
Technische Universität Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Sven Beuchler, Arnd Meyer

SPC-PM3AdH v1.0

-

Programmer’s Manual

Preprint SFB393/01-08

Acknowledgment. The package SPC-PM has been developed in the
Sonderforschungsbereich 393 of the Technische Universität Chemnitz under
the supervision of A. Meyer and Th. Apel. Other main contributors are G.

Globisch, G. Kunert, D. Lohse, F. Milde, M. Pester, U. Reichel, and M.
Theß.

Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-08 March 2001

Author’s addresses:

Sven Beuchler
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz
Germany

email: sven.beuchler@mathematik.tu-chemnitz.de

Arnd Meyer
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz
Germany

email: arnd.meyer@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/sfb393/

Contents

1 Overview 4
1.1 Introduction . 4
1.2 The boundary value problems 6

2 Data structure 7
2.1 General remarks . 7
2.2 Full data structure . 8

2.2.1 Volumes . 8
2.2.2 Faces . 8
2.2.3 Edges . 9
2.2.4 Coordinates of the nodes 10
2.2.5 Dirichlet/Neumann data 10
2.2.6 Hierarchical list . 11
2.2.7 Material information 11
2.2.8 Geometry data . 11
2.2.9 U . 12

2.3 INCLUDE-Files/COMMON-Blocks 12
2.3.1 adapmesh.inc . 12
2.3.2 bpx.inc . 14
2.3.3 GRAF3D.inc . 14
2.3.4 filename.inc . 14

3 Order of events of an adaptive program 15

4 Mesh refinement 16
4.1 General mesh handling . 16
4.2 Mesh input . 16

4.2.1 The procedure . 16
4.2.2 Parameters of set pointers 16
4.2.3 Parameters of grobnetzread 17
4.2.4 Parameters of grobnetzkorr 17

4.3 Adaptive mesh refinement . 18
4.3.1 General remarks . 18
4.3.2 Cases for subdividing a solid 18
4.3.3 Parameters of netfine 19
4.3.4 Parameters of teiltest 21

1

4.3.5 Parameters of div8solid 21
4.3.6 Short description of further subroutines 22

4.4 Tree structures . 25
4.4.1 SETPOINTER . 26
4.4.2 GROBNETZREAD . 26
4.4.3 GROBNETZKORR . 26
4.4.4 CORRECTNODE . 26
4.4.5 NETFINE . 26

5 Assembly of the equation system 27
5.1 Changes against version v2.x of SPC-PM Po 3D 27

5.1.1 General remarks . 27
5.1.2 Coarse grid matrix . 27

5.2 Short description of the subroutines 27
5.2.1 Subroutine in assem.f 27
5.2.2 Subroutines in element.f 28
5.2.3 Short description of further subroutines 29
5.2.4 Boundary conditions 31

5.3 Tree Structures . 32

6 Solving the linear system using the Preconditioned Conju-
gate Gradient method 33
6.1 The solver . 33
6.2 Control parameters of the solver 33
6.3 Subroutines for the management of the hierarchical list 34
6.4 Subroutines for projecting hanging nodes 37

6.4.1 Projection of hanging nodes on edges 38
6.4.2 Projection of hanging nodes on faces 38
6.4.3 The adjoint projector 40

6.5 Subroutines for applying the preconditioner 41
6.5.1 Jacobi preconditioner 42
6.5.2 Yserentant preconditioner 42
6.5.3 BPX-Preconditioner 44
6.5.4 An example for understanding the preconditioniers . . 50

6.6 Further subroutines . 53
6.6.1 Parameters of stave . 53
6.6.2 Parameters of ppcgm 53
6.6.3 Parameters of prevor 54

2

6.6.4 Parameters of axmebe 55
6.6.5 Subroutines located in value.f 56

6.7 Tree structure . 57
6.7.1 CHGHIER . 57
6.7.2 HIERANF . 57
6.7.3 HANGNOD . 57
6.7.4 KORREDG . 57
6.7.5 STAVE . 57
6.7.6 PPCGM . 57
6.7.7 VALUE . 58
6.7.8 BACKUTOX . 58

7 Error estimation 59
7.1 Error estimator . 59
7.2 Description of efromu . 59
7.3 Description of errorest . 60
7.4 Tree structures . 61

8 Numerical examples 62
8.1 Layer3 . 62
8.2 Torte4d2 . 64
8.3 Ct01 . 64

3

1 Overview

1.1 Introduction

SPC-PM are computer programs to solve the Poisson equation or the Lamé
system of linear elasticity over a three-dimensional domain on a MIMD par-
allel computer.
The historical roots of the program are in several parallel programs for solving
problems over two dimensional domains using domain decomposition tech-
niques. These codes have been developed since about 1988 by A. Meyer, M.
Pester, and other collaborators. On the other hand, Th. Apel, F. Milde, and
U. Reichel [1] developed 1999/2000 an adaptive and parallel program, SPC-
PM3AdT, for the solution of the Poisson equation or the Lamé system using
tetrahedral meshes. Furthermore, A. Meyer developed an adaptive, parallel
program SPC-PM2AD in two dimensions using triangles and quadrilaterals.
The version 1.0 of SPC-PM3AdH documented here is a sequential, adap-
tive program using hexahedral meshes. A parallel version and a version for
higher polynomial degrees (p-version) are planned. For an introduction of
the capabilities of the program, its installation and utilization we refer to
the User’s Manual of version 3.3 of SPC-PM Po 3D [3]. The aim of this new
Programmer’s Manual for version 1.0 is to provide a description of the new
data structures and to introduce new routines. It is written for those who
are interested in a deeper insight into the code, for example for improving
and extending.
The documentation is organized as follows: In the next section we describe
the boundary value problems that can be solved and the finite elements that
are used. Chapter 2 is concerned with the changed data structure. Chapter 3
shows the order of events of an adaptive program: adaptive mesh refinement,
assembly of the stiffness matrix, solving of the linear system of equations
and error estimation, which are described in the following chapters. In a last
chapter, we give some numerical examples.
In this documentation we use slanted style for real existing paths and file-
names, emphasis style for program parameters, sans serif style to charac-
terize buttons and menu items of programs with a graphical interface, and
typewriter style for the names of variables.

4

�
�
�
�

@
@
@
@

@
@
@
@

�
�
�
�

5 6

8 7

1 2

34

�
�
�
�

@
@

@
@

@
@
@
@

�
�

�
�

5 6

8 7

1 2

34

9

10

11

12

13 14

1516

17

18

19

20

�
�
�
�

@
@
@
@

@
@
@
@

�
�
�
�

5 6

8 7

1 2

34

9

10

11

12

13 14

1516

17

18

19

20 21

22

23 24

25

26(27)

Figure 1: Finite elements implemented in the program SPC-PM Po 3D ver-
sion 4.x.

5

1.2 The boundary value problems

We consider the 2nd order elliptic differential equation in the notation

Lu := −∇ · (A(x)∇u) + cu = f in Ω ⊂ R3,

u = u0 on ∂Ω1,

ntA(x)∇u = g on ∂Ω2,

∂u

∂n
= 0 on ∂Ω\∂Ω1\∂Ω2, (1.1)

where A(x) = diag(ai)
3
i=1 or the Lamé problem for u = (u(1), u(2), u(3))t

−µ4u− (λ+ µ)grad divu = f in Ω ⊂ R3,

u(i) = u
(i)
0 on ∂Ω

(i)
1 , i = 1, 2, 3,

t(i) = g(i) on ∂Ω
(i)
2 , i = 1, 2, 3,

t(i) = 0 on ∂Ω\∂Ω
(i)
1 \∂Ω

(i)
2 , i = 1, 2, 3 (1.2)

where t = (t(1), t(2), t(3))t = S[u] · n is the normal stress. The stress tensor
S[u] = (sij)

3
i,j=1 is defined with x = (x(1), x(2), x(3))t by

sij = µ

[
∂u(i)

∂x(j)
+
∂u(j)

∂x(i)

]
+ δijλ∇ · u,

where n is the outward normal, and δij is the Kronecker delta. The domain
Ω must be bounded. In the present version curved boundaries are treated
only by the refinement procedure. The boundary value problem is solved by a
standard finite element method, using either hexahedral elements with linear,
tri-quadratic or serendipity shape functions, see Figure 1. The discretization
of (1.1,1.2) with a basis (φq1, . . . , φ

q
n) ∈ Vq yields to the linear system

Kqu = f. (1.3)

We obtain

uq =
n∑
i=1

uqiφ
q
i (1.4)

as numerical solution of (1.1) or (1.2). The parameter q denotes the level of
refinement.

6

2 Data structure

2.1 General remarks

In FORTRAN77 it is impossible to allocate memory during the run of the
program, but there are several large arrays in our FEM program which are
used only for a certain time. So it is necessary to have a dynamic memory
management. To solve this problem in FORTRAN77 we have a very large
workspace vector (as large as possible) in our program to use parts of it as
arrays in the subroutines. There are several pointer variables which deter-
mine the array index on which data starts. We develop our own memory
management and must take care of calculating these pointers to avoid over-
laps. For an easier handling the SPC-PM package provides now a large set
of functions and routines for the memory management.

Because of the adaptive mesh refinement we use now only the full data
structure (FDS) with its greater variability. The reduced data structure does
not longer exist.

There are a few general variables:

NFG number of degrees per freedom per node,
NEN2D number of nodes per face,
NEIN number of unknowns per solid per d.o.f.,
NE2IN number of unknowns per face per d.o.f..

We describe the arrays in the following general form:

1. name and dimension of the array,

2. general description of the array,

3. structure of a data block of the array,

4. additional information.

For some arrays there are pointers within the data blocks which deter-
mine the position of data. Most of the dimensions of the arrays are also
variables/parameters which are located in COMMON blocks in the source
file adapmesh.inc. It is better to use these variables because of possible
evolution of the data structure.

7

2.2 Full data structure

2.2.1 Volumes

are stored in the array

1. SOLID(MSOL,*): MSOL=MELFAC+MELNOD+MELMAT=9+27+MELMAT.
So, each solid is a ’structure’ of MSOL informations.

2. Each volume is described by its 6 faces.

3. (a) | face 1 | . . . | face 6 | material | mid-node | polynom.degree |
(b) | node 1 | . . . | node 27 |
(c) | element stiffness matrix | element right hand side |

4. The value ’material’ is a pointer in the MATERIAL array. Opposite faces
are face 1 and face 4, face 2 and face 5, face 3 and face 6. The ordering
of the nodes is compatible with the ordering of the faces as given in
Figure 2.

2.2.2 Faces

1. FACE(MFACE,*): MFACE=12

2. Each face is described by its 4 edges.

3. | edge 1 | . . . | edge 4 | son 1 | . . . | son 4 | type | mark | mid-node |
polynomial degree |

4. The value ’type’ contains 4 informations, the geometry, the Dirichlet or
Neumann data and the information about a boundary face, see 2.3.1:

1.Byte pointer to geometry,
2.Byte pointer to Neumann data,
3.Byte pointer to Dirichlet data,
4.Byte marking for boundary faces.

