Chapter 4

Constructing an irreducible
representation for the
Buekenhout geometry

4.1 Introduction

In this chapter we construct 154 x 154-matrices over GF'(3) for the generators of the
amalgam related to the Buekenhout geometry given in Chapter 2. These matrices
provide an irreducible representation of that amalgam. This representation for the
O’Nan group has been constructed in [23] using the computer. We are going to give a
construction which is largely done by hand. In particular we do not use the fact that
the group O'N is the universal completion of the amalgam.

We start with the representation of the group L3(7) : Zs, identify the generators z,
X, Y, Z and p, and then construct a matrix a satisfying all the required relations.

The representation for L3(7) : Ze will split for that group as the direct sum of a
1-dimensional, a 57-dimensional and a 96-dimensional module all being irreducible.

In order to construct the representation for L3(7) : Zs, we use the canonical gener-
ators and relations given in Chapter 2. To recall:

Set G :=< v1, v, v, p,x,u,i|v] =v5 =07 =1,p% =2t =% =1, [v1,19] = [v],v] =
1,05 = vy, vf = v} vh = v3,0F = vy, 08 = vfl,[vl,i] = 1,0} = v;l,y” =i pt =
p~Lpi = Lot = a7 (va)? = 22,0 = v [2?] = Lo} = o7 h ol = vt =
va, [p,u] = 1, (22)* = 2%, (z2¥)3 =1 >.

Then Gy =~ L3(7) : Zo. More exactly, we have P| :=< vy,v2,v,p,z,i >~ 72 :
SLsy(7) : Zy, where < vy,vy >= O7(Py), < v,p,x,i >~ SLo(7) : Zy and < v, p,x >~
SLy(7). Furthermore the pair (P, Pf*) consists of two incident maximal parabolic
subgroups of L3(7).

34
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4.2 Constructing matrices for L3(7) : z

4.2.1 The irreducible 57-dimensional GF'(3)-module

It is known that L3(7) : Zo has an irreducible 57-dimensional GF'(3)-module V7 (see
e.g. [22]). We construct a representation simply by calculating matrices satisfying the
required relations and do not consider the construction of a specific representation.
As above we set Gy =< vy,v9,V,p,2,u,0 >, Py :=< vy,v9,v,p,x,0 > and W :=
O7(P1) =< wvy,v2 >. Then we have Vg7 ‘W: CV57(W) D [V57,W] where [V57,W] =
@?:1 Clvs,,w)(Hj), Hj the hyperplanes in W.

Since % is irreducible over GF'(3), the smallest representation of an element of or-
der seven is six dimensional and hence we hold dimC',, (W) = 9 and dimCly,, w)(H;) =
6.

We number the hyperplanes in W as follows: H :=< v; >, H; :=< (j —2)vi +v2 >
for j =2,3,...,8. Moreover we set

01 0 0 0 O
001 000
g 0 001 00
’ 00 0 0 10
0 000 0 1
-1-1-1-1-1-1
This implies the following approach:
Iy Iy
I J
J 0 Ig 0
J J6
v = J , Uy = J5
J J*
0 J 0 J3
J J?
J J

We set C := Cpyy, w)(H1). Since [v1,v] = 1, v acts on C. Using our generators and
relations, we have that ¢t := 22 € Z(< v,p,z,i >), thus t inverts v; and vy and
centralizes v. Therefore ¢ acts on C as well as vy because [v1,v9] = 1. Since < v, p, x,i >
acts transitively on the hyperplanes of W, t inverts vy on C. Moreover vy = vjvy !
imlying that [v,v2] = 1 on C. Since t inverts vg and centralizes v on C, v and vy cannot
induce the same subgroup of order seven on C, thus we can assume that v = I on C
because G'Lg(3) does not contain a subgroup Z2.

We identify vy on C with the permutation (1234567) where the numbers one to six

represent the canonical basis vectors and seven their negative sum. Since v5 = v3 and
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vh = vy !, we can identify ¢ with (27)(54)(36) and p with (253)(674). Thus we have the
following on C:

1 0 0 0 0 O 1 0 0 0 0 O
—-1-1-1-1-1-1 0O 0 0 0 1 0
0 0 0 0 0 1 0O 1 0 0 0 O
= g 00010 P=| 000001
0 0 0 1 0 O 0O 01 0 0 O
0 01 0 0 O —1-1-1-1-1-1

If we now set Ciyg, w)(Hi)” = Clvg,,w)(Hpy), we hold the identification v ~

(2345678) and therefore the following on [Vi7, W1:

, t =2 = diag(C)

cooc oo o oM
Soocoococooo o
coocococofo
coococofioo
coocoofooo

coofoocoo

coSfocoocoocoo
oS ocoococoocoo

We approach i, p and x on [Vz7, W] by the following:

1= (Aij)i,jzl,...& p = (Rij)i,jzl,...S and z := (Xij)i,jzl,...& Where AijaRijaXij are
elements of GF(3)6%6.

Then, using the relation vii = v, we hold:

Ayp Ap Az A Ais A Air Asg
vyi = | JA21 JAgg JAgz JAgy JAgs JAge JAyr JAss | =

A Arad Azd Agd Aisd Aied Arrd Aigd
Aoy AgoJ AozJ Aoy AgsJ AsgeJ AgrJ AsgJ | — 1v7.

