
Chapter 3

Generators and relations for the
Ivanov-Shpectorov geometry

3.1 The Ivanov-Shpectorov geometry for the O’Nan spo-
radic group

In this chapter we will give generators and relations for the universal completion of the
amalgam related to the Ivanov-Shpectorov geometry for the groups O′N and 3O′N . To
recall, this is a geometry of rank five with the following with the following Buekenhout
diagram:

◦

◦
◦ ◦ ◦❍❍❍
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5
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1 1 2

1
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3 4 5

Also recall that the geometry of 3O′N is a triple cover of the O′N -geometry where
Z(3O′N) acts as a group of deck transformations. The maximal parabolics are G1 �
J1, G2 � M11 and G5 � (Z4 ∗ Q8 ∗ Q8) : A5 (G3 and G4 will be constructed later
on). In difference to the Buekenhout geometry, we can construct a presentation for
this geometry successively using simply connected geometries for L2(11), M11, J1 and
Z

5
2 : A5.

3.2 A presentation of J1

It is known by [15], that the group G � J1 acts flag-transitively on a rank four geometry
Γ with the following Buekenhout diagram:

◦ ◦ ◦ ◦5 P

1 1 1 2
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The maximal parabolic subgroups are G1 � L2(11), G2 � Z2 ×A5, G3 � S3 ×D10 and
G4 � Z2 × A5, read from the left to the right in the diagram. Furthermore we have
B = G1234 � Z2 and B = Z(G4) (see e.g. [12]).

It is known from [15], that Γ is 3-simply connected. We use Γ to construct a
presentation for J1. The following amalgam corresponds to Γ (see e.g. [12]): G12 � A5,
G13 � D12, G14 � D12, G23 � D12, G24 � Z

3
2, G34 � D20, G123 � S3, G124 � G134 �

G234 � Z
2
2 and B � Z2.

We set B =:< z >, G123 =:< z, t >, G124 =:< z, b >, G134 =:< z, an > and
G234 =:< z, a >. Thereby we hold the following relations:

Ro : z2 = a2 = a2
n = b2 = t3 = 1,

Rm : [z, a] = [z, an] = [z, b] = 1, tz = t−1.

The diagram yields the following relations:

Rd : [a, b] = [a, t] = [an, t] = (aan)5 = (anb)3 = (tb)5 = 1.

3.2.1 Additional relations for G4

The residue of G4 in Γ has the Coxeter diagram:

◦ ◦ ◦5
1 1 1

The corresponding Coxeter group C is isomorphic to Z2 × A5 such that Z(C) acts
non-trivially on the geometry. Hence, using the relations obtained so far, we have
< z, a, an, b >� Z

2
2 × A5.

Let C =< a1, a2, a3 | a2
1 = a2

2 = a2
3 = (a1a2)5 = (a2a3)3 = 1 >. Then o(a1a2a3) =

10 and therefore we have < a1, a2, a3 | a2
1 = a2

2 = a2
3 = (a1a2)5 = (a2a3)3 = (a1a2a3)5 =

1 >� A5 by adding a (2, 3, 5)-relation to the Coxeter relations.
Since Z(G4) =< z > acts trivially on the residue of G4, we have to distinguish two

cases, namely, an ∈ G′
4 and an /∈ G′

4. If an /∈ G′
4 (a ∈ G′

4), we can assume w.l.o.g.
that a and b are also not contained (are contained) in G′

4. Thus we can add either the
relation

R(2,3,5).1 : (zaanb)5 = 1
or
R(2,3,5).2 : (aanb)5 = 1.
In both cases we hold < z, a, an, b >� Z2 × A5. The correct relation will be distin-

guished by the amalgamation with G3.



CHAPTER 3. The Ivanov-Shpectorov geometry 29

3.2.2 Additional relations for G1

We have to ensure that G12 =< z, b, t >� A5. Using the relations obtained so far we
hold < z, b, t | z2 = b2 = t3 = 1, (tb)5 = 1, [z, b] = 1, tz = t−1 >� Z2 × A5 where
< t, b >� A5. We identify t with the element (123) of A5, z with (23)(45) and b
with (24)(35). Using this identification we hold tb = (14253) and [b, t] = (15423), thus
z = tb[b, t]3 = bt[b, t]2. Therefore we have to add the relation

RA : z = bt[b, t]2.
Using the relations Rd, we find G13 =< z, t, b >� D12 �< z, an, b >= G14. By [18],

this amalgam determines the group G1 � L2(11) because it is the amalgam of a simply
connected geometry.

