
A Bayesian Approach to Crack Detection in

Electrically Conducting Media

Kim E. Anderseny�, Stephen P. Brooksz and Martin B.

Hanseny

y Aalborg University, Denmark

z University of Cambridge, U.K.

Abstract. In this paper, we review powerful new computational techniques which

facilitate the Bayesian approach to statistical inference and discuss how they may be

used to solve general inverse problems. Their power and exibility is illustrated by the

problem of detecting a �nite set of linear non-intersecting perfectly insulating cracks in

a homogeneously electrically conducting media. In this case, eÆcient algorithms only

exist if the number of cracks is known a priori. However, in this paper we demonstrate

how uncertainty about the number of cracks can be incorporated into the modelling

process and assessed together with crack locations.

AMS classi�cation scheme numbers: 60J25, 65N21

1. Introduction

It is often desirable to determine the interior structure of a given body in a non-

destructive manner. Common non-destructive evaluation systems are based upon

tomographic principles where the reconstruction is an inverse problem. Primary interest

is in some object 	 but data are only accessible about some transform F	. The data

are observed at m discrete points ti and are corrupted by noise, so that they take the

form

�(t) = F	(t) + �(t); t = t1; : : : ; tm; (1)

where �(t) denotes a random noise process, typically assumed to be Gaussian.

The most obvious approach for reconstructing 	 is to estimate � by b� using

standard statistical methods (Efromovich, 1999) and then use b	 = F�1b� as an estimate

of 	. However, such problems are generally ill-posed (Hadamard, 1923) which means

that either the inverse operator F�1 does not exist, or it is an unbounded operator.

In the latter case, even small perturbations of the data, and thereby b�, may result

in unacceptably large distortions of b	. In order to avoid this instability Tikhonov

regularisation (Tikhonov, 1963a,b) is often used. This is a method of balancing
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the degree of mis�t of the solution 	 and a functional J(	) which measures the

`appropriateness' of the function 	. The speci�cation of J is crucial and is usually chosen

on the basis of prior information about the solution space. The Bayesian approach has

therefore enjoyed some popularity as a tool for formalising the incorporation of prior

information and for properly accounting for uncertainty (Tarantola, 1987). To add to

this popularity, powerful new simulation techniques are now available which allow even

more complicated and realistic models, see Mosegaard and Tarantola (1995), Mosegaard

(1998), Dahl-Jensen et al. (1998), Nicholls and Fox (1998) and Mosegaard and Rygaard-

Hjalsted (1999). In this paper we review some of the recent progress in Bayesian

computation, focussing upon Markov chain Monte Carlo methods, and indicate how

they may be used to solve general inverse problems. For illustration, we will consider

the problem of detecting a �nite set of linear non-intersecting perfectly insulating cracks

in homogeneously conducting media.

A variety of di�erent imaging algorithms exist for non-destructive evaluation

on the basis of electrical impedance tomography data. Many are general-purpose

algorithms which seek to reconstruct the entire conductivity pro�le within the object

(see e.g. Barber and Brown, 1986; Santosa and Vogelius, 1990; Cheney et al., 1998).

Such algorithms typically base all computations for the underlying conductance problem

upon a 2{dimensional �nite element formulation. However, as illustrated by Bryan

and Vogelius (1994) the eÆciency and versatility of these algorithms can be improved

dramatically when structural prior information about the pro�le is available.

Bryan and Vogelius (1994) develop a crack detection algorithm based upon a

variation of Newton's method in which an initial crack con�guration 	0 is iterated until

a solution is met. However, this method has the drawback that the solution obtained is

critically dependent upon the initial crack con�guration, as the initial number of cracks

remains �xed throughout the iterative estimation procedure. Since the number of cracks

is rarely known a priori, ad hoc techniques are generally used to overcome this problem.

In this paper, we show how problems associated with the a priori determination

of the number of cracks may be overcome by explicitly incorporating this source of

uncertainty within the modelling process. In this way we determine not only the number

of cracks but also the crack locations in the media under study.

