Chapter 5

Construction of the Ivanov-Shpectorov Geometry out of the Buekenhout Geometry

In this chapter we show that a completion of the amalgam related to the Buekenhout geometry is also a completion of the amalgam of the Ivanov-Shpectorov geometry. This is done without using the fact that O'N is a completion of both amalgams.

We fix the following notation. $G := \langle a, z, \rho, X, Y, Z \rangle$ and $G_4 := \langle a, z, \rho, X, Y \rangle \simeq \mathbb{Z}_4 L_3(4) : 2_1$. Using the generators for G_4 as given in Chapter 2, we have seen that $E_1 := \langle f_1, f_2, f_3, f_5, z \rangle \simeq \mathbb{Z}_4 * Q_8 * Q_8$, also $\bar{P}_1 := \langle E_1, a, \rho_1, f_4 \rangle = \langle E_1, \tilde{a}, \rho_n, \tau \rangle \simeq (\mathbb{Z}_4 * Q_8 * Q_8) : A_5$ with $E_1 = O_2(\bar{P}_1)$. Moreover, if $\bar{P}_2 := \bar{P}_1^X$, then $\langle \bar{P}_1, \bar{P}_2 \rangle = G'_4 \simeq \mathbb{Z}_4 L_3(4)$. Thus $O_2(\bar{P}_1 \cap \bar{P}_2) \in Syl_2(G'_4)$ and $S := \langle O_2(\bar{P}_1 \cap \bar{P}_2), X \rangle \in Syl_2(G_4)$. Using the relations of Chapter 2, we get that $O_2(\bar{P}_1 \cap \bar{P}_2) = \langle f_1, f_2, f_3, f_4, f_5, z, a \rangle$ since $X = \beta^{f_3 f_5}$, and therefore $S = \langle f_1, f_2, f_3, f_4, f_5, z, a, X \rangle$. Furthermore the relation $f_4 = zXYf_2f_1z^2$ implies $Y \in S$.

5.1 G has a subgroup $L \simeq \mathbb{Z}_4^3 L_3(2)$

The aim of this section is to establish the following lemma:

Lemma 5.1.1 Let G be the completion of the amalgam \mathcal{A} related to the Buekenhout geometry for O'N. Then G has a subgroup $L \simeq \mathbb{Z}_4^3 L_3(2)$.

Again, note that this lemma will be proved without using the group O'N. We start to prove:

Lemma 5.1.2 Set $b := f_4 f_5^{-1}$. Then $F := \langle a, b, z \rangle \simeq \mathbb{Z}_4^3$ and $F \triangleleft S$.

Proof. Since $f_4, f_5 \in G'_4$, we get [z, b] = 1. Using the relations of Chapter 2, we obtain $[a, b] = [a, f_5]f_1f_3z^{-1}$. By $[f_2, f_5] = 1$, we hold $[a, f_5] = [f_2f_5a, f_5] = f_1f_3z$ thus F is

abelian and $f_3 \in F$. Moreover o(b) = 4. The fact $f_3 \notin \langle z, a \rangle$ implies $F \simeq \mathbb{Z}_4^3$ since $b^2 = f_4^{-1} f_5 f_4 f_5^{-1} = [f_4, f_5^{-1}] = [f_4, f_5] = z f_3$ $(f_5^2 = z^2)$. We need to prove that F is normal in S. Clearly, we have $S = \langle E_1, X \rangle$ and $f_1 \in F$ (since $a^2 = z^{-1} f_1$). Using the relations as given in Chapter 2, we see that $a^X = a^{-1}, a^{f_2} = a f_3$ and $a^{f_5} = a f_1 f_3 z$ since $f_3 = [a, f_2]$ and $[a, f_5] = f_1 f_3 z$. Using $[f_2, f_4] = f_1^{-1}, f_1^{f_2} = f_1^{f_5} = f_1^{-1}$ and $[f_2, f_5] = 1$, we compute $[b, f_2] = f_1^{-1}$, hence $b^{f_2} = b f_1^{-1}$. Now $[b, f_5] = [f_5, f_4^{-1}] = [f_4, f_5] = f_3 z$, thus $b^{f_5} = b^{-1}$. By $b = f_4 f_5^{-1}$, we hold $b^X = f_5 a f_4 f_3 f_1 z^{-1}$. Using $[f_5, a] = z f_1 f_3^{-1}$, $[f_3, f_4] = 1$ and $[f_1, f_4] = z^2$, we get $b^X = a f_5 f_4 z^2 = a b^{-1} z^2$, proving the lemma.

