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Summary . Enormous quantities of geoelectrical data are produced on a daily basis, and often
used for large-scale reservoir modelling. Interpretation of these data requires reliable and ef-
ficient inversion methods which adequately incorporate prior information and use realistically
complex modelling structures. In this paper we use random coloured polygonal models as a
powerful and flexible modelling framework for the layered composition of the Earth and we con-
trast our approach with earlier methods based upon smooth Gaussian fields. We demonstrate
how the reconstruction algorithm may be efficiently implemented through the use of multigrid
Metropolis–coupled Markov chain Monte Carlo and illustrate the method on a set of field data.
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1. Introduction

In electrical impedance tomography (EIT), various current patterns are applied to electrodes
on the boundary of an electrically conductive object. The induced surface voltage potentials
are measured and used to reconstruct the unknown resistivity distribution within the object.
Since electric resistivities in relevant materials are known from experimental studies, it
is possible to reconstruct the local composition beneath the surface of the Earth, from
measurements made on the surface. Such techniques are widely used in large-scale mapping
of groundwater (Christensen and S�rensen, 1998), detection of leaks from land�lls, storage
ponds and tanks (Daily et al., 1995) and various other geotechnical applications (Panissod
et al., 1998). The use of such data to reconstruct details in the Earth requires the solution
of an ill-posed inverse problem and it is necessary to restrict the solution space either by
regularisation or by utilising prior information.

It is well known that the Earth typically consists of a series of well-de�ned layers each
having its own resistivity. Despite this fact, most commonly-used geoelectrical inversion
methods are based upon regularisation techniques that implicitly assume a smooth resis-
tivity distribution and thereby fail to fully describe the true nature of the subterranean
structures. An alternative approach which allows for discontinuities in the resistivity pro�le
is based upon the use of coloured polygons. Arak et al. (1993) develop a class of point-based

yAddress for correspondence: Kim E. Andersen, Department of Mathematical Sciences, Aalborg
University, Fredrik Bajers Vej 7G, DK-9220 Aalborg �, Denmark.
E-mail: emil@math.auc.dk



2 K. E. Andersen, S. P. Brooks and M. B. Hansen

polygonal models where simple polygons are used to model the structure of interest. These
models have been used for restoration of polygonal images by Nicholls (1998), for example.
In the following section we develop a subclass of point-based polygonal models in which
simple polygons are used as prior model of the layered structure of the Earth.

The search for a solution to an ill-posed inverse problem involves dealing with a possi-
bly highly non-linear relationship between data space and model space in which multiple
solutions may be located in separate regions. Problems of this character are, in principle,
easily dealt with in the Bayesian framework. Over the past decade the Bayesian approach
has experienced an enormous upsurge in interest, both in this and other areas, and powerful
new simulation techniques are now available which allow even more realistic and compli-
cated modelling structures. See e.g. Mosegaard and Tarantola (1995), Fox and Nicholls
(1997), Mosegaard (1998), Kaipio et al. (2000) and Andersen et al. (2001).

The likelihood function has an open-form expression and its evaluation is highly com-
puter intensive. Moreover, simulation-based posterior inference requires a large number of
forward calculations to be performed. Therefore, fast and eÆcient sampling techniques are
required for posterior inference. Li and Oldenburg (1992) develop a fast technique for pre-
dicting experimental geoelectrical data for a given subterranean structure. The technique
is based upon a multichannel convolution (MCC) formulation which was re�ned by M�ller
et al. (2001). We adopt and develop this formulation to provide a fast and reliable frame-
work for Bayesian inference in this context.

Geoelectrical data acquisition
Geoelectrical data acquisition systems induce an electrical voltage potential di�erence �V ,
measured between a pair of potential electrodes (M;N) by injecting a current directly into
the Earth using a pair of current electrodes (A;B). See Figure 1(a) for details. Basically,
in any electrode con�guration s = (A;B;M;N) we obtain a reading y at electrodes M
and N from which we can determine a resistivity value for the path of the current from
A � B to M �N through the ground at that point. This reading is subject to errors and
the true reading should be %s which we call the apparent resistivity. We shall discuss the
relationship between y and %s in the next section.

The apparent resistivity %s is measured in 
�m and is obtained by using Ohm's law i.e.,
when the potential electrodes are close to the current electrodes

%s = gs�Vs;�=I;

where � denotes the true subterranean resistivity distribution of the Earth and

gs = 2�

�
1

jxA � xM j
�

1

jxB � xM j
�

1

jxA � xN j
+

1

jxB � xN j

��1
is a geometric factor. Here xQ denotes the lateral position of electrode Q for Q = A;B;M
and N . Obviously, the apparent resistivity depends upon s, but also upon the true subter-
ranean resistivity distribution, �, which describes the resistivity at any point (x; z) under
the surface. For the particular case where the Earth is homogeneous %s will, regardless of
the location of the four electrodes, be exactly equal to �. However, the Earth is seldom ho-
mogeneous (even at a local level) and instead the apparent resistivity represents an average
of the true resistivity distribution of the Earth and formal inversion is needed for further
interpretation.
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Fig. 1. (a): The apparent resistivity %s can be computed for a given resistivity distribution � and
electrode configuration s = (A;B;M;N). Here (A;B) denotes the pair of current electrodes and
(M;N) denotes the pair of potential electrodes. The voltage potential differences along the surface
of the Earth is then recorded by a voltmeter inserted between M and N . (b): Theoretical predicted
apparent resistivities for two different electrode configurations s1 and s2.

Clearly, the resulting apparent resistivity data are nonlinear functions of the actual
electric resistivities within the Earth together with the electrode con�guration. Electrode
con�gurations with large inter-electrode separations are in general better able to recover
information deeper from the Earth than electrode con�gurations with small inter-electrode
separation, which are best for shallower depths. Thus, readings are usually taken from a
range of con�gurations in which the distance between electrodes A and B remains �xed,
but the position of the other two electrodes is varied so as to focus on di�erent depths.
For example, Figure 1(b) shows the corresponding apparent resistivities for two di�erent
electrode con�gurations, say s1 and s2 as they move laterally along the surface. In s2 the
median depth of investigation (Edwards, 1977) is deeper, resulting in a deeper penetration
than in s1 i.e., these voltage measurements can be utilised to make deeper reconstructions
than s1. Notationally, and for any con�guration s, if we let (xs; zs) denote the point within
the Earth where the median depth of investigation is reached, then xs denotes the lateral

focus point and zs the vertical focus point for that con�guration. See Edwards (1977) for
details.

Data of this sort are often obtained using the pulled array continuous electrical pro�ling
(PACEP) method (S�rensen, 1996; Panissod et al., 1998), a very eÆcient technique for si-
multaneous and continuous apparent resistivity data acquisition for many distinct electrode
con�gurations. Electrodes are mounted on a cable towed by a vehicle and measurements are
recorded as the cable is drawn across the surface. The PACEP array is based upon one set
of current electrodes with �xed inter-electrode distance. For our data, this distance was 30
metres and Figure 2 shows the position of the eight di�erent voltage electrode con�gurations
in the PACEP array, each with its own vertical focus point.

