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Abstract

This paper presents a wavelet Galerkin scheme for the fast solution of boundary
integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for
the discretization of boundary integral operators which yields quasi-sparse system
matrices. These matrices can be compressed such that the complexity for solving
a boundary integral equation scales linearly with the number of unknowns without
compromising the accuracy of the underlying Galerkin scheme. Based on the wavelet
Galerkin scheme we present also an adaptive algorithm. By numerical experiments
we provide results which demonstrate the performance of our algorithm.

AMS Subject Classification: 47A20, 65F10, 65F50, 65N38, 65R20.
Key Words: Wavelets, multilevel preconditioning, matrix compression, adaptivity.

1 Introduction

Many mathematical models concerning e.g. field calculations, flow simulation, elasticity
or visualization are based on operator equations with global operators, especially boundary
integral operators. Traditional discretizations will then lead in general to possibly very
large linear systems with densely populated matrices. Therefore, the complexity for solving
such equations is at least O(N2

J), where NJ denotes the number of equations. This fact
restricts the maximal size of the linear equations seriously.

Modern methods for the fast solution of boundary integral equations reduce the com-
plexity to a suboptimal rate, i.e. O(NJ logαNJ), or even an optimal rate, i.e. O(NJ).
Prominent examples for such methods are the fast multipole method [21] and the panel
clustering [22]. Wavelet compression [1] offers a further tool for the fast solution of inte-
gral equations. In fact, a Galerkin discretization with wavelet bases results in quasi-sparse
matrices, i.e., the most matrix coefficients are negligible and can be treated as zero. Dis-
carding these nonrelevant matrix coefficients is called matrix compression. It has been
shown in [9, 31] that only O(NJ) significant matrix coefficients remain.

Concerning boundary integral equations, a strong effort has been spent on the construc-
tion of appropriate wavelet bases on surfaces [10, 13, 14, 23, 28, 31]. In order to achieve
the optimal complexity of the wavelet Galerkin scheme, wavelet bases are required with
a sufficiently large number of vanishing moments. Our realization is based on biorthogo-
nal spline wavelets derived from the multiresolution developed in [6]. These wavelets are
advantageous since the regularity of the duals is known [34]. Moreover, the duals are com-
pactly supported which preserves the linear complexity of the fast wavelet transform also
for its inverse. This is an important task for the coupling of FEM and BEM, cf. [20, 24, 25].
Additionally, in view of the discretization of operators of positive order, for instance, the
hypersingular operator, globally continuous wavelets are available [2, 7, 13, 23].

It turns out that the efficient computation of the relevant matrix coefficients is an
important task for the successful application of the wavelet Galerkin method [23, 29, 31].
We present a fully discrete Galerkin scheme based on numerical quadrature. Supposing
that the given manifold is piecewise analytic we can use a hp-quadrature scheme [23, 31, 32]

1



in combination with exponentially convergent quadrature rules. This yields an algorithm
with asymptotically linear complexity without compromising the accuracy of the Galerkin
scheme.

In view of nonsmooth geometries or singularities of the solution, a modern method
should work adaptively. The most adaptive methods realize the adaptivity in the energy
norm such that the super-convergence of the underlying Galerkin method is generally not
realized. Wavelet bases offer the possibility to measure a wide range of Sobolev norms. In
particular, adaptive schemes working with the optimal negative norm can be performed.
Based on our actual approach we present these developments and provide numerical results
which demonstrate the potential of our algorithm.

The outline of the present paper is as follows. First, in Section 2, we introduce the class
of problems under consideration. Then, in Section 3 we provide suitable wavelet bases on
manifolds. With such bases at hand we are able to introduce the fully discrete wavelet
Galerkin scheme in Section 4. We survey on several practical issues like setting up the
compression pattern, assembling the system matrix and preconditioning. In Section 5 we
present an adaptive extension of the wavelet Galerkin scheme. In Section 6 we present
numerical results in order to demonstrate our algorithm.

2 Problem Formulation and Preliminaries

For the numerical treatment of a boundary integral equation we need a discretization
method which ends up with a sufficiently accurate finite-dimensional approximation of the
given operator. At first we consider a general setting for the boundary element method.
Next, a short description of the representation of the geometry on a computer is given.
Then, we formulate the requirements to the kernel functions under consideration.

2.1 Boundary Integral Equations

We consider a boundary integral equation on the closed boundary surface Γ of a (n + 1)-
dimensional domain Ω

Aρ = f x ∈ Γ, (1)

where the boundary integral operator

(Aρ)(x) =

∫
Γ

k(x,y)ρ(y)dσy,

is assumed to be an operator of order 2q, that is

A : Hq(Γ) → H−q(Γ).

The kernel functions under consideration are supposed to be smooth as functions in the
variables x,y, apart from the diagonal {(x,y) ∈ Γ×Γ : x = y} and may have a singularity
on the diagonal. Such kernel functions arise, for instance, by applying a boundary integral
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formulation to a second order elliptic problem. In general, they decay like a negative power
of the distance of the arguments which depends on the spatial dimension n and the order
2q of the operator.

