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Abstract

This paper suggests a high-level continuous image model for planar star-

shaped objects. Under this model, a planar object is a stochastic deformation

of a star-shaped template. The residual process, describing the di�erence be-

tween the radius-vector function of the template and the object, is allowed to

be non-stationary. Stationarity is obtained by a time change. A parametric

model for the residual process is suggested and straightforward parameter

estimation techniques are developed. The deformable template model makes

it possible to detect pathologies as demonstrated by an analysis of a data

set of cell nuclei from a benign and a malignant tumour, using stochastic

deformations of ellipses.
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1 Introduction

In high-level image modelling, the objects of an image are modelled directly. A very
powerful approach is the deformable template model suggested by Ulf Grenander
and the group around him, cf. e.g. [3, 4, 5]. The basic idea is to model the
observed object as a stochastic deformation of a template, and the challenging
task is to model the deformation mechanism.

Deformable template models for featureless objects have attracted a lot of at-
tention in the statistical literature recently, cf. e.g. [4, 5, 7, 8, 11, 15, 16], and the
focus has mainly been on circular templates. In the present paper we suggest a de-
formable template model for a random star-shaped planar object K which is useful
in the case of non-circular templates. The radius-vector function R = fR(t)gt2[0;1]
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of K is modelled as R(t) = r(t)+X(t) where r(t) is the deterministic radius-vector
function of the template and X(t) is a random residual process. For non-circular
templates it is not natural to assume that X(t) is stationary, as will be demon-
strated in a simulation study. We therefore introduce a time change 
(t) such that
X0(t) = X(
�1(t)) is stationary. This is a generalization of the approach described
in [17], p. 90.

Modelling of X0(t) is based on a Fourier expansion. For elliptical templates it
is assumed that the Fourier coeÆcients of X0(t) at the phases s = 0; 1; 2 are small.
The remaining Fourier coeÆcients are modelled as normal variables with mean zero
and variance �s at phase s given by the regression equation

��1s = � + �
�
s2p � 32p

�
; s � 3;

where �; �; p are unknown parameters. We discuss how the parameters in
uence
the random geometry of the object and consider various choices of time changes.

In [6] elliptical templates were also studied, but the approach deviates signi�-
cantly from ours as will be discussed in Sections 3 and 4. The papers [7, 8, 11, 18],
are based on Fourier expansions of either the tangent-angle function or the radius-
vector function. The statistical models proposed in these papers describe a circular
rather than an elliptical shape.

In Section 2 we de�ne the general model. Various distributional results will
be provided when X0 is Gaussian and extensions to the non-Gaussian case will be
discussed. In Section 3 we specialize to elliptical templates. The suggested model
is used in the analysis of a data set concerning cancer diagnostics in Section 4. We
conclude with some perspectives concerning Bayesian object recognition.

2 A deformable template model

Let a random planar object K be star-shaped relative to z 2 K such that K is
determined by the radius-vector function R = fR(t)gt2[0;1] with respect to z, where

R(t) = maxfu : z + u(cos 2�t; sin 2�t) 2 Kg; t 2 [0; 1]:

For a detailed description of the radius-vector function, see [8] and references
therein. We suppose that the radius-vector function of K is on the form

R(t) = r(t) +X(t); t 2 [0; 1]; (2.1)

where r = fr(t)gt2[0;1] is the radius-vector function of the template and X =
fX(t)gt2[0;1] is a residual process which is periodic and has mean zero. Further-
more, we assume that there exists an increasing transformation 
 of [0; 1] onto
[0; 1] such that fX(
�1(t))gt2[0;1] is stationary. In particular, the correlation be-
tween X(
�1(t1)) and X(
�1(t2)) depends on t2 � t1 only. We say that X is

�stationary. An obvious choice of 
(t) is the distance travelled on the boundary
of the template between the points with index 0 and t, t 2 [0; 1]. With this choice

2



of 
, the correlation between X(t1) and X(t2) only depends on the distance along
the template between the points indexed by t1 and t2.

In the stochastic process literature 
 is referred to as a time change, cf. e.g.
[14], and we will use the same terminology here.

We can rewrite (2.1) as

R0(t) = r0(t) +X0(t); t 2 [0; 1];

where R0(t) = R(
�1(t)) and similarly for the other quantities. Note that X0 =
fX0(t)gt2[0;1] is stationary in the ordinary sense.

