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Abstract

We consider a Riemannian manifold X admitting a compact quotient
X=�, i.e., � is a cocompact subgroup of the isometries acting properly
discontinuously on X. We show, under certain conditions on �, that it
is possible to de�ne an integrated density of states for �-ergodic random
Schr�odinger operators on X (see Theorem 7). These conditions are, e.g.,
satis�ed if � has polynomial growth.

Physical and geometrical setting

The integrated density of states (IDS) is a quantity introduced in the quantum
theory of solids corresponding to the number of electron states per unit volume
in a given energy interval ]�1; E[. The electron levels correspond to eigenvalues
of a Schr�odinger operator which models the motion of an electron in condensed
matter. For the medium one assumes a certain form of homogeneity, which is
mathematically encoded in the ergodicity of the electrostatic potential which is
produced by the medium. For the physical and mathematical background see,
e.g., [4, 8, 5, 13].

For Euclidean con�guration spaces the IDS is introduced mathematically as
follows:

1. Let �l � R
d be a cube of lenght l and centered at 0.

2. Consider a family of Schr�odinger operators H! = ��+ V !; ! 2 
, with
ergodic potential V !. (Precise de�nition of ergodicity will follow.) Note
that we use the sign convention that �� is a positive operator.

3. Restrict H! to �l with Dirichlet boundary conditions to get H!
l .
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4. Call N!
l (E) := #fi j �i(H l

!) < Eg the eigenvalue counting function of
H!
l . Here �i(H

l
!) are the eigenvalues ofH

!
l , enumerated in non-decreasing

order and including multiplicities.

5. Under certain conditions on the family of ergodic potentials V !; ! 2 

one can show that, for almost all !, say, in the set 
0 of full measure, the
limit

lim
l!1

N!
l (E)

ld
= N!(E) = N(E) (1)

exists for all continuity points of N and is independent of ! 2 
0.

The limit (1) is called the IDS of the family H!. Note that, by de�nition,
the functions N!

l (�) are non-negative, monotone increasing and left-continuous.
Since, in the thermodynamic limit (l ! 1), the randomness disappears, the
IDS N(E) is called self-averaging. Once the non-randomness of the IDS has
been established, one relates it to the spectrum of the operators H!; ! 2 
. In
the Euclidean case it is known [7] that the set of points of increase

f� 2 R j N(�+ �)�N(�� �) > 0 8� > 0g (2)

contains the spectrum of H!, which is independent of ! almost surely.
The Euclidean Laplace operator and the associated fundamental operators

from physics can be naturally generalized to Riemannian manifolds. The spec-
trum of these physical operators then also re
ects local and global geometric
properties of the underlying manifold. In 1992, Adachi and Sunada [2] carried
over techniques developed by mathematical physicists (cf. e.g. [15, 9]) to de�ne
an IDS of an periodic Schr�odinger operator on a Riemannian manifold. In this
new situation one encounters the nontrivial problem how to replace the cubes
�l, l ! 1, which exhaust the Euclidean space. Actually, in Rd one is allowed
to choose much more general exhaustions to de�ne the (same) IDS.

In [2] the following geometrical setting is considered:

� Let X be a d-dimensional, non-compact, complete, connected Riemannian
manifold.

� Let � � be a discrete, amenable subgroup of the isometries acting freely
and properly discontinously on X such that the quotient M := X=� is
compact. Then � is �nitely generated.

Our geometric setting is the same as in [2]. However, instead of a single
periodic operator we consider a random family of Schr�odinger operators H! :=
��+ V !; ! 2 
, with the following properties.

� (
;A; P ) is a probability space with a group of ergodic measure perserving
transformations T
 ; 
 2 �. Ergodicity of the group of measure preserving
transformations means that the only sets A 2 A which are invariant under
all T
 ; 
 2 � are those with P (A) = 0 or P (A) = 1.
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� The potential is a jointly measurable stochastic process V : 
 � X ! R

and, for technical reasons, we require V ! 2 C1(X);8! and a uniform
bound on the derivatives

krkV !k1 � C for all ! 2 
; k �
1

2
dim(X) + 2 : (3)

� The �-action on the potential and on X are consistent in the following
sense: For all 
 2 � we have

V !(
x) = V T
!(x) : (4)

This property is called ergodicity of the stochastic process V !.

Already earlier Sznitman [16, 17] studied the IDS for the Schr�odinger oper-
ator with a random Poissonian potential on a hyperbolic manifold. This setting
however di�ers from ours, both regarding the geometry of the manifold, as well
as the ergodicity properties of the random potential.