Each face can be subdivided into 4 faces. Thus, we have possibly 4
sons. For son 1 we have the cases

> 0 face is subdivided, number of the first son,
< 0 face is hanging,

0 otherwise.

8

�
�
�
�
�

@
@
@
@
@

@
@
@
@
@

�
�

�
�
�

5 6

8 7

1 2

34

9

10

11

12

13 14

1516

17

18

19

20 21

22

23 24

25

26

(27)

face1

face2

face3 face4

face5

face6

Figure 2: Ordering of the nodes in a given solid.

The value ’mark’ is used for the error estimator:

1 face is marked,
0 face is unmarked.

Opposite edges are edge 1 and edge 3, and edge 2 and edge 4, respec-
tively.

2.2.3 Edges

1. EDGE(MEDGE,*): MEDGE=6

2. Each edge is described by its 2 vertices and the middle node.

3. | middle node | vertex 1 | vertex 2 | son1 | son2 | polynomial degree |

4. The ’values’ son1 and son2 are used for this edge to find its sons being
subdivided. We have the following cases for son1 and son2:

9

son1> 0 edge is subdivided, numbers of the two sons,
else: edge is not subdivided, son2: geometry information,

son1< 0 edge is hanging,
son1= 0 otherwise,

2.2.4 Coordinates of the nodes

1. X(NDIM+NDOF+1,*):NDIM=3

2. Each node is represented by its three Euclidian coordinates.

3. | Xi | Yi | Zi | solution 1 | . . . | solution ndof | index of U |

4. The last entry stores the number j of shape function φq|j| of the nodal
basis associated to this node.

j > 0 node is vertex of one element,
j = 0 no shape function φj in the nodal basis associated with

this node,
j < 0 else.

2.2.5 Dirichlet/Neumann data

1. DIR(1+MDIRNEU*NDOF,*): MDIRNEU=5

NEUM(1+MDIRNEU*NDOF,*): MDIRNEU=5

2. The Dirichlet/Neumann data are associated with input faces of the
coarse mesh readed from the input file. Both have the same data struc-
ture.

3. | urface | type, data for d.o.f. 1 | type, data for d.o.f. 2 | . . . |

4. We store only the boundary condition on the coarse mesh. We have
the following possibilities for data.

type meaning data
0 no boundary condition for this d.o.f. unused
1 constant boundary condition c, rest unused
2 linear boundary condition a1, a2, a3, b

100 special boundary condition unused

In the case of a boundary condition of the type 1: g(x) = c, the constant
value c is stored. In the case of a boundary condition of the type 2:
g(x) = atx+ b the values a ∈ R3 and b ∈ R are given (in this order).

10

2.2.6 Hierarchical list

1. HIER(NHIER-1)

2. The hierarchical list connects all nodes with its father nodes.

3. Information per son:
| son | index for BPX | −i | father 1 | index for BPX | index for BPX
| . . . | father i | index for BPX | index for BPX |

4. The information of sons are stored one behind the other in the hierar-
chical list. The integer i stores the number of fathers. We have 2, 4 or
8 fathers per son. In the case of the BPX preconditioner we have addi-
tional information. For more information, see 6.3. The integer NHIER

describes the length of the hierarchical list. The information ’index for
BPX’ is unused for the Yserentant- and Jacobi- preconditioner.

2.2.7 Material information

1. RMATE(NMAXIN+2,*): NMAXIN=5

2. The material information contains the local behaviour of (1.1) or (1.2).

3. For (1.1)
| number | inf | a1 | a2 | a3 | c | f |
and for (1.2)
| number | inf | E = µ

λ+µ
(3λ+ 2µ) | ν = λ

2(λ+µ)
| f1 | f2 | f3 |

4. The value ’number’ is the material number associated with input vol-
umes of the coarse mesh read from the input file. The value ’inf’ is the
number of valid information of the NMAXIN possible material informa-
tion.

2.2.8 Geometry data

1. GEOMETRY(DIMGEOM,*): DIMGEOM= 9

2. Geometry data is taken from the #FACEGEO section in the mesh file and
provides necessary parameters for all faces types.

3. | kind of face | data 1 | . . . | data 8 |

11

4. At the moment the following values for ’kind of face’ are possible:

1 plane face, defined by a normal vector and a point on
the plane,

2 plane face, defined by a point on the plane and a normal
vector,

11 cylinder surface,
21 sphere surface,
31 cone surface,
41 ellipsoid, hyperboloid surface,
51 torus surface.

For more details see [7]. The required parameters for the geometric
correction are stored in data 1 to data 8.

2.2.9 U

1. U(*)

2. The array U stores the solution. It is required to compute a good start
vector for the CG after adaptive mesh refinement.

3. | solution for node |

4. The index j of (1.4) does not correspond with the node number, see
2.2.4.

2.3 INCLUDE-Files/COMMON-Blocks

There is a number of COMMON-Blocks in our program. Most of them are
located in INCLUDE-Files.

2.3.1 adapmesh.inc

This INCLUDE-File contains a number of variables/parameters which de-
termines dimension of data.

12

• polynomial degrees and nodes per element:

PSO polynomial degree per solid currently 1 or PFA,
PFA polynomial degree per face currently 1 or PED,
PED polynomial degree per edge currently 1 or 2,
NODES IN EL nodes per element currently 8, 20 or 27.

• parameter for array X:

MNODE number of coordinates currently 3.

• parameter for array EDGE:

MEDGE information per edge currently 6.

• parameters for array FACE:

MFACE information per face currently 12,
FRBCODE position of the boundary code currently 9.

• parameters for array SOLID:

MELFAC information for material, faces,
mid-node and polynomial degree

currently 9,

MELNOD information nodes currently 27,
MELMAT element matrix and right hand

side
currently 810,
3780 or 6804,

MSOL information per solid currently
MELFAC+
MELNOD+
MELMAT.

• parameter for arrays DIR and NEUM:

MDIRNEU information for boundary condi-
tion

currently 5.

• parameter for array GEOMETRY:

DIMGEOM information for geometry currently 9.

• parameter for boundary code FRBCODE:

13

GEOBYTE byte for geometry currently 255,
NEUMBYTE byte for Neumann b.c. currently 255*256,
DIRBYTE byte for Dirichlet b.c. currently 255*256*256,
NEUMDIV factor for getting Neumann

b.c.
currently 256,

DIRDIV factor for getting Dirichlet
b.c.

currently 256*256,

RANDBIT factor for boundary code currently 256*256*256.

2.3.2 bpx.inc

This file contains variables which are necessary for solving the linear system
using the BPX-preconditioner [4]. All variables in this COMMON-block:

• /BPX/

NBPX number of unknowns for all levels,
NLEV number of levels,
ZONE number of unknowns per level.

2.3.3 GRAF3D.inc

This file is a copy from further versions.

2.3.4 filename.inc

The file is necessary for reading the mesh files. All variables are in the
COMMON-block FILENAME. For more information, see [6].

14

 Input of the mesh

Assembly of the stiffness
matrix

Solving the linear system
of equations

 Error Estimation

Adaptive mesh refinement

Figure 3: Overview over an adaptive program

3 Order of events of an adaptive program

In this chapter, we describe the main points of an adaptive program. A short
description of the main program test.f is given in Figure 3. The two parts,
mesh input and refinement of the mesh, we describe in chapter 4. For the
mesh input and initialization of the data structure, we call the subroutines
set pointers, grobnetzread, grobnetzkorr, correctnode and hieranf. For the
management of the adaptive refinement, we have the subroutines korredg,
netfine, correctnode and hangnod. The assembly of the stiffness matrix is
written in chapter 5 and done during the call of the subroutine assem. A
detailed discussion of the subroutines handling with the solving of the linear
system we find in chapter 6, for which we call the subroutines chghier, stave,
and ppcgm. The error estimator is described in chapter 7 and called by the
subroutines efromu and errorest.

15

4 Mesh refinement

4.1 General mesh handling

Unlike former versions of SPC-PM Po 3D, program SPC-PM3AdH constructs
the mesh in several steps driven by the solution until the estimated local error
of each volume is below a certain bound. Therefore the mesh generation
consists also of several steps.

• Read in the user mesh data and generate the user mesh,

• generate new nodes on each mid-edge, mid-face and mid-volume,

• adaptive mesh refinement.

4.2 Mesh input

4.2.1 The procedure

The user mesh is read from a standardized file, compare [3]. These files are
located in the subdirectory ./mesh4 (hexahedral meshes). We read the mesh
in two steps. Firstly we read the numbers of nodes, edges, faces and volumes
and estimate the size for each of the arrays X, EDGE, FACE, SOLID, HIER

and for several vectors. We determine the starting pointers for each of these
structures on the workspace vector A. Then we read the mesh.

4.2.2 Parameters of set pointers

The subroutine set pointers determines the start-pointers for all arrays.

SUBROUTINE SET_POINTERS (JX,JEDGE,JFACE,JSOLID,JMAT,JGEO,JDIR,

JNEUM,JHIER,JH,A,MAX)

A I/O workspace vector
JX O start-pointer for the array X

JEDGE O start-pointer for the array EDGE

JFACE O start-pointer for the array FACE

JSOLID O start-pointer for the array SOLID

JMAT O start-pointer for the array RMATE

JGEO O start-pointer for the array GEOMETRY

16

JDIR O start-pointer for the array DIR

JNEUM O start-pointer for the array NEUM

JHIER O start-pointer for the array HIER

JH O start-pointer for the end
MAX maximal workspace in words

4.2.3 Parameters of grobnetzread

The subroutine grobnetzread generates the initial mesh. It reads the user
mesh from a file. Then the routine shifts the arrays X, EDGE, FACE and

SOLID to its positions estimated by set pointers.

SUBROUTINE GROBNETZREAD(NN,X,NF,FACE,NE,EDGE,NVOL,SOLID,NDIR,

NNEU,NMAT,NMATINF,NGEO,GEO,A,LAENGE)

NN O number of nodes
X I/O array of node coordinates X
NF O number of faces
FACE I/O array of faces FACE

NE O number of edges
EDGE I/O array of edges EDGE

NVOL O number of volumes
SOLID I/O array of solids SOLID

NDIR O number of Dirichlet faces
NNEUM O number of Neumann faces
NMAT O number of materials
NMATINF O number of material informations
NGEO O number of geometries
GEO array of geometries GEOMETRY

A I/O workspace vector
LAENGE I length of A

4.2.4 Parameters of grobnetzkorr

The subroutine corrects the initial mesh. It changes in the arrays FACE and
SOLID the ordering of the edges and faces such that opposite edges and faces
on opposite positions, see 2.2.2 and 2.2.1. Furthermore, it generates nodes on

17

the middle of edges, faces and volumes. It initializes the polynomial degree
for each edge, face and volume. Each face gets informations about the kind of
boundary condition. Each edge obtains from its faces the kind of geometry.

