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Abstract

Let X = (X(¢) : t > 0) be a Lévy process and X, the compensated sum of
jumps not exceeding € in absolute value, 0%(¢) = Var(X,(1)). In simulation,
X — X, is easily generated as the sum of a Brownian term and a compound
Poisson one, and we investigate here when X./o(e) can be approximated by
another Brownian term. A necessary and sufficient condition in terms of o(e)
is given, and it is shown that when the condition fails, the behaviour of X, /o (e)
can be quite intricate. This condition is also related to the decay of terms in
series expansions. We further discuss error rates in terms of Berry—Esseen
bounds and Edgeworth approximations.
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1 Introduction

Let X = {X(¢):t > 0} be a Lévy process with characteristic function of the form
b*u? .
EexpiuX(t) = exp {t [Z’au - +/ (" —1 —quzl(|z] <1)) Q(dm)] } (1.1)

where a € R, b*> > 0, and Q is a Lévy measure. With standard terminology, we refer
to the case [, <; [7|Q(dz) < oo as the finite variation case, and to [, < |z[Q(dx) = oo
as the compensated case. The term corresponding to zI(|z| < 1) in (1.1) represents
a centering which is necessary for convergence in the compensated case and may
be deleted in the bounded variation case (say X is a subordinator). X(t) is the
independent sum of a drift term at, a Brownian component bW (t), and a compensated
pure jump part with Lévy measure ), having the interpretation that a jump of size x
occurs at rate Q(dzx). See e.g. Bertoin [3] or Sato [15] for relevant background on Lévy
processes, and Samorodnitsky & Taqqu [14] for the special case of stable processes.

For simulation, the generation of the Brownian part is a standard topic and will not
be discussed here. For the jump part, the most straightforward case is the compound
Poisson case ||Q|| < co where jumps have distribution @/||Q|| and can be simulated
at the epochs of a Poisson process with rate ||Q]|. When ||Q|| = oo, one could attempt
to generate a discrete skeleton. This is straightforward if the marginal distribution of
X (1) is easily simulated for any ¢ as for the stable case (Chambers, Mallows & Stuck
[6]), the Gamma case, or the inverse Gaussian case. However, most often marginal
distributions are not easily simulated and in practice, one often as an approximation
simulates a Lévy process obtained by neglecting jumps with absolute size smaller
than e. In the finite variation case, this may be implemented by simply removing
such jumps, leading to

X§(1) = X(1) — S AX(S)I(AX(s))] < o). (1.2)

s<t
In the compensated case, the idea leads instead to
Xi(t) = pt+0W(t)+ N(t) (1.3)

where

He = a—/6<x<1:vQ(d:c) (1.4)

and
Net) = Y AX()I(|AX(s))] > €)

s<t

is a compound Poisson process with jump measure Q)|{z/><} and independent of the
standard Brownian motion W. In the finite variation case, the definition (1.3) means

1



that X7 is obtained from X by replacing small jumps by their expected value rather
than just only removing them. That is,

Xi(t) = Xi(t) + BIX(0) — Xg(0)). (1.5)

A further improvement is to incorporate also the contribution from the variation of
small jumps, which leads to

X5(t) = pet + (0% + 02()V2W(t) + N<(¢), (1.6)

where
o2(¢) = /WE 22 Q(dw). (1.7)

Notice a Brownian term appears in X5 even when the original process X does not
have one (that is, b = 0). This implicitly asssumes, of course, that the error

Xe(t) = X(t) — Xi(1) (1.8)

is approximately normal, as has been suggested on intuitive grounds in some par-
ticular cases (Bondesson [5], Rydberg [13]). The purpose of the present paper is to
provide a rigorous discussion of when the functional CLT underlying (1.6) is indeed
valid and to study some further related problems including convergence rates and
possible non-Brownian limits of X./c(e).

