Chapter 3

Generators and relations for the Ivanov-Shpectorov geometry

3.1 The Ivanov-Shpectorov geometry for the O'Nan sporadic group

In this chapter we will give generators and relations for the universal completion of the amalgam related to the Ivanov-Shpectorov geometry for the groups O'N and 3O'N. To recall, this is a geometry of rank five with the following with the following Buckenhout diagram:

$$\begin{array}{c}1\\1\\5\\2\\1\end{array}$$

Also recall that the geometry of 3O'N is a triple cover of the O'N-geometry where Z(3O'N) acts as a group of deck transformations. The maximal parabolics are $G_1 \simeq J_1$, $G_2 \simeq M_{11}$ and $G_5 \simeq (\mathbb{Z}_4 * Q_8 * Q_8) : A_5$ (G_3 and G_4 will be constructed later on). In difference to the Buekenhout geometry, we can construct a presentation for this geometry successively using simply connected geometries for $L_2(11)$, M_{11} , J_1 and $\mathbb{Z}_2^5 : A_5$.

3.2 A presentation of J_1

It is known by [15], that the group $G \simeq J_1$ acts flag-transitively on a rank four geometry Γ with the following Buekenhout diagram:

The maximal parabolic subgroups are $G_1 \simeq L_2(11)$, $G_2 \simeq \mathbb{Z}_2 \times A_5$, $G_3 \simeq S_3 \times D_{10}$ and $G_4 \simeq \mathbb{Z}_2 \times A_5$, read from the left to the right in the diagram. Furthermore we have $B = G_{1234} \simeq \mathbb{Z}_2$ and $B = Z(G_4)$ (see e.g. [12]).

It is known from [15], that Γ is 3-simply connected. We use Γ to construct a presentation for J_1 . The following amalgam corresponds to Γ (see e.g. [12]): $G_{12} \simeq A_5$, $G_{13} \simeq D_{12}, G_{14} \simeq D_{12}, G_{23} \simeq D_{12}, G_{24} \simeq \mathbb{Z}_2^3, G_{34} \simeq D_{20}, G_{123} \simeq S_3, G_{124} \simeq G_{134} \simeq G_{234} \simeq \mathbb{Z}_2^2$ and $B \simeq \mathbb{Z}_2$.

We set $B =: \langle z \rangle$, $G_{123} =: \langle z, t \rangle$, $G_{124} =: \langle z, b \rangle$, $G_{134} =: \langle z, a_n \rangle$ and $G_{234} =: \langle z, a \rangle$. Thereby we hold the following relations:

$$\mathcal{R}_o: z^2 = a^2 = a_n^2 = b^2 = t^3 = 1,$$

 $\mathcal{R}_m: [z, a] = [z, a_n] = [z, b] = 1, t^z = t^{-1}$

The diagram yields the following relations:

$$\mathcal{R}_d$$
: $[a,b] = [a,t] = [a_n,t] = (aa_n)^5 = (a_nb)^3 = (tb)^5 = 1.$

3.2.1 Additional relations for G_4

The residue of G_4 in Γ has the Coxeter diagram:

$$5$$

 1 1 1

The corresponding Coxeter group C is isomorphic to $\mathbb{Z}_2 \times A_5$ such that Z(C) acts non-trivially on the geometry. Hence, using the relations obtained so far, we have $\langle z, a, a_n, b \rangle \simeq \mathbb{Z}_2^2 \times A_5$.

Let $C = \langle a_1, a_2, a_3 | a_1^2 = a_2^2 = a_3^2 = (a_1a_2)^5 = (a_2a_3)^3 = 1 \rangle$. Then $o(a_1a_2a_3) = 10$ and therefore we have $\langle a_1, a_2, a_3 | a_1^2 = a_2^2 = a_3^2 = (a_1a_2)^5 = (a_2a_3)^3 = (a_1a_2a_3)^5 = 1 \rangle \simeq A_5$ by adding a (2, 3, 5)-relation to the Coxeter relations.