SUBROUTINE GROBNETZKORR(NN,X,NF,FACE,NE,EDGE,NVOL,SOLID,NDIR,

DIR,NNEUM,NEUM,NMAT,NMATINF,RMAT)

NN I/O number of nodes
X I/O array of node coordinates X
NF I number of faces
FACE I/O array of faces FACE

NE I number of edges
EDGE I/O array of edges EDGE

NVOL I number of volumes
SOLID I/O array of solids SOLID

NDIR I number of Dirichlet faces
DIR I the Dirichlet data DIR

NNEUM I number of Neumann faces
NEUM I the Dirichlet data NEUM

NMAT I number of materials
NMATINF I number of material informations
RMAT I the materials RMAT

4.3 Adaptive mesh refinement

4.3.1 General remarks

Each volume is refined by subdividing into 8 sub-volumes, see Figure 4. We
have the possibility of hanging nodes. Because of the refinement of solids
into 8 sub-solids, we have only some cases of hanging nodes. We can have
possible hanging nodes on edges and faces. We accept only hanging nodes in
the finest level. For all cases of edge and face hanging nodes see Figure 5.

4.3.2 Cases for subdividing a solid

A solid is subdivided if one of the following cases is satisfied:

• There are non acceptable hanging nodes on an edge of the solid.

18

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 4: Refinement of a solid by subdividing into 8 sub-solids.

• One face or this solid is marked for refinement by the error estimator.

• The number of subdivided edges is greater than K3-1.

• The number of subdivided faces is greater than K4-1.

The first condition is equivalent to the following. It exists an edge which has
already been two times more refined in one solid than in the neighbor.

4.3.3 Parameters of netfine

The subroutine netfine controls the adaptive mesh refinement. It checks for
each solid the conditions of refinement and calls the subroutine div8solid for
subdividing the solid.

SUBROUTINE NETFINE(NN,X,NE,EDGE,NF,FACE,NVOL,SOLID,NHIER,HIER)

19

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
��
�
��
�
��

�
��

�
��

�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

Figure 5: Cases of acceptable hanging nodes (below) and not acceptable
hanging nodes(above).

20

NN I/O number of nodes
X I/O array of node coordinates X
NF I/O number of faces
FACE I/O array of faces FACE

NE I/O number of edges
EDGE I/O array of edges EDGE

NVOL I/O number of volumes
SOLID I/O array of solids SOLID

NHIER I/O length of hierarchical list
HIER I/O array of the hierarchical list HIER

4.3.4 Parameters of teiltest

The INTEGER function teiltest checks for each solid the conditions of re-
finement.

0 solid may not be refined,
> 0 solid has to be refined.

INTEGER FUNCTION TEILTEST(THIS,NN,X,NE,EDGE,NF,FACE)

THIS I solid have to be checked
NN I number of nodes
X I array of node coordinates X

NF I number of faces
FACE I array of faces FACE

NE I number of edges
EDGE I array of edges EDGE

4.3.5 Parameters of div8solid

The subroutine div8solid exercises the refinement of a given solid into 8 new
solids. The subroutine calls several subroutines, see 4.3.6.

SUBROUTINE DIV8SOLID(THIS,SOLID,NVOL,FACE,NF,EDGE,NE

,X,NN,NHIER,HIER)

THIS I solid has to be refined
NN I/O number of nodes

21

X I/O array of node coordinates X
NF I/O number of faces
FACE I/O array of faces FACE

NE I/O number of edges
EDGE I/O array of edges EDGE

NVOL I/O number of volumes
SOLID I/O array of solids SOLID

NHIER I/O length of hierarchical list
HIER I/O array of the hierarchical list HIER

4.3.6 Short description of further subroutines

• SUBROUTINE EDORTOFA(KAN,DIR,NF,FACE,SOLID)

The subroutine determines the 4 edges of a given solid SOLID which do
not bound a given pair of opposite faces. The parameter DIR has the
values 1,2 or 3, for the first and fourth, the second and fifth, third and
sixth face. The 4 edges are stored in the array KAN. The subroutine calls
further subroutines, the subroutine neigh and the LOGICAL functions
bereits and edgoffac.

1. SUBROUTINE NEIGH(DIR,JS,NGHBOUR)

The subroutines determines the local number (1, . . . , 6) for that
2 faces which neighbors of JS and which are not DIR and DIR+3.

2. LOGICAL FUNCTION EDGOFFAC(FACE,KA)

The function determines if the INTEGER KA is an element of the
array FACE.

3. LOGICAL FUNCTION BEREITS(KA,ANZ,EDG)

The function is a generalization of EDGOFFAC in the case of an
array with ANZ elements.

• SUBROUTINE DIV4FACE(THFA,NE,EDGE,NF,FACE,NN,X,KA,FA,NHIER,

HIER,NNEW)

The subroutine subdivides a given face THFA into 4 sub-faces. If the
face has already been subdivided the subroutine does no division. In
both cases, the subroutine determines the 4 son faces FA, the mid-node
NNEW and the 4 edges KA with NNEW as vertex. The ordering of the
edges and faces in KA and FA is determined by the ordering of the edges

22

edge 4 edge 2

edge 1

edge 3

FA(1) FA(2)

FA(4) FA(3)

KA(1)

KA(2)KA(4)

KA(3)

Figure 6: Old and new edges of an subdivided face.

in the array THFA, see Figure 6. Note, that this ordering is implicitly
used for projecting the hanging nodes, see 6.4. The subroutine calls
the procedures divedg, cutedg, doedge, do12face, do9thnode, cutface
and hierarch.

• SUBROUTINE DIVEDG(THEDG,K1,K2,NOM,X,NN,

EDGE,NEDG,HIER,NHIER)

The subroutine subdivides a given edge THEDG into 2 sub-edges. If the
edge has already been subdivided the subroutine does no division. In
both cases, the subroutine determines the 2 son edges K1 and K2 and
the mid-node NOM. The subroutine calls the procedures do2midnodes,
do edg and hierarch.

• Subroutines located in cutedg.f:
These subroutines are determine the cut of two sets.

– SUBROUTINE CUTEDG(NC,EDG1,EDG2,EDGE)

The subroutine determines the node, which are common vertex of
the 2 edges. If the cut is empty then NC=0.

23

– SUBROUTINE CUTFACE(FA1,FA2,KA)

The subroutine determines the cut-edge between the two closed
faces. If the cut is empty then KA=0.

• Subroutines located in do27thnode.f:
These subroutines generate several nodes.

– SUBROUTINE DO27NODE for the mid-node of a solid,

– SUBROUTINE DO9ThNODE for the mid-node of a face,

– SUBROUTINE DOMIDNODE for the mid-node of an edge,

– SUBROUTINE DO2MIDNODES for the mid-nodes of the two son faces.

The procedure donode gives the mid-node of an edge. In the case of a
non existing node, the subroutine calls do9thnode.

• Subroutines located in doedg.f:
This file stores procedures for generating an edge.

– SUBROUTINE DO EDG generates an edge with 6 informations.

– SUBROUTINE DOEDGE determines the edge with a given mid-node
and vertex. If the edge does not exist, the subroutine calls the
procedure do edg generating the edge.

• Subroutines located in dosolid.f:
This file contains the procedures

– SUBROUTINE DO SOLID for generating a solid with 9 informations,

– SUBROUTINE DO12FACE for generating a face with 12 informations.

• Subroutines located in pcorect.f:
This file contains all subroutines which are necessary for projecting
nodes of edges and faces to its real position in the case of special ge-
ometries.

• The subroutine hierarch collects the information for the preconditioner
and is described in 6.3.

• Subroutines located in gemnode.f:

24

– SUBROUTINE GEMNODE(NF,FACE,NE,EDGE,FA1,FA2,

FA3,I1,I2,I3)

We have a triple of 4 faces FA1,FA2,FA3 which are the sons of
subdivided faces. The father faces have a common node I. The
indices I1,I2,I3∈ {1, . . . , 4} are the numbers of that sons of
FA1,FA2,FA3 which have the common node I. The subroutine
calls cutface. Notice, that this routine does not work in the case
of general arrays of faces.

– SUBROUTINE GEMEDG(NE,EDGE,KA1,KA2,I1,I2)

We have two faces with a common edge, which have already sub-
divided. For the division we introduced for both faces 4 edges KA1
and KA2, see Figure 6. We want to have the indices I1 and I2 of
the two edges with a nonempty cut. The subroutine calls cutedg.
The subroutine calls edortofa.

• Subroutines located in getnodel.f:

– SUBROUTINE GETNODEFA(THFA,EDGE,NE,FEMEL) gives the 9 nodes
FEMEL of the face THFA. The subroutine calls cutedg.

– SUBROUTINE GETNODE(THIS,EDGE,NE,NF,FACE,NN,X,NODES)

gives the 27 nodes NODES of the solid THIS. The ordering corre-
sponds to Figure 2. The subroutine calls cutface, change, cutedg
and

– SUBROUTINE GETMIDNODES(THFA,VNODES,MNODES,NE,EDGE).
This subroutine determines for a given face THFA and a given or-
dering of the 4 vertex nodes VNODES the 4 nodes MNODES lying on
the middle of the edges.

– SUBROUTINE GETNODEU(NE,THEL,ND,NK,X,NFG,U,XU)
This subroutine gives the coordinates and NFG solutions of the
nodes of THEL in DOUBLE PRECISION.

4.4 Tree structures

Tree substructures of subroutines marked with the symbol ∗ are described
before in the list.

25

4.4.1 SETPOINTER

SETPOINTER

4.4.2 GROBNETZREAD

GROBNETZREAD

4.4.3 GROBNETZKORR

GROBNETZKORR

↪→ MWWERT

↪→ CHAEDGE

↪→ CHANGE

↪→ CUTEDG

↪→ GETNODEFA

↪→ CUTEDG

↪→ EDGEGEO

↪→ CHASOLID

↪→ CHANGE

↪→ CUTFACE

↪→ GETNODE

↪→ CHANGE

↪→ CUTFACE

↪→ CUTEDG

↪→ GETMIDNODES

↪→ CORDIRNEU

↪→ DOFACEBOUNDARY

4.4.4 CORRECTNODE

CORRECTNODE

↪→ PCORECT

↪→ PRO1FACE

↪→ PRO2FACE

4.4.5 NETFINE

NETFINE

↪→ TEILTEST

↪→ EDORTOFA

↪→ NEIGHB

↪→ BEREITS

↪→ EDGOFFAC

↪→ DIV8SOLID

↪→ DIV4FACE

↪→ DOEDGE

↪→ DO EDG

↪→ DIVEDG

↪→ DO EDG

↪→ HIERARCH

↪→ DO2MIDNODES

↪→ DOMIDNODE

↪→ CUTEDG

↪→ DO12FACE

↪→ DO9THNODE

↪→ HIERARCH

↪→ CHANGE

↪→ CUTFACE

↪→ DOEDGE∗
↪→ DIVEDG∗
↪→ CUTEDG

↪→ GEMEDG

↪→ CUTEDG

↪→ DO12FACE

↪→ DO9THNODE

↪→ HIERARCH

↪→ GEMNODE

↪→ CUTFACE

↪→ DO SOLID

↪→ GETNODE∗
↪→ DO27NODE

26

5 Assembly of the equation system

5.1 Changes against version v2.x of SPC-PM Po 3D

5.1.1 General remarks

The assembly of the stiffness matrix has significantly changed since version
v2.x, [2]. The same routines are used for the numerical integration and for
the shape functions. The only change is the saving of the stiffness matrix
element-wise. Here, we store the upper triangle. The main diagonal of the
stiffness matrix and the right hand side have to be assembled.

