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Abstract. We study Merton's classical portfolio optimization problem for an investor who can
trade in a risk-free bond and a stock. The goal of the investor is to allocate money so that her
expected utility from terminal wealth is maximized. The special feature of the problem studied
in this paper is the inclusion of stochastic volatility in the dynamics of the risky asset. The
model we use is driven by a superposition of non-Gaussian Ornstein-Uhlenbeck processes and
it was recently proposed and intensively investigated for real market data by Barndor�-Nielsen
and Shephard [3]. Using the dynamic programming method, explicit trading strategies and
expressions for the value function via Feynman-Kac formulas are derived and veri�ed for power
utilities. Some numerical examples are also presented.

1. Introduction

Recently, Barndor�-Nielsen and Shephard [3] suggested to model the volatility in asset price
dynamics as a weighted sum of non-Gaussian Ornstein-Uhlenbeck processes. This volatility model
possesses many of the observed features of �nancial logreturn data, such as heavy tails and long-
range dependency. Barndo�-Nielsen and Shephard [3] introduce subordinators (i.e., nondecreas-
ing pure-jump L�evy process) as the noise driving the Ornstein-Uhlenbeck processes. That is, the
volatility level is allowed to have sudden shifts in the upward direction, while decreasing expo-
nentially between such shifts. Empirical investigations made by the authors [3] on exchange rates
demonstrate that such volatility models show a remarkable �t to both the empirical autocorrela-
tion and the leptokurtic behaviour of logreturn data. In the present paper we want to investigate
Merton's classical portfolio optimization problem under this volatility model.

Merton [23, 24] explicitly solved the question of optimal portfolio allocation in a market with
a risk-free bond and a stock as investment alternatives. The price of the risky asset (e.g., a stock)
follows a geometric Brownian motion (or a geometric Brownian motion with Poisson jumps).
The investor wants to maximize her terminal wealth under a power utility function. Using a
stochastic volatility model as in Barndor�-Nielsen and Shephard [3], we prove that it is still
possible to explicitly solve Merton's problem, however, now via a Feynman-Kac representation.
Not surprisingly, the investor should follow Merton's original strategy of constant allocation (that
is, an allocation independent of current level of wealth), but she should rebalance the portfolio
according to changes in the volatility.

Our approach to solve the stochastic optimization problem goes via the dynamic programming
method and the associated Hamilton-Jacobi-Bellman (HJB) integro-di�erential equation. Using a
veri�cation theorem, we are able to identify the expected value derived from utility as a solution
of a second order integro-di�erential equation. The solution to this HJB equation can be written
down in terms of the power utility function and a Feynman-Kac representation. In addition, it
is possible to explicitly write down the optimal allocation strategy. All results are derived under
exponential integrability assumptions on the L�evy measures coming from the volatility process.
We suppose that there are borrowing and short-selling constraints in the market. In a companion
paper [9] we study the portfolio problem with a general utility function and an extension of the
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stock price dynamics. In that paper we use viscosity solution methods to relate the value function
to the HJB equation.

A major drawback with the dynamic programming approach is the fact that the allocation
strategies must depend on the volatility (explicitly or through information generated by it). Of
course, volatility is not directly observable in the market like the stock price, and it is therefore in
practice impossible to follow portfolio rules where one must take the level of volatility explicitly
into account. An alternative to our approach is stochastic control under partial observation. This
would solve the problem of dependence of the volatility in the controls. Pham and Quenez [26] use
the approach of partial observation to solve a portfolio problem similar to ours, however, with a
stochastic volatility process driven by a Brownian motion correlated to the dynamics of the risky
asset. Choosing their point of view in our context would lead to nonlinear �ltering problems for
jump processes. For more information on stochastic control under partial observation, see the
monograph by Bensoussan [4].

Despite the (possible) practical shortcomings, we still believe our analysis contribute to further
insight into portfolio optimization problem in markets with stochastic volatility. Investors do have
a feeling for the current level of volatility, and it therefore may be desirable to include this (time-
varying) information into their portfolio management strategies. Our results may also be useful
for option pricing in incomplete markets. Following Hodges and Neuberger [19] and Davies, Panas
and Zarpiphopoulou [12] one may use portfolio optimization techniques to determine the price
of derivatives. Contrary to arbitrage techniques, this approach leads to a unique price. In the
passing, we mention the work of Nicolato and Venardos [25] which deals with arbitrage pricing
of European call options when the underlying asset follows the dynamics suggested by Barndor�-
Nielsen and Shephard. In a forthcoming work [10], we will investigate the pricing problem from a
utility maximization point of view.

Fouque, Papanicolaou and Sircar [16] study Merton's problem with stochastic volatility being
the exponential of a mean-reverting process. The volatility process is driven by a Brownian motion
correlated to the risky asset. Using the same line of argumentation as we do, they derive explicit
solutions for both the optimal investment strategy and the investor's value function. The authors
investigate their explicit solutions by means of asymptotic expansions around the (inverse of the)
speed of mean-reversion, and thereby obtaining results of practical interest. Since our volatility
process will be of a non-Gaussian nature, we face the problem of solving an integro-di�erential
equation to �nd the value function. This equation can not be solved explicitly, but in general only
by means of a Feynman-Kac formula. In addition, integrability conditions must be imposed in
order to ensure the �niteness of the expectations that we encounter.

For implications of stochastic volatilitymodels on derivatives pricing and hedging, the interested
reader is advised to look into the monograph of Fouque, Papanicolaou and Sircar [16] and the
references therein. See also the discussions and the reference list in Barndor�-Nielsen and Shephard
[3]. Recently, many authors have studied portfolio optimization problems with asset dynamics
going beyond the classical geometric Brownian motion (or the Samuelson model). We would like
to mention Bank and Riedel [2], Benth, Karlsen and Reikvam [5, 6, 7, 8], Goll and Kallsen [14]
and Kallsen [21] which model the risky asset as an exponential of a L�evy process, and Framstad,
�ksendal and Sulem [17, 18] using a geometric stochastic di�erential equation driven by a L�evy
process as stock price model. All these references are based on asset dynamics which do not take
long-range dependency of logreturns into account, since the noise is driven by a L�evy process.

This paper is organized as follows: In Section 2 we give a rigorous formulation of the portfolio
optimization problem together with some basic assumption. Section 3 shows some basic results on
moments of the value process and the stochastic volatility model which are useful later. To prove
the explicit solution derived in Section 4, we prove a veri�cation theorem under some (natural)
integrability conditions in Section 3. In Section 6, we discuss our results (and the conditions put
forth) and relate them to the empirically based models of Barndor�-Nielsen and Shephard [3].
Finally, in Section 7 optimal investment strategies where varying volatility is taken into account
are compared numerically with the classical solution of Merton [23, 24]. We demonstrate that
stochastic volatility may lead to signi�cantly di�erent market behaviour.
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2. Formulation of optimization problem

For 0 � t < T < 1, let (
;F ; P ) be a complete probability space equipped with a �ltration
fFsgt�s�T satisfying the usual conditions. Introduce m independent subordinators Zj(s) (i.e pure-
jump Levy processes with no drift and positive increments) and denote the corresponding L�evy
measures by `j(dz), j = 1; : : : ;m. The L�evy measure of a subordinator satis�es the integrability
condition Z 1

0+

min(1; z) `(dz) <1:

We choose the (unique) cadlag (i.e., RCLL) version of Zj(s). Let B(s) be a Wiener process
independent of all the subordinators.