For the present purpose, we assume that the boundary Γ ∈ Rn+1 is given as a parametric
surface consisting of smooth patches, see Subsection 2.2 for details. The number of different
mappings, which is the number of surface patches, will be denoted by M . The surface
representation is in contrast to the usual approximation of the surface by panels. It has
the advantage that the rate of convergence is not limited by this approximation. Moreover,
such a representation is required for the adaptive solution of (1). Notice that technical
surfaces generated by CAD tools are represented in this form. Of course, this fact makes
the use of numerical integration indispensable for the computation of the system matrices.

The properties of the class of kernel functions k(x,y) which are under consideration
will be outlined in Subsection 2.3.

2.2 Parametric Representation of Manifolds

Let � denote the unit n-cube, i.e. � = [0, 1]n. The manifold Γ ∈ Rn+1 is partitioned into
a finite number of patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M, (2)

where each γi : � → Γi defines a diffeomorphism of � onto Γi. The intersection Γi ∩ Γi′ ,
i 6= i′, of the patches Γi and Γi′ is supposed to be either ∅ or a lower dimensional face.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit cube
into 2nj cubes Cj,k ⊆ �, where k = (k1, . . . , kn) with 0 ≤ km < 2j. This generates 2njM
elements Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, . . . ,M .

In order to ensure that the collection of elements {Γi,j,k} on the level j forms a regular
mesh on Γ, the parametric representation is subjected to the following matching condition:
For each x ∈ Γi ∩ Γi′ exists a bijective, affine mapping Ξ : � → � such that γi(s) =
(γi′ ◦ Ξ)(s) = x for s = [s1, . . . , sn]

T ∈ � with γi(s) = x, cf. Fig. 1.
The first fundamental tensor of differential geometry is defined by the matrix Ki(s) ∈

Rn×n with

Ki(s) :=
[(∂γi(s)

∂sj
,
∂γi(s)

∂sj′

)
l2(Rn+1)

]
j,j′=1,...,n

.

Since γi is supposed to be a diffeomorphism, the matrix Ki(s) is symmetric and positive
definite. The canonical inner product in L2(Γ) is given by

(u, v)L2(Γ) =

∫
Γ

u(x)v(x)dσx =
M∑
i=1

∫
�
u
(
γi(s)

)
v
(
γi(s)

)√
det

(
Ki(s)

)
ds.

The corresponding Sobolev spaces are denoted by Hs(Γ), endowed with the norms ‖·‖Hs(Γ),

where for s < 0 it is understood that Hs(Γ) =
(
H−s(Γ)

)′
. Of course, depending on the

global smoothness of the surface, the range of permitted s ∈ R is limited to s ∈ (−sΓ, sΓ).
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Figure 1: The parametrization of the unit sphere is obtained by projecting it onto the
cube [−1, 1]3, which yields six patches (left). On the right hand side one figures out the
partition on the level j = 4.

2.3 Kernel Functions and their Properties

We can now specify the kernel functions. To this end, we denote by α = (α1, . . . , αn) and
β = (β1, . . . , βn) multi-indices of dimension n and define |α| := α1 + . . . + αn. Moreover,
we denote by ki,i′(s, t) the transported kernel functions, that is

ki,i′(s, t) := k
(
γi(s), γi′(t)

)√
det

(
Ki(s)

)√
det

(
Ki′(t)

)
, 1 ≤ i, i′ ≤M. (3)

Definition 2.1. A kernel k(x,y) is called standard kernel of the order 2q, if the partial
derivatives of the transported kernel functions ki,i′(s, t), 1 ≤ i, i′ ≤M , are bounded by∣∣∂α

s ∂
β
t ki,i′(s, t)

∣∣ ≤ cα,β
∥∥γi(s)− γi′(t)

∥∥−(n+2q+|α|+|β|)

provided that n+ 2q + |α|+ |β| > 0.

We emphasize that this definition requires patchwise smoothness but not global smooth-
ness of the geometry. The surface itself needs to be only Lipschitz. Generally, under this
assumption, the kernel of a boundary integral operator A of order 2q is standard of order
2q. Hence, we may assume this property in the sequel.