Therefore we get A12 = A13 = A14 = ... = Alg = 0, Agl = A31 = A41 = ... =
Agl =0 and AZJJ == JAZ] for all Aij except AH.
The relation vgi = vy 1 Jeads to:

JA1 0 0 0 0 0 0 0
, 0 Ay Ay Axg Ay Ags Az Asg
vt = 0 J6Azp JOA33 JOA3y JOAss JOAs JO A3, JOA3s
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ApJ® 00 0 0 0 0 0
0 Aoy AggJ AgyJ? AgsJ? AggJ* AgrJ® AggJO .
0 Asg Ass3J AsgJ? AssJ? AsgJ* AgrJ5 AsgJ6 | = W2

Together with A;;J = JA;; from above, this shows that A;; = 0 except for Ay, Ago,
Ass, A4, Ase, Ags, A74 and Ags which are therefore elements of GLg(3). Furthermore
the relation ¥ = v~ ! yields Aoy = Aszg = ... = Ags. Moreover we have that J411 = J—1,
[Agg, J] = 1 and A2 = A%, = I. The relation it = ti proves that [A11, O] = [Ag, C] =
1. Now | CGL(;(B)(< J,C >) |: 2-13 and | NGL6(3)(< J >) N CGL6(3)(C) |: 22.3.13
having a normal 2-Sylow subgroup. Therefore we have A;; = £C and Ayy = +1 and
choose A1y := —C and Ay := —Ig. Thus we hold:

-0 0 0 0 0 0 O
0 -Is 0O 0 0 O 0 O
0o 0 0 0 0 0 0 —J
; 0 0 0 0 0 0 —-Is O
0 0 0 0 0 —-Ig 0 O
0 0 0 0 —-Ig 0 0 O
0 0 0 -Is 0O 0O 0 O
0 0 - 0 0 O 0 O

To compute p, we start with the relation v1p = pv? leading to

Ry1 Ry Ri3 Ry Ris Rig Rir Ris
vp=| JR21 JRy JRo3 JRyy JRos JRys JRo7r JRos | =

Ri1 R12J? Ri3J?% Ri4J? Ri5J? RigJ? Ri7J? RigJ?

Ro1 RoaJ? Ro3J? RoyJ? RosJ? RogJ? Rord? RogJ? | — pvl.
Hence ng = R13 = ... = ng = 0 and Rgl = R31 = ... = Rgl = 0. Similarily,
using V2p = pv%, we hold R23 = R24 = .. .Rgg =0 and R32 = R42 = ... = R82 =0. By

the relation vp = pl/4, we deduce that R;; = 0 except for Ry, Ry and Rzg = Ry3 =
R57 = R64 == R78 = R85 = RQQ. Thus Rll,RQQ € GL6(3). Moreover v1p = pv% yields
JFE22 = J2 and vyp = pv§ yields JF11 = J4. Exploiting pi = ip, we hold [Ry1,C] = 1.
Also, since p should be of order three, we get o(R11) = 0(Ra2) = 3. Thus we can choose
Ry1 := B and Ry, := B~} leading to
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B 0O 0 0 O 0O 0 O
oB' 0 0 0O 0O 0 ©
00 0 0 0 B0 o0
1o oBY0 0 0 0 O
P~1 0o 0 o 0o 0 0 B! 0
00 0 B0 0 0 O
00 0 0O o0 0 0 B!
00 0 0 B'Yo0o 0 o0

We compute = in a similar way. We start using the reation vixz = xvo:

X X2 Xi3 Xy X5 Xie Xir Xis
JXo1 JXo99 JXo3 J X9y JXo5 J X6 JXo7 JX0g
VT =1 JX31 JX3p JX33 J X34 J X35 JX36 JX37 J X33

X11J X192 X138 X14J° X15J* X16J° X17J? X1gJ
Xo1J Xog Xo3J® XosJ5 XosJ* XogJ? XorJ? XogJ
Xa1J X2 X33J% X34J° Xg5J* X363 Xg7J? XsgJ | = FV2

This proves X11 = X13 = ... = X18 =0 and X22 = ng = ... = X82 =0 and
therefore Xi9, Xo1 € GLg(3). By vox = :cvfl we hold:

0JXq2 0 0 0 0 0 0
Xo1 0 Xo3 Xoy Xos Xog Xo7 Xog
V2T = J71X31 0 J71X33 J71X34 J71X35 J71X36 J71X37 J71X38

0 X10J 7! 0 0 0 0 0 0
Xo1 0 XogJ ! XogJ 7t XosJ ™1 XogJ ™! XorJ ™1 XogJ ™! .
X31 0 X334 XouJ 1 X5 J 1 XagJ ! X37J 71 Xag 1 | =2V1 -
Thus X971 = X371 = ... = Xg1 = 0 from the first column and Xo3 = Xoy = ... =

Xog = 0 from the second row. The third row shows ngJ_l = J_ngj implying
X3;J = JX3;. Using this information and the third row in v1z = vy, we get X33 =
X34:...:X37:Oand X38750.

As a next step we use prp =z (p* = p~!) and find
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0 Xio 0 0 0 0 0 0
Xo1 O 0 0 0 0 0 0
0 0 0 0 0 0 0 X3g
| 0o 0 0 B 'XuB! 0 0 0
- 0 0 Xs3 X4 Xss Xs6 Xs7 Xss
0 O 0 0 0 0 BX3sB 0
0 0 BXssB BXs3B BXs57B BXs54B BXssB BX55B
0 0 B71)(54.Bi1 B71X56B71 Bing,gBil B71)(53.Bi1 B71X55B71 .Bil)(gﬁ.Bi1

where [Xj9, B] = [X21, B] = 1 because Xj2, X291 € GLg(3). Furthermore since x
has to be invertible, X3g € GLg(3).