Let us introduce the stochastic volatility model proposed by Barndo�-Nielsen and Shephard
[3]: Denote by Yj(s), j = 1; : : : ;m, the Ornstein-Uhlenbeck stochastic processes with dynamics

dYj(s) = ��jYj(s) ds + dZj(�js);

where �j is a positive number. Observe that

Yj(s) = yje
��j(s�t) +

Z s

t

e��j(s�u) dZj(�ju) ;

and thus
Y (s) = (Y1(s); : : : ; Ym(s)) � 0 a.s. for all t � s � T :

De�ne the (stochastic) volatility of the stock to have the dynamics

�t;y(s) =
mX
j=1

!jYj(s); s 2 [t; T ];

where !j > 0 are weights summing to one and �t;y(t) =
Pm

j=1 !jyj =: � is the initial volatility at

time t. We shall frequently write �y(s) for �0;y(s). This will also be the case for other processes
when they start at time zero. Inserting Yj(s) into the volatility process leads to

�t;y(s) =
mX
j=1

!jyje
��j(s�t) +

Z s

t

mX
j=1

!je
�j(s�u) dZj(�ju) :

The stock price dynamics is assumed to follow the stochastic di�erential equation (a geometric
Brownian motion with stochastic volatility)

dS(s) =
�
� +

�
1
2 + �

�
�(s)

�
S(s) ds +

p
�(s)S(s) dB(s);

where � and � are constants. The risk-free asset has dynamics

dR(s) = rR(s) ds;

where r > 0. Let �(s) be the fraction of wealth invested in the stock at time s, and assume that
there are no transaction costs in the market. The wealth process W (s) is the sum of the position
in the stock and the risk-free asset:

W (s) =
�(s)W (s)

S(s)
S(s) +

(1� �(s))W (s)

R(s)
R(s):

The self-�nancing hypothesis yields the wealth dynamics:

dW (s) = �(s)
��
� + (12 + �)�(s)

�
� r
�
W (s) ds + rW (s) ds + �(s)

p
�(s)W (s) dB(s);

with initial wealth W (t) = w.
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The set of admissible controls � is de�ned as follows:

De�nition 2.1. An investment strategy (control) � = f�(s) : t � s � Tg is said to be admissible,
and we write � 2 At, if � is progressively measurable and �(s) 2 [0; 1] a.s. for all t � s � T .

Note that the control set At only depends on the current time, and not on the level of wealth
nor volatility. We emphasize that the restriction � 2 [0; 1] is just for mathematical convenience.
Instead, we could have assumed � 2 [�; �] for some constants �1 < � < � < 1. All argu-
ments below goes through with minor modi�cations in this case, however, the analysis is more
transparent when � = 0 and � = 1. Since the processes Yj(s) are right-continuous it follows that

�(s) is right-continuous. Thus
R T
0 �(s) ds < 1 a.s. , which together with � 2 [0; 1] yields thatR t

0 �(s)
p
�(s) dB(s) is a well-de�ned local martingale. In this paper we need to impose exponen-

tial integrability conditions on the L�evy measures `j(dz). These conditions imply the martingale
property of the Itô integral.

Condition A: For a constant cj > 0,Z 1

0+

(ecjz � 1) `j(dz) <1:

Later we shall specify in detail the choice of the constant cj in Condition A for each j = 1; : : : ;m.
At this stage we only assume for every j = 1; : : : ;m the existence of a cj for which Condition A
holds. Note that Condition A is a condition on the integrability of the tails of the L�evy measures,
since ecjz � 1 � z when z is in the neighborhood of zero. Under exponential integrability, we have

E

h
eaZj(�jt)

i
= exp

�
�j

Z 1

0+
(eaz � 1) `j(dz)t

�
(2.1)

as long as Condition A holds with cj = a.
Let y := (y1; : : : ; ym) 2 Rm. We will use the symbol R+ for the set (0;1). The spatial domain

of our stochastic control problem is

D :=
n
(w; y) 2 R�Rm : w > 0; y1; : : : ; ym � 0

o
:

The functional to be optimized takes the form

J(t; w; y;�) = E
t;w;y

�
U (W �(T ))

�
;

where the notation Et;w;y means that we take the expectation conditioned on W (t) = w and
Yj(t) = yj , j = 1; : : : ;m. U is the investor's utility function, being concave, nondecreasing and
bounded from below. In addition, we assume that U is of sublinear growth, i.e. there exist positive
constants k and 
 2 (0; 1) so that U (w) � k(1+w
) for all w � 0. Our optimal stochastic control
problem consists of determining the value function

V (t; w; y) = sup
�2At

J(t; w; y;�); (t; x) 2 [0; T ]�D;(2.2)

along with an optimal investment strategy �� 2 At such that

V (t; w; y) = J(t; w; y;��):

Observe that

V (T;w; y) = U (w) 8(w; y) 2 D; V (t; 0; y) � U (0) 8(t; y) 2 [0; T ]�Rm
+ :(2.3)

The HJB equation associated to our stochastic control problem is

vt + max
�2[0;1]

n
�
�
�+

�
1
2
+ �

�
� � r

�
wvw + 1

2
�2�w2vww

o
+ rwvw

�

mX
j=1

�jyjvyj +
mX
j=1

�j

Z 1

0

�
v(t; w; y + z � ej)� v(t; w; y)

�
`j(dz) = 0;

(2.4)

for (t; w; y) 2 [0; T )�D. In view of (2.3), we augment (2.4) with the terminal condition

v(T;w; y) = U (w) 8(w; y) 2 D(2.5)
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and the boundary condition

v(t; 0; y) = U (0) 8(t; y) 2 [0; T ]�Rm
+ :(2.6)

We have used the following notational convention: vt = @v=@t, vw = @v=@w, vww = @2v=@w2 and
vyj = @v=@yj , j = 1; : : : ;m.

3. Preliminary estimates

The following lemmas are useful in relating the existence of exponential moments of Y to
exponential integrability conditions on the L�evy measures (see also [9]).

Lemma 3.1. For �j > 0, assume Condition A holds with cj = �j=�j. Then

E

�
exp

�
�j

Z s

t

Yj(u) du

��
� exp

�
�j
�j
yj + �j

Z 1

0+

fexp (�jz=�j)� 1g `j(dz)(s � t)

�
:

Proof. From the dynamics of Yj we �nd

�j

Z s

t

Yj(u) du = yj + Zj(�js) � Zj(�jt)� Yj(s)

� yj + Zj(�js) � Zj(�jt)

d
= yj + Zj(�j(s � t));

since Yj(s) � 0. The last equality is in the sense of equality in distribution. Hence, from (2.1),

E

�
exp

�
�j

Z s

t

Yj(u) du

��
� exp

�
�j
�j
yj

�
E

�
exp

�
�j
�j
Z(�j (s� t))

��

= exp

�
�j
�j
yj + �j

Z 1

0+

fexp(�jz=�j) � 1g `j(dz)(s � t)

�
;

which proves the lemma.

In a completely analogous way, we can show

Lemma 3.2. Assume Condition A holds for some positive constant cj. Then

E [exp (cjYj(s))] � exp

�
cjyj + �j

Z 1

0+

fexp(cjz) � 1g `j(dz)(s � t)

�
:

The following result provide us with a useful moment estimate on the wealth process.

Lemma 3.3. For some � > 0, assume Condition A holds with cj = 2�
���1
2 + �

��+ �
� !j
�j

for j =

1; : : : ;m. Then

sup
�2At

E
t;w;y

h
(W �(s))

�
i
� w� exp

0
@K(�)

mX
j=1

!j
�j
yj + C(�)(s � t)

1
A ;

where K(�) = �
���1
2 + �

�� + �
�
and

C(�) = � (j�� rj+ r) +
1

2

mX
j=1

�j

Z 1

0+

�
e
2!jK(�)

�j
z
� 1

�
`j(dz) :

Proof. First of all, we have

W �(s) = w exp

�Z s

t

�(u; �(u)) du+

Z s

t

�(u)
p
�(u) dB(u)

�
;

where
�(u; �) = �(u)

�
� +

�
1
2
+ �
�
� � r

�
+ r � 1

2
(�(u))2 �:
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De�ne

X(s) = exp

�Z s

t

2��(u)
p
�(u) dB(u) �

1

2

Z s

t

(2�)2 (�(u))
2
�(u) du

�
:

Then E [X(s)] = 1 since X(s) is a martingale by Novikov's condition. We have by Lemma 3.1
with �j = 2�2!j for j = 1; : : : ;m,