5.1.2 Coarse grid matrix

In this version, the coarse grid matrix does not exist.

5.2 Short description of the subroutines

5.2.1 Subroutine in assem.f

The subroutine assem.f handles the generation of the element stiffness ma-
trices, the assembly of the main diagonal of the global stiffness matrix and
the right hand side.

SUBROUTINE ASSEM(NK,X,NEL,NEIN,SOLID,NEDG,EDG,NFACE,FACE,NDIR,

DIR,NNEUM,NEUMW,NMAX,NMATE,RMATE,K,MAXADR,F,

H,IER,N)

NK I number of nodes
X I/O pointer to array of node coordinates X
NEL I number of volumes
NEIN I number of unknowns per element
SOLID I/O array of solids SOLID

NEDG I number of edges
EDG I array of edges EDGE

NFACE I number of faces
FACE I array of faces FACE

NDIR I number of Dirichlet b.c
DIR I array of Dirichlet b.c.DIR

27

NNEUM I number of Neumann b.c
NEUMW I array of Neumann b.c.NEU
NMATE I number of material
NMAX I number of material informations
RMATE I array of materials MAT
K O main diagonal of stiffness matrix K

MAXADR

F O right hand side F

H H additional vector
N I/O length of K,F, dimension of the linear system

This subroutine calls several subroutines, which are described below.
Furthermore, this subroutines gives each node the information if this node is
a vertex of a solid or not, see 6.3, 2.2.4 and determines the dimension of the
linear system.

5.2.2 Subroutines in element.f

• SUBROUTINE ELEMENT(NE,XT,AEL,REL,GAUSS,NGAUSS,A,C,Q,H)

NE I number of unknowns per element
XT I coordinates XT of nodes of element El
AEL O element stiffness matrix AEL

REL O element right hand side REL

GAUSS I coordinates and weights of quadrature rule GAUSS

NGAUSS I number of Gaussian points
A I for (1.1) (a1, a2, a3)t |El and for (1.2) λ, µ
C I for (1.1) c |El
F I for (1.1) f |El and for (1.2) f
H H additional vector

The subroutine generates the element stiffness matrix using the Gaus-
sian quadrature rule.

• SUBROUTINE XTOCB(ND,X1,X2,X3,WLM,NB,BB) builds for (1.2) the ma-

28

trix

BB =

x1 0 0
0 x2 0
0 0 x3
x2

2
x1

2
0

0 x3

2
x2

2
x3

2
0 x1

2

+Wlm

1
1
1
0
0
0

 (x1, x2, x3) .

This routine saves in the case of NDOF=3 a lot of operations from the
following idea:
Usually the matrix

Ag = B̂tCB̂, B̂ = (B(∇φ1), . . . , B(∇φNE))

is required for each Gaussian point (which means 39366 multiplies for NE=27)
From the idea

Ag = 2µ(C̃
1
2 B̂)t(C̃

1
2 B̂)

this reduced up to 25%, so this routine builds C̃
1
2 B̂.

5.2.3 Short description of further subroutines

• Subroutines in e3intg.f and e2intg.f
The SUBROUTINE E3INTG and SUBROUTINE E2INTG determine the inte-
gration points and weights, in 3D and 2D. The 2D-routine is only used
for the error estimator and the Neumann boundary condition, see 7.

• Subroutine in getmaterial.f
The SUBROUTINE GETMATERIAL determines the coefficients and right
hand side of the boundary value problem on a given element.

• Subroutines in matmoduls.f
The SUBROUTINE MATTMUL does the matrix multiplication A = BtC,
where B is stored transposed. The SUBROUTINE MATMULADU6 does
the matrix operation A = A + αBtC where B ∈ RNB,6 and C ∈
R
NC,6. This procedure calls the special DOUBLE PRECISION FUNCTION

DSCAPR6 for calculating the scalar product of 2 vectors a, b ∈ R6.

29

• Subroutines in solve33.f
The SUBROUTINE SOLV33T solves the 3× 3−(matrix-)system TX = Y ,
where Y is stored transposed using the rule of Cramer. The SUBROUTINE
SOLV33 solves the 3 × 3−(matrix-)system TX = Y . The DOUBLE

PRECISION FUNCTION DET3 calculates the determinant of a 3×3 matrix
T , given by its rows.

• Subroutines in mastervalls.f
The SUBROUTINE DOMASTERVAL gives for several elements the values of
shape functions and their first and (for hexahedral elements) second
derivatives in the point XYZ. It calls one routine of phi2d.f or phi3d.f.

• Subroutines in phi2d.f and phi3d.f
For quadrilaterals, we have SUBROUTINE PHI2BQ for 9-node quadrilat-
erals, SUBROUTINE PHI2L for 4-node quadrilaterals and SUBROUTINE

PHI2Q for 8-node quadrilaterals. In the case of hexahedral elements, we
have SUBROUTINE PHI3L for linear, SUBROUTINE PHI3Q for serendipity
and SUBROUTINE PHI3TQ for tri-quadratic elements. The second deriva-
tives D2 are stored in the order (uxx, uyy, uzz, uxy, uxz, uyz).

• Subroutines in fakku.f
The SUBROUTINE FAKKU accumulates the global vectors.

• Subroutines in smamvekd.f
The SUBROUTINE SMAMDIA gives the main diagonal of an element stiff-
ness matrix. The SUBROUTINE SMAMVEKD is for the matrix vector mul-
tiplication.

• Subroutines in nodeglobal.f
These subroutines handle the last entry of the array of coordinates X,
see 2.2.4. The SUBROUTINE NODEINIT gives NEIN nodal shape functions
its index φj. The SUBROUTINE CHGGLOBSIG(NEIN,NODES,X) changes
the signum of the last entry of X for the NEIN nodes NODES. The
SUBROUTINE NODEGLOBAL gets for a group of nodes the indices of their
shape functions φj.

• Furthermore, we need additional procedures from getnodel.f.

30

5.2.4 Boundary conditions

• Neumann boundary conditions: The routines for building in the Neu-
mann boundary conditions are located in neumann.f.
Subroutine neumann does the numerical integration

rj =

∫
face

(at · x+ b)φj dx (5.1)

using Gaussian quadrature for a face. This subroutine does the main
part for implementing

~ntA∇u = g.

SUBROUTINE NEUMANN(ND,NODES,X,NN,NGAUSS,GAUSS,A,B,

INTEGRAL,H,NE2IN)

ND I dimension of the face, currently 2
NODES I array NODES of the NE2IN nodes of the face
X I array of node coordinates X
NN I number of nodes
NGAUSS I number of points for Gaussian quadrature
GAUSS I coordinates and weights of quadrature rule GAUSS

A I a of (5.1)
B I b of (5.1)
INTEGRAL O r = (rj)

Ne2in
j=1 of (5.1)

H H additional vector
NE2IN I number of unknowns per face

Further subroutines are SUBROUTINE DETER22 for calculating the de-

terminant of the matrix

(
a b
c d

)
and SUBROUTINE CROSSPRO for cal-

culating b = v1 × v2.

• Dirichlet boundary conditions: The Dirichlet boundary conditions are
built when determining the starting vector for the PPCG method. This
is done by subroutine stave located in the file stave.f described in 6.6.

31

5.3 Tree Structures

Tree substructures of subroutines marked with the symbol ∗ are described
before in the list.

ASSEM
↪→ E3INTG
↪→ GETNODE∗
↪→ GETMATERIAL
↪→ GETNODEU∗
↪→ ELEMENT

↪→ DOMASTERVAL
↪→ PHI2L
↪→ PHI2Q
↪→ PHI2BQ
↪→ PHI3L
↪→ PHI3Q
↪→ PHI3TQ

↪→ MATTMUL
↪→ SOLV33T

↪→ DET3
↪→ XTOCB
↪→ MATTMULADU6

↪→ DSCAPR6
↪→ NODEINIT
↪→ CHGGLOGSIG
↪→ NODEGLOBAL
↪→ FAKKU
↪→ SMAMDIA
↪→ E2INTG

↪→ GETNODEFA∗
↪→ RANDKOOR
↪→ NEUMANN

↪→ MATTMUL∗
↪→ CROSSPRO

↪→ DETER22
↪→ GETNODEU∗
↪→ DOMASTERVAL∗

32

6 Solving the linear system using the Precon-

ditioned Conjugate Gradient method

6.1 The solver

The linear system of equations is solved using the PCG-method with a pre-
conditioner. The start vector is the solution of the preceeding level. The user
can choose between a simple diagonal preconditioning, the hierarchical basis
preconditioning [8] and the BPX-preconditioner [4]. A coarse grid solver is
not implemented. For applying the solver we have several difficulties. The
first problem is the existence of hanging nodes. For these non real existing
unknowns we have to build a projection from the space of all shape functions
to the space without shape functions corresponding to hanging nodes. Fur-
thermore, we need the adjoint projector. The subroutines for applying the
projection and extension are described in 6.4.

We wanted to have a data structure which works for linear, tri-quadratic
and serendipity elements. An edge oriented data structure is not useful for
these elements. We have nodes, midpoints of faces and volumes, which have
4 or 8 sons. For this purpose we introduced the hierarchical list. Subroutines
for the management of the hierarchical list can be found in 6.3.

6.2 Control parameters of the solver

The user can choose several parameters of the solver. We give a short
overview over these parameters.

Option Description

v

variant of preconditioning: =0 Jacobi
=2 Yserentant
=4 BPX

i iter, maximal number of iterations
e epsilon, termination criterion for the relative error

norm in the CG algorithm
z control of the amount of screen output, see ion in [3],

Table 2.

33

6.3 Subroutines for the management of the hierarchi-
cal list

A completely new tool of SPC-PM3AdH is the hierarchical list. A short
description was given in 2.2.6. We consider the three cases 2, 4 and 8 fathers
for one son. We created a data structure which is similar for a certain number
NFATH of fathers. The hierarchical list stores all hierarchies of nodes and is a
generalization of the array LISTE of further versions, see 5.4. in [3]. Due to
the varying number of informations (9, 15 or 27) for each son, a structure
of the form HIER(NINF,*) is avoided. For each son, the node number of
the son, the node numbers of the fathers and number of fathers are stored.
Additionally, the indices of fathers in the preceeding levels are necessary to
store for the BPX-preconditioner. The order of this information is described
in 2.2.6.

• For initialization of the hierarchical list, we have

SUBROUTINE HIERANF(NE,EDGE,NF,FACE,NVOL,SOLID,NN,X,

NHIER,HIER).