3 Wavelets and Multiresolution Analysis

The nested trial spaces Vj ⊂ Vj+1 that we shall employ in the Galerkin scheme are spanned
by so called single-scale bases Φj = {φj,k : k ∈ ∆j} whose elements are normalized in L2(Γ)
and whose compact supports scale like

diam suppφj,k ∼ 2−j.
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Associated with these collections and the choice of the wavelets are dual bases Φ̃j = {φ̃j,k :

k ∈ ∆j}, i.e., one has 〈φj,k, φ̃j,k′〉 = δk,k′ , k, k
′ ∈ ∆j. For the current type of boundary

surfaces Γ the Φj, Φ̃j are generated by constructing first dual pairs of single-scale bases on
the interval [0, 1], using B-splines for the primal bases and the dual components from [6]
adapted to the interval [12]. Tensor products yield corresponding dual pairs on �. Using
the parametric liftings γi and gluing across patch boundaries leads to globally continuous
single-scale bases Φj, Φ̃j on Γ, [2, 7, 14, 23]. For B-splines of order d and duals of order

d̃ ≥ d such that d+ d̃ is even the Φj, Φ̃j have approximation orders d, d̃, respectively, that
is

inf
vj∈Vj

‖v − vj‖Hs(Γ) . 2−j(t−s)‖v‖Ht(Γ), v ∈ H t(Γ),

for all s ≤ t ≤ d, s < γ, and likewise for the duals. It is known that the respective
regularity indices γ, γ̃ (inside each patch) satisfy γ = d − 1/2 while γ̃ > 0 is known to

increase proportionally to d̃.
Given the single-scale bases Φj, Φ̃j, one can construct now biorthogonal complement

bases Ψj = {ψj,k : k ∈ ∇j}, Ψ̃j = {ψ̃j,k : k ∈ ∇j}, i.e. 〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), such that

diam suppψj,k ∼ diam supp ψ̃j,k ∼ 2−j, j ≥ j0,

see e.g. [2, 7, 13, 14] and [23] for particularly useful local representations of important
construction ingredients. We suppose these complement bases normalized in L2(Γ).

A biorthogonal or dual pair of wavelet bases is now obtained by taking the coarse
single-scale basis and the union of the complement bases

Ψ =
⋃

j≥j0−1

Ψj, Ψ̃ =
⋃

j≥j0−1

Ψ̃j,

where we have set for convenience Ψj0−1 := Φj0 , Ψ̃j0−1 := Φ̃j0 . Of course, in the infinite
dimensional case the notion of basis has to be made more specific. The key feature of the
wavelet basis is now the fact that Ψ, Ψ̃ are actually Riesz bases in L2(Γ). In particular, the
following norm estimate holds

‖v‖2
t .

∞∑
j=j0−1

∑
k∈∇j

22jt|〈v, ψ̃j,k〉|2 .

{
‖v‖2

t′ , t ∈ (−d̃,−γ̃], t < t′,

‖v‖2
t , t ∈ (−γ̃, γ).

(4)

From biorthogonality and the fact that the dual spaces Ṽj have the approximation order

d̃ one infers vanishing moments or the cancellation property of the primal wavelets

|〈v, ψj,k〉| . 2−j(d̃+1)|v|
W d̃,∞(suppψj,k)

. (5)

Here |v|
W d̃,∞(Γ)

:= sup|α|=d̃, x∈Γ |∂αv(x)| denotes the semi-norm in W d̃,∞(Γ). The fact, that

the concept of biorthogonality allows us to choose the order d̃ of vanishing moments higher
than the approximation order d, is essential for deriving optimal compression strategies
that could not be realized by orthonormal bases.

Appropriate piecewise constant and bilinear wavelets are depicted in Fig. 2.
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Figure 2: (Interior) piecewise constant/bilinear wavelets with three/four vanishing mo-
ments.

4 The Wavelet Galerkin Scheme

This section presents a fully discrete wavelet Galerkin scheme for boundary integral equa-
tions. In the first subsection we discretize the given boundary integral equation. In Sub-
section 4.2 we introduce the a-priori matrix compression which reduces the relevant matrix
coefficients to an asymptotically linear number. Then, in Subsection 4.3 and Subsection 4.4
we point out the computation of the compressed matrix. Next, in Subsection 4.5 we intro-
duce an a-posteriori compression which reduces again the number of matrix coefficients.
The last subsection is dedicated to the preconditioning of system matrices which arise from
boundary integral operators of nonzero order.

In the sequel, the collection ΨJ with a capital J denotes the finite wavelet basis in the
space VJ , i.e., ΨJ :=

⋃J−1
j=j0−1 Ψj. Further, NJ := dimVJ ∼ 2Jn indicates the number of

unknowns.
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4.1 Discretization

The variational formulation of the given boundary integral equation (1) reads

seek ρ ∈ Hq(Γ) : (Aρ, η)L2(Γ) = (f, η)L2(Γ) ∀ η ∈ Hq(Γ). (6)

For the Galerkin scheme we replace the energy space Hq(Γ) in the variational formula-
tion (6) by the finite dimensional spaces VJ introduced in the previous section. Then, we
arrive at the problem

seek ρJ ∈ VJ : (AρJ , ηJ)L2(Γ) = (f, ηJ)L2(Γ) ∀ ηJ ∈ VJ .

