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Abstract The advantages and limitations of using perfect simula-
tion for simulation-based inference for pairwise interaction point pro-
cesses are discussed. Various aspects of likelihood inference for the
Strauss process with unknown range of interaction are studied. A
large part of the paper concerns non-parametric Bayesian inference
for the interaction function. Markov chain Monte Carlo methods,
particularly path sampling, play an important role. Several empiri-
cal results and various datasets are considered.
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1 Introduction

Since the seminal work by Propp & Wilson (1996) on perfect (or
exact) simulation many new perfect sampling algorithms have been
developed, particularly for spatial point processes. Meanwhile the
possibilities of using perfect simulation for statistical inference have
been less explored. This paper concerns simulation-based inference
for spatial point process models using Markov chain Monte Carlo
(MCMC) methods, including perfect simulation techniques.

We restrict attention to a pairwise interaction point process de-
�ned on a bounded planar region S by a density

f�;'(x) =

�
�n(x)

Y
f�;�g�x: � 6=�

'(k� � �k)

��
c�;' (1)



with respect to the unit rate Poisson process on S. Here x denotes
any �nite subset of S, � > 0 is a parameter, n(x) is the cardinal-
ity of x, ' � 0 is an interaction function, k � k denotes Eucledian
distance, and c�;' is a normalising constant. Some restrict on ' is
needed to ensure integrability; we assume that ' � 1. In general a
closed form expression of c�;' is unknown. Sections 3 and 4 discuss
the advantages and the computational limitations of using perfect
simulation when the normalising constant is estimated by a useful
technique called path sampling (Gelman & Meng 1998).

In many applications ' is of primary interest, and so to get rid
of � one sometimes condition on n(x) (the conditional distribution
of x given n(x) = n does not depend on �). However, since it is
unclear whether n(x) in some sense is an ancillary statistic, we have
chosen not to �x n(x); see also the discussion in Gates & West-
cott (1986), Ripley (1988), and Geyer & M�ller (1994). Incidentally,
there is at present no practical way of generating perfect simulations
conditional on n(x).

The paper is organised as follows.
Section 2 provides a short description of perfect simulation based

on the dominated coupling from past algorithm (dominated CFTP;
Kendall 1998, Kendall & M�ller 2000 ), and shows some empirical
�ndings for the running time of the algorithm.

Section 3 discusses how dominated CFTP and path sampling can
be combined to obtain a Monte Carlo approximation of the normal-
ising constant when ' belongs to a parametric class of models of low
dimension. For speci�city we consider a Strauss process given by

'(r) = 
1[r�R] (2)

where 0 < 
 � 1 is an interaction parameter, R > 0 is the range of
interaction, and 1[�] denotes indicator function (Strauss 1975, Kelly
& Ripley 1976). Often in the literature R is assumed to be known,
see e.g. Ripley (1989) and Baddeley & Turner (2000), but we treat
all three parameters �; 
; R as unknown parameters when we discuss
various aspects of likelihood inference.

Section 4 is the main section. It concerns non-parametric Bayesian
analysis for the pairwise interaction point process (1) when ' is ap-



proximated by a step function,

'(r) =

pX
i=1


i1[ri�1 < r � ri] + 1[r > rp] (3)

where p 2 N0 is the number of change-points r1; : : : ; rp with r0 = 0 <
r1 < : : : < rp, and where 0 < 
1 < : : : < 
p < 1. This is an obvious
extension of (2) called the multiscale process (Penttinen 1984). We
impose a prior for (�;  ) where

 = f(r1; 
1); : : : ; (rp; 
p)g

is viewed as a marked point process, and discuss how a fully Bayesian
MCMC analysis can be performed when the unknown normalising
constant from the likelihood term is approximated by path sampling.
A similar situation is considered in Heikkinen & Penttinen (1999),
but they condition on n(x) in the likelihood, and �x p and (r1; : : : ; rp)
in the prior. They develop an MCMC root-�nding algorithm for the
maximum a posteriori estimate of (
1; : : : ; 
p), but mention at the
end of their paper the advantage of estimating ' by the Monte Carlo
posterior mean, which is usually a smooth curve (Arjas & Gasbarra
1994). Among other things we consider such estimates.