Study area and data
More than 30 pro�le kilometres of densely sampled data were collected using the PACEP
method in an investigation for smectite-rich clay deposits in the �lst Formation (Heilmann-
Clausen et al., 1985) in Jutland, Denmark. Upper Palaeocene clay from this formation
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Fig. 2. PACEP array: electrodes are mounted on a cable and towed by a small vehicle. The array
has one set of current electrodes (circles) separated by 30 metres. The # denotes the common
lateral reference point, the ^ denotes the lateral focus of each electrode configuration and quantities
in parentheses denote the vertical focus points (figure reproduced with kind permission from Møller
et al. (2001)).

outcrops in hills formed by glaciotectonics. These heavily disturbed clay deposits are en-
compassed by glacio
uvial sand, together with gravel deposits and overlain by a thin clayish
till (Nielsen, 1973). M�ller et al. (2001) develop a multichannel deconvolution (MCD) for
inverting the MCC formulation in order to reconstruct the resistivity distribution. This
MCD technique was applied to segments of about 900 metres of the data. Figure 3(a)
depicts a 150 metre long data segment with the corresponding MCD inversion shown in
Figure 3(b). Resistivities below 5
 �m are interpreted as Palaeocene clay, whereas resis-
tivities above 100 
 �m are interpreted as dry glacio
uvial sand and gravel. Interceding
resistivities of approximately 30
 �m are taken to represent a clayish till. The obtained
reconstruction reveals a very smooth resistivity distribution. However, geophysicists would
expect a somewhat sharper transition between the clay and sand than the one obtained by
the MCD technique.
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Fig. 3. (a) 1200 apparent resistivity readings, shifted according to their lateral focus points, in a 150
metre long segment from the Ølst Formation, Jutland, Denmark; and (b) the inversion obtained by a
MCD along with 5, 30 and 100 
�m contour lines describing the believed sedimentary transitions in
the MCD reconstruction.
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Outline
In this paper we revisit the �lst formation dataset and provide an alternative model which
permits the sharp transitions expected by the geophysicists. We begin in Section 2 with
a description of the model and prior structures used for the Bayesian analysis. Details of
the reconstruction algorithm are given in Section 3 and in Section 4 we use the model for
the analysis of �lst formation �eld data. Finally, in Section 5, we discuss further potential
developments for geoelectrical large-scale mapping. Two appendices provide mathematical
details associated with the model and simulation algorithm developed in the paper.

2. Model

2.1. Forward modelling of resistivity data
Let S = (s1; : : : ; sP ) denote a set of P di�erent electrode con�gurations. The Earth re-
sponse %s(xs) under any electrode con�guration s = (A;B;M;N) in S with lateral focus
point xs is then given by a transformation Ks;� depending upon both s and the resistivity
distribution � = (�(x; z)) for (x; z) 2 R � R+ . Thus, the apparent resistivity data, measured
at the vertical focus point xs on the pro�le, takes the form

%s(xs) = Ks;�(xs) := gs�Vs;�(xs); s = s1; : : : ; sP ; (1)

where �Vs;�(xs) = Vs;�(xN ; 0) � Vs;�(xM ; 0) and Vs;� is the solution to Poisson's equation
given by

r�(�(x; z)rVs;�(x; z)) = �I [1l(x� xA)� 1l(x� xB)]

subject to the boundary condition �@Vs;�=@� = 0 on the surface of �, where � = 1=� is the
conductivity and I denotes the current 
owing into the ground at xA and out at xB . Here
the z-axis points downwards and the x-axis is the horizontal axis along which the cable is
drawn.

Logarithmic transformation of both the data and the resistivity distribution ensures non-
negative resistivities. Therefore, we let �Æ = log ��log �ref denote the logarithmic resistivity
perturbation and let %Æs = log %s � logKs(�ref) denote the logarithmic data perturbation,
where �ref is a reference resistivity distribution. Expanding (1) in a �rst order Taylor series
with respect to �ref gives the Born approximation (Boerner and West, 1989). Furthermore,
if we let �ref denote a homogeneous half-space, which is translationally invariant along the
pro�le, then the Fr�echet derivative �s inherits translational invariance from �ref. Subse-
quently the modi�ed Born approximation is a convolution between �s;�ref (0; z; �) and �

Æ(�; z)
i.e.,

%Æs(xs) '

Z 1

0

Z 1

�1

�s;�ref (0; z; xs � x)�Æ(x; z) dx dz; (2)

where the 2-dimensional form of the Fr�echet derivative for %s with respect to � is

�s;� =
gs
I

@Vs;�(xs; zs)

@�(x; z)
:

Closed form expressions for the Fr�echet derivative evaluated for a translationally invariant
half-space along the pro�le are available; derivations can be found in Loke and Barker
(1995). However, for clarity we brie
y state the closed form expressions in Appendix A.

The resistivity distribution is discretised in the z-direction into m layers i.e., �(x; z)
is approximated by a function �(x; l) for layers l = 1; : : : ;m, which describes the lateral
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variation in a layer. We therefore de�ne the vertically averaged Fr�echet derivative in layer l
by

��s;�ref (x; l) =

Z zl

zl�1

�s;�ref (0; z; x) dz:

If the data are sampled regularly in all electrode con�gurations in S along the pro�le, then
a multichannel convolution formulation is obtained i.e.,

%Æs(xs) '
mX
l=1

Z 1

�1

��s;�ref (xs � x; l)�Æ(x; l) dx;

which, by Fourier transformation, gives the sum of products

e%Æs(k) ' mX
l=1

e��s;�ref (k; l)e�Æ(k; l): (3)

Here, the tilde denotes Fourier domain variables and the wavenumber k = 1=� denotes the
reciprocal wavelength. Hence, for each wavenumber, equation (3) yields a linear system of
P equations with m unknowns i.e., the large 2-dimensional spatial problem has decoupled
into many small 1-dimensional problems in the wave number domain. If we assume that M
samples have been recorded in P di�erent electrode settings then we must solve an MP -
by-MP problem in the space domain, whereas the decoupled problem in the wave number
domain reduces to M small P -by-P problems. The MCD technique presented in M�ller,
Jacobsen and Christensen (2001) solves this linear system. We note that the number of
readings appears in the Fr�echet derivative, whereas the coarseness a�ects only �. This
observation will be used in Section 3.

Implementation of (3) leads to the use of a discrete Fourier transform and thereby a dis-
cretisation in the horizontal direction. Consequently, theoretical apparent resistivity data
in the space domain is obtained by inverse Fourier transformation of e%Æs(k). The multichan-
nel convolution formulation derived here avoids the evaluation of the earth response Ks;�ref

in (1) as a layered reference medium �ref is imposed. However, evaluation of the Fr�echet
derivative requires a deeper understanding of the operator Ks;�.