The discussed problem is closely related to simulation of X based on series repre-
sentations of the form

o0
X(t) = Y [HL,, Vo) I(U, <t) — cut] (1.9)
n=1
where the U,,V, are i.i.d. uniform (0,1) r.v.’s, the I',, are the epochs of an indepen-
dent Poisson process, H a suitable function, and the ¢, centering constants. One
then needs to truncate either to a finite number of terms of the series or to a finite
time span of the Poisson process, and since H is typically decreasing in the first argu-
ment, this also means removing small jumps. When the series converges slowly, the
normal approximation of the small jump part is advisable. See Rosinski [12] for an
overview of such series representations and Bondesson [5] for aspects of the simulation
implementation.

In Section 2, we provide a necessary and sufficient condition on the function o(e)
for o(e)™' X, to converge in distribution to W, and we give a sufficient condition of
a simpler form which is also necessary in most well-behaved cases. It will be seen
that indeed a Brownian limit holds in substantial generality but also that there are
important exceptions; this point is further illustrated in Section 4 where we show that
the limiting behaviour of o(€)™' X, can be quite intricate. In Section 2, the condition
on o(e) is also put in relation to the decay of the terms in the series (1.9). Error rates
in the form of Berry Esseen bounds and Edgeworth approximations are discussed in
Section 3, which also contains some further discussion of simulation aspects.



2 The range of the normal approximation for the
small jumps of a Lévy process

Recall the approximation error X, given by (1.8). X, is a Lévy process with charac-
teristic function

E expiuX.(t) = exp {t/
|

z|<e

(e — 1 — juzx) Q(dx)} . (2.1)

Consequently, IEX, = 0 and Var(X(1)) = o?(e) is given by (1.7). The weak conver-
gence of o(e)"1 X, to a standard Brownian motion W will be understood in D0, 1]

equipped with the uniform metric (see [11]). Specifically, o(e)™1X, 5 W means
that for every function f : DJ0,1] — IR, that is continuous with respect to the uni-
form metric, bounded, and measurable with respect to the projection o-field, one has
Ef(o(e)™1X.) — Ef(W) as ¢ — oo.

Theorem 2.1 o(e)™' X, BW as e — 0 if and only if for each r > 0
o(ko(e) Ne) ~ o(e), as € — 0. (2.2)

Proof Put Y.(t) := o(e) X (t). We have

Bexpiu(t) = exp {¢ iub, + [ (" = 1= dual(fa] < 1)Q.(dw)] |

where

Q.(B) := Q(o(e)BN(—¢,€)), BeB(R), (2.3)

b = —0(6)_1/ 2 Q(dz).
o(e)Ne<|z|<e

Since Y, have stationary independent increments, it is enough to show the convergence
at the endpoints, that is Y,(1) = W (1) (this is an easy application of [11] Th. V.19).
Furthermore, Y,(1) 2 W (1) if and only if Jizj<n @ Qec(dx) — 1 for each k > 0,
Qc(|z| > 1) — 0, and b — 0 as € — oo (see, e.g., [9] Th. 13.14). We have

and

g 5 B o%(ko(e) Ne)
~/|x|<ﬁl. Qe(dm) N 0'2(6) ‘

Hence (2.2) is necessary for the convergence in distribution. To complete the proof
of its sufficiency observe that

a?(e) — a*(e No(e))
€2 N o2(e)

— 0

Qe({lzl > 1}) = Q({e A a(e) < z| < €}) <



and that

— 0.

- 2 0%(e) — a*(e A a(e))
|b€| = 0(6) L(e)/\e<x<€x Q(dx) = €2 A 02(6)
O
The next proposition gives a more intuitive condition for the validity of the normal
approximation. It says that the normal approximation holds when the dispersion of
the small jump part of a Lévy process converges slower to zero than the level of
truncation. Equivalently, the range ¢/o(¢) of jumps of o(¢) ' X, approaches 0.

Proposition 2.2 Condition (2.2) is implied by

lim o(e) = 00. (2.4)
e—0 €
Moreover, if Q does not have atoms in some neighborhood of the origin, then (2.2)
and (2.4) are equivalent.