The suggested methods in Sections 3 and 4 are illustrated on
some real and simulated datasets.

2 Perfect simulation using dominated CFTP

Di�erent kinds of perfect samplers have been developed for spatial
point processes, cf. the surveys in M�ller (2001), Berthelsen & M�ller
(2001), and the references therein. In general dominated CFTP is the
most applicable algorithm for pairwise interaction point processes;
for extensions to locally stable point processes, see Kendall & M�ller
(2000) and Berthelsen & M�ller (2001).

The algorithm uses a so-called dominating process Di; i = 0;�1;
�2; : : : ; of �nite point con�gurations contained in S. This is a Markov
chain, which is generated backwards in time as follows. Let �� denote
the homogeneous Poisson point process on S with rate � > 0, and
let ; denote the empty point con�guration. Then D0 � ��, and for
i = 0;�1;�2; : : :,



� with probability �=(� + n(Di)) we make a backwards birth: we
generate a point �i which is uniformly distributed on S, and set
Di�1 = Di [ f�ig;

� else we make a backwards death: we draw randomly uniformly a
point �i 2 Di, and set Di�1 = Dinf�ig (ifDi = ; we set f�ig = ;);
for later use we also draw a \mark" Mi � Uniform[0; 1].

The Di and (in case of a backwards death) their marks Mi are
easy to generate. They are used for generating so-called upper and
lower processes U j = fU j

j ; : : : ; U
j
0g and L

j = fLjj; : : : ; L
j
0g, which are

started at times j = 0;�1;�2; : : :, and which are generated forwards
in time until time 0 as follows. Initially set U j

j = Dj and L
j
j = ;. For

i = j + 1; : : : ; 0,

Di = Di�1nf�ig ) U j
i = U j

i�1nf�ig and Lji = Lji�1nf�ig; (4)

and

Di = Di�1 [ f�ig )

U j
i =

(
U j
i�1 [ f�ig if Mi �

Q
�2Lji�1

'(k�i � �k)

U j
i�1 otherwise

(5)

and Lji =

(
Lji�1 [ f�ig if Mi �

Q
�2Uj

i�1
'(k�i � �k)

Lji�1 otherwise:
(6)

Note that (U j; Lj); (U j�1; Lj�1); : : : are coupled by the same �i; �i;Mi

for i > j.
Berthelsen & M�ller (2001) propose to use a doubling scheme

given by jk = �2kTmin; k = 0; 1; 2; : : :, where

Tmin =

(
inff�i : Di \D0 6= ;; Di�1 \D0 = ;g if D0 6= ;

0 otherwise

is the �rst time a point in D0 is born (when considering D forwards
in time). We use the same scheme and let

T = inff�jk : U
jk
0 = Ljk0 g

denote the �rst time we have coalescence at time 0 when the upper
and lower processes are started at times times j0; j1; j2; : : :. We have
that U�T

0 � f�;'.



To summarise we use the following dominated CFTP algorithm
where we set j�1 = 0:

1. generate D0 � ��;
2. repeat the following steps 3{4 for k = 0; 1; 2; : : : until U jk

0 = Ljk0 ;
3. generate backwards Djk�1�1; : : : ; Djk and generate the associated

marksMi � Uniform[0; 1] each timeDinDi�1 6= ;; jk < i � jk�1;
4. generate forwards (U jk

jk
; Ljkjk); : : : ; (U

jk
0 ; L

jk
0 ) as in (4){(6);

5. return U�T
0 � f�;'.

The computer time of the algorithm depends of course on how
eÆcient it is implemented. It is advantageous to exploit the fact
that the products in (5) and (6) depend only on local information.
Speci�cally, if S is rectangular and R = supfr > 0 : '(r) < 1g is the
range of interaction, we use a subdivision S = [kCk of rectangular
cells of side lengths � R, and exploit the fact that if � 2 Ck, thenQ

�2x '(k���k) depends only on the points from x falling in Ck and
in the neighbouring cells to Ck.