E

h
e
1
2

R
T

t
(2�)2(�(u))2�(u)du

i
� E

h
e2�

2
R
T

t
�(u)du

i
=

mY
j=1

E

h
e2�

2!j
R
T

t
Yj(u)du

i
<1:

Hence, by H�older's inequality and using that � 2 [0; 1],

E
�
(W �(s))�

�
= w�

E

�
exp

�
�

Z s

t

�(u; �(u)) du+ �

Z s

t

�(u)
p
�(u) dB(u)

��

= w�
E

�
exp

�
�

Z s

t

�(u; �(u)) du+ �2
Z s

t

(�(u))2 �(u) du

�
X(s)1=2

�

� w�
E

�
exp

�Z s

t

2��(u; �(u)) + 2�2 (�(u))2 �(u) du

��1=2
E [X(s)]1=2

� w�e(s�t)�(j��rj+r)E

�
exp

��
2�
��1
2 + �

�� + 2�2
� Z s

t

�(u) du

��1=2

= w�e(s�t)�(j��rj+r)
mY
j=1

E

�
exp

�
2�
���1
2 + �

��+ �
�
!j

Z s

t

Yj(u) du

��1=2
:

Choosing �j = 2�
���1
2 + �

�� + �
�
!j, j = 1; : : : ;m, in Lemma 3.1 we obtain the desired estimate.

The next proposition shows that the value function of our control problem is well-de�ned.

Proposition 3.4. Assume Condition A holds with cj = 2

���1
2 + �

��+ 

� !j
�j

for j = 1; : : : ;m.

Then

U (0) � V (t; w; y) � k

�
1 + w
e

K(
)
Pm

j=1

!j
�j

yj+C(
)(T�t)
�
;

where K(
) and C(
) are de�ned in Lemma 3.3 and k is a positive constant.

Proof. Since U is nondecreasing, we have U (w) � U (0). Hence E [U (W �(T ))] � U (0) for any
control �, which implies V (t; w; y) � U (0). The upper bound follows from the sublinear growth
of U and Lemma 3.3:

V (t; w; y) = sup
�2A

E [U (W �(T ))] � k

�
1 + sup

�2A
E [(W �(T ))
 ]

�

� k

�
1 + w
e

K(
)
P

m
j=1

!j
�j

yj+C(
)(T�t)
�
;

which proves the proposition.

Remark. Under additional exponential integrability conditions on the L�evy measures `j(dz),
local H�older continuity of the value function in all variables is proven in [9]. To establish such a
result, one needs of course that the utility function U is H�older continuous.

From now on we suppose that Condition B { which ensures that the value function is well-
de�ned { holds:

Condition B: For all j = 1; : : : ;m, Condition A holds with cj = 

���1
2 + �

��+ 

� !j
�j
.
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4. A verification theorem

We state and prove the following veri�cation theorem for our stochastic control problem:

Theorem 4.1. Assume that v(t; w; y) 2 C1;2;1 ([0; T )� (0;1)� [0;1)m)
T
C
�
[0; T ]�D

�
is a

solution of the HJB equation (2.4) with terminal and boundary conditions (2.5) and (2.6). For

j = 1; : : : ;m, assume

sup
�2At

Z T

0

Z 1

0+

E [jv(s;W �(s); Y (s) + z � ej) � v(s;W �(s); Y (s))j] `j(dz) ds <1

and

sup
�2At

Z T

0

E

h
(�(s))2 �(s) (W �(s))2 (vw(s;W

�(s); Y (s)))2
i
ds <1:

Then

v(t; w; y) � V (t; w; y); 8(t; w; y) 2 [0; T ]�D:

If, in addition, there exists a measurable function ��(t; w; y) 2 [0; 1] being a maximizer for the

max-operator in (2.4), then �� de�nes an optimal investment strategy in feedback form and

V (t; w; y) = v(t; w; y) = E
t;w;y

h
U
�
W ��(T )

�i
; 8(t; w; y) 2 [0; T ]�D:

Remark. The notation C1;2;1 ([0; T )� (0;1)� [0;1)m) means twice continuously di�erentiable
in w on (0;1) and once continuously di�erentiable in t; y on (0; T ) � (0;1)m with continuous
extensions of the derivatives to t = 0 and yj = 0, j = 1; : : : ;m.

Proof. Let (t; w; y) 2 [0; T )�D and � 2 At, and introduce the operator

M�v = �
�
� +

�
1
2 + �

�
� � r

�
wvw �

1
2�w

2�2vww + rwvw �

mX
j=1

�jyjvyj :

Itô's Formula (see, e.g., Ikeda and Watanabe, [20]) yields (with t � s � T )

v(s;W �(s); Y (s)) = v(t; w; y) +

Z s

t

�
vt(u;W

�(u); Y (u)) +M�v(u;W �(u); Y (u))
	
du

+

Z s

t

�(u)
p
�(u)W �(u)vw(u;W

�(u); Y (u)) dB(u)

+
mX
j=1

Z s

t

Z 1

0+

�
v(u;W �(u); Y (u�) + z � ej)� v(u;W �(u); Y (u�))

�
Nj(�jdu; dz);

where Nj is the (homogeneous) Poisson randommeasure coming from the L�evy-Kinchine represen-
tation of the subordinator Zj . From the assumptions we know that the Itô integral is a martingale
and that the integrals with respect to Nj are semimartingales (not only local semimartingales).
Hence, taking expectations on both sides implies

E [v(s;W �(s); Y (s))] = v(t; w; y) + E

�Z s

t

�
vt + L

�v
�
(u;W �(u); Y (u)) du

�

� v(t; w; y) + E

�Z s

t

�
vt + max

�2[0;1]
L�v

�
(u;W �(u); Y (u)) du

�
= v(t; w; y) ;

where

L�v =M�v +
mX
j=1

�j

Z 1

0+

�
v(t; w; y + z � ej) � v(t; w; y)

�
`j(dz):

Putting s = T and invoking the terminal condition for v, we �nd

v(t; w; y) � E [U (W �(T ))] ;

for all � 2 At. Therefore the �rst conclusion in the theorem holds for (t; w; y) 2 [0; T )�D.
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To prove the second part, observe that since ��(t; w; y) is assumed to be a measurable function,
we have that ��(s;W (s); Y (s)) is Fs-measurable for t � s � T . This together with �� 2 [0; 1]
implies that ��(s;W (s); Y (s)) is an admissible (feedback) control, i.e., an element of At. Moreover,
since �� is a maximizer, max�2[0;1] L

�v = L�
�

v. The above calculations using Itô's Formula above
go through with equality by letting � = ��. Hence,

v(t; w; y) = E

h
U
�
W �� (T )

�i
� V (t; w; y):

This together with the �rst part of the theorem yields

v(t; w; y) = V (t; w; y) = E

h
U
�
W �� (T )

�i
;

for (t; w; y) 2 [0; T )�D.
Observe that from the terminal and boundary conditions (2.5) and (2.6), the two conclusions

of the theorem obviously hold when t = T and w = 0. Hence the theorem is proven.

Remark. In Section 5 we construct an explicit solution of the HJB-equation 2.4 when U is a
power utility. Theorem 4.1 is used to prove that this solution coincides with the value function.

5. Explicit solution

In this section we shall construct and verify an explicit solution to the control problem (2.2)
together with an explicit optimal control �� when the utility function is of power type, i.e.,

U (w) = 
�1w
 ;

where 1 � 
 is known as the relative risk aversion of the investor and 
 2 (0; 1). These power
functions are also known as HARA-utility functions.