Since (L‘2 =t = dw,g(C), we hold X19X91 = C = X21X12, X38B71X54B71 = C,
X33B7'1X5;B~! =0 for j € {3,5,6,7,8}. Thus X5; = 0 except for X5y = BCX33' B =
CBX34' B since [B,C] = 1 and

0 X1 0 0 0 0 0 0
X 00 0 0 0 0 0
0 0 0 0 0 0 0 Xsg
| o 0o o 0  BXgB! 0 0 0
1 0 0 0 CBXzB 0 0 o o0 |
0 0 0 0 0 0 BX3sB 0
0 0 0 0 0 CBXg'Bt 0 0
0 0 CXzl 0 0 0 0 0

furthermore [X3g,C] = 1. The last relation has to hold since 22 = diag(C) implies
Xs4 = BCX33B as well as X54 = BX33CB. Now X3sg also commutes with J as seen
above. Thus X3s € Cgrq3)(< C,J >). By (vx)3 = t, we get the relation X1 X33 X0 =
C, hence X33 = Ig since X19X91 = C = X91X12. The relation vox = xvfl shows
that JX12 = J~1 Therefore [X12, X21] = 1 leads to X9 € CGLG(g)(< C,J,B >),
X2 € CCGL6(3)(< C,J,B >). Now CGL6(3)(< C,J,B >) = {16, —IG} yields X9 = +C
and X971 = 15 and we choose X153 = C and therefore X9 = I5. Thus

0Co 0 00 0 0
Is00 0 00 0 O
000 0O 0 0 0 I
.| 000 0 BO 00
“]1 000CBt0 0 0 O
000 0 0 0 B™'oO
000 0O OCB 0 0
00C 0 00 0 0

The relation xi = iz~ ! = tiz is also fulfilled.
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Set C := Cvy,, (W) with W =< v1,vy > and we compute v, i, p and x on C. Recall
that C = Cpyy, w)(v1). Since v1 = Ig = vy on C, we use the 15-dimensional space
U = C®C in order to have more information. Clearly, v acts on C, thus we can choose
a basis of U such that

10000 10000
01000 01000
vo=] 00100 [andv=] 00100
000150 000J 0
0000 J 0000 Ig

because, by v ~¢, v1, we have dimCy,(v) = 15 and dimCly,, w(v) = 12 imply-
ing that Cy.(S) with S =< v1,v2,v > is three dimensional. Furthermore we have
Npy)z, (8) =< Syist, p,u >=: N acts on Cy,(S). Since 4 inverts both, vy and v, we
find that 7 has the following shape on U:

Ay 0 0
i=| 0 Ay 0 |,
0 0 As

where A;; € GL3(3) and Agg, Ass € GLg(3). Moreover we hold A% = 1 and
JA22 = JAss — J=1 Therefore we choose Agy := C and from the previous calculations

we have A3z3 = —C because As3 determines the action of ¢ on C computed above. Since
vh = v, v” = v* and [p,i] = 1 we hold the following for p on U:
Ri1 00
p= 0 BO |,
0 0B

where Ry € GLg(3) was chosen to be B, Ry; € GL3(3) and [A11, R11] = 1. Also, by
[i,u] =1 and Z%*Q : (Z3 x Dg) ~ N, we get that < i,u,t >~ Dg and i € Z(< i,u,t >).
Thereby A1; ¢ Z(GL3(3))! . Moreover we hold that ¢ is of the following shape on U:

Tii 0 0
t=| 0 Twno |,
0 0C

where T € GL3(3), T € GLg(3). Since [u,t] # 1, we get that T ¢ Z(GL3(3)).
This yields Rj; = I3 because < Aj1,T11 >~ Z% and the centralizer of such a group
in GL3(3) is isomorphic to Z3. Since ¢ centralizes p, i and v, we therefore hold Ty €
Carg3) (< C,B,J >) = Z(GLg(3)), thus Tay = +1Ig so we choose Thy = —I.

-1 0 O
!Note that ( 0-1 0 ) is not a square in GL3(3)
0 0-1
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Now < Ay1,Typ > must fix a vector of the space GF(3)3. Therefore we choose

-1 00 1 0 0
A11 = 0-10 and T11 = 0-1 0
0 11 0 0-1

In order to compute z on C, we procced as follows. Let 2 = (aij)1<i,j<9. Exploiting
the relations px = xp~ !, xi = itz, 22 =t and (vz)® = t, we get that

1 0000000
0 2 100000
0 1 10ee0¢€0
0 0 0122020
0 0
0 0
0

)

e011212 |, ee{1,2}.
€122120
—€—€121020
0 0 e122021
0—€e—€122010

Thus we choose
100000000

021100000
011011010
000122020
rz=| 001011212
001122120
022121020
001122021
022122010

We start to compute u on U. Since u normalizes S, v acts on U and we approach
u by

A0 O
u=| 0A1 A |,
0 Agy Az
where A € GL3(3) and A;; € GLg(3). Then the relation vou = uv yields
A 0 0 A 0 O
0 Ann A | =] 0AnJ A |,
0JAs JAss 0 Ao1J Agg

hence A1 = Age = 0. Exploiting iu = ui, we get

ai1 a2 0
A=| astaza+azs 0 |,
asy aso ass
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CAjs+ A1oC =0 and C Ay + A9C = 0.
Now we use the relation tu = uti and get on Cy;, (S):

a1y a12 0 —ai1 a2 0
—az) —azz —azz 0 =| —agrazz+azz 0 ;
2a31 —azx  —ags —agy az2 — 33 —as3

thus a1; = 0 and a3z + a3z = 0. Hence we hold

0 a2 0
A= aszl 0 0
a31 —ass3 a3

Also u? = 1 implies A? = 1 which gives us

0 a2 0
A= a1 0 0
a12 —a33 a33

The entries of A will be determined using the Weyl relation. Using [u,p] = 1,
we obtain [B, Ajs] = [B, Ag1] = 1. Also, u?> = 1 implies Ajp = A5'. Together with
[J,Alz] =1 and CA12 == —Algc this yields