Example 1: The dominated CFTP algorithm for the Strauss process
(2) gets slower and slower as the interaction parameter 
 decreases.
Fig. 1 shows the mean of T in the limiting case of (2) as 
 ! 0, i.e. a
hard core point process given by '(r) = 1[r > R]. For �xed R = 0:1,
the �gure indicates the existence of a \critical value" �crit � 100,
where log IET is nearly linear for � < �crit, and log IET grows faster
and faster for � > �crit. For �xed � = 100, log IET depends on R in
a similar way but with respect to a critical value Rcrit � 0:1.

3 Perfect simulation and likelihood inference

for the Strauss process

In this section we consider a Strauss process with density

f�(x) = �n(x)
sR(x)=c� (7)

where � = (�; 
; R) 2 (0;1)� (0; 1]� (0;1) and

sR(x) =
X

f�;�g�x

1[0 < k� � �k � R]

is the number of R-close pairs of points in x.



60 80 100

10^3

10^4

10^5

10^6

0.0 0.05 0.10

10^3

10^4

10^5

10^6

Fig. 1. Mean coalescence times on a log scale for a hard core process on S = [0; 1]2.
Left plot: IET versus � when R = 0:1. Right plot: IET versus R when � = 100.

3.1 Path sampling

The normalising constant of the Strauss process is unknown except
in the Poisson case:

c� = exp(�) if 
 = 1: (8)

We discuss below how path sampling can be combined with perfect
simulation for estimating ratios of normalising constants.

We use a simple version of path sampling; other versions are
discussed in Gelman & Meng (1998). We start by letting (�;R) be
�xed, and notice the following identity: for �i = (�; 
i; R); i = 1; 2;
with 0 < 
1 < 
2 � 1,

ln(c�2=c�1) =

Z 
2


1

IE�sR=
 d
 (9)

where � = (�; 
; R) varies with 
 in the integral, and where IE�
denotes expectation with respect to (7). Taking 
2 = 1 we know
c�2 by (8). Let 
(j) = 
1 + jÆ; j = 0; : : : ; k, be a grid of 
-values
where k � 1 and Æ = (
2 � 
1)=k. Estimating IE�sR for � = �(j) =
(�; 
(j); R); j = 0; : : : ; k�1, as described below, we approximate the
integral in (9) by a Riemann sum,

ln(c�2=c�1) � Æ

�
IE�(0)sR=(2


(0))+IE�(k)sR=(2

(k))+

k�1X
j=1

IE�(j)sR=

(j)

�
:



Similarly, for j = 0; : : : ; k � 1,

ln(c�2=c�(j)) � Æ

�
IE�(j)sR=(2


(j))+IE�(k)sR=(2

(k))+

k�1X
l=j+1

IE�(l)sR=

(l)

�
:

(10)
Thereby we obtain estimates of c�(j); j = 0; : : : ; k� 1. Finally, com-
bining the grid of 
-values with a grid of (�;R)-values, all normal-
ising constants c� can �rst be estimated for � in the corresponding
3D-grid, and next by interpolation and extrapolation over a region
of the parameter space.

For a given value of �, we estimate IE�sR by
mX
i=0

sR(Xi)=(m+ 1) (11)

where X0 � f� is generated by the dominated CFTP algorithm,
and where X1; : : : ; Xm is a sample of length m � 0 obtained by the
Metropolis-Hastings algorithm in Geyer & M�ller (1994). We �nd
this attractive for several reasons: If the initial state is not in equi-
librium, we need to determine an appropriate burn-in before we start
sampling. As the rate of convergence for the Metropolis-Hastings al-
gorithm depends much on the value of �, so should the burn-in. At
least to our knowledge there are no analytical results (M�ller 1999)
or automatic methods (apart from perfect simulation) for determin-
ing an appropriate burn-in. Hence we have to perform a thorough
output analysis for each value of � in the 3D-grid. But this can be
rather time-consuming, and we can not be assured if the burn-in
is appropriately determined. However, when X0 is generated by the
dominated CFTP algorithm, we let the machine do all the work
so that we are certain that the sample Xi � f�; i = 0; : : : ; m, is
in equilibrium. In particular, the estimate (11) is unbiased. Finally,
perfect simulation allow us to check a method based on non-perfect
simulation; we illustrate this point in Section 4.3.

