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Introduction

In 1956 A. Selberg discovered weakly symmetric Riemannian spaces
S as homogeneous spaces for certain locally compact groupsG. He then
studied the algebra A of all linear invariant operators, applying this
�nally to his trace formula and to Dirichlet series [5]. The fundamental
property of A is that it is commutative. The basic example of S is the
group manifold for a reductive Lie group G. The harmonic analysis,
discrete groups and Selberg's trace formula on reductive Lie groups
was (and is) extensively studied by many mathematicians after Selberg
in connection with representation theory with application to number
theory.

One of the simplest and most important examples of non-reductive
Lie groups is the Jacobi group GJ , on which the classical Jacobi theta
series are living. In spite of the very old and glorious history of Jacobi
theta series the Jacobi group became known as an important group for
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further study only in recent years in connection with Kac-Moody alge-
bras, see [4] and references therein. The connection with number theory
was emphasized in the books of Eichler and Zagier [3] and Berndt and
Schmidt [1]. Generally, the Jacobi group is a semidirect product of a
symplectic group with a Heisenberg group. From this de�nition it is
clear how to describe irreducible representations of GJ , but it is not a
simple problem (cf [1]).

In this paper we consider GJ as a group manifold with a special chart
of coordinates, suited for our purpose. We study the di�erential geom-
etry on this manifold having in mind the development of the spectral
theory of invariant di�erential operators on GJ and certain applications
to mathematical physics.

Speci�cally we study the Jacobi group GJ of degree 1 over the real
numbers as the semidirect product of SL(2;R) with the 3-dimensional
Heisenberg group. This group can also be considered as a subgroup
of the symplectic group Sp(2;R) (cf [1]). On the group GJ we de�ne
coordinates (y; x; �; u; v;  ), where (y; x; �) are the Iwasawa coordinates
on SL(2;R) and (u; v;  ) coordinates on the Heisenberg group. In this
way GJ becomes a 6-dimensional C1-manifold M , and the group GJ

acts on M by left multiplication. The action is described in a simple
way in terms of the above coordinates (1.5).

We then study the GJ -invariant di�erential forms on M , obtain-
ing four independent quadratic di�erential forms (Lemma 1.1). The
�rst two forms are the well-known di�erential forms (1.10) related to
SL(2;R) and introduced by Selberg, the last two forms (1.12) also
involve the Heisenberg group. We then study the 6-dimensional Rie-
mannian manifold with this metric ds2(") depending on 4 parameters
" = ("1; "2; "3; "4). The metric is positive de�nite when all "i > 0.
(Lemma 2.1). We calculate the Christo�el symbols, the Ricci tensor
and the scalar curvature R("). It turns out that R(") for each " is con-
stant onM (Theorem 2.3). The Einstein equation (2.4) has a non-zero
right hand side, which takes a simpler form for certain values of ". The
Einstein equations can be seen as the Euler-Lagrange equations corre-
sponding to an action Sg(") contributed by the �eld in the absence of
matter, taken to be the Hilbert action of the �eld, given by

Sg(") =

Z



R(")d�("); d�(") =
q
detgij(")dydxd�dudvd 

over certain domains 
 in M , cf [2] for the classical theory. We can
then introduce Riemannian manifolds obtained as quotients of M by
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discrete arithmetical subgroups of GJ based on subgroups of the mod-
ular group. These manifolds are non-compact of �nite volume with a
4-parameter family of Laplacians corresponding to the family of qua-
dratic di�erential forms described in this paper. (Lemma 1.1). This
gives rise to an extension of the spectral theory of automorphic forms to
this family of Laplacians on such arithmetical Jacobi manifolds. This
theory will be developed in a forthcoming paper.

1. Definition of GJ.

The Jacobi group is a semidirect product of a symplectic group with
a Heisenberg group. We will consider here the simplest case of degree
1 over the real numbers

GJ = SL(2;R) nH(3;R) (1.1)

and the 3-dimensional Heisenberg group H(3;R) is isomorphic to the
group of upper triangular unipotent 3 x 3 matrices. From this de�nition
we can see a certain similarity with the Poincar�e group GP which is a
semidirect product of 0(3,1) with the group of translations of R4 .