2.2. Deriving the likelihood function
The random noise process imposed on the apparent resistivity data has, by its very nature,
a highly complicated structure. The likelihood function should be derived under the as-
sumption that the random errors can be split into three terms: one term �S constant for
all xs, describing the spatial small-scale variation of the electrical resistivities in the Earth;
another term, �L(xs), describing the linearisation error induced by the Born approximation
under electrode con�guration s at xs; and �nally a third term, �N (xs), describing the noise
inherent in the instrumentation { essentially measurement error due to e.g. electrode polar-
isation and telluric currents at xs. An observational model using �rst order approximations
is then obtained by setting

y(xs) = logKs;�ref(xs) + logKs;�S(xs) + �L(xs) + �N (xs):

It is well known that the resistivity, like other petrophysical parameters, oscillates
`slowly' with amplitudes of typically 1 to 10 per cent over spatial distance (Jacobsen, 1993).
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Moreover, synthetic data based upon an exact, but highly computer intensive �nite di�er-
ence formulation (McGillivray, 1992) can be compared to the linear Born approximation
response we have adopted. The full non-linear response for low-contrast models show sur-
prisingly concordance with the full non-linear response. However, the responses for the
high-contrast model reveals a signi�cant non-linearity error with a long-term correlation,
which has to be taken into consideration when specifying the random error process. Finally,
commonly-used geoelectrical data acquisition systems are known to be very accurate, though
observation errors are likely to increase with increasing electrode separation. Moreover, for
pulled arrays some cross-correlation may be expected, as distinct electrode con�gurations
may share some of the moving electrodes.

Geophysicists conveniently model the observation error by a white noise process. How-
ever, �eld data appear to exhibit signs of a smooth correlation structure. Thus, we make the
more realistic assumption that we observe data y(xs) = log %s(xs) + �(xs), where �(xs) de-
notes a stationary Gaussian process with zero mean, E �(xs ) = 0, and a covariance structure
from the Mat�ern family (Mat�ern, 1986) with covariance function

Cov(d) = �2
1

2��1�(�)
(d=L)�K�(d=L); � > 0; (4)

where d denotes the spatial distance between focus points, L > 0 is the correlation length
and K� is the modi�ed Bessel function of the second kind of order �. The likelihood function
can now be derived under the assumption that the errors are distributed as Gaussian with
mean zero and covariance matrix � = ��;L;� described by (4) i.e.,

p(y j �;�) / j�j�1=2 exp(�G(�; �))

with
G(�; �) =

�
y � logKS(�)

�>
��1

�
y � logKS(�)

�
; (5)

where y =
�
y(x1s1); : : : ; y(x

N
s1); : : : ; y(x

1
sP ); : : : ; y(x

N
sP )
�>

and

KS(�) =
�
Ks1;�(x

1
s1); : : : ;Ks1;�(x

N
s1); : : : ;KsP ;�(x

1
sP ); : : : ;KsP ;�(x

N
sP )
�>

is the earth response obtained when evaluating Ks;� for all electrode con�gurations in S.
Here N denotes the number of sampling locations for each electrode con�guration.

2.3. Specification of the resistivity distribution
Let 
 � R

2 denote the interior of a rectangular polygon with corners h = fh1; h2; h3; h4g.
The set of all �nite sets of vertices in 
 is denoted by X
 and the set of all �nite sets of

vertices on the boundary is denoted by X@
. If we let X
(m)

 denote the set of all vertex sets

comprising m � 0 vertices in 
 then X
 =
S1
m=0X

(m)

 . Similarly, if we let X

(n)
@
 denote

the set of vertices on @
 comprising n � 0 vertices then X@
 =
S1
n=0X

(n)
@
 .

The embedding of a �nite graph in a bounded region of the plane is de�ned as a planar
straight line graph (Brown, 1964) if it has no coincident vertices and no intersecting edges.
The degree of a vertex in a graph is de�ned as the number of incident edges. By V -vertices
we refer to any vertices of degree 2 and those V -vertices whose edges are perpendicular, we
refer to as L-vertices. Finally, vertices with degree 3 are de�ned as T -vertices if two of the
incident edges are parallel. See Figure 4 for details.
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V -vertex L-vertex T -vertex

Fig. 4. The V -, L- and T -vertices used in the polygonal model.

Let v 2 X
 and l 2 X@
 and consider the subset	
(v; l; h) of planar straight line graphs
with vertices v[ l[h for which: (1) the vertices in v are V -vertices; (2) the vertices in l are
T -vertices; and (3) the vertices in h form the domain 
 by L-vertices. The set 	
(v; l; h)
is referred to as the set of admissible polygonal models which can be constructed in 
 with
vertex set (v; l; h). See Figure 5 for two examples with the same vertex set. The space of
admissible polygonal models in 
, 	
, is de�ned as the union over all polygonal models
in 
:

	
 �
[

(v;l)2X
�X@


	
(v; l; h):

Note that the de�nition of admissible polygonal models allows the graphs in 	
(v; l; h) to
be disconnected i.e., there may be self-contained masses within 
 that cannot be reached
from the boundary by following any path in the graph.

l1

l2

l3 l4

l5

l6

l7l8

v1

v2

v3
v4

v5

v6

v7 v8

v9

v10

h1 h2

h3h4

Fig. 5. For fixed vertex sets v and l we may obtain many distinct realisations from the basic random
polygonal model distribution. Note how irregular masses (as opposed to layers) may be constructed
by joining interior vertices only. The polygonal faces are shown with different shadings.

A random polygonal model is a measurable map  from some measure space to (	
;B
),
where B
 is a �-algebra of subsets of 	
. In the present paper we use the constructionfrom to ?

by Arak and Surgailis (1989, p. 547) for B
. Let A 2 B
, then a base measure � on the set
of polygonal models is de�ned by

�(A) =

1X
n=0

1X
m=0

Z
X
(m)



dv1 dv2 � � � dvm

Z
X
(n)
@


dl1 dl2 � � � dln
X

 2	
(v;l;h)

1l( 2 A):

Now, let �
 and �@
 denote the intensities of two independent Poisson point processes in 

and on @
 respectively. The distribution of  is then de�ned by the density

p( ) =
1

K

�
m(v)

 �

n(l)
@
 ;

which is absolutely continuous with respect to �. We note that the number of polygonal
models in 	
(v; l; h) is bounded by the number of triangulations on the same vertex set.
Consequently the normalising constant K
 is �nite whenever 
 has non-zero area (Nicholls,
1998, Theorem 1).