5.1. Reduction of the HJB-equation. De�ne

v(t; w; y) = 
�1w
h(t; y); (t; w; y) 2 [0; T ]�D;

for some function h(t; y). Observe that v(t; 0; y) = U (0). Inserted into the HJB-equation (2.4) we
get a �rst-order integro-di�erential equation for h:

ht(t; y) + 
�(�)h(t; y) �
mX
j=1

�jyjhyj (t; y) +
mX
j=1

�j

Z 1

0+

�
h(t; y + z � ej)� h(t; y)

�
`j(dz) = 0;

(5.1)

where (t; y) 2 [0; T )� [0;1)m. The terminal condition is h(T; y) = 1 for all y 2 [0;1)m, since
v(T;w; y) = U (w) = 
�1w
 . Recall here that � =

Pm
j=1 !jyj . The function � : [0;1) ! R is

de�ned as

�(�) = max
�2[0;1]

n
�
�
�+

�
1
2 + �

�
� � r

�
� 1

2�
2�(1� 
)

o
+ r:(5.2)

We calculate an explicit representation of �. A �rst order condition for an interior optimum is�
� +

�
1
2 + �

�
� � r

�
� ��(1� 
) = 0:

If we denote the interior optimum by �� = ��(�), then this gives

��(�) =
1

1� 


�
� � r

�
+

1

2
+ �

�
:

Note that ��(�) is a function in � only, and not in its di�erent components yj explicitly. We can
thus treat this interior optimum as a function on (0;1). Note from the constraints that ��(�) is
an optimum if ��(�) 2 [0; 1]. If this is not the case, the optimum is reached either in 0 or in 1,
depending on the parameters of the problem. We now investigate this more closely.
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In the rest of this section we assume � > r (the analysis for � < r is analogous) and aim at
�nding ��, i.e., the value of � for which the maximum is reached in the expression of �. Observe
that ��(�) is non-increasing, lim�#0 ��(�) = +1 and

lim
�!1

��(�) =
1
2 + �

1� 

:

We separate the further discussion into 3 cases:

Case I:
1
2+�
1�
 � 1. Under this assumption we see that �� � 1 for all �, and hence

��(�) = 1; � 2 [0;1):(5.3)

Inserting this into the expression for � we get

�(�) = �+
�

2
+ �

�
�; � 2 [0;1):

De�ne the constant b1 := � + 1
2
, and observe that b1 > 0.

Case II:
1
2+�
1�
 2 (0; 1). Under this assumption we see that there exists a �̂1 such that ��(�̂1) = 1

and ��(�) 2 (0; 1) for all � > �̂1. A straightforward calculation gives

�̂1 =
�� r

(1� 
) �
�
1
2 + �

� :
Hence, the optimal � is given as

��(�) =

(
1; � 2 [0; �̂1);

��(�); � 2 [�̂1;1):
(5.4)

The expression for � now becomes

�(�) =

8<
:
� +

�


2 + �

�
�; � 2 [0; �̂1);

(��r)2

2(1�
)� +
(��r)( 12+�)

(1�
) +
( 12+�)

2
�

2(1�
) + r; � 2 [�̂1;1):

Moreover, it is easily seen that

j�(�)j � a + b2� for some constant a:

Case III:
1
2+�
1�
 < 0. Observe that this assumption is equivalent to 1

2 + � < 0 since 
 2 (0; 1). In

this situation there will exist a �̂1 such that ��(�̂1) = 1 and a �̂0 such that ��(�̂0) = 0. The former
we calculated above, while the latter is easily found to be

�̂0 = �
�� r
1
2 + �

:

The optimal � is

��(�) =

8><
>:
1; � 2 [0; �̂1);

��(�); � 2 [�̂1; �̂0];

0; � 2 (�̂0;1):

(5.5)

Hence the expression for � becomes

�(�) =

8>><
>>:
�+

�


2 + �

�
�; � 2 [0; �̂1);

(��r)2

2(1�
)� +
(��r)( 12+�)

(1�
) +
( 12+�)

2
�

2(1�
) + r; � 2 [�̂1; �̂0];

r; � 2 (�̂0;1):

We now prove that �(�) is, in fact, continuously di�erentiable on [0;1) in all three cases.

Lemma 5.1. Assume � > r. Then the function �(�) de�ned in (5.2) is continuously di�eren-

tiable on [0;1).
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Proof. It is obvious that � is continuous since �� de�ned in (5.3), (5.4) and (5.5) are continuous,
and

�(�) = ��(�)
�
�+

�
1
2 + �

�
� � r

�
� 1

2�
�(�)2�(1� 
) + r:

In Case I, � is trivially di�erentiable. Furthermore, to prove di�erentiability of � in the two
subsequent cases, we must show that � is di�erentiable at � = �̂1 in Case II and at � = �̂1 and
� = �̂0 in Case III. But it is then suÆcient to only consider case III:

�0(�) =

8>><
>>:



2 + �; � 2 [0; �̂1)

�
(��r)2

2(1�
)�2 +
( 12+�)

2

2(1�
) ; � 2 (�̂1; �̂0)

0; � 2 (�̂0;1):

Straightforward calculations show

lim
�"�̂1

�0(�) =



2
+ � = lim

�#�̂1
�0(�)

and

lim
�"�̂0

�0(�) = 0 = lim
�#�̂0

�0(�);

implying the di�erentiability on [0;1) of �. This proves the lemma.

5.2. A Feynman-Kac formula for h(t; y). De�ne the function g(t; y) by

g(t; y) = E
y
h
e
R
t

0 
�(�(s))ds
i
; (t; y) 2 [0; T ]� [0;1)m;(5.6)

and recall that �y(0) =
Pm

j=1 !jyj =: �. Note that g(0; y) = 1. We �rst show that g is of
exponential growth in � and thus well-de�ned under a growth hypothesis.

Lemma 5.2. Assume Condition A holds with cj = 
b
!j
�j

for j = 1; : : : ;m, where b is equal to b1
in Case I, b2 in Case II and b3 = 0 in Case III. Then

g(t; y) � exp

0
@kt+ 
b

mX
j=1

!j
�j
yj

1
A ;

for some positive constant k.

Proof. From the discussion in the previous subsection, we know that there exist positive constants
a and b as given in the assumptions such that j�(�)j � a+ b�. Thus

g(t; y) = E
y
h
e
R
t

0 
�(�(s))ds
i
� Ey

h
e
R
t

0 (
a+
b�(s)) ds
i
= e
atE

2
4 mY
j=1

e
b!j
R
t

0 Y
yj
j

(s)ds

3
5 :

By independence of the Yj 's we get

g(t; y) � e
at
mY
j=1

E

h
e
b!j

R
t

0 Y
yj
j (s)ds

i
� e
at

mY
j=1

e

b!j
�j

yj+t
R
1

0+

�
e


b!j
�j

z

�1

�
`j(dz)

:

To derive the last inequality, we used Lemma 3.1 with �j = 
b!j . Hence, there exists a positive
constant k such that

g(t; y) � e
kt+
b

Pm
j=1

!j
�j

yj
;

and the lemma is proven.

We show next that g is continuously di�erentiable in y.

Lemma 5.3. Assume Condition A holds with cj = 
b
!j
�j

for j = 1; : : : ;m, where b is equal to b1

in Case I, b2 in Case II and b3 = 0 in Case III. Then g 2 C0;1
�
[0; T ]� [0;1)m

�
, i.e., g(�; y) is

continuous for all y 2 [0;1)m and g(t; �) is once continuously di�erentiable for all t 2 [0; T ].
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Proof. To prove di�erentiability, we will use the dominated convergence theorem to show that we
may interchange expectation and di�erentiation. The condition for this is contained in Theorem
2.27 of Folland [15], which essentially says that we need to bound the derivative by an integrable
function independent of y.

