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1 Introduction

1.1 Formulation of the problem

We consider the boundary value problem

—Au = f in  Qq,

w = 0 on Iy, (1)
ou

— = 0 on T

an 2

where); c R? is a domain which can be decomposed into (straight-line) quadrilaterals and
Uy, =00, Ty NIy = (. The weak formulation of this problem is:
Findu € Hyo() := {u € H*(), u |r,= 0} such that

an(u,v) = / Uy +uyvy = [ fv Vv e Ho(y) (2
Ql Ql

holds. Problem (1) will be discretized by means of theersion of the finite element method
using quadrilateral®,. Let R, = (—1,1)? be the reference element afdd : R, — R, be the
bilinear mapping to the element,. We define the finite element space

M = {u < Ho(Ql),U ’RS: u(q)s(éun)) = ﬂ(£7n>7ﬂ’ € Qp}7

where @, is the space of all polynomials(¢,n) = pi(£)p2(n) of maximal degree in each
variable. Now, the discretized problem can be formulated: kihd M such that

apn(uP o) = foP YoP e M 3)
951

holds. Let(v1, ..., vy,) be a basis oM. Then, problem (3) is equivalent to solving the system
of algebraic finite element equations

Apﬂp = i p’ (4)

where

Ay = laa(@y ¥)l7_,

U, = [u%]?:pl )

b= el

Then,u? = ). u;); is the solution of (3). We are interested in finding an efficient solver for the
system of linear algebraic equations (4).



1.2 Domain decomposition

Domain decomposition techniques, [19], [17], [18], [16], [15], are efficient iterative methods in
order to solve linear systems of algebraic equations of the type (4). The approximatiospace
will be split into a direct sunM = M; & ... & My. The efficient preconditioner

k
Cch = V(A V)Y

1=1

can be built, wheré’; is the matrix representation of the orthogonal projeciiddn— M; with
respect to the energetic scalar product:, -).
For our purpose, we have to chodse- 3. The corresponding spaces are defined as follows:

e M, = M, is the space of the vertex functions which are the usual piecewise bilinear
functions of theh-version of the finite element method,

e M, = M., is the space of the edge bubble functions,
e M3 = M,;,; is the space of the interior bubbles which are nonzero on one element only.

An edge bubble function corresponds to an ee@é the mesh. Its support is formed by those
two elements which have this edgen common. Corresponding to this splitting of the shape
functions, the matrix4,, is split analogously into sub-blocks,

Avert Avert,edg Avert,int
Ap = Aedg,ve’rt Aedg Aedg,int . (5)
Aint,vert Aint,edg Aint

The indicesvert, edg andint denote the blocks corresponding to the vertex, edge bubble and
interior bubble functions, respectively. Jensen and Korneev, [13], and Ivanov and Korneeyv, [11],
[12], developed preconditioners for theversion of the finite element method in a two-dimen-
sional domain using domain decomposition techniques, [1]. They proposed the preconditioning

matrix
Avert 0 0

Cp - 0 Aedg Aedg,int (6)
0 Aint,edg Amt

corresponding to the splittinyl,.,+ & (M.q, & M,,,:) Which is considered in a first step. This
splitting is nearly stable as the following lemma confirms.

LEMMA 1.1. The condition numbet (C, ' A4,) grows as(1 + log p).

Proof: The proof can be found in [11], Lemma 2(3.
Therefore, the vertex unknowns can be determined separately. Efficient solution methods are
direct solvers in the case of theversion of the fem, if the matrix,.,; is small, or multi-grid
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methods, [10], in thép-version. However, the splittindl.,, & M;,, is not stable. Therefore,
we can proceed as follows. The sub-block correspondiid g andM,,, is factorized as

Aedg Aedg,mt _ I Aedg,mtAz‘;w}f S’ 0 I 0
Amt,edg Aint 0 I 0 Aint Ai_nltAmtuedg 1

with the Schur complement
S = Aedg - Aedg,intA;;Aint,edy

Thus for M,,,;, the subproblem restricted to this space has to be solved, wheredé.fpra

modified problem is considered. The matr,, corresponds to the interior bubbles having a

support containing one element only. Therefore, the malgixis a block diagonal matrix, where

each block corresponds to one element. Hence, in order to compute the interior unknowns, we

have to solve a Dirichlet problem on each quadrilateral. The edge unknowns are computed via
I