Proof  The fact that (2.4) implies (2.2) is obvious. We will prove the converse under
the above assumption on Q. Assume (2.2) and that @ does not have atoms in some
interval [—eg, €g], €g > 0. Then ([0, ) is an interval containing 0. Let u, — 0 be
a sequence of positive numbers and let k£ > 0. It follows that for sufficiently large n,
there exists ¢, € (0, o] such that x'u, = o(e,) and ¢, — 0 as n — oco. Consequently,

o) _ olole)) | ool
u,  ko(e,) = o(€n)

Y

which gives (2.4). O

The obvious question is whether (2.2) and (2.4) are equivalent in general. The
answer is negative as it shows the following example.

Example 2.3 Let a, \, 0 be such that a; = 1 and ‘IZ—:l — 0 asn — oco. Let @ be a
symmetric Lévy measure such that

O'(E) = ay for ee (an—i-la an]7

and o(e) = 1 for ¢ > 1. Condition (2.4) fails because lim inf._o 29 = 1. However, for

€

each k > 0 there exists ng such that xa, > a,1 for n > ng. Hence
o(ko(e) Ne) = o(e)

for € € (0,a,,]. Thus (2.2) holds.



We will now give some examples of Lévy processes that admit or do not admit
the approximation described above. They will be described by the Lévy measure )
of X(1).

Example 2.4 Compound Poisson processes. Since Q(IR) < oo, o(e) = o(e) and so
(2.2) fails.

Example 2.5 Stable processes of index a € (0,2). In this case Q(dz) = alz|™'7*I(z <
0)dx + bz~ I (z > 0)dz, a,b>0,a+b>0and o(e) = ((a+b)/(2— a))/2/2,
By Proposition 2.2, the normal approximation holds. The normal approximation
is valid also in the more general situation of Q(dx) = |z|7'7®L(z)dz, where
L is slowly varying at 0. Indeed, applying Karamata’s theorem one has o(e) ~
(L(—€) + L(€))/(2 — a))/2e=2/2. Since ¢ 7 (L(—¢) + L(¢€)) — oo for every v > 0, we
get (2.4) (see also Proposition 2.1 in Asmussen [1]).

Example 2.6 Gamma processes. We have Q(dz) = ax~'e~*/*dz, a,b > 0, z > 0,
and o(e) ~ (a/2)'/?e. Therefore, the normal approximation does not hold. Now con-
sider Q(dz) = |z|7'1(]z| < 1)dz. We have an interesting case of self-normalization

ole) X, Bo(1)"'X;  for every €€ (0,1],
from which is evident that the normal approximation fails.

Example 2.7 The normal inverse Gaussian Lévy process is a Lévy process with
X (1) distributed accordingly to the normal inverse Gaussian distribution, see [2].
Normal approximation for small jumps was used on a intuitive basis and computer
simulation provided by Rydberg [13]. The approximation is valid by Proposition 2.2
since o(€) ~ (20/7)Y/%€1/? as € — 0.

In conclusion of this section, we will relate the normal approximation of Lévy
processes to the decay of terms in their series expansions (1.9). For the sake of
simplicity, suppose that X is a symmetric Lévy process without Gaussian component
and with an infinite Lévy measure (). Then

e o]

X)) = > rQ (T)I(U, <) (2.5)

where
Q(t) = inf{z > 0:2Q([z,0)) < t}

and r, are i.i.d. symmetric Bernoulli random variables independent of the sequences
[',, and U,,. These random variables can be defined on the same probability space as X
so that representation (2.5) holds a.s. and the series converges a.s. uniformly on [0, 1]
(see Rosinski [12]). The relation to (1.9) is that H(I',, V,,) = (21(V,, < .5)—1)Q (I').
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Proposition 2.8 Suppose that for every a > 0,

. Q(t+a)
Hm O-(1)

Then (2.4) holds. Consequently,

Xé(t> = Z TnQH(Fn>[(Un < t)

Q—(Tn)<e

=1, (2.6)

is asymptotically equal to a Brownian motion with variance o (e).