It remains to specify k and m. For (10) to be a \good" approx-
imation we need a suÆciently large k. As k increases, the precision
of the unbiased estimator (11) becomes less and less important. We
can even take m = 0 for suÆciently large values of k. On the other
hand, the perfect simulation of X0 is computationally more demand-
ing than a Metropolis-Hastings update Xi ! Xi+1. So the \right"



choice of (k;m) requires some experimentation as in Example 2 be-
low.

3.2 Empirical results

In the following two examples, S = [0; 1]2 is the unit square.

Example 2: In Fig. 2 we �x (�;R) = (100; 0:1) and consider 6
di�erent values of (k;m). For each choice of (k;m), Fig. 2 shows
the empirical mean and a 95% con�dence region when the curve
ln(c(�;1;R)=c(�;
;R)); 0:1 � 
 � 1; has been estimated 100 times (in-
dependently of each others) by path sampling as described above.
The computer time relative to the fastest case (the upper left plot
where (k;m) = (16; 0)) is shown in each plot. The plots indicate that
it suÆces to have a small value of k but a large value of m. Reason-
able good and fast estimates are obtained when (k;m) = (16; 1000)
and (k;m) = (16; 10000).
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Fig. 2. Empirical means of estimated curves 
 ! ln(c(�;1;R)=c(�;
;R)) (full lines)
and 97:5% and 2:5% quantiles (broken lines) when (�;R) = (100; 0:1). The �g-
ures show the computer times relative to the fastest case. First row, from left to
right: (k;m) = (16; 0); (16; 100); (16; 1000). Second row, from left to right: (k;m) =
(16; 10000); (128; 1000); (4096; 0).



Example 3: Fig. 3 shows a perfect simulation x of a Strauss process
on the unit square when (�; 
; R) = (100; 0:5; 0:05). We use this as
our data in the following. Note that both n(x) = 68 and s0:05(x) = 3
are rather small.
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Fig. 3. A perfect simulation of the Strauss process on the unit square when (�; 
; R) =
(100; 0:5; 0:05).

The estimated likelihood function is rather 
at with respect to �
as illustrated in Fig. 4. Here a rectangular 3D-grid of 76� 17� 10 =
12920 points for (�; 
; R) in [35; 110]� [0:1; 1]� [0:01; 0:1] has been
used. We obtain an approximate MLE (�̂; 
̂; R̂) = (103; 0:16; 0:05),
which except for 
̂ is close to the true value; the low value of 
̂ is
caused by the low value of s0:05(x).

We have also investigated the empirical distribution for (�̂; 
̂; R̂)
obtained from 1000 independent perfect simulations with (�; 
; R) =
(100; 0:5; 0:05) (not shown here). The empirical marginal distribu-
tions have distinct modes about the true parameter values, and
empirical means 100:88, 0:50, 0:057, respectively. The correlation
is most pronounced between 
̂ and R̂: the empirical correlations are
0:17 for (�̂; 
̂), 0:24 for (�̂; R̂), and 0:80 for (
̂; R̂).

The left plot in Fig. 5 shows the empirical distribution of the log
likelihood ratio statistic �2 lnQ for the Poisson hypothesis 
 = 1. It
is obtained from 10000 independent simulations under the Poisson
model with � = 68 (the MLE when 
 = 1). The degrees of freedom
between the Strauss and the Poisson model is 3� 1 = 2. As seen in
the �gure, �2 lnQ is better described by a �2(4)-distribution than
a �2(2)-distribution.
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Fig. 4. Estimated pro�le log likelihood functions for (R; 
) when � = 90; 103; 110
(from top to bottom).

The Strauss model is only an exponential family model if we �x
R; then the degrees of freedom between the Strauss and the Poisson
model is 2� 1 = 1. For �xed R = 0:05, approximating the distribu-
tion of �2 lnQ by a �2(1)-distribution seems rather satisfactory, cf.
the right plot in Fig. 5.