In section 2 we summarise the mathematical model for the voltage potential in the

presence of cracks in an electrically conducting media. In section 3 we introduce the

Bayesian approach to statistical inference and the computational techniques required

for its implementation. Speci�c implementational issues within the reconstruction

algorithm are addressed in section 4. In section 5 we discuss the behaviour and

performance of our approach and �nally in section 6 we discuss in the light of the

achieved results further potential developments.
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2. Modelling boundary measurements in the presence of cracks

Suppose that any crack lies within a 2{dimensional simply connected conductor 
 and

is modelled as a perfectly insulating line segment. In this paper we assume that a given

crack  is parameterised by

 (t) = a+ t(b� a); 0 � t � 1;

where a = (x1; y1) and b = (x2; y2) denote  's endpoints in 
. We let 	 = [n
k=1 k

denote a �nite collection of n non-intersecting cracks in 
 (see �gure 1). At low

frequencies and with a given background conductivity (x) satisfying 0 < 0 � (x) �

1 for x 2 
n	, Maxwell's steady-state conductance equations for the voltage potential

u read

r � (�1ru) = 0 in 
 n	

u = ck on  k; k = 1; : : : ; n;

for a particular set of constants ck; k = 1; : : : ; n. If we let � denote the normal �eld to

@
, then the Neumann boundary condition takes the form

�1
@u

@�
= � on @
;

which is used to model the applied current. As current ows into the object at electrode

xin and exits at electrode xout (see �gure 1) and the electrodes are modelled as point

sources with diameter h, then the function � is de�ned in terms of characteristic

functions, i.e.

�(x) = Æ(x;xin)� Æ(x;xout); x 2 @
;

where

Æ(x;xin) =

(
1=h if jx� xinj < h=2,

0 else.

The function Æ(x;xout) is de�ned similarly.

By application of standard potential theory arguments, Bryan and Vogelius (1994)

develop an integral equation formulation of this boundary value problem based upon

the assumption that the object 
 has constant background conductivity  � 1. As

this formulation depends upon singular boundary data u, a more useful formulation is

obtained by constructing a perturbation v = u � u0 which is smooth up to @
. Here

u0 satis�es the conductance equations for x 2 @
 when no cracks are present. As v is

smooth up to @
, any problems associated with the lack of regularity of u are avoided.

For the purposes of this paper, we let 	 denote the collection of allowable crack

con�gurations, i.e., 	 = [1n=0	n, where 	n is the set of n non-intersecting cracks fully

within 
. Furthermore, we let S : 	 ! H1(
) denote the solution operator of the

derived integral equation, where H1(
) is a Sobolev space of order 1, for more details

consult Bryan and Vogelius (1994).
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Figure 1. Schematic representation of the experimental setup. The object 
 has

an interior crack 	 which is to be determined. Current is owing in at electrode

xin = 51 and out at electrode xout = 9. Corresponding potential voltage di�erences

are recorded.

To discretise the integral formulation we let z(t) parameterise @
 for t-values

0 � t < 1 and parameterise  k for values k � t < k+1 for any k = 1; : : : ; n. Furthermore

we let

K(ti; tj) =
@

@�y
�[z(ti); z(tj)]jz

0(tj)j;

G(ti; tj) = �[z(ti); z(tj)]jz
0(tj)j;

where �y on @
 denotes the normal outward derivative with respect to the y variable

and � is the Green's function

�(x;y) =
1

2�
log jx� yj; x;y 2 R

2 :

Finally, we let

�kj =

8<:
@u(x(t))

@�

���
t=tj

on  k (k = 1; : : : ; n),

v[z(tj)] on @
 (k = 0),

where @=@� on  k denotes the normal ux across the crack.

Now, by application of Nystr�om's method (see e.g. Atkinson, 1976), the integrals

in the integral formulation of Bryan and Vogelius (1994) are discretised by quadrature

rules to obtain a set of linear equations. Hence, if we let m denote the number of nodes

to be used in the quadrature rule, we obtain the following linear system

�
1

2
�0i +

mX
j=1

K(ti; tj)!j�0j �
nX

k=1

mX
j=1

G(ti; k + tj)!j�kj = 0;

mX
j=1

K(l + ti; tj)!j�0j�
nX

k=1

mX
j=1

G(l + ti; k + tj)!j�kj � cl = �u0[z(l + ti)];
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mX
j=1

�lj!jjz
0(l + tj)j = 0 and

mX
j=1

�0j!jjz
0(tj)j = 0;

for i = 1; : : : ; m and l = 1; : : : ; n. Due to linear dependencies in the �rst m equations,

any one of them may be ignored, leaving a quadratic linear system of mn + m + n

equations.

