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1 Introduction

1.1 Formulation of the problem

We consider the boundary value problem

−4u = f in Ω1,

u = 0 on Γ1, (1)
∂u

∂n
= 0 on Γ2,

whereΩ1 ⊂ R2 is a domain which can be decomposed into (straight-line) quadrilaterals and
Γ1 ∪ Γ2 = ∂Ω1, Γ1 ∩ Γ2 = ∅. The weak formulation of this problem is:
Findu ∈ H0(Ω1) := {u ∈ H1(Ω1), u |Γ1= 0} such that

a4(u, v) :=

∫
Ω1

uxvx + uyvy =

∫
Ω1

fv ∀v ∈ H0(Ω1) (2)

holds. Problem (1) will be discretized by means of thep-version of the finite element method
using quadrilateralsRs. LetR2 = (−1, 1)2 be the reference element andΦs : R2 → Rs be the
bilinear mapping to the elementRs. We define the finite element space

M := {u ∈ H0(Ω1), u |Rs= u(Φs(ξ, η)) = ũ(ξ, η), ũ ∈ Qp},

whereQp is the space of all polynomialsp(ξ, η) = p1(ξ)p2(η) of maximal degreep in each
variable. Now, the discretized problem can be formulated: Findup ∈M such that

a4(up, vp) =

∫
Ω1

fvp ∀vp ∈M (3)

holds. Let(ψ1, . . . , ψnp) be a basis ofM. Then, problem (3) is equivalent to solving the system
of algebraic finite element equations

Apup = f
p
, (4)

where

Ap = [a4(ψj, ψi)]
np
i,j=1 ,

up = [ui]
np
i=1 ,

f
p

=

[∫
Ω1

fψi

]np
i=1

.

Then,up =
∑

i uiψi is the solution of (3). We are interested in finding an efficient solver for the
system of linear algebraic equations (4).
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1.2 Domain decomposition

Domain decomposition techniques, [19], [17], [18], [16], [15], are efficient iterative methods in
order to solve linear systems of algebraic equations of the type (4). The approximation spaceM

will be split into a direct sumM =M1 ⊕ . . .⊕Mk. The efficient preconditioner

C−1 =
k∑
i=1

Vi(V
T
i ApVi)

−1V T
i

can be built, whereVi is the matrix representation of the orthogonal projectionM 7→ Mi with
respect to the energetic scalar producta4(·, ·).
For our purpose, we have to choosek = 3. The corresponding spaces are defined as follows:

• M1 = Mvert is the space of the vertex functions which are the usual piecewise bilinear
functions of theh-version of the finite element method,

• M2 =Medg is the space of the edge bubble functions,

• M3 =Mint is the space of the interior bubbles which are nonzero on one element only.

An edge bubble function corresponds to an edgee of the mesh. Its support is formed by those
two elements which have this edgee in common. Corresponding to this splitting of the shape
functions, the matrixAp is split analogously into sub-blocks,

Ap =

 Avert Avert,edg Avert,int
Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

 . (5)

The indicesvert, edg andint denote the blocks corresponding to the vertex, edge bubble and
interior bubble functions, respectively. Jensen and Korneev, [13], and Ivanov and Korneev, [11],
[12], developed preconditioners for thep-version of the finite element method in a two-dimen-
sional domain using domain decomposition techniques, [1]. They proposed the preconditioning
matrix

Cp =

 Avert 0 0
0 Aedg Aedg,int
0 Aint,edg Aint

 (6)

corresponding to the splittingMvert ⊕ (Medg ⊕Mint) which is considered in a first step. This
splitting is nearly stable as the following lemma confirms.

LEMMA 1.1. The condition numberκ
(
Cp
−1Ap

)
grows as(1 + log p).

Proof: The proof can be found in [11], Lemma 2.3.2

Therefore, the vertex unknowns can be determined separately. Efficient solution methods are
direct solvers in the case of thep-version of the fem, if the matrixAvert is small, or multi-grid
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methods, [10], in thehp-version. However, the splittingMedg ⊕Mint is not stable. Therefore,
we can proceed as follows. The sub-block corresponding toMedg andMint is factorized as[

Aedg Aedg,int
Aint,edg Aint

]
=

[
I Aedg,intA

−1
int

0 I

] [
Ŝ 0
0 Aint

] [
I 0

A−1
intAint,edg I

]
with the Schur complement

Ŝ := Aedg − Aedg,intA
−1
intAint,edg.

Thus forMint, the subproblem restricted to this space has to be solved, whereas forMedg a
modified problem is considered. The matrixAint corresponds to the interior bubbles having a
support containing one element only. Therefore, the matrixAint is a block diagonal matrix, where
each block corresponds to one element. Hence, in order to compute the interior unknowns, we
have to solve a Dirichlet problem on each quadrilateral. The edge unknowns are computed via

the Schur complement̂S and multiplications with the matrix

[
I

−A−1
intAint,edg

]
and its transpose.

So, in addition to a solver forAvert, three tools are required to define a preconditioner for the
matrix of (6), namely

• a preconditioner for the interior problem,

• a preconditioner for the Schur complementŜ and

• an extension operator from the edges of a quadrilateral into its interior in order to replace
the matrixA−1

intAint,edg.

Ivanov and Korneev, [11], [12], derived some preconditionersCŜ for the Schur complement. The
condition number ofC−1

Ŝ
Ŝ isO(1 + log2 p) in the worst case, wherep is the polynomial degree.