3.2.3 Amalgamation of G3 and G4

Using the relations Ro, Rm, Rd and RA, we easily see that a ∈ Z(< z, b, t, a >) and
< z, b, t, a >� Z2 × A5. Furthermore we have G3 =< z, t, a, an >� S3 × D10 where
< z, t > and < a, an > are the direct factors of G3. It remains to analyze whether
an ∈ G′

4 or not.
Using the subgroup lattice of J1 (given in e.g. [12]), we see that J1 contains a single

conjugacy class of subgroups D20. Given such a subgroup U of J1, its two normal
subgroups of shape D10 are non-conjugate in J1. One of these two classes correspond to
the direct factors of subgroups of shape S3×D10. These subgroups have no supergroup
A5 inside J1. Thus a and an are not contained in G′

4. Together with the fact that Γ is
simply connected [15] this yields the following lemma.

Lemma 3.2.1 Let J :=< a, an, b, t, z | Ro∪Rm∪Rd∪RA∪R(2,3,5).1 >. Then J � J1.

✷

3.3 A presentation of M11

By [4] it is known, that the Mathieu group M11 acts transitively on a geometry Γ,
related to its 3-transitive action on 12 points, with the following diagram:

◦ ◦ ◦ ◦P

1 1 1 2

The corresponding maximal subgroups of G � M11 are G1 � L2(11), G2 � S5,
G3 � S3 ×S3 and G4 � GL2(3), read from the left to the right in the diagram (see e.g.
[6]). It is shown in [18], that Γ is simply connected. Again, we use this geometry to
get a presentation for G.

By the previous section, we hold G12 � A5, G13 � D12, G14 � D12, G123 � S3,
G124 � Z

2
2 � G234 and B = G1234 � Z2.
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Since G4 � GL2(3), we find G24 � D8, G34 � D12, G234 � Z
2
2 and B = Z(G4)

because we have GL2(3) acting on a geometry with the Coxeter diagram for S4. This
shows that G23 � D12. As in the last section we set B =:< z >, G123 =:< z, t >,
G124 =:< z, b > and G134 =:< z, an >. Moreover we set G234 =:< z, v >. Therefore
we find the following relations:

R′
o : z2 = v2 = a2

n = b2 = t3 = 1,
R′

m : [z, v] = [z, an] = [z, b] = 1, tz = t−1.
The diagram yields the following relations:
R′

d : [v, t] = [an, t] = (anb)3 = (van)3 = (tb)5 = 1, (vb)2 = z.
Since G12 =< z, t, b >� A5, we add again the relation
R′

A : z = bt[b, t]2

in order to get G1 =< z, b, t, an >� L2(11).
Using the relations R′

o, R′
m and R′

d, we already see that G4 =< z, b, an, v >�
GL2(3). Furthermore it is easy to see that these relations give G2 =< z, t, b, v >� S5.
Obviously, we have [t, van] = 1, which is enough to prove G3 =< z, t, an, v >� S3 ×S3.
Then by the results of [18], we have the following lemma:

Lemma 3.3.1 Let M :=< z, t, b, an, v | R′
o ∪R′

m ∪R′
d ∪R′

A >. Then M � M11.

✷

3.4 Some geometry for Z
5
2 : A5

It is known by [17], that a maximal parabolic subgroup P of the group Z4L3(4) acts
flag-transitively on a geometry Γ having the following Coxeter diagram:

◦

◦
◦ ◦❅

❅

�
�
5

1

1

1 1

1

2

3 4

From the diagram of the rank five geometry of Ivanov and Shpectorov [17] we
draw that P ∩ M11 � GL2(3), so Ω1(Z(P )) is contained in the Borel subgroup of this
geometry. Therefore we can assume that P is a maximal parabolic in Z2L3(4). Thus
P is isomorphic to Z

5
2 : A5 such that Z(P ) � Z2, O2(P ) is an indecomposable module

for A5 where O2(P )/Z(P ) is the natural L2(4)-module.
Then the maximal parabolic subgroups of the pair (Γ, P ) are: G1 � A5, G2 �

S4, G3 � Z
3
2 and G4 � A5 (the numbering is denoted above the diagram nodes).

Furthermore this implies G12 � S3 � G24, G13 � Z
2
2 � G23 and G14 � D10. Clearly, all

minimal parabolic subgroups are isomorphic to Z2. We set < b >:= G123, < an >:=
G124, < a >:= G134 and < v >:= G234 and let C be the corresponding (infinite)
Coxeter group. Thus we obtain the following relations:
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R̃o : a2 = a2
n = b2 = v2 = 1,

R̃′
c : [a, b] = [a, v] = [b, v] = (aan)5 = (anb)3 = (anv)3 = 1.

In view of the aim to give generators and relations for the Ivanov-Shpectorov ge-
ometry, we denote R̃′

c by:
R̃c : [a, b] = [a, v] = (aan)5 = (anb)3 = (van)3 = 1, (vb)2 = 1.
Then C =< a, an, b, v | R̃o ∩ R̃c >. Again, we have to ensure that G1and G4 are

both isomorphic to A5. Thus we have to diminish the order of the two Coxeter elements
aanb and vana. Therefore we have to add

R̃(2,3,5) : (aanb)5 = (vana)5 = 1.
Using the Magma [2] program for coset enumeration, we get the following lemma:

Lemma 3.4.1 Let P :=< a, an, b, v | R̃o ∪ R̃c ∪ R̃(2,3,5) >. Then P is isomorphic to a
maximal parabolic of Z2L3(4).