The remaining linear system is well-conditioned due to the presence of the

logarithmic singularity along the �rst part of the diagonal s = t. The singularity can

be dealt with by a simple form of product integration (Atkinson, 1976) based upon the

applied quadrature rule. Of course, the quadrature rule used on the boundary need not

be the same as the one used on the cracks. As the solution is smooth on @
, a simple

trapezoidal rule can be used with weights wi = 1=m for i = 1; : : : ; m. However, on the

cracks care must be taken due to singularities at the endpoints. Bryan and Vogelius

(1994) propose using a quadrature rule that places many points close to, but not at, the

endpoints. The corresponding weights are chosen to accommodate Nystr�om's method

corresponding to a midpoint rule with variably spaced nodes.

In practice, the crack detection algorithm of Bryan and Vogelius (1994) begins

with an initial guess 	0 for which the corresponding boundary voltage data can be

predicted by solving the linear system described above. This crack con�guration is then

iteratively improved with respect to the residual sum of squares using a Newtonian

updating scheme. We refer the reader to Bryan and Vogelius (1994) for further details.

Their algorithm was tested on a large number of simulated data sets with linear cracks

and it appeared to work well when the number of cracks in the initial con�guration

was the same as the number in the true con�guration. Bryan and Vogelius (1994) also

consider the problem associated with estimating the number of cracks. Using simulated

data with e.g. three `true' cracks, they proceed as illustrated in �gure 2 and described

as follows. The reconstruction procedure is begun by attempting to �t the simulated

data with just one crack and with endpoints situated at (�0:2; 0:2) and (�0:2; 0:6). A

root for the linear system is found, but at this point it is impossible to say whether

or not the simulated data come from just a single crack or several cracks. The middle

1/10th of the estimated crack is cut out and two new cracks are formed and used as

the initial guess for a new run of the algorithm. This process is repeated so that at

each stage the largest crack of those in the current con�guration is split and this new

con�guration is used as an initial value for repeating the process with an additional

crack. The estimated cracks are shown in �gure 2(b) { (d).

Bryan and Vogelius (1994) point out that three things are likely to occur when

splitting a crack to obtain a new crack con�guration: (1) The cracks �nd di�erent

locations, (2) the cracks remain essentially where they are, or (3) one of the split cracks

shrinks and the other cracks remain where they were previously estimated to be. The

behaviour described in (2) or (3) usually indicates that the previous number of cracks
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(a) (b) (c)

(d) (e)

Figure 2. The deterministic reconstruction algorithm applied to unperturbed

simulated crack data: (a) The experimental setup; and (b) { (e): crack estimates

for one, two, three and four cracks �tted to data (initial guess:||, estimate:� � � � � �).

used was the right number to �t to the data. When �tting four cracks to the data

behavior (3) is observed. From this, Bryan and Vogelius (1994) conclude that three

cracks is the right number of cracks to �t to the data.

In this paper, we provide a more rigorous framework for determining the number

and position of the cracks. We begin by obtaining the likelihood function, L,

derived from (1) under the assumption that the errors �(t) are independently Gaussian

distributed with mean zero and variance �2, i.e.

L(	; � j�) /
1

�m
exp f�V (	; �)g ; (2)

where

V (	; �) =
mX
i=1

[�(ti)� F	(ti)]
2=2�2;

F	(ti) = S	(ti) � S	(ti�1) is the recorded voltage di�erences and S is the solution

operator introduced in section 2. The classical statistical approach to models described

in such a manner is to seek the con�guration 	 and parameter �2 that maximises this

function. However, greater exibility is obtained by adopting a Bayesian approach, as

described in the following section.
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3. The Bayesian approach to statistical inverse problems

