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Abstract

In this paper, a uniformly elliptic second order boundary value problem in 2D is dis-
cretized by thep-version of the finite element method. An inexact Dirichlet-Dirichlet do-
main decomposition pre-conditioner for the system of linear algebraic equations is investi-
gated. The solver for the problem in the sub-domains and a pre-conditioner for the Schur-
complement are proposed as ingredients for the inedztpre-conditioner. Finally, several
numerical experiments are given.
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1 Introduction

We consider the following boundary value problem. KetC R? be a domain which can be
decomposed into quadrilaterdts. Findu € H}(Q) = {u € H(Q),u=0o0onT;}, ;N3 =0,
't UT's € 99 such that

ap(u,v) := /QVwVv = /va + . fro = (f,0) + (f1,0)r, €y

forallv € FI&(Q) holds. ProblemX) will be discretized by means of theversion of the finite
element method. LeR, = (—1,1)? be the reference element afdd : R, — R, be the bilinear
mapping to the elemerit;. We define the finite element space

M := {U € ﬁé(Q)au Rs— ﬁ(@;l(ﬁjy))ﬂ] € Qp}7

where(Q, is the space of all polynomiajgz, y) = p;(z)p2(y) of maximal degree in each vari-
able. On the reference eleméRi, we choose the integrated Legendre polynomialgz, y) =
L;(xz)L;(y) as basis, where

A r A 1tz

Li(z) = %\/(22 —3)(2i —1)(2i + 1) /1 Li_i(s)ds for i>2  Lgs(z)= 5

(2)

with the-th Legendre polynomial;(z) = ()" (22 — 1)’. Note thatZ,(+1) = 0 for i > 2.
Thus, the ansatz functions on the reference element can be split into the vertex-functions with
1,5 = 0, 1, the interior bubbles witR < i, ;7 < p and the edge bubble functions.

In order to define a basig, .. ., ¢,,) for M, we can proceed as follows:

Letn,, n. andn; be the number of vertices not having a Dirichlet boundary condition, number
of edges not having a Dirichlet boundary condition, and number of elements. To each vertex
correspondd, to each edge correspopd— 1 and to each element correspofid— 1)? basis
functions. Thus, the dimension of the ansatz spacg is n, + (p — 1)n. + (p — 1)*n;. So,

we define the functiongy, . .., ¥, as the usual piecewise bilinear hat functions. The functions
Yot (i—1)(p—1)+1> - - - » Uno+j(p—1) COrrespond to the edge of the mesh, and vanish on all other
edges, i.e. satisfy the conditiaf,, ;. (;—1)(p—1)+5-1 |e= 5j7lﬁk, wherek = 2,...,pandyj, [ =
1,...,n.. The support of an edge function is formed by those two elements, which have this
edgee; in common. The remaining basis functions, ,—1yn.+1.- - -, ¥n, are interior bubble
functions consisting of a support containing one element only.

The Galerkin projection of1) onto M leads to the linear system of algebraic finite element
equations

Au, =, where A=l[aa(y, 0, and [ =[(f.0)+ (el @)

Efficient solvers for ) can be built by domain decomposition techniqués],[[5], [1]. We
consider there an approach of Jensen/Korné&y énd Ivanov/Korneev 6], [17]. For this
purpose, the basis functions are divided into three groups,
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e the vertex functions, i.e/y, ..., ¥,,,
e the edge bubble functions, 1, .., %n,+p—1)n.
e the interior bubble®,, - 1yn.+1,- - ¥n,-
Corresponding to the division of the shape functions, the mattissplitted into three blocks
Av Av,e Av,i
A = Aeﬂ) Ae Ae,i ) (4)
Ai,v Ai,e Az

where the indice®, e and: denote the blocks corresponding to the vertex, edge bubble and
interior bubble functions, respectively. Considering the simpler matrix

A, O 0
O — 0 Ae Ae,i ) (5)
0 Ai,e Az

it has been proved irb] that the condition numbet(C~* A) grows asl + log p. Therefore, the
vertex unknowns can be determined separately. Computing the other unknowns, we factorize the
remaining 2 by 2 block

Ao Al [T AuAT7Y][S o I 0
A”:[Ai,e AZ-} - {0 I Ho AiHAilAi,e [] (6)

with the Schur-complemertt = A, — AeJAi‘lAZ-,e. The matrixA; is a block diagonal matrix,
each blockAy, corresponds to one elemefy, i.e.

A; = blockdiag[Ag, |7 ,. (7)

Therefore, in order to compute the interior unknowns, we have to solve a Dirichlet problem on
each quadrilateral. The edge unknowns are computed via the Schur-compfement

An inexactD D-pre-conditioner for4) includes a pre-conditioner fot;, a pre-conditioner for

the Schur-complemerft and an extension operator from the edges of the quadrilateral into its
interior.

In [18], Jensen/Korneev have proved the following result.