The polygonal models in 	
 are used to segment the study area 
 into regions of
uniform resistivities. Each region is referred to as a polygonal face, which takes a certain
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colour corresponding to its resistivity. We assume that  is a �xed polygonal model and
let f denote the number of distinct faces in  . For simplicity we also assume that the
set J of allowable face colours is �nite and that ci denotes the colour of the ith face in  
for i = 1; 2; : : : ; f . Then, the set of all possible face colourings of  is given by C( ) = J f .
Finally, if we let � ;c : 
 ! J de�ne the colouring map from each point (x; z) in 
 to the
corresponding colour in J , then the set	
;C of all colouring maps which can be constructed
from random polygonal models in 
 is given by

	
;C �
[

 2	


[
c2C( )

(� ;c(x; z))(x;z)2
:

We de�ne a prior distribution on	
;C with respect to the product of � and the counting
measure by

p
;C(�) =
1

K


1

jC( )j
�
m(v)

 �

n(l)
@
 expf����(�)g1l[c 2 C( )] (6)

where, for notational convenience, we write � = � ;c and �(�) denotes the overall length of
the discontinuity set of � i.e., the summed length of all edges between polygonal faces of
di�erent colour in �. The density is obviously well-de�ned and in Section 3 we show how
the intractable normalisation constant K
 can be treated via Markov chain Monte Carlo
(MCMC) simulation (see e.g. Brooks, 1998; Robert and Casella, 1999).

The positive constant �� is a tuning parameter, used to control the number of distinct
coloured polygonal regions in the reconstruction. Note that by choosing a large value
for �� , we get a reasonably 
at prior on � ;c and that the boundary @
 does not contribute
to �(�). This corresponds to a free boundary condition on the model (Nicholls, 1998).
For parsimony, we use a single intensity � by setting �
 = �2 and �@
 = �. Obviously,
the average number of polygons rises with �, whereas the number of distinct coloured
polygons decreases as �� increases. Consequently the appearance of realisations from the
prior distribution is controlled solely by � and �� . Figure 6 shows eight simulated realisations
under the prior on the unit square for di�erent values of � and �� with the number of
allowable face colours, jJ j = 5. Note how the number of distinct coloured areas increases
as �� decreases.
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Fig. 6. Samples from the prior distribution on the unit square (�
 = �2, �@
 = � and jJ j = 5).

We will assume a priori that all three parameters in the covariance structure de�ned in
Equation (4) are independently gamma distributed i.e.,

��2 � �(a� ; b�); � � �(a� ; b�) and L � �(aL; bL):
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The stochastic quantities in the model and their interdependent relations can be summarised
by the directed acyclic graph (DAG; Pearl, 1988) in Figure 7.

y

� �

a�

L

aL

�

a����

�

Fig. 7. DAG representing the model used in the geoelectrical reconstruction algorithm. The single
edged square denotes the observed data y; the single edged circles denote the latent variables; and
the double edged boxes represent observed, constant parameters.

3. Geoelectrical data analysis with coloured polygonal models

Inference on the composition of the Earth is based upon the posterior distribution

p
;C(� ;c; �; L; � j y) / p
;C(� ;c)p(y j � ;c; �; L; �)p(�)p(L)p(�); (7)

where p(�); p(L) and p(�) denote densities of the prior distributions for the variance pa-
rameters. This posterior distribution may be summarised by statistics of interest such as
the maximum a posteriori estimate

argmax
� ;c 2 	
;C

�; L; � 2 R+

p
;C(� ;c; �; L; � j y)

or the posterior mean of every pixel value in � ;cZ
	
;C

ZZZ
R3+

� ;c(x; z)p
;C(� ;c; �; L; � j y)d� ;c d� dL d�:

Explicit evaluation is impossible but MCMC methods provide an alternative technique
based upon samples from the posterior distribution. Posterior means may be estimated by
the corresponding sample mean, for example. These draws from the posterior are obtained
via MCMC which simulates a Markov chain f�tg with a pre-speci�ed invariant distribu-
tion. Essentially, MCMC methods work by taking some initial con�guration and proposing
changes to it which are either accepted or rejected. In the context of our example, sensi-
ble changes might include translating the vertices in (v; l), adding or deleting vertices, and
changing the colouring. In order to investigate the state space eÆciently, we suggest using
three within-model moves i.e., those which retain the current set of points in the resistivity
model � ;c, and three between-model moves that insert and delete polygons/vertices in the
current model. It is obvious that the insertion, deletion and recolouring moves are the min-
imum requirement for investigating the state space completely. However, the translation
move that allows for the movement of the polygons supplements these to make movement
around the state space more rapid. The six di�erent proposal types must be scaled appro-
priately to make them as eÆcient as possible and optimal scales are often found via pilot
tuning. See Figure 8 for details.
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A0

A

v0

u

D

B0

B

u1
u2

E

u1

u2

u3
C0

C

F

Fig. 8. The proposed updates used in the MCMC reconstruction algorithm. Shown are the different
possible transitions for adding (A) and deleting (A0) vertices within polygons, adding (B) and deleting
(B0) boundary polygons, adding (C) and deleting (C0) interior polygons, recolouring polygonal faces
(D), translating vertices in polygons (E) and shifting edges (F).

Within each update, we begin by deciding which particular move we will attempt, ac-
cording to speci�ed probabilities �A; �A0 ; : : : ; �F. Move-type A involves the introduction of a
new vertex in a polygon i.e., the vertex set v is changed. The reverse move in which a vertex
is deleted is referred to as move-type A0. Move-types B and C involve the introduction of a
new polygonal face, whereas the reverse move-types B0 and C0 enable us to delete polygons
(v and l are changed). Move-type D alters the resistivity assigned to the polygonal faces (c
is changed) and move-type E translates the vertices in  in a given direction (v and l are
changed). Finally, move-type F 
ips two edges. Obviously, move types A and E only make
changes to the polygonal model  , whereas move type D only updates the colouring of  .
The remaining move types (B, C and F) make changes to both  and c. Note also that
these moves are reversible by design.

We shall distinguish between three separate simulation algorithms that we later combine
to construct a simulation technique suitable for the geoelectrical reconstruction problem: (1)
the Metropolis{Hastings updating scheme (Metropolis et al., 1953; Hastings, 1970) for with-
in model moves i.e., move-types D, E and F; (2) the reversible jump MCMC update (Green,
1995), which allows us to perform between-model moves (move-types A, B and C); and (3)
�nally we modify the Metropolis{coupled MCMC (MCMCMC) method (Geyer, 1991) as a
means of increasing the computational eÆciency of the overall process.

3.1. Metropolis–Hastings updates
The Metropolis{Hastings prescription is used to construct a transition kernel which updates
the model parameters whilst retaining the stationary distribution of interest i.e., the poste-
rior distribution given in (7). Given that the chain is in state � ;c for a given x; v;  and c
at time t, a proposed new state � 0;c0 is drawn from some (essentially arbitrary) proposal
kernel q(� ;c; � 0;c0) and then subsequently accepted with probability

�(� ;c; � 0;c0) = min

�
1;
p
;C(� 0;c0 ; �; L; � j y)q(� 0;c0 ; � ;c)

p
;C(� ;c; �; L; � j y)q(� ;c; ��0;c0)

�
(8)

and �t+1 = � 0;c0 . If the proposal is rejected, then �t+1 = � ;c. Note, the dependence
of  (v; l) on the vertices (v; l) is suppressed here.