Ai_niAint,edg

So, in addition to a solver foA,.,;, three tools are required to define a preconditioner for the

matrix of (6), namely

the Schur complemenstand multiplications with the matri% _ } and its transpose.

e a preconditioner for the interior problem,
e a preconditioner for the Schur compleméhand

e an extension operator from the edges of a quadrilateral into its interior in order to replace
the matrixA;,} Ay cay-

lvanov and Korneeyv, [11], [12], derived some preconditiordgy$or the Schur complement. The
condition number oCS‘lS is O(1 + log® p) in the worst case, whereis the polynomial degree.
The solution ofCsz = y can be done by solving triangular systems and fast Fourier transform,
[8]. The problem of the extension operator was investigated by 8abet. al, [1].
We focus now on a fast solver fot;,;, = blockdiag [Ag,|,, Where Ay, is that block of the
stiffness matrixA,,,; which corresponds to the elemdrt. The following lemma is valid.

LEMMA 1.2. LetdR, € C®, t > 2, whereC® denotes the class of all boundaries which
consist of a finite number @ftimes continuously differentiable curves and the angles of these
curves at their intersection points @hR, are distinct from0 and 2zr. Then,x (Ag, ~'Ag,) =
O(1), whereAgr, = (—1,1)%.

Proof: The proof can be found in [13], Lemma 4(2.
Hence, it is sufficient to investigate the matrig, in order to find a good preconditioner for
A, This will be done in the next sections.



1.3 Properties of the element stiffness matrix

Letd = 2 be the dimension of the domain. By Lemma 1.2,

—Au = f in Rd:(—l,l)d, (7)
v = 0 on ORy

is the typical model problem in order to solve the system
Aimz =y

of linear algebraic finite element equations. Problem (7) will be investigated in the casSeas
well. Problem (7) is solved by the—version of the finite element method with one elen@pt
only. As finite element space,

Hj(Rs) Nspan{ey;(z,y)}’ for d=2,

,j=0

M, = { Hg(R3) N span{dyj(z, v, 2)} = fOr d=3

is chosen, where,;(z, y) = z'y’ andg;;x(z,y, 2) = x'y’z*, respectively. The discrete problem
is: Findu? € M,, such that

/ Vu? - VoP :/ foP Yo e M, (8)
Rd 7zd

In order to define a basis iil,, we choose tensor products of the integrated Legendre polyno-
mials L; [5]. More precisely, let

Af/ij($7y) = ‘é
Lijk(l’,y, z) = L
SinceL,;(+1) = 0 fori > 2,
M, = span{Li;(z,y)}} j—

ford =2 and

MP = Span{Lijk(xv Y, Z)}f,j,k;:2
for d = 3. The stiffness matrixiz, for (8) (with d = 2) is given by Ar, = [ai;u]; =2k 1=27
where

Qi Kl = VZA—JU (‘1'7 y) : Vj;kl(l'a y) d(l'a y) (9)
R

Analogously, the matri¥lz, is defined. The matricedr, can be written explicitely as

Ar, = F®D+D®F and (20)
Ar, = FOIFQD+FRDXIF+D®F®F,

3
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where the matrice$’ and D are the one-dinjensional mass matrix and stiffness matrix in the
basis of the integrated Legendre polynomigls(z)}_,, i.e.

- [[romens]

D - U_l B ) () dx]

1 ik=2

Then, a simple calculation shows that the maffixs a penta-diagonal matrix with the main
diagonale = [1,1,...,1]7, the first sub-diagondD, ..., 0]” and the second sub-diagoma-

- - p—2 . . P
[—%, [ G=8G+%|  andthatD is a diagonal matrix with the main diagonat [w}

- (2i+3) i=2 . 2 i=2.
More precisely, one obtains

F = pentdiagle, 0, ],
D = diag[v], (11)
cf. [13]. A reorderingP’ of the rows and columns of the matricEsand D gives

pFﬁT:[Fl 0}

0 F (12)

whereF, = tridiagle,p,) and F, = tridiag[e,p,]. Analogously, with the same permutatiéh
one easily derives

ﬁDﬁT:{Dl 0 1 (13)

0 D,

whereD; = diag[p,] and D, = diag[v.]. The indices» ande denote the odd and even compo-
nents of the vectonsanda. The matrixAz, has some important properties which we summarize
in a proposition.

