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INTRODUCTION

“The Navier-Stokes equation occupy a central position in the study of nonlinear partial differ-
ential equations, dynamical systems, and modern scientific computation, as well as classical fluid
dynamics. Because of the complexity and variety of fluid dynamical phenomena, and the simplicity
and exactitude of the governing equations, a very special depth and beauty is expected in the math-
ematical theory. Thus, it is a source of pleasure and fascination that many of the most important
questions in the theory remain yet to be answered, and seem certain to stimulate contributions of
depth, originality and influence far into the future.” (J.G. Heywood [15])

The Navier-Stokes equations were formulated by the French physicist C.L.M.H. Navier (1785-
1836) in 1822 and the British mathematician and physicist G.G. Stokes (1819-1903) in 1845. Ex-
istence and uniqueness theorems for the stationary Navier-Stokes equation were first proved by
F. Odquist in 1930 [27] and by J. Leray in 1933-1934 [22], [23]. E. Hopf [17] (1952) was the first
who obtained the equation for the characteristic functional of the statistical solution giving a prob-
ability description of fluid flows. There is much information about statistical hydromechanics with
detailed review of literature in the books written by A.S. Monin and A.M. Jaglom [25] in 1965, 1967.
C. Foias investigated in [10] (1972) the questions of existence and uniqueness of spatial statistical
solutions. A. Bensoussan and R. Temam [2] (1973) gave for the first time a functional analytical
approach for the stochastic Navier-Stokes equations. The research has accelerated during the last
twenty five years.

“Researchers are now undertaking the study of flows with free surfaces, flows past obstacles,
jets through apertures, heat convection, bifurcation, attractors, turbulence, etc., on the basis of
an exact mathematical analysis. At the same time, the advent of high speed computers has made
computational fluid dynamics a subject of the greatest practical importance. Hence, the development
of computational methods has become another focus of the highest priority for the application of
the mathematical theory. It is not surprising, then, that there has been an explosion of activity in
recent years, in the diversity of topics being studied, in the number of researchers who are involved,
and in the number of countries where they are located.” (Preface for “The Navier Stokes Equations
IT”- Proceedings of the Oberwolfach meeting 1991, [16])

After this short history about the deterministic and stochastic equations of Navier-Stokes type,
we give the equation for the stochastic Navier-Stokes equation which describes the behavior of a
viscous velocity field of an incompressible liquid. The equation on the domain of flow G C IR"
(n > 2 a natural number) is given by
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divU =0, U(0,z)="Uy(x), U(t,z)|oc=0,t>0, z€dq,

where U is the velocity field, v is the viscosity, A is the Laplacian, V is the gradient, f is an
external force, p is the pressure, and Uy is the initial condition. Realistic models for flows should
contain a random noise part, because external perturbations and the internal Browninan motion
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influence the velocity field. For this reason equation (0.1) contains a random noise part C(U)
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Here the noise is defined as the distributional derivative of a Wiener process (w(t))te[o - whose

intensity depends on the state U.

This nonlinear differential equation is only for the simplest examples exactly soluble, usually
corresponding to laminar flows. Physical experiments show that turbulence occurs if the outer force
f is sufficiently large. In many important applications, including turbulence, the equation must be
modified, matched or truncated, or otherwise approximated analytically or numerically in order to
obtain any predictions. Sometimes a good approximation can be of equal or greater utility than a
complicated exact result.

In the study of equations of Navier-Stokes type one can consider weak solutions of martingal
type or strong solutions. Throughout this paper we consider strong solutions (“strong” in the sense
of stochastic analysis) of a stochastic equation of Navier-Stokes type (we will call it stochastic
Navier-Stokes equation) and define the equation in the generalized sense as an evolution equation,
assuming that the stochastic processes are defined on a given complete probability space and the
Wiener process is given in advance.

The aim of this dissertation is to prove the existence of the strong solution of the Navier-Stokes
equation by approximating it by means of the Galerkin method, i.e., by a sequence of solutions of
finite dimensional evolution equations. The Galerkin method involves solving nonlinear equations
and often it is difficult to deal with them. For this reason we approximate the solution of the
stochastic Navier-Stokes equation by the solutions of a sequence of linear stochastic evolution
equations. Another interesting aspect of the stochastic Navier-Stokes equation is to study the
behavior of the flow if we act upon the fluid through various external forces. We address the issue
of the existence of an optimal action upon the system in order to minimize a given cost functional
(for example, the turbulence within the flow). We also derive a stochastic minimum principle and
investigate Bellman’s equation for the considered control problem.