12 K. E. Andersen, S. P. Brooks and M. B. Hansen

For illustration, we give explicit descriptions and calculations for translating vertices
in v (move-type E) below. Details of the remaining within-model move-types are given
in Appendix B. Move-type E is chosen with probability �E. This move is performed
by considering in turn the vertices in (v; l) and updating each vertex by selecting a new
vertex uniformly within some small region around the current vertex. More speci�cally, let
p = (x; z) denote any vertex in (v; l). If p 2 v, then we propose p0 = (x + dx; z + dz),
where dx and dz are uniformly distributed on the intervals (�a; a) and (�b; b), respectively.
However, if p 2 l, then we propose sliding p counter-clockwise along the boundary for some
distance drawn from a uniform distribution on the interval (�l; l). See Figure 9 for details.

bc

bc

bc

bc

bc

p1

p0

1
p2

p0

2

Fig. 9. Any update of  or c requires a new approximating profile to be constructed. Here the
updating process is illustrated for translating vertices in (v; l). When updating an interior vertex p,
a new candidate is drawn uniformly from a box centered in p. Boundary vertices are updated in a
similar way. Note how each pixel within � is assigned its most dominating colour.

In proposing a change to any of these two di�erent types of vertices, we propose a move
from (v; l) to (v0; l), or from (v; l) to (v; l0), from which  0 is obtained. Hence we propose
a move � ;c to � 0;c, with qE(�; � 0;c) = 1=(4ab) for an interior vertex and qE(�; � 0;c) =
1=(2l) for a boundary vertex. Thus qE is symmetric and the posterior ratio in (8), with
p
;C(�; �; L; � j y) de�ned in (7), is given by

p
;C(� 0;c; �; L; � j y)

p
;C(� ;c; �; L; � j y)
=
jC( )j�n
�

m
@
 exp(����(� 0;c)�G(� 0;c; �))

jC( 0)j�n
�
m
@
 exp(����(� ;c)�G(� ;c; �))

:

Note that the prior densities cancel and the colouring of the polygonal model is unchanged.
The acceptance probability is simply

�E(� ;c; � 0;c) = minf1; exp[��(�(� ;c)� �(� 0;c)) +G(� ;c; �)�G(� 0;c; �)]:

Updating of the variance parameters �; L and � also require Metropolis{Hastings up-
dates. Let � = � ;c and ��;L;� = �2��;L, then at every iteration of the chain we update
the precision � � ��2 by choosing as proposal distribution

�(� j �;��;L) / �a�+NP=2�1 exp[���1(b� + (logKS(�)� y)>��1�;L(logKS(�)� y))=2];

i.e., the proposal is a gamma distribution with parameters a� + NP=2 and b� + (y �
logKS(�))

>��1�;L(y � logKS(�))=2, where N denotes the number of sampling locations on
the pro�le surface and P denotes the number of di�erent electrode con�gurations in S. It
is easily shown that if this distribution is chosen as the proposal, then the corresponding
acceptance probability is identically equal to one and this update is known as a Gibbs
sampler update { a special form of Metropolis{Hastings. The remaining variance parame-
ters � and L also require updating and, for eÆciency, this is done once every 20 iterations.
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Because of the complicated form of ��;L we update these two parameters using the more
general Metropolis{Hastings update. Suppose that we attempt an update of the corre-
lation length L, and that a new candidate L0 is drawn from a gamma distribution with
parameters aL and bL. Then the acceptance probability takes the form

�(L;L0) = min

�
1; j��1�;L0��;Lj

1=2

�
L0

L

�aL�1
�exp

�
�

2
(logKS(�)� y)>(��1�;L � ��1�;L0)(logKS(�)� y) + bL(L� L0)

��
:

The acceptance probability for updating the smoothness parameter � is obtained in a similar
way.

These Metropolis{Hastings updates are used to update the state vector essentially mov-
ing the current polygon con�guration. In order to move between con�gurations with di�er-
ent numbers of vertices, we require what are known as reversible jump MCMC (RJMCMC)
updates, since such updates involve moving between states of di�erent dimensions. For
example, the introduction of a new coloured polygonal face to the current coloured con�gu-
ration will increase the dimensionality of the state vector, since additional parameters will
be needed to describe the new con�guration.

3.2. Reversible jump Markov chain Monte Carlo
Suppose a dimension-changing move m is proposed and the proposal � 0;c0 is generated
by a deterministic invertible function f(� ;c; u), where u is a continuous random variable.
Then Green (1995) shows, that if rm(� ;c) denotes the probability of choosing move type m
when in state � ;c; q(u) denotes the density function of u, and p
;C(� ;c; �; L; � j y) denotes
the posterior density of � ;c, then the corresponding acceptance probability becomes

�(� ;c; � 0;c0) = min

�
1;

p
;C(� 0;c0 ; �; L; � j y)rm0(� 0;c0)

p
;C(� ;c; �; L; � j y)rm(� ;c)q(u)

����@f(� ;c; u)@(� ;c; u)

����� ; (9)

where m0 denotes the reverse move to m. We note that the �nal term in the above ratio
is the Jacobian arising from the change of variables associated with moving from one space
to the other. Algorithmically, the reversible jump updating procedure proceeds identically
to that for Metropolis{Hastings updates.

For illustration, we give explicit descriptions and calculations of move-types A and A0

and their corresponding acceptance probabilities below. Details of the remaining dimension
changing move-types are also given in Appendix B. Assume that con�guration � ;c consists
of n interior vertices and m boundary vertices then for a birth, a new vertex is proposed by
sampling a vertex u = (x; z) uniformly in 
 i.e., u has density s(u) = 1=A(
). Next, select
a vertex v uniformly amongst the n existing interior vertices in  and add u between the
vertex v and one of its neighbours, say v0. The original edge (v; v0) in  is then replaced in
 0 by (v; u; v0) which is automatically rejected if either one of these edges crosses any other
in  0 i.e.,  0 62 	
. The proposal probability for this move is then

qA(� ;c; � 0;c) = �A
1

nA(
)
;

where �A denotes the probability of proposing move type A. The probability qA0 for the
reverse move A0 to be generated is equal to the probability of choosing to delete an interior
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vertex in  , times the probability of picking that vertex from the n+ 1 vertices in  0 i.e.,

qA0(� 0;c; � ;c) = �A0

1

n+ 1

The Jacobian term j@f(� ;c; u)=@(� ;c; u)j needed for computing the acceptance probability
is simply one, since f(� ;c; u) = (� ;c; u). Thus, the posterior ratio in (9) becomes

p
;C(� 0;c; �; L; � j y)

p
;C(� ;c; �; L; � j y)
=
jC( )j�n+1
 �m@
 exp(����(� 0;c)�G(� 0;c; �))

jC( 0)j�n
�
m
@
 exp(����(� ;c)�G(� ;c; �))