PROPOSITION 1.3. Let
Goivjo=F;®@D;+D;®F,, i,j=12. (14)
Then, the following assertions are valid.
1. There exists a permutatiaf, of rows and columns such that
PyAg, PY = blockdiag [Gi]}_, (15)
holds.
2. The matrices+;, 1 = 1,2, 3, 4 are sparse.

3. Moreover, each blocks; has a 5-point stencil structure.
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4. The condition number af; is of orderp?.

5. The blocks=; are spectrally equivalent to each other, ife(GflGj) =0(1)fori,j =
1,...,4.

Proof: This proposition is proved in [13]J
Similar results are valid fod,. We introduce the matrices

Hyivojii6 =D, +F,D; @ Fi,+D; @ F; ® Fy, (16)
fori, j, k = 1,2. Using similar arguments as in Proposition 1.3, the next proposition follows.

PROPOSITION 1.4. There exists a permutatiaf; of rows and columns such that
P3Ag, PI' = blockdiag [H,]S_,

holds. The blockd{; are spectrally equivalent to each other, i.e.(H; 'H;) = O(1) for all
ij=1,...,8.

In the following, we will focus on finding efficient preconditioners 1G¢, and H,. Via Propo-
sitions 1.3 and 1.4, the preconditioners fbg,, d = 2,3 can be constructed. For reasons of
simplicity, we assume thatis odd. Furthermore, let — 1 = ’%1 be the dimension of}, and
D;.

In order to define a preconditioner f6f;, we introduce the matrices

1
T, = étridiag [2¢, —¢] (17)
D, = 4diag]g]

with g = [i2 + 1]""" and
Ky =T, Dy + Dy ®T5. (18)

LEMMA 1.5. Letn — 1 be the dimension of the matrices. The eigenvalue estimates

)\mm (D171D4) Z C, Amam (D171D4) S ¢,
Amin (To 7 F) 2 ¢, Aaa (To7'Fy) < (1 + logn)

are valid.

Proof: The assertion has been proved in [2].

By tensor product arguments, the estimatg, 'G;) = (1 + logp) follows. Analogously,

we introduce the matrix(, s = Dy @ To @ To + 1o ® Dy @ Th + Dy @ To ® T5. This matrix

is a preconditioner forf; with x (K3 "Hi) = (1 + logp)®. The matricesk), and K3 can

be interpreted as piecewise linear, bilinear, or trilinear finite element discretization matrices of
degenerated problems on regular tensor product like meshes, [3], [14].

The corresponding systeili,u = f can be solved by a preconditioned conjugate gradient
method with B



e an Algebraic Multi-Level Iteration (AMLI) preconditiondﬁ’k,Q = Ly, [6],
e a multi-grid preconditionef(k,g = M, [9],
e awavelet preconditiondky, , = W;.., [7].

In the corresponding papers, [6], [5], [7], the condition number estima(e[ii,;%[(k) < chas

been shown fORkQ = Ly, [A(k,g = M,, andf(kz = kaz.
In order to solvek;, sw = r, efficient preconditioners are derived by wavelets bases, [7].

2d

Using Propositions 1.3 and 1.4, preconditionkis; = Pyblockdiag [Kk,d} PT, for Ag,,
=1

1=

d = 2,3, follow. Sincer (K;, 'G1) < (14 logp) andr (K3 'Hy) < (1 + logp)?, we can
prove the resulk (l@,;}jARJ = (1 + logp)¢! only, [6], [7]. The solution off(kdw =ris

arithmetically optimal. In [14], a preconditionét for Ag, is derived withx (é—lAR2> <ec
However, the solution of'w = r requires®(p?(1 + log p)) floating point operations.
The aim of this paper is to prove the stronger estimaé&,;;ARJ < ¢ for the mentioned pre-

conditioners WithK, » = Ly, Kj» = My, andK},, = W ,, where the constantis independent

of p for d = 2,3. The key in order to obtain this result is the proof of the stronger estimate
Amaz (T{lFl) < ¢. We will conclude this result as a corollary of the multi-resolution weighted
norm equivalences given in [7]. Moreover, the preconditioning operdﬁgm = r can be
applied inO(p?) operations.