Ap ==+

Notice that this implies Ay = Af21 = —Ajs.
We approach u on [Vs7,v1] as follows. Set u = (aij)i<ij<7 where a;; € GLg(3).
Using the relations vou = ur and vu = uve, we hold

a a a a a a a
a Ja J*a J3a J*a J%a J8a
a J?a J%a J%a Ja J3a JPa
w=| aJ%a J% J%a J°a Ja J'a ,J‘I:J_l,aeGLg(B).
aJ*a Ja J%a J?a J%a J3a
aJ% J3a Ja J%a J*a J%a
a JS% J°a J*a J3a J%a Ja
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Thereby u? = 1 implies a®> = 1. Furthermore tu = uti gives Ca = —aC and pu = up
implies [B,a] = 1. Thus we get that

»—lr—t»—l@»—l»—t
OH}—‘}—‘}—‘H
}—‘HOH}—‘O

-1
-1
0
1
0
-1

»—lOO»—A»—l»—A
o»—t»—lr—t»—lo

Checking the Weyl relation (zz%)? = 1 leads to the following possibilities (for Ajy
and a we just give the sign of the above matrices):

e apo=—1l,a33=—1,A19:+,a:+,
e app=—l,az3=~-1,A1: —,a: +,

® ajp=1,a33 =—1,A12:+,a: +,

e ap=1,a33=-1,A19: —,a:+.
Of course, multiplication of u with —1 does not change the relation, thus we have eight
possibilities. Therefore we choose a19 = agg = —1 and
-1 11 0 1 0 1-1-10-1 0
0-1 1 1 0 1 1 1-11-1-1
A -1-1 1 0 0-1 _ 0 1 01 1-1
2= 1 00-11 1] 10 11-1 0
-1 0-1-1 1 0 -1 0 01-1-1
0-1 0-1-1 1 1 1-10 0 1

4.2.1.1 Summary

We summarize the above results. Set

01 0 0 0 O 10 0 0 0 O
001 0 0O -1-1-1-1-1-1
J— 000100’02 000001’
00 0 0 10 0 0 00 10
0 0 00 01 0 001 0O
-1-1-1-1-1-1 0 01 0 0O
1.0 0 0 0 O
0 0 00 10
0 1.0 0 0O
B= 0 000 0 1}

0 01 0 0O
-1-1-1-1-1-1
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as matrices in GLg(3). Furthermore we set

|

-1 000
0-100
0 110
0 00C

(

1000

0100 | .

0010 [

000 B
10000000 0

)7/)9

1000
0100

0010
000J

g

and

0-1-11-1-1 0 1 O

0004001
O~ o~ = = =
_ [
OOO‘I_A_I.OO
O~~~ o~ o~
_ _ _
S o~
_ [
— O O
— o O = =
_

111000110
SO OO oo oo

Il

=)

8

as matrices in GLg(3). Moreover let

—
coocoocooco/l o
A

Al
cooco/l ocooo

Q

i
ool coocoocoo
A
i
OOOOOOOWD
i
OOOOOWDOO
i
cocool cooco
A
Al
ol coococoo
Q

Mooocoocoooo

Il

0

<

Q
cocoocoococo o
cocooocooo
cocooXooo
cocoXoooo
coooooo
ooocoocooco
cocoooco ooy
Loooocoooo

Il

Z

A

—C

—Is 0 O

0

—I
0
0

—Ig
0
0

0
—I

0

0
—Ig

0
0

0
0

0
0

0
0

_1'6

0
0

0

__[6

0

148
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and

T48 =

coocococof o
coocococoo0
coocolgooo

coo o oo

Qoocoocoocococo
Q
ccoWoooo
[
—

as matrices in GL4g(3). We set

Iy Iy
Ig J

V157 = J , U257 = J° ;

Vg 0 P9 0 its) 0 . ’ig 0
Jy— 7 = , Ty7 = and i57 = . .
57 ( 0 V48> P57 ( 0 p48> 57 < 0 s 57 0 isg
Then we have proved the following:

Lemma 4.2.1 We have GLs7(3) >< v1 57, V2,57, Vst, P57, T57, 57 > 72 + SLo(7) @ Zs.

O
Now we put

-1 1 1 0 1 0
0-1 0 011 0 01
A= -1 0 0 EGL3(3),A12= EGL6( )
1 1-1 1 0 0-1 1 1
-1 0-1-1 1 0
0-1 0-1-1 1
We set
A 0 O
us=| 0 0 Ap
0—-A412 0
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Furthermore
1-1-10-1 O
1 1-11-1-1
01 01 1-1
=1 1 g 11-1 o€
-1 0 01-1-1
1 1-10 0 1

and
a a a a a a a

a Ja J%a J3a J*a J%a J%a
a J?a J*a J%a Ja J3a Joa
ue = | aJ3a J% J?a Ja Ja J*a
aJ'a Ja J%a J?a J% J3a
aJ% J3a Ja J%a J*a J%a
a JS% Jo°a J*a J3a J%a Ja

s — Uuls 0
57 — 0 u42 9

Lemma 4.2.2 We have GL57(3) >< v157,v257, Vs7, P57, T57, 457, Us7 > L3(7) : Zy.
Moreover these matrices provide an irreducible 57-dimensional representation of the
group Ls(7) : Zs.