:

The underlying polygonal model is changed by this update so the overall length of the
discontinuity set is most likely changed. However, the colouring is not changed, so jC( 0)j =
jC( )j and densities cancel between prior measures up to factor of �
 for the extra interior
vertex in  0. Hence, by (9), the corresponding acceptance probability becomes

�A(� ;c; � 0;c) = min

�
1; 1l( 02	
)�
A(
)

�A0

�A

n

n+ 1

exp[����(� 0;c)�G(� 0;c; �)]

exp[����(� ;c)�G(� ;c; �)]

�
:

The death of a vertex is performed similarly, with one of the n interior vertices being
proposed for deletion, a move which is subsequently accepted with probability

�A0(� ;c; � 0;c) = min

�
1; 1l( 02	
)

1

�
A(
)

�A
�A0

n

n� 1

exp[����(� 0;c)�G(� 0;c; �)]

exp[����(� ;c)�G(� ;c; �)]

�
:

3.3. Metropolis–coupled Markov chain Monte Carlo
The Metropolis{Hastings and reversible jump updates will produce a Markov chain with the
required stationary distribution. However, the resulting chain may be slow to move around
the state space so that large run lengths are required in order to obtain reliable inference.
To improve the speed with which the state space is traversed (often termed the mixing
rate), many simulation techniques have been suggested. For example, MCMCMC (Geyer,
1991), simulated tempering (Marini and Parisi, 1992; Geyer and Thompson, 1995), multigrid
Monte Carlo (MGMC) methods (Goodman and Sokal, 1989) and simulated sintering (Liu
and Sabatti, 1998) have all been proposed as mechanisms for improving Markov chain
mixing. In this paper, we combine the MCMCMC and MGMC simulation algorithms to
obtain the Metropolis{coupled multigrid Markov chain Monte Carlo simulation algorithm
described below. Actually, Higdon et al. (2001) consider a similar approach using low-level
multivariate Gaussian priors on the di�erent grids. This contrasts our high-level approach
where the prior distribution is placed on the space of polygons.

Let � = f�1; �2; : : : ; �dg denote a family of interrelated stationary distributions and
suppose d Markov chains are run in parallel, each with a di�erent stationary distribution
from �. The method works by running all chains simultaneously, but occasionally proposing
to swap the states of two randomly chosen chains. Suppose �1 is the (posterior) distribution
of interest and that states from chain i that can be swapped between chains are spaced Ni
iterations apart. This allows for the fact that the di�erent chains may mix at di�erent rates
so that autocorrelations between states within some chains will die out more slowly than in
others.

Let �
(i)
t denote the state of the ith chain (with stationary distribution �i) at iteration t

and suppose that we propose to swap states between chains i and i+1. Then the probability
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of accepting the proposed swap is simply

min

(
1;
�i(�

(i+1)
Ni+1ti

)�i+1(�
(i)
Niti

)

�i(�
(i)
Niti

)�i+1(�
(i+1)
Ni+1ti

)

)
:

We apply the Metropolis{coupled MCMC algorithm described above by taking d = 4.
When evaluating the likelihood function there are two issues to consider: (1) the number of
sampling locations on the surface and (2) the coarseness of the grid used to approximate the
pro�le in consideration. We use di�erent numbers of sampling locations and grid coarseness

to create our four target densities. We let f�
(1)
t g denote the chain of the full data evaluated

by using a grid with cell size 1-by-1 metres i.e., the approximating matrix is 45-by-450. This
is the density of interest. The underlying process is also sampled in all possible locations on
the pro�le. For the second chain, we take a slightly coarser grid with cell size 5-by-3 metres
i.e., a 15-by-90 matrix is used to approximate the pro�le. The third process is based upon
the same grid, but we sample observations only every 30 metres. The �nal process uses the
same sample locations and uses an even coarser grid with cell sizes of 9-by-15 metres.

3.4. Convergence properties

Let �t = f�
(1)
(t�1)N1+1

; : : : ; �
(1)
tN1

; : : : ; �
(d)
(t�1)Nd+1

; : : : ; �
(d)
tNd

g denote the overall process with

stationary distribution
Nd

i=1 �
Ni
i (Geyer, 1991). Obviously, for any two polygonal models

of �xed vertex sets, there is a �nite sequence of operations linking the two models. This, in
combination with the likelihood being bounded below from 0 means that the Markov chain
is irreducible and Harris recurrent (Robert and Casella, 1999, Proposition 4.4.9). Conse-
quently the chain will converge (in total variation norm) to a unique stationary distribution.
The Markov chain described in this section was implemented and tested by setting G, de-
�ned in (5), equal to zero and thereby performing several simulations from the prior varying
only the branching probabilities. Since estimates from these di�erent runs are similar, we
assume that the chain therefore samples from the correct distribution.

4. Analysis of field data from the Ølst formation

In this section, we consider the performance of our approach on the 150 metre long data
segment shown in Figure 3(a). To avoid boundary e�ects we propose augmenting the
pro�le of interest into a 450 metre long and 45 metre deep pro�le �. The reconstruction for
the segment of interest is then based upon apparent resistivities predicted for the middle
segment by the forward operator K derived in Section 2. A large number of colours in J is
expected to lead to slow convergence and it is therefore important to recover good estimates
of the colours to be used in the MCMC simulation. A natural approach would be to consider
a mixture distribution over possible colour values. However, we have brie
y experimented
with this technique, and found that the additional degrees of freedom lead to very slow
convergence properties. In the reconstruction we present here we instead condition upon
the number of colours and use a �xed set of colour values based upon prior knowledge and
pilot tuning of the MCMC algorithm. A colour set J based upon 18 colours ranging from
1=2 to 2000 is used for the reconstruction, see Table 1 for details. The colours are chosen
in order to cover the resistivities of the earth materials believed to be present in the �lst
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Table 1. Initial values used in the MCMC reconstruction algorithm.

Colour values

1/2 1 3 5 10 20 30 40 60
80 100 300 500 750 1000 1200 1500 2000

Prior model/initial parameters

� �� � L � b� bL b�
5 1/10 1 100 1 1 4 10

Table 2. The resulting posterior means, standard deviances and 95%
credible intervals for the parameters in the MCMCMC simulation.

95% C.I.

Parameter Post. mean St.d. Lower Upper

� 0.4903 0.0104 0.4705 0.5104
L 23.9793 1.4882 21.6018 26.3866
� 0.1621 0.0241 0.1202 0.2070

Formation. The overall mean of the data segment is about 100 
 �m which we therefore
take as the reference resistivity distribution i.e., �ref = 100.

