
Chapter 5

Construction of the
Ivanov-Shpectorov Geometry out
of the Buekenhout Geometry

In this chapter we show that a completion of the amalgam related to the Buekenhout
geometry is also a completion of the amalgam of the Ivanov-Shpectorov geometry. This
is done without using the fact that O′N is a completion of both amalgams.

We fix the following notation. G :=< a, z, ρ, X, Y, Z > and G4 :=< a, z, ρ, X, Y >�
Z4L3(4) : 21. Using the generators for G4 as given in Chapter 2, we have seen that
E1 :=< f1, f2, f3, f5, z >� Z4 ∗ Q8 ∗ Q8, also P̄1 :=< E1, a, ρ1, f4 >=< E1, ã, ρn, τ >�
(Z4 ∗Q8 ∗Q8) : A5 with E1 = O2(P̄1). Moreover, if P̄2 := P̄1

X , then < P̄1, P̄2 >= G′
4 �

Z4L3(4). Thus O2(P̄1 ∩ P̄2) ∈ Syl2(G′
4) and S :=< O2(P̄1 ∩ P̄2), X >∈ Syl2(G4). Using

the relations of Chapter 2, we get that O2(P̄1 ∩ P̄2) =< f1, f2, f3, f4, f5, z, a > since
X = βf3f5 , and therefore S =< f1, f2, f3, f4, f5, z, a, X >. Furthermore the relation
f4 = zXY f2f1z2 implies Y ∈ S.

5.1 G has a subgroup L � Z
3
4L3(2)

The aim of this section is to establish the following lemma:

Lemma 5.1.1 Let G be the completion of the amalgam A related to the Buekenhout
geometry for O′N . Then G has a subgroup L � Z

3
4L3(2).

Again, note that this lemma will be proved without using the group O′N . We start to
prove:

Lemma 5.1.2 Set b := f4f−1
5 . Then F :=< a, b, z >� Z

3
4 and F ; S.

Proof. Since f4, f5 ∈ G′
4, we get [z, b] = 1. Using the relations of Chapter 2, we obtain

[a, b] = [a, f5]f1f3z−1. By [f2, f5] = 1, we hold [a, f5] = [f2f5a, f5] = f1f3z thus F is
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abelian and f3 ∈ F . Moreover o(b) = 4. The fact f3 �∈< z, a > implies F � Z
3
4 since

b2 = f−1
4 f5f4f−1

5 = [f4, f−1
5 ] = [f4, f5] = zf3 (f2

5 = z2). We need to prove that F is
normal in S. Clearly, we have S =< E1, X > and f1 ∈ F (since a2 = z−1f1). Using the
relations as given in Chapter 2, we see that aX = a−1, af2 = af3 and af5 = af1f3z since
f3 = [a, f2] and [a, f5] = f1f3z. Using [f2, f4] = f−1

1 , f f2
1 = f f5

1 = f−1
1 and [f2, f5] = 1,

we compute [b, f2] = f−1
1 , hence bf2 = bf−1

1 . Now [b, f5] = [f5, f−1
4 ] = [f4, f5] = f3z,

thus bf5 = b−1. By b = f4f−1
5 , we hold bX = f5af4f3f1z−1. Using [f5, a] = zf1f−1

3 ,
[f3, f4] = 1 and [f1, f4] = z2, we get bX = af5f4z2 = ab−1z2, proving the lemma. ✷

Lemma 5.1.3 Set P1 :=< S, ρn > and U :=< F, f2, f4 >. Then P1 � Z
3
4S4, F ; P1

and U = O2(P1).

Proof. Using our relations, we hold aρn = a−1b−1z and bρn = az2. Since [ρn, z] = 1,
we have F ; P1.

We show | U |= 28 and U ; P1. Using the relations of Chapter 2, we get [f2, f4] =
f−1
1 ∈ F and (f2f4)2 = [f2, f4]. In particular we hold o(f2f4) = 8. Furthermore
(f2f4)f2 = f4f2 = f−1

4 f−1
2 , hence < f2, f4 >� Q16. Since F is abelian and of exponent

four, |< f2, f4 > ∩F |= 4 and | U |= 28. In particular we have F ; U and U/F is
elementary abelian of order four.