✷

3.5 Generators and relations for the Ivanov-Shpectorov

geometry

We recall that the geometry Γ of Ivanov and Shpectorov for the O’Nan group has the
following diagram:

◦

◦
◦ ◦ ◦❍❍❍

✟✟✟
5

P1

1

1 1 2

1

2

3 4 5

The maximal parabolic subgroups G1, G2 and G5 of the pair (Γ, G) (where G ∈
{O′N, 3O′N}) are G1 � J1, G2 � M11 and G5 is isomorphic to a maximal parabolic of
Z4L3(4).

Let P1 be a maximal parabolic in Z4L3(4). According to the last section, we get
generators and relations for P acting on the geometry Γ5 simply by adding a center
which acts trivially such that G15 � Z2 ×A5 � G45 and G25 � GL2(3). Thus we add a
new generator z and transform the relation (vb)2 = 1 in R̃c in (vb)2 = z. Since P1 has
to contain a subgroup Z2 × A5 of G1 � J1, we change R̃(2,3,5) to

R̄(2,3,5) : (zaanb)5 = (vana)5 = 1.
Furthermore we add
R̄z : z2 = [a, z] = [b, z] = [an, z] = [v, z] = 1.
We set R̄o := R̃o and
R̄c : [a, b] = [a, v] = (aan)5 = (anb)3 = (van)3 = 1, (vb)2 = z.
Then we have the following:
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Lemma 3.5.1 Let P1 :=< z, a, an, b, v | R̄o ∪ R̄c ∪ R̄(2,3,5) >. Then P is isomorphic
to a maximal parabolic of Z4L3(4).

✷

We are now able to give generators and relations for the Ivanov-Shpectorov geom-
etry. First we set RO := Ro ∪R′

o ∪ R̄o, thus:
RO : z2 = a2 = a2

n = b2 = v2 = t3 = 1.
Then we put RM := Rm ∪R′

m, thus:
RM : [z, a] = [z, an] = [z, b] = [z, v] = 1, tz = t−1.
We set RD := Rd ∪R′

d ∪ R̄c, thus:
RD : [a, b] = [a, t] = [an, t] = [v, t] = [a, v] = (aan)5 = (anb)3 = (van)3 = (tb)5 =

1, (vb)2 = z.
We recall that RA = R′

A and
RA : z = bt[b, t]2.
Finally, we set R(2,3,5) := R̄(2,3,5), thus:
R(2,3,5) : (zaanb)5 = (vana)5 = 1.
Then we get that
U :=< z, a, an, b, v, t | RO∪RM∪RD∪RA∪R(2,3,5) > is the universal completion of

the amalgam of G1, G2 and G5. Using Magma [2] for coset enumeration, we hold that
G3 =< z, a, b, v, t >� Z2×S5 and G4 =< z, a, an, v, t >� S3×A5. So U is the universal
completion of the amalgam corresponding to the Ivanov-Shpectorov geometry.

Theorem 3.5.2 Let Γ′ be a flag-transitive geometry with the same Buekenhout diagram
as Γ. Assume furthermore that for a flag-transitive automorphism group H we have
H1/K1 � J1, H2/K2 � M11 and H5/K5 � Z

5
2 : A5 (a maximal parabolic in Z2L3(4))

where Ki denotes the kernel of the action of Hi on the corresponding residue. Then
K1 = K2 = 1 and B = K5 � Z2.

Proof. Clearly, we have that Ki is a subgroup of the Borel group B of Γ′ in H for all
i. Since the Borel subgroup of the geometry for H5/K5 is trivial, we hold B = K5. We
have that H12/K12 � L2(11). We have K12/Ki;H12/Ki for i = 1, 2, thus K12 = Ki = 1
since H12/Ki � L2(11). This implies the assertion. ✷

Using the Adaptive Coset Enumerator ACE, version 3 [13], we establish the following
theorem:

Theorem 3.5.3 Let G :=< a, an, b, v, t, z | a2 = a2
n = b2 = v2 = t3 = z2 = 1, [z, a] =

[z, an] = [z, b] = [z, v] = 1, tz = t−1, [a, b] = [a, t] = [an, t] = [v, t] = [a, v] = 1, (ana)5 =
(anb)3 = (anv)3 = (tb)5 = 1, (vb)2 = z, z = bt[b, t]2, (zaanb)5 = (aanv)5 = 1 >. Then
G � 3O′N .

✷

As a corollary we hold by Proposition 1.2.4:
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Corollary 3.5.4 The 3-fold cover of the Ivanov-Shpectorov geometry for the sporadic
O’Nan group is universal.

✷