Equivalently, due to the finite dimension of VJ , the ansatz ρJ = ΨJρ
ψ
J together with

Aψ
J :=

(
AΨJ ,ΨJ

)
L2(Γ)

, fψJ :=
(
f,ΨJ

)
L2(Γ)

,

yields the wavelet Galerkin scheme

Aψ
Jρ

ψ
J = fψJ . (7)

The system matrix Aψ
J is quasi-sparse and might be compressed to O(NJ) nonzero matrix

coefficients if the wavelets have a sufficiently large number of vanishing moments. The
remainder of this paper is devoted to the efficient computation of the system matrix.

Remark 4.1. Replacing the wavelet basis ΨJ by the single-scale basis ΦJ yields the tradi-
tional single-scale Galerkin scheme

Aφ
Jρ

φ
J = fφJ ,

where Aφ
J :=

(
AΦJ ,ΦJ

)
L2(Γ)

, fφJ :=
(
f,ΦJ

)
L2(Γ)

and ρJ = ΦJρ
φ
J . This scheme is related to

the wavelet Galerkin scheme by

Aψ
J = TJA

φ
JT

T
J , ρψJ = T−T

J ρφJ , fψJ = TJ f
φ
J ,

where TJ denotes the wavelet transform. The system matrix Aφ
J is densely populated.

Therefore, the costs of solving a given boundary integral equation traditionally in the single-
scale basis is at least O(N2

J).

4.2 A-priori compression

In a first compression step all matrix entries, for which the distance of the supports of the
corresponding trial and test functions are larger than a level depending cut-off parameter
Bj,j′ , are set to zero. In the second compression step also some of those matrix entries are
neglected, for which the corresponding trial and test functions have overlapping supports.

First, we introduce the abbreviation

Ωj,k := conv hull(suppψj,k), Ω′
j,k := sing suppψj,k. (8)

Note that Ωj,k denotes the convex hull to the support of ψj,k while Ω′
j,k denotes the so-

called singular support of ψj,k, i.e., those points where ψj,k is not smooth. In accordance
with [9, 31] we have the following theorem.
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Theorem 4.2. Let Ωj,k and Ω′
j,k be given as in (8) and define the compressed system

matrix Aψ
J , corresponding to the boundary integral operator A, by

[Aψ
J ](j,k),(j′,k′) :=



0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ ≥ j0,

0, dist(Ωj,k,Ωj′,k′) . 2−min{j,j′} and

dist(Ω′
j,k,Ωj′,k′) > B′j,j′ if j′ > j ≥ j0 − 1,

dist(Ωj,k,Ω
′
j′,k′) > B′j,j′ if j > j′ ≥ j0 − 1,

(Aψj′,k′ , ψj,k)L2(Γ), otherwise.

Fixing a > 1 and d < δ < d̃+ 2q, the cut-off parameters Bj,j′ and B′j,j′ are set as

Bj,j′ = amax
{

2−min{j,j′}, 2
2J(δ−q)−(j+j′)(δ+d̃)

2(d̃+q)

}
,

B′j,j′ = amax
{

2−max{j,j′}, 2
2J(δ−q)−(j+j′)δ−max{j,j′}d̃

d̃+2q

}
.

Then, the error estimate

‖ρ− ρJ‖Ht(Γ) . 2J(t−t′)‖ρ‖Ht′ (Γ) (9)

provided that t ∈ [2q − d, γ), t′ ∈ [q, d], t ≤ t′, and Γ is sufficiently regular.
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1000
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Figure 3: The finger structure of the compressed system matrix computed with respect to
the two dimensional (left) and the three dimensional (right) unit spheres.

Hence, in accordance with [35], the optimal order of convergence of the underlying
Galerkin scheme is not compromised. The resulting structure of the compressed matrix is
figuratively called finger structure, cf. Fig. 3.

The next theorem shows that the over-all complexity of assembling the compressed
system matrix is O(NJ) even if each coefficient is weighted by a logarithmical penalty
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term [23]. We mention that the choice α = 0 proves that the a-priori compression yields
O(NJ) relevant matrix coefficients in the compressed system matrix.

Theorem 4.3. Let the system matrix Aψ
J be compressed according to Theorem 4.2. The

complexity of computing this compressed matrix is O(NJ) provided that for some α ≥ 0 at
most O

([
J − j+j′

2

]α)
operations are spent on the approximate calculation of the nonvan-

ishing coefficients (Aψj′,k′ , ψj,k)L2(Γ).

4.3 Setting up the compression pattern

Checking the distance criterion from Theorem 4.2 for each matrix coefficient, in order to
assemble the compressed matrix, would require O(N2

J) function calls. To realize linear
complexity, we exploit the underlying tree structure with respect to the supports of the
wavelets, to predict negligible matrix coefficients. We will call a wavelet ψj+1,son a son of
ψj,father if Ωj+1,son ⊆ Ωj,father. The following observation is an immediate consequence of
the relations Bj,j′ ≥ Bj+1,j′ ≥ Bj+1,j+1′ , and B′j,j′ ≥ B′j+1,j′ for j > j′.