The solution ofCŜx = y can be done by solving triangular systems and fast Fourier transform,
[8]. The problem of the extension operator was investigated by Babuška et. al, [1].
We focus now on a fast solver forAint = blockdiag [ARs ]s, whereARs is that block of the
stiffness matrixAint which corresponds to the elementRs. The following lemma is valid.

LEMMA 1.2. Let ∂Rs ∈ C(t), t ≥ 2, whereC(t) denotes the class of all boundaries which
consist of a finite number oft times continuously differentiable curves and the angles of these
curves at their intersection points on∂Rs are distinct from0 and2π. Then,κ

(
ARs

−1AR2

)
=

O(1), whereAR2 = (−1, 1)2.

Proof: The proof can be found in [13], Lemma 4.2.2

Hence, it is sufficient to investigate the matrixAR2 in order to find a good preconditioner for
Aint. This will be done in the next sections.
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1.3 Properties of the element stiffness matrix

Let d = 2 be the dimension of the domain. By Lemma 1.2,

−4u = f in Rd = (−1, 1)d,
u = 0 on ∂Rd

(7)

is the typical model problem in order to solve the system

Aintx = y

of linear algebraic finite element equations. Problem (7) will be investigated in the cased = 3 as
well. Problem (7) is solved by thep−version of the finite element method with one elementRd

only. As finite element space,

Mp =

{
H1

0 (R2) ∩ span{φij(x, y)}pi,j=0 for d = 2,
H1

0 (R3) ∩ span{φijk(x, y, z)}pi,j,k=0 for d = 3

is chosen, whereφij(x, y) = xiyj andφijk(x, y, z) = xiyjzk, respectively. The discrete problem
is: Findup ∈Mp such that∫

Rd
∇up · ∇vp =

∫
Rd
fvp ∀vp ∈Mp. (8)

In order to define a basis inMp, we choose tensor products of the integrated Legendre polyno-
mialsL̂i [5]. More precisely, let

L̂ij(x, y) = L̂i(x)L̂j(y) 0 ≤ i, j ≤ p,

L̂ijk(x, y, z) = L̂i(x)L̂j(y)L̂k(z) 0 ≤ i, j, k ≤ p.

SinceL̂i(±1) = 0 for i ≥ 2,
Mp = span{L̂ij(x, y)}pi,j=2

for d = 2 and
Mp = span{L̂ijk(x, y, z)}pi,j,k=2

for d = 3. The stiffness matrixAR2 for (8) (with d = 2) is given byAR2 = [aij,kl]
p
i,j=2;k,l=2,

where

aij,kl =

∫
R2

∇L̂ij(x, y) · ∇L̂kl(x, y) d(x, y). (9)

Analogously, the matrixAR3 is defined. The matricesARd can be written explicitely as

AR2 = F ⊗D +D ⊗ F and (10)

AR3 = F ⊗ F ⊗D + F ⊗D ⊗ F +D ⊗ F ⊗ F,
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where the matricesF andD are the one-dimensional mass matrix and stiffness matrix in the
basis of the integrated Legendre polynomials{L̂i(x)}pi=2, i.e.

F =

[∫ 1

−1

L̂i(x)L̂k(x) dx

]p
i,k=2

,

D =

[∫ 1

−1

L̂′i(x)L̂
′
k(x) dx

]p
i,k=2

.

Then, a simple calculation shows that the matrixF is a penta-diagonal matrix with the main
diagonale = [1, 1, . . . , 1]T , the first sub-diagonal[0, . . . , 0]T and the second sub-diagonaly =[
−1

2

√
(2i−3)(2i+5)
(2i−1)(2i+3)

]p−2

i=2
and thatD is a diagonal matrix with the main diagonald =

[
(2i−3)(2i+1)

2

]p
i=2

.

More precisely, one obtains

F = pentdiag[e,0, y],

D = diag[d], (11)

cf. [13]. A reorderingP̃ of the rows and columns of the matricesF andD gives

P̃F P̃ T =

[
F1 0
0 F2

]
, (12)

whereF1 = tridiag[e, yo] andF2 = tridiag[e, ye]. Analogously, with the same permutatioñP ,
one easily derives

P̃DP̃ T =

[
D1 0
0 D2

]
, (13)

whereD1 = diag[do] andD2 = diag[de]. The indiceso ande denote the odd and even compo-
nents of the vectorsy andd. The matrixAR2 has some important properties which we summarize
in a proposition.

PROPOSITION 1.3. Let

G2i+j−2 = Fj ⊗Di +Dj ⊗ Fi, i, j = 1, 2. (14)

Then, the following assertions are valid.

1. There exists a permutationP2 of rows and columns such that

P2AR2P
T
2 = blockdiag [Gi]

4
i=1 (15)

holds.

2. The matricesGi, i = 1, 2, 3, 4 are sparse.

3. Moreover, each blockGi has a 5-point stencil structure.
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4. The condition number ofGi is of orderp2.

5. The blocksGi are spectrally equivalent to each other, i.e.κ
(
Gi
−1Gj

)
= O(1) for i, j =

1, . . . , 4.