If we assume that the observed data are described by the model given in (1), then the

statistical problem is to estimate 	 and �2 given �. For this we need to determine the

posterior distribution of � = (	; �2), denoted by �(� j�), which describes our beliefs

about the possible crack con�gurations and variance parameter after having observed

the data �. Let us assume also that our beliefs about the possible con�gurations �

before having observed any data can be described by a prior distribution denoted by

p(�). Bayes' formula may then be used to derive the posterior distribution as a function

of the prior distribution and the data represented through the likelihood function. We

thus have that

�(� j�) / p(�)L(� j�):

In practice, statistical inference is obtained through the calculation of posterior

moments, for example the posterior mean of � given by

E �(�) =

Z
� �(� j�) d�: (3)

The problem therefore reduces to the computational task of performing this

integration, typically over a large parameter space. Often, explicit evaluation

is impossible and traditionally one would use numerical integration or analytic

approximation methods. However, Markov chain Monte Carlo (MCMC) methods

provide an alternative integration technique whereby posterior means, for example,

are estimated by using the sample mean from a series of random draws from the

posterior distribution. These random draws are obtained by constructing a Markov

chain f�1;�2; : : :g with state space� and with stationary distribution �(� j�). MCMC

sampling was �rst introduced by Metropolis et al. (1953) and was subsequently adapted

by Hastings (1970). Over the past ten years such methods have enjoyed widespread

popularity within the statistical literature and there exist various standard techniques

for constructing the necessary chains. See Brooks (1998) and Robert and Casella (1999),

for example.

For the purposes of this paper, we shall distinguish between three separate

simulation algorithms that will be combined to provide a technique suitable for the

crack detection problem. We begin by describing the Metropolis{Hastings updating

scheme for updating a crack con�guration without altering the number of cracks. We

then describe the reversible jump MCMC update which allows us to update the number

of cracks, and �nally we introduce the simulated tempering method as a means of

increasing the computational eÆciency of the overall simulation process.

3.1. Metropolis{Hastings updates

Metropolis{Hastings updates are used to move around the parameter space by proposing

moves which are subsequently either accepted or rejected. Suppose that we are currently
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in con�guration �, then we draw a new con�guration �0 from some proposal density

q(�;�0). This proposal is then accepted with probability

�(�;�0) = min

�
1;
�(�0 j�)q(�0;�)

�(� j�)q(�;�0)

�
: (4)

However, if the proposal is rejected, the chain remains in the current state. The choice

of proposal distribution q is essentially arbitrary, though several forms possess useful

analytic properties. For example, when the proposal distribution q is symmetric, i.e.

q(�;�0) = q(�0;�), the acceptance function in (4) reduces to

�(�;�0) = min

�
1;
�(�0 j�)

�(� j�)

�
;

which is essentially the original Metropolis update proposed by Metropolis et al. (1953).

Another commonly used proposal distribution arises when q(�;�0) is a function only of

j���0j, in which case the chain reduces to a random walk.

The Metropolis{Hastings updating scheme takes the simple algorithmic form

Initialise �0; set t = 0

for l = 1 to L do

Sample �0 from q given �l�1

Compute the acceptance probability

�l = �(�l�1;�
0)

Sample uniform random variable ul on (0; 1)

if ul < �l then �l = �0

otherwise �l = �l�1

end

In practice the Metropolis{Hastings updating scheme can be used either to update

the entire state vector or individual elements. Since `large' jumps tend to have

correspondingly small acceptance probabilities, typical MCMC algorithms consist of

a sequence of updates focussing upon each element of the state vector in turn. We shall

discuss this approach, known as single component Metropolis{Hastings, in more detail

in section 4.

3.2. Reversible jump MCMC

The Metropolis{Hastings updates are used to update the state vector essentially moving

the positions of the current cracks. In order to move between con�gurations with

di�erent numbers of cracks, we require what are known as reversible jump MCMC

(RJMCMC) updates, since such updates involve moving between states of di�erent

dimensions. For example, the introduction of a new crack to the current crack

con�guration will increase the dimensionality of the state vector, since additional

parameters will be needed to describe the position of the new crack. For these moves

RJMCMC updates (Green, 1995) provide a general framework, extending the basic

Metropolis{Hastings algorithm to general state spaces, so that � becomes a general
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measure, rather than a density. Also, the proposal density q(�;�0) is replaced by the

proposal distribution q(�; d�0).