Let (t; y) 2 [0; T ]�Rm
+ and introduce the function

F (t; y) = e
R
t

0

�(�y(s))ds:

For each j = 1; : : : ;m, we have

@F (t; y)

@yj
=

�
@

@yj

Z t

0


�(�y(s)) ds

�
e
R
t

0

�(�y(s)) ds:

By Lemma 5.1, � is continuously di�erentiable and �0 is bounded. Hence


�0(�y(s))
@�y (s)

@yj
= 
�0(�y(s))!je

��js � c e��js;

for some strictly positive constant c. Theorem 2.27 b) in Folland [15] says that di�erentiation and
integration now commutes,

@F (t; y)

@yj
=

�

!j

Z t

0

�0(�y(s))e��js ds

�
e
R
t

0 
�(�
y(s))ds:

From the discussion in the previous subsection we know there exists constants a and b such that

j�(�)j � a + b� in Cases I and II, and �(�) � a in Case III, where b = 

2 + � and b =

( 12+�)
2

2(1�
) in

Cases I and II, respectively. Hence����@F (t; y)@yj

���� �
�
c

Z t

0

e��js ds

�
e
R
t

0 
�(�
y(s)) ds

�
c

�j
e
aT

(
e
b

R
t

0 �
y (s)ds; Cases I and II;

1; Case III:

As in Lemma 3.1,

!j
b

Z t

0

Y
yj
j (s) ds � !j
b

�
yj
�j

+
1

�j
Zj(�jt)

�
�

!j
b

�j
(yj + Zj(�jt)) :

Whence, there exists a positive constant k such that����@F (t; y)@yj

���� � k

(
e
P

m
j=1

�
!j
b

�j
yj+

!j
b

�j
Zj(�jt)

�
; Cases I and II;

1; Case III:

By (2.1), we have

E

�
e
!j
b

�j
Zj(�jt)

�
=

Z 1

0+

�
e
!j
b

�j
z
� 1

�
`j(dz);

which is assumed �nite.

Cases I and II: Choose a compact set where y is in the interior. On this compact we have that
j@F (t; y)=@yj j is uniformly bounded (in y) by the random variable

exp

�
!j
b

�j
Zj(�jt)

�
;

which is integrable since by assumption
R1
0

�
e!j
bz=�j � 1

�
`j(dz) <1, for j = 1; : : : ;m. Theorem

2.27 b) in [15] implies that g(t; y) = E [F (t; y)] is di�erentiable in y. Di�erentiability is a local
notion, hence the result is independent of the choice of the compact set. We conclude that

@g(t; y)

@yj
= E

�
@F (t; y)

@yj

�
; 8y 2 Rm

+ ; j = 1; : : : ;m:
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Moreover, we have that y 7! @F (t; y)=@yj is continuous since y 7! �y(s), � 7! �(�) and � 7! �0(�)
all are continuous mappings. Using Theorem 2.27 a) in Folland [15] we conclude that the mapping
(t; y) 7! @g(t; y)=@yj is continuous.

Case III: In this case j@Ft(y; !)=@yj j � k for some positive constant k. Hence, Theorem 2.27
a)-b) in [15] immediately applies to conclude that (t; y) 7! @g(t; y)=@yj is continuous and

@g(t; y)

@yj
= E

�
@Ft(y; �)

@yj

�
; j = 1; : : : ;m:

Since the limit of @F (t; y)=@yj exists when yi # 0 for any i = 1; : : : ;m, we can argue as above
to show that @g(t; y)=@yj has a limit when yi # 0. This concludes the proof of the Lemma.

Remark. Note that for Case III in Lemmas 5.2 and 5.3 we do not impose any integrability
condition on the L�evy measures `j(dz).

Lemma 5.4. Assume Condition A holds with cj = 2
b!j�j for j = 1; : : : ;m, where b is equal to b1

in Case I and b2 in Case II. In Case III, assume
R1
0+

z `j(dz) <1, j = 1; : : : ;m. Then

mX
j=1

E

"Z T

0

Z 1

0+

jg(u; Y (u) + z � ej)� g(u; Y (u))j `j(dz) du

#
<1:(5.7)

Proof. By the mean value theorem and di�erentiability of g we have,

jg(u; y + z � ej)� g(u; y)j � sup
x2[0;z]

����@g(u; y + x � ej)

@yj

���� z
� kz

(
e
P

m
j=1

b
!j
�j

(yj+Zj(�ju))
; Cases I and II

1; Case III;

where k is a positive constant only dependent on T and the parameters of the problem. Since

b
!j
�j

�
Zj(�ju) + Y

yj
j (u)

�
�

b
!j
�j

(Zj(�ju) + yj + Zj(�ju)) =
b
!j
�j

yj +
2b


�j
Zj(�ju);

we have

jg(u; Y (u) + z � ej)� g(u; Y (u))j � kz

8<
:e

Pm
j=1

�
b
!j
�j

yj+
2b
!j
�j

Zj(�ju)

�
; Cases I and II;

1; Case III:

From the integrability assumptions on `j(dz) in Cases I and II, we have from (2.1)Z T

0
E

�Z 1

0+
kz `j(dz)e

Pm
j=1

2b
!j
�j

Zj(�ju)
�
du

= k

Z 1

0+
z `j(dz) e

P
m
j=1 �j

R
1

0+

�
e

2b
!j
�j

z

�1

�
`j (dz)

<1:

The exponential integrability conditions in Cases I and II imply
R1
0+ z `j(dz) <1. In Case III we

have b = b3 = 0 and henceZ T

0
E

�Z 1

0+
kz`j(dz)

�
du � kT

Z 1

0+
z `j(dz);

which is �nite by assumption. This proves the lemma.

We now prove that g(t; y) is a (classical) solution to the related forward problem of (5.1).
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Proposition 5.5. Assume there exists " > 0 such that Condition A is satis�ed with cj = 2
b!j
�j
+"

for j = 1; : : : ;m, where b = b1 in Case I and b = b2 in Case II. Then g(t; �) belongs to the domain

of the in�nitesimal generator of Y and

@g

@t
(t; y) = 
�(�)g(t; y) �

mX
j=1

�jyj
@g

@yj
(t; y) +

mX
j=1

�j

Z 1

0+

�
g(t; y + z � ej) � g(t; y)

�
`j(dz) ;(5.8)

for (t; y) 2 (0; T ]�[0;1)m. Moreover, @g(t; y)=@t is continuous, so that g 2 C1;1 ((0; T ]� [0;1)m).

Proof. First of all, observe that the conditions in Lemmas 5.3 and 5.7 are ful�lled. The two �rst
terms on the right-hand side of (5.8) are continuous since � is continuous and g(t; �) 2 C1 by
Lemma 5.3 for all t 2 [0; T ]. The integral operator also de�nes a continuous function in time and
space. This follows from the integrability conditions on the L�evy measures `j(dz) and Theorem
2.27 in [15] together with arguments along the lines of the proofs of Lemmas 5.3 and 5.7. Hence if
g solves (5.8), then @g(t; y)=@t is continuous for (t; y) 2 (0; T )� [0;1)m, and may be continuously
extended to t = T . Hence, g 2 C1;1 ((0; T ]� [0;1)m).

From Lemma 5.3 we have that y 7! g(t; y) is a continuously di�erentiable map. Hence, we know
from Itô's lemma (see, e.g., Ikeda and Watanabe [20]) that the mapping s 7! g(t; Y (s)) is a (local)
semimartingale with dynamics

g(t; Y (s)) = g(t; y) �
mX
j=1

�j

Z s

0

Yj(u)
@g

@yj
(t; Y (u)) du

+
mX
j=1

Z s

0

Z 1

0+

�
g(t; Y (u�) + z � ej)� g(t; Y (u�))

�
Nj(�jdu; dz);

where Nj(�jdu; dz) is the Poisson randommeasure in the L�evy-Kintchine representation of Zj(�ju).
From Lemma 5.7 we know that

E

"Z T

0

Z 1

0+

jg(t; Y (u) + z � ej) � g(t; Y (u))j `j(dz) du

#
<1;

and thus g(t; Y (u) + z � ej) � g(t; Y (u)) 2 F1 (see Ikeda and Watanabe [20], page 61-62, for this
notation). This implies that g(t; Y (s)) is a semimartingale (and not only local semimartingale).
Taking expectations on both sides and rearranging terms give

E [g(t; Y (s))]� g(t; y)

s
= �

mX
j=1

�j
1

s

Z s

0

E

�
Yj(u)

@g

@yj
(t; Y (u))

�
du

+
mX
j=1

�j
s

Z s

0

Z 1

0+

E [g(t; Y (u) + z � ej)� g(t; Y (u))] `j(dz) du:

Hence, by letting s # 0 we get that g(t; �) is in the domain of the in�nitesimal generator of Y ,
which is denoted by G, and