Consider now the symplectic group Sp(2;R), which is by de�nition
the group of matrices

�
A B

C D

�
�GL(4;R)

where A, B, C, D are 2 x 2-matrices with the properties

AtD � CtB = I; AtC = CtA;BtD = DtB

and t means transposition of a matrix, I is the 2 x 2 identity matrix. It
turns out (see [1] p1) that GJ can be seen as the subgroup of Sp(2;R)
consisting of matrices of the form

� �
0 0 0 1

�

We will consider GJ as a homogeneous space M . The group GJ acts
on M by group multiplication from the left. It is clear that M is a
real C1 manifold. We want to see now the di�erential one-forms on
M invariant under this action. The manifold M can be covered by
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one chart of coordinates. A convenient system of coordinates is the
following. Any element g�GJ can be written in the form

g =

0
BB@
� 0 � b

� 1 � c


 0 Æ �a
0 0 0 1

1
CCA� = �a+ Æb; � = �a+ 
b (1.2)

where

�0 =

�
� �


 Æ

�
�SL(2;R); a; b; c�R

On the group manifold of SL(2;R) we have the system of Iwasawa

coordinates given by the Iwasawa decomposition; for
Æ

g �SL(2R) we
have

Æ

g= n(x)a(y)k(�) ; n(x) = 2

�
1 x

0 1

�
;

a(y) =

�p
y 0
0

p
y�1

�
; k(�) =

�
cos� � sin�
sin� cos�

�
; (1.3)

x 2 R; y > 0; � 2 R mod 2�

It is convenient also to think of x+ iy = z as points of the upper-half

plane. The group multiplication by
Æ

g �SL(2;R) is equivalent to the
following action on the x; y; � coordinates

z0 = x0 + iy0 =
�z + �


z + Æ
; �0 = �+ arg(
z + Æ) (1.4)

where the argument argz of a complex number z is taken with �� �
argz < �. Since we have GJ as a semidirect product(1.1), or in the
coordinates (1.2)

g =

0
BB@
� 0 � 0
0 1 0 0

 0 Æ 0
0 0 0 1

1
CCA
0
BB@
1 0 0 �

� 1 � c

0 0 1 ��
0 0 0 1

1
CCA

We will introduce on the group manifold M the system of coordi-
nates of m�M;m = (y; x; �; u; v;  ), where (y; x; �) are the Iwasawa
coordinates on SL(2;R) and u; v;  the coordinates on the Heisen-
berg group manifold u = a; v = b;  = c. It is not diÆcult to see
that for g from (1.2) and m = m(y; x; �; u; v;  )�M;m0 = gm;m0 =
(y0; x0; �0; u0; v0;  0)�M we have



JACOBI GROUP MANIFOLD 5

(
z0 = �z+�


z+Æ
; �0 = �+ arg(
z + Æ); u0 = Æu� 
v + a; v0 = �v � �u+ b

z0 = x0 + iy0;  0 =  + (�v � �u)a+ (
v � Æu)b+ c

(1.5)

We introduce now the matrix valued invariant di�erential one form
on M. For g�GJ we de�ne the di�erential dg; if g = (g;j)

4
i;j=1, then

dg = (dgij)
4
i;j=1 It is obvious that the matrix g�1dg is GJ -invariant. We

have

g�1 =

0
BB@

1 0 0 ��
�� 1 �� �c
0 0 1 �

0 0 0 1

1
CCA
0
BB@

Æ 0 �� 0
0 1 0 0
�
 0 � 0
0 0 0 1

1
CCA

=

0
BB@

Æ 0 �� ��a� Æb

�a 1 �b �c
�
 0 � �a+ 
b

0 0 0 1

1
CCA (1.6)

dg =

0
BB@

d� 0 d� db

�da+ ad� + 
db+ bd
 0 ad� + �da+ bdÆ + Ædb dc

d
 0 dÆ �da
0 0 0 0

1
CCA

Then we obtain

g�1dg =

0
BB@

Æda� �d
 0 Æd� � �dÆ Ædb+ �da

�da+ 
db 0 �da+ Ædb �adb + dc+ bda

�
d� + �d
 0 �
d� + �dÆ �
db� �da

0 0 0 0

1
CCA (1.7)

All linear forms from the matrix (1.7) (the nonzero matrix elements)
are GJ -invariant 1-forms on the manifold M. Some of them obviously
are coming from the group SL(2;R), namely