4 Non-parametric Bayesian MCMC inference

for pairwise interaction point processes

In this section we discuss non-parametric Bayesian MCMC infer-
ence when the likelihood term is given by the pairwise interaction
point process (1). In Section 4.1 we specify a prior for (�; '), derive
the posterior given an observation x, and point out the similarities
and di�erences with the approach used in Heikkinen & Penttinen
(1999). In Section 4.2 we propose an MCMC algorithm for the pos-
terior. As ratios of normalising constants c�;' has to be estimated in
each update, path sampling is used during the simulations. Finally,
in Section 4.3 we consider some simulated and real datasets, and
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Fig. 5. The empirical distribution of �2 lnQ under the Poisson hypothesis 
 = 1. Left
plot: when all three parameters in the Strauss process are unknown; the densities of
�2(2) and �2(4) are also shown. Right plot: �xed R = 0:05, and the density of �2(1).

discuss the results obtained by either perfect or non-perfect MCMC
simulation when the normalising constants are estimated.

4.1 Speci�cation of prior and posterior

Assuming that ' is non-decreasing, we approximate ' by the step
function (3); for a discussion on whether a step function or another
approximation such as splines should be used, see Heikkinen & Pent-
tinen (1999). Recall that the step function is given by the marked
point process  = f(r1; 
1); : : : ; (rp; 
p)g, where the change-points
are ordered 0 < r1 < : : : < rp and their associated marks satisfy
the constraint 0 < 
1 < : : : < 
p < 1. Note that rp is the range
of interaction. Below we let the number of change points p � 0 be
random, and set r0 = 0.

Set 
0 = 0, 
p+1 = 1, and Æi = (
i � 
i�1); i = 1; : : : ; p +
1. For p �xed, the state space of (Æ1; : : : ; Æp+1) is the simplex in
IRp+1. It is convenient to transform (Æ1; : : : ; Æp+1) into (�1; : : : ; �p) =
(ln(Æ2=Æ1); : : : ; ln(Æp+1=Æp)) with state space IRp. We assume a priori
that  and � are independent, and

(a) r1 < : : : < rp are the events of a homogeneous Poisson process
on [0; rmax] of rate �;

(b) conditionally on (r1; : : : ; rp), we have that �p; : : : ; �1 is a Markov
chain with �p � N(0; �2p) and �ij�i+1 � N(�i+1; �

2
i ); i = p�1; : : : ; 1;

(c) � � Uniform[�min; �max].



In contrast to our model, Heikkinen & Penttinen (1999) �x p
and r1; : : : ; rp in the prior, and they condition on n(x) = n in
the likelihood. They assume that 
p; : : : ; 
1 is a Markov chain with
ln 
ij ln
i+1 � N(ln 
i+1; �

2
i ); i = p; : : : ; 1, where 
p+1 = 1 and the

�2i are determined so that

Var(
1j
2) = : : : = Var(
pj
p+1):

As noticed in Heikkinen & Penttinen (1999), some constraints such
as 0 < 
i � 1; i = 1; : : : ; p, are needed in their prior model in order
to obtain a well de�ned likelihood in the unconditional case.

The hyperparameters rmax > 0, � > 0, etc. in (a){(c) should
be chosen in accordance to background knowledge on (�; '). The
choice of (rmax; �) speci�es the \resolution", since IEp = �rmax. Of-
ten a crude estimate R̂ of the range of interaction can be obtained
(van Lieshout & Baddeley 1996). Then rmax should be chosen to be
substantially larger than R̂, so that '(r) is expected to be rather sta-
ble and close to 1 for large values of r � rmax (hence it is natural in
(b) to generate the Markov chain backwards rather than forwards).
The choice of variances in (b) may depend on the change-points, but
in the following �2p = �2 is chosen not to depend on these, and for
i < p, we allow �2i to depend only on �i+1 and (i; p); two speci�c
models are studied in (b1) and (b2) below. Finally, in order to de-
termine the hyperparameters 0 � �min < �max, it may be used that
n(x)=jSj is an upper bound on the MLE of �, where jSj is the area
of S.

The means for the Markov chain in (b) are speci�ed so that
(Æ2=Æ1; : : : ; Æp+1=Æp) and (Æ1=Æ2; : : : ; Æp=Æp+1) are identically distributed.
We have studied two models for the variances in detail:

(b1) �21 = : : : = �2p = �2.

(b2) �2p = �2 and �2i = ln[1=2 + f(�Æi+1=Æi+2)
2 + 1=4g1=2];

i = 1; : : : ; p� 1.