If we set

then the following holds:

4.2.2 The irreducible 96-dimensional GF'(3)-module

By [22], we see that L3(7) : Zp has an irreducible 96-dimensional GF'(3)-module V.
This module splits for W = O7(Py) as Vg = Cy, (W) @?:1 Civys,w)(H}) using the no-
tation introduced above. Since 6 | dimCiy,, w)(H;), we find that Vog = @?:1 Cviys (H;)
with dimCy,s (H;) = 12. We set

J71o 0 Is ([ JO
T.—< 0 J>,Y.—<160>and5.—<0J>.

We set
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T 1o

) = and v =
1,96 T 2,96 T4

Moreover we set tos = x35 := diag(Y) and

S0 000000
00,0 00 0 0
00 0, 0 0 0 0
1000 06,00 0
P51 00 00 0150 0
0000 0 0150
00000 0 0 Ip
0, 0 0 0 0 0 0

Furthermore we set

~ co 0C BO
c._<00>,p._<co>and3._<OB>.

Now we proceed as for the 57-dimensional module. That is we compute matrices
which satisfy the relations for our canonical generators for L3(7) : Zo but we are not
considering a particular representation. This means that we construct the matrices
successively using all matrices obtained so far. Then we try to determine every matrix
as far as possible and choose appropriate matrices when we have more than one choice.

Then similar computations as for the 57-dimensional module lead to

i96 =

co oo oo o
coocoococolgo
Joocoocococoo
coocoogJgooo
coocoocolgoo

oo ocococoo
colgoococoo
coooocoo
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RO O O 0O O 0 ©0

OR' 0 0O 0 0 0 0

00 0 0O O0R'YO O

00 R0 0 0 0 0

P =1 090 0 0o o o R o |

00 0RY0 0 0 0

00 0 O O 0 0 R

00 0 O R'™0 0 0
0li, 0O 0 0 0 0 0
YO 0 0 0 0 0 0
00 0 0 0 0 0 S!
100 0 0 (RSR™ 0 0 0
6= 00 0 YRSR 0 0 0 0
00 O 0 0 0 RS™'R 0
00 0 0 0 Y(RST'R)™' 0 0
00YS 0 0 0 0 0

Thus we have established the following lemma

Lemma 4.2.3 We have GL96(3) >< 11,96, V2,96, 196, P96, L96, 196 > Z% : SLQ(?) 2 Zo.

The matrix ugg is also computed similarily. Here we obtain

Ugo 0 0 0 0 0 0
Oa a a a a a a
0a Ta T?a T3a T*a T°a TCa
0aT?aT*a T Ta T3a T a
Y96 = ¢ T3¢ TSa T2a TP Ta Ta |’
0 aT* Ta T°a T?a TSa T3
0 aT’aT? Ta T0a T*a T?a
0 aT% T°a T*aT%a T?a Ta

G- *C 0 da— bO b\ [ bC b3
R R e e Y e,

where b € Cgrq3)(< B, J >), o(b) = 8. Thus we find

with

011010
001101
~1-1-1 0 0-1] .

b= L0 0 0 1 1 |siefn3sTy
1 0-1-1-1 0
0-1 0-1-1 0
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Checking the Weyl relation leads to the following:

~ co
U—(OI6>and

Of course, multiplication with —I9g does not change then relation giving us —ugg as a
second possibility. Thus we choose

go 0o 0 0 0 0 0
Oa a a a a a a
0 a Ta T?a T3 T*a Ta TSa
| 0aT?aT*aT% Ta T3aT%a
Y96 =0 4 T3¢ TSa T2a T Ta Ta |’
0 aT* Ta T°aT?a TS T3
0 aT?a T3 Ta TSa T*a T?a
0 aT% T°a T*aT%a T?a Ta

with
~ C0 bC b3
U_<016>anda_< be)’
with
“1-1-1 0-1 0
0-1-1-1 0-1
s_| 110001
] -1 0 0-1-1-1
101100
010110

Then the following lemma holds:

Lemma 4.2.4 We have GL96(3) >< Ul,96av2,96aV965p96a$96,i96au96 > L3(7) 2 2.
Moreover these matrices provide an irreducible 96-dimensional representation of the
group L3(7) : Zs.
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4.2.3 The 154-dimensional representation of L;(7) : Z

We gather the information obtained in the previous subsections and set

1 0 O 1 0 0 10 0 10 0
vi=| Ovis7 0 |,vo=| Ovesy O |,v=]| Ovs7 O |,p=1] Op57 O |,
0 0 V1,96 0 0 V2 96 00 Vgg 00 P96
10 0 10 0 -1 0 0
Tr = 0 T57 0 s 1= 0 ’i57 0 and u = 0 —us7 0
00 T96 00 i96 0 0 —U96

This form for w is chosen because it ensures that w and z2 have the same Jordan
form. Since we want to construct a representation of O’ N, this is necessary. Then the
following holds:

Lemma 4.2.5 We have GL154(3) >< v1,v2,V, p,x,i,u >~ L3(7) : Zy. Moreover the
module splits as Visga = V1 @ V7 B Vg with dimVy = k and Vi, is an irreducible module
for Ls(7) : Zo (k=1,57,96).

4.3 The construction of the generator a

In this section we construct the remaining generator a. In order to do so, we use the
identification of the geometrical generators for L3(7) : Zy coming from the amalgam of
the Buekenhout geometry as words in the canonical ones given in Chapter 2. Thus we
keep the generator p and set z = (XY)2. Then z = (ut)®® where t = 22 and X = zi.
Furthermore we have Y = ie with e = (z2*°)*” and Z = (z~1)% For our further
considerations, we need the following two lemmas:

Lemma 4.3.1 Let Gy =< 2,X,Y,Z,p >~ L3(7) : Zy be as in the amalgam for the
Buekenhout geometry. Then Cg (a) =< 2X,x, Z, ZY > Ly(7).