Lemma 5.1.3 Set $P_1 := \langle S, \rho_n \rangle$ and $U := \langle F, f_2, f_4 \rangle$. Then $P_1 \simeq \mathbb{Z}_4^3 S_4$, $F \triangleleft P_1$ and $U = O_2(P_1)$.

Proof. Using our relations, we hold $a^{\rho_n} = a^{-1}b^{-1}z$ and $b^{\rho_n} = az^2$. Since $[\rho_n, z] = 1$, we have $F \triangleleft P_1$.

We show $|U| = 2^8$ and $U \triangleleft P_1$. Using the relations of Chapter 2, we get $[f_2, f_4] = f_1^{-1} \in F$ and $(f_2f_4)^2 = [f_2, f_4]$. In particular we hold $o(f_2f_4) = 8$. Furthermore $(f_2f_4)^{f_2} = f_4f_2 = f_4^{-1}f_2^{-1}$, hence $\langle f_2, f_4 \rangle \simeq Q_{16}$. Since F is abelian and of exponent four, $|\langle f_2, f_4 \rangle \cap F| = 4$ and $|U| = 2^8$. In particular we have $F \triangleleft U$ and U/F is elementary abelian of order four.

We show $U \triangleleft P_1$. Our relations prove the following: $f_2^{\rho_n} = f_5 = b^{-1}f_4$, $f_4^{\rho_n} = b^{-1}azf_4f_2$. This shows that $\langle f_2, f_4, \rho_n \rangle F/F \simeq A_4$. Moreover $Y \in S$ and $\rho_n \rho_n^Y = z^2 a^{-1}b$ and the lemma is proved.

Lemma 5.1.4 Set $g := (ZX)^2$, $x := (b^2)^{g^{-1}}$, $P_2 := \langle S, x \rangle$ and $W := \langle F, X, Y \rangle$. Then $(z^2)^x = z^2 a^2$, $(a^2 z^2)^x = z^2$, $P_2 \simeq \mathbb{Z}_4^3 S_4$, $F \triangleleft P_2$ and $W = O_2(P_2)$.

Proof. The action of x on $\langle z^2, a^2 \rangle$ is verified using the matrices of the previous chapter. Since o(XY) = 8, we have $\langle X, Y \rangle \simeq D_{16}$. Moreover $f_1 = (XY)^2$ and as above we hold $\langle X, Y \rangle \cap F = \langle f_1 \rangle$, so $|W| = 2^8$ and W/F is again elementary abelian of order four.

Using the relations of Chapter 2 and the matrices, we get $X^x = Xb^2a^{-1}$, $Y^x = XYa^2b^{-1}$, $z^x = zb^2a^{-1}$, $b^x = z^2ab$ and, by construction, [a, x] = 1. Thus we have $W \triangleleft P_2$.

We get $o(xf_2) = 12$. Set $y := (xf_2)^4 \notin S$. Then one verifies $yy^x = z^2a^2 \in F$ $(x \notin W)$, proving the lemma.

Corollary 5.1.5 We have $P_1 \cap P_2 = S$, $S \simeq \mathbb{Z}_4^3 D_8$. Moreover U and W are the preimages of the elementary abelian groups of order four in S/F.

Lemma 5.1.6 $L := \langle P_1, P_2 \rangle \simeq \mathbb{Z}_4^3 L_3(2).$

Proof. By the previous lemmas it remains to show that the Weyl relation holds in L. Clearly, $Y^{\rho_n} \notin P_2$, $x \notin P_1$ and we verify, using the matrices, that $o(xY^{\rho_n}) = 12$, $(xY^{\rho_n})^3 = za^{-1}b^{-1}$.

5.2 Construction of the maximal parabolic groups of the Ivanov-Shpectorov geometry

In this section we construct the maximal parabolic subgroups $\bar{G}_1 \simeq J_1$, $\bar{G}_2 \simeq M_{11}$ and $\bar{G}_5 \simeq (\mathbb{Z}_4 * Q_8 * Q_8) : A_5$. The group *L* constructed above contains a subgroup $N \simeq \mathbb{Z}_2^3 : \mathbb{Z}_7 : \mathbb{Z}_3$. We construct a group $H \simeq \mathbb{Z}_2 \times A_5$ using \bar{P}_1 such that $\langle N, H \rangle \simeq J_1$.