This paper is organized as follows. In section 2, we define preconditidnefer D, andT3

for F7. In section 3, we show thdD; andT5; can be interpreted as finite element discretization
matrices of several auxiliary problems. In section 4, we start with a short motivation of the
purpose of wavelet preconditioners. Furthermore, we define wavelet preconditionexsend

Ts. The main condition number estimates are proved. Finally, we shglw(Tz‘lFl) < cand
strengthen the condition number estimates for the ma&'@gj)*lARd given in [6], [5], [7]. In
section 5, a numerical example is given.

2 Preconditioners for the one-dimensional mass and stiffness
matrix

The aim of this section is to derive preconditiongkdfor £ (12) andD; for D; (13) such that

the condition numbers df; ' Fy and D; ' D, are bounded by a constanindependent of the
dimension of the matrix. The resulting matricBsand D5 will be interpreted as piecewise linear
finite element discretizations of auxiliary bilinear forms, see section 3. For this purpose, the
matrices

Dy = 4diagly, (19)
Ds = tridiaglh, 4| (20)

8



"2 andb = [4i% + %]:‘_1 are introduced.

withp = [2]/"} a = [+ + 10)imr =1

LEMMA 2.1. Letn — 1 be the dimension of the matrices. The eigenvalue estimates

)\min (Dl_lDi) > ¢, /\max (Dl_lDi> < Gy 1= 37 57 (21)
are valid. Moreover, let

Tl - D:;l -+ TQ. (22)

ThenApin (T1 7' F1) > cand A, (717" F1) < ¢ hold, wherer is independent af.
Proof: The proof of (21) fo¥ = 3 has been given in [2]. In order to prove (21) in the caseb,
we refer to [4]. The assertion(7; ' Fy) < c has been proved in [13]J
In previous papers, [5], [6], [7], the matrik, (17) is used as preconditioner féf (12). This
matrix has a simple interpretation as the discretization of the one-dimensional Laplacian, see
section 3. Fofl} (22), orD; ', such an interpretation is not obvious in the case of finite element
discretizations. However, we are able to pr(m/(éfl‘lFl) = (O(1) in comparison to the old

results (7> Fy) < O(1 + log n) given in [2]. Now, we introduce a tridiagonal matti¥ from
which we will show thats (D3Dg) < c. Let

Dg = tridiag]h, ¢, (23)
where

[(j—1)In(j — 1) — (j + D In(j + 1) + 2In(j) + 2]7-}

[~2+(2/ + 1) In(j +1) = (2j + 1) In(j)]}=; .

=Nl

For reasons of simplicity, the undefined valudii 0" is 0 by definition. It will be shown in the
next section that the matrik; can be interpreted as a weighted mass-matrix.
The following result is valid.

LEMMA 2.2. The condition number ab; Dg is bounded by a constant independent.pf.e.
K (D3D6) S C.

Proof: The proof is similar to the proof of Lemma 2.1 in [4]. More precisely, we determine the
entries of the symmetric tridiagonal matrix

Hy = [h))32, = D2DsD3

ij ligj=1 —
and take Gerschgorin disks. Then, one easily checks

B = 452+ 452+ 25%(j — 1)In(j — 1) — 2%(j + 1) In(j + 1),

WD =0 = 2+ 1D+ DI +1) — (25 + 1) + 1) Ing — 2j(j + 1).

9



One easily verifies that;; > 0 for all ¢, ; € N. Moreover, we obtain

) .
2 2 2 ) 7°—1 o J+1
B2+ b 402, = 2 (]2111 = +Jln )

J

=1

.2 . .
(2) @ _ @ 21, J SR ek Y-SR Al
—hijathyy =i = 2 (5J lnjz — T8 +Jlnj 1t 1nj+—1

for j > 2. The functionf : (1,00) — R,

f(z) =2 <:c2 In
is monotonic decreasing far > 2. It attains its maximum of2, o) atz = 2, where

max f(z) = f(2) =12In3 —161n2. (24)

TE€[2,00)

2 —1 r+1
5 + x1n

T Tr —

The functiong : (1,0) — R,

2
B 9 T 9 r—1 5, T —1
g(xz) =2 (5x lnxQ_1 + 8z +x1nx+1 + 4x mx—l—l)
is monotonic decreasing far> 2 and satisfies
2
inf = li = - 25
xel[glm)g(w) Jim g(z) = 3, (25)

which is its infimum on the interval, co). Moreover, by a direct calculation, the relations
h2 =4 —4mm2andn? = 61n2 — 4 are valid. Thus,
M2 4 pD = oma2, (26)
A2 p2 = 8—10m2. (27)
By (24) and (26), the lower eigenvalue estimate
Amin (D3Dg) < 12In3 — 161n 2

follows. By (25) and (27), one obtains the upper eigenvalue estimate
2
Amaac (D3D6) S g

which proves the lemmal
Now, we introduce the matrix

Ts = Dg + To. (28)
Then by Lemma 2.2, the following conclusion can be drawn.
COROLLARY 2.3. The matrixT; = D;' + Ty is spectrally equivalent to the matrik;, i.e.
K (T1_1T3) S C.