Proof. By construction, we have for Zy x PGLy(7) ~< 2,X,Y,Z >=: H < G
that a> = z~'x € Z(H). Moreover H is a subgroup of index two in the parabolic
Go ~ (Z4 x Lao(7)) : Zy of the Buekenhout geometry, which itself containes a. Thereby
we hold that Cgr () is isomorphic to a subgroup of Ly(7) because Y € G and a¥ =al.
Furthermore the relations of Chapter 2 yield z,2X, Z € C'G/1 (a) and < z,2X, 7 >~ Sy.
Also, since a¥ = a7 1, ZY € Cg/l(a)— < x,zX,Z > because Y is an automorphism of

H' ~ Ly(7) and o(ZZY') = 3 proving the assertion. O

We set Gy =< z,X,Y,p,a >~ ZyL3(4) : Zs. Then the 154-dimensional mod-
ule splits for Gy as Visy = Cuyy,(2) @ [Visa, 2] = Cviyy(2) @ Cpgy, 2 (22) @ [Visa, 22,
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Computing the dimensions of the eigenspaces of z shows that we have dimCy,,,(z) =
30, dimChy,, (%) = 44 and dim[Viss,2%] = 80. We set Vo 1= Cyyy,(2), Viu =
Cliisa 2 (2%) and Vao := [Viss, 2%).

Lemma 4.3.2 Let G =< z,a,X,Y,Z,p > be a completion of the amalgam of the
Buekenhout geometry. Assume that G has a 154-dimensional GF(3)G-module such
that the matrices for z, X, Y, Z and p are as above. Then z and a have the same
Jordan form.

Proof. Set G4 =< z,p, X, Y > Using MAGMA [2] to compute the indecomposable
summands of V54 as a Gi4-module, we hold that Vsg|c,, = Ve®Vo®Vis, Vaulg, = V11
Vi2®Vi2®Vis 18 Vis2 and Vyolg,, = Va®Vas, 1B Vaa 2B Va4 3 with dimV; ¢ = i. Moreover
one of the 24-dimensional submodules is irreducible. Using the 3-modular characters
of L3(4) as given in [22], we hold therefore that in V3 two irreducible 15-dimensional
L3(4) : Ze-modules are involved, in Vgy there are an irreducible 8-dimensional (4-
dim. over GF(9)) and an irreducible 72-dimensional (36-dim. over GF'(9)) Z4L3(4) :
Zg-module involved and that V4 is an irreducible ZyL3(4) : Zo-module (22-dim over
GF(9))2.

Using the generators and relations for G4 as in Chapter 2, we find that a is not
a square in G4 but z2a is. Thus the characters we find in [22] are the characters
of z%a. Furthermore the 72-dimensional module admits another involutory automor-
phism of L3(4), namely the field automorphism of GF(4). This automorphism fuses
two of the classes of elements of order four in L3(4). This implies that z2a is an ele-
ment of type 44 in the notation of [22]. The information gathered so far proves that
dim(V154(a2, —1) N Vgo) = 40, dim(V154(a2, —1) N ‘/214) = 24, dim(V154(a2, —1) N Vg()) =
16, thus dimVis4(a®, —1) = 80 by [22]. Moreover, since z2a is a 4A-element, we hold by
[22] that dim(V154(a, 1) N Vg()) = 16, dim(V154(a, 1) N ‘/214) = 8 and dim(V154(a, —1) N
Vao) = 24, dim(Visa(a,—1) N Vyy) = 12. On V3o we have that XY is an element of
type 4B or 4C. We also get tr(XY) = —1 on V39. By [22], this implies that w.l.o.g.
tr(XY) = 3 on Vis; and tr(XY) = —1 on Viss. Since z = 1 on Vi51, we have
tr(a) = tr(z%a) on Vi51. Therefore we get that tr(a) = —1 on Vi5; using [22] be-
cause z2a is of type 4A. Straightforward calculations yield dim(Visq(a,1) N Vag) €
{3,5} and dim(Visa(a,—1) N V3g) € {4,2}. Thus either we find dimVis4(a,1) =
30 and dimVisa(a,—1) = 44 or dimVis4(a,1) = 32 and dimVise(a,—1) = 42. Set
L =< 2X,2,Z, 7Y >= Cey(a). Then L acts on Cyysy(a?) = Visa(a®,1). We use
MAGMA [2] to compute the indecomposable summands of Vis4(a?,1)| and obtain
V154(a2, 1)’[, = W7,1 & W772 & W15,1 D W1572 & W15,3 D W1574 with dimW@e = 4. This
proves dimVis4(a,1) = 30 and dimVis4(a, —1) = 44, hence the assertion holds. O

These two lemmas provide a basis to construct the remaining generator a. The
construction of a will now consist of constructing a suitable a on V44 and extend this

*Recall that G4 is the group 42L3(4) : 2; in notation of [8] and [22].
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with elements of Cgr (a) == L(7) to the full module.

4.3.1 Computing a on Vyy

We proceed as follows. Using MAGMA [2], we compute the Jordan form of z by typing
J, T:=JordanForm(z) ;.
The function JordanForm() of MAGMA returns two values, the Jordan form J and
a transformation matrix 7 such that J = T2T~!. We give the matrix T' as MAGMA
input in the appendix. Then we have

1
0 0
I, 0 0 -1 0
J = 0 I30 0 |, where Jgy = 0 0 1 .. | € GLgo(3).
0 0 Jso -10

Now, we reduce any matrix M € {X,Y, p} and take the upper left 44 x 44-submatrix
of TMT~! by typing

M44 :=Submatrix (T*M*T -1, 1,1, 44,44);.