We show U ; P1. Our relations prove the following: fρn
2 = f5 = b−1f4, fρn

4 =
b−1azf4f2. This shows that < f2, f4, ρn > F/F � A4. Moreover Y ∈ S and ρnρYn =
z2a−1b and the lemma is proved. ✷

Lemma 5.1.4 Set g := (ZX)2, x := (b2)g
−1

, P2 :=< S, x > and W :=< F, X, Y >.
Then (z2)x = z2a2, (a2z2)x = z2, P2 � Z

3
4S4, F ; P2 and W = O2(P2).

Proof. The action of x on < z2, a2 > is verified using the matrices of the previous
chapter. Since o(XY ) = 8, we have < X, Y >� D16. Moreover f1 = (XY )2 and as
above we hold < X, Y > ∩F =< f1 >, so | W |= 28 and W/F is again elementary
abelian of order four.

Using the relations of Chapter 2 and the matrices, we get Xx = Xb2a−1, Y x =
XY a2b−1, zx = zb2a−1, bx = z2ab and, by construction, [a, x] = 1. Thus we have
W ; P2.

We get o(xf2) = 12. Set y := (xf2)4 �∈ S. Then one verifies yyx = z2a2 ∈ F
(x �∈ W ), proving the lemma. ✷

Corollary 5.1.5 We have P1 ∩ P2 = S, S � Z
3
4D8. Moreover U and W are the

preimages of the elementary abelian groups of order four in S/F .

✷

Lemma 5.1.6 L :=< P1, P2 >� Z
3
4L3(2).

Proof. By the previous lemmas it remains to show that the Weyl relation holds in
L. Clearly, Y ρn �∈ P2, x �∈ P1 and we verify, using the matrices, that o(xY ρn) = 12,
(xY ρn)3 = za−1b−1. ✷



CHAPTER 5. From Buekenhout to Ivanov-Shpectorov 60

5.2 Construction of the maximal parabolic groups of the
Ivanov-Shpectorov geometry

In this section we construct the maximal parabolic subgroups Ḡ1 � J1, Ḡ2 � M11

and Ḡ5 � (Z4 ∗ Q8 ∗ Q8) : A5. The group L constructed above contains a subgroup
N � Z

3
2 : Z7 : Z3. We construct a group H � Z2×A5 using P̄1 such that < N, H >� J1.

By the previous section, Ω1(F ) ≤ O2(P̄1)∩O2(P̄2). Therefore Ω1(F ) is not contained
in any subgroup of P̄i of shape Z2 ×A5. Set α := ρX1 then α ∈ P̄2 − P̄1 and Ḡ5 := P̄1

α.
Then Ω1(F ) ∩ O2(Ḡ5) =< z2 >.

Lemma 5.2.1 Set i := (f2f5)X . Moreover set A := ã, B := z2iρn and An := z2iρ1 .
Then U :=< A, An, B >� Z2 × A5, U ′ =< z2A, z2An, z2B > and U ≤ P̄1.

Proof. Obviously, we have U ≤ P̄1. Since [f2, f5] = 1, we have i2 = 1. Using
the relations obtained in Chapter 2, we compute i = af2f3f5 �∈ E1. Furthermore
A2 = (af2f5)2 = z2f2f3f5f3f2f5 = (f2f5)2 = 1 and A2

n = 1. Using the matrices, we get
[A, B] = 1, o(AAn) = 5, o(BAn) = 3 and o(z2AAnB) = 5, hence U � Z2 × A5 as in
Chapter 3. ✷

Lemma 5.2.2 < z2, A, B >α= Ω1(F ).

Proof. Using the matrices, we verify the following identities: Aα = b2 and Bα = a2b2.
Since [z, α] = 1, the assertion follows. ✷

We set Ā := Aα, B̄ := Bα, Ān := Aα
n, Ḡ15 := Uα.

Lemma 5.2.3 Let y := (xf2)4. Then N1 :=< Ω1(F ), ρn, y >� Z
3
2 : (Z7 : Z3).