Let us suppose that the residual process is Gaussian. Let

r0(t) = a0 +
p
2

1X
s=1

as cos(2�st) +
p
2

1X
s=1

bs sin(2�st)

and

X0(t) = A0 +
p
2

1X
s=1

As cos(2�st) +
p
2

1X
s=1

Bs sin(2�st) (2.2)

be the Fourier expansions of r0 and X0. Since X0 is Gaussian, A0 and As; Bs; s � 1;
are all mutually independent, A0 � N(0; �0) and As � Bs � N(0; �s); s � 1. It
follows that the Fourier expansion of R0 has the same distributional properties as
those of X0, except that zero mean-values are substituted by the relevant Fourier
coeÆcients from the template.

For a polar Fourier expansion

R0(t) =
p
C0 + 2

1X
s=1

p
Cs cos(2�s(t�Ds)); t 2 [0; 1];

where Cs � 0 and Ds 2 [0; 1=s), we have under the Gaussian assumption that
C0 and (Cs; Ds); s � 1; are all independent. Furthermore, the observed phase
amplitude

Cs =

�
(a0 + A0)

2 s = 0
((as + As)

2 + (bs +Bs)
2)=2 s � 1;

follows a non-central �2�distribution with mean

ECs = cs + �s; s � 0;

where cs is the sth phase amplitude of the template. Finally, the conditional
distribution of Ds given Cs is given by, cf. the Appendix,

2�sDs j Cs = c � vM(2�sds; 2

p
ccs
�s

); s � 1; (2.3)

where ds 2 [0; 1=s) is the sth phase angle of the template. Here, vM(�; �) is the
notation used for the von Mises distribution with mean direction � 2 [0; 2�) and
concentration parameter � � 0. For � = 0 we get the uniform distribution on

3



[0; 2�) while for � > 0 large the distribution is concentrated around the mean
direction. Other properties of this distribution are described in [12], p. 36.

If the template is a circle, then as = bs = 0 = cs; s � 1. Therefore, in this case,
Cs and Ds are independent, Cs follows an exponential distribution with mean �s
and Ds is uniformly distributed on [0; 1=s); s � 1:

The distribution of Cs can for s � 1 be approximated by a (cs + �s)�
2(fs)=fs-

distribution where

fs = 2

�
1 +

c2s
�2s + 2cs�s

�
;

cf. e.g. [9]. Note that for a circular template, cs = 0, fs = 2 and the result is
exact. If cs � �s, then fs will be large and the distribution of Cs is concentrated
around cs.

The distributional results obtained above for (Cs; Ds) in the Gaussian case mo-
tivate extensions of our model to the non-Gaussian case. Instead of the (cs +
�s)�

2(fs)=fs-distribution one might use a generalized gamma distribution as a
model for Cs, cf. [10], Section 8.4. Under a Gaussian assumption the phase angles
are von Mises distributed as indicated in (2.3). An extension is here to consider a
von Mises distribution of the type vM(2�sds; �s

p
c) where the parameter �s > 0

is arbitrary, allowing for larger and smaller variation than in the Gaussian case.

3 Elliptical templates

From now on we consider the special case where the template is an ellipse.
Let us start by introducing some notation for an ellipse. Assume the centre z

is located at the origin, let the lengths of the the axes be denoted by a � b and
the eccentricity be � = (1� b2=a2)1=2. If the major axis of the ellipse has an angle
of 2�� relatively to the �rst axis, � 2 [0; 1=2), then the boundary of the ellipse is
given by

(x(t); y(t)) = r(t) (cos(2�t); sin(2�t)) ; t 2 [0; 1];

where the radius-vector function is

r(t) =
abp

a2 sin2(2�(t� �)) + b2 cos2(2�(t� �))
: (3.1)

The boundary length between the points with indices 0 and t is

l(t) =

Z t

0

p
(x0(u))2 + (y0(u))2du

= 2�ab

Z t��

��

�
a4 sin2(2�u) + b4 cos2(2�u)

�1=2
�
a2 sin2(2�u) + b2 cos2(2�u)

�3=2du: (3.2)

The time change 
 will be taken to be either the relative boundary length, 
(t) =
l(t)=l(1), or the identity. In both cases one easily shows that at odd phases the

4



time changed radius-vector function r0(t) = r(
�1(t)) has vanishing Fourier coeÆ-
cients. In fact, if the eccentricity is not too large then the elliptical shape is mainly
determined by the Fourier coeÆcients at the phases s = 0 and s = 2 for these two
choices of time change.