LEMMA 1.1. LetdR, € C,t >2,s=1,...,n;, whereC®) denotes the class of all bound-
aries which consist of a finite numberidfmes continuously differentiable curves and the angles
of these curves at their intersection points@R, are distinct from) and2x. Let A be the result

of assembling the element stiffness matrices on the reference ef®nent—1, 1]* instead of

the element stiffness matrix corresponding to the eleRenThen,x ([l*%) =0O(1).
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So, it is possible to restrict ourselves to the case of the reference element in order to derive a
pre-conditioner for4; ands.

In [16], [17] and [18], two pre-conditioners for the Schur-complement are proposed. The pre-
conditioner uses basis transformations from the integrated Legendre polynomials to the Cheby-
shev polynomials or a Lagrange basis. The extension operator has been considdred in [

Moreover, Jensen/Korneev,d], derived a spectrally equivalent pre-conditiodéfor the matrix

Ag, resulting from the discretization of the Dirichlet problem in the elenignt= [—1, 1]2. This
pre-conditioner ha®(p?) non-zero entries. In the case of parallelogram elements, the element
stiffness matrix hag)(p?) non-zero entries, too. Otherwise, it is a dense matrix. However the
algorithms presented ir.§] in order to solve systems of algebraic equations of the &pe= r
requireO(p?) arithmetical operations. Therefore, it is important to find fast solvers, i.e. solvers
which produce the solution by means®fp?) arithmetical operations.

In [7], a new pre-conditioner foAx, is defined which can be interpreted as a system matrix

of a degenerated elliptic boundary value problem discretized by.thersion of the FEM or

the method of finite differences. Linear elements on isosceles, right-angled triangles or finite
differences on a regular grid are used. Another possibility are bilinear elements on s@liares |
This approach can be extended to the case of a pre-conditioner for the element stiffness matrix
on the reference eleme®; = [—1,1]® in 3D, see [0], [6]. The problem on the element

R, can be treated using multi-grid algorithms, see edjl],[[22], [23], [12], [11], [15], with

special smoothers. A multi-grid convergence proof for linear elemer®irs given in [7]. An
alternative for the case of the reference elem@itaindR ; are wavelet methods, se&].

Korneey, p0], found an optimal pre-conditioner for this degenerated problem by using Domain
Decomposition techniques. For the subproblems, Fast Fourier Transfdrghsalfe used and
tridiagonal systems are solved.

In this paper, we define several pre-conditionerssfandA; and give the main condition number
estimates. In the main part of this paper, the performance of the proposed pre-conditioners is
investigated in some numerical experiments.

The paper is organized as follows. In sectiyrwe consider the pre-conditioner for the matrix
A;. We introduce and modify the pre-conditioner of Jensen/Kornéé&j,, Moreover, it is shown

that the modified pre-conditioner can be obtained by discretizing elliptic problems with variable
coefficients using finite differences or theversion of the finite element method. In sectign

the pre-conditioner of the Schur-complement is defined. In sedtitire performance of th® D
pre-conditioner is shown in several numerical examples.

Throughout this paperR, will denote the unit squaré—1,1)?, Q; the square0,1)%. The
integerp is the polynomial degred,; thei—th integrated Legendre polynomial. The real number
Amaz(A) Will denote the largest eigenvalue of a matdand),,.;,,(A) the smallest eigenvalue of
A. For a sequence of symmetric and positive definite matricds € R"*", the relationA < B
means thatd — ¢B is positive definite, where is a constant independent of The relation
A~ BmeansA < B andB =< A, i.e. the matrices! and B are spectrally equivalent.
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2 Pre-conditioner for A;

Due to (7), we haveA; = blockdiag [Ag,]",. By Lemmal.1l applied toA = Ag, s =
1,...,n; one hasdp, ~ Ag,. Thus,A; ~ blockdiag [Ag,]"",. Therefore, in order to derive

a pre-conditioner for4;, it suffices to develop a pre-conditioner fdr;,. In subsectior?.1,

the most important properties ¢fz, are proved. In subsectich?2, a first pre-conditioner for
Ax, 1S proposed. This pre-conditioner can be interpreted as stiffness matrix /ofvarsion
finite element discretization of a degenerated elliptic problem, cf. subsétiorAn optimal
pre-conditioner for such a problem is a multi-grid pre-conditioner with line-smoother, which is
proposed in subsectidh4. In subsectior?.5 some numerical examples show the efficiency of

the pre-conditioner for several elemerits

2.1 Properties ofAg,

We consider the model problem
—Au=f in Ry=(-1,1)2 u=0 on IR, (8)

Problem 8) is solved by using the—version of the finite element method with only one element
R.. Problem 8) is the model problem for solving a linear system with the matijx . As finite
element space, we chood& = Hj N span{z'y’}7,_,. The discrete problem is: find, € M,
such that
Vu, - Vv, = fu, Yo, € M.