Proof: This proposition is proved in [13].2
Similar results are valid forAR3. We introduce the matrices

H4i+2j+k−6 = Fi ⊗ Fj ⊗Dk + Fi ⊗Dj ⊗ Fk +Di ⊗ Fj ⊗ Fk (16)

for i, j, k = 1, 2. Using similar arguments as in Proposition 1.3, the next proposition follows.

PROPOSITION 1.4. There exists a permutationP3 of rows and columns such that

P3AR3P
T
3 = blockdiag [Hi]

8
i=1

holds. The blocksHi are spectrally equivalent to each other, i.e.κ
(
Hi
−1Hj

)
= O(1) for all

i, j = 1, . . . , 8.

In the following, we will focus on finding efficient preconditioners forG1, andH1. Via Propo-
sitions 1.3 and 1.4, the preconditioners forARd , d = 2, 3 can be constructed. For reasons of
simplicity, we assume thatp is odd. Furthermore, letn − 1 = p−1

2
be the dimension ofF1, and

D1.
In order to define a preconditioner forG1, we introduce the matrices

T2 =
1

2
tridiag [2e,−e] , (17)

D4 = 4 diag [q]

with q =
[
i2 + 1

6

]n−1

i=1
and

Kk = T2 ⊗D4 +D4 ⊗ T2. (18)

LEMMA 1.5. Letn− 1 be the dimension of the matrices. The eigenvalue estimates

λmin
(
D1

−1D4

)
≥ c, λmax

(
D1

−1D4

)
≤ c,

λmin
(
T2
−1F1

)
≥ c, λmax

(
T2
−1F1

)
≤ c(1 + log n)

are valid.

Proof: The assertion has been proved in [2].2

By tensor product arguments, the estimateκ
(
Kk

−1G1

)
� (1 + log p) follows. Analogously,

we introduce the matrixKk,3 = D4 ⊗ T2 ⊗ T2 + T2 ⊗ D4 ⊗ T2 + D4 ⊗ T2 ⊗ T2. This matrix
is a preconditioner forH1 with κ

(
Kk,3

−1H1

)
� (1 + log p)2. The matricesKk andKk,3 can

be interpreted as piecewise linear, bilinear, or trilinear finite element discretization matrices of
degenerated problems on regular tensor product like meshes, [3], [14].
The corresponding systemKku = f can be solved by a preconditioned conjugate gradient
method with
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• an Algebraic Multi-Level Iteration (AMLI) preconditioner̂Kk,2 = Lk, [6],

• a multi-grid preconditioner̂Kk,2 = Mk, [5],

• a wavelet preconditioner̂Kk,2 = Wk,2, [7].

In the corresponding papers, [6], [5], [7], the condition number estimatesκ
(
K̂−1
k,2Kk

)
≤ c has

been shown for̂Kk,2 = Lk, K̂k,2 = Mk, andK̂k,2 = Wk,2.
In order to solveKk,3w = r, efficient preconditioners are derived by wavelets bases, [7].

Using Propositions 1.3 and 1.4, preconditionersK̂k,d = Pdblockdiag
[
K̂k,d

]2d

i=1
P T
d , for ARd ,

d = 2, 3, follow. Sinceκ
(
Kk

−1G1

)
� (1 + log p) andκ

(
Kk,3

−1H1

)
� (1 + log p)2, we can

prove the resultκ
(
K̂−1
k,dARd

)
� (1 + log p)d−1 only, [6], [7]. The solution of ˆ̃Kk,dw = r is

arithmetically optimal. In [14], a preconditioner̃C for AR2 is derived withκ
(
C̃−1AR2

)
≤ c.

However, the solution of̃Cw = r requiresO(p2(1 + log p)) floating point operations.

The aim of this paper is to prove the stronger estimateκ
(
K̂−1
k,dARd

)
≤ c for the mentioned pre-

conditioners withK̂k,2 = Lk, K̂k,2 = Mk, andK̂k,2 = Wk,2, where the constantc is independent
of p for d = 2, 3. The key in order to obtain this result is the proof of the stronger estimate
λmax

(
T2
−1F1

)
≤ c. We will conclude this result as a corollary of the multi-resolution weighted

norm equivalences given in [7]. Moreover, the preconditioning operationK̂−1
k,dw = r can be

applied inO(pd) operations.
This paper is organized as follows. In section 2, we define preconditionersD5 for D1 andT3

for F1. In section 3, we show thatD5 andT3 can be interpreted as finite element discretization
matrices of several auxiliary problems. In section 4, we start with a short motivation of the
purpose of wavelet preconditioners. Furthermore, we define wavelet preconditioners forD5 and
T3. The main condition number estimates are proved. Finally, we showλmax

(
T2
−1F1

)
≤ c and

strengthen the condition number estimates for the matrix(K̂k,d)
−1ARd given in [6], [5], [7]. In

section 5, a numerical example is given.

2 Preconditioners for the one-dimensional mass and stiffness
matrix

The aim of this section is to derive preconditionersT3 for F1 (12) andD5 for D1 (13) such that
the condition numbers ofT−1

3 F1 andD−1
5 D1 are bounded by a constantc independent of the

dimension of the matrix. The resulting matricesT3 andD5 will be interpreted as piecewise linear
finite element discretizations of auxiliary bilinear forms, see section 3. For this purpose, the
matrices

D3 = 4 diag [y] , (19)

D5 = tridiag[b, a] (20)
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with y = [i2]
n−1
i=1 , a =

[
i2 + i+ 3

10

]n−2

i=1
, andb =

[
4i2 + 2

5

]n−1

i=1
are introduced.