We store these matrices in a sequence ) in MAGMA. Using the presentation of
Z5L3(4) : Zy of Chapter 2 (here we set 22 = 1), we can now induce the 44-dimensional
Module for M =<z, X,Y,p > to G :=< z, X, Y, p,a > as follows:

W:=GModule(M, Q) ;3

V:=Induction(W, G);

Using the Meataxe-program as installed in MAGMA, we can reduce V' and obtain a
matrix ayr € GLyy(3) for a, such that < —Iyq, Xar, Yar, par, anr > ZoLs(4) : Zo.

We conjugate these matrices in GLg4(3) on Xyq, Yaq, and pyy. Set a44,0 to be the cor-
responding conjugate of ap;. We need to construct suitable C’GL44(3)(< X4, Yaq, pag >)-
conjugates. This is achieved as follows. Using the representation for Ls(7) : Za,
we see that the points (objects stabilized by a L3(7) : Za) of the Buekenhout ge-
ometry correspond to certain 1-dimensional subspaces. Now lines of the Bueken-
hout geometry (objects stabilized by (Z4 x L2(7)) : Z) have exactly two points.
Let Gy =< z,X,Y,p,Z > and p; the point of the geometry fixed by G;. Since
a € Gy =< a,2,X,Y,Z >~ (Zy x Ly(7)) : Zy, we have that pja is collinear to p;
and a interchanges p; and pia. Hence, as a matrix, a has to fuse the two 1-dimensional
submodules of G; and G{. By construction, the 1-dimensional submodule belonging to
(G is < by > where by is the first standard basis vector of the 154-dimensional module.
We set My := TMT ™! for M € {X,Y,p,Z}, J =TT, Gy =< J, X4, Yy, pt, Z¢ >
and C =< JX;, (X;Y;)?, Zy, Z}* >~ Ly(7). Since C has to centralize ¢ and C' < Gy
we get C' < (GY,)" and the 1-dimensional submodule for G is in Cy;;,(C). Now
Cvy., (C) can easily be computed as the intersection of the eigenspaces Vis4(a, 1) where

3The order in Q must be the same as the generators for H, i.e., z, X, Y and p, where the —I44 is
the corresponding matrix for z
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o € {JXy, (X,Y})?, Zy, Z)*}. This intersection has dimension four and is contained in
Vig = Visa(J, —1). Because [X,a] = 1, we must have X € G, — (GY},)" and the relation
Y = Y implies that ¥; € G}, but ¥; € G{', — (G{',)’. Thereby we hold that the 1-
dimensional submodule for G‘fft is inside Vi54( Xy, —1) N Vi54(Y:, —1). Thus we compute
W = Cy,,, (C) N Viga (X, —1) N Visa(Y:, —1) and hold that W =< ba, bg > where by =

(0,1,2,2,2,1,2,2,2,1,2,0,0,2,1,0,1,0,0,2,1,1,0,1,0,2,2,0,0,...)
and b3 =

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,1,0,1,0,0,
1,0,2,1,0,0,...).

We can now regard by, by and b3 as vectors in a 44-dimensional space and conjugate
Q44,0 in CGL44(3)(< X44,Yaa, paa >) such that bla§470 €< by, bg > using MAGMA. As a
result we get eight suitable candidates a4q ;.

The matrices Xy4, Yaa, paa and agq; are given explicitly in the appendix as well as
the generators of Cgp,,(3)(< Xaa, Yaa, paa >).

Let us return briefly to W. We find by multiplying with 77! that byT~! =

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,1,1,1,0, 1,1,

1,2,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,2,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1, 2,2,
2,2,1,0,0,0,0,2,2,0,1,2,2,1,1,1,1,0,2,0,1,2,0,2,0,0,2,0,0,0,0,0,0,0,0,0,0)

and b3T~ 1—

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0, 1,0,0,0,0,

2,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,1,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0, 1,
0,0,0,1,1,1,0,1,0,0,0,1,2,0,2,0,1,2,2,2,2,0,2,2,1,0,1,0,0,0,0,0,0,0,0,0,0).

So neither by nor bs is contained in the 57-dimensional or 96-dimensional submodule
for G1+. Therefore we get an irreducible module for G =< 2, X, Y, Z, p,a >.

4.3.2 Extending a

We give an algorithm to extend the suitable candidates a44; obtained in the previous
subsection.

4.3.2.1 Description of the algorithm

The algorithm constructs a Jordan basis B, of Vis4 for a and a matrix 7 whose j-th
row is the j-th vector in B,. Then a = T~'7~'J7T, where J is the Jordan form of z
and 7T is the transformation matrix from above, i.e., T2T~' = J. We work with the
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transformed matrices X; := TXT ' Y, := TYT™ Y, p; := TpT~ ', Z; := TZT~! and
J. Furthermore we set C :=< JX;, (X,Y;)?, Z,, Z* >~ Ly(7) which should centralize
a by Lemma 4.3.1. Also we construct a 154 x 154-matrix A; whose upper left 44 x 44-
submatrix is one of the suitable a44;s obtained above and the rest is simply I11p.
Moreover Vy4 is now identified with the subspace of Vis4 generated by the first 44
standard basis vectors.