If we de�ne U
f(x) := f(
x) as the unitary operator on L2(X) correspond-
ing to the isometry 
 : X ! X , (4) can be written in the form U
V

!U�
 = V T
!.
Since �� is invariant under the operators U
 one gets

U
H
!U�
 = HT
!: (5)

There are two approaches at hand to prove the convergence in (1). Either
one uses the Laplace transform of the normalised eigenvalue counting function,
which can be written in terms of the trace of the corresponding heat equation
semigroup. In this case one applies a pointwise ergodic theorem for additive
(w.r.t. domains) processes. Or one uses Dirichlet-Neumann bracketing to show
that the eigenvalue counting functions form themselves a superadditive process.
For such processes there are also ergodic theorems avaliable [3, 10]. However
only in the abelian case they assure the pointwise existence of a limit. In our
non-abelian setting we would get just a limit in mean.

Thus we rely on the �rst alternative and therefore need some tools from the
theory of heat equation semigroups.

Heat kernel bounds

Under the above assumptions H! is a densely de�ned selfadjoint operator on
L2(X). By the spectral theorem we can de�ne the operator exp(�tH!) which
has an integral kernel k!(t; �; �). Let D � X be a regular domain, i.e., a con-
nected subset with compact closure and smooth boundary. We denote the re-
striction of H! to D with Dirichlet boundary conditions by H!

D and the corre-
sponding heat kernel of exp(�tH!

D) by k
!
D(t; �; �).

Since the heat kernel depends monotonously on the domain (see [6, 18]), we
have

0 � k!D(t; x; y) � k!(t; x; y) 8 t > 0;x; y 2 D : (6)
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We need, however, more information about the integral kernels. Firstly, we
would like to bound the rhs of (6) by some constant independent on x; y and
!. Furthermore we would like to control the di�erence between the heat kernel
on the whole manifold and the one restricted to the domain D. We collect this
information in the following lemma.

Lemma 1 Let k!; k!D be the heat kernels as above. Then we have
(a) k!(t; x; y) � C(t); 8x; y;!,
(b) 8t; � > 0 9h = h(t; �) < 1 such that, for all regular domains D and all

! 2 
, we have

0 � k!(t; x; y)� k!D(t; x; y) � � 8x; y 2 D n @hD; (7)

where @hD := fx 2 Dj d(x; @D) � hg.

The proof of (a) for a �xed potential V ! can be infered from section 3 in [11].
Actually the dependence of the heat kernel on the potential can be bounded by
a function of the sup-norm of the potential only. Since our family of potentials
has an uniform norm bound we can choose the constant C(t) to be independent
of !. The proof of (b) uses a result about unit propagation speed of the wave
equation with potential, as it can be found, for example, in [18]. The bound
on the di�erence of the two heat kernels is then obtained by an argument of
U. Bunke as outlined in Theorem 2.26 of [12]. See also [14].

Assumptions on the group �

In the Euclidean case, any monotone exhaustion of Rd by cubes �l1 ;�l2 ; : : :
guaranteed the existence of a nonrandom IDS by an application of an abelian
ergodic theorem. Actually there is much more freedom. One is even allowed
to shift the cubes a little bit on each scale, so that the cubes do not contain
the preceeding ones any more; one can choose balls instead of cubes or other
convex domains as long as they satisfy some very reasonable growth conditions,
cf. [9, 10].

On a Riemannian manifold one has to deal with the problem to �nd an
adequate substitute for the cubes �l. This problem already appeared in [2] for
a single operator with periodic potential. If one considers a �-ergodic family
of potentials and wants to prove existence of the IDS there is need for a non-
abelian ergodic theorem. We will use an ergodic theorem due to Tempelman
[19, 20]. This theorem is only applicable for exhaustions or summing sequences
(the analoga of �l1 ;�l2 ; : : : ) which satisfy much more restrictive conditions than
those imposed in abelian ergodic theorems. The following de�nition lays the
grounds to apply Tempelman's ergodic theorem (in the version given in [10]).

De�nition 2 A sequence of subsets fIngn2N of � is called an admissible sum-
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ming sequence if

(P0) In � In+1; ; 0 < jInj <1 8n 2 N;

(P1) 8
 : jIn�In
j=jInj �! 0 for n!1;

(P2) 9K <1 : jI�1n Inj � KjInj :

Here jAj denotes the cardinality of a �nite set A.

The condition (P1) is an formulation of F�lner's condition for discrete groups.
(P2) is a growth condition which can be understood best, e.g., in the particular
case where the sets In are combinatorial balls of radius n (w.r.t. a word met-
ric): Doubling the radius increases the cardinality of the ball by only a constant
multiple. Admissible summing sequences are the main input in Tempelman's
ergodic theorem applied to the group T
 ; 
 2 �. In the next section, we con-
struct, to a given admissible summing sequence, a corresponding sequence of
subsets of the Riemannian manifold to which we will restrict our Schr�odinger
operators.