Since $Z(G_4) = \langle z \rangle$ acts trivially on the residue of G_4 , we have to distinguish two cases, namely, $a_n \in G'_4$ and $a_n \notin G'_4$. If $a_n \notin G'_4$ ($a \in G'_4$), we can assume w.l.o.g. that a and b are also not contained (are contained) in G'_4 . Thus we can add either the relation

 $\mathcal{R}_{(2,3,5)}.1:(zaa_nb)^5=1$ or

$$\mathcal{R}_{(2,3,5)}.2:(aa_nb)^5=1$$

In both cases we hold $\langle z, a, a_n, b \rangle \simeq \mathbb{Z}_2 \times A_5$. The correct relation will be distinguished by the amalgamation with G_3 .

3.2.2 Additional relations for G_1

We have to ensure that $G_{12} = \langle z, b, t \rangle \simeq A_5$. Using the relations obtained so far we hold $\langle z, b, t | z^2 = b^2 = t^3 = 1, (tb)^5 = 1, [z, b] = 1, t^z = t^{-1} \rangle \simeq \mathbb{Z}_2 \times A_5$ where $\langle t, b \rangle \simeq A_5$. We identify t with the element (123) of A_5 , z with (23)(45) and b with (24)(35). Using this identification we hold tb = (14253) and [b, t] = (15423), thus $z = tb[b, t]^3 = bt[b, t]^2$. Therefore we have to add the relation

 $\mathcal{R}_A: z = bt[b, t]^2.$

Using the relations \mathcal{R}_d , we find $G_{13} = \langle z, t, b \rangle \simeq D_{12} \simeq \langle z, a_n, b \rangle = G_{14}$. By [18], this amalgam determines the group $G_1 \simeq L_2(11)$ because it is the amalgam of a simply connected geometry.

3.2.3 Amalgamation of G_3 and G_4

Using the relations \mathcal{R}_o , \mathcal{R}_m , \mathcal{R}_d and \mathcal{R}_A , we easily see that $a \in Z(\langle z, b, t, a \rangle)$ and $\langle z, b, t, a \rangle \simeq \mathbb{Z}_2 \times A_5$. Furthermore we have $G_3 = \langle z, t, a, a_n \rangle \simeq S_3 \times D_{10}$ where $\langle z, t \rangle$ and $\langle a, a_n \rangle$ are the direct factors of G_3 . It remains to analyze whether $a_n \in G'_4$ or not.

Using the subgroup lattice of J_1 (given in e.g. [12]), we see that J_1 contains a single conjugacy class of subgroups D_{20} . Given such a subgroup U of J_1 , its two normal subgroups of shape D_{10} are non-conjugate in J_1 . One of these two classes correspond to the direct factors of subgroups of shape $S_3 \times D_{10}$. These subgroups have no supergroup A_5 inside J_1 . Thus a and a_n are not contained in G'_4 . Together with the fact that Γ is simply connected [15] this yields the following lemma.

Lemma 3.2.1 Let $J := \langle a, a_n, b, t, z | \mathcal{R}_o \cup \mathcal{R}_m \cup \mathcal{R}_d \cup \mathcal{R}_A \cup \mathcal{R}_{(2,3,5)}.1 \rangle$. Then $J \simeq J_1$.

3.3 A presentation of M_{11}

By [4] it is known, that the Mathieu group M_{11} acts transitively on a geometry Γ , related to its 3-transitive action on 12 points, with the following diagram:

The corresponding maximal subgroups of $G \simeq M_{11}$ are $G_1 \simeq L_2(11)$, $G_2 \simeq S_5$, $G_3 \simeq S_3 \times S_3$ and $G_4 \simeq GL_2(3)$, read from the left to the right in the diagram (see e.g. [6]). It is shown in [18], that Γ is simply connected. Again, we use this geometry to get a presentation for G.

By the previous section, we hold $G_{12} \simeq A_5$, $G_{13} \simeq D_{12}$, $G_{14} \simeq D_{12}$, $G_{123} \simeq S_3$, $G_{124} \simeq \mathbb{Z}_2^2 \simeq G_{234}$ and $B = G_{1234} \simeq \mathbb{Z}_2$.