Ra R2
With the basis of the integrated Legendre polynomia)s the stiffness matrixdz, for (8) is
determined by

Ary = @il jopiss  Where agu = [ VLg(z,y)  Vi(z,y). 9)
Ra

The matrixAx, can be written explicitely as

A, =F®D+D®F, (10)
where ) ) ) )
1 0 & 0 - % 0 e 0
0 1 0 ¢ 0 a3 0 . 0
F=l¢ 0 1 0 .|, D=]0 0 n : (11)
N : .0
0 o 0 1 | | 0 0 0 - 1,

with the coefficients

(20 — 1)(2i + 3) ' 2 ’

G = —=

1\/(22’—3)(22’—}—5) g o 21-3)2it 1)



cf. [18]. Applying a permutatior” of rows and columns, we get

A 0 0 0
0 A 0 0
0 0 A; 0
0 0 0 A

PAR,PT = (12)

The four blocks correspond to the polynomi&ls; o, }, { Lai+1.2; }» { Laizj1}, @nd{ Lai 12541}

If pis odd, all four blocks have the same size. We have to find a fast solver for a system of linear
equations with the matrixlz,, or equivalently,4;, : = 1,2,3,4. The main properties of the
blocks.A; are summarized in the following lemma.

LEMMA 2.1. The condition number o4; is of orderp?. The blocks4; are spectrally equivalent
to each other, i.ed; ~ A;foré,j =1,...,4.

Proof. See [Lg]. O]

In the following, we will focus on finding an efficient pre-conditioner §ér. Via LemmaZ2.3, the
pre-conditioner fordz,, and via relation{) and Lemmadl.1, the pre-conditioner foA; follows.
Let D, = diag [ve, 04,8, . ..], F1 = tridiag[—c,, 1, —c.] with ¢, = [t2, 14,8, ...]. Then, cf. (0),
(11), we have

Al :D1®F1+F1®D1.

In the following, let us assume thats odd. Moreover, let — 1 = ’%1 be the dimension of}
andD;.

2.2 Afirst pre-conditioner for the element stiffness matrix
2.2.1 Pre-conditioner of Jensen and Korneev

In [18], Jensen and Korneev have derived a pre-conditiGhdor the matrixA,, or equivalently,
for Az,. The matrices

n- U
Dy=4diag [, T =Dy + gtridiag [-1,2,~1],

and Cl - D3 ® T1 —|— T1 ® D3 (13)
are introduced. Then, the following lemma holds.

LEMMA 2.2. The spectral equivalence relationy ~ Ds, F} ~ T7 andC; ~ A; are valid.

Proof. The estimateD, ~ Dj is trivial, F; ~ T) has been proved inLf], and the assertion
C; ~ A, follows by the properties of the Kronecker product frém ~ D3; andFy ~Ty. [

In the matrixC}, the same matrix entries are nonzero aslin but the structure of the nonzero
elements is simpler. However, a fast solverdgris required as well as fod; .
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2.2.2 Modification of the pre-conditioner in 1D

Now, the pre-conditionersl@) are modified. The resulting matrices can be interpreted as stiff-
ness matrices of discretizations of degenerated elliptic problems which will be shown in subsec-
tion 2.3. In afirst step, the matriX; is simplified. Let

1
T, = §tridiag [—1,2,—1]. (14)

In [9], we have shown the following result.

LEMMA 2.3. The eigenvalues of the matfl¥ "7} can be estimated by,;, (7>~'73) > 1 and
Amaz (T ~'T1) < ¢, where the constantis independent of the dimension of the matrices.

Proof. The lower eigenvalue estimate is trivial. 16][[10], we have proved\,,,, (T>~'T}) =
(14 logn), whereTy; € R "~1 With methods of the multi-resolution analysis derived in
[10], this result can be strengthened by the estimaig, (T{lTl) =< 1. For more details, we
refer to P. O]

In a second step, the diagonal matids is modified. The matrixD, = D3 + %I is introduced,
where! denotes the identity matrix. The proof of next lemma is trivial.

LEMMA 2.4. The eigenvalue estimates,, (D4 'D3) = & and A\ye0 (D4 'D3) < 1 are
valid.

2.2.3 Maodification of the pre-conditioner in 2D and 3D

Via tensor product and by the relatiords3) for D5, and (L4) for T3, the matrices
Ci=D;@Ty+To®D; and Ci=D,Q@Ty+To® D, (15)

are introduced. Then, the following theorem holds.

THEOREM 2.5. For : = 3, 4, the spectral equivalence relations ~ A; are valid.

Proof. Note thatD3, D4, andT; are symmetric and positive definite. By Lemra&, Lemma

2.3and Lemma2.4, the assertions follow. O

2.3 Similar systems of linear equations for other methods of discretization

In this subsection, we show interpretations of the matricesand C; as discretizations of a
degenerated elliptic boundary value problem in the unit square by finite differences and finite
elements.
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Figure 1: Mesh fok-version (right), grid (left) fom = 7.