Recall that the time changed radius-vector function R0 of the random object
K is R0(t) = r0(t) +X0(t). We want to specialize the general Gaussian model for
X0 such that K has a pronounced elliptical shape. As noted above this should be
re
ected in the Fourier coeÆcients at phases s = 0 and s = 2. We assume that X0

has small Fourier coeÆcients when s = 0 and s = 2 such that at these phases R0 is
described almost entirely by the terms from the ellipse. Moreover, typically K will
be rather symmetrical with respect to the centre z, and arguing as in Section 2 of
[8] this implies that the Fourier coeÆcients of R0 at phase s = 1 are small.

We hence consider the Gaussian model (2.2) with variances �0; �1; �2 small.
The remaining variances are modelled by the simple regression model

��1s = � + �(s2p � 32p); s � 3: (3.3)

The parameter � determines the 'global' deviation from the template while �; p
determine the 'roughness' of the boundary. The reason is that when s � 3 is
small then �s is mainly determined by �. A small value of � gives a large value
of �s which typically implies a high 'global' 
uctuation in X0(t). Similarly when
s is large �s is merely determined by � and p. Large values of these parameters
yield small variances �s such that the boundary of K will be rather smooth. In [8]
it is discussed how p relates to continuity and di�erentiability of the trajectories
of X0, see in particular Section 3 of that paper. The regression model is called
a p-order model because it appears as the limit of discrete time p-order Markov
models, cf. [8].

In the statistical shape literature a Gaussian model is commonly used, cf. e.g.
[4, 5, 6, 7, 8, 11, 15, 16, 17]. The papers [7, 8, 11] considered Gaussian models
with Fourier coeÆcients at phase s = 0; 1 close to zero. The additional constraint
on s = 2 here is due to the choice of template. Compared to [7, 8, 11] we have
also introduced the time change 
. In [6] a template ellipse was considered but the
constraints on the Fourier coeÆcients were not incorporated.

An e�ective way of checking that a model has the right properties is to inspect
random samples from the model. In Figure 1 we show simulations using both

(t) = t and 
(t) = l(t)=l(1). All templates were scaled such that the perimeter
was l(1) = 1. For � = 0 the two time changes are identical and therefore yield the
same model. However, at high eccentricities it is apparent that 
(t) = t results in
some undesirable small 'blobs' in K near the minor axis of the template ellipse. In
the following we will therefore mainly use 
(t) = l(t)=l(1) as our time change.

4 Data analysis

The data consists of 27 pro�les of cell nuclei from a malignant tumour and 27 cell
nuclei from a benign tumour of human skin, cf. Figure 2 and [6], where the data
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Figure 1: Simulations from the model (2.2) with As = Bs = 0; s � 2; �s given by
(3.3) and an elliptical template with unit perimeter. In the �rst three rows the
time change is 
(t) = t while in the last three rows 
(t) = l(t). The values of �; �
and � are as indicated and p = 2:5.

has previously been analysed. The cell nuclei from the benign tumour seem to be
small deformations of ellipses with varying eccentricities while the nuclei from the
malignant tumour are larger deformations of ellipses. Our model should be able to
capture this di�erence.

For each pro�le we chose z as the centre of mass and calculated the radius-
vector function R at the points t = 0; 1=n; : : : ; (n� 1)=n, where n = 50. We tried
several di�erent ways of �tting the ellipse. The elegant method described in [2]
was implemented, the least squares method described in [4] was also used, but we
ended up �tting the ellipse using the Fourier coeÆcients at the phases s = 0; 2 only.
However, the three methods resulted in almost the same template ellipse.