Gg(t; y) = �

mX
j=1

�jyj
@g

@yj
(t; y) +

mX
j=1

�j

Z 1

0+

�
g(t; y + z � ej)� g(t; y)

�
`j(dz):

Since g(t; Y (s)) 2 L1(
; P ) for all s > 0 in a neighborhood of zero, we can calculate

E [g(t; Y (s))] = E

h
E

h
e
R
t

0 
�(�
Y y(s)(u))du

ii
= E

h
E

h
e
R
t

0 
�(�
y(u+s)) du

���Fsii
= E

h
e
R
t+s
s


�(�y(u)) du
i

= E

h
e
R
t+s
0 
�(�y(u)) du � e�

R
s

0 
�(�y(u))du
i
;
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where we have used the Markov property of Y together with the law of double expectation. Hence

E [g(t; Y (s))]� g(t; y)

s
=

1

s
E

h
e
R
t+s
0


�(�y(u))due�
R
s

0

�(�y(u)) du � e

R
t

0

�(�y(u))du

i
=

1

s
E

h
e
R
t+s
0


�(�y(u))due�
R
s

0

�(�y(u)) du � e

R
t+s
0


�(�y(u))du
i

+
1

s

n
E

h
e
R
t+s
0


�(�y(u))du
i
� E

h
e
R
t

0

�(�y(u))du

io
= E

�
e
R
t+s
0


�(�y(u))du 1

s

n
e�

R
s

0

�(�y(u))du � 1

o�
+
g(t + s; y) � g(t; y)

s
:

By the fundamental theorem of calculus we have that

e
R
t+s
0


�(�y(u)) du 1

s

�
e�

R
s

0

�(�y(u))du � 1

�
!�
�(�)e

R
t

0

�(�y(u))du as s # 0:

In order to show that limit and integration commute, de�ne the function

f(s) = e�
R
s

0 
�(�y(u)) du:

The mean value theorem gives

1

s
j(f(s) � f(0))j �

1

s
sup

s2[0;T ]
jf 0(s)j s = sup

s2[0;T ]

���
�(�y(s))e� R s0 
�(�y(u))du
���

� 
e

R
T

0 (a+b�y (u))du

 
a+ b sup

s2[0;T ]
�y(s)

!
:

In the last estimation we have used the linear growth of �. The constant b is b1 in Case I, b2 in
Case II and b3 = 0 in Case III. Since each Zj is a nondecreasing process,

sup
s2[0;T ]

�y(s) � � +
mX
j=1

!jZj(�jT ):

This implies

e
R
t+s
0 
�(�y(u))du 1

s

�
e�

R
s

0 
�(�y(u))du � 1
�
� k

mX
j=1

!je
2

R
T

0 (a+b�y(u))duZj(�jT );

for some positive constant k. But from (2.1)

mX
j=1

!jE
h
e2


R
T

0 (a+b�y (u))duZj(�jT )
i
� k

mX
j=1

!jE

"
e

�
2
!jb

�j
+"

�
Zj(�jT )

#

= k

mX
j=1

!je
�j
R
1

0+

�
e

2
b!j
�j

z

�1

�
`j (dz)

;

where k is some positive constant (di�erent than above). In our estimation, we have used that
there exists a positive constant k" such that z � k"e

"z for all z � 0. The last sum is �nite by our
integrability assumption. Hence by dominated convergence (see Theorem 2.27 a) in [15]) @g=@t
exists and

Gg(t; y) = �
�(�)g(t; y) +
@g(t; y)

@t
:

This concludes the proof of the proposition.

Let h(t; y) = g(T � t; y), i.e.,

h(t; y) = E
y
h
e
R
T�t

0 
�(�(s)) ds
i
:

We can represent this equivalently as

h(t; y) = E
t;y
h
e
R
T

t

�(�(s))ds

i
;(5.9)
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by using the time-homogeneity of Y . Hence our explicit solution candidate is

v(t; w; y) = 
�1w
h(t; y):(5.10)

The optimal feedback control ��(�) is given in (5.3), (5.4) or (5.5), depending on the size of�
1
2 + �

�
=(1� 
). In the next section we prove that (5.10) coincides with the value function (2.2).

5.3. Explicit solution of the control problem. We apply the veri�cation theorem to connect
our explicit solution to the value function of the control problem. But �rst we need the integrability
results stated in the following two lemmas.

Lemma 5.6. Assume Condition A holds with cj = 8

���1
2 + �

��+ 4

� !j
�j

for j = 1; : : : ;m. ThenZ T

0

E

h
(�(u))2 (W �(u))2 �(u) (W �(u))2(
�1) h(u; Y (u))

i
du <1; 8� 2 A0:

Proof. Observe that the function h has the same growth as g. Hence, by Lemma 5.2 and � 2 [0; 1],Z T

0

E

h
(�(u))2 (W �(u))2 �(u) (W �(u))2(
�1) h(u; Y (u))

i
du

�

Z T

0

E

�
(W �(u))2
 �(u)e

ku+
b
Pm

j=1

!j

�j
Yj(u)

�
du

� k"e
kT

Z T

0

E

�
(W �(u))2
 e

(
b+")
Pm

j=1

!j
�j

Yj(u)
�
du;

where k" is a positive constant such that � � k"e
"
Pm

j=1

!j
�j

yj
. H�older's inequality givesZ T

0

E

h
(�(u))

2
(W �(u))

2
�(u) (W �(u))

2(
�1)
h(u; Y (u))

i
du

� k"

Z T

0

mY
j=1

E

�
e
2(
b+")

!j
�j

Yj(u)
�1=2

E

h
(W �(u))4


i1=2
du

� k"

Z T

0

mY
j=1

E

�
e

�
2
b

!j
�j
+"
�
Yj(u)

�1=2
E

h
(W �(u))4


i1=2
du;

where b is b1 in Case I, b2 in Case II and b3 = 0 in Case III. In the last estimation we have rede�ned
" to get a more tractable integrability condition.

We now argue that the two expectations are �nite. Note that we are free to choose " as long as
it is positive. Let �j = 2
b!j=�j + ". In Case I, we have �j = 2


�


2 + �

�
+ " < cj for a suitably

chosen ", where cj is de�ned in the lemma. In Case II, �j = 2

( 12+�)

2

2(1�
)
!j
�j

+ ", and since we have
1
2+�
1�
 < 1, �j < 


�
1
2 + �

� !j
�j

+ " < cj if we choose " small enough. In Case III, we obviously have

�j = " < cj when choosing " smaller than cj . Thus, the integrability condition in Lemma 3.2
holds and the terms involving the expectation of Yj(u) above are �nite. Finally, invoking Lemma
3.3 yields the desired result.

Lemma 5.7. Assume Condition A holds with cj = 8

���1
2 + �

��+ 4

� !j
�j

for j = 1; : : : ;m. ThenZ T

0

Z 1

0+

E
�
(W �(s))


��h(u; Y (u) + z � ej) � h(u; Y (u))
��� `j(dz) du <1; j = 1; : : : ;m:

Proof. We follow the arguments in the proof of Lemma 5.7:Z T

0

Z 1

0+

E [(W �(u))


jh(u; Y (u) + z)� h(u; Y (u))j] `j(dz) du

�

Z T

0

E

�
(W �(u))


Z 1

0+

Kze


Pm

j=1

!j
�j

b(yj+2Zj(�ju))
`j(dz)

�
du
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� k1e
k2�

Z 1

0+

z `j(dz)

Z T

0

E

�
(W �(u))
 e

2
b
Pm

j=1

!j
�j

Zj(�ju)
�
du;

where k1; k2 are positive constants. Using H�older's inequality with p = 4 and q = 4=3 givesZ T

0

Z 1

0+

E [(W �(u))
 jh(u; Y (u) + z)� h(u; Y (u))j] `j(dz) du

� k1e
k2�

Z 1

0+
z `j(dz)

Z T

0
E

h
(W �(u))4


i1=4
E

�
e
8
3 
b

Pm
j=1

!j
�j

Zj (�ju)
�3=4

du

� k1e
k2�

Z 1

0+

z `j(dz)
mY
j=1

E

�
e
8
3
b

!j
�j

Zj (�jT )
�3=4 Z T

0

E

h
(W �(u))4


i1=4
du

= k1e
k2�

Z 1

0+

z `j(dz)e
3
4

Pm
j=1 �j

R
1

0+

�
e
8
3

b

!j
�j

z

�1

�
`j (dz)

Z T

0

E

h
(W �(u))4


i1=4
du:

Let �j =
8
3
b

!j
�j
. In Case I, �j =

8
3

�


2 + �

� !j
�j
, which obviously is less than the cj given in the

lemma. In Case II, we have �j <
8
6

�
1
2 + �

� !j
�j

< cj . Finally, in Case III, �j = 0 < cj. Hence, the

integrability condition in the Lemma implies that
R1
0+

�
e
8
3
b

!j
�j

z
� 1
�
`j(dz) <1 for j = 1; : : : ;m.