Here � > 0 is a tuning parameter. Under (b1) the conditional distri-
bution of (�1; : : : ; �p) given (r1; : : : ; rp) is a multivariate normal distri-
bution with mean zero, variances Var(�i) = (p� i+1)�2, 1 � i � p,
and correlations C orr(�i�j; �i) = ((p � i + 1)=(p � i + j + 1))1=2,
1 � j < i � p. Thus (Æ1; : : : ; Æp+1) follows an additive logistic nor-
mal distribution (Aitchison 1986). The conditional distribution of



(�1; : : : ; �p) is more complicated under (b2). Here the �2i are deter-
mined so that

Var(Æ2=Æ1jÆ3=Æ2) = : : : = Var(Æp=Æp�1jÆp+1=Æp) = Var(Æp+1=Æp):

Simulated results for the prior distribution of ' look rather sim-
ilar when di�erent values of � are used in the two models (b1) and
(b2), so the choice of � is important while it is less important which
model is used. Fig. 6 shows the smoothing e�ect of � in (b1) when
�rmax = 5.
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Fig. 6. Each plot shows ten independent realizations of ' under (b1). From top left to
bottom right: �2 = 10; 1; 0:1; 0:01.

Finally, we derive the posterior density. The Jacobian of the
transformation (�1; : : : ; �p)! (
1; : : : ; 
p) is

j@(
1; : : : ; 
p)=@(�1; : : : ; �p)j = Æ1 � � � � � Æp+1:

Let � denote the unit rate Poisson process on [0; rmax]� [0; 1]. Then
under (a){(b),  = f(r1; 
1); : : : ; (rp; 
p)g with r1 < : : : < rp has
prior density

�( ) / �p1[0 < 
1 < : : : < 
p < 1]=(Æ1 � � � � � Æp+1)

�

pY
i=1

�
2��2i

��1=2
exp

�
�
�
�i � �i+1

�2
=
�
2�2i
��

(12)

with respect to �, where we set �p+1 = 1. Setting

si =
X

f�;�g�x

1[ri�1 < k� � �k � ri]; i = 1; : : : ; p;



the posterior density of � = (�;  ) is

�(�jx) / �( )�n(x)
s11 � � � � � 
spp =c� (13)

with respect to the product measure of the Lebesgue measure on
[�min; �max] and �, where c� = c�;' denotes the normalising constant
of the likelihood.

4.2 Simulation of the posterior

We use a hybrid Metropolis-Hastings algorithm for the posterior
(13), where we alternate between updating � and  . In the descrip-
tion below of both types of updates we let (�;  ) denote the current
state of the algorithm.

For a � update, we use a Metropolis random walk algorithm:
generate � 0 � Uniform

�
[maxf�min; � � �g;minf�max; � + �g]

�
, and

replace � by � 0 with probability minf1; �1(�; �
0;  )g, where

�1(�; �
0;  )g =

c�; 
c�0; 

�
� 0

�

�n(x)
minf�max; � + �g �maxf�min; � � �g

minf�max; � 0 + �g �maxf�min; � 0 � �g
(14)

where � > 0 is a tuning parameter; retain � otherwise.
For a  update, we use a Metropolis-Hastings algorithm of the

type studied in Geyer & M�ller (1994): if  = f(r1; 
1); : : : ; (rp; 
p)g,
then

� with probability 1=2 we make a birth proposal: generate r0 �
Uniform[0; rmax]; �nd the interval where ri�1 < r0 � ri (setting
rp+1 = rmax); generate 


0 � Uniform[
i�1; 
i]; replace  by  0 =
 [ f(r0; 
0g) with probability minf1; �2(�;  ;  

0)g, where

�2(�;  ;  
0) =

c�; 
c�; 0

�

0


i

�s0
�( 0)

�( )

rmax(
i � 
i�1)

p + 1
(15)

with
s0 =

X
f�;�g�x

1[ri�1 < k� � �k � r0];

retain  otherwise;



� else we generate a death proposal: generate randomly uniformly
(ri; 
i) 2  (if  = ; we set fri; 
i)g = ;); replace  by  0 =
 nf(ri; 
i)g with probability minf1; �2(�;  

0;  )�1g; retain  oth-
erwise.