LEMMA 2.1. Letn− 1 be the dimension of the matrices. The eigenvalue estimates

λmin
(
D1

−1Di

)
≥ c, λmax

(
D1

−1Di

)
≤ c, i = 3, 5, (21)

are valid. Moreover, let
T1 = D−1

3 + T2. (22)

Then,λmin
(
T1
−1F1

)
≥ c andλmax

(
T1
−1F1

)
≤ c hold, wherec is independent ofn.

Proof: The proof of (21) fori = 3 has been given in [2]. In order to prove (21) in the casei = 5,
we refer to [4]. The assertionκ

(
T1
−1F1

)
≤ c has been proved in [13].2

In previous papers, [5], [6], [7], the matrixT2 (17) is used as preconditioner forF1 (12). This
matrix has a simple interpretation as the discretization of the one-dimensional Laplacian, see
section 3. ForT1 (22), orD−1

3 , such an interpretation is not obvious in the case of finite element
discretizations. However, we are able to proveκ

(
T1
−1F1

)
= O(1) in comparison to the old

resultκ
(
T2
−1F1

)
� O(1 + log n) given in [2]. Now, we introduce a tridiagonal matrixD6 from

which we will show thatκ (D3D6) ≤ c. Let

D6 = tridiag[h, r], (23)

where

h =
1

2
[(j − 1) ln(j − 1)− (j + 1) ln(j + 1) + 2 ln(j) + 2]n−1

j=1 ,

r =
1

4
[−2 + (2j + 1) ln(j + 1)− (2j + 1) ln(j)]n−2

j=1 .

For reasons of simplicity, the undefined value “0 ln 0” is 0 by definition. It will be shown in the
next section that the matrixD6 can be interpreted as a weighted mass-matrix.
The following result is valid.

LEMMA 2.2. The condition number ofD3D6 is bounded by a constant independent ofn, i.e.
κ (D3D6) ≤ c.

Proof: The proof is similar to the proof of Lemma 2.1 in [4]. More precisely, we determine the
entries of the symmetric tridiagonal matrix

H2 = [h
(2)
ij ]n−1

i,j=1 = D
1
2
3 D6D

1
2
3

and take Gerschgorin disks. Then, one easily checks

h
(2)
jj = 4j2 + 4j2 ln j + 2j2(j − 1) ln(j − 1)− 2j2(j + 1) ln(j + 1),

h
(2)
j+1,j = h

(2)
j,j+1 = (2j + 1)j(j + 1) ln(j + 1)− (2j + 1)j(j + 1) ln j − 2j(j + 1).
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One easily verifies thathij ≥ 0 for all i, j ∈ N. Moreover, we obtain

h
(2)
j,j−1 + h

(2)
jj + h

(2)
j,j+1 = 2

(
j2 ln

j2 − 1

j2
+ j ln

j + 1

j − 1

)
,

−h(2)
j,j−1 + h

(2)
jj − h

(2)
j,j+1 = 2

(
5j2 ln

j2

j2 − 1
+ 8j2 + j ln

j − 1

j + 1
+ 4j2 ln

j − 1

j + 1

)
for j ≥ 2. The functionf : (1,∞) 7→ R,

f(x) = 2

(
x2 ln

x2 − 1

x2
+ x ln

x+ 1

x− 1

)
is monotonic decreasing forx ≥ 2. It attains its maximum on[2,∞) atx = 2, where

max
x∈[2,∞)

f(x) = f(2) = 12 ln 3− 16 ln 2. (24)

The functiong : (1,∞) 7→ R,

g(x) = 2

(
5x2 ln

x2

x2 − 1
+ 8x2 + x ln

x− 1

x+ 1
+ 4x2 ln

x− 1

x+ 1

)
is monotonic decreasing forx ≥ 2 and satisfies

inf
x∈[2,∞)

g(x) = lim
x→∞

g(x) =
2

3
, (25)

which is its infimum on the interval[2,∞). Moreover, by a direct calculation, the relations
h

(2)
11 = 4− 4 ln 2 andh(2)

12 = 6 ln 2− 4 are valid. Thus,

h
(2)
11 + h

(2)
12 = 2 ln 2, (26)

h
(2)
11 − h

(2)
12 = 8− 10 ln 2. (27)

By (24) and (26), the lower eigenvalue estimate

λmin (D3D6) ≤ 12 ln 3− 16 ln 2

follows. By (25) and (27), one obtains the upper eigenvalue estimate

λmax (D3D6) ≤
2

3

which proves the lemma.2
Now, we introduce the matrix

T3 = D6 + T2. (28)

Then by Lemma 2.2, the following conclusion can be drawn.

COROLLARY 2.3. The matrixT1 = D−1
3 + T2 is spectrally equivalent to the matrixT3, i.e.

κ
(
T1
−1T3

)
≤ c.

Proof: Use Lemma 2.2 and the fact thatD3, D6 andT2 are symmetric and positive definite
matrices.2
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3 Interpretation of the preconditioners

In the previous section, several preconditioners for the matricesF1 andD1, cf. (12) and (13)
are derived. In this chapter, we show that these preconditioners can be interpreted as matrices
resulting from the discretization of several one dimensional auxiliary problems. Consider the
following problem:
Findu ∈ H1

0 ((0, 1)) ∩ L2
ω((0, 1)) ∩ L2

ω−1((0, 1)) such that

a1(u, v) = 〈u′, v′〉 + 〈u, v〉ω + 〈u, v〉ω−1 = 〈g, v〉 (29)

holds for allv ∈ H1
0 ((0, 1)) ∩ L2

ω((0, 1)) ∩ L2
ω−1((0, 1)), where

〈u, v〉ω =

∫ 1

0

ω2(x)u(x)v(x) dx.

