 1, Lemma 2,
Lemma 4, applying to characters χ1, χ3, χ3, in the following theorem.

Theorem 1 We have the following explicit expressions of the two first terms
in the series (2) of the scattering function ϕ(s;Γ; χ) for the pairs (Γ(2), χ1), (Γ′, χi), (Γ2′ , χ3),

1) ∑
c>0

S(0, 0; c; Γ(2); χ1)

c2s
=

2 cos 2πa

42s
+

4 cos 4πa

82s
+ ...

2) ∑
c>0

S(0, 0; c; Γ′; χ2)

c2s
=

2(cos 2πb + cos 2πc + cos 2π(b + c))

62s

+
2(cos 2π(b− c) + cos 2π(b + 2c) + 2 cos 2π(2b + c))

122s
+ ...

3)∑
c>0

S(0, 0; c; Γ′; χ3)

c2s
=

2(cos 2π(a + 2b + c) + cos 2π(a− b + c) + cos 2π(a− b− 2c))

122s

+
4(cos 2π(2a + b− c) + cos 2π(2a + b + 2c) + 2π(2a− 2b− c))

24s
+ ... .

4 Stability and instability of resonances

We shall now apply Theorem 1 of Section 3 to discuss stable and unstable
resonances for the groups Γ(2), Γ′ and Γ2′ . We write the result in the common
form of (1), (2) of Section 2, valid for Res >1,

ϕ(s, χ) =
√

π
Γ
(
s− 1

2

)
Γ(s)

(
l1(χ)

c2s
1

+
l2(χ)

c2s
2

+
l3(x)

c2s
3

+ ...

)
17



where χ = χ(α) = χ(a) for Γ(2), χ = χ(α1, α2) = χ(b, c) for Γ′, χ =
χ(α1, α2, α3) = χ(a, b, c) for Γ2′ , i = 1, 2, and l1, l2 are given in Lemmas 1, 2
and 4 expressed by the parameters α, β and αi and in Theorem 1 by a, b, c.

In order to investigate the behaviour of resonances as the parameters
approach the set of values where l1 = 0, but l2 6= 0, we study the zeros of
ϕ(s, χ) using the functional equation. For l1 6= 0, l2 6= 0 we write ϕ(s, χ) for
Re >1 in the form

ϕ(s, χ) =
√

π
Γ
(
s− 1

2

)
Γ(s)

l1
c2s

1

{
1 +

1

22s

l2
l1

[
1 +

1(
3
2

)2s +
1

22s

l4
l2

+ ...

]}
. (20)

The zeros of ϕ(s, χ) coincide with the zeros of the function f(s, χ) given
by the series in brackets. To study the zeros of this series we consider the
first two terms

g(s, χ) = 1 +
1

22s

l2(χ)

l1(χ)
.

The zeros of g(s, χ) are given, setting s = σ + iτ , by s = s(χ, k) =
σ(χ) + iτ(k), where

σ(χ) = 1
2 log 2

log
∣∣∣ l2(χ)
l1(χ)

∣∣∣
τ(k) =

{
1

2 log 2
(π + k · 2π) when l2(χ)

l1(χ)
< 0

1
2 log 2

· k2π when l2(χ)
l1(χ)

< 0

(21)

Let C(s(χ, k), ρ) be the circle with center s(χ, k) and radius ρ, 0 < ρ <
π

2 log 2
. We shall now prove that for σ large enough ϕ(x, s) has precisely one

zero inside C(s(χ, k)) for all k and no other zeros.
By definition of s(χ, k),

1

22s(χ,k)

l2(χ)

l1(χ)
= −1

so for s = s(χ, k) + z,

1

22s

l2(χ)

l1(χ)
= − 1

22z
.

Introducing this in (20), we get

f(s, χ) = 1− 1

22z

[
1 +

1(
3
2

)2s

l3(χ)

l2(χ)
+

1

22s

l4(χ)

l2(χ)
+ ...

]
.
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We estimate the remainder as follows∣∣∣∣∣ 1(
3
2

)2s

l3(χ)

l2(χ)
+

1

22s

l4(χ)

l2(χ)
+ ...

∣∣∣∣∣ 5 K(
3
2

)2σ

where K = 2ϕ(k)
|l2(χ)| and ϕ is the Euler function, k equals 4 for Γ(2), 6 for Γ′,

12 for Γ2′ .
Let ρ be given with 0 < ρ 5 π

2 log 2
and let

δ0 = min
|z|=ρ

∣∣22z − 1
∣∣ = min

{∣∣22z − 1
∣∣ ∣∣∣∣|z| ≥ ρ, |Im z| 5 π

2 log 2

}
.