Under (b1), �( 0)=�( ) in (15) depends only on 
i�2; 
i�1; 

0; 
i; 
i+1

(with obvious adjustments at the boundaries i = 1 and i = p), cf.
(12). For a �-update, if for example � < � 0, the term

ln(c�0; =c�; ) =

Z �0

�

IE ~�; n=
~� d~� (16)

in (14) has to be estimated; and for a  -update, the term

ln(c�; [(r0;
0)=c�; ) =

Z 
0


i�1

IE�; [(r0;
0)(si � s0)=
 d
 (17)

in (15) has to be estimated. We can do this by path sampling as
discussed below.

4.3 Empirical results

We illustrate now how our method applies for two datasets when the
prior for ('; �) is speci�ed by (a){(c) and (b1).

Example 5 concerns the locations of 152 displaced amacrine cells
within a rectangular 1070� 600�m2 region, see Fig. 7. This dataset
has been analysed in many papers, including Diggle & Gratton (1984)
and Heikkinen & Penttinen (1999). Diggle & Gratton (1984) mod-
elled the data by the interaction function

'DG(r) =

8><
>:
0; r < �DG

((r � �DG)=(�DG � �DG))
�DG ; �DG � r � �DG

1; r > �DG:

(18)

Note that �DG is a hard core parameter and �DG speci�es the range
of interaction. Diggle & Gratton (1984) obtained the estimate

(�DG; �DG; �DG) = (19; 76; 1:67)

by an ad hoc method.



To examine whether perfect simulation is feasible under the es-
timated Diggle-Gratton model, we have considered a plot of IET
versus � (not shown here). It is similar to the left plot in Fig. 1, but
with a critical value for � around 200=(1070� 600). Simulated point
patterns for � = 200=(1070� 600), (�DG; �DG; �DG) = (19; 76; 1:67),
and S = [0; 1070]� [0; 600] contain on average about 65 points. This
is far below the 152 points in the data, so perfect simulation is not
feasible.

When using path sampling we have to estimate the means of
n and si � s0 from (16) and (17). We do this along similar lines
as in Section 3.1 but let the initial state be given by the result
after an appropriate burn-in (again the sample is generated by the
Metropolis-Hastings algorithm in Geyer & M�ller (1994) but with a
multiscale process as equilibrium distribution).

For comparison we use both perfect and non-perfect simulations
in Example 4. The dataset in Example 4 is a perfect simulation
of the Diggle-Gratton model but with � = 100, (�DG; �DG; �DG) =
(0:025; 0:1; 1:67), and S = [0; 1]2, see Fig. 7. This point pattern con-
tains only 48 points, and compared to the amacrine data it is less
regular.

Example 4: For the simulated data we let (k;m) = (10; 1000).
Compared to the values of k used in Fig. 2, it suÆces to use the
present smaller value of k, since we usually integrate over a shorter
interval in (17). Furthermore, we chose rmax = 0:14, �rmax = 5,
�2 = 1, �min = 50, �max = 115, and � = 2:5. Time series plots
for di�erent statistics (not shown here) show that the algorithm for
posterior simulations is mixing well, with an appropriate burn-in of
only a few thousands updates, using an initial state of  where the
ri are generated from the Poisson prior and the Æi are all equal.

Fig. 8 shows some results based on a sample of 150000 posterior
realizations of ( ; �).

The top left plot in Fig. 8 shows a clear di�erence between the
posterior and prior mean of '(r), 0 < r < rmax. The posterior mean
of '(r) is rather close to 'DG(r) except for intermediate values of
r where it clearly overestimates the true interaction function. How-
ever, the credibility interval for '(r) is rather wide, especially for
intermediate values of r.
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Fig. 7. Left: simulated data. Right: amacrine data.

The top right plot in Fig. 8 shows that the posterior density of
r1 is close to the prior density �(r1) / exp(��r1) (0 < r1 < rmax)
at least for small and modest values of r1. The posterior and prior
mean of r1 are 0.026, and 0.027, which are both close to the hard
core �DG = 0:025.