Proof We have
@)= [ @)= [ Q@)

Observe that the set {t > 0: Q7 (t) < €} is of the form (¢(¢), 00) and that t(e) — oo
as € — (. Hence, for each a > 0 and sufficiently small e,

t(e)+a
02 Q0P @2 @) + ) 2 (@/DQ WO 2 @/
Since a is arbitrary, condition (2.4) is proved. O

Condition (2.6) holds in Examples 2.5 and 2.7 but fails in Example 2.6.

3 Speed of convergence.

We only consider one-dimensional distributions. Note, however, that many of the
basic results in the area have functional extensions, see e.g. Gotze [8].

We begin with a Berry—FEsseen type estimate for the difference of distribution
functions of X§(1) and X (1) (recall (1.6)).

Theorem 3.1

sup [IP(X5(1) < z) — P(X(1) < 2)] < (0.7975)0 *(¢) /|| lz]* Q(dx). (3.1)
zeR T|<e

Proof Write X (1) = >5[ Xc(k/n) — X ((k — 1)/n)] as a sum of ii.d. random
variables with mean zero and variance o2(¢)/n. Applying the Berry—Esseen theorem
(see [4] Chapter 3.12) to this decomposition we obtain

§EE|P(0_1(E)X6(1) <2) = ®(2)] < (0.7975)0 " (e)nIB| Xc(1/n)|?



where ® denotes the standard normal distribution function. Letting n — oo on the
right hand side and using Lemma 3.2 given below, we get

sup [IP(X (1) < 2) — ®(07(e)2)| < (0.7975)0_3(6)/ |z|® Q(dx). (3.2)

z€R |z|<e

Notice now that X3 = X¢+ o(e)W’', where W’ is a Brownian motion independent of
Xj5. Hence, for every z € IR,

P(X3(1) < 2) ~ P(X(1) <)
X (1) + o(W/(1) < 2) — P(X](1) + X(1) < )
= < [ PE@W(1) <2 —y) = PX(1) <z —y)| P(X{(1) € dy).

Applying the bound (3.2) to the last integrand we conclude the proof. O

Lemma 3.2 Let Z = {Z(t) : t > 0} be a Lévy process with Lévy measure H. Suppose
that for some p > 2, IE|Z(1)|? < 00 and IEZ(1) = 0. Then

Tim nIE|Z(1/n)? = / 2| H(dx).
Proof This lemma is obvious when p = 2. Thus assume p > 2. By integration by
parts we have

nIE| Z(1/n)|P p/ P nIP(|1Z(1/n)| > 5) ds (3.3)

We will split this integral into three parts, integrating over disjoint regions. The first
integral is

/05° T InIP(|Z(1/n)| > s)ds < /O IR Z(1/n)|Pds = (p—2) '8 E|Z(1)]2.

We used Chebyshev’s inequality; this integral is small when sq is small. Now consider
the second integral, [;1s?~'nIP(|Z(1/n)| > s)ds. Write Z(1) = Sp_i[Z(k/n) —
Z((k —1)/n)] as the sum of i.i.d. random variables. By the Central Limit Theorem
we have

n

nlP(|Z(1/n)| > s) Z (|Z(k/n)—Z((k—=1)/n)| >s) — H{z:|z| > s}) (3.4)

as n — 00, for each continuity point s > 0, that is, H({z : |z|] = s}) = 0. Let
0 < 59 < s1 be such that H({x : |z| = s;}) = 0, i = 1,2. Since the set of continuity
points is at most countable, we get by (3.4)
lim [ sTInIP(|Z(1/n)| > s)ds = / 1 SSTYH({z 2 2| > s}) ds. (3.5)
0 S0

n—oo s



Now we consider the third integral, [°s?~'nIP(|Z(1/n)| > s)ds. Using (3.4) one
can choose s; sufficiently large such that nlP(|Z(1/n)| > s1) < 1 for all n > 1. Then,
for s > s1,

e 'nlP(|Z(1/n)| > s) 1-(1-IP(|Z(1/n)] > s))"

<
< P(max|Z(k/n)| > 5/2) < 9P(Z(1)] > 5/60).