Proof: Use Lemma 2.2 and the fact thag, Ds and 7T, are symmetric and positive definite
matrices.O

10



3 Interpretation of the preconditioners

In the previous section, several preconditioners for the matdé¢esnd D,, cf. (12) and (13)

are derived. In this chapter, we show that these preconditioners can be interpreted as matrices
resulting from the discretization of several one dimensional auxiliary problems. Consider the
following problem:

Findu € H((0,1)) N L2((0,1)) N L2 _,((0,1)) such that

a1 (u7 U) = <u/v U,> + <u7 U>w + <u7 U>w*1 = <ga U) (29)
holds for allv € Hj((0,1)) N L2((0,1)) N L2_,((0,1)), where
(U, v)y :/o w?(z)u(x)v(z) da.

The weight function is specified later. This one-dimensional problem (29) is discretized by linear
finite elements on the equidistant mesh

n—1
k
o=
=0

"
7'f:<i7z+ )
n’n

The parametek denotes the level number. On this mesh, we introduce the one-dimensional
hat-functions

where

o) =< (i+1)—nz on TF | i=1...n-1, (30)
0 else

wheren = 2F. Let V,(j) = span{¢§1’k)}?;11 be the corresponding finite element space. Then, the
Galerkin projection of (29) ont&/,(j) is:
Findu* € V" such that

ar (u”, o) = (g,v")  WoF € V,(:). (31)

Then using (17), we obtain

n—1

T¢ | = [((Qs;lvk))', (gb(l’k))’)} = 20 Ty = n tridiag[2¢, —¢]. (32)

=1 ‘=
N ' inj=1

Moreover, an easy calculation shows

n—1

(33)

1
1,k 1,k
Mfzx = [<¢§ )>¢5 )>w=x:| TP

i,j=1

11



and

n—1
My = ({0 6" )omemn | = 4Dy, (34)
By (32), (34), and (28), one checks
n—1
206 @)+, e | = an (35)

Hence, interpretations of the matricés € R "1 (17), Ty € R "1 (28), D5 €
R 1x7=1 (19) andDg € R <"1 (23) have been given.

4 Wavelet preconditioners

In section 3, we have considered a finite element discretization of an auxiliary problem in one
space dimension. The discretization matricgs R"~1*"~! (28), andD; € R*~1*"~! (20) are
preconditioners for the matricdg (12) andD; (13).

Due to (10), we primarily are interested in finding fast solvers for tensor products of the matri-
cesT3 and D5, or F; and D,. Moreover, we propose preconditioners for the element stiffness
matrices of thep-version of the femAx, and Az, (10) such that the condition numbers of the
preconditioned systems are bounded by a constant independent of the polynomiapdegree

4.1 1D case, motivation

We consider problem (29) with the weight functie(€). The matricedDs, and Dg correspond-
ing to the mass parts, -),,,, and(-, -),,-: of the bilinear formu, (-, -) (29) are spectrally equivalent
to the diagonal matrixD; (19), and its inversé; ', cf. Lemma 2.1, and Lemma 2.2. However,
for the matrix7, € R™'*"~! corresponding to the stiffness part in the bilinear farng, -),

it does not exist a diagonal matrix ¢ R"'*"~! such that the condition number &f 175 is

bounded by a constant independent of the dimensier. Let{¢§1’l)}(i7l)efk be the hierarchical
basis, see [21], on levél The index sef, is given by

Li={(,1)eN*1<I<ki=2m—1,1<m<2"",meN}.