For the simulation we choose �A = �A0 = 1=16, �B = �B0 = 1=20, �C = �C0 = 1=80,
�D = 3=8, �E = 3=10 and �F = 3=40, so that the chain spends more time translating and
recolouring the polygons than inserting and deleting them. These settings are likely to
be suitable in most contexts. For the prior on the number of boundary vertices and the
number of interior vertices in  we choose intensities �
 = �2 and �@
 = � with � = 8. The
tuning parameter �� was chosen to be large i.e., �� = 1=10, so that the colour of neighbouring
polygonal faces is highly correlated in the prior. For the updating of the variance parameters
we choose centered proposal kernels i.e., a� = b�� with b� = 1; aL = bLL with bL = 4;
and a� = b�� with b� = 10.

For the four di�erent MCMC simulations we choose homogeneous resistivity distribu-
tions of 10, 50, 100 and 500 
�m as initial distributions each started with � = 1; L = 100
and � = 1 as initial parameters. Swaps in �1 were attempted at every 20 iterations
i.e., N1 = 20. The remaining chains had N2 = 50; N3 = 200 and N4 = 500. The mas-
ter process was run for 150 000 iterations, while the three remaining processes were kept
running while the master process was active i.e., for 375 000; 1 500 000 and 3 750 000 itera-
tions, respectively. Swaps between chains i and i+1, i = 1; 2; 3, were attempted at random.
Figure 10(a) displays the posterior potential for an ordinary run of the MCMC algorithm
without coupling and a run of the coupled MCMC algorithm. It is evident that the coupled
simulation algorithm improves dramatically upon the sampling performance of �(1) based
only upon MCMC and RJMCMC moves.

In the absence of a suitable test for Markov chain convergence, we look for stationarity
in selected output statistics. Figure 10(a) displays trace plots for the posterior poten-
tial G(�;�; �; L). Trace plots for other statistics exhibit similar behaviour and we therefore
assume that the chain achieves stationarity within the �rst 75 000 iterations. The remain-
ing 75 000 iterations are used for posterior inference and a summary of the results is pre-
sented in Table 2. The autocorrelation function (ACF) for the coupled MCMC algorithm,
see Figure 10(b), was estimated for the posterior potential. The ACF provides a useful tool
for investigating serial dependence in stationary time series data, as the presence of serial
correlation is revealed by a slowly decaying ACF. The autocorrelations for a stationary time
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Fig. 10. Sequence of statistics observed in the polygonal model during the MCMC reconstruction
procedure. (a) The posterior potential and (b) the estimated ACF for the coupled algorithm measured
in MCMC simulations. Superimposed in gray is the 95% confidence interval from the estimated
asymptotic variance.

series with no or only little serial dependence, damp down to zero very quickly for increasing
lag. The ACF in Figure 10(b) exhibits similar behavior and we therefore conclude that only
little serial dependence is present in the chain. However, one must note that the G statistic
need not necessarily be the worst mixing statistic. Nevertheless, ACFs were computed for
several other statistics and they exhibited similar behavior.

Some sort of summary is needed for the interpretation of the reconstruction. Figure 11(a)
provides the maximum a posteriori estimate in which the pro�le is clearly segmented into
�ve well-de�ned sedimentary areas. It is not possible to construct an average of the graphs
encountered during the MCMC simulation. However, as suggested by Nicholls (1998), we
may sample points uniformly on the discontinuity set of colourings sampled from the pos-
terior in order to assess the variability of the transitions between distinct earth materials,
see Figure 11(b). As suggested by M�ller et al. (2001), the vertical shear between clay and
sand is even sharper than predicted by the MCD inversion estimate. Moreover, the samples
from the discontinuity set may indicate that the transitions are rather well-determined.
This is also supported by the posterior mean resistivity distribution within each cell and
its corresponding coeÆcient of variation given by the standard deviation in each pixel di-
vided by its corresponding mean, see Figure 11(c) and (d) for details. The reconstruction
obtained by the MCD technique clearly indicated three sedimentary areas and a rather
di�use isolated area, see Figure 3(b). Our approach revealed, besides a fourth well-de�ned
sedimentary area, a smaller and better identi�ed isolated area. However, this area is not
as well determined as the remaining areas. This may be due to its small size, however, the
near-surface low resistivity area may provide low-quality measurements and thereby distort
the reconstruction.

5. Discussion

In this paper, we develop and discuss a practical Bayesian method for the inversion of an ill-
posed inverse problem. A coloured polygonal model serves as a 
exible and comprehensive
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Fig. 11. (a) The state with the lowest posterior potential sampled during the MCMC simulation; (b)
2500 points sampled uniformly from the discontinuity set; (c) the estimated posterior mean profile;
and (d) the estimated coefficient of variation of the profile distribution.

model for large-scale mapping of the resistivity distribution within a 2-dimensional pro�le.
The reversible jump MCMC algorithm is used to obtain the reconstruction. This simulation
algorithm permits a state space of varying dimensionality and therefore enables us to draw
inference on the number of polygonal faces or the number of edges, for example.

However, the simulation algorithm proposed here can be computer-intensive due to the
time-consuming updating process. The Metropolis{coupled MCMC technique was exploited
to induce better mixing Markov chains which reduces the necessary run length. Usually
the chains are de�ned on the same state space. However, we adopt the multigrid Markov
chain technique and propose swapping the states of Markov chains de�ned on dissimilar
state spaces. The eÆciency of this geophysical reconstruction simulation algorithm was
compared to the ordinary reversible jump MCMC algorithm and faster convergence was
obviously achieved.

One drawback associated with the proposed method is the use of an approximate for-
ward solver. If an exact solver were used, we would probably obtain even more reliable
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reconstructions. However, exact forward solvers are even more computer-intensive than the
approximations, and the simulation algorithm could become very slow. However, a com-
bined Metropolis algorithm may be constructed to provide good candidate models for the
exact forward solver i.e., models that are most likely to be accepted.