2.3.1 Finite differences
We consider the problem
— 2 (YPuge + Puyy) =g in Q= (0,1)° and  u |so,= 0. (16)

This problem is discretized by finite differences in the grid of Figlréet v’/ be the approx-
imation of u in z;; = %(z’,j). The second derivatives iri ) are approximated by the usual
second order central difference quotient. More precisely,

Pt o) % S 20 ),

Uy, (1) ~ (Wt — 20 ). (17)
Then, the following lemma holds.

LEMMA 2.6. Letu’’ be the approximation af in z;; of problem(16). Then, the linear system

Csu = g has to be solved, wher8; is defined in(15), u = (u™)};; andg = (g(z;))' 2,

Proof. From (L7) follows that the linear equations

4(Z-2 —i—jQ)ui’j o 2j2(ui+1,j 4 uifl,j) - 2Z-2(ui,j+1 + ui,jfl) — g(mij)y

u =0, u =0, «’=0, u"=0

have to be solved foi,; = 1,...,n — 1. These linear algebraic equations are equivalent to
Csu=g. [

We note that this approach can be extended to the case of the element stiffness matrix on the
reference elemerR; = [—1, 1]3. Then, the 4th order differential equation

2 2 2
2 Uggyy + Y Ugzzr + X Uyyzz = g

has to be discretized.



2.3.2 h-version of the FEM, linear elements

We consider now probleni€) in the weak formulation:
Findu € Hj () = {u € L*($4) : auy,yu, € L*(Q4), u=00n9%;} such that

a(u, v) ::/Q YPugv, + 2y, :/Q gv =: {g,v) Vv € H}() (18)
1 1

holds. The domaif; is the unit squaré0, 1).

Problem (L8) is discretized by linear ansatz functions on the mesbf Figure 1, consisting
of congruent, isosceles, right-angled triangles. kdte the level of approximatiom; = 2%,
I=(n-1)i—1)+jandN = (n— 1)%. The shape functiong} are the usual piecewise linear
hat-functions associated to the nodes = L (1,7). Letw, andwy_; be the index sets of the

n

numbers of nodes in the meshgsandr;_,, respectively. We define the approximation space
V. = span{¢%, I € wi}
and we introduce the subspace of nodal basis functions associated to the new nodes
Wy = span{¢¥, I € wi\wi_1}.
Then, the Galerkin projection o18) ontoV,, is: Findu* € V; such that
a(u®, ") = (g,v*) Vo* € Vy (19)

holds. Problem9) is equivalent to solving the system of algebraic finite element equations
KhJ.th = gh with

N
Kh,k - [a<¢§7 (bllc)} I,J=1" Qh = <g7 ¢§>§V:17 Uy = (ul)évzl‘ (20)
Then,u, = S_V | u;¢k is the solution of {9).
LEMMA 2.7. LetC, be the matrix defined i(lL5). Then, we havé;, , = 2%2(74.

Proof. The proof is a simple integration/]f O

2.4 Multi-level methods for the p-version block matrix A;

We are interested in an optimal pre-conditioner for the maftix7), or equivalently for.A;
(9), the first block of the element stiffness matrit;, for the interior unknowns ori—1, 1)?
with respect to the basis of the integrated Legendre polynorﬁiig,lsz <1,j < p,cf. Lemma
1.1and2.1. By Theorem2.5, the matrixC, (15) is a good pre-conditioner for each blogk,
j=1,...,4, of the matrixP Az, PT. By Lemma2.7we can conclude that the matii¥ can be
interpreted as the stiffness matrix fer?u,, — y*u,, using piecewise linear shape functions on
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isosceles, right-angled, congruent triangles on the dofaaia (0, 1)? with Dirichlet boundary
conditions, i.e.

1
Ky, = —Cy.
k= 5 5t

Now, we present a multi-grid algorithm in order to solve a system of algebraic finite element
equationsiy, yu;, = ih. We represent the spatg. as the direct sum

Vi = Vi1 @ Wy

Let uy be the initial guess. The new iterateis computed by the following recursive procedure
uy = MULT(k, ug, g).

e Setl=FL.Ifl > 1thendo

1. Pre-smoothing ofWV;: Solve
CL('LU, U) = <g,1)> - CL(’LL07 U) \ORS Wl

approximately by using steps of a simple iterative methdl the approximate so-
lution isw. Setu} = uy + w.

2. Coarse grid correction oW;_;: Findw € V;_; such that
a(w,v) = (g,v) — a(up,v) = (r,v) Vv €V,

holds. Compute an approximate solutionby using,_, steps of the algorithm
MULT(l —1,0,7). Setuj = uj + w.

3. Post-smoothing ofW;: Solve

a(w,v) = (g,v) —a(ud,v) Yve W,

approximately by using steps of a simple iterative methdt the approximate so-
lution isw. Setu; = u2 + .

o else
— Solvea(w, v) = (g,v) — a(ug,v) for all v € V, exactly.
e endif.

REMARK 2.8. In a standard multi-grid algorithm the spad®’; in 1. and 3. is replaced by,
e.g. the smoother operates on the complete approximation space.