Since $G_4 \simeq GL_2(3)$, we find $G_{24} \simeq D_8$, $G_{34} \simeq D_{12}$, $G_{234} \simeq \mathbb{Z}_2^2$ and $B = Z(G_4)$ because we have $GL_2(3)$ acting on a geometry with the Coxeter diagram for S_4 . This shows that $G_{23} \simeq D_{12}$. As in the last section we set $B =: \langle z \rangle$, $G_{123} =: \langle z, t \rangle$, $G_{124} =: \langle z, b \rangle$ and $G_{134} =: \langle z, a_n \rangle$. Moreover we set $G_{234} =: \langle z, v \rangle$. Therefore we find the following relations:

we find the following relations: $\mathcal{R}'_o: z^2 = v^2 = a_n^2 = b^2 = t^3 = 1,$ $\mathcal{R}'_m: [z, v] = [z, a_n] = [z, b] = 1, t^z = t^{-1}.$ The diagram yields the following relations: $\mathcal{R}'_d: [v, t] = [a_n, t] = (a_n b)^3 = (va_n)^3 = (tb)^5 = 1, (vb)^2 = z.$ Since $G_{12} = \langle z, t, b \rangle \simeq A_5$, we add again the relation $\mathcal{R}'_A: z = bt[b, t]^2$ in order to get $G_1 = \langle z, b, t, a_n \rangle \simeq L_2(11).$

Using the relations \mathcal{R}'_o , \mathcal{R}'_m and \mathcal{R}'_d , we already see that $G_4 = \langle z, b, a_n, v \rangle \simeq GL_2(3)$. Furthermore it is easy to see that these relations give $G_2 = \langle z, t, b, v \rangle \simeq S_5$. Obviously, we have $[t, va_n] = 1$, which is enough to prove $G_3 = \langle z, t, a_n, v \rangle \simeq S_3 \times S_3$. Then by the results of [18], we have the following lemma:

Lemma 3.3.1 Let $M := \langle z, t, b, a_n, v \mid \mathcal{R}'_o \cup \mathcal{R}'_m \cup \mathcal{R}'_d \cup \mathcal{R}'_A \rangle$. Then $M \simeq M_{11}$.

3.4 Some geometry for $\mathbb{Z}_2^5: A_5$

It is known by [17], that a maximal parabolic subgroup P of the group $\mathbb{Z}_4L_3(4)$ acts flag-transitively on a geometry Γ having the following Coxeter diagram:

From the diagram of the rank five geometry of Ivanov and Shpectorov [17] we draw that $P \cap M_{11} \simeq GL_2(3)$, so $\Omega_1(Z(P))$ is contained in the Borel subgroup of this geometry. Therefore we can assume that P is a maximal parabolic in $\mathbb{Z}_2L_3(4)$. Thus P is isomorphic to $\mathbb{Z}_2^5 : A_5$ such that $Z(P) \simeq \mathbb{Z}_2$, $O_2(P)$ is an indecomposable module for A_5 where $O_2(P)/Z(P)$ is the natural $L_2(4)$ -module.

Then the maximal parabolic subgroups of the pair (Γ, P) are: $G_1 \simeq A_5$, $G_2 \simeq S_4$, $G_3 \simeq \mathbb{Z}_2^3$ and $G_4 \simeq A_5$ (the numbering is denoted above the diagram nodes). Furthermore this implies $G_{12} \simeq S_3 \simeq G_{24}$, $G_{13} \simeq \mathbb{Z}_2^2 \simeq G_{23}$ and $G_{14} \simeq D_{10}$. Clearly, all minimal parabolic subgroups are isomorphic to \mathbb{Z}_2 . We set $\langle b \rangle := G_{123}$, $\langle a_n \rangle := G_{124}$, $\langle a \rangle := G_{134}$ and $\langle v \rangle := G_{234}$ and let C be the corresponding (infinite) Coxeter group. Thus we obtain the following relations:

 $\tilde{\mathcal{R}}_{o}: a^{2} = a_{n}^{2} = b^{2} = v^{2} = 1,$

 $\tilde{\mathcal{R}'_c}$: $[a,b] = [a,v] = [b,v] = (aa_n)^5 = (a_nb)^3 = (a_nv)^3 = 1.$

In view of the aim to give generators and relations for the Ivanov-Shpectorov geometry, we denote $\tilde{\mathcal{R}'}_c$ by:

 $\tilde{\mathcal{R}}_c: [a,b] = [a,v] = (aa_n)^5 = (a_nb)^3 = (va_n)^3 = 1, (vb)^2 = 1.$

Then $C = \langle a, a_n, b, v | \mathcal{R}_o \cap \mathcal{R}_c \rangle$. Again, we have to ensure that G_1 and G_4 are both isomorphic to A_5 . Thus we have to diminish the order of the two Coxeter elements aa_nb and va_na . Therefore we have to add

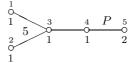
 $\tilde{\mathcal{R}}_{(2,3,5)}: (aa_nb)^5 = (va_na)^5 = 1.$

Using the MAGMA [2] program for coset enumeration, we get the following lemma:

Lemma 3.4.1 Let $P := \langle a, a_n, b, v | \tilde{\mathcal{R}}_o \cup \tilde{\mathcal{R}}_c \cup \tilde{\mathcal{R}}_{(2,3,5)} \rangle$. Then P is isomorphic to a maximal parabolic of $\mathbb{Z}_2 L_3(4)$.

3.5 Generators and relations for the Ivanov-Shpectorov geometry

We recall that the geometry Γ of Ivanov and Shpectorov for the O'Nan group has the following diagram:



The maximal parabolic subgroups G_1 , G_2 and G_5 of the pair (Γ, G) (where $G \in \{O'N, 3O'N\}$) are $G_1 \simeq J_1$, $G_2 \simeq M_{11}$ and G_5 is isomorphic to a maximal parabolic of $\mathbb{Z}_4L_3(4)$.

Let P_1 be a maximal parabolic in $\mathbb{Z}_4 L_3(4)$. According to the last section, we get generators and relations for P acting on the geometry Γ_5 simply by adding a center which acts trivially such that $G_{15} \simeq \mathbb{Z}_2 \times A_5 \simeq G_{45}$ and $G_{25} \simeq GL_2(3)$. Thus we add a new generator z and transform the relation $(vb)^2 = 1$ in $\tilde{\mathcal{R}}_c$ in $(vb)^2 = z$. Since P_1 has to contain a subgroup $\mathbb{Z}_2 \times A_5$ of $G_1 \simeq J_1$, we change $\tilde{\mathcal{R}}_{(2,3,5)}$ to

 $\bar{\mathcal{R}}_{(2,3,5)} : (zaa_nb)^5 = (va_na)^5 = 1.$ Furthermore we add $\bar{\mathcal{R}}_z : z^2 = [a, z] = [b, z] = [a_n, z] = [v, z] = 1.$ We set $\bar{\mathcal{R}}_o := \tilde{\mathcal{R}}_o$ and $\bar{\mathcal{R}}_c : [a, b] = [a, v] = (aa_n)^5 = (a_nb)^3 = (va_n)^3 = 1, (vb)^2 = z.$ Then we have the following:

CHAPTER 3. The Ivanov-Shpectorov geometry

Lemma 3.5.1 Let $P_1 := \langle z, a, a_n, b, v \mid \overline{\mathcal{R}}_o \cup \overline{\mathcal{R}}_c \cup \overline{\mathcal{R}}_{(2,3,5)} \rangle$. Then P is isomorphic to a maximal parabolic of $\mathbb{Z}_4L_3(4)$.