Then for δ < δ0∣∣∣∣ δ

22z

∣∣∣∣ < ∣∣∣∣− 1

22z

∣∣∣∣ 1 for |z| ≥ ρ, |Im z| 5 π

2 log 2
.

Choose σ0 such that

K(
3
2

)2σ0
< δ0.

Then for σ > σ0 and |z| ≥ ρ,

|Im z| ≤ π

2 log 2

∣∣∣∣∣ 1

22z

[
1(

3
2

)2s

l3(χ)

l2(χ)
+

1

22s

l4(χ)

l2(χ)
+ ...

]∣∣∣∣∣ <
∣∣∣∣1− 1

22z

∣∣∣∣ .
It follows that for σ > σ0 = σ0(ρ), ϕ(χ, s) has no zeros on or outside the

circles C(s(χ, k), ρ).
Also, by Rouché’s Theorem, ϕ(χ, s) has precisely one simple zero inside

C(s(χ, k), ρ) for σ > σ0.
To obtain a good estimate of σ0 excluding other zeros than the unstable

ones, let ρ = π
2 log 2

.
Then

δ0 = min
|z|=ρ

∣∣22z − 1
∣∣ ≥ e−π

√
2,

and

σ0 =
π
√

2 + log K

2 log 3
2
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so for σ > σ0 there are no zeros on or outside the circles C
(
s(χ, k), π

2 log 2

)
and one inside each such circle.

If we replace circles by squares, we can improve this to σ0 = π+logK

2 log 3
2

.

Using the functional equation for ϕ(χ, s), we obtain the following Theo-
rem about resonances.

Theorem 2 Let χ(α) = {a(α)} for Γ(2), χ(α) = {b(α), c(α)} for Γ′, χ(α) =
{a(α), b(α), c(α)} for Γ2′ , α ∈ I, be a one-parameter family of characters on
the group Γ(2), Γ′ or Γ2′. Assume that χ(α0) ∈ F = {χ |l1(P ) = 0, l2(P ) 6= 0},
where P = a for Γ(2), P = (a, b) for Γ′, P = (a, b, c) for Γ2′ .

Then for every ρ, 0 < ρ ≤ π
2 log 2

there exists σ0 = σ0(ρ) such that for

σ > σ0 each circle C(p(χ, k), ρ) contains precisely one simple pole (resonance)
of ϕ(χ, s) and there are no resonances outside these circles. Here p(χ, k) =
1−σ(χ)− iτ(k), where σ(χ) and τ(k) are defined by (21). The condition on
σ is satisfied if |l1(P ) < 2−2σ0 |l2(P ) |, which holds for |α− α0| < η where η
is to be determined in each case.

Remark 1 In the case of Γ(2) there is only one circle of characters which
close two cusps and keep one open. This has an unstable point at 1

4
. This

value of α corresponds to a congruence group and is therefore very important.
In the case of Γ′ a circle of characters starting from Γ′ with trivial char-

acter at α = 0 has to cross the curve l1(α, β) = 0, and it is important to
identify the points in the space (torus) of parameters (α, β), which corre-
sponds to congruence subgroups of Γ′. We expect that points of intersection
of a character circle with the curve l1(α, β) = 0 will be congruence points.
Other interesting character circles are the maximally stable ones. Such a
circle is obtained by setting α + β = 1

2
. Then

l1 ≡ 1, χ(X) = e2πiα, χ(Y ) = e−2πiα, χ(S̃) = 1.

In the case of Γ2′ likewise a character circle starting from Γ2′ with trivial
character and closing 2 cusps will have to intersect the surface l1(α1, α2, α3) =
0, and again we expect the point of intersection to the particularly important
and connected with a congruence subgroup. Because the surface l1(α1, α2, α3) =
0 separates the parameter space in two disjoint parts, we can not expect to
find stable circles. If we set for example

a− b + c = (a + 2b + c) + (a− b− 2c) =
1

2

we find a = 1
3
, c = b + 1

6
, l1(a, b, c) ≡ −1, χ3(A

3) = χ3(B
3) = χ3(S

3) = 1, so
we have maximal stability, but all cusps remain open. This is close to Γ′.
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Setting

a− b + c = (a + 2b + c) + (a− b− 2c) =
1

4

we get a = 1
6
, c = b + 1

12
, χ3(B

3) = χ3(S
3) = −1, but l1(α, b, c) = 0 for

b = 1
24

, c = 1
8
.

This is like the case of Γ(2).
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