By the previous section, $\Omega_1(F) \leq O_2(\bar{P}_1) \cap O_2(\bar{P}_2)$. Therefore $\Omega_1(F)$ is not contained in any subgroup of \bar{P}_i of shape $\mathbb{Z}_2 \times A_5$. Set $\alpha := \rho_1^X$ then $\alpha \in \bar{P}_2 - \bar{P}_1$ and $\bar{G}_5 := \bar{P}_1^{\alpha}$. Then $\Omega_1(F) \cap O_2(\bar{G}_5) = \langle z^2 \rangle$.

Lemma 5.2.1 Set $i := (f_2 f_5)^X$. Moreover set $A := \tilde{a}$, $B := z^2 i^{\rho_n}$ and $A_n := z^2 i^{\rho_1}$. Then $U := \langle A, A_n, B \rangle \simeq \mathbb{Z}_2 \times A_5$, $U' = \langle z^2 A, z^2 A_n, z^2 B \rangle$ and $U \leq \overline{P_1}$.

Proof. Obviously, we have $U \leq \overline{P_1}$. Since $[f_2, f_5] = 1$, we have $i^2 = 1$. Using the relations obtained in Chapter 2, we compute $i = af_2f_3f_5 \notin E_1$. Furthermore $A^2 = (af_2f_5)^2 = z^2f_2f_3f_5f_3f_2f_5 = (f_2f_5)^2 = 1$ and $A_n^2 = 1$. Using the matrices, we get [A, B] = 1, $o(AA_n) = 5$, $o(BA_n) = 3$ and $o(z^2AA_nB) = 5$, hence $U \simeq \mathbb{Z}_2 \times A_5$ as in Chapter 3.

Lemma 5.2.2 $< z^2, A, B >^{\alpha} = \Omega_1(F).$

Proof. Using the matrices, we verify the following identities: $A^{\alpha} = b^2$ and $B^{\alpha} = a^2 b^2$. Since $[z, \alpha] = 1$, the assertion follows.

We set $\overline{A} := A^{\alpha}$, $\overline{B} := B^{\alpha}$, $\overline{A_n} := A_n^{\alpha}$, $\overline{G_{15}} := U^{\alpha}$.

Lemma 5.2.3 Let $y := (xf_2)^4$. Then $N_1 := < \Omega_1(F), \rho_n, y > \simeq \mathbb{Z}_2^3 : (\mathbb{Z}_7 : \mathbb{Z}_3).$

Proof. As in the proof of Lemma 5.1.4, we have o(y) = 3. Then the following holds: $s := \rho_n y$ is of order seven, $[\rho_n, y] = s^{-1}$ and $y\rho_n = s^2$, proving the lemma.

We identify \overline{A} with (12)(34) and \overline{B} with (13)(24) in A_5 . Then we can identify \overline{A}_n with (15)(24). Set $d := \overline{B}\overline{A}_n$, then we identify d with (135). With this identification, we have $\overline{d} := d^{(\overline{A}\overline{A}_n)\overline{B}} = (234)$. Therefore $K := \langle \overline{A}, \overline{B}, \overline{d} \rangle \simeq \mathbb{Z}_2 \times A_4$. Since $\rho_n, \overline{d} \in P_1$, we have $\rho_n \sim_{P_1} \overline{d}$. Set $\delta := Xf_2ab^{-1}$. Then we verify $\rho_n^{\delta} = \overline{d}$, hence we set $N := N_1^{\delta}$. This implies $\overline{G}_{15} \cap N = K$. We prove the following lemma:

Lemma 5.2.4 $\bar{G}_1 := < N, \bar{G}_{15} > \simeq J_1.$

Proof. We show $\bar{G}_1 \simeq J_1$ using the generators and relations of the Ivanov geometry as given in Chapter 3. Set $\bar{s} := s^{\alpha}$. Then we have $(z^2)^{\bar{s}} = z^2 \bar{A} \bar{B}, (z^2)^{\bar{s}^{-1}} = z^2 \bar{B} \in \bar{G}_{15}'$ and $\bar{B}^{\bar{s}^{-1}} = z^2 \bar{A}$. Moreover we find $o(z^2 \bar{A} \bar{B} \bar{A}_n) = 5$. We set $\tilde{A} := z^2 \bar{A} \bar{B}, \tilde{B} := \bar{B}$ and $\tilde{A}_n := \bar{A}_n$. Then $\bar{G}_{15} = \langle \tilde{A}, \tilde{B}, \tilde{A}_n \rangle$ and $(\tilde{A}, \tilde{B}, \tilde{A}_n)$ satisfies all the required relations. We set $\bar{t} := \tilde{B}\tilde{A}_n$. Since $(z^2)^{\bar{s}^{-1}} = z^2\tilde{B}$, z^2 inverts $\bar{t}^{\bar{s}}$ and $\bar{t}^{\tilde{A}\bar{s}}$. Using the matrices, we find $o([\tilde{A}_n, \bar{t}^{\bar{s}}]) = 5$. Thus we set $\tilde{t} := \bar{t}^{\tilde{A}\bar{s}}$ and compute $[\tilde{A}_n, \tilde{t}] = 1$. Moreover $[\tilde{A}, \tilde{t}] = 1$ by construction, $o(\tilde{B}\tilde{t}) = 5$ and $z^2 = \tilde{B}\tilde{t}[\tilde{B}, \tilde{t}]^2$ finishing the proof. \Box

Let P be a maximal parabolic subgroup of $L_3(4)$, $j \in P - O_2(P)$ an involution. Then $C_P(j) \simeq \mathbb{Z}_2^4$ and $C_P(j) \cap O_2(P) \simeq \mathbb{Z}_2^2$. In the extension $\mathbb{Z}_4L_3(4)$ the elements j and ij are conjugate, where i denotes the central involution. Thus the centralizer of j in \mathbb{Z}_4P is of order 32. This group has the structure $\mathbb{Z}_2 \times (\mathbb{Z}_4 * D_8)$.

We compute $C := C_{\bar{G}_5}(\tilde{A})$. Clearly, $z \in C$, $\Omega_1(F) \leq C$ and $\langle z, \Omega_1(F) \rangle \simeq \mathbb{Z}_4 \times \mathbb{Z}_2^2$. Furthermore we find $[\tilde{A}, f_3^{\alpha}] = 1$, thus $C = \langle z, \Omega_1(F), f_3^{\alpha} \rangle$ and $D_8 \simeq \langle \tilde{B}, f_3^{\alpha} \rangle \triangleleft C$.

In order to find the remaining generator \tilde{v} to construct $\bar{G}_2 = \langle \tilde{A}_n, \tilde{B}, \tilde{t}, \tilde{v} \rangle \simeq M_{11}$ (generators as in Chapter 3), we need to compute $C_{\langle \tilde{B}, f_3^{\alpha} \rangle}(\tilde{t})$ since the relations $[\tilde{A}, \tilde{v}] = [\tilde{t}, \tilde{v}] = 1$ have to hold. Moreover $\langle \tilde{B}, f_3^{\alpha} \rangle = \langle \tilde{B}, \tilde{v} \rangle$ must be fulfilled.

Lemma 5.2.5 Set $\tilde{v} := \tilde{B}f_3^{\alpha}$. Then $\bar{G}_2 := < \tilde{A}_n, \tilde{B}, \tilde{t}, \tilde{v} > \simeq M_{11}$.

Proof. The involutions in $\langle \tilde{B}, f_3^{\alpha} \rangle$ are the following: z^2 (the central involution), $\tilde{B}, \tilde{B}_3^{f_3^{\alpha}}, \tilde{B}f_3^{\alpha}$ and $\tilde{B}_3^{f_3^{\alpha}}f_3^{\alpha}$. Using the matrices, we get $[\tilde{t}, x] = 1$ only for $x = \tilde{B}f_3^{\alpha}$. Therefore $\tilde{v} \in \{\tilde{B}f_3^{\alpha}, \tilde{A}\tilde{B}f_3^{\alpha}\}$. Then we compute $o(\tilde{A}_n \tilde{A}\tilde{B}f_3^{\alpha}) = 6$ and $o(\tilde{A}_n \tilde{B}f_3^{\alpha}) = 3$. With respect to the relations as given in Chapter 3, we set $\tilde{v} := \tilde{B}f_3^{\alpha}$ and the lemma is proved.

Corollary 5.2.6 The groups \bar{G}_1 , \bar{G}_2 and \bar{G}_5 are the end-parabolic groups of the Ivanov-Shpectorov geometry.

Remark. The amalgam (G_4, L, \overline{G}_1) has been used by Lempken to construct O'N [20].