�
a11 a12
a21 a22

�
=
Æ

g
�1

d
Æ

g=

�
Æ ��
�
 �

��
d� d�

d
 dÆ

�

=

�
Æd�� �d
 Æd� � �dÆ

�
d� + �d
 �
d� + �dÆ

�
(1.8)
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Applying the Iwasawa coordinates (1.3) to (1.8) we obtain�
a11 a12
a21 a22

�

=

 
cos 2�
2y

dy + sin2�
2y

dx ; �d�+ 1+cos 2�
2y

dx� sin 2�
2y

dy

d�+ cos 2��1
2y

dx� sin 2�
2y

dy ; � cos 2�
2y

dy � sin 2�
2y

dx

!
(1.9)

We can see that a11 = �a22. From (1.9) we obtain two important
invariant di�erential 2-forms.(

ds20 = (2a11)
2 + (a21 + a12)

2 = dx2+dy2

y2

ds21 = (a21�a12
2

)2 = (d�� dx
2y
)2

(1.10)

It is clear that ds20; ds
2
1 are not only SL(2;R) but G

J invariant forms.
From (1.7) we have also the following three forms invariant under the
GJ action

!1 = �da+ 
db; !2 = �da+ Ædb; !3 = dc+ bda� adb (1.11)

Applying the system of coordinates (1.5), we obtain two other GJ

invariant 2-forms,

(
ds22 = !2

1 + !2
2 = (y + x2

y
)du2 + 1

y
dv2 + 2x

y
dudv

ds23 = !2
3 = v2du2 + u2dv2 + d 2 � 2uvdudv + 2vdud � 2udvd 

(1.12)

= (vdu� udv + d )2

ds2(") = "0ds
2
0 + "1ds

2
1 + "2ds

2
2 + "3ds

2
3 (1.13)

2. The Ricci tensor and the Einstein equation

We let " = ("0; "1; "2; "3) and i; j; k = 1; 2; � � � ; 6.

The metric tensor gij(") of ds
2(") is given by

gij(") =

�
A1 B1

C1 D1

�

A1 =

0
@

"0
y2

0 0

0 "0
y2
+ "1

4y2
� "1

2y
0

0 � "1
2y

"1 0

1
A



JACOBI GROUP MANIFOLD 7

B1 = C1 =

0
@0 0 0
0 0 0
0 0 0

1
A

D1 =

0
@"2(y + x2

y
) + "3v

2 "2
x
y
� "3uv "3v

"2
x
y
� "3uv "2

1
y
+ "3u

2 �"3u
"3v �"3u "3

1
A

det gij(") =
"20"1"

2
2"3

y4

gij(") = g�1ij (") =

�
A2 B2

C2 D2

�

A2 =

0
B@

y2

"0
0 0

0 y2

"0

y

2"0
0 y

2"0
1
4"0

+ 1
"1

1
CA

B2 = C2 =

0
@0 0 0
0 0 0
0 0 0

1
A

D2 =

0
B@

1
"2y

� x
"2y

�ux+v
"2y

� x
"2y

1
"2
(y + x2

y
) 1

"2
(yu+ x(ux+v)

y
)

1
"2
(yu+ x(ux+v)

y
) 1

"3
+ 1

"2
(yu2 + (v+ux)2

y
)

1
CA

It is important to �nd conditions on "0; "1; "2; "3, under which the
metric gijdx

idxj has various signatures. We consider the interesting
case, where the signature is (�;�;+;�;�;+). This is determined by
the eigenvalues �1; �2; � � � ; �6 of the matrix (gij)

6
ij=1. For the eigenval-

ues �1; �2; �3 we obtain �1 =
"0
y2
< 0 if and only if "0 < 0, while �2 and

�3 satisfy the equation

�2 � (
1

y2
("0 +

"1

4
) + "1)�+

"0"1

y2
= 0

Hence

�2 + �3 =
1

y2
("0 +

"1

4
) + "1

and

�2�3 =
"0"1

y2
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It follows that the form "0ds
2
0 + "1ds