Suppose a dimension-changing movem is proposed and the proposal �0 is generated

by a deterministic invertible function f(�; u), where u is a continuous random variable.

Then Green (1995) shows, that if rm(�) denotes the probability of choosing move type

m when in state �, q(u) denotes the density function of u and �(� j�) denotes the

posterior density of �, then the corresponding acceptance probability becomes

�(�;�0) = min

�
1;

�(�0 j�)rm0(�0)

�(� j�)rm(�)q(u)

����@f(�; u)@(�; u)

����� ; (5)

where m0 denotes the reverse move to m. Note, that the �nal term in the above ratio

is the Jacobian arising from the change of variables associated with moving from one

space to the other. Algorithmically, the reversible jump updating procedure proceeds

identically to that for Metropolis{Hastings updates.

The Metropolis{Hastings and reversible jump updates will produce a Markov chain

with the required stationary distribution. However, the resulting chain may be slow to

move around the state space so that large run lengths are required in order to obtain

reliable inference. To improve the speed with which the state space is traversed (often

termed the mixing rate), Marini and Parisi (1992) and Geyer and Thompson (1995)

suggest the use of simulated tempering.

3.3. Simulated tempering

Simulated tempering is based upon using a series of stationary distributions �1; : : : ; �L
and augmenting the state vector to include an indicator variable signalling which

distribution is being used at any time. If we let �1 = � and choose �l; l = 2; : : : ; L

so that movement around the state space becomes easier as l increases, then we can run

a chain on the augmented state space and base inference only upon observations in the

chain attributed to distribution �1. Since movement is easier for larger l, we obtain a

more rapidly mixing chain and movement within the target distribution �1 is facilitated

by brief tours in other temperatures.

The chain swaps between temperatures i and j at time t and in state �t with

probability

min

�
1;
�j(�t j�)cjpj!i

�i(�t j�)cipi!j

�
;

where pi!j denotes the probability of proposing the chain to move from sampler i to

sampler j. The ci's are approximate normalising constants that ensure that the chain

divides its time roughly equally among the L di�erent samplers (Geyer and Thompson,

1995).
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4. Implementation

In this section, we provide a detailed description on the parameterisation of the models

and on the updating mechanisms required within the MCMC simulation for the crack

detection problem. For simplicity we also assume that 
 is the unit circle.

In order to ensure that the posterior is dominated by the likelihood, we adobt

a vague prior distribution on the set of allowable crack con�gurations 	 so that the

number of cracks are Poisson distributed with mean �. Then for any number of cracks

n, we place a prior distribution on the possible crack con�gurations, 	n, by assuming

that any con�guration in 	n is equally likely. These considerations can be formalised

by assuming that the prior distribution p on 	 has a density (with respect to the unit

rate Poisson process on the product space 
� 
) which satis�es

p(	) / �n(	)1l(	 2 	);

where n(	) is the number of cracks in con�guration 	 and 1l denotes the indicator

function. The interested reader is referred to Daley and Vere-Jones (1988) for further

details. For our purposes it is suÆcient to note that the density is well-de�ned.

In order to move freely around the state space, we propose using two within-model

moves, that allow for the movement of cracks within 
, and one between-model move

that adds and deletes cracks to/from the current con�guration. The �rst move which

we refer to as move-type A involves taking the coordinates of the endpoints of any

particular crack and sampling a new value for each within a neighbourhood of the

current value. This simultaneously translates and scales the chosen crack. Move type B

involves rotating a chosen crack about its centre and, �nally, move type C enables us to

add a crack by proposing a new crack randomly placed within 
. The reverse move in

which a crack is deleted will be referred to as move type C 0. These moves are illustrated

in �gure 3.

A B C C0

Translate a crack Rotate a crack Add/kill a crack

Figure 3. The proposed updates we use in the MCMC algorithm: From left to right

we illustrate the di�erent possible transitions for translating (A), rotating (B), and

adding (C) and deleting (C 0) cracks.

Within each iteration, we begin by deciding whether we will perform a between-
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model or within-model move. With probability �bd we will perform a between-model

move which will be either a death (i.e., we delete a crack { this is proposed with

probability �d) or a birth (i.e., we add a new crack { this is proposed with probability

1� �d). If we choose to perform a within-model move, then with probability �r we will

choose to rotate all cracks, else we translate all cracks. These updates involve taking

each crack in turn and performing the selected move type. The updating scheme is

graphically illustrated in �gure 4. We now consider each move type in turn and explain

how each is performed.