From Lemma 3.3 the desired result follows.

We sum up our results in this section in the following theorem:

Theorem 5.8. Assume Condition A holds with cj = 8

���1
2 + �

�� + 4

� !j
�j

for j = 1; : : : ;m. Then

the value function of the control problem is

V (t; w; y) = 
�1w
h(t; y)

where h is de�ned in (5.9). Furthermore, the optimal investment strategy is ��(�) = 1 in Case I,

��(�) =

(
1; � 2 [0; �̂1);

��(�); � 2 [�̂1;1)

in Case II and

��(�) =

8><
>:
1; � 2 [0; �̂1);

��(�); � 2 [�̂1; �̂0];

0; � 2 (�̂0;1):

in Case III. The function ��(�) is de�ned as

��(�) =
1

1� 


�
�� r

�
+
1

2
+ �

�
and

�̂1 =
� � r

(1� 
) �
�
1
2 + �

� ; �̂0 = �
�� r
1
2 + �

:

Proof. Observe that Condition B holds under our assumption. Moreover, the integrability condi-
tion implies by Lemma 5.2 that h is well-de�ned.

Let v(t; w; y) = 
�1w
h(t; y), and observe that the condition in Lemmas 5.6 and 5.7 hold.
Moreover, we claim that Proposition 5.5 holds true. Let �j = 2
b!j�j + ", where " is any positive

number which we are free to choose. Going through all the three cases for the constant b, we see
that �j < cj , where cj is given in the theorem for " appropriately chosen. Hence, the integrability
condition assumed in the theorem is stronger than the required integrability in Proposition 5.5. We
also see that the integrability conditions in Lemma 5.3 holds, which imply v 2 C

�
[0; T ]�D

�
, since

v obviously is continuous in w on [0;1). Therefore v is a classical solution of the HJB equation
(2.4) and we can apply the veri�cation theorem (Theorem 4.1) to conclude the proof.
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Remark. The reader should note that the above arguments are valid also for � < r. However, the
Cases I, II and III will be slightly di�erent and the optimal solution must be changed accordingly.
Also observe that by letting � = 0, � = 0 and m = 1 we get back the classical Merton solution
with � � �(t) as the constant volatility (t is the starting time).

Remark. Note that �� is exactly like in traditional Merton, except that we know react on changes
in �, i.e., �� = ��(�t), where �t is the underlying volatility. It is still optimal to choose a fraction
inversely proportional to volatility, however, now it varies with the changing volatility rather than
being �xed, as is the assumption in the classical Merton case. In some sense this is how investors
following the Merton optimal strategy behave. At every instant of rebalancing of the portfolio,
they will calculate the current volatility and invest according to the Merton optimal strategy.
But then they have in e�ect invested according to a strategy with changing volatility, and not
according to a strategy where the level of volatility is �xed from the start.

In Case I, it is possible to calculate the value function explicitly. This is the content of the
following proposition.

Proposition 5.9. Assume Condition A holds with cj = 8

�
j12 + �j+ 4


� !j
�j

for j = 1; : : : ;m.

Then the solution h 2 C1;1 ([0; T )� [0;1)m) of the �rst-order integro-di�erential equation

ht(t; y) + 
h(t; y) �
mX
j=1

�jyjhyj (t; y) +
mX
j=1

�j

Z 1

0

�
h(t; y + z � ej)� h(t; y)

�
`j(dz) = 0;

with terminal condition h(T; y) = 1 8y 2 [0;1)m, is

h(t; y) = exp

 

�(T � t) + 


�


2 + �

� mX
j=1

!j
�j
yj

�
1� e��j(T�t)

�

+ �j

Z T

t

Z 1

0+

�
e


�

2
+�
�
!j
�j
(1�e

��js)z
� 1

�
`j(dz) ds

!
:

(5.11)

Furthermore, the value function (2.2) is explicitly given by

V (t; w; y) = 
�1w
h(t; y);(5.12)

where h is given in (5.11).

Proof. Let us calculate the function g(t; y) de�ned in (5.6):

g(t; y) = E

h
e
R
t

0 
�(�(s)) ds
i
= e
�tE

h
e
(




2+�)
R
t

0 �(s) ds
i

= e
�t+
(



2+�)
Pm

j=1 !jyj
R
t

0 e
��j s ds

E

h
e
(




2+�)
Pm

j=1

R
t

0 e
��js

R
s

0 e
�ju dZj (�ju)ds

i

= e

�t+
( 
2+�)

Pm
j=1

!j
�j

yj(1�e��j t)
mY
j=1

E

h
e
(

1
2+�)!j

R
t

0

R
s

0 e
��j (s�u) dZj(�ju)ds

i
:

The Fubini theorem yieldsZ t

0

Z s

0

e��j(s�u) dZj(�ju) ds =
1

�j

Z t

0

�
1� e��j(t�s)

�
dZj(�js);

so that

g(t; y) = e

�t+
( 
2+�)

Pm
j=1

!j
�j

yj(1�e��j t)
mY
j=1

E

�
e

( 
2+�)

!j
�j

R
t

0 (1�e
��j (t�s)) dZj(�js)

�

= exp

 

�t + 


�


2 + �

� mX
j=1

!j
�j
yj(1� e��jt)

+ �j

Z t

0

Z 1

0+

�
e

( 
2+�)

!j
�j
(1�e��j (t�s))z

� 1

�
`j(dz) ds

!
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= exp

 

�t + 


�


2 + �

� mX
j=1

!j
�j
yj
�
1� e��jt

�

+ �j

Z t

0

Z 1

0+

�
e

( 
2+�)

!j
�j
(1�e��js)z

� 1

�
`j(dz) ds

!
:

Hence, by recalling that h(t; y) = g(T � t; y) and after a change of variables in the ds-integration,
we recover (5.11).

Remark. In Case I, we could have �rst calculated the function (5.12), and then afterwards veri�ed
that this coincides with the value function of our control problem. This approach would have
given us weaker conditions on exponential integrability of the L�evy measures. In Cases II and III,
explicit results seem to be impossible to obtain due to the much more complicated structure of
�(�). Indeed, the dependency on the level and inverse of �(s) makes it a diÆcult task to calculate
the expectation.