NN I number of nodes
X I array of node coordinates X
NF I number of faces
FACE I array of faces FACE

NE I number of edges
EDGE I array of edges EDGE

NVOL I number of volumes
SOLID I array of volumes SOLID

NHIER O length of hierarchical list
HIER O array of the hierarchical list HIER

After the reading of the mesh, a first refinement is done. The mesh
contains elements with 8 nodes. This program works with elements
having 27 nodes. Hence, we introduce new nodes on each midpoint
of edges, faces and volumes, see 4.2.4. These hierarchies are the first
entries of the hierarchical list and entered by the subroutines hieranf.
This subroutine calls hierarch which we will now describe.

34

• SUBROUTINE HIERARCH(SON,NFATHER,FATHER1,FATHER2,FATHER3,

FATHER4,FATHER5,FATHER6,FATHER7,FATHER8,NHIER,LISTE)

This procedure enters a son and the possibly 8 fathers to LISTE. The
parameter NFATHER contains the number of fathers. The parameter
NHIER will increased up to 3(NFATHER+1).

• For applying the BPX-preconditioner to this adaptive program, a chang-
ing of the order of the hierarchical list is necessary:
For the BPX-preconditioner [4] for serendipity or tri-quadratic ele-
ments, a last refinement from the level q − 1 to the level q consists
of the refinement from linear to tri-quadratic or serendipity elements.
For an adaptive program, it can be happen that one edge will not be
refined for the levels 1, 2, . . . , l, l ≤ q − 1. Hence, this node remains in
each level a mid-node of this edge. But, in the hierarchical list, the re-
finement history will entered during the call of the subroutine hieranf,
which corresponds to a refinement from level 1 to level 2 and not from
level q − 1 to level q!
The subroutine chghier is implemented for the reordering of the hierar-
chical list. Figure 7 shows ordering of the hierarchical list corresponding
to the nodes.

SUBROUTINE CHGHIER(NHIER,HIER,NN,X,NC,NCOARSE,H)

NN I number of nodes
X I array of node coordinates X
NC I/O number of vertices of the mesh
NCOARSE I number of vertices in the coarse mesh
H H array of volumes SOLID

NHIER I length of hierarchical list
HIER I/O array of the hierarchical list HIER

This subroutine moves all nodes not being a vertex of a solid to the end
of the hierarchical list. From the subroutine assem, it is known which
node is a vertex and which not. This information is saved in the last
entry of the array of node coordinates of the array X, see 2.2.4.

These subroutines are located in hierarch.f.

35

. . .

Lev
1

Level 2 Level 3 Level n-1
(linear elements)

Level n
(quadratic elements)

Hierarchical list

Level n

. . .

Level 1Level n-1

indices of
x(ndof+ndim+1,*)

entries of

hierarchical
entries of
hierarchical

n-level vector w

list n/ndof-nn list n/ndof-nn

Figure 7: Ordering of the hierarchical list.

36

Now, we give a short description of the forwards and backwards handling
with the hierarchical list HIER(NHIER-1):

• forwards:

1. Set IH=1,

2. If (IH≥NHIER) then return,

3. Set NUMBER-OF-FATHERS=-HIER(IH+2),

4. Do operation for the son HIER(IH),

5. Set IH=IH+(NUMBER-OF-FATHERS+1)*3,

6. goto 2

• backwards:

1. Set IH=NHIER,

2. If (IH≤2) then return,

3. If (HIER(IH-7)<0) then NUMBER-OF-FATHERS=2,

4. Else if (HIER(IH-13)<0) then NUMBER-OF-FATHERS=4,

5. Else if (HIER(IH-25)<0) then NUMBER-OF-FATHERS=8,

6. Do operation for the son HIER(IH),

7. Set IH=IH-(NUMBER-OF-FATHERS+1)*3,

8. goto 2

Note, that we need HIER(IH+1), HIER(IH+4), HIER(IH+5), HIER(IH+7),

HIER(IH+8), . . . only for the BPX-preconditioner. On these entries we have
stored additional information.

But because of memory reasons, we have to move these numbers corre-
sponding to nodes on coarser levels up to N/NFG-NN for applying the q-level
vector, see Figure 7. Otherwise, the indices NN+1, . . . ,N/NFG are used in
the q-level vector w. For a better understanding, see 6.5.4.

6.4 Subroutines for projecting hanging nodes

For projecting and the extension of hanging nodes, we have three subroutines.
The first is projhangnodbpx1 for projecting hanging nodes on edges, the

37

second is projhangnodet for projecting hanging nodes on faces and the third
is projhangnode for applying the adjoint operator of the first two projections.
Note, that the operators for projecting hanging nodes on edges and faces
are commute. The marking of hanging nodes on faces is done during the
refinement of the mesh. A negative entry of FACE(5,*) depicts the mid-
node as hanging node of this face. The marking of hanging nodes on edges
is more difficult. For this purpose, we have

• SUBROUTINE HANGNOD(NF,FACE,NE,EDGE,NVOL,SOLID)

for marking all hanging nodes and

• SUBROUTINE KORREDG(NE,EDGE)

for removing the markings of hanging nodes.

The marking is done on EDGE(4,*), see 2.2.3. Both subroutines are located
in gemnode.f.

6.4.1 Projection of hanging nodes on edges

The projection of hanging nodes of edges is rather simple. We have to distin-
guish between quadratic (for 20 and 27 node elements) and linear projection
(for 8 node elements), see Figure 8. This projection is done by

SUBROUTINE PROHANGNODBPX1(NEIN,NE,EDGE,W,NN,X).

NN I number of nodes
X I array of node coordinates X
NEIN I number of nodes per element
NE I number of edges
EDGE I array of edges EDGE

W I/O preconditioned residuum vector w

This subroutine is located in projectors.f.

6.4.2 Projection of hanging nodes on faces

This projection is very difficult and is different for 8-, 20- and 27-node ele-
ments and done by

38

1/2 1/2

-1/8

3/8 3/4

Figure 8: Projection of hanging nodes for quadratic (above) and linear ele-
ments (below).

1/2 1/2

-1/8

3/8 3/4

Figure 9: Numbering of the nodes for the sons.

39

SUBROUTINE PROHANGNODET(NEIN,NFG,W,EDGE,NE,FACE,NF,X,NN).

NN I number of nodes
X I array of node coordinates X
NEIN I number of nodes per element
NE I number of edges
EDGE I array of edges EDGE

NF I number of faces
FACE I array of faces FACE

W I/O preconditioned residuum vector w

This subroutine uses a certain ordering of the edges and nodes of the son
faces j related to father face, see Figure 9.

The edges FACE(1,J) and FACE(4,J) connect a vertex of the father with
the midpoint of an edge of the father and FACE(2,J) and FACE(3,J) connect
edge midpoints with the face midpoint. This ordering is guaranteed during
the call of div4face. The ordering of the nodes of a face depends only on the
ordering of the edges. Hence, a call of getnodefa for a son face ensures that
the first node is the vertex of the father, the second and fourth are midpoints
of edges and the third is the midpoint of the father face. The fifth to eighth
node are midpoints of the edges between first and second, second and third,
third and fourth, fourth and first node.

6.4.3 The adjoint projector

The interpolation to hanging nodes is done by

SUBROUTINE PROHANGNODE(NEIN,NFG,W,EDGE,NE,FACE,NF,X,NN).

NN I number of nodes
X I array of node coordinates X
NEIN I number of nodes per element
NE I number of edges
EDGE I array of edges EDGE

NF I number of faces
FACE I array of faces FACE

W I/O preconditioned residuum vector w

40

This subroutine uses the same orderings of the edges of the sons as pro-
jhangnodet. This subroutines calls in the cases NEIN=20 and NEIN=27

SUBROUTINE QUADINT(NFG,W,SON,VL,VM,VR)

for the quadratic interpolation of Figure 8. This subroutine is located in
projhangnode.f.

6.5 Subroutines for applying the preconditioner

The application of the preconditioner C

P̃C−1P̃ tr = w

is done in the

SUBROUTINE PRLOES(NN,X,NEIN,N,NEDG,EDGE,NF,FACE,A,LA,C,CC,LCC,

KETTE,IGLOB,HIER,NHIER,W,R,V).

NN I number of nodes
X I array of node coordinates X
NEIN I number of nodes per element
N I number of unknowns of the linear system
NF I number of faces
FACE I array of faces FACE

NEDG I number of edges
EDGE I array of edges EDGE

A I stiffness matrix, element per element
LA I number of volumes and parameter NEIN
C I main diagonal of stiffness matrix
R I residuum vector r
W O preconditioned residuum vector w
V H additional vector
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER

This subroutine is located in prloes.f. The array C stores in the case of the
BPX-preconditioner the main diagonals for all levels. For preparing this main
diagonal an additional subroutine, prevor, is necessary. This subroutine is

41

described in 6.6. The subroutine calls the subroutines for the preconditioniers
and the subroutines for projecting hanging nodes induced by P̃ .

6.5.1 Jacobi preconditioner

The Jacobi preconditioner is the simplest of all. It only consists of a multi-
plication of the residual vector r with inverse D−1 of the main diagonal of
the stiffness matrix. The condition number of D−1K equals O(h2), where
K is the stiffness matrix of our global problem and h is the discretization
parameter.

6.5.2 Yserentant preconditioner

The Yserentant preconditioner [8] is based on the hierarchy of the finite
element meshes. It can be written in the form

C−1 = SSt.

Here, S is the basis transformation matrix which transfers the usual nodal
basis to the h-hierarchical basis. For more details, see [1]. If we have jumping
coefficients in the differential equation, a Jacobi modification of the form

C−1 = SD−1St

with the main diagonal D of the stiffness matrix whose elements are scaled
with the mesh-size hl of the level l of the point it belongs to is useful. The
condition number of C−1K is equal to O(h−1) in the three-dimensional case.
This is an improvement in comparison to the Jacobi preconditioner, but it
still cannot satisfy. For applying the Yserentant preconditioner the subrou-
tine prloes calls

SUBROUTINE NHSTMUL(NFG,W,NHIER,HIER,NN,X)

NN I number of nodes
X I array of node coordinates X
W I/O preconditioned residuum vector w
NFG I degrees of freedom per node
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER

42

for the operation Stw and

SUBROUTINE NHISMUL(NFG,W,NHIER,HIER,NN,X)

NN I number of nodes
X I array of node coordinates X
W I/O preconditioned residuum vector w
NFG I degrees of freedom per node
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER

for Sw. Both subroutines are located in nhieyser.f. Note that the number
of nodes and index for the nodal shape functions associated to this node are
different. Hence, it is necessary to call nodeglobal. Before we can use the
subroutine prloes for the Yserentant preconditioner one initialization step
is necessary for obtaining the multiple diagonal D. This generation of the
diagonal D does

SUBROUTINE DIA3YS(NFG,N,NHIER,HIER,C,NK,SC,NEIN,X).

NK I number of nodes
N I dimension of linear system
X I array of node coordinates X
C I/O main diagonal for all levels
NFG I degrees of freedom per node
SC H additional vector
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER
NEIN I number of nodes per elements

Additionally, this subroutine does the different scalings for the level-jumps
from linear to serendipity and tri-quadratic elements on level q.

