Chapter 1

Introduction and preliminaries

1.1 Introduction

J. Tits’ theory of buildings for groups of Lie type (see e.g. [30] or Chapter 11 of [3] for a
survey) and their more general companions, the diagram geometries mainly developed
by F. Buekenhout (see e.g. various Chapters of [3] or [25] for a survey) provide a
major tool for understanding the interplay between groups and geometries. Since then,
various traces have been pursued. For example, given a particular group G, classify all
geometries (under certain assumptions) for G (see e.g. [7], also their list of references),
or classify all geometries and their automorphism groups having a diagram of a certain
type (see e.g. [14]), or use a particular geometry to characterize its automorphism
group. In this last branch various (computer-free) existence and uniqueness proofs for
sporadic groups have been completed in the past few years (see [1], [16], [28] and [29]
for computer-free proofs or [19]). Such proofs follow a two step program:

e Prove that the geometry is simply connected (giving the uniqueness) and

e construct a suitable and faithful representation of the amalgam of the geometry
in some GL(V') (giving the existence).

The origin of this thesis was to give such an existence and uniqueness proof for the
sporadic O’Nan group (O'N) - discovered by M. O’Nan in [24] - using the two known
flag-transitive geometries for that group. The importance of such a construction is
simply given by the fact that the group O’N is the only sporadic group which has not
been contructed computer-freely up to now.

Unfortunately, this original attempt failed. The main reason for this lies in the
subgroup structure of O’N. Its maximal subgroups are themselves quite small or their
maximal subgroups are small. This leads to e.g. to the fact that, if one tries to get
the point-line graph of a geometry under control, one may have good control over its
points (in the sense that we have a small permutation degree) but for the lines there is
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complete wilderness. Also the representation which was chosen suits the geometry but
the module carries no further structure like a form respected by O’ N.
Nevertheless, this thesis presents some new results. The following will be proved:

e The amalgams of the geometries of Buekenhout and of Ivanov and Shpectorov
for the group O’ N are uniquely determined by their diagram and residues of rank
n— 1.

e The Buekenhout geometry for O’ N is simply connected.

e The 3-fold cover for 30’N of the Ivanov-Shpectorov geometry for O'N is its
universal cover.

e Every completion of the amalgam of the Buekenhout geometry has an irreducible
154-dimensional GF'(3)-module.

e Every completion of that amalgam is also a completion of the amalgam related
to the Ivanov-Shpectorov geometry.

The proofs of the first result are computer-free. The proofs for the simply connectedness
of the geometries for O’'N, resp. 30’N involve computer use for coset enumeration.
The computer is also involved (but just in a small way) in the construction of the
representation. Furthermore this construction does not make use of the fact that the
universal completion of the amalgam related the Buekenhout geometry is O'N. This
is also not used in the last chapter of the thesis proving that any completion of this
amalgam also acts on the Ivanov-Shpectorov geometry.

1.2 Preliminaries

For the basic definitions for (coset) geometries, diagrams and (universal) coverings we
refer to [25], [5] or [3]. We will briefly state the most important group theoretic tools
for this thesis.

Definition 1.2.1 [10] Let I be a finite set. An amalgam A consists of a family (G)jcr
of groups and a family of group homomorphism d ;i : G; — G for every pair J, K C I
with K C J satisfying the following conditions:

1. For all J,K,L C I with L C K C J the composite djxdx equals d;y.
2. We have 055 = id for every J C I.

We shall give an easy example for this definition. Let I' be some geometry of rank
n and C' = {z1,x2,...x,} be a chamber in I'. Let G be a flag-transitive group of type
preserving automorphisms of I' and set for J C {1,2,...,n} =: I the group G; :=
Ga,:icsy- Then (Gy)jcr forms an amalgam with 0 being the inclusion mapping for
all JJK C I with K C J.
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Definition 1.2.2 [10] A completion of an amalgam A is a group G and a familiy of
homorphisms n; : Gy — G for all J C I such that:

1. 77J:5JK77K for all K C J and
2. G:=<Gmy:JCI>.

For two completions G and G with homomorphisms 71y and 7y of A a morphism of
completions is a homomorphism ¢ : G — G such that Ny = ny¢ for all J C I.
A completion of A is called universal if and only if there is a unique morphism of
completions from it to any given completion.

Returning to our above example of the amalgam (G ) s of a flag-transitive geom-
etry I', we see that G is a completion of (Gy)jcr if and only if G =< G1,Ga, ..., Gy, >
which holds if ' is connected.

The existence of the universal completion of an amalgam is ensured by the following
(see e.g. [10]):

Proposition 1.2.3 Let A be an amlgam. Then A has a universal completion (possibly
infinite), unique up to isomorphism of completions.

O
The next proposition establishes a connection between universal covers of flag-
transitive geometries and the universal completions of the related amalgams:

Proposition 1.2.4 [26], [31] Let T be a geometry and let G < AutI' be flag-transitive.
Denote by A the amalgam of maximal parabolic subgroups associated with the action of
G on T and by U(A) the universal completion of A. Then I'(U(A), A) is the universal
cover of T'(G, A).

O
In the following, we describe a technique to determine the universal completion
U(A) of some amalgam A = (G ) jcr (see [27], also [14] or [25]) in terms of generators
and relations.
For every ¢ € I denote by X; a set of generators and by Réy a set of relations
between the elements of X; such that G; ~< &; : R}, >. Put moreover Xy := U;cr &;
and RzUy := Ujer RL,- Then we find

~ .U
U(A) =< Ay : Ry, >.

Note that every relation in Rny holds in at least one of the groups G;.
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1.2.1 The known geometries for the O’Nan sporadic group

In his 1985-paper [4], Buekenhout gives the diagram of a rank four geometry I admitting
O'N as a flag-transitive automorphism group. This geometry, no. (102) in the notation
of [4], can be constructed from two geometries of rank three for the groups L3(7) : Zy
(no. (100) of the list in [4]) and for ZsL3(4) : Zy (no. (101) in [4]). Note that the
latter group is the centralizer of an involution in O’N. The Buekenhout diagram for
the O’ N-geometry is the following:

1079 6
o—o0
1 2 1 2

If we denote the maximal parabolic subgroups of this geometry by G, G2, G3 and
Gy, from the left to the right of the diagram nodes, we have Gy ~ L3(7) : Zy and
G4 ~ Z4L3(4) : Zy. Note that the involutions in G4 — G are unitary. This will be
sometimes indicated by writing G4 ~ Z4L3(4) : 2; following the notation of [8] or [22].

In 1986, a second geometry, now of rank five, was found by A. Ivanov and S.
Shpectorov [17] admitting the group O'N as a flag-transitive automorphism group.
This geometry involves the Petersen graph as a residue of rank two. Its diagram is the
following:

P s
o——o0

= QN O~
ot
— 0w
— O
N

The maximal parabolics are Gy ~ Jy, G2 ~ Mj; and G5 ~ (Z4 * Qg * Qg) : A5 the
latter group being a maximal parabolic of Z4L3(4). This geometry also admits a 3-fold
cover with automorphism group 30’ N such that its center acts as a deck transformation
group (see e.g. [18]).

For both geometries it is not known whether they are simply connected, resp. the
3-fold cover is universal. This will be shown in this thesis using the technique to
determine the universal completions of amalgams which was described above.