Admissible exhaustions and the main result

As explained in section 3 of [2], there exists a smooth triangulation of the
compact manifold M and, by lifting the simplices to X in a suitable manner,
we obtain a connected polyhedral �-fundamental domain F . Particularly F
consists of �nitely many smooth images of d-dimensional simplices which can
overlap only at their boundaries.

De�nition 3 For an admissible summing sequence fIngn2N we de�ne

Dn =
[

2In


F (8)

where F is a fundamental domain as explained above. We call fDngn2N an
admissible exhaustion if, additionally,

(P ) For all h > 0 :
vol(@hDn)

vol(Dn)
�! 0 for n!1 : (9)

It was shown in [1, 2] that the geometric condition (P) is automatically
satis�ed if jInAn � Inj � jInj=(njAnj), for all n 2 N, where A � � is the
following particular set of generators: A = f
 : 
F \ F 6= ;g.

Lemma 4 For an admissible exhaustion fDngn2N and any Æ > 0 there exists
a sequence fMngn2N of regular domains such that:

Dn n @ÆDn �Mn � Dn ; @Mn � @ÆDn ; 8n; (10)
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and, for n!1, we have

����jDnj
�1

Z
Dn

k!(t; x; x)dx � jMnj
�1

Z
Mn

k!Mn
(t; x; x)dx

���� �! 0 : (11)

We call fMngn2N a regularisation of fDngn2N.

For the proof of (11) one uses Lemma 1(b) to bound the di�erence of the
kernels by some arbitrary small number � > 0 away from the boundary of
Dn. The region near the boundary, where this estimate is not valid, is small
by property (P). There we use Lemma 1(a) and the fact that the symmetric
di�erence of Mn and Dn is small, as well.

The ergodicity of V ! implies (5). An analogous relation is valid for the
spectral projections of H! as can be inferred from [21, Theorem 7.15] and the
uniqueness of the spectral projection.

U
E(�; !)U
�

 = E(�; T
!) : (12)

This relation also holds for exp(�tH!) and thus its kernel k!(t; x; y) is an
ergodic stochastic process in the following sense

k!(t; 
x; 
x) = kT
!(t; x; x) : (13)

This enables us to apply later the next lemma to the heat kernels.

Lemma 5 Let fDngn2N be an admissible exhaustion and f : 
�X ! R be a
�-ergodic stochastic process. Then

lim
n!1

jDnj
�1

Z
Dn

f(!; x)dx = jFj�1 E

�Z
F

f(�; x)dx

�
: (14)

Here E denotes the expectation with respect to the measure P .

Proof: Set F (!) = jFj�1
R
F
f(!; x)dx. Now transform the term on the lhs of

(14).

jDnj
�1

Z
Dn

f(!; x)dx = jInj
�1
X

2In

jFj�1
Z

F

f(!; x)dx

= jInj
�1
X

2In

jFj�1
Z
F

f(!; 
x)dx

= jInj
�1
X

2In

jFj�1
Z
F

f(T
!; x)dx

= jInj
�1
X

2In

F (T
!) �! ~f(!)

for n!1 and a measurable ~f : 
! R. Here we used that
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1. Dn can be written as an union of translates of the fundamental domain
F ,

2. 
 is an isometry and thus preserves the volume element dx,

3. we can transfer the action of 
 from the geometric to the random param-
eter by the ergodicity of the process f ,

4. admissible summing sequences satisfy the conditions of Tempelman's er-
godic theorem.

We additionally know from this ergodic theorem that the function ~f is invariant
under all T
 ; 
 2 �. By assumption, these transformations are ergodic and,

thus, ~f is constant almost surely. The convergence calculated above implies
that this constant has to be equal to E (F ).
2

In order to prove our main result (Theorem 7) we need, �nally, the following
lemma (see [15, Lemma 5.2]). It will be used to derive convergence of the
normalized eigenvalue counting function from convergence of the corresponding
heat kernels.

Lemma 6 (�Subin) Let Nn : R ! R
+ be a sequence of left-continuous, mono-

tone increasing functions such that

1. there exists a c 2 R : Nn(�) = 0 8� � c; n 2 N,

2. there exists a C : R+ ! R :  n(t) :=
R
e��tdNn(�) � C(t) 8n 2 N; t > 0,

3. limn!1  n(t) =:  (t) exists for all t > 0.

Then the limit

N(�) := lim
n!1

Nn(�)

exists at all continuity points. N is a non-negative, monotone increasing, left-
continuous function of �, and its Laplace transform is  .