43

6.5.3 BPX-Preconditioner

The BPX-preconditioner [4] is also a hierarchical preconditioner. It can be
written in the form

w =

q∑
l=0

∑
i∈Nl

φli〈r, φli〉,

where Nl is the index set of all nodes which are sons on level l or fathers
having a son on this level a subset of all nodes of level l. Here

〈r, v〉 = a(u, v)− 〈f, v〉 ∀v ∈ (H1
0 (Ω))d

defines ’the residual functional’. Note that r = (〈r, φqi 〉)
Nq
i=1 is given. In matrix

notation, we obtain

w =

q∑
l=0

∑
i∈Nl

Ql

(
I
0

)
ỹ(l)

with

ỹ(l) = (〈r, φli〉) =
(
I 0

)
Qt
lr.

Thus, we obtain

w =

q∑
l=0

Ql

(
I
0

)(
I 0

)
Qt
lr

=

q∑
l=0

Ql

(
I 0
0 0

)
Qt
lr

=

q∑
l=0

QlPlQ
t
lr

with the projection matrix Pl = (pij) from all nodes on level l onto the subset
Nl. The matrix Qt

l is the transformation matrix from the usual basis of the
space Vq to the space Vl. Therefore, we have for l < q

Ql = Qq
q−1 · . . . ·Ql+1

l

44

and

Qq = I

with

(Ql
l−1)ij =

1 (a) if i = j, i, j = 1, 2, . . . ,Nl−1
1
2

(b) if j = i1 and j = i2, where P (i) is the mid-
point between P (i1) and P (i2) which are the
end points of an edge of a hexahedron from
the mesh Tl−1

1
4

(c) if j = ik, k = 1, . . . , 4, where P (i) is the
midpoint of the face with the four vertices
P (ik)

1
8

(d) if j = ik, k = 1, . . . , 8, where P (i) is the mid-
point of the volume with the eight vertices
P (ik)

0 else.

(6.1)

We introduce

Q̃l = QlPl

and

Ql−1
l = (Ql

l−1)t.

Then, we can write

Q̃l = Qq
q−1 · . . . ·Ql+2

l+1Q̃
l+1
l

with

(Q̃l
l−1)ij =

1 (a) in (6.1) and node in Nl
1
2

(b) in (6.1) and nodes in Nl
1
4

(c) in (6.1) and nodes in Nl
1
8

(d) in (6.1) and nodes in Nl
0 else.

(6.2)

Hence, we can determine w using the following Horner-scheme like algorithm.

45

• Set y(q) := r.

• For l = q − 1, . . . , 1 do

y(l−1) = Ql−1
l y(l)

endfor.

• Set z0 := y0

• for l = 1, . . . , q do

z(l) := Ply
(l) +Ql

l−1z
(l−1) (6.3)

endfor.

• Set w = z(q).

In the case of jumping coefficients in the differential equation a Jacobi mod-
ification is helpful. This modification has the form

P̃l = PlD̂
−1 (6.4)

where D̂ is the extracted main diagonal of the stiffness matrix corresponding
to Vl. Its elements are scaled with the mesh size hi of the zone i of the point
it belongs to.
Note that for a node j 6∈ Nl

(Ql
l−1y

(l−1))j = (y(l−1))j

and

(Ply
(l))j = 0

are valid, i.e. the application of Ql
l−1 does not change the value on the j-th

coordinate, and with (6.3) we have

(z(l−1))j = (z(l))j.

Hence, we introduce the following data structure. On level l only nodes of
Nl) obtain a memory place in the vector ỹ(l), part of y(l).

For applying the BPX-preconditioner the subroutine prloes calls the sub-
routines nhstmulbpx and nhismulbpx. Both routines are located in the file
hiebpx.f.

SUBROUTINE NHSTMULBPX(NFG,N,W,NHIER,HIER,M,NN,X)

46

NN I number of nodes
N I dimension of linear system
X I array of node coordinates X
W I/O preconditioned residuum vector w
NFG I degrees of freedom per node
M H additional vector
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER

SUBROUTINE NHISMULBPX(NFG,N,W,NHIER,HIER,M,NN,X)

NN I number of nodes
N I dimension of linear system
X I array of node coordinates X
W I/O preconditioned residuum vector w
NFG I degrees of freedom per node
M H additional vector
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER

The first routine does the operation y(l) = Qt
lr, the second

∑
QlPly

(l)

(using ỹ(l) only). Note that the number of nodes and index for the nodal
shape function associated to this node are different in all levels. In the
finest level, the index is stored in last entry of the array X, see 2.2.4. The
management of the nodes of the coarser levels is described in 6.3.

Before we can use the subroutine prloes for the BPX preconditioner some
initialization steps are necessary. The first one consists on storing the infor-
mation of the numbers of the nodes in preceeding levels, the second on ob-
taining the scaling factors for the main diagonals in the levels l, l = 1, . . . , q.

• For the first step, we have implemented

SUBROUTINE NHIE3BPX(N,NHIER,HIER,NN,MFR,MTO,X,NEIN).

N I dimension of linear system
X I array of node coordinates X
NN I number of nodes

47

MFR H additional vector
MTO H additional vector
NHIER I length of hierarchical list
HIER I/O array of the hierarchical list HIER
NEIN I number of nodes per elements

This subroutine is located in hiemul.f. For repeating parts of the pro-
gram, two simple subroutines, help2bpx and help3bpx are used.

• For the second step, we have

SUBROUTINE NDIA2BPX(NFG,N,NHIER,HIER,C,NN,SC,X,NEIN).

NN I number of nodes
N I dimension of linear system
X I array of node coordinates X
C I/O main diagonal for all levels
NFG I degrees of freedom per node
SC H additional vector
NHIER I length of hierarchical list
HIER I array of the hierarchical list HIER
NEIN I number of nodes per elements

This subroutine generates the all level main diagonal. From

a(φlj, φ
l
j)

a(φl−1
j , φl−1

j)
=

1

2

for nodal basis functions φlj and φl−1
j associated to the same node for

linear elements on Levels l and l− 1, we obtain the scaling factor 1
2

for
the ’jump’ between two linear levels. Between the serendipity elements
and linear elements on the same level, this factor is 49

30
. Furthermore,

this factor is 28
75

between linear and tri-quadratic elements on the same
level. This subroutine is located in hiedia.f

48

Level 0

1 2 3

1 3 24 5

1 2 3

1 3 24 5

4

6 7

Level 1

1 2 3

1 3 24 5

4

6 7

5 6

8 9 10 11

Level 2

1 2 3

1 3 24 5

4

6 7

5 6

8 9 10 1112 13

7

Level 3

Figure 10: Example for understanding the BPX-preconditioner.

49

6.5.4 An example for understanding the preconditioniers

Consider now the simple one-dimensional example of Figure 10. The number
above the edges are the node numbers j, the numbers below are the memory
places in the global vector, saved in X(NDIM+NDOF+1,J), which we denote in
this subsection for simplicity by MP(J). The entries of this array are written
in the following table.

J 1 2 3 4 5 6 7 8 9 10 11 12 13
MP(J) 1 3 2 4 6 0 5 0 0 0 7 0 0

(6.5)

We have for linear elements 3 and for quadratic elements 4 level-hops, the
coarsest one is from level 0 to 1. For the Yserentant-preconditioner, the
beginning of the hierarchical list looks as in the following table. Informations
in brackets are informations of this node.

IH 1 2 3 4 5 6 7 8 9
HIER(IH) (4 0 -2) (1 0 0) (3 0 0)

IH 10 11 12 13 14 15 16 17 18
HIER(IH) (5 0 -2) (3 0 0) (2 0 0)

· · ·

The node 4 has 2 fathers (HIER(3)=-2), the nodes 1 (HIER(4)=1) and 3
(HIER(7)=3), the node 5 has the two fathers 3 and 2. The remaining entries
are only needed for the BPX-preconditioner.
We explain now how we obtain these entries. Only the node 4 is new in level
1 and has the two fathers node 1 and node 2. In level 2, the nodes 5 with
the fathers node 2 and node 3, and 7 with the fathers node 2 and node 4
are sons. The node 11, new in level 3, has the fathers node 2 and node 5.
The remaining nodes are only introduced for quadratic elements. In matrix
representation, the BPX-preconditioner looks as follows. We have

Q2
3 =

I6

0
0
1
2

0
0
1
2

 , Q1
2 =

I4

0 0
1
2

1
2

0 1
2

1
2

0

and

Q0
1 =

I3

1
2
1
2

0

50

as the basis-transformation matrices between the levels l and l−1. The node
2 (memory place 3) has on level 1 no son, the node 1 (1) has no son on level 2,
and the nodes 1(1), 3 (2), 4 (4) and 7 (5) have on level 3 no sons. Therefore,
for the matrices Pl, we obtain

P0 = I3 , P1 =

1

1
0

1

 ,

P2 =

(
0

I5

)
and P3 =

02

1
02

I2

 .

Consider now the certain levels. The numbers in brackets are the corre-
sponding memory places for each node.

• Level 3:
The nodes 2 (3), 5 (6) and 11 (7) need a memory place. The nodes 2
and 5 exist in a coarser level and get then the memory places 8 and 9.

• Level 2:
The nodes 2 (8), 3 (2), 4 (4), 5 (9) and 7 (5) need a memory place.
They have from MP(I) (for the nodes 3, 4 and 7) or from finer levels
(nodes 2 and 5) their memory places. The nodes 2, 3 and 4 are fathers
and exist in a coarser level. Then, they obtain the memory places 12,
10 and 11.

• Level 1:
The nodes 1 (1), 3 (10) and 4 (11) have memory places. The nodes 1
and 3 have in a coarser level the memory places 13 and 14.

• Level 0:
All nodes, 1 (13), 2 (12) and 3 (14), have memory places.

In the hierarchical list, these informations of the nodes on level l and level
l − 1 are stored. We obtain for the array HIER the entries

4 17 -2 1 1 19 3 16 20
5 15 -2 3 3 16 2 14 18
7 7 -2 3 3 16 4 4 17

11 11 -2 2 2 14 5 5 15

.

51

This list is a code of the operation for the BPX-preconditioner. Now, we
describe the code in this example. We have NN=13, but N=7. Hence, we have
to subtract 6 = 13 − 7 from each entry of the hierarchical list greater than
13. For the lower entries j we have to determine MP(J) (6.5), which gives
the memory places in the global vectors. The steps

w8 = w3 +
1

2
w7,

w9 = w6 +
1

2
w7

for level 3,

w10 = w2 +
1

2
(w9 + w5),

w11 = w4 +
1

2
w5,

w12 = w8 +
1

2
w9

for level 2,

w13 = w1 +
1

2
w11,

w14 = w10 +
1

2
w11

for level 1 forwards and

w11 = w11 +
1

2
(w13 + w14),

w1 = w1 + w13,

w10 = w10 + w14

for level 1,

w9 = w9 +
1

2
(w10 + w12),

w5 = w5 +
1

2
(w11 + w10),

w4 = w4 + w11,

w8 = w8 + w12,

w2 = w2 + w10

52

for level 2,

w7 = w7 +
1

2
(w8 + w9),

w3 = w3 + w8,

w6 = w6 + w9

level 3 backwards are done by this hierarchical list.