�bd

1��bd

�d

1��d

�r

1��r

translate

rotate

birth

death

Translate a crack

Rotate a crack

Add a crack

Kill a crack

A

B

C

C0

Figure 4. Schematic representation of the tree that the transition kernel ascends to

pick a transition type.

4.1. Translating a crack

Suppose that we have decided to attempt a move of type A. We do this by considering in

turn the four parameters (x1; y1; x2 and y2) of each crack and updating each parameter

by selecting a new value within some small region of the current value. More speci�cally,

to update any one of the four parameters, we sample a value uniformly in a symmetric

interval around the current position with width 2�l. In proposing a change to any one

of these parameters, we propose a move from 	 to 	0, with qA(	;	
0) = 1=2�l. Since

this proposal is symmetric, the acceptance probability in (4) reduces to

�A(	;	
0) = minf1; 1l(	0 2 	) exp[V (	; �)� V (	0; �)]g :

Once the �rst of the four parameters has had a new value proposed and subsequently

either accepted or rejected, we move on to the second. This continues until all four

parameters have undergone this procedure. When all four parameters have been

updated, we move on to the next crack until all cracks have been updated in turn

which completes the MCMC iteration.

4.2. Rotating a crack

Again, let  denote an arbitrarily chosen crack in 	 and assume that it is rotated

counter-clockwise about its centre according to a rotation parameter �0. We parameterise

 by (x1; y1; x2; y2) with its centre given by (c1; c2) = (x1 + x2; y1 + y2)=2. Let � denote
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the angular direction from (c1; c2) to (x1; y1) with respect to the horizontal axis, then

the crack is rotated counter-clockwise according to a rotation parameter �0 uniformly

sampled in [���;��]. Hence, the new crack  0 is given by its new endpoints

(a01; a
0

2) = (c1; c2) + �[cos(� + �0); sin(� + �0)]=2;

(b01; b
0

2) = (c1; c2)� �[cos(� + �0); sin(� + �0)]=2;

where � =
p
(a1 � b1)2 + (a2 � b2)2 denotes the length of  . Thus, qB(	;	

0) = 1=2��

and �B is identical to �A above.

4.3. Adding/deleting a crack

Assume that con�guration 	 consists of n cracks then, in the birth move, a new crack

 is proposed by sampling two points a = (x1; y1) and b = (x2; y2) uniformly in


. By u we denote the vector of random variables (x1; x2; y1; y2) for the new crack

position so that qC(u) = 1=�2. Here, the probability of proposing move type C is

given by rC = �bd(1 � �d) and the probability of proposing the reverse is given by

rC0 = �bd�d=(n + 1). The latter being derived from the product of the probabilities of

picking a between-model move, then a death and �nally picking crack  from n + 1

cracks in 	0.

The Jacobian term in the acceptance probability given by j@f(	;u)=@(	;u)j is

simply one, since f(	;u) = (	;u). Hence,

�C(	;	
0) = min

�
1; 1l(	0 2 	)

�2�d
(1� �d)(n+ 1)

exp[V (	; �)� V (	0; �)]�

�
:

The death of a crack is performed similarly, with one of the n cracks being proposed

for deletion, a move which is subsequently accepted with probability

�C0(	;	0) = min

�
1;
(1� �d)n

�2�d
exp[V (	; �)� V (	0; �)]=�

�
:

4.4. Updating the variance

The moves that we have so far described deal with movements in 	. However, the error

variance �2 is also a parameter that requires updating. We assume a priori that the

precision � = 1=�2 is Gamma distributed with parameters �1 and �2, in which case the

posterior conditional density for � is given by

�(� j	;�) = ��1+n�1exp

"
��

 
�2 +

mX
i=1

[�(ti)� F	(ti)]
2=2

!#
i.e., the conditional distribution of � is Gamma distributed with parameters �1+n and

�2 +
Pm

i=1[�(ti) � F	(ti)]
2=2. It is easy to show that if we choose this distribution as

our proposal, then the corresponding acceptance probability is identically equal to one.