Lemma 4.4. For Ωj+1,son ⊆ Ωj,father and Ωj′+1,son ⊆ Ωj′,father the following statements hold.

1. dist(Ωj,father,Ωj′,father′) > Bj,j′ implies dist(Ωj+1,son,Ωj′,father′) > Bj+1,j′ as well as
dist(Ωj+1,son,Ωj′+1,son′) > Bj+1,j+1′.

2. Suppose that j > j′ and dist(Ωj,father,Ω
′
j′,father′) > B′j,j′. Then one has dist(Ωj+1,son,Ω

′
j′,father′) >

B′j+1,j′.

With the aid of this lemma we have to check the distance criteria only for coefficients
which stem from subdivisions of calculated coefficients on a coarser level. Therefore, the
resulting procedure of checking the distance criteria is still of linear complexity.

4.4 Computation of Matrix Coefficients

Of course, the significant matrix coefficients retained by the compression strategy can
generally neither be determined analytically nor be computed exactly. Therefore we have
to approximate the matrix coefficients by quadrature rules. This causes an additional error
which has to be controlled with regard to our overall objective of realizing asymptotically
optimal accuracy while preserving efficiency. Theorem 4.3 describes the maximal allowed
computational expenses for the computation of the individual matrix coefficients so as to
realize still overall linear complexity. It is an immediate consequence of the fact that we
require only a level dependent precision of quadrature, cf. [23, 31].

Theorem 4.5. Let the error of quadrature for computing the relevant matrix coefficients
(Aψj′,k′ , ψj,k)L2(Γ) be bounded by the level dependent accuracy

εj,j′ ∼ min
{

2−|j−j
′|n/2, 2

−2n(J− j+j′
2

) δ−q

d̃+q

}
22Jq2−2d′(J− j+j′

2
) (10)

with some d′ > d and δ ∈ (d, d̃+r) from Theorem 4.2. Then, the Galerkin scheme is stable
and converges with the optimal order (9).
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From (10) we conclude that the entries on the coarse grids have to be computed with
the full accuracy while the entries on the finer grids are allowed to have less accuracy.
Unfortunately, the domains of integration are very large on coarser scales.

��
Γi′,j′,k′

Γi,j,k

Figure 4: Adaptive subdivision of the domains of integration.

Since we employ primal multiresolution spaces Vj based on piecewise polynomials, the
numerical integration can be reduced to the computation of the interaction of polynomial
shape functions on certain elements. Consequently, we have only to deal with integrals of
the form

I(Γi,j,k,Γi′,j′,k′) :=

∫
Cj,k

∫
Cj′,k′

ki,i′(s, t)pl(s)pl′(t) dt ds (11)

with pl denoting the polynomial shape functions and the transported kernel function (3).
This is quite similar to the traditional Galerkin discretization. The main difference is that
in the wavelet approach the elements may appear on different levels due to the multilevel
hierarchy of wavelet bases.

Difficulties arise if the domains of integration are very close together relatively to their
size. We have to apply numerical integration with some care in order to keep the number
of evaluations of the kernel function at the quadrature nodes moderate and to fulfill the
requirements of Theorem 4.3. The necessary accuracy can be achieved within the allowed
expenses if we employ an exponentially convergent quadrature method.

In [23, 31] a geometrically graded subdivision of meshes is proposed in combination
with varying polynomial degrees of approximation in the integration rules, cf. Fig. 4. Ex-
ponential convergence is shown for boundary integral operators under the assumption that
the underlying manifolds are piecewise analytic. It is shown in [23] that the combination of
tensor product Gauß-Legendre quadrature rules with such a hp-quadrature scheme leads
to a number of quadrature points satisfying the assumptions of Theorem 4.3 with α = 2n.
Since the proofs are rather technical we refer to [32, 29, 31, 23] for further details. For that
result to be valid we need a slightly stronger assumption on our manifold Γ which should
be piecewise analytic. Moreover, the kernels of the operators should satisfy the following
condition.

Assumption 4.6. The kernel function k(x,y) is analytically standard of order 2q, that

10



is, the partial derivatives of the transported kernel function (3) are uniformly bounded by∣∣∂α
s ∂

β
t ki,i′(s, t)

∣∣ .
(|α|+ |β|)!

(q
∥∥γi(s)− γi′(t)

∥∥)−(n+2q+|α|+|β|)

with some q > 0.

Since the kernel function has a singularity on the diagonal we are still confronted with
singular integrals if the domains of integration live on the same level and have some points
in common. This happens if the underlying elements are identical or share a common edge
or vertex. When we do not deal with weakly singular integral operators, the operators can
be regularized, e.g. by partial integration [27]. So we end up with weakly singular integrals.
Such weakly singular integrals can be treated by the so-called Duffy-trick [16, 30]. In this
way the singular integrands are transformed into analytical ones.