The weight function is specified later. This one-dimensional problem (29) is discretized by linear
finite elements on the equidistant mesh

Tk =
n−1⋃
i=0

τ ki ,

where

τ ki =

(
i

n
,
i+ 1

n

)
.

The parameterk denotes the level number. On this mesh, we introduce the one-dimensional
hat-functions

φ
(1,k)
i (x) =


nx− (i− 1) on τ ki−1

(i+ 1)− nx on τ ki
0 else

, i = 1, . . . , n− 1, (30)

wheren = 2k. LetV(1)
k = span{φ(1,k)

i }n−1
i=1 be the corresponding finite element space. Then, the

Galerkin projection of (29) ontoV(1)
k is:

Finduk ∈ V(1)
k such that

a1(u
k, vk) = 〈g, vk〉 ∀vk ∈ V(1)

k . (31)

Then using (17), we obtain

T φω=1 :=
[
〈(φ(1,k)

j )′, (φ
(1,k)
i )′〉

]n−1

i,j=1
= 2n T2 = n tridiag[2e,−e]. (32)

Moreover, an easy calculation shows

Mφ
ω=x :=

[
〈φ(1,k)

j , φ
(1,k)
i 〉ω=x

]n−1

i,j=1
=

1

6n3
D5 (33)
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and

Mφ
ω=x−1 =

[
〈φ(1,k)

j , φ
(1,k)
i 〉ω=x−1

]n−1

i,j=1
= 4nD6. (34)

By (32), (34), and (28), one checks[
2〈(φ(1,k)

j )′, (φ
(1,k)
i )′〉 + 〈φ(1,k)

j , φ
(1,k)
i 〉ω=x−1

]n−1

i,j=1
= 4nT3. (35)

Hence, interpretations of the matricesT2 ∈ Rn−1×n−1 (17), T3 ∈ Rn−1×n−1 (28), D5 ∈
Rn−1×n−1 (19) andD6 ∈ Rn−1×n−1 (23) have been given.

4 Wavelet preconditioners

In section 3, we have considered a finite element discretization of an auxiliary problem in one
space dimension. The discretization matricesT3 ∈ Rn−1×n−1 (28), andD5 ∈ Rn−1×n−1 (20) are
preconditioners for the matricesF1 (12) andD1 (13).
Due to (10), we primarily are interested in finding fast solvers for tensor products of the matri-
cesT3 andD5, or F1 andD1. Moreover, we propose preconditioners for the element stiffness
matrices of thep-version of the fem,AR2 andAR3 (10) such that the condition numbers of the
preconditioned systems are bounded by a constant independent of the polynomial degreep.

4.1 1D case, motivation

We consider problem (29) with the weight functionω(ξ). The matricesD5, andD6 correspond-
ing to the mass parts〈·, ·〉ω, and〈·, ·〉ω−1 of the bilinear forma1(·, ·) (29) are spectrally equivalent
to the diagonal matrixD3 (19), and its inverseD−1

3 , cf. Lemma 2.1, and Lemma 2.2. However,
for the matrixT2 ∈ Rn−1×n−1 corresponding to the stiffness part in the bilinear forma1(·, ·),
it does not exist a diagonal matrixD ∈ Rn−1×n−1 such that the condition number ofD−1T2 is
bounded by a constant independent of the dimensionn− 1. Let{φ(1,l)

i }(i,l)∈Îk be the hierarchical

basis, see [21], on levelk. The index set̂Ik is given by

Îk =
{
(i, l) ∈ N2, 1 ≤ l ≤ k, i = 2m− 1, 1 ≤ m ≤ 2l−1,m ∈ N

}
.

Let
T φ,hω=1 =

[
〈(φ(1,l)

i )′, (φ
(1,l′)
j )′〉ω=1

]
(j,l′),(i,l)∈Îk

be the matrix corresponding to the stiffness part of the bilinear form (29) with respect to the
hierarchical basis{φ(1,l)

i }(i,l)∈Îk . Then, by a simple calculation, the matrixT φ,hω=1 is a diagonal
matrix. More precisely, one obtains

〈(φ(1,l)
i )′, (φ

(1,l′)
j )′〉ω=1 = 2lδll′δij.