This is in fact a special case of the Metropolis{Hastings algorithm, known as a Gibbs

sampling update, see Geman and Geman (1984) and Gelfand and Smith (1990). We

update the variance in this manner at each iteration.
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4.5. Simulated tempering updates

Pilot runs of the simulation appeared to exhibit rather slow mixing behaviour, primarily

due to the existence of local maxima in the likelihood so that new cracks can be slow to

move to more likely positions. To overcome this problem, the state space of the chain

can be augmented to introduce simulated tempering updates which greatly improves

sampling performance. These updates were attempted after every 10 iterations so that

in temperature �i we propose a move to �i�1 with probabilities pi!i+1 = pi!i�1 =
1
2
for

i = 2; : : : ; L � 1, and p1!2 = pL!L�1 = 1 (see also table 1). This change is accepted

with probability

min

�
1;
cjpj!i

cipi!j

�
��m exp[V (	; �)]

	1=�j�1=�i� ;
where �j denotes the proposed new temperature (j = i� 1).

The Markov chain we have proposed here for crack detection was implemented and

tested (experimental code-checking simulation can be done by letting V � 0, so that

the chain is entirely prior driven). Several simulations were performed varying only

the � -parameters and, since estimates from these di�erent runs are similar, we assume

that all are sampling from the same (and correct) stationary distribution. Note that

additional diagnostics may be employed, see for example Brooks and Roberts (1998).

5. Results

In this section, we consider the performance of our approach on simulated data similar

to that used by Bryan and Vogelius (1994) and discussed in section 2. The simulated

data comes from three cracks of which two are only 0.05 units away from the boundary

to which 60 electrodes have been attached. The data is perturbed by Gaussian noise

with zero mean and variance �2 = 0:25 approximately corresponding to a 10% noise-

to-signal ratio. For the simulations, we chose �bd = 1=4; �r = 2=15 and �d = 1=2,

so that the chain spends more time translating and rotating cracks than inserting and

deleting them. A tempering scheme based on the temperatures 1; 1:5; 2; 4; 7:5 and1 are

used and a temperature change is proposed after every ten iterations. For the prior we

choose � = 0:37. To eÆciently explore � we suggest proposing `bigger' moves in higher

temperatures and di�erent values of �l and �� are therefore used. Table 1 provides

these values together with the prior temperature probabilities which are based upon a

series of pilot runs where the probabilities are adjusted from run to run to obtain values

that make the chain visit the di�erent temperatures roughly equally often, see Geyer

and Thompson (1995). The temperature scheme used here and described in table 1 has

been tailored (via pilot tuning) to this particular problem and may not be suitable for

other data sets. In general some degree of pilot tuning is necessary in order for the

simulations to work well, see Geyer and Thompson (1995) who describe a variety of

more sophisticated methods for choosing both the prior temperature probabilities and

the spacing between successive temperatures. These methods may be of most use when

handling problems with densely packed non-intersecting cracks. The MCMC algorithm
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was started with �2 = 1 in the same initial crack con�guration used by Bryan and

Vogelius (1994) and ran for 50,000 iterations.

Table 1. Prior temperatures and corresponding proposal steps and prior probabilities

used in the crack detecting MCMC algorithm. Shown are also an example of observed

frequencies after a run of the chain for 50,000 iterations.

Temperature �l �� Prior probability Observed frequencies

1 0:01 �=48 0:3627 0:162

1:5 0:02 �=24 0:1874 0:161

2 0:05 �=12 0:1471 0:188

4 0:10 �=6 0:1192 0:177

7:5 0:15 �=4 0:1009 0:150

1 0:25 �=2 0:0827 0:162

In the following interpretation of the simulation results we need a partial ordering

of the cracks in order to uniquely identify the di�erent cracks in any given con�guration.

Assume that 	 is a �nite collection of n linear non-intersecting cracks where crack  i
is uniquely parameterised by its endpoints (xi1; y

i
1) and (xi2; y

i
2). A partial ordering of

the cracks is then obtained by ordering each crack individually, so that xi2 � xi1 for

i = 1; : : : ; n. Moreover, the cracks are ordered globally so that x11 � x21 � � � � � xn1 .