In order to define a smoothér, we consider the auxiliary bilinear form: X x X — R,
a0,0) = | oo g+ gale v, (21)
971
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where

2 2
Jy it 2 <y Joar if y<z
gl(xay) - { 0 if > y and 92(x7y) - { 0 if y>T :

With the choice ofX = W, andX = Vy in the bilinear forma(-, -) (21), efficient smoothers
for the Algorithm MU LT and the multi-grid algorithm of RemarR.8 can be defined. Let
Kw, = a(¢%, o1 )1,e(p\r_,) b€ the stiffness matrix of the Galerkin projection @B) onto
W,.. Furthermore let

()N ) _ [ oalgh,ef) if IT=J
Ty = [t;j]7 =1, Where t;; = { a(oh ob) if T4 and
0,0 a(¢J>¢I) if I=J
Ty = [t§))1eiw ), Where £ = { a(gh, k) it T#£J
We define now the preconditioned Richardson iterations
Si=1—-wl 'Ky on Vi and S=1-T;"'Kw, on W, (22)

with the parameterv = 0.8 by their error transion operators. Moreoverdgtbe the usual Gauss-
Seidel smoother acting on the spaég Because of the properties of the bilinear for2d)( the
matricesl, and7; are tridiagonal after a proper permutation of the unknowns. TSuands;
are line smoothers acting on linésg,,, 1, m=1,...,5 —1landL,,,m=1,...,n— 1, where

Ly = {05 T =(n—1)(i—1)+j,max{s,j} = m}.

Hence, the solution operatioff§z = y or Tz = y can be done using Cholesky-decomposition
in O(N) operations. The lines to the corresponding tridiagonal systems are marked by a bold
line in Figure2. This construction follows an idea of Axelsson and Padij, For more detalils,

Figure 2: Lines for smoothe$, (left) andS; (right).

see [].
Using the multi-grid method witly cycles and the smoothéy, we can derive a pre-conditioner
M;f in order to solve a linear system with the matfix ;. using the pcg-method1f]. Further-
more, let ) ,

Mg = P"blockdiag [M7]_ P (23)
with the permutatiorP of (12).
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THEOREM 2.9. Let Az, be the matri10), letS, be defined irf{22) and lety = 3 andv > 3.
The statement/°> ~ _; A, is valid.

Proof. In [7], the resuItM;LS ~ K}, has been proved for > 3. By (23), (12), Theoren?.5and
Lemma2.7, the assertion follows. O

Hence, we have found an asymptotically optimal method. The polynomial degcae be
reduced from 3 to 2 by using AMLI-pre-conditionet$ ., [3], [4], [2] as pre-conditioner for the
matrix K, ;, (20). We refer to B] for more details.

Due to Lemmal.1and relation (), we propose the pre-conditioner

TS o 2 - s
N$ = 2p? blockdiag [M#L:l (24)
for A;.
THEOREM 2.10. The spectral equivalence relatidh;ffO ~ A;is valid for p > 3.

Proof. Apply Lemmal.l By relations {) and Theoren2.9the assertions follow. ]

2.5 Numerical results

In this subsection, some numerical results show the performance of the pre-condﬁﬂ@rﬁer
the element stiffness matridr,. The following examples of elemeni? are considered, cf.
Figure3,

(@) Ris the unit squaré), 1], similar to the reference elemeRt,,

(b) Ris the trapezoid with the verticés, 0), (1,0), (1,1) and(0,0.4),
(c) Risthe trapezoid with the verticgs, 0), (1,0), (1,1) and(0,0.02),
(d) R is the quadrilateral with the vertices, 0), (1,0), (2,2) and(0, 1),
(e) Ris arectangle with lengths= 0.5 andb = 5.

The linear systemirzu = f is solved by a preconditioned conjugate gradient method with the
pre-conditioners\/S, namely

o
o MPY, M, M5 and M2 for example (a),
° ]\Z/fl for the examples (b), (c), (d), and (e).

In all examples, the algorithm is stopped if the error in the preconditioned energy norm is reduced
by a factorl0~?. Tablel displays the numbers of iterations for example (a) with [1,. .., 1)7.

In the case of the multi-grid pre-conditioné%f0 and the multi-grid pre-conditioner with Gauss-
Seidel smoothef/?, the numbers of iterations grow. FafS" and M50, the numbers of iter-
ations increase very slowly. Note that by Theor2r the spectral equivalencé, ~ p? M5

11



(€)

Figure 3: Plots of the element&for examples (a), (b), (c), (d), (e).

p Mi91 Miso Mégo Misz
3 2 2 2 2
7 15 15 16 14
15 17 20 20 16
31 20 26 23 19
63 21 31 24 24
127 | 22 36 25 31

Table 1: Numbers of iterations of the pcg-method for example (a) using several multi-grid pre-

conditioners.

p |3 5 7 11 15 21 27 33 45 68
(b)[5 16 22 27 30 33 35 36 39 42
(c)|5 18 31 58 91 145 208 266 377 463
(@d|4 11 21 25 27 28 29 30 32 34
(e)|2 5 10 27 53 92 108 112 124 132