12



Thus, we have found a basis in which the stiffness part of the bilinear forma1(·, ·) is spectrally
equivalent to a diagonal matrix. However, a diagonal matrixD is not known such that the mass
matrix

Mφ,h
ω =

[
〈φ(1,l)

i , φ
(1,l′)
j 〉ω

]
(j,l′),(i,l)∈Îk

with respect to the hierarchical basis satisfies the condition number estimateκ
(
D−1Mφ,h

ω

)
< c

independently of the dimension of the matrices.
Consider (29) with the weight functionω(x) = 1. In the wavelet theory, see e.g. [9], [20], it is
known that it can be constructed a basis{ψlj}l≤k with span{ψlj}l≤k = span{φ(1,k)

i }n−1
i=1 such that

the matrices

Mψ
ω=1 =

[
〈ψl′j′ , ψlj〉ω=1

]
(j,l),(j′,l′)

and

Tψω=1 =
[
〈(ψl′j′)′, (ψlj)′〉ω=1

]
(j,l),(j′,l′)

are spectrally equivalent to diagonal matrices. More precisely, letDMψ
ω=1

be the identity matrix

I andDTψω=1
= diag [u], whereu =

[
22l

]T
(j,l)

. Then, see [9], [20], there

κ
(
(DMψ

ω=1
)−1Mψ

ω=1

)
= O(1), (36)

κ
(
(DTψω=1

)−1Tψω=1

)
= O(1) (37)

holds. These facts can be used to derive a preconditioner forT φω=1 andMφ
ω=1. LetQ be the basis

transformation from the nodal basis{φ(1,k)
i }2k−1

i=1 to the wavelet basis{ψlj}l≤k. Then,

Tψω=1 = QTT φω=1Q.

By κ
(
(DTψω=1

)−1Tψω=1

)
= O(1), the condition number estimates

κ
(
(DTψω=1

)−1QTT φω=1Q
)

= O(1) ⇐⇒ κ
(
Q(DTψω=1

)−1QTT φω=1

)
= O(1)

are valid. Similarly,κ
(
Q(DMψ

ω=1
)−1QTMφ

ω=1

)
= O(1) is valid. Thus, we have found precon-

ditioners forT φω=1, andMφ
ω=1.

In (31), we consider the case of the singular weight functionsω(x) = x andω(x) = 1
x
. In [7],

the resultκ
(
Q(DMψ

ω
)−1QTMφ

ω

)
= O(1) is shown under certain assumptions concerning the

weight functionω and the waveletsψlj which we formulate now.

ASSUMPTION 4.1. The nonnegative weight functionω(x) is assumed to belong to the space
W 1,∞((δ, 1)) for everyδ > 0 and to satisfy

C−1
ω ≤ ω(x)

xα
≤ Cω, C−1

ω ≤ ω′(x)

xα−1
≤ Cω,

for someCω > 0 and someα ∈ R.

13



Here and in the following,Cω denotes a generic positive constant depending only on the weight
functionω(x) which can take different values in different places. The parameterα will be spec-
ified in the next assumption. At the boundaryx = 0, we consider the following kind of multi-
resolution spaces.

ASSUMPTION 4.2. ψlk ∈W0 ⊂ W 1,∞((0, 1)) with 0 ∈ suppψlk satisfies

|ψlk(x)| ≤ Cψ2l/2(2lx)β, |(ψlk)′(x)| ≤ Cψ23l/2(2lx)β−1, (38)

for x ∈ [0, 2−l], β ∈ N ∪ {0}. We assume thatα+ β > −1
2
, or, equivalently,2α+ 2β + 1 > 0.

ASSUMPTION 4.3. We suppose that there exists also a biorthogonal, or dual, Riesz basis

Ψ̃ = span
{
ψ̃lj

}
such that〈ψ̃lj, ψl

′

j′〉 = δj,j′δl,l′ and everyv ∈ L2((0, 1)) has a representation

v =
∞∑
l=1

∑
j

〈v, ψlj〉ψ̃lj =
∞∑
l=1

∑
j

〈v, ψ̃lj〉ψlj

and that the norm equivalences

‖v‖2
0 ∼

∞∑
l=1

∑
j

|〈v, ψlj〉|2 ∼
∞∑
l=1

∑
j

|〈v, ψ̃lj〉|2

‖v‖2
1 ∼

∞∑
l=1

22l
∑
j

|〈v, ψ̃lj〉|2

hold.

In [7], Theorem 3.3, it has been proved the equivalence of theL2
ω norm of a function

u =
∞∑
l=1

∑
j

uljψ
l
j ∈ L2

ω ((0, 1))

with its discretel2ω norm of the coefficientsulj ∈ R, i.e.

9ulj9
2
w :=

∞∑
l=1

∑
j

ω2(2−lj)|ulj|2.

THEOREM 4.4. Let us assume that the Assumptions 4.1, 4.2, and 4.3 are satisfied. Let‖ u ‖2
ω=

〈u, u〉ω. For anyu =
∑∞

l=1

∑
j u

l
jψ

l
j ∈ L2

ω ((0, 1)) holds

‖ u ‖2
ω≈ 9ulj 92

w .
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Let us introduce the diagonal matrices

DTψω=1
= diag[v] with v =

[
22l

]T
(j,l)

and

DMψ
ω

= diag[t] with t =
[
ω2(2−lj)

]T
(j,l)

.

COROLLARY 4.5. Let ω(ξ) = ξα, α = ±1. Let {ψlj}l≤k ⊂ Vk be a wavelet basis with

{ψlj}l≤k ∈ W 1,∞((0, 1)) and{ψ̃lj}l≤k ∈ W 1,∞((0, 1)). The basis transformation from the nodal

basis{φ(1,k)
i }2k−1

i=1 to the wavelet basis{ψlj}l≤k is denoted byQ. Then, the following eigenvalue
estimates are valid:

λmin

(
Q

(
DTψω=1

)−1

QTT φω=1

)
≥ c, λmax

(
Q

(
DTψω=1

)−1

QTT φω=1

)
≤ c,

λmin

(
Q

(
DMψ

ω

)−1

QTMφ
ω

)
≥ c, λmax

(
Q

(
DMψ

ω

)−1

QTMφ
ω

)
≤ c,

wherec is a constant independent ofn.