6.6 Further subroutines

6.6.1 Parameters of stave

SUBROUTINE STAVE(U,EDGE,NE,FACE,NF,X,NN,DIR,NDIR,H,KETTE,IGLOB)

U O solution vector u
NF I number of faces
FACE I array of faces FACE

NE I number of edges
EDGE I array of edges EDGE

NN I number of nodes
X I array of node coordinates X
NDIR I number of Dirichlet faces
DIR I the Dirichlet data DIR

H H additional vector

This subroutine copies the function values from the array X of node coordi-
nates and values, see 2.2.4, to the vector U as a good initial vector for the
PCG-method. Furthermore, the Dirichlet boundary conditions are build in.
This procedure is located in stave.f.

6.6.2 Parameters of ppcgm

SUBROUTINE PPCGM(NK,KOOR,NEIN,N,NEDG,EDGE,NF

,FACE,A,LA,C,B,X,EPS,IT,R,W,S,V,CC,

LCC,KETTE,IGLOB,NHIER,HIER)

U O solution vector u

53

NF I number of faces
FACE I array of faces FACE

NEDG I number of edges
EDGE I array of edges EDGE

NK I number of nodes
KOOR I array of node coordinates KOOR
NEIN I number of unknowns per element
N I dimension of the linear system
A I stiffness matrix, element-wise stored
B I right hand side
C I main diagonal of stiffness matrix
R H additional vector
S H additional vector
V H additional vector
W H additional vector
EPS I relative accuracy epsilon

IT I/0 maximal number of iterations
LA I number of volumes and NEIN

NHIER I/O length of hierarchical list
HIER I/O array of the hierarchical list HIER

This subroutine solves the linear system

Au = b,

where the matrix A is stored element-wise using the pre-conditioned conju-
gate gradient method. This procedure is located in ppcgm.f.

6.6.3 Parameters of prevor

SUBROUTINE PREVOR(NK,N,A,LA,C,EDGE,CC,LCC,

KETTE,IGLOB,V,IPOD,NHIER,HIER,NEIN,X)

EDGE I array of edges EDGE

NK I number of nodes
X I array of node coordinates X
NEIN I number of unknowns per element
N I dimension of the linear system

54

A I stiffness matrix, element-wise stored
C I main diagonal of stiffness matrix
V H additional vector
IPOD O marking for errors
LA I number of volumes and NEIN

NHIER I/O length of hierarchical list
HIER I/O array of the hierarchical list HIER

This subroutine does the described initialization steps for the BPX- and
Yserentant preconditioner. This procedure is located in prevor.f.

6.6.4 Parameters of axmebe

SUBROUTINE AXMEBE(ADD,NEL,NE0,EL,N,U,Y,X)

ADD I character variable for kind of multiplication
NEL I number of elements
X I array of node coordinates X
NE0 I number of unknowns per element
N I dimension of A and the vectors
U I input vector u
Y O output vector y
EL I stiffness matrix A, element-wise stored

This subroutine does the multiplication

y = Au

in the case of ADD=’0’ and

y = y + Au

in the case of ADD=’+’, if the matrix is stored by the element stiffness matrices
Ael. This subroutine is located in axmebe.f. Note, that

A =
∑

Elements

LtelAelLel. (6.6)

This multiplication is done by the 3 operations of (6.6).

55

• SUBROUTINE VDPERM(N,X,Y,P) and
SUBROUTINE VDOUTELVAL(N,NDOF,X,Y,EL) do the multiplication

x = Lelu.

• SUBROUTINE SMAMVEKD(N,Y,A,X) does the matrix vector multiplica-
tion

y
el

= Aelx.

• The subroutine fakku, see 5.2.3, does

y =
∑

Ltelyel.

The subroutines vdperm and vdoutelval are located in vdperm.

6.6.5 Subroutines located in value.f

The subroutine backutox saves the solution from the solution vector U back to
the array of node coordinates X. Note, that for linear and serendipity elements
not each existing node has a shape function associated to this node. The

SUBROUTINE VALUE(NVOL,SOLID,NF,FACE,NE,EDGE,

NK,X,NEIN,PHI)

NF I number of faces
FACE I array of faces FACE

NE I number of edges
EDGE I array of edges EDGE

NK I number of nodes
X I/O array of node coordinates X
NEIN I number of unknowns per element
NVOL I number of volumes
SOLID I array of solids SOLID

PHI H additional vector

determines the solution on these nodes.

56

6.7 Tree structure

Tree substructures of subroutines marked with the symbol ∗ are described
before in the list.

6.7.1 CHGHIER

CHGHIER

6.7.2 HIERANF

HIERANF

↪→ HIERARCH

↪→ GETNODEFA∗
↪→ GETNODE∗

6.7.3 HANGNOD

HANGNOD

↪→ EDORTOFA∗

6.7.4 KORREDG

KORREDG

6.7.5 STAVE

STAVE

↪→ GETNODEFA∗
↪→ DVALUE

↪→ NODEGLOBAL∗

6.7.6 PPCGM

PPCGM

↪→ PREVOR

↪→ NHIE3BPX

↪→ HELP2BPX

↪→ HELP3BPX

↪→ NDIA2BPX

↪→ DIA3YS

↪→ NODEGLOBAL∗
↪→ AXMEBE

↪→ VDPERM

↪→ VDOUTELVAL

↪→ SMAMVEKD

↪→ FAKKU∗
↪→ NODEGLOBAL∗

↪→ PRLOES

↪→ PROJHANGNODBPX1

↪→ NODEGLOBAL∗
↪→ PROJHANGNODET

↪→ NODEGLOBAL∗
↪→ GETNODEFA∗

↪→ NHSTMUL

↪→ NODEGLOBAL∗
↪→ NHSTMULBPX

↪→ NHISMUL

↪→ NODEGLOBAL∗
↪→ NHISMULBPX

↪→ PROJHANGNODE

↪→ NODEGLOBAL∗
↪→ QUADINT

↪→ GETNODEFA∗
↪→ ZWISCH

57

6.7.7 VALUE

VALUE

↪→ DOMASTERVAL∗

6.7.8 BACKUTOX

BACKUTOX

58

7 Error estimation

7.1 Error estimator

For a given numerical solution uh, an estimate about the error u − uh is
needed. We have implemented a Zienciewicz-Zhu error estimator, [5]. For
this estimator, we need two tools, the gradient jump along faces, e.g. for
(1.1)

jump(Face, u) =

∫
Face

[
(∇u)tA(x)n

]2
ds (7.1)

where n denotes the normal vector and [v] the jump of v along this face, and
residuum in the element, e.g. for (1.1)

res(Element, u) =

∫
Element

(Lu− f)2 dx. (7.2)

Both integrals are estimated by a simple midpoint rule∫
E

f(x)dx ≈ meas(E)f(xm), (7.3)

where xm denotes the midpoint of E. These integrals and the needed deriva-
tives are calculated by efromu. The subroutine errorest does the calculation
of the error estimator and marks all elements. We will describe both routines
in the next subsections.

7.2 Description of efromu

SUBROUTINE EFROMU(NFG,N2DIM,NN,U,X,NVOL,NEIN,SOLID,NE,EDGE,NF,

FACE,NDIR,DIR,NNEUM,NEUMW,NMAX,NMATE,RMATE,

EST,E,XU,DN,PHI,T,D2,T2,H)

NN I number of nodes
X I pointer to array of node coordinates X
NVOL I number of volumes
NEIN I number of unknowns per element
SOLID I array of solids SOLID

NE I number of edges

59

EDGE I array of edges EDGE

NF I number of faces
FACE I array of faces FACE

NDIR I number of Dirichlet b.c.
DIR I array of Dirichlet b.c.DIR
NNEUM I number of Neumann b.c.
NEUMW I array of Neumann b.c.NEU
NMATE I number of material
NMAX I number of material informations
RMATE I array of materials MAT

E O integrals (7.1) and measures for each face
EST O integrals (7.2) for each volume
NFG I degrees of freedom
H H additional vector
N2DIM I number of unknowns per face
DN H additional vector
PHI H additional vector
T H additional vector
D2 H additional vector
T2 H additional vector

This subroutine determines the integrals (7.1) and (7.2) by the midpoint
rule (7.3). In the array EST only the values of the integral (7.2) are saved. For
E, we have the data structure E(NFG+1,*), because for (1.2) relation (7.1) is
a integral for each component of the vector u. This information is saved on
positions 2, . . . , 1+NFG. On the first position of E, we save for each face F

E(1, F) =
∑

Volumes withF

meas(V olume).

This subroutine is located in efromu.f.

7.3 Description of errorest

SUBROUTINE ERROREST(NFG,NVOL,NEIN,SOLID,NF,FACE,

E,EREST,ERROUT,X)

X I pointer to array of node coordinates X

60

NVOL I number of volumes
NEIN I number of unknowns per element
SOLID I/O array of solids SOLID

NF I number of faces
FACE I/O array of faces FACE

E I integrals (7.1) and measures for each face
EREST I integrals (7.2) for each volume
NFG I degrees of freedom
ERROUT O total error

This subroutine calculates the error estimator. It is possible to choose
between a face oriented error estimator without estimating the residuum and
an element oriented error estimator which estimates residuum and gradient
jumps over all faces. In the first case the marking for subdividing a face i
is done by FACE(10,I)=1, in the second case for subdividing a volume j by
SOLID(1,j)<0. The subroutine is located in efromu.f.

7.4 Tree structures

Tree substructures of subroutines marked with the symbol ∗ are described
before in the list.

EFROMU
↪→ GETMATERIAL∗
↪→ NODEGLOBAL∗
↪→ MATTMUL∗
↪→ GETNODEU∗
↪→ SOLV33T∗
↪→ DOMASTERVAL∗
↪→ XMASTER∗
↪→ SOLV33

↪→ DET3∗
↪→ CROSSPRO

↪→ DETER22
↪→ GETNODEFA∗
↪→ RANDKOOR∗

ERROREST

61

Nodes Elements Faces Time for Solver Error Error·N
Assem Iter. Time

27 1 6 0.000 3 0.000 1.3E+04 1.E+05
125 8 42 0.008 8 0.000 1.8E+03 3.E+04
413 29 150 0.023 11 0.008 5.7E+02 2.E+04
673 57 258 0.027 12 0.012 4.9E+01 3.E+03

1053 85 402 0.027 11 0.020 2.9E+01 2.E+03
2025 169 786 0.086 13 0.059 1.5E+01 2.E+03
2897 260 1146 0.094 13 0.094 5.8E+00 8.E+02
3163 288 1254 0.031 15 0.117 2.3E+00 3.E+02
4115 386 1638 0.098 15 0.156 2.4E+00 4.E+02
4577 428 1818 0.047 15 0.176 7.2E-01 1.E+02
5873 533 2322 0.109 14 0.227 5.1E-01 1.E+02

Table 29: Refinement history for layer3.