Chapter 1 is devoted to the proof of the existence of the strong solution of the Navier-Stokes
equation using the Galerkin method and then to approximate the solution by a linear method.
First we give the assumptions for the considered equation and show how the considered evolution
equation can be transformed into (0.1) in the case of n = 2. We prove the existence of the solution by
the Galerkin method (see Theorem 1.2.2). Important results concerning the theory and numerical
analysis of the deterministic Navier-Stokes equation can be found in the book of R. Temam [32].
The author also presents in this book the Galerkin method for this equation, which is one of the
well-known methods in the theory of partial differential equations that is used to prove existence
properties and to obtain finite dimensional approximations for the solutions of the equations. The
Galerkin method for the stochastic Navier-Stokes equation has been investigated for example from
A. Bensoussan [4], M. Capinski, N. J. Cutland [6], D. Gatarek [7], A. I. Komech, M. I. Vishik
[20], B. Schmalful [30], [29], M. Viot [34]. Most of the above-mentioned papers consider weak
(statistical) solutions. The techniques used in the proofs are the construction of the Galerkin-type
approximations of the solutions and some a priori estimates that allow one to prove compactness
properties of the corresponding probability measures and finally to obtain a solution of the equation
(using Prokhorov’s criterion and Skorokhod’s theorem). Since we consider the strong solution (in
the sense of stochastic analysis) of the Navier-Stokes equation, we do not need to use the techniques
considered in the case of weak solutions. The techniques applied in our paper use in particular the
properties of stopping times and some basic convergence principles from functional analysis. An
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important result is that the Galerkin-type approximations converge in mean square to the solution
of the Navier-Stokes equation (see Theorem 1.2.7). There are also other approximation methods for
this equation involving, for example, the approximation of the Wiener process by smooth processes
(see W. Grecksch, B. Schmalfuf} [13]) or time discretizations (see F. Flandoli, V. M. Tortorelli [8]).
In this chapter we further approximate the solution of the stochastic Navier-Stokes equation by
the solutions of a sequence of linear stochastic evolution equations (see equations (Pn)), which are
easier to study. We also prove the convergence in mean square (see Theorem 1.4.5). Since the
approximation method involves linear evolution equations of a special type, we give in Section 1.3
results concerning this type of equations.

Chapter 2 deals with the optimal control of the stochastic Navier-Stokes equation. We inves-
tigate the behavior of the flow controlled by different external forces, which are feedback controls
and respectively bounded controls. We search for an optimal control that minimize a given cost
functional. Whether or not there exist such optimal controls is a common question in optimal con-
trol theory and often for the answer one uses the Weierstral Theorem and assumes that the set of
admissible controls is compact. To assure the compactness of this set is sometimes not practicable.
Therefore we investigate this problem and prove in Theorem 2.3.4, respectively Theorem 2.4.2, the
existence of optimal controls, respectively e-optimal controls, in the case of feedback controls. In
the case of bounded controls this method can not be applied, because it uses the special linear
and continuous structure of the feedback controls. Using the ideas from A. Bensoussan [3] and
adapting them for the considered Navier-Stokes equation we calculate the Gateaux derivative of
the cost functional (see Theorem 2.6.4) and derive a stochastic minimum principle (for the case of
bounded controls), which gives us a necessary condition for optimality (see Theorem 2.7.2). We
complete the statement of the stochastic minimum principle by giving the equations for the adjoint
processes.

Chapter 3 contains some aspects and results of dynamic programming for the stochastic
Navier-Stokes equation. First we prove that the solution of the considered equation is a Markov
process (see Theorem 3.1.1). This property was proved by B. Schmalfufl [29] for the stochastic
Navier-Stokes equation with additive noise. In Section 3.2 we illustrate the dynamic programming
approach (called also Bellman’s principle) and we give a formal derivation of Bellman’s equation.
Bellman’s principle turns the stochastic control problem into a deterministic control problem about
a nonlinear partial differential equation of second order (see equation (3.11)) involving the infinites-
imal generator. To round off the results of Chapter 2 we give a sufficient condition for an optimal
control (Theorem 3.2.3 and Theorem 3.2.4). This condition requires a suitably behaved solution
of the Bellman equation and an admissible control satisfying a certain equation. In this section
we consider the finite dimensional stochastic Navier-Stokes equation (i.e., the equations obtained
by the Galerkin method). The approach would be very complicate for the infinite dimensional
case, because in this case it is difficult to obtain the infinitesimal generator. M.J. Vishik and A.V.
Fursikov investigated in [35] also the inverse Kolmogorov equations, which give the inifinitsimal
generator of the process being solution of the considered equation, only for the case of n = 2 for
(0.1).

The final part of the dissertation contains an Appendix with useful properties from functional
and stochastic analysis. We included them into the paper for the convenience of the reader and
because we often make use of them.
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The development and implementation of numerical methods for the Navier-Stokes equation
remains an open problem for further research: “...the numerical resolution of the Navier-Stokes
equation will require (as in the past) the simultaneous efforts of mathematicians, numerical analysts
and specialists in computer science. Several significant problems can already be solved numerically,
but much time and effort will be necessary until we master the numerical solution of these equations
for realistic values of the physical parameters. Besides the need for the development of appropiate
algorithms and codes and the improvement of computers in memory size and computation speed,
there is another difficulty of a more mathematical (as well as practical) nature. The solutions of the
Navier-Stokes equation under realistic conditions are so highly oscillatory (chaotic behavior) that
even if we were able to solve them with a great accuracy we would be faced with too much useless
information. One has to find a way, with some kind of averaging, to compute mean values of the
solutions and the corresponding desired parameters.” (R. Temam [33])