The last inequality follows from Theorem 1.1.5 in [7]. Hence

/ P Z(1/n)| > s)ds < 9e/ P Z(1)] > 5/60) ds
and the upper bound goes to 0 as s; — 00, because IE|Z(1)|P < co. Consequently,
one can choose the continuity points sg, s; that make the first and third integrals,
resulting from the integraton by parts formula (3.3), uniformly small with respect to
n > 1. Notice also that (f5°+ [>°)|z[P~ ' H({x : 2| > s})ds is small for sufficiently
small sy and large s;. Now the lemma follows from (3.3) and (3.5). O

Inequality (3.1) gives a base for the use of quantity
3(e) = o3(e) /| et (3.6)
x|<e

as a measure of accuracy of approximation and a criterion for the selection of €. Notice
that d(¢) < €¢/o(e), which is consistent with (2.4). In the case of Lévy stable processes
(see Example 2.5) we have

(2 — 04)3/2 E04/2
(3—a)(a+ b)/?
Notice an improvement of the accuracy as a approaches 2 and also as a + b becomes

large. In the more general case of regularly varying tails described in Example 2.5 we
have

d(e) =

(2 - 0‘)3/2 a/2
o~ G Lo <

In the case of normal inverse Gaussian Lévy processes we have

T
d(e) ~ ,/§ l/?

where 0 on the right hand side is a parameter of the normal inverse Gaussian distri-
bution appearing also in Example 2.7.

One would expect the exact convergence rate to be given in terms of Edgeworth
expansions (Petrov [10] or Skovgaard [16]), which would lead to

P(X (1) <z/o(e)) —P(x) = Fi(x;Kae. ..., Kie) + 0(Kie) (3.7)
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where Fi(+; ks, ..., Kg) is the correction term in the (k — 1) Edgeworth expansion of a
distribution with mean 0, unit variance and cumulants ks, Ky, . .. (recall in particular
that Fi(z;k3) = 2(1 — 2®)¢(z)) and Ky, is the kth cumulant of X (1)/o(¢). For
example, if Q(dz) = |z|*"“L(x) dr where L is slowly varying at 0 and 0 < a < 2,

then

2—«

Kke ™~ Lk(é)ea(k_Q)/Q where Lk(e) — (L<€)‘I‘(—l)kL(—E))l_k/zk_a.

(3.8)

The implication of (3.7) is that the error IP(X./o(¢) < ) — ®(x) in general is of
order |ks |, which is the same as the order d(¢) is as in the Berry Esseen bound (3.1)
(unless for the special case (L(e) — L(—¢))/(L(€) + L(—e¢)) — 0 as € — 0; then up to
the slowly varying function Ls(¢), the order is €*/?). However, in the symmetric case,
(3.7) shows that the error rate k4. (of order roughly €*) is effectively smaller than
the bound (3.1).

The expansion (3.7), which we do not verify rigorously here (the key step is to
bound tail integrals of the characteristic function of X.(1)/o(€), see e.g. Theorem 3.1
of [16] and the following discussion), has an interesting interpretation in terms of the
computational effort required to reach a given accuracy n by the simulation. Say we
want the deviations of F. from ® to be of order n and identify the computational
effort to generate X (1) with the number M = M, of Poisson events. Then in the
asymmetric case € is determined by

n = |K3l (3.9)

whereas

M, ~ /MZE Q(d). (3.10)

Consider for simplicity the stable case as in Example 2.5. In the skewed case a # b
(say a =1, b= 0), we get k3, = €*/2(2 — a)*?/(3 — a) which using (3.10) yields

M~ — = ~— 7 .,
a al3—a)? 7

In the symmetric case a = b (say a = b = 1/2), we get n = k4 = €*(2 —a)?/(4 — ),

e (2-a)P 1

M~ — = .
a a(d—a)® n
Thus in both cases, there is again a pay off of having « close to 2, whereas the better
convergence rate in the symmetric case is reflected in the computational error going

slower to infinity as n | 0.