Let
7ok — [y (60y
w=1 <(¢z ) ) (¢j ) > =1 (j,l’),(i,l)efk
be the matrix corresponding to the stiffness part of the bilinear form (29) with respect to the

hierarchical basis{gbﬁl’l)}(i’l)efk. Then, by a simple calculation, the matfi¥"”, is a diagonal
matrix. More precisely, one obtains

(S (@Y s = 20065,

12



Thus, we have found a basis in which the stiffness part of the bilinear dptm) is spectrally
equivalent to a diagonal matrix. However, a diagonal mafriss not known such that the mass

matrix W
h_ [ (1 LY ]
(i 0;7) e,

with respect to the hierarchical basis satisfies the condition number estiri@te' M2") < ¢
independently of the dimension of the matrices.
Consider (29) with the weight functian(z) = 1. In the wavelet theory, see e.g. [9], [20], it is

known that it can be constructed a bagig } <), with span{¢}}<x = span{¢'"*}7-! such that
the matrices

MY = [ Lt w:} and
= Wi Videm ] o

- DY, (Y
T, = [((%/) ) (@Z’j) >“’:1} (4.0,

are spectrally equivalent to diagonal matrices. More precisely?ﬁ: be the identity matrix
IandD;v = diag [u], whereu = [221} - Then, see [9], [20], there

f((Dye )MEL) = o), (36)
k(D )7'TEL) = 0 37)

holds. These facts can be used to derive a precondition@¥fgrandM°_,. LetQ be the basis
transformation from the nodal bagie!""*}2 7! to the wavelet baS|$wJ}l§k. Then,

To, = Q'TLQ.

w=1 —

By <(DTL1)*1Tf21> = O(1), the condition number estimates

k(D )'QTTELQ) = 00) =k (QDp )TQTTL) = O)

1

are valid. Similarly,x <Q( v 1) LQT M ) = O(1) is valid. Thus, we have found precon-
ditioners for7’_,, andM?_, .

In (31), we consider the case of the singular weight functiofis = = andw(z) = 1. In[7],

the resultx (Q(DMf)*lQTM@ = (O(1) is shown under certain assumptions concerning the
weight functionw and the Waveletsv; which we formulate now.

ASSUMPTION 4.1. The nonnegative weight functiar{x) is assumed to belong to the space
Whee((4,1)) for everyd > 0 and to satisfy

o<W ec, o<

w — w
l»Oé

for someC,, > 0 and somev € R.

13



Here and in the following(’,, denotes a generic positive constant depending only on the weight
functionw(z) which can take different values in different places. The paranetetl be spec-

ified in the next assumption. At the boundary= 0, we consider the following kind of multi-
resolution spaces.

ASSUMPTION 4.2. y). € W° c W((0, 1)) with 0 € supp ¢!, satisfies
[Ui(@)] < Cu22(2'2)°, () ()] < Cu2*2(2') 7, (38)
forz € [0,27'], 3 € NU{0}. We assume that + § > —3, or, equivalently2a + 253 + 1 > 0.

ASSUMPTION 4.3. We suppose that there exists also a biorthogonal, or dual, Riesz basis
¥ = span {1}

’

such that( ~§-, Yh) = 6,0, and every € L*((0,1)) has a representation

v=3 3 (0l =YD 0 )
=1 j =1 3

and that the norm equivalences

IollF ~ DD W )P~ Y0 o, o))

J J
ol ~ > 22> v, b))
=1 j

hold.

In [7], Theorem 3.3, it has been proved the equivalence of theorm of a function

=" ult € 12 ((0.1)
=1

with its discretd?, norm of the coefficients) € R, i.e.

bl =0 D @)l
=1

J

THEOREM 4.4. Let us assume that the Assumptions 4.1, 4.2, and 4.3 are satisfigidu l|ét=
(u, u),. Foranyu =37°, 3= ubyh € L2 ((0,1)) holds

o 15 Ml 1 -
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Let us introduce the diagonal matrices

Do = diagh]  with b= [22’](Tj , and

DMjf’ = diag]t| with t= [w2(2_lj)]T

(]71) ’
COROLLARY 45. Letw(f) = &%, o = £1. Let{¢!},<x C V, be a wavelet basis with
{Y ek € WE((0,1)) and {{! 1<, € WH((0,1)). The basis transformation from the nodal

basis{gbgl’k)}?ijl to the wavelet basi§y} },<. is denoted byy. Then, the following eigenvalue
estimates are valid:

)\min (Q (DT:)”1>1 QTT:f):l) 2 C, /\max (Q (DT;”1>1 QTT:?:I) S c,
—~1 -1
Auin (Q (Darz) QTM:f) > A <@ (Darz) QTij) <c

wherec is a constant independent of

Proof: Use Theorem 4.4. Since the functiasls’ are piecewise linear and(0) = 0 for all
u € Vy, the relations = 1 holds at the boundary = 0, cf. Assumption 4.2. Thus, the
assumptions of Theorem 4.4 are satisfiedfor) = +* with o = +1. Hence, we have

Amin ((DTfﬂ)lel) —0(1), A <(DT;¢J_1>1ij1> — 0(1),
Amin ((DM£,>_1Mf> —O1), Ao ((DM$>_1M;”) —0(1).