Table 2: Numbers of iterations of the pcg-method for examples (b), (c) and (d) using the multi-

grid pre-conditionen/!.
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is valid. However, for polynomial degrees< 50, the multi-grid pre-conditioner with Gauss-
Seidel smoother has about as many iterations as the pre-conditibfférand Mgfo. Table2
displays the numbers of iterations for examples (b), (c), (d), and (e) with the multi-grid pre-
conditioner)!. Here, the right hand sidg(z,y) = 1 in (8) is chosen. For the examples (b)

and (d), the numbers of iterations grow moderately. In comparison to example (a), the absolute
values of the numbers of iterations are larger. For example (e), the numbers of iterations are very
large. The reason is the geometry of the elenientith two edges of length.5 and two edges of
length5. For elements which are similar to a rectangle with lengthsdb, wherea >> b, the
proposed multi-grid pre-conditioners can be modified such that the condition number estimate is
independent of the parameterandb and the polynomial degree see e.g.10].

The trapezoid with the verticg®, 0), (1,0), (1,1) and(0,0.02) is very close to the reference
triangle with the vertice$0,0), (0,1) and(1,1). This explains the fast increasing numbers of
iterations in example (c).

3 Pre-conditioner for the Schur-complement

For the Schur-complementin (6), Korneev and coauthorsl§], [17], have derived several pre-
conditioners using basis transformations from the integrated Legendre polyne{rﬁg%ls 2

to the Chebyshev polynomials or a Lagrange basis. The Schur- complé‘men’esponds to the
edges of the mesh not having a Dirichlet boundary condition. On eacheedge- 1, ..., n.,
the number of degrees of freedonpis- 1.
Letforj =0,...,p,

T;(x) = cos(j arccos ) (25)

be thej-th Chebyshev polynomial first kind. Moreover, §t = cos (%) i=20,...,p, be a

set of grid-points and let

P o — &P
j=0 "7
JF

the Lagrangian interpolation polynomials according to the grid-pdigt$;_,. Moreover, let
W € RPP~2 andV € RP~2*P~2 be the basis transformatlon matrices betwéégl( )Y,
and {Tj(z)}/_,, and betweer{ L;(x)}” Lo and{f(z) i, i.e. fora = [q;]f_y, b = [b]}_,
¢ =[]~} and

Jl’

P P p—1
= a;Li(x) =) bTi(x) = cilf(x),
Jj=2 7=0 J=1
we haveb = Wa andc = Va. With the diagonal matrixXD = diag[1,2,...,p+ 1] € Ret1xpt!
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andT; defined in (4), we introduce the pre-conditioners

$; = blockdiag [SJ}" =12, 27)

=1

whereS; = —2_WTDW andS, = VT (2T3)2 V.

1+logp

LEMMA 3.1. The condition number estimates<5f15> =< (1 + logp)® and k (S;15> =
(1+ logp) are valid.

Proof. The proof is given in1§]. [

The matrixiV" is a matrix of the formiv” = [ v; v, W7 ], wherel € RP—2**~2is a lower

triangular matrix, see?fd]. Thus, the linear systeri;w = r can be solved by forwards and

backwards elimination. The matriX can be factorized a\s’lz UW, whereU € RP~%*? is the
. . . . - p—Lp . ~ ~ ~ .

matrix of the discrete cosine transform, ilé = (cos J%) ' . SinceT, = UAU, whereU is

]—11;112—10 \p-1

andA = 4diag (Sin2 ]—”> ,

the matrix of the discrete sinus transform, &= (Sin J’%) -

j.k=1
the systemS,w = r can be solved by forwards and backwards elimination and Fast Fourier
Transforms (FFT),13].

4  Numerical results for the DD pre-conditioner

In this section, several numerical test examples are given. The linear syjtestihe result of
the hp-version fem discretization ofif for the following examples:

e hufen ,

magnetl ,

sechseck ,

schlitz4
e qual,
e swingl .

In each example, the right hand sidér, y) = 1 is chosen. Figuré shows the domains, the
coarse finite element meshes on level 0 and the boundary conditions of the considered exam-
ples. A black line corresponds to an interior edge of the coarse mesh, a red line to homogenous
Neumann boundary conditions, i.e. &\ (I'; U I';), a blue line to inhomogeneous Neumann
boundary conditions, i.e. tb; and a green line to (possibly inhomogeneous) Dirichlet bound-
ary conditions, i.e. td';. Figure5 displays the behaviour of the approximate solution9f (
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hufen - Level 0 - 1 proc.

sechseck - Level 0 - 1 proc.

magnetl - Level 0 - 1 proc.

SFB 393 - TU Chemnitz

qual - Level 0 - 1 proc.

schlitz4 - Level 0- 1 prec.

swingl - Level 0 - 1 proc.

Figure 4: Finite element coarse meshes for the examples.