Proof. As in the proof of Lemma 5.1.4, we have o(y) = 3. Then the following holds:
s := ρny is of order seven, [ρn, y] = s−1 and yρn = s2, proving the lemma. ✷

We identify Ā with (12)(34) and B̄ with (13)(24) in A5. Then we can identify Ān

with (15)(24). Set d := B̄Ān, then we identify d with (135). With this identification,
we have d̄ := d(ĀĀn)B̄

= (234). Therefore K :=< Ā, B̄, d̄ >� Z2 ×A4. Since ρn, d̄ ∈ P1,
we have ρn ∼P1 d̄. Set δ := Xf2ab−1. Then we verify ρδn = d̄, hence we set N := N δ

1 .
This implies Ḡ15 ∩ N = K. We prove the following lemma:

Lemma 5.2.4 Ḡ1 :=< N, Ḡ15 >� J1.

Proof. We show Ḡ1 � J1 using the generators and relations of the Ivanov geometry
as given in Chapter 3. Set s̄ := sα. Then we have (z2)s̄ = z2ĀB̄, (z2)s̄

−1
= z2B̄ ∈ Ḡ15

′

and B̄ s̄−1
= z2Ā. Moreover we find o(z2ĀB̄Ān) = 5. We set Ã := z2ĀB̄, B̃ := B̄ and

Ãn := Ān. Then Ḡ15 =< Ã, B̃, Ãn > and (Ã, B̃, Ãn) satisfies all the required relations.



CHAPTER 5. From Buekenhout to Ivanov-Shpectorov 61

We set t̄ := B̃Ãn. Since (z2)s̄
−1

= z2B̃, z2 inverts t̄s̄ and t̄Ãs̄. Using the matrices, we
find o([Ãn, t̄s̄]) = 5. Thus we set t̃ := t̄Ãs̄ and compute [Ãn, t̃] = 1. Moreover [Ã, t̃] = 1
by construction, o(B̃t̃) = 5 and z2 = B̃t̃[B̃, t̃]2 finishing the proof. ✷.

Let P be a maximal parabolic subgroup of L3(4), j ∈ P − O2(P ) an involution.
Then CP (j) � Z

4
2 and CP (j) ∩ O2(P ) � Z

2
2. In the extension Z4L3(4) the elements j

and ij are conjugate, where i denotes the central involution. Thus the centralizer of j
in Z4P is of order 32. This group has the structure Z2 × (Z4 ∗ D8).

We compute C := CḠ5
(Ã). Clearly, z ∈ C, Ω1(F ) ≤ C and < z,Ω1(F ) >� Z4×Z

2
2.

Furthermore we find [Ã, fα
3 ] = 1, thus C =< z,Ω1(F ), fα

3 > and D8 �< B̃, fα
3 > ;C.

In order to find the remaining generator ṽ to construct Ḡ2 =< Ãn, B̃, t̃, ṽ >� M11

(generators as in Chapter 3), we need to compute C<B̃,fα
3 >(t̃) since the relations [Ã, ṽ] =

[t̃, ṽ] = 1 have to hold. Moreover < B̃, fα
3 >=< B̃, ṽ > must be fulfilled.

Lemma 5.2.5 Set ṽ := B̃fα
3 . Then Ḡ2 :=< Ãn, B̃, t̃, ṽ >� M11.

Proof. The involutions in < B̃, fα
3 > are the following: z2 (the central involution),

B̃, B̃fα
3 , B̃fα

3 and B̃fα
3 fα

3 . Using the matrices, we get [t̃, x] = 1 only for x = B̃fα
3 .

Therefore ṽ ∈ {B̃fα
3 , ÃB̃fα

3 }. Then we compute o(ÃnÃB̃fα
3 ) = 6 and o(ÃnB̃fα

3 ) = 3.
With respect to the relations as given in Chapter 3, we set ṽ := B̃fα

3 and the lemma is
proved. ✷

Corollary 5.2.6 The groups Ḡ1, Ḡ2 and Ḡ5 are the end-parabolic groups of the Ivanov-
Shpectorov geometry.

✷

Remark. The amalgam (G4, L, Ḡ1) has been used by Lempken to construct O′N
[20].