SinceT? = QTT?Q andM¥ = QT M?(Q, the assertion has been proved.

4.2 Applications for the p-version of the fem in two and three dimensions

In this subsection, we define wavelet preconditiongis, for the matricesA,, d = 2, 3, with

K (Wk,d’lARd) < c¢. Note thatAx,, or equivalently,GG;, and H,, are tensor products of the
matricesF; (13) andD; (12), cf. (14) and (16). Thus, we propose wavelet preconditioners for
Fy and D, in a first step.

Due to Corollary 4.5, Lemma 2.1, Lemma 2.2 and (35), we propose the preconditioner

~1
F3_1 =Q <2DTw:1 + DM’”_ 71> QT

for F1. The estimate: (F3~'F;) = O(1) is valid. The preconditioner

a1 -1
Fi'=5Q (D) Q" (39)
can be chosen as well @ and is simpler thart;. Here, the matriXD v + D, is

replaced by the matrixD.. . w:f

15



w=x

—1
LEMMA 4.6. The estimate,,,.;,, <<DMw 1) DTw1> = 1 is satisfied.

Proof: Note that

Dy, =diagl] with t=[w@27))]yy=[2"i"yy and
l)TW:1 = diag [h] with b= [221](1-’1).

Thus,(Dy ) ' Dy, , = diag[d with ¢ = [5° J;n- Sincej > 1, each entry of the diagonal
matrlxdlag [] is bounded byl from below. Hence the assertion follows.
A direct consequence of this lemma is the following corollary.

COROLLARY 4.7. Let( denote the basis transformation from the nodal bésulfé’k)}?i;l to
the wavelet basi$ },<,. Then, the condition number estimates

H(Q( MY QT D) < ¢ and
K (F4_1F1) < c (40)
are valid, where- is independent gf.

Proof: The first assertion follows from Corollary 4.5, (33) and (21). In order to prove (40), we
have

1
(Flya y) = ((D?Tl + TQ)Q, Q) = E <(M¢f:x—1 + Tfil)y7 Q)
1 - f—
- n (Q T(DMw: - Dszl)Q 1%2)
1 =T —1 1
n (Q M:’):w_lQ v,v n( 1, v)

by Lemma 2.1, (32), (34), Corollary 4.5, Lemma 4.6 and (39) fovall
Now, preconditioners fof7; and H; are proposed, i.e.

Wor = 2 (Q_T ® Q_T) <DTw @Dy  + Dy ® DT:f’:l) (Q—l ® Q_l) ’
Wer = 4(Q7T0Q " 0Q™) (41)
(Dys ®Dpy @Dy +Dpv @Dy & Dy
Dy ® Dyy @ Dpy )
(Q—l 20 '® Q—l) '
LEMMA 4.8. The condition number estimateg W, . 'G1) < candx (W3 'H;) < c are
valid.

16



Proof: Use Corollary 4.7 and the properties of the Kronecker product.
In a last step, the preconditioners fdy,, are defined. Let

Wia = PIblockdiag [Wid'_, s for d=2,3, (42)

whereP; denotes the permutation of Propositions 1.3 and 1.4. Now, we can formulate the main
theorem of this section.

THEOREM 4.9. The condition number estimate§W; , ' Ag,) < c are satisfied. The pa-
rameterc denotes a constant which is independent of the polynomial degree

Proof: The result follows from Propositions 1.3, 1.4, and Lemma#4.8.

In [7], Theorem 4.2, the weaker resuI(WM‘lARd) < ¢(1 + log p)¢~! has been shown. The
reason for the logarithmic term is the stronger estimate in Lemma 4.6.