15



SFB 393 - TU Chemnitz

qual - Level 2 -

578393 TU Chemniz

hufen - Level 2 - 1 proc.

578393 TU Chemnitz

sechseck - Level 2 - 1 proc.

578393 TU Chemniz

magnetl - Level 2 - 1 proc. du/dx

578393 TU Chemnitz

schlitz4 - Level 2 - 1 proc. dU/dx

1 proc.

-6.89E-02

-0.60

dU/dx

568393 TU Chemntz

1336403

1036403 —

738402

4.43E+02

1.48E+02

swingl - Level 0 - 1 proc. dU/dx

Figure 5: Approximate solution for the examples.

16



discretized by thép-version of the finite element method with= 7 and a two-times uniform
refinement of the coarse mesh.

The systemy) is solved by a precondioned conjugate gradient method with the domain decom-
position pre-conditioner

R B oC, 0 kg | 1 Ae,iAi_l 5Vj 0 1 0

(28)
is the pre-conditioner ford;; (6). The matriij, j = 1,2 is the Schur-complement pre-
conditioner 7), the matrixC, is the Yserentant pre-conditione25, with coarse grid solver.
The matrixEy, k = 1,2 denotes the multi-grid pre-conditionefs = M, andE, = M for
A;, cf. (24), whereadl; = A;. Thus, in the casé’;, the systen!,w, = r, is solved exactly. For
the multiplicationsw, = A.;A;'r; andw, = A;'A; .r,, a system solve with the matrix; has
to be done. This is performed by a pcg-method with a relative accuray ofi.e. the system
is solved nearly exactly.
For the inexactD D-pre-conditioner Z8), the condition number of the preconditioned system
matrix depends on the lower and upper eigenvalue bound®fh—1A4,, and(Cf}’)*lAH and
of C~tAcf. (5),i.e.

Aomin (é,;;ﬁA) = Ain (C7PA) min{ i ((0C0) " Ay A <(C}’}’j))_1An>} and
Ama (é,;;,éA> = Amaz (C7MA) max{Amaz ((6C0) ' A,) 3 Mnae <(CI(’;J>)*1 Au>}-

So, it is important to choose the parameien such a way that eithex,,;, ((5Cv)*1Av) =
Mmin (C}'}’j)flAn), OF Mz ((6C) T AL) & Apnas (C’}’}’”AAH) Then, we obtain the lowest
condition numbers fo@,;;y(;A. In most experiments, we have checked that4 is a good choice

if the pre-conditioner for4, is the Yserentant-pre-conditioner, and the pre-condititﬁi‘fé?) IS
chosen ford;;, i.e. S, ande1 are chosen as pre-conditioners fband A;.

All calculations are done on a LINUX cluster, where each machine is a Pentium Ill, 800 MHz.
The pcg-algorithm is stopped if the relative accuracy in the preconditioned energy norm is re-
duced up to a factor of = 10°.

4.1 Results for several problems with the same pre-conditioner

In this subsection, cf. Tablésand4, several examples with the pre-conditioﬂhm are given.

In all test examples considered, the number of iterations grow moderately if the polynomial
degree is increased or the mesh is refined.

However, the absolute numbers of iterations are relatively different, i.e. for theqoadein

level 0 we havels5 iterations forp = 15, whereas the numbers of iterations6isin the case

of swingl andp = 15. In general, the numbers of iterations depend on the geometry of the
elementskz,. For meshes with elements having a regular geometry, the numbers of iterations are
lower than for meshes with elements with an irregular geometry.

On the homepage
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Levels of refinement Levels of refinement
pl O 1 2 3 4 pl O 1 2 3 4
3123 29 35 39 44 3142 57 60 64 69
5120 32 37 43 48 5|54 62 69 74 76
7121 34 40 46 5] 7164 69 77 81 85
9|21 36 42 49 54 9/65 71 82 84 87
1122 38 45 51 56 |11/66 74 84 87 92
1322 40 47 52 57 |13|/68 77 87 91 96
15/23 41 48 54 59 |15/69 83 91 96

Table 3: Numbers of iterations of the pcg-method for the proldeanseck (left) andswingl
(right).

Levels of refinement Levels of refinement
pl 0 1 2 3 4 pl 0 1 2 3 4
1] 8 21 26 29 36 1| 2 10 16 20 25
3119 29 33 37 38 3/10 20 28 32 35
5126 32 38 41 44 5113 25 31 36 40
9|31 36 44 46 49 9,14 28 34 41 44

15| 35 15| 15
25| 41 25| 17
33| 43 33|18
45 | 47 451 19
63 | 49 63| 21
125| 56 125 | 23
243 | 56 243 | 24
513 | 61 513 | 26

Table 4: Numbers of iterations of the pcg-method for the protdehiitz4  (left) andqual
(right).
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more test examples are given.

4.2 Influence of the parameter

In this subsection, we give some numerical examples showing the influence of the parameter
. As in the previous subsection, the pre-conditiongygor the Schur-complement and the
pre-conditionerk, = ]\Z/fl are chosen. The test examplemagnetl . Three values fob are
considered§ = 1, § = 4 andé = 10.