The output from the chain whilst in the cold distribution is of particular interest,

since it is only these that are drawn from �(� j�). Figure 5(a) shows the sampled

crack con�gurations from �, whereas �gure 5(b) shows the corresponding mean crack

con�guration with 95% credible intervals. As the cracks are clearly split into three

seperate clusters, mean and credible intervals are constructed within each cluster. This

method is suÆcient for the problem at hand, but for even higher noise levels one may

encounter problems with `overlapping' clusters of cracks. In such cases an intensity

plot of the posterior probabilities for the cracks passing any point in 
 may be more

appropriate. Each �gure is based upon 8100 samples from �. The corresponding

posterior means are given in table 2 together with 95% credible intervals.

3

2

1

3

2

1

(a) (b)

Figure 5. (a) Samples from �(	 j�); and (b) estimated cracks with 95% credible

intervals (credible intervals:||, true cracks:� � � � � �).
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Table 2. The resulting posterior means, standard deviances and credible intervals for

the locations of the three cracks, together with the error variance.

95% C.I.

Parameter Estimate St.d. Lower Upper Truth

x11 0:5827 0:0103 0:5685 0:6089 0:5833

y11 0:0076 0:0108 �0:0383 0:0039 0:0000

x12 0:9475 0:0093 0:9456 0:9820 0:9500

y1
2

0:0002 0:0032 �0:0087 0:0037 0:0000

x2
1

�0:4608 0:0103 �0:4957 �0:4555 �0:4583

y2
1

�0:4140 0:0104 �0:4339 �0:3932 �0:4167

x2
2

�0:1678 0:0099 �0:1790 �0:1401 �0:1667

y2
2

�0:4174 0:0101 �0:4502 �0:4106 �0:4167

x3
1

�0:7009 0:0097 �0:7244 �0:6863 �0:7083

y3
1

�0:6715 0:0098 �0:6866 �0:6482 �0:6667

x3
2

�0:5783 0:0093 �0:6088 �0:5725 �0:5833

y32 �0:5381 0:0098 �0:5634 �0:5250 �0:5417

�2 0:2785 0:0363 0:2073 0:3496 0:2500

In �gure 6 we give the trace plots for the temperatures, the number of cracks, the

�rst coordinate of the �rst crack (x11) and for the variance �2. From �gure 6(a) it is

apparent that the chain divides its time roughly equally between the 6 di�erent samplers.

A trace plot for the number of cracks is shown in �gure 6(b). We can see that the

chain appears to move fairly freely between having zero and three cracks. Actually, the

posterior distribution is concentrated on con�gurations with three cracks. Figure 6(c)

shows the trace plot for the �rst coordinate of the �rst crack. Finally, �gure 6(d) shows

the trace plots for the variance which exhibits excellent mixing properties.

6. Discussion

In this paper we have developed a pratical Bayesian approach for the reconstruction of

an unknown set of linear cracks based upon electrostatic boundary measurements. The

reconstruction technique is an extension of a very eÆcient algorithm developed by Bryan

and Vogelius (1994). The advantage of the Bayesian approach is that uncertainty about

the number of cracks is a part of the modelling process and thereby the use of ad hoc

techniques is avoided. Moreover, the method allows for statistical inference, in the sense

that uncertainty about the estimates can be evaluated. The Bayesian reconstruction

technique has been tested on a substantial number of di�erent crack con�gurations data

and relatively precise reconstructions were provided, even under high noise levels.

Consequently the Bayesian reconstruction technique seems rather promising and

very robust and it would therefore be interesting to test it on real crack data, as well

as apply it to other problems. However, we note that the method is computationally

intensive. For comparison it took 40 minutes to run 50; 000 simulations on a shared 400

MHz RISC processor with 1024 MB memory. Nevertheless, by constructing a proposal
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Figure 6. Trace plots from the Markov chain: (a) The visited temperatures; (b)

number of cracks, (c) the trace of the �rst coordinate in the �rst crack's endpoint in

the cold distribution; and (d) the error variance.

distribution based on the gradient of the forward map much more eÆcient Monte Carlo

methods may be derived. Since the gradient already has been provided by Bryan and

Vogelius (1994), this modi�ed algorithm would be fairly easy to implement.
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