Since we are only interested in the shape we scaled the resulting residual process
X(t) = R(t)�r(t) by the perimeter of the ellipse. Finally we calculated the Fourier
coeÆcients of the normalized time changed process X0(t) = X(
�1(t)), where we
used 
(t) = l(t)=l(1). The Fourier coeÆcients are

As =
p
2

Z 1

0

X0(t) cos(2�st)dt =
p
2

Z 1

0

X(t) cos(2�s
(t))
0(t)dt; (4.1)

and the expression for Bs is similar.
It remains to �t the regression model (3.3), based on As; Bs; s � 3. The Fourier

coeÆcients at high phases are poorly determined due to digitization e�ects, cf.
e.g. [7, 8, 11]. We therefore considered the well-determined Fourier coeÆcients
A3; B3; : : : ; AS; BS only, where S is a reasonable cut-o� value. In practice it turned
out that relatively few Fourier coeÆcients are well-determined and we used S = 11.
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Figure 2: The upper panel is pro�les of cell nuclei from a malignant tumour while
the lower is from a benign tumour. The cell nuclei have been scaled so that they
have approximately the same size.

Since the Fourier coeÆcients are zero mean Gaussian it follows that the likelihood
function for a pro�le is

L(�; �; p) =
SY

s=3

1

2��s
exp

�
�A

2
s +B2

s

2�s

�
; (4.2)

where �s is given by (3.3).
For each pro�le we found the estimates of (�; �; p) by maximising (4.2). For

the malignant sample the average of p was 2.72 with a standard deviation of 0.68,
while for the benign sample the average was 2.49 and the standard deviation 0.79.
We therefore �xed p = 2:5. The estimates of (�; �) under the p-order model with
p = 2:5 are shown in Figure 3 and summarized in Table 1. The estimates of the
local shape parameter � are on average signi�cantly lower in the malignant sample
(p-value for identical �s in the two samples is less than 0.01 %). This was to be
expected from the simulations and geometric interpretation of � given in Section 3.

log �̂ log �̂
av. s.d. av. s.d. corr.

benign 11.59 1.42 4.68 0.53 0.43
malignant 10.65 1.10 3.66 0.88 0.45

Table 1: The average, standard deviation and correlation of (log �̂; log �̂) for each
sample.

On average the estimates of the global shape parameter � are also lowest in
the malignant sample, and again the di�erence is signi�cant (p-value close to 1%).
Furthermore the variance of log � is signi�cantly larger in the malignant sample.
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Figure 3: The estimates of (�; �) when p is �xed at p = 2:5. The hatched nuclei
are from the benign sample while the white nuclei are from the malignant sample.

5 Perspective

The deformable template model considered in the present paper can be embedded in
the marked point process framework described in [1] and thereby used in Bayesian
object recognition. In this set-up the observed digital image y depends on the true
scene of interest x through the likelihood f(yjx). Inference for x is made using the
posterior

p(xjy) / f(yjx)p(x);

where p(x) is the prior distribution of x. The scene x is represented as a �nite set
of m objects, x = fx1; : : : ; xmg, where m is unknown. Each object xi is speci�ed
as a marked point where the point gives the location and the mark determines the
object. The basic distribution is the Poisson object process, where the number
of objects are Poisson distributed and, conditional on this number, the locations
of the objects are independent and uniformly distributed. The distribution of the
marks is often given by a deformable template model. Examples include [13] where
mushrooms in a growing bed are analysed. Here, the mushrooms are modelled
as discrete circles and the deformation is through scaling only. In [16] cells in a
confocal microscopy image are located and discrete circles of di�erent sizes are
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used, but a residual process similar to the one presented in this paper is also
added. A third example is provided by [15] where the template is a discrete circle
or a discrete ellipse with �xed eccentricity. The residual process, which determines
the deformation of the template edges, is a discrete �rst-order Markov process.

Our analysis can be viewed as a detailed investigation of the deformable tem-
plate model with an ellipse as template. In particular we found that a time change
is needed if the eccentricity is high and the radial representation is used.
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Appendix

Let Y1 � N(a; �) and Y2 � N(b; �) be independent random variables and let

a = l cos�; b = l sin�; Y1 = R cos�; Y2 = R sin�:

We show that

�jR = r � vM(�;
lr

�
):

From the change of variables formula it follows that the density function of (R;�)
is

fR;�(r; �) =
r

2��
exp

��r2 � l2 + 2lr cos(� � �)

2�

�
;

and by integrating with respect to � we get

fR(r) =
r

�
exp

��r2 � l2

2�

�
I0

�
lr

�

�
;

where I0 denotes the modi�ed Bessel function of the �rst kind and order 0. The
result now follows immediately.
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