The analysis could be extended in a number of ways. For example, we could remove
the condition that the values of �@
, �
 and �� be �xed. In which case, we would place
hyper-priors on these parameters though this may slow convergence. In addition, we could
generalise the error process in order to better model small scale variation and this is the
focus of current research. Current interest also focusses on the modelling of the topography
of the Earth, as hilly topography will act to disperse current 
ow on hills and concentrate
current 
ow in valleys, as well as the incorporation of borehole information. Moreover, a
3D reconstruction algorithm is under consideration.
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A. The Fr échet derivative for 2-dimensional resistivity data

Let I denote the current induced into the Earth at (0; 0; 0) and let (xs; 0; 0) denote the lateral focus
for the electrical potential Vpp in any pole-pole electrode con�guration s. The 3-dimensional form
of the Fr�echet derivative for the homogeneous half-space is then given by (cf. Boerner and West,
1989)

@Vpp(xs)

@�(x; y; z)
=

I

4�2
x(x� xs) + y2 + z2

(x2 + y2 + z2)3=2((x� xs)2 + y2 + z2)3=2
: (10)

The 2-dimensional form of the Fr�echet derivative is obtained by analytical integration of (10) along
strike i.e., in the y-direction. Let K and E denote the complete elliptical integrals of the �rst and
second kind, respectively. Hence

@Vpp(xs)

@�(x; z)
=

8>>>>>>><
>>>>>>>:

I

2�2�

�
K(q1)� E(q1)

�2 � �2
� xsx

(�2 + �2)E(q1)� 2�2K(q1)

�2(�2 � �2)

�
if x < a=2;

I

16�

2z2 � x2

(x2 + z2)5=2
if x = a=2,

I

2�2��2

�
�2E(q2)� �2K(q2)

�2 � �2
� xsx

(�2 + �2)E(q2)� 2�2K(q2)

(�2 � �2)2

�
else,

where �2 = x2+ z2, �2 = (x�xs)
2+ z2, q1 =

p
(�2 � �2)=� and q2 =

p
(�2 � �2)=�. Finally, the

electrical potential for a four-electrode con�guration is given by a sum of four pole-pole potentials,
that is, the total 2-dimensional form of the Fr�echet derivative becomes

@Vs(xs)

@�(x; z)
=
@Vpp(xM � xA)

@�(x� xA; z)
�
@Vpp(xN � xA)

@�(x� xA; z)
�
@Vpp(xM � xB)

@�(x� xB; z)
+
@Vpp(xN � xB)

@�(x� xB; z)
:
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B. Detailed move descriptions

In this Appendix we provide detailed descriptions of the move-types used in the reconstruction
algorithm.

A/A0: Vertex birth and death
The birth and death moves are described in detail in Section 3.2.

B/B0: boundary polygonal birth and death
Suppose that the current con�guration � ;c consists of n interior vertices and m boundary ver-
tices. Then, a new boundary polygon is introduced to  by joining a straight line between two
uniformly and independently distributed vertices u1 and u2 on the boundary @
 i.e. (u1; u2) has
density 1=L(@
)2. If the edge e = u1u2 crosses any other in  , then the move is automatically
rejected. Otherwise, the inserted edge splits a polygonal face into two, each of which is assigned a
new colour uniformly from J . The edge e can be generated in two di�erent ways, so the generation
probability becomes

qB(� ;c; � 0;c0) = �B
2

jJ j2L(@
)2
:

Boundary polygonal death is chosen with probability �B0 . A boundary vertex v is chosen uniformly
among the m + 2 existing boundary vertices in  0. If v = u1 or v = u2, then we consider the
state � ;c formed from �0

 ;c by deleting the edge e and assigning the faces incident to e a new
common colour. The generation probability for the reverse move B0 is then

qB0(� 0;c0 ; � ;c) = �B0
2

(m+ 2)jJ j
:

The Jacobian equals one, so combining the generation probabilities the acceptance probability for
boundary polygonal birth becomes

�B(� ;c; � 0;c0) = min

�
1; 1l( 0 2 	
)

�
B
0

�B

jJ jL(@
)2�2@

m+ 2

exp[����(� 0;c0)�G(� 0;c0 ; �)]

exp[���(�(� ;c)�G(� ;c; �)]

�
:

The acceptance probability for the reverse move to be performed is easily found to be

�B0(� ;c; � 0;c0) = min

�
1; 1l( 0 2 	
)

�B
�B0

m

jJ jL(@
)2�2@


exp[����(� 0;c0 )�G(� 0;c0 ; �)]

exp[����(� ;c)�G(� ;c; �)]

�
:

C/C0: interior polygonal birth and death
The births and deaths of interior polygons are performed along similar lines as the birth and
death updates for boundary polygons. If we assume  consists of n interior vertices and an
interior polygonal birth is attempted, then three vertices (u1; u2; u3) are sampled uniformly and
independently in 
. Note, the three vertices may be re-labeled in six di�erent ways. If the edges
of the polygonal face (u1; u2; u3) cross any others in  , then it is rejected, otherwise it is assigned
a colour uniformly from the colours in J . The generation probability for this move is then

qC(� ;c; � 0;c0 ) = �C
6

jJ jA(
)3
:

The generation probability for the reverse move C0 is equal to the probability of choosing to delete
an interior polygonal face, times the probability of picking any of the three vertices of all the n+3
vertices in  0 i.e.,

qC0(� 0;c0 ; � ;c) = �C0
3

n+ 3
:
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Note that the death of an interior polygonal face does not require a new colour to be sampled
in contrast to the boundary polygonal death, since the embedding polygonal face maintains its
colouring. The corresponding acceptance probability then becomes

�C(� ;c; � 0;c0) = min

�
1; 1l( 0 2 	
)

�
C
0

�C

A(
)3�3
jJ j

2(n+ 3)

exp[����(� 0;c0)�G(� 0;c0 ; �)]

exp[���(�(� ;c)�G(� ;c; �)]

�
:

Similarly, the acceptance probability for the reverse move is easily found to be

�C0(� ;c; � 0;c0) = min

�
1; 1l( 0 2 	
)

�C
�C0

2n

A(
)3�3


jJ j

exp[����(� 0;c0)�G(� 0;c0 ; �)]

exp[���(�(� ;c)�G(� ;c; �)]

�
:

D: Recolouring polygonal faces
This move type is chosen with probability �D. We choose a polygonal face fi uniformly from the f 
polygons faces in  and let Ji denote the colour of the picked polygon. A new colour, Jj say, is
chosen uniformly from J n Ji and we consider the candidate state � ;c0 obtained from � ;c by
setting cf = Jj . The generation probability for this move is simply

qD(� ;c; � ;c0) = �D
1

(jJ j � 1)jJ j
:

Since this proposal is symmetric, the acceptance probability simpli�es to

�D(� ;c; � ;c0) = min
�
1; exp[��(�(� ;c)� �(� ;c0)) +G(� ;c; �)�G(� ;c0 ; �)]

	
:

In practice, we consider each face in turn, so that each may be updated within a single iteration.

E: Translating polygons
The translation of polygons is described in detail in Section 3.1.

F: Shifting edges in polygons
With probability �F we shift two of the edges in  . Two vertices (u1; v1) are picked uniformly from
the n vertices in  . Let u2 denote a neighbouring vertex of u1, picked at random. Likewise, let v2
denote a neighbouring vertex of v1, picked at random. Finally, let  0 denote the polygonal model
in which edges (u1; u2) and (v1; v2) in  are replaced by edges (u1; v1) and (u2; v2). Then the faces
in  0 are all assigned new colours from J . If we let f denote the number of polygonal faces in  ,
then the generation probability is

qF(� 0;c0 ; � ;c) = �F
1

2(n+m)jJ jf 
;

since f = f 0 . The acceptance probability �F then becomes identical to �D and �E.
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