2
1 has signature (�;�;+) if and

only if "0 < 0; "1 > 0. Consider now the eigenvalues �4; �5; �6. They
satisfy the equation

� �3 + ("2(y +
1 + x2

y
) + "3(1 + u2 + v2))�2

� ("2"3(y +
1 + x2 + (ux+ v)2

y
) + "22)�+ "22"3 = 0

This gives the equations

�4�5�6 = "22"3 (2.1)

�4 + �5 + �6 = "2(y +
1 + x2

y
) + "3(1 + u2 + v2) (2.2)

�4�5 + �5�6 + �6�4 = "2"3(y +
1 + x2 + (ux+ v)2

y
) + "22

where �4; �5; �6 are functions of x and y, x �R; y > 0 and u; v�R Dividing
the �rst equation into the last equation, we get

1

�4
+

1

�5
+

1

�6
=

1

"2
(y +

1 + x2 + (ux+ v)2

y
) +

1

"3
(2.3)

We shall prove that the form "2ds
2
2 + "3ds

2
3 has signature (�;�;+)

if and only if "2 < 0; "3 > 0. Assume �rst that "2 < 0; "3 > 0. Then by
(2.1) and a suitable ordering of �4; �5; �6 we have �4; �5 < 0; �6 > 0.
Suppose on the other hand that �4; �5 < 0; �6 > 0 for all x; y; u; v.
From (2.1) follows that "3 > 0 and "2 6= 0. Assume that "2 > 0. Then
the r.h.s. of (2.2) is positive for all x; y; u; v.

By (2.2)

�6(x; y; u; v) > "2(y +
1 + x2

y
) + "3(1 + u2 + v2) (2.4)

and by (2.3)

��16 (x; y; u; v) >
1

"2
(y +

1 + x2 + (ux+ v)2

y
) +

1

"3
(2.5)

Multiplying (2.4) and (2.5), we get

1 > y2 +
1

y2
for y > 0;

a contradiction. It follows, that "2 < 0, and we have proved

Lemma 2.1. The metric (gij)
6
ij=1 has signature (-, -, +, -, -, +) if and

only if "0 < 0; "1 > 0; "2 < 0; "3 > 0:
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Remark 2.2. Writing "0ds
2
0+"1ds

2
1 = "0

dy2

y2
+("0+

1
4
"1)

dx2

y2
� d�dx

2y
+d�2 we

observe, that the �-independent part of this metric is negative de�nite
if and only if "0 < 0; 0 < "1 < �4"0
We calculate the Christo�el symbols �k

ij("), given by

�k
ij(") =

1

2
gkl(")(

@glj(")

@xi
+
@gil(")

@xj
� @gij(")

@xl
) (2.6)