60=1 0=4 0 =10
Levels of refinement| Levels of refinement| Levels of refinement
pl 0O 1 2 3 4 0 1 2 3 4 0 1 2 3 4
1| 4 14 17 21 24 4 14 17 21 24 4 14 17 21 24
3|15 28 31 35 3815 24 28 30 3415 30 35 37 39
5119 32 36 40 44 18 27 32 34 3822 34 41 43 46
9|21 36 42 46 5019 31 35 39 4225 38 48 51 52
15(23 40 46 50 5520 33 38 41 46 26 41 52 55 57

25| 27 44 47 22 36 41 31 44 53
33|29 48 51 24 37 42 34 46 55
45132 52 55 26 39 44 35 48 57
63|35 52 60 27 37 49 57

Table 5: Influence of the parameter

Table5 displays the numbers of iterations of the pcg-method for solving the sydtem f.
From the results, one can see that the numbers of iterations of the pcg-method depend on the
choice of the parameté: Moreover, one can conclude that the functiopn R, — R.: 6 —

K (671‘72175,4) has a local minimum in the interval, 10).

4.3 Comparison of several pre-conditioners for one example.

In this subsection, thé-shaped test exampleifen is considered. Several pre-conditioners
are chosen, the pre- condltloneii‘sg 4 01 145 0224, 0324, and03 14. Note that in the cases
03,174 and 0372,4, the pre-conditioner for the matri®; is the matrixA; itself. In this case, the
performance of the Schur-complement pre-conditiogrand S, can be investigated.

Table 6 displays the numbers of iterations for solvidg. = f by the pcg-method with sev-
eral pre-conditioners. Fqr < 25, the numbers of iterations of the pcg-method using the pre-
condltlonerka 15 (i.e. the Schur-complement pre- conditiori@)) are about the same as for
the pre- condltloners?k,g,(; with the Schur-complement pre- -conditioney: Forp > 25, the pre-
conditionersCy. » 5 using the basis transformation to the Lagrangian polynomgfiseat the
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http://www.tu-chemnitz.de/sfb393/software/p-version-2D/

6114
Levels of refinement

CHJA
Levels of refinement

CEQA
Levels of refinement

o 1 2 3 4

O 1 2 3 4

O 1 2 3 4

2 10 16 20 24
11 21 27 31 34
15 25 32 35 38
16 29 36 40 43
18 31 37 44 49
20 34 39 47 50
22 35 40 49 52
24 36 42
27 40 43
30
34
36

2 10 16 20 24
11 20 27 31 33
13 25 32 36 38
14 30 37 42 45
17 34 40 47 49
25 38 44 52 55
28 41 46 55 58
30 43 48
33 47 51
39
44
51

2 10 16 20 24
11 21 27 31 34
15 25 32 35 38
16 28 36 40 43
18 31 37 44 46
19 32 39 47 50
21 35 40 49 52
23 35 42
25 39 44
29
32
35

C%QA
Levels of refinement

C%JA
Levels of refinement

0 1

2 3 4 0 1

2 3 4

p

1| 2 10
311 21
5114 25
916 28
17 31
18 33
19 34
21 35
22 37
23

25

27

63
125
243
513

16
27
31
36
37
39
40
40
43

20
31
35
40
44
47
49

24 2
34 11
38 13
42 14
46 16
50 17
51 22
23
25
28
32
36

10
20
25
30
34
38
41
42
45

16
27
32
36
40
44
46
48
50

20
31
36
42
47
52
55

24
33
38
45
49
55
58

Table 6: Numbers of iterations of the pcg-method for the test examysén .
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pre-conditionersﬁk,m which use the basis transformation to the Chebyshev polynonaig)s (
The reason is the difference in the condition number estimfa(e%‘ls) =< (1 + logp)® and

K (SSIS) = (14 logp).

Moreover one can see that the pcg-method with the pre-conditi«ﬁ‘@[gs and 02,274, i.e. for

A; the multi-grid pre-conditionerMiSl ande2 are chosen, have nearly the same numbers of
iterations. Thus, the influence of the smootlseis not significantelly. Note that in numerical
experiments the multi-grid convergence rate for solving the system with the nigtrix(20)
using theV -cycle and the smooth&t, is bounded by a value of abotit, see [], whereas the
multi-grid convergence rate using thecycle and the Gauss-Seidel smootSetends to 1.

The comparison of the pre-condition@§k,4 andCA*LkA, k=1,2,i.eforA, are used; itself and
]\Zlfl as pre-conditioner, shows that the replacement,of A; 'r, in (28) by the preconditioning
operationw, = (Mfl)*lzi increases the numbers of iterations on a factor of abGubn level

0 of refinement of the meshufen . On levelsl, 2, 3, 4, the numbers of iterations are about the
same.

Acknowledgement: The author thanks the students Martin Stoll and Daniel Kettner for the
execution of the experiments.
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