4 Possible limits — how bad it can be

For a fixed Lévy process X with an infinite Lévy measure @) and b = 0, consider
the family {L(o(e)™' X (1)) : 0 < € < 1}. Since Var(X(1)) = o%(e), this family is
tight. Therefore, one can always find a sequence of truncations ¢, \, 0 and a Lévy
process Z such that o(e,)™*X., > Z in the Skorokhod topology. If (2.2) holds, then
the only possible limit Z is the standard Brownian motion. But if (2.2) fails, then
there are other limits as well. We examine the question how possibly large can be the
class of such limits of normalized small jump parts of a one Lévy process. Since the
convergence of Lévy processes is determined by the convergence at t = 1, it is enough
to examine the set

Q) = () {L(o(e)"1X(1)): 0 <e <o}
0>0
of (weak) limit points. Necessarily, Z(Q) is a subset of Z, the set of infinitely divisible
distributions with mean zero and variance at most one. Note that any F' € Z; can be
written as F' = F} * Fy where F, is N'(0,03) and F} has characteristic function of the
form
Py (u) = exp

/Oo (" — 1 — jur)Q:(dz)| , (4.1)

—00

where 0 < 0} + 03 < 1, 0} = [*_2°Q1(dz).

o0

Theorem 4.1 There exists a Lévy measure Q such that T(Q) = Zy. In other words,
there exists a Lévy process X such that for any Lévy process Z with L(Z(1)) € Ty,

there exists a sequence €, \, 0 such that o(e,) 1 X, L Z in the Skorochod topology.

Proof Let Ty, be the subset of Fy € Z, such that F} has the form (4.1) with o? = 1.
We first show how to construct @ such that Fy € Z(Q) for a given Fy € Zy ;. Write

1
ap = W Jp = (_aka_ak—{—l)u(ak—i—l:ak): k=23,...,

and let ng) be a finite measure concentrated on Jj given by
{(B) = Qi (kag* BN {k™" < |z < k}).

Define -
Q(B) == Y Q"(B), BeBR).
k=2

Let
2 . 2 (k) ai 5 . ) )
Wi = [ QP (da) = ﬁ/{ukm}x Qu(dz), @ = w2 Wl e
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Then w? ~ a2/k* and Wy, ~ wy. In particular, @3 < oo which shows that Q is a
legitimate Lévy measure. The Lévy measure Q1 ,, of o(a;)™'X,, (1) is given by

Q1.0 ( Z Q" (@,

see (2.3). Therefore, o(ax) ' X,, (1) can be represented as a series of independent
compensated compound Poisson random variables Vj,,,, n > & with Lévy measures
Q" @, (-)). Tt is easy to check that the characteristic function of Vi converges to
Fyas k — 00, whereas

o o0 a2
Var (Vi) = - / 22Q(dzx) — 0
nzzk;i—l ( ) nzzk;i—l n2w% n—l<|z|<n ( )

as k — oo. Hence L(o(ay)™X,, (1)) = F.
Let next {F;} be dense in Zy; and let {F}} be the set of corresponding Lévy
measures. Modifying the above construction of @) by setting

~ S QW(B
k=2

where {my} is the sequence 1,2,1,2,3,1,2,3,4,1..., it then follows in the same way
that F; € Z(Q) for all j. Hence Zp; C Z(Q).

Finally note that Zy; is dense in Zy. Indeed, if F' € Z is written as F' = F} x F
as above, then F} = lim G,,, F = lim H,, where G,,, H, are of the form (4.1) and the

variances of G, H, are 1 — o3 (> 0?), o3, respectively. Since G, * H, — F and

G,x H, € IO,I; we have F' € IO,l- O
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