We are now able to give generators and relations for the Ivanov-Shpectorov geometry. First we set $\mathcal{R}_O := \mathcal{R}_o \cup \mathcal{R}'_o \cup \bar{\mathcal{R}}_o$, thus: $\mathcal{R}_O : z^2 = a^2 = a_n^2 = b^2 = v^2 = t^3 = 1$. Then we put $\mathcal{R}_M := \mathcal{R}_m \cup \mathcal{R}'_m$, thus: $\mathcal{R}_M : [z, a] = [z, a_n] = [z, b] = [z, v] = 1, t^z = t^{-1}$. We set $\mathcal{R}_D := \mathcal{R}_d \cup \mathcal{R}'_d \cup \bar{\mathcal{R}}_c$, thus: $\mathcal{R}_D : [a, b] = [a, t] = [a_n, t] = [v, t] = [a, v] = (aa_n)^5 = (a_n b)^3 = (va_n)^3 = (tb)^5 = 1$, $(vb)^2 = z$. We recall that $\mathcal{R}_A = \mathcal{R}'_A$ and $\mathcal{R}_A : z = bt[b, t]^2$. Finally, we set $\mathcal{R}_{(2,3,5)} := \bar{\mathcal{R}}_{(2,3,5)}$, thus: $\mathcal{R}_{(2,3,5)} : (zaa_n b)^5 = (va_n a)^5 = 1$. Then we get that $U := \leqslant z, a, a, b, v, t \mid \mathcal{R}_O \mid |\mathcal{R}_M \mid |\mathcal{R}_D \mid |\mathcal{R}_A \mid |\mathcal{R}_{(0,0,7)} >$ is the universal completion of

 $U := \langle z, a, a_n, b, v, t | \mathcal{R}_O \cup \mathcal{R}_M \cup \mathcal{R}_D \cup \mathcal{R}_A \cup \mathcal{R}_{(2,3,5)} \rangle$ is the universal completion of the amalgam of G_1 , G_2 and G_5 . Using MAGMA [2] for coset enumeration, we hold that $G_3 = \langle z, a, b, v, t \rangle \simeq \mathbb{Z}_2 \times S_5$ and $G_4 = \langle z, a, a_n, v, t \rangle \simeq S_3 \times A_5$. So U is the universal completion of the amalgam corresponding to the Ivanov-Shpectorov geometry.

Theorem 3.5.2 Let Γ' be a flag-transitive geometry with the same Buekenhout diagram as Γ . Assume furthermore that for a flag-transitive automorphism group H we have $H_1/K_1 \simeq J_1, H_2/K_2 \simeq M_{11}$ and $H_5/K_5 \simeq \mathbb{Z}_2^5 : A_5$ (a maximal parabolic in $\mathbb{Z}_2L_3(4)$) where K_i denotes the kernel of the action of H_i on the corresponding residue. Then $K_1 = K_2 = 1$ and $B = K_5 \simeq \mathbb{Z}_2$.

Proof. Clearly, we have that K_i is a subgroup of the Borel group B of Γ' in H for all i. Since the Borel subgroup of the geometry for H_5/K_5 is trivial, we hold $B = K_5$. We have that $H_{12}/K_{12} \simeq L_2(11)$. We have $K_{12}/K_i \triangleleft H_{12}/K_i$ for i = 1, 2, thus $K_{12} = K_i = 1$ since $H_{12}/K_i \simeq L_2(11)$. This implies the assertion.

Using the Adaptive Coset Enumerator ACE, version 3 [13], we establish the following theorem:

Theorem 3.5.3 Let $G := \langle a, a_n, b, v, t, z | a^2 = a_n^2 = b^2 = v^2 = t^3 = z^2 = 1, [z, a] = [z, a_n] = [z, b] = [z, v] = 1, t^z = t^{-1}, [a, b] = [a, t] = [a_n, t] = [v, t] = [a, v] = 1, (a_n a)^5 = (a_n b)^3 = (a_n v)^3 = (tb)^5 = 1, (vb)^2 = z, z = bt[b, t]^2, (zaa_n b)^5 = (aa_n v)^5 = 1 >$. Then $G \simeq 3O'N$.

As a corollary we hold by Proposition 1.2.4:

Corollary 3.5.4 The 3-fold cover of the Ivanov-Shpectorov geometry for the sporadic O'Nan group is universal.