where we sum as usual over the repeated index l from 1 to 6. We obtain

�1
ij(") =

0
BBBBBB@

� 1
y

0 0 0 0 0

0 (1 + "1
4"0

) 1
y
� "1

4"0
0 0 0

0 � "1
4"0

0 0 0 0
0 0 0 "2

2"0
(x2 � y2) "2x

2"0
0

0 0 0 "2x
2"0

"2
2"0

0
0 0 0 0 0 0

1
CCCCCCA

�2
ij(") =

0
BBBBBB@

0 � 1
y
(1 + "1

8"0
) "1

4"0
0 0 0

� 1
y
(1 + "1

8"0
) 0 0 0 0 0

"1
4"0

0 0 0 0 0
0 0 0 � "2

"0
xy � "2

2"0
y 0

0 0 0 � "2
2"0
y 0 0

0 0 0 0 0 0

1
CCCCCCA

�3
ij(") =

0
BBBBBB@

0 �(1
4
+ "1

16"0
) 1
y2

"1
8"0

0 0 0

�(1
4
+ "1

16"0
) 1
y2

0 0 0 0 0
"1
8"0

0 0 0 0 0
0 0 0 � "2

2"0
x � "2

4"0
0

0 0 0 � "2
4"0

0 0
0 0 0 0 0 0

1
CCCCCCA

�4
ij(") =

0
BBBBBBB@

0 0 0 1
2y

0 0

0 0 0 x
2y2

1
2y2

0

0 0 0 0 0 0
1
2y

x
2y2

0 2"3
"2

xv
y

"3
"2

v�xu
y

"3
"2

x
y

0 1
2y2

0 "3
"2

v�xu
y

�2 "3
"2

u
y

"3
"2

1
y

0 0 0 "3
"2

x
y

"3
"2

1
y

0

1
CCCCCCCA
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�5
ij(") =

�
A5 B5

C5 D5

�

A5 =

0
@0 0 0
0 0 0
0 0 0

1
A

B5 =

0
@ �x

y
� 1

2y
0

1
2
(1� x2

y2
) � x

2y2
0

0 0 0

1
A

C5 =

0
@�x

y
1
2
(1� x2

y2
) 0

� 1
2y

� x
2y2

0

0 0 0

1
A

D5 =

0
B@

�2 "3
"2
v(y + x2

y
) "3

"2
(�xv

y
+ x2u

y
+ yu) � "3

"2
(y + x2

y
)

"3
"2
(�xv

y
+ x2u

y
+ yu) 2 "3

"2

ux
y

� "3
"2

x
y

� "3
"2
(y + x2

y
) � "3

"2
(y + x2

y
) 0

1
CA

�6
ij(") =

�
A6 B6

C6 D6

�

A6 =

0
@0 0 0
0 0 0
0 0 0

1
A

B6 =

0
@ �1

2
v+2xu

y
� u

2y
0

1
2
(u� x(ux+v)

y2
) �xu+v

2y2
0

0 0 0

1
A

C6 =

0
@�1

2
v+2xu

y
1
2
(u� (v+xu)x

y2
) 0

� u
2y

�xu+v
2y2

0

0 0 0

1
A

D6 =

0
B@
�2"3

"2
v(yu+ x(ux+v)

y
) "3

"2
(yu2 + u2x2�v2

y
) � "3

"2
(yu+ x(ux+v)

y
)

"3
"2
(yu2 + u2x2�v2

y
) 2 "3

"2

u
y
(xu+ v) � "3

"2

xu+v
y

� "3
"2
(yu+ x(ux+v)

y
) � "3

"2

xu+v
y

0

1
CA

The Ricci tensor is given by

Rik(") =
@�l

ik(")

@xl
� @�l

il(")

@xk
+ (�l

ik(")�
m
lm(")� �m

il (")�
l
km(")) (2.7)
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We obtain

Rik(") =

�
S 0
0 T

�

S =

0
@�

1
2y2

(3 + "1
4"0

) 0 0

0 � 1
2y2

(3 + "1
4"0

� 1
16
( "1
"0
)2) �( "1

"0
)2 1

16y

0 �( "1
"0
)2 1

16y
1
8
( "1
"0
)2

1
A

T =

0
@�2 "3"2 (y + x2

y
) + 2( "3

"2
)2v2 �2 "3

"2

x
y
� ( "3

"2
)22uv ( "3

"2
)22v

�2 "3
"2

x
y
� ( "3

"2
)22uv �2 "3

"2

1
y
+ ( "3

"2
)22u2 �( "3

"2
)22u

( "3
"2
)22v �( "3

"2
)22u 2( "3

"2
)2

1
A

We obtain the following expression for the scalar curvature R(") =
gik(")Rik(")

R(") = � 3

"0
� 1

8

"1

"20
� 2

"3

"22
(2.8)

Thus, for �xed "; R(") is constant, and the metric is an Einstein
metric. The Einstein equation is

Rik(")� CR(")gik(") = Fik(") (2.9)

where C is a universal constant, depending only on the dimension,
which here is 6, and where Fik(") is the external gravitational �eld.
Setting K(") = �CR("), we obtain

Fik(") =

�
L 0
0 M

�
(2.10)

L =

0
@L11 0 0

0 L22 L23

0 L32 L33

1
A

L11 =
1

y2
(�3

2
� 1

8

"1

"0
+K"0)

L22 =
1

y2
(�3

2
� 1

8

"1

"0
+

1

32
(
"1

"0
)2 +K("0 +

"1

4
)