The bottom left plot in Fig. 8 shows a pronounced di�erence
between the posterior density of rp and the prior density �(rp) /
exp(��(rmax � rp)) (0 < rp < rmax). The posterior and prior mean
of rp are 0.087 and 0.113, i.e. they are equally far from the true
interaction range �DG = 0:1.

The bottom right plot in Fig. 8 shows that the prior and the
posterior distribution for p are rather close. The posterior and prior
mean are 5:12 and 5.

As mentioned we have for comparison also used non-perfect simu-
lation when estimating ratios of normalising constants. With a burn-
in of 250 iterations the results are very close to those in Fig. 8. This
is illustrated in Fig. 9.

Example 5: For the amacrine data we let (k;m) = (10; 2500),
rmax = 120, �rmax = 5, �2 = 1, �min = 0:005, �max = 0:05, and
� = 0:0005. As mentioned we have to use non-perfect simulation
when estimating ratios of normalising constants; for this we use a
burn-in of 2500 iterations. For instance, when simulating a multi-
scale process which approximates the estimated Diggle-Gratto, the
Metropolis-Hastings chain seems to be stabilised after 1500 itera-
tions when started in a realization from a homogeneous Poisson pro-
cess on [0; 1070]� [0; 600] with mean number of points equal to 152.
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Fig. 8. Results for the simulated data. Top left: posterior mean (thick line) together
with a 95% credibility interval (dotted lines), prior mean (dashed line), and true in-
teraction function (thin line). Top right, bottom left, and bottom right: posterior and
prior density (full line) of r1, rp, and p.
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Fig. 9. Same as the top left plot in Fig. 8, but using non-perfect simulation for path
sampling.

For the algorithm for posterior simulations, time series plots (not
shown here) for di�erent statistics show that the algorithm con-
verges quickly into equilibrium (using a similar initial state as in
Example 4). The mixing properties of this algorithm are sensitive
to the choice of �; it is slowly mixing for � = 0:1, while it is faster
mixing for � = 1 and � = 10. The posterior results for � = 10 are
very close to the following results for � = 1.

Fig. 10 is similar to Fig. 8 but for the amacrine data and 250000
posterior updates.

In the top left plot in Fig. 10, since we do not know the truth,
we have shown the estimated Diggle-Gratton interaction function
instead. Again there is a clear di�erence between the posterior and
prior mean of '(r). The plot may be compared with Fig. 3 in Heikki-
nen & Penttinen (1999) which shows their maximum a posteriori



estimate of ' and several other estimated interaction functions from
the literature. Most but not all of these estimated interaction func-
tions are within the 95% credibility interval in Fig. 10; the maximum
a posteriori estimate is close to 'DG(r) when r � 76, and larger than
1 for r > 76.

The top right, lower left, and lower right plots in Fig. 10 are
very di�erent from those in Fig. 8. Now the posterior distribution
of r1 is rather 
at for r1 � 20 and has a mode for r1 > 20, while
the prior density for r1 is strictly deceasing. The lower left plot in
Fig. 10 shows a large dispersion in the posterior distribution for
rp, indicating diÆculties in estimating the range of interaction; the
value �DG = 76 obtained by Diggle & Gratton (1984) is in the centre
of the posterior distribution. The lower right plot in Fig. 10 shows
clearly that the posterior and prior distribution for p are di�erent.
Compared to the plot in Fig. 8, we need now a larger number of
change-points due to the increased amount of data, but the number
needed is much smaller compared to the 30 change-points used in
Fig. 3 in Heikkinen & Penttinen (1999). The posterior and prior
means of p are 6.62 and 5.
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Fig. 10. As Fig. 8 but for the amacrine data. Now the thin line in the top left plot
shows the estimated interaction function by Diggle & Gratton (1984).

Finally, Fig. 11 shows the posterior distribution of � � 1070 �
600, with a mode around 4000, a mean of about 4589, and a large
dispersion. In order to obtain about 152 points in average, simulation
of the estimated Diggle-Gratton model requires � � 1070 � 600 �



6500, which is larger than the posterior mean but still not in the tail
of the posterior distribution.
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Fig. 11. Posterior distribution of � � 1070 � 600.
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