Proof: Use Theorem 4.4. Since the functionsφ1,k
i are piecewise linear andu(0) = 0 for all

u ∈ Vk, the relationβ = 1 holds at the boundaryx = 0, cf. Assumption 4.2. Thus, the
assumptions of Theorem 4.4 are satisfied forω(x) = xα with α = ±1. Hence, we have

λmin

((
DTψω=1

)−1

Tψω=1

)
= O(1), λmax

((
DTψω=1

)−1

Tψω=1

)
= O(1),

λmin

((
DMψ

ω

)−1

Mψ
ω

)
= O(1), λmax

((
DMψ

ω

)−1

Mψ
ω

)
= O(1).

SinceTψω = QTT φωQ andMψ
ω = QTMφ

ωQ, the assertion has been proved.2

4.2 Applications for the p-version of the fem in two and three dimensions

In this subsection, we define wavelet preconditionersWk,d for the matricesARd , d = 2, 3, with
κ

(
Wk,d

−1ARd
)
≤ c. Note thatARd , or equivalently,G1, andH1, are tensor products of the

matricesF1 (13) andD1 (12), cf. (14) and (16). Thus, we propose wavelet preconditioners for
F1 andD1 in a first step.
Due to Corollary 4.5, Lemma 2.1, Lemma 2.2 and (35), we propose the preconditioner

F−1
3 = Q

(
2DTψω=1

+DMψ

ω=x−1

)−1

QT

for F1. The estimateκ
(
F3
−1F1

)
= O(1) is valid. The preconditioner

F−1
4 =

1

2
Q

(
DTψω=1

)−1

QT (39)

can be chosen as well asF3 and is simpler thanF3. Here, the matrix2DTψω=1
+ DMψ

ω=x−1
is

replaced by the matrix2DTψω=1
.
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LEMMA 4.6. The estimateλmin

((
DMψ

ω=x−1

)−1

DTψω=1

)
= 1 is satisfied.

Proof: Note that

DMω=x−1 = diag [t] with t = [ω2(2−lj)](j,l) = [22lj−2](j,l) and

DTω=1 = diag [v] with v = [22l](j,l).

Thus,(DMω=x−1 )
−1DTω=1 = diag [c] with c = [j2](j,l). Sincej ≥ 1, each entry of the diagonal

matrixdiag [c] is bounded by1 from below. Hence, the assertion follows.2

A direct consequence of this lemma is the following corollary.

COROLLARY 4.7. LetQ denote the basis transformation from the nodal basis{φ(1,k)
i }2k−1

i=1 to
the wavelet basis{ψlj}l≤k. Then, the condition number estimates

κ
(
Q(DMψ

ω=x
)−1QTD1

)
< c and

κ
(
F4
−1F1

)
< c (40)

are valid, wherec is independent ofp.

Proof: The first assertion follows from Corollary 4.5, (33) and (21). In order to prove (40), we
have

(F1v, v) �
(
(D−1

3 + T2)v, v
)
� 1

n

(
(Mφ

ω=x−1 + T φω=1)v, v
)

� 1

n

(
Q−T (DMψ

ω=x−1
+DTψω=1

)Q−1v, v
)

� 1

n

(
Q−TDMψ

ω=x−1
Q−1v, v

)
� 1

n
(F4v, v)

by Lemma 2.1, (32), (34), Corollary 4.5, Lemma 4.6 and (39) for allv. 2

Now, preconditioners forG1 andH1 are proposed, i.e.

W2,k = 2
(
Q−T ⊗Q−T

) (
DTψω=1

⊗DMψ
ω=x

+DMψ
ω=x

⊗DTψω=1

) (
Q−1 ⊗Q−1

)
,

W3,k = 4
(
Q−T ⊗Q−T ⊗Q−T

)
(41)(

DTψω=1
⊗DTψω=1

⊗DMψ
ω=x

+DTψω=1
⊗DMψ

ω=x
⊗DTψω=1

+DMψ
ω=x

⊗DTψω=1
⊗DTψω=1

)
(
Q−1 ⊗Q−1 ⊗Q−1

)
.

LEMMA 4.8. The condition number estimatesκ
(
Wk,2

−1G1

)
≤ c andκ

(
Wk,3

−1H1

)
≤ c are

valid.
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Proof: Use Corollary 4.7 and the properties of the Kronecker product.2

In a last step, the preconditioners forARd are defined. Let

Wk,d = P T
d blockdiag [Wk,d]

2d

j=1 Pd for d = 2, 3, (42)

wherePd denotes the permutation of Propositions 1.3 and 1.4. Now, we can formulate the main
theorem of this section.

THEOREM 4.9. The condition number estimatesκ
(
Wk,d

−1ARd
)
≤ c are satisfied. The pa-

rameterc denotes a constant which is independent of the polynomial degreep.

Proof: The result follows from Propositions 1.3, 1.4, and Lemma 4.8.2

In [7], Theorem 4.2, the weaker resultκ
(
Wk,d

−1ARd
)
≤ c(1 + log p)d−1 has been shown. The

reason for the logarithmic term is the stronger estimate in Lemma 4.6.
Moreover, the preconditioning operationw = W−1

k,dr is arithmetically optimal, i.e. it requires
O(pd) floating point operations, [7]. Hence, a preconditioned conjugate gradient method with
the preconditionerWk,d is an arithmetically optimal solver for a system with the matrix (10).
ForAR2, we propose other methods in the following subsection.