L23 =
1

y
(� 1

16
(
"1

"0
)2 +K(�"1

2
))

L32 =
1

y
(� 1

16
(
"1

"0
)2 +K(�"1

2
))
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L33 =
1

8
(
"1

"0
)2 +K"1

M =

0
@M11 M12 M13

M21 M22 M23

M31 M32 M33

1
A

M11 = (y +
x

y

2

)(�2"3
"2

+K"2) + v2(2(
"3

"2
)2 +K"3)

M12 =
x

y
(�2"3

"2
+K"2) + uv(�2("3

"2
)2 +K(�"3))

M13 = v(2(
"3

"2
)2 +K"3)

M21 =
x

y
(�2("3

"2
) +K"2) + uv(�2("3

"2
)2 +K(�"3))

M22 =
1

y
(�2"3

"2
+K"2) + u2(2(

"3

"2
)2 +K"3)

M23 = u(�2("3
"2
)2 +K(�"3))

M31 = v(2(
"3

"2
)2 +K"3)

M32 = u(�2("3
"2
)2 +K(�"3))

M33 = 2(
"3

"2
)2 +K"3

The two block matrices Fik(")
3
ik=1 = Gik(") and Fik(")

6
ik=4 = Hik(")

comprising Fik(") can be written in the form

Gik(") = (�3

2
� 1

8

"1

"0
+K"0)

0
@ 1

y2
0 0

0 1
y2

0

0 0 0

1
A

+ (
1

16
(
"1

"0
)2 +K

"1

2
)

0
@0 0 0
0 1

2y2
� 1

y

0 � 1
y

2

1
A (2.11)
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Hik(") = (�2"3
"2

+K"2)

0
@y + x2

y
x
y

0
x
y

1
y

0

0 0 0

1
A

+ (2(
"3

"2
)2 +K"3)

0
@ v2 �uv v

�uv u2 �u
v �u 1

1
A (2.12)

From the expressions for Gik(") we see that the condition for Gik(")
to be 0 is, setting "1

"0
= �;

�3

2
� 1

8
�+K"0 = 0 and

1

8
�+K"0 = 0 or � = 0

This leads to "1 = �6"0; K"0 = 3
4
and "1 = 0; K"0 = 3

2
. In the �rst

case the operator is hyperbolic. In the second case it is elliptic, but the
term (dx�d�

2y
)2 is missing.

From the expressions for the Hik(") we obtain the following condi-
tions for the two terms to be 0

�2"3
"2

+K"2 = 0 and 2(
"3

"2
)2 +K"3 = 0

or
"3

"22
=
K

2
and

"3

"22
= �K

2

Thus, the two terms cannot vanish simultanously, but there are two
interesting special cases. In the �rst, where "3

"2
2

= �K
2
, all Fik(") are

functions of x and y. In the other case, where "3
"2
2

= K
2
, Gik(") contains

only functions of x and y and is connected with dx, dy, d�, whileHik(")
contains only functions of u and v and is connected with du, dv,  .
Inserting the expression (2.8) for R(") in the above conditions with
K = RC, we get

�2"3
"22

= C(
3

"0
+ 18

"1

"20
+ 2

"3

"22
)

(�1

c
� 1)2

"3

"22
=

3

"0
+
1

8

"1

"20

If in the �rst case C = 1, this gives "1 = �24"0, and the equation
is hyperbolic, but the part of the metric depending on only x and y is
not positive or negative de�nite. If C 6= 1, there are solutions for all
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"1. If in the second case C = �1, we get "1 = �24"0. If C 6= �1, there
are solutions for all "1.

We summarize the main result as follows.

Theorem 2.3. The scalar curvature R(") is a constant given by (2.8)
for each ". The right hand side Fik(") of the Einstein equation (2.9)
is given by(2.10) or by the 3X3 block matrices Gik(") and Hik(") of
(2.11),(2.12).

Gik(") = 0 if either "1 = �6"0; K"0 = 3
4

or "1 = 0; K"0 =
3
2
.

Hik(") is a function of (x,y) if "3
"2
2

= �K
2

and a function of (u,v) if
"3
"2
2

= K
2
.
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