Theorem 7 Let fDngn2N be an admissible exhaustion and fMngn2N a regu-
larisation of fDng. De�ne

�!n(�) := #f eigenvalues of H!
Mn

� �g; N!
n = jMnj

�1�!n : (15)

Then, for almost all ! 2 
, the limit

N(�) = lim
n!1

N!
n (�) (16)

exists at all continuity points of N(�). Moreover, N is a non-negative, monotone
increasing, left-continuous function (independent of !).
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Proof: We check �Subin's hypotheses:
1. �!n(�) = 0 for all ! 2 
; n 2 N, if � < �kV !k1.
2.

jMnj
�1

Z
e�t�d�!n(�) = jMnj

�1
X

�n2�(H!
Mj

)

e�t�n

= jMnj
�1 Tr e

�tH!
Mj

= jMnj
�1

Z
Mn

k!Mn
(t; x; x)dx

� jMnj
�1

Z
Mn

k!(t; x; x)dx

� C(t):

3.

lim
n!1

jMnj
�1

Z
e�t�d�!n(�) = lim

n!1
jMnj

�1

Z
Mn

k!Mn
(t; x; x)dx

= lim
n!1

jDnj
�1

Z
Dn

k!(t; x; x)dx

= jFj�1 E

�Z
F

k�(t; x; x)dx

�
:

Here we used the Lemmata 4 and 5.
2

An Example

We supply a non-abelian example of a pair (X;�) which satis�es all necessary
conditions to de�ne an IDS in the above manner.

For any Riemannian manifold with a polynomially bounded cocompact dis-
crete group of isometries an admissible exhaustion fDngn2N can be constructed.
In particular, this is the case for nilpotent groups. Thus, an example is given
by the Heisenberg group

X =

8<
:
0
@ 1 x y

0 1 z
0 0 1

1
A j x; y; z 2 R

9=
; (17)

with a left-invariant metric, and � = X \M(3;Z). X is di�eomorphic to R3 ,
but non-abelian. Note that the discrete group � acts, by isometries, from the
left on X and that the quotient �nX is compact.

An example for a �-ergodic potential on (X;�) is the analogue of the one
which is called alloy-type potential in the Euclidean setting.
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Let u : X ! R be a smooth function supported in F . We choose 
 =N

2� R, equipped with the product measure P :=

N

2� �, where � is a prob-

ability measure on R. Consider the independent, identically distributed random
variables �
 : 
 ! R; �
 (!) := !
 ; 
 2 � and the measure preserving transfor-
mations (T
(!))� := !
�. Then the potential, given by

V !(x) :=
X

2�

!
u(
x); (18)

is �-ergodic and satis�es the required regularity assumptions (3) to de�ne the
IDS. Actually, it seems that by using probabilistic estimates for the heat kernels,
instead, these regularity assumptions can be relaxed to the "natural"ones. These
are formulated in terms of the expectation of some local Lp-norm of V !, cf. [9].

Discussion

The IDS is a quantity related to the restrictions of Schr�odinger operators in
a familiy H!; ! 2 
, to suitable exhaustions of a non-compact Riemannian
manifold X . It should be possible to use the same functional analytic arguments
as in the Euclidean case to establish the equality of its points of increase (2)
with the spectrum of H!.

The de�nition of an admissible exhaustion contains assumptions about both
the sequence of subsets In of the group � as well as the geometry of the domains
Dn. It would be desirable to formulate the conditions in terms of either group-
theoretic or geometric properties only. Recently, we observed, in the case of
a polynomially bounded group �, that Theorem 7 is also valid for a sequence
Mn � X of regularized geodesic balls with increasing radii satisfying condition
(P). Thus for this choice one obtains via (16) a non-random IDS. It is natural
to ask for more general classes of exhaustions of X , for which the normalised
eigenvalue counting functions converge and whether they give rise to the same
IDS.

The remark in Krengel [10] after the statement of Tempelman's theorem
implies the uniqueness of the IDS in the following sense. Let In; n 2 N be a
sequence of subsets of �, not necessarily admissible in our sense andDn; n 2 N as
in (8). Assume that it satis�es condition (P) and that a regularisationMn; n 2 N
exists. If the N!

n de�ned in (15) converge to a non-random limit N , then this
has to be equal to the IDS de�ned in Theorem 7 by an admissible summing
sequence. In particular any two admissible exhaustions give rise to the same
IDS.

Note also that our choice of the admissible exhaustion depends on the pair
(X;�) only. This means particularly, that it is independent of the properties of
the family of Schr�odinger operatorsH!; ! 2 
. If one would allow for admissible
exhaustions depending on the stochastic process V !, too, the convergence (16)
of the normalised eigenvalue counting functions to an IDS could be achieved in
more general geometric situations.
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Finally, it should be possible to study an ergodic family of operators where
higher order parts of the operators depend on the random parameter ! and
to carry through the same procedure as in this paper. Such a situation would
occur if ! were related to the change of a magnetic �eld or to the change of the
metric of the underlying Riemannian manifold.
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