Moreover, the preconditioning operatian = W,;jlf is arithmetically optimal, i.e. it requires
O(p?) floating point operations, [7]. Hence, a preconditioned conjugate gradient method with
the preconditioneWV, 4 is an arithmetically optimal solver for a system with the matrix (10).

For Ax,, we propose other methods in the following subsection.

4.3 Further conclusions

In Lemma 1.5, we have proved the resilt,. (Tg_lFl) < ¢(1 + logn). Using the wavelet
approach, a stronger result for the largest eigenvalue of the migttix; is valid.

LEMMA 4.10. The eigenvalue estimate,,, (1> ' Fy) < cis satisfied.

Proof: By Lemma 4.6, we have

(DMw 12&) < (DT;#:IQ,Q> Yo € R" 1

w=x

Using Corollary 4.5, one obtains

(QMf:leTy, y) < (QTZLlQTy, Q) Vv e R",

where() denotes the matrix representation of the fast wavelet transformation. With the substitu-
tion Q7v = w, one concludes

(Mf:flw, w) < (Tff:lw, w) Yw € R 1.

By (32), (34), and Lemma 2.2, one easily checks the relation

1
— (D3'w,w) < (Dw, w) < %(T yw,w)  Yw € R". (43)
Co

Moreover, we have

(Faw,w) < c3 (D3 4+ T)w,w) Ywe R (44)

17



by Lemma 2.1 withe = c3(1 + <52). Combining (43), (44), and the positive definiteness of all
involved matrices, the assertion follows.

In a last step, we strengthen the condition number estimates for the preconditionégs of
given in [5], [6]. LetL, be the AMLI preconditioner’;, ; in [6], and let)A,, be the multi-grid
preconditioner fork;, proposed in [5]. Moreover, let

L, = PIblockdiag Ly, P, (45)
M, = PIblockdiag [My];_, Ps,

whereP, is the permutation matrix in Proposition 1.3.

In [5], we have proved the condition number estirnfa(e\/lk’lAR?) < ¢(1+logp). By Theorem
5.1in [6], the estimate: (£, 'Ar,) < c(1 + logp) holds. For both condition numbers, the
following theorem gives a more rigorous estimate.

THEOREM 4.11. The condition number estimateg £, ' Az,) < candx (M, 'Ag,) < ¢
are valid.

Proof: We start withs (£, ' Ag,) < c¢. By Theorem 3.2 in [6], we have (L, 'K;) < .
Moreover, by Lemma 4.10, Lemma 1.5, relations (14) and (18) and tensor product arguments
one easily checks the relation(K,~'G;) < c. Thus, we haves (L, 'G;) < ¢. Hence, the
assertion follows by Proposition 1.3 and (45). The estimaf@1;, ' Az,) < c can be proved

with similar arguments, see e.g. the proof of Theorem 7.1 in(i3].

Thus, we have two preconditionefgl;, and £, for Az, such that the condition number of the
preconditioned system matrix is bounded by a constant independent of the polynomial degree.
The cost in order to apply the preconditioning operatiens: M, 'r andw = £, 'r is O(p?).

For more details, we refer to [6], [5]. So, we have two another arithmetically optimal solvers for
the system of linear algebraic equatiofig,u = f.

5 Numerical example

Now, we give a numerical example. The condition numbers of the weighted mass maffjces
with w(¢) = £+ are considered. The wavelets are generated by the piecewise linear functions
1y With two vanishing moments on the primal add= 2, 4,6 vanishing moments on the dual
side. Figure 1 shows one wavelet of the familigs and ). Sincess ¢ Whe((0,1)), the
wavelety,, does not satisfy the assumptions of Theorem 4.4.

Figure 2 displays the condition numbers of the scaled weighted mass maﬁ]%&)‘le,

where

MY = | v

forw(¢) = & and D, = diagy] withv = [w?*(27'j)]. Forw(§) = &, [7], the wavelet basis
generated by the function,, shows the lowest condition numbers. For the wavéigt the
condition numbers are very large.

Using the weight functionu(¢) = ¢, this behaviour is different. Now, the results for the
mass matrices using the wavelet bases/fgrand,s beat the wavelet basis generated by the

18



Figure 2: Condition numbers of the weighted mass matrix.f@) = ¢ (left) andw(&)

(right).
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wavelety,,. Forin, andiyyg, the condition numbers are bounded by a constant independent of
the level number. Foiy,, the numerical experiments indicate a growth of the condition number
proportionally to the level number.
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