8 Numerical examples

We will give some numerical test examples. All examples are discretized
with serendipity elements, e.g. NEIN=20. The linear system is solved with
the BPX-preconditioner. The relative accuracy in the preconditioned energy
norm is 10−2, and the initial vector in the PCG-method is the solution of the
preceeding levels. Hence, this accuracy is enough.

8.1 Layer3

The first example considers a boundary layer for the convection- diffusion
equation. More precisely, we solve

−ε4u+ u = 1 in Ω = (0, 1)3,

u = 0 on x = 0, y = 0, z = 0,
∂u

∂n
= 0 on x = 1, y = 1, z = 1.

After 13 steps of refinement we get the mesh of Figure 11. The coarse
mesh consists of the cube (0, 1)3. The vertex (0, 0, 0) is not visible. The
refinement history is displayed in Table 29.

62

layer3 - Level13 - 1 proc.

SFB 393 - TU Chemnitz

Figure 11: Layer3 after 13 refinements.

63

torte4d2 - Level 7 - 1 proc.

SFB 393 - TU Chemnitz

Figure 12: Torte4d2 after 13 refinements.

8.2 Torte4d2

The second example considers a layer near an non-convex edge. More pre-
cisely, we solve

−4u = 0 in Ω,

u = 100 on Γ1.

The domain Ω is in cylinder coordinates (r, φ, z) the domain (0, 3)×(0, 3
2
π)×

(0, 1), Γ1 = ∂Ω.
After 13 steps of refinement we get the mesh of Figure 12. The refinement

history is displayed in Table 30.

8.3 Ct01

The last example considers the Lamé-equation (1.2) in the domain Ω =
(0, 2)×(0, 1)×(0, 4). and the boundary conditions ∂Ωi

1 = (0, 1)×(0, 1)×{0}
for i = 1, . . . , 3 and ∂Ω

(3)
2 = (0, 2)× (0, 1)×{4} with g(3) = 1000. The coarse

mesh consists of 8 cubes of size 1. The point (2, 1, 4) is not visible. After 5
steps of refinement we get the mesh of Figure 13. The refinement history is
displayed in Table 31.

64

Nodes Elements Faces Time for Solver Error Error·N
Assem Iter. Time

141 9 41 0.008 3 0.000 1.3E+02 3.E+03
239 16 77 0.008 5 0.000 2.2E+01 6.E+02
501 37 177 0.023 7 0.004 1.4E+01 6.E+02
583 44 209 0.008 7 0.004 2.9E+00 1.E+02

1079 86 401 0.043 8 0.020 1.8E+00 1.E+02
1227 100 461 0.016 8 0.020 5.9E-01 5.E+01
2037 170 777 0.070 10 0.047 3.8E-01 4.E+01
2527 219 977 0.051 10 0.066 3.6E-01 5.E+01
2757 240 1069 0.023 8 0.059 1.2E-01 2.E+01
3613 310 1397 0.070 11 0.105 7.6E-02 1.E+01
4647 415 1821 0.105 12 0.164 7.4E-02 1.E+01
5533 492 2169 0.078 9 0.148 2.3E-02 5.E+00
6057 534 2369 0.047 9 0.164 1.5E-02 4.E+00

Table 30: Refinement history for Torte4d2.

Nodes Elements Faces Time for Solver Error Error·N
Assem Iter. Time

135 8 38 0.023 40 0.020 4.9E+06 4.E+08
233 15 74 0.023 44 0.055 2.3E+06 3.E+08
495 36 174 0.086 51 0.195 7.9E+05 2.E+08
989 78 366 0.160 57 0.477 2.3E+05 7.E+07

1947 162 742 0.293 60 1.082 7.0E+04 3.E+07
4283 372 1666 0.742 65 2.801 2.1E+04 2.E+07
8205 722 3214 1.246 34 3.059 1.3E+04 2.E+07

Table 31: Refinement history for Ct01.

65

ct01 - Level 5 - 1 proc.

SFB 393 - TU Chemnitz

Figure 13: Ct01 after 5 refinements.

66

References

[1] Th. Apel, F. Milde, and U. Reichel. Spc-pm po 3d v4.0 - programmer’s
manual (part ii). Technical Report SFB393 99-37, Technische Universität
Chemnitz, December 1999.

[2] Th. Apel, F. Milde, and M. Theß. Spc-pm po 3d - programmer’s manual.
Technical Report SPC95-34, Technische Universität Chemnitz-Zwickau,
December 1995.

[3] Th. Apel and U. Reichel. Spc-pm po 3d v3.3 - user’s manual. Technical
Report SFB393 99-06, Technische Universität Chemnitz, February 1999.

[4] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Math. Comp., 55(191):1–22, 1991.

[5] G. Kunert. A posteriori error estimation for anisotropic tetrahedral and
triangular finite element meshes. Phd thesis, Technische Universität
Chemnitz, 1999.

[6] D. Lohse. Ein standard-file für 3d-gebietsbeschreibungen. - definition des
fileformats v 2.1. Technical Report SFB393 98-17, Technische Universität
Chemnitz, April 1998.

[7] M. Pester. Behandlung gekrümmter oberflächen in einem 3d-fem-
programm für parallelrechner. Technical Report SFB393 97-10, Tech-
nische Universität Chemnitz, April 1997.

[8] H. Yserentant. On the multi-level-splitting of the finite element spaces.
Numer. Math., 49:379–412, 1986.

67

Other titles in the SFB393 series:

00-01 G. Kunert. Anisotropic mesh construction and error estimation in the finite
element method. January 2000.

00-02 V. Mehrmann, D. Watkins. Structure-preserving methods for computing
eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. January
2000.

00-03 X. W. Guan, U. Grimm, R. A. Römer, M. Schreiber. Integrable impurities
for an open fermion chain. January 2000.

00-04 R. A. Römer, M. Schreiber, T. Vojta. Disorder and two-particle interaction
in low-dimensional quantum systems. January 2000.

00-05 P. Benner, R. Byers, V. Mehrmann, H. Xu. A unified deflating subspace
approach for classes of polynomial and rational matrix equations. January
2000.

00-06 M. Jung, S. Nicaise, J. Tabka. Some multilevel methods on graded meshes.
February 2000.

00-07 H. Harbrecht, F. Paiva, C. Perez, R. Schneider. Multiscale Preconditioning
for the Coupling of FEM-BEM. February 2000.

00-08 P. Kunkel, V. Mehrmann. Analysis of over- and underdetermined nonlinear
differential-algebraic systems with application to nonlinear control problems.
February 2000.

00-09 U.-J. Görke, A. Bucher, R. Kreißig, D. Michael. Ein Beitrag zur Lösung
von Anfangs-Randwert-Problemen einschließlich der Materialmodellierung
bei finiten elastisch-plastischen Verzerrungen mit Hilfe der FEM. März 2000.

00-10 M. J. Martins, X.-W. Guan. Integrability of the D2
n vertex models with

open boundary. March 2000.

00-11 T. Apel, S. Nicaise, J. Schöberl. A non-conforming finite element method
with anisotropic mesh grading for the Stokes problem in domains with edges.
March 2000.

00-12 B. Lins, P. Meade, C. Mehl, L. Rodman. Normal Matrices and Polar De-
compositions in Indefinite Inner Products. March 2000.

00-13 C. Bourgeois. Two boundary element methods for the clamped plate. March
2000.

68

00-14 C. Bourgeois, R. Schneider. Biorthogonal wavelets for the direct integral
formulation of the heat equation. March 2000.

00-15 A. Rathsfeld, R. Schneider. On a quadrature algorithm for the piecewise
linear collocation applied to boundary integral equations. March 2000.

00-16 S. Meinel. Untersuchungen zu Druckiterationsverfahren für dichteveränderliche
Strömungen mit niedriger Machzahl. März 2000.

00-17 M. Konstantinov, V. Mehrmann, P. Petkov. On Fractional Exponents in
Perturbed Matrix Spectra of Defective Matrices. April 2000.

00-18 J. Xue. On the blockwise perturbation of nearly uncoupled Markov chains.
April 2000.

00-19 N. Arada, J.-P. Raymond, F. Tröltzsch. On an Augmented Lagrangian SQP
Method for a Class of Optimal Control Problems in Banach Spaces. April
2000.

00-20 H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for 2D-BEM. April
2000.

00-21 V. Uski, B. Mehlig, R. A. Römer, M. Schreiber. An exact-diagonalization
study of rare events in disordered conductors. April 2000.

00-22 V. Uski, B. Mehlig, R. A. Römer, M. Schreiber. Numerical study of eigen-
vector statistics for random banded matrices. May 2000.

00-23 R. A. Römer, M. Raikh. Aharonov-Bohm oscillations in the exciton lumi-
nescence from a semiconductor nanoring. May 2000.

00-24 R. A. Römer, P. Ziesche. Hellmann-Feynman theorem and fluctuation-
correlation analysis of i the Calogero-Sutherland model. May 2000.

00-25 S. Beuchler. A preconditioner for solving the inner problem of the p-version
of the FEM. May 2000.

00-26 C. Villagonzalo, R.A. Römer, M. Schreiber, A. MacKinnon. Behavior of
the thermopower in amorphous materials at the metal-insulator transition.
June 2000.

00-27 C. Mehl, V. Mehrmann, H. Xu. Canonical forms for doubly structured
matrices and pencils. June 2000. S. I. Solov’ev. Preconditioned gradient
iterative methods for nonlinear eigenvalue problems. June 2000.

69

00-29 A. Eilmes, R. A. Römer, M. Schreiber. Exponents of the localization lengths
in the bipartite Anderson model with off-diagonal disorder. June 2000.

00-30 T. Grund, A. Rösch. Optimal control of a linear elliptic equation with a
supremum-norm functional. July 2000.

00-31 M. Bollhöfer. A Robust ILU Based on Monitoring the Growth of the Inverse
Factors. July 2000.

00-32 N. Arada, E. Casas, F. Tröltzsch. Error estimates for a semilinear elliptic
control problem. July 2000.

00-33 T. Penzl. LYAPACK Users Guide. August 2000.

00-34 B. Heinrich, K. Pietsch. Nitsche type mortaring for some elliptic problem
with corner singularities. September 2000.

00-35 P. Benner, R. Byers, H. Faßbender, V. Mehrmann, D. Watkins. Cholesky-
like Factorizations of Skew-Symmetric Matrices. September 2000.

00-36 C. Villagonzalo, R. A. Römer, M. Schreiber, A. MacKinnon. Critical Be-
havior of the Thermoelectric Transport Properties in Amorphous Systems
near the Metal-Insulator Transition. September 2000.

00-37 F. Milde, R. A. Römer, M. Schreiber. Metal-insulator transition in anisotropic
systems. October 2000.

00-38 T. Stykel. Generalized Lyapunov Equations for Descriptor Systems: Stabil-
ity and Inertia Theorems. October 2000.

00-39 G. Kunert. Robust a posteriori error estimation for a singularly perturbed
reaction-diffusion equation on anisotropic tetrahedral meshes. November
2000.

70