4.5 A-posteriori compression

If the coefficients of the compressed system matrix Aψ
J have been computed, we may apply

an a-posteriori compression by setting all coefficients to zero, which are smaller than a
level depending threshold, cf. [9, 23]. That way, a matrix Ãψ

J is obtained which has less
nonzero coefficients than the matrix Aψ

J . Clearly, this does not affect the calculation of
the matrix coefficients but accelerates the time for the iterative solution. Moreover, the
requirement to the memory is reduced if the system matrix has to be stored. For instance,
this is advantageous for the coupling of FEM and BEM, cf. [20, 24, 25]. To our experiences
this procedure reduces the number of nonzero coefficients by a factor 2–5.

Theorem 4.7. We define the a-posteriori compression by

[
Ãψ
J

]
(j,k),(j′,k′)

=

{
0, if

∣∣[Aψ
J

]
(j,k),(j′,k′)

∣∣ ≤ εj,j′ ,[
Aψ
J

]
(j,k),(j′,k′)

, if
∣∣[Aψ

J

]
(j,k),(j′,k′)

∣∣ > εj,j′ .

Herein, the level dependent threshold εj,j′ is chosen as in (10) with some d′ > d and

δ ∈ (d, d̃ + r) from Theorem 4.2. Then, the optimal order of convergence (9) of the
Galerkin scheme is not compromised.

4.6 Wavelet preconditioning

If A : Hq(Γ) → H−q(Γ) is a boundary integral operator of nonzero order, the corresponding
system matrix Aψ

J is ill conditioned. In fact, there holds condl2 Aψ
J ∼ 22J |q|. According to

[8, 11, 31], the wavelet approach offers a simple diagonal preconditioner based on the norm
equivalences.

Theorem 4.8. Let the diagonal matrix Dr
J defined by[

Dr
J

]
(j,k),(j′,k′)

= 2rjδj,j′δk,k′ , k ∈ ∇j, k′ ∈ ∇j′ , j0 − 1 ≤ j, j′ < J. (12)

11



Then, if A : Hq(Γ) → H−q(Γ) denotes a boundary integral operator of the order 2q with
γ̃ > −q, the diagonal matrix D2q

J defines a preconditioner to Aψ
J , i.e.,

condl2(D
−q
J Aψ

JD
−q
J ) ∼ 1.

Remark 4.9. The coefficients on the main diagonal of Aψ
J satisfy

(Aψj,k, ψj,k)L2(Γ) ∼ 22qj.

Therefore, the above preconditioning can be replaced by a diagonal scaling. In fact, the
diagonal scaling improves and simplifies the wavelet preconditioning.

As the numerical results in [26] confirm, this preconditioning works well in the two
dimensional case. However, in the three dimensions, the results are not satisfactory. One
figures out of Fig. 5 the condition numbers of the stiffness matrices of the single layer
operator on a square discretized by piecewise bilinears. We employed different constructions
for wavelets with four vanishing moments (spanning identical spaces, see [23] for details).
In spite of the preconditioning, the condition numbers with respect to the wavelets are
not significantly better than with respect to the single-scale basis. We mention that the
situation becomes even worse for operators defined on more complicated geometries.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

10
3

level J

l2 −c
on

di
tio

n

diagonal scaling: single−scale basis
diagonal scaling: tensor product wavelets
diagonal scaling: simplified tensor product wavelets
diagonal scaling: wavelets optimized w.r.t. the supports
modified preconditioner

Figure 5: The l2-condition numbers with respect to the single layer operator on the unit
square and piecewise bilinear wavelets with four vanishing moments.

A slight modification of the wavelet preconditioner yields much better results [23]. The
simple trick is to combine the above preconditioner with the mass matrix which yields an
operator based preconditioning.

Theorem 4.10. We consider a boundary integral operator A : Hq(Γ) → H−q(Γ) with
corresponding Galerkin matrix Aψ

J . Let Dr
J be defined as in (12) and Bψ

J := (ΨJ ,ΨJ)L2(Γ)

12



denote the mass matrix. Then, if γ̃ > −q, the matrix C2q
J = Dq

JB
ψ
JD

q
J defines a precondi-

tioner to Aψ
J , i.e.

condl2
((

C2q
J

)−1/2
Aψ
J

(
C2q
J

)−1/2
)
∼ 1.

This preconditioner decreases the condition numbers impressively, cf. Fig. 5. Let us
remark that the condition depends on the underlying spaces but not on the chosen wavelet
basis. To our experiences the condition reduces about the factor 10–100 compared to the
preconditioner (12).