4.3 Further conclusions

In Lemma 1.5, we have proved the resultλmax
(
T2
−1F1

)
≤ c(1 + log n). Using the wavelet

approach, a stronger result for the largest eigenvalue of the matrixT−1
2 F1 is valid.

LEMMA 4.10. The eigenvalue estimateλmax
(
T2
−1F1

)
≤ c is satisfied.

Proof: By Lemma 4.6, we have(
DMψ

ω=x−1
v, v

)
≤

(
DTψω=1

v, v
)

∀v ∈ Rn−1.

Using Corollary 4.5, one obtains(
QMφ

ω=x−1Q
Tv, v

)
≤ c1

(
QT φω=1Q

Tv, v
)

∀v ∈ Rn−1,

whereQ denotes the matrix representation of the fast wavelet transformation. With the substitu-
tionQTv = w, one concludes(

Mφ
ω=x−1w,w

)
≤ c1

(
T φω=1w,w

)
∀w ∈ Rn−1.

By (32), (34), and Lemma 2.2, one easily checks the relation

1

c2

(
D−1

3 w,w
)
≤ (D6w,w) ≤ c1

2
(T2w,w) ∀w ∈ Rn−1. (43)

Moreover, we have

(F1w,w) ≤ c3
(
(D−1

3 + T2)w,w
)

∀w ∈ Rn−1 (44)
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by Lemma 2.1 withc = c3(1 + c1c2
2

). Combining (43), (44), and the positive definiteness of all
involved matrices, the assertion follows.2

In a last step, we strengthen the condition number estimates for the preconditioners ofAR2

given in [5], [6]. LetLk be the AMLI preconditionerCh,k in [6], and letMk be the multi-grid
preconditioner forKk proposed in [5]. Moreover, let

Lk = P T
2 blockdiag [Lk]

4
i=1 P2, (45)

Mk = P T
2 blockdiag [Mk]

4
i=1 P2,

whereP2 is the permutation matrix in Proposition 1.3.
In [5], we have proved the condition number estimateκ

(
Mk

−1AR2

)
≤ c(1+log p). By Theorem

5.1 in [6], the estimateκ
(
Lk−1AR2

)
≤ c(1 + log p) holds. For both condition numbers, the

following theorem gives a more rigorous estimate.

THEOREM 4.11. The condition number estimatesκ
(
Lk−1AR2

)
≤ c andκ

(
Mk

−1AR2

)
≤ c

are valid.

Proof: We start withκ
(
Lk−1AR2

)
≤ c. By Theorem 3.2 in [6], we haveκ

(
Lk
−1Kk

)
≤ c.

Moreover, by Lemma 4.10, Lemma 1.5, relations (14) and (18) and tensor product arguments
one easily checks the relationκ

(
Kk

−1G1

)
≤ c. Thus, we haveκ

(
Lk
−1G1

)
≤ c. Hence, the

assertion follows by Proposition 1.3 and (45). The estimateκ
(
Mk

−1AR2

)
≤ c can be proved

with similar arguments, see e.g. the proof of Theorem 7.1 in [3].2

Thus, we have two preconditionersMk andLk for AR2 such that the condition number of the
preconditioned system matrix is bounded by a constant independent of the polynomial degree.
The cost in order to apply the preconditioning operationsw = M−1

k r andw = L−1
k r isO(p2).

For more details, we refer to [6], [5]. So, we have two another arithmetically optimal solvers for
the system of linear algebraic equationsAR2u = f .

5 Numerical example

Now, we give a numerical example. The condition numbers of the weighted mass matricesMψ
ω

with ω(ξ) = ξ±1 are considered. The wavelets are generated by the piecewise linear functions
ψ2l with two vanishing moments on the primal andd = 2, 4, 6 vanishing moments on the dual
side. Figure 1 shows one wavelet of the familiesψ22 andψ24. Sinceψ̃22 /∈ W 1,∞((0, 1)), the
waveletψ22 does not satisfy the assumptions of Theorem 4.4.
Figure 2 displays the condition numbers of the scaled weighted mass matrices(DMψ

ω
)−1Mψ

ω ,
where

Mψ
ω =

[
〈ψlj, ψl

′

j′〉ω
]

for ω(ξ) = ξ±1 andDMψ
ω

= diag[v] with v = [ω2(2−lj)]. Forω(ξ) = ξ, [7], the wavelet basis
generated by the functionψ22 shows the lowest condition numbers. For the waveletψ26, the
condition numbers are very large.
Using the weight functionω(ξ) = ξ−1, this behaviour is different. Now, the results for the
mass matrices using the wavelet bases forψ24 andψ26 beat the wavelet basis generated by the
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Figure 1: Waveletsψ22 (left), ψ24 (middle) andψ26 (right).
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Figure 2: Condition numbers of the weighted mass matrix forω(ξ) = ξ (left) andω(ξ) = ξ−1

(right).
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waveletψ22. Forψ24 andψ26, the condition numbers are bounded by a constant independent of
the level number. Forψ22, the numerical experiments indicate a growth of the condition number
proportionally to the level number.
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