We now compute the eigenspace Fy := Visq(As, —1) N Vyy and a basis By of Ey. It
turns out that dimFEy = 12. The vectors of By are included as the first 12 vectors in a
sequence B, o which shall become a basis of Vis4(a, —1). We now extend this sequence
in the following way. For a vector b € By and an element k € C we check whether
bk €< Bgo >. If bk ¢< B, 2 >, we store bk as a new element in B, 2. This is repeated
until dim < B, o >= 44.

The same process has to be performed for Ej := Vi54(A4¢, 1) N Vyy with basis By and
a sequence B, 1. It turns out here that | B; |= 8 and we stop if dim < B, >= 30.

01

-1 0 )
boxes. For this we compute F3 := Vi54(X¢, —1) N Vis4(Y:, 1) N Vyy with basis Bs, and
Ey := Vi54(Xy, 1) N Visa(Vs, —1) N Vg with basis By. Since a? = 271(XY)? has to hold
on Vis4 (and holds correspondingly on Vi4), a cannot have eigenvectors in E3 and Ej
(since z inverts all vectors in Vi4). Because [a44;, X44] = 1 and aﬁj‘i = a;ﬁi, we get
E3A; = Visa( Xy, —1) N Visa(Yy, —1) N Vi and EyAy = Visa(Xe, 1) N Visa (Y3, 1) N Vig.
Furthermore as a vector space Vi := E1 ® Es @ Es® E3A; @ By @ By A, and dimE3 =
dimE4 = 6.

We store in a sequence By 3 firstly the vector pairs (b, bA;),b € Bz and secondly the
pairs (b,bA;),b € By. Then we run the same loop as above taking the first, third up to
the 23-th vector in B, 3, thus we check whether for a vector b; of these and some k£ € C
we have bk ¢< B, 3 > and then append b;k and b; Atk to B, 3 until | B, 3 |= 80.

The last part of the algorithm constructs B, as a sequence of vectors in V354 simply
by appending the vectors in B, 2, Bg1 and By 3 (in this order) to B,. Then the i-th
vector in By is put as the i-th row of a matrix 7 and we hold a := T~'7~1J7T such
that < a,z,X,Y,p >~ Z4L3(4) : Zy and [a, Z] = 1.

The next step is to construct a partial basis B, 3 corresponding to the

Remark. Since this algorithm does not make use of any algorithm in MAGMA
more profound than matrix multiplication (one could even store the elements of C as
a set of matrices), the extension process of as4; can be seen as a computer free process
in the author’s opinion.

4.3.2.2 The algorithm

We give the algorithm in MAGMA statements. For M € {X,Y, p}, Mt is the matrix M,
from above, a44i is one of the suitable a4 ;’s.
C:=sub<GL(154,3) | J*Xt, (Xt*Yt) "2,Zt, Zt"Yt>;
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V:=VectorSpace(GF(3), 154);
B:=Basis(V);
B44:=[B|];
for k in [1..44] do

Append (“B44, B[k]);
end for;
V44 :=sub<V|B44>;
M154:=MatrixAlgebra(GF(3), 154);
At:=M1541!1;
InsertBlock("At, ad44i, 1,1);
Ba:=[V|];

95

This part constructs C, V, the natural basis for V', V4, the matrix A; and initializes

the sequence B, which shall become the Jordan basis corresponding to a.

E2:=Eigenspace(At, 2) meet V44;
B2:=Basis(E2);
Ba2:=[V]];
for k in B2 do
Append (“Ba2, k);
end for;
for j in [1..12] do
if # Ba2 ne 44 then
for k in C do
if Ba2[jl*k notin sub<V|Ba2> then
Append (“Ba2, Ba2[jl*k);
end if;
end for;
else break;
end if;
end for;

This part creates the basis Bg 2 of Visa(a, —1).
El:=Eigenspace(At, 1) meet V44;
Bl:=Basis(E1l);

Bal:=[V]];
for k in Bl do
Append(“Bal, k);
end for;
for j in [1..8] do
if # Bal ne 30 then
for k in C do
if Bal[jl*k notin sub<V|Bal> then
Append (“Bal, Ball[jlx*k);
end if;
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end for;
else break;
end if;
end for;

This part creates the basis By 1 of Visa(a,1).
E3:=Eigenspace(Xt, 2) meet Eigenspace(Yt, 1) meet V44;
B3:=Basis(E3);

Ba3:=[VI|];
for k in B3 do

Append (“Ba3, k);

Append (“Ba3, kx*At);
end for;
E4:=Eigenspace(Xt, 1) meet Eigenspace(Yt, 2) meet V44;
B4:=Basis(E4);
for k in B4 do

Append (“Ba3, k);

Append (“Ba3, k*At);
end for;
for j in [0..11] do

if # Ba3 ne 80 then

for k in C do
if Ba3[2*j+1]*k notin sub<V|Ba3> then
Append (“Ba3, Ba3[2*j+1]x*k);
Append ("Ba3, Ba3[2*xj+2]*k);
end if;
end for;

else break;

end if;
end for;

This part creates the basis B, 3 consisting of the vector pairs which belong to the

< _2 é -boxes.
for k in Ba2 do

Append (“Ba, k);
end for;
for k in Bal do
Append(“Ba, k);
end for;
for k in Ba3 do
Append(“Ba, k);
end for;
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tau:=M154!0;
for k in [1..154] do
taulk] :=Balk];

end for;
a:=T"-1*xtau”-1*J*xtaux*T;
a:=G'a;

This final part constructs the Jordan basis B,, the matrix 7 and the matrix a which
is given as a MAGMA input in the appendix. The construction of the matrix a finishes
the proof of the following theorem:

Theorem 4.3.3 Let A be the amalgam of the Buekenhout geometry for O'N. Then
every completion G of A has an irreducible 154-dimensional GF(3)-module.