5 Adaptivity

Wavelet matrix compression can be viewed as a non-uniform approximation of the Schwartz
kernel k(x,y) with respect to the typical singularity at x = y due to Defintion 2.1. If the
domain has corners and edges, the solution itself admits singularities. In this case an
adaptive scheme will reduce the number of unknowns drastically without compromising
the overall accuracy. Adaptive methods for BEM have been considered by several authors,
see e.g. [3, 17, 18, 19, 33] and the references therein. However we are not aware of any
paper concerning the combination of adaptive BEM with recent fast methods for integral
equations like e.g. the fast multipole method. Similar to the matrix compression, in the
wavelet context a non-uniform or adaptive approximation is achieved by compression, i.e.,
deleting small wavelet coefficients. Therefore an adaptive approximation space V̂J , spanned
by the wavelet bases with active indices, is clearly a subspace of the space VJ . Consequently,
we pursue to find a sequence of spaces

V0 = V̂0 ⊆ V̂1 ⊆ V̂2 ⊆ · · · ⊆ V̂J ⊆ VJ ,

where V̂j ⊆ Vj, such that the Galerkin solution with respect to V̂j provides nearly the same
accuracy as the Galerkin solution with respect to Vj.

In this respect the combination of matrix compression with adaptivity via vector com-
pression seems to be quite natural. Recent work of Cohen et al. [4, 5] is directed to this
strategy. These authors showed how to achieve a numerical solution ρε up to accuracy
ε with N ∼ ε−1/s unknowns in O(N) complexity. Their algorithm is based on an itera-
tive method for the continuous equation expanded with respect to a wavelet basis. The
application of the operator to a function is approximated by an appropriate finite matrix-
vector multiplication. From time to time the actual approximate solution is compressed
by thresholding providing the best N -term approximation. Since the computation of the
relevant matrix coefficients is by far the most expensive step in our algorithm, we cannot
use this approach of [4, 5] directly. At least we adopt the strategy of the best N-term
approximation by wavelet compression combined with the notion of tree approximation as
considered in [15].

To define appropriate wavelet basis on V̂j, we have to ensure that the support of a
small wavelet does not intersect large elements. This appears if small and large elements
are immediately adjacent. We call a mesh 1-graded, if the levels of adjacent elements differ
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at most by one. Likewise, a graded mesh is 2-graded, if the levels of all neighbours of each
element differ at most by one, and so on, cf. Fig. 6. An exact definition of m-gradedness
can be found in [15]. The gradedness ensures that we find a tree structured (with respect

to the supports of the associated wavelets) index set Λj such that V̂j = span{ψλ : λ ∈ Λj}
with |Λj| = dim V̂j. Moreover, completing Λj by the sons of all leaves, we obtain the

index set Λj,�, which generates the trial space V̂j,� = span{ψλ : λ ∈ Λj,�} that arises from

uniform subdivision of V̂j. We mention that the mesh has to be patchwise 1-graded in the
case of the piecewise constant wavelets presented in Fig. 2. The piecewise bilinear wavelets
require 2-gradedness, which has to be extended to global 2-gradedness if we consider them
globally continuous.

The rate of convergence in the adaptive algorithm of [4, 5] was considered in the energy
norm. To our experience this rate is too low because it restricts in general the super-
convergence of the Galerkin scheme. The highest order of convergence of the boundary
element method is achieved with respect to the norm in H2q−d(Γ), cf. (9). Since the number

of vanishing moments is chosen such that d < d̃+ 2q, we can estimate this norm by (4).

Figure 6: A nongraded mesh (left) and corresponding graded (mid) and 2-graded (right)
meshes.

If we consider the saturation assumption as for example in [18, 19], the optimality of
our method follows immediately.

Assumption 5.1. Let V̂j denote an arbitrary m-graded trial space and let V̂j,� be the trial

space that arises from uniform subdivision of V̂j. For a given t ∈ [2q − d, γ) we assume

that that there exists a constant θ < 1 such that the solutions ρj with respect to V̂j and ρj,�
with respect to V̂j,� satisfy

‖ρ− ρj,�‖t ≤ θ‖ρ− ρj‖t. (13)

Theorem 5.2. Assume that (13) holds. If the Galerkin solution ρj+1 with respect to the

trial space V̂j ⊆ V̂j+1 ⊆ V̂j,� satisfies

‖ρj,� − ρj+1‖t ≤ ε‖ρj,� − ρj‖t, (14)

then it holds
‖ρ− ρj+1‖t ≤ [θ(1 + ε) + ε]‖ρ− ρj‖t,

i.e. the solution ρj+1 is more accurate than ρj if ε < (1− θ)/(1 + θ).
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Up to now we can compute the Galerkin solutions ρj and ρj,�. Our problem reads now:
find the smallest index set Λj ⊆ Λj+1 ⊆ Λj,�, such that the Galerkin solution ρj+1 with
respect to ψΛj+1

satisfies (14). At present we choose the canonical strategy and compute
elementwise error portions by bunching the wavelets which correspond to the subdivision
of an element of V̂j. This procedure is simple to implement and corresponds to that when
using hierarchical error estimators, see [18, 19]. However, we use wavelet thresholding
instead of a-posteriori error estimators. After sorting these error portions by their modulus,
we increase the index set Λj successively by activating the wavelets corresponding to the
largest error portions until (14) is satisfied. Possibly the so constructed index set Λj+1 has

to be extended to ensure the m-gradedness of the new trial space V̂j+1.
We are now in the position to formulate our adaptive algorithm, which is based on a

nested iteration.