6. Discussion

Almost all of our results are based on suÆcient exponential integrability of the L�evy measures.
The question arises, how are these conditions related to the models that we would like to use
for stochastic volatility dynamics? To be able to discuss this question, we need to give a brief
description of the modelling approaches suggested by Barndor�-Nielsen and Shephard [3]. Two
ways of �nding a stochastic volatility model is suggested. In their �rst (and main) approach, they
start out with the stationary distribution (on the positive axis) of the volatility and from this derive
the L�evy processes Zj , where Zj is coined the background driving L�evy process. To achieve this,
the stationary distribution must be chosen among the so-called self-decomposable distributions.
Some examples of such distributions are given in [3]. In the class of generalized inverse Gaussian
distributions, the authors calculate the upper tail integral of the L�evy densities (i.e., the density of
the L�evy measure) for the background driving L�evy process in several cases, thereby in e�ect giving
the tail behaviour of the L�evy measure. Formulas for the inverse Gaussian, positive hyperbolic,
reciprocal gamma and gamma distributions are given, all showing an exponential damping in
the tails. However, the rate of damping is given by (some combination) of the parameters in the
respective distributions which lead to restrictions on the choices of risk aversion 1�
 and skewness
� when applied in our control problem. The choice of stationary distribution for the volatility is
based on empirical decisions. For example, Barndor�-Nielsen and Shephard [3] note that if we
choose �j(t) to have an inverse Gaussian distribution, then the logreturns will be approximately
normal inverse Gaussian distributed, a distribution which models semi-heavy tails observed in
market data very well (see Barndor�-Nielsen [2] for more on this class of distributions and, e.g.,
Eberlein and Keller [13], Rydberg [28] and B�lviken and Benth [11] for applications to empirical
�nance). Their statistical studies of Deutsche Mark-Dollar exchange rate (data on 5 minutes
periods over 10 years) suggest to use inverse Gaussian marginals for the volatility. In addition,
one has to use a superposition of Ornstein-Uhlenbeck processes to correctly model the dependency
in the logreturns. The analysis shows a good �t for the autocorrelation structure when m = 4,
that is, a superposition of four non-Gaussian Ornstein-Uhlenbeck processes.

A second way of introducing stochastic volatility dynamics through non-Gaussian Ornstein-
Uhlenbeck models is to directly model the L�evy process, as also suggested by the authors. Even
more, one may model the L�evy process by directly specifying the L�evy measure. This approach
may give more room for the parameters in the control problem. However, in both the suggested
approaches, we see there will be a competition between the parameters of the control problem and
the parameters in the model of the risky asset. But these constraints need not be too binding, as
can be seen from the examples below. We would �nally like to remark that our conditions on the
exponential integrability of the L�evy measures may be weakened by going through the estimates
more carefully. This task will not be pursued in any further detail here.
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7. Numerical examples

In this section, we present some numerical examples. We focus on the variability of the volatility
and how an investor (with complete knowledge of the present level of volatility) should optimally
diversify her portfolio. Our purpose is to demonstrate some e�ects incurred by a varying volatility.
In order to simplify matters, we choose to model the stochastic volatility by one non-Gaussian
Ornstein-Uhlenbeck process, i.e., we set m = 1, and thus have

�(s) = e��s�(0) + e��s
Z s

0

e�u dZ(�u);

when we start the process at t = 0 (which we indeed shall do in the examples below). Furthermore,
since we want to simulate numerically the volatility it is convenient to choose the stationary
probability distribution for �(t) to be in the class of Gamma distribution, i.e., �(t) � �(�; �). The
Gamma distribution is a member of the family of generalized inverse Gaussian distributions and
has a density

��

�(�)
x��1 exp(��x); x > 0:

As is calculated in [3], the background driving L�evy process Z will then have a L�evy density

`(dz) = �� exp(��z) dz:

As will be explained below, this density makes it particularly easy to simulate �(t). In the examples
below we choose � = 10, � = 0:01 and � = 3.

We describe the procedure which we use to simulate paths of �(s). The suggested algorithm is
introduced by Marcus [22] and Rosinski [27], and explained in our context of stochastic volatility in
Barndor�-Nielsen and Shephard [3]. We adopt here the notation in [3]. Assume we discretize the
time line [0; T ] by homogeneous time intervals of length � > 0. Then a straightforward calculation
shows

�(s +�) = e����(s) + e��� zs;

where

zs = e��s
Z �s+��

�s

eu dZ(u)

and s is a time point in our discretization of [0; T ]. Note that zs is independent of zt when t 6= s.
By a change of variables, we �nd that

zs =

Z ��

0

eu dZ(u);

where equality is in distribution. The integral zs can be represented as an in�nite series which are
suitable for simulation: Let frigi be independent samples from a uniform probability distribution
on [0; 1] and a1 < a2 < � � � < ai < : : : be the arrival times of a Poisson process with intensity 1.
Then (in distribution)

zs =
1X
i=1

W�1(ai)e
�ri�:

In the above expansion, the function W�1(x) appears, which is the inverse of W+(x)1, where
W+(x) is the upper tail integral of the L�evy density of Z. For the Gamma distribution this is
explicitly invertible:

W�1(x) = max

�
0;�

1

�
ln
�x
�

��
:

Introducing this function in the series expansion, Barndor�-Nielsen and Shephard [3] suggest to
simulate zs from the representation (in law)

zs =
1

�

N(�)X
i=1

ln

�
�

ai

�
e��ri ;

1Note that we follow the notation of Barndor�-Nielsen and Shephard [3] here. The functionW�1 is not to be
confused with the (inverse of the) wealth dynamics in the present paper.
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Figure 1. The stochastic volatility and optimal investment strategy in Example 1.

where N (�) is the number of arrivals ai before time �. The inversion of the upper tail integral
W+(x) is in general not analytically possible, thus leading to more complicated simulation algo-
rithms. The Gamma-distribution is the only case where we can invert W+(x) among the examples
of distributions suggested by Barndor�-Nielsen and Shephard [3]. This is the reason why we use
this distribution for our numerical investigations. In all the simulations below, � = 1.

We present two examples: one where the logreturns are symmetric and one with skew logreturns.
The purpose with the numerical examples is to show how optimal allocation taking stochastic
volatility into account may dramatically deviate from the classical Merton investment strategy.
We choose as �(0) the historical volatility, i.e., the volatility a Merton investor would choose to
pin down her strategy at time 0 and follow until time T . We choose �(0) = 0:25. The investment
horizon is assumed to be T = 5000. The optimal strategy in the stochastic volatility case is found
by simulating one path of the volatility using the method described above, and then calculating
the optimal strategy using the rules in Theorem 5.8. Note that the parameters we choose in the
examples below satisfy the integrability condition in Theorem 5.8. The numerical algorithms were
implemented in MATLAB, and simulation of one path of 5000 points took about 4-5 sec.

Example 1. Let � = 0, the risk aversion 1 � 
 = 7
8 (i.e., the investor is very risk averse) and

�� r = 5
32 . An investor following the classical Merton strategy, would choose �M = 1, i.e., invest

her whole wealth in the risky asset. Since 1
2
+ �=1 � 
 = 4

7
2 (0; 1), we are in Case II where ��

is not necessarily equal to one. Figure 1 shows one possible scenario, where we observe that in
fact the optimal strategy may be to invest below 100% in the risky asset. Indeed, we see that in
periods of times we should go down to about 80%, signi�cantly more conservative than putting
all the money in the risky asset. However, this happens in very short periods, compared to the
long periods where the investor is advised to place 100% of her total wealth in the risky asset.

Example 2. Again we choose parameters such that the classical Merton investor puts all her
money in the risky asset. Let � = �2

3 and 1� 
 = 1
2 , i.e., the logreturns are skew to the left and

the investor is moderately risk averse. Furthermore, we assume �� r = 1
10 . The Merton investor

choose �M = 1. Since 1
2 + � = �1

6 < 0, we are in Case III, where the optimal strategy may be to
choose �� = 0 in periods of very high volatility. And indeed this may happen, as is seen in Figure
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Figure 2. The stochastic volatility and optimal investment strategy in Example 2.

2. Note also that periods where the investor should allocate less than 100% in the risky assets are
dominating. We conclude form these two examples that varying volatility both with and without
skew logreturns may lead to signi�cantly di�erent optimal investment behaviour. Remark that we
have used di�erent seeds in the simulation of the stochastic volatility in the two examples, thus
the paths are di�erent. The average of �(s) over the paths are about 0:25 in both examples.

Remark. Note that the Gamma-model that we have chosen in the above two numerical examples
is not necessarily market relevant. The parameters are not estimated from empirically observed
prices, but admittedly chosen to highlight some deviations from the classical Merton case. We do
believe, however, that similar observations can be made when operating with stochastic volatility
models which are statistically �tted to observed price data. Since the procedure of estimating the
parameters in the stochastic volatility model is rather involved, we leave such considerations to
future research.
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