initialization: V̂0 := V0

for j := 1 to J − 1 do begin

compute the compressed system matrix for V̂j−1,�

compute the solutions ρj−1 and ρj−1,�

determine V̂j such that (14) holds

end

compute the compressed system matrix for V̂J−1,�

compute the final solution ρJ := ρJ−1,�

6 Numerical results

For a given function f ∈ H1/2(Γ) we consider an interior Dirichlet problem, i.e., we seek
u ∈ H1(Ω) such that

∆u = 0 in Ω, u = f on Γ. (15)

We consider the gearwheel presented in Fig. 7 as domain Ω. Choosing the harmonical
function u(x) = [4, 2, 1]x‖x‖−3 and setting f = u|Γ, the Dirichlet problem has the unique
solution u.

We make use of the indirect formulation involving the single layer operator V : H−1/2(Γ) →
H1/2(Γ) defined by

(Vρ)(x) :=
1

4π

∫
Γ

1

‖x− y‖
ρ(y)dσy,

which gives a Fredholm integral equation of the first kind

Vρ = f on Γ.

We solve this boundary integral equation by the traditional Galerkin scheme using piecewise
constant ansatz functions and by the nonadaptive and adaptive wavelet Galerkin scheme
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Figure 7: The mesh of a gearwheel parametrized by 172 patches after two subdivision
steps.

using piecewise constant wavelets with three vanishing moments. The setting for the
adaptive scheme is t = −2 and ε = 1/3. The approximate potentials uJ = [(VρJ)(xi)]
are calculated in many points xi distributed inside the gearwheel. The exact potential is
denoted by u = [u(xi)]. The computations are performed by a standard personal computer
with 1 Gigabyte main memory.

unknowns traditional wavelet adaptive wavelet
Galerkin scheme Galerkin scheme Galerkin scheme

J NJ ‖u− uJ‖∞ Tcpu ‖u− uJ‖∞ Tcpu ‖u− uJ‖∞ Tcpu
1 1160 4.1e-1 23 4.6e-1 8 4.6e-1 9
2 4640 1.7e-1 121 1.9e-1 45 1.8e-1 258
3 18560 — — 3.0e-2 481 2.7e-2 363
4 74240 — — 5.0e-3 4124 1.3e-2 924
5 296960 — — — — 1.4e-3 2555
6 1187840 — — — — 4.8e-4 7443

Table 1: Accuracy and cpu-times.

First, in Tab. 1 we tabulate the maximum norm of the absolute errors of uJ and
the overall cpu-times Tcpu (measured in seconds). The optimal order of convergence is
cubic, i.e. ε ∼ h3

J ∼ dimVJ
−3/2, but we expect approximately only a quadratic order

ε ∼ h2
J due to reentrant edges and vertices of the geometry. Notice that level 3 and

5 is no more computable with the traditional Galerkin scheme and the (nonadaptive)
wavelet Galerkin scheme, respectively. All schemes provide a nearly identical accuracy
as far as comparable, but the adaptive one does it with essentially less unknowns and,
hence, less memory requirement and cpu-time. The improvement of the adaptive over the
nonadaptive wavelet Galerkin scheme is similar to the improvement of the (nonadaptive)
wavelet Galerkin scheme over the traditional Galerkin scheme.
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Figure 8: Compression rates of the system matrix of wavelet Galerkin schemes.

Fig. 8 visualizes the compression rates of the (nonadaptive) wavelet Galerkin scheme.
We plot the number of nonzero coefficients in percent. For 74240 unknowns the matrix
compression yields only 1.8 % and 0.49 % relevant matrix coefficients after the a-priori and
a-posteriori compression, respectively.

Next, in Fig. 9 we plot the ratio dim V̂J/ dimVJ corresponding to the adaptive wavelet
Galerkin scheme. As the dashed curve indicates, we conclude an approximate increasement
dim V̂J+1 = 2.5 dim V̂J of the adaptive spaces instead of dimVJ+1 = 4 dimVJ of the full
wavelet spaces. The adaptive scheme should converge with the order ε ∼ h2

J , where hJ
is the mesh size of the finest grid. Relating the accuracy to the number of unknowns
N̂J = dim V̂J , we observe ε ∼ N̂

−3/2
J in accordance with Tab. 1. This is exactly the

optimal rate of convergence because smooth solutions can be approximated only by this
rate ε ∼ N

−3/2
J . Such a behaviour is predicted by the papers [4, 5], however the present

rate is better than the rate with respect to the energy norm as in [4, 5].
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