
Gedruckt auf alterungsbeständigem Papier oo ISO 9706



Fakultät für Mathematik der Universität Bielefeld

Semilinear perturbations of harmonic spaces
and Martin-Orlicz capacities: An approach to

the trace of moderate U-functions

Dissertation

zur Erlangung des Doktorgrades der Mathematik

vorgelegt von

Khalifa El Mabrouk

Bielefeld

2002



Referenten:

Prof. Dr. Wolfhard Hansen

Prof. Dr. Michael Röckner
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Abstract

Let (X,H) be a harmonic space in the sense of H. Bauer [7] which has a Green
function GX . It is known [31] that to every reference measure r there corresponds a
suitable integral representation of functions in

H+
r (X) := H+(X) ∩ L1(X, r).

Let Y be the minimal Martin boundary, P the Martin kernel, and denote byM(Y )
the set of all signed Borel measures on Y with bounded variation. In this work we
consider the perturbed (semilinear) structure (X,U) obtained from (X,H) by means
of (γ,Ψ) where γ is a local Kato measure on X and Ψ belongs to a class of real-valued
functions on X × R containing, in particular,

Ψα : (x, t) 7→ t|t|α−1

where α is a real > 1.
We show that for every function u belonging to

Ur(X) := {u ∈ U(X) : |u| ≤ h for some h ∈ H+
r (X)}

there corresponds a unique signed measure ν ∈M(Y ) such that

u+
∫
X
GX(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ) =

∫
Y
P (·, y) dν(y).

Conversely, we prove that this integral equation admits a solution u ∈ Ur(X) when-
ever ν does not charge compact sets K ⊂ Y of zero Martin-Orlicz capacity, that is,
|ν|(K) = 0 for every compact set K ⊂ K with the property that the integral∫

X

∫
X
GX(x, ζ)Ψ

(
ζ,

∫
Y
P (ζ, y) dµ(y)

)
dγ(ζ) dr(x)

is equal to 0 or ∞ for every µ ∈M+(Y ) such that µ(Y \K) = 0.
In Section 6, we use our approach to investigate the trace of moderate solutions to

some semilinear equations.
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1 Introduction

Let r be a reference measure relative to a given harmonic space (X,H) in

the sense of H. Bauer [7], and let H+
r (X) be the set of all positive harmonic

functions on X (i.e., which belong to H(X)) which are r-integrable. Developing

an integral representation of functions in H+
r (X), K. Janssen determined in [31]

a Polish space Y (minimal Martin boundary) and a function P : X × Y → R+

(Martin kernel) such that:

Theorem 1.1 ([31]). Every harmonic function h ∈ Hr(X) := H+
r (X)−H+

r (X)

has a unique representation

h(x) = Pν(x) :=

∫
Y

P (x, y) dν(y) (x ∈ X) (1.1)

where ν belongs to the set M(Y ) of all signed Borel measures on Y with bounded

variation. Conversely, Pν ∈ Hr(X) for any ν ∈M(Y ).

In this work we are interested in the analogous representation problem in a

non-linear setting. To simplify the presentation of our approach let us suppose

that the harmonic space (X,H) possesses a Green function GX (see [13, Sect. 4]),

and assume that 1 ∈ H(X). Standard examples of (X,H) are:

1. (Elliptic case) X is a Greenian domain of Rd and H is the sheaf of classical

harmonic functions (i.e., solutions to the Laplace equation).

2. (Parabolic case) X is a domain of Rd × R and H is the sheaf of parabolic

functions in the terminology of [20] (i.e., solutions to the heat equation).

Any probability measure can serve as reference measure in Example 1, while

this is not true in Example 2. However, a probability measure whose support is

the whole space X is always a reference measure relative to (X,H).

Let Ψ be a function in Y(X) having the doubling property (see Subsection 2.6,

for instance Ψ(x, t) = t|t|α−1 where α > 1), and consider a positive Radon mea-

sure γ on X in the local Kato class K+
loc(X), i.e., such that

∫
K
GX(·, ζ) dγ(ζ) is

a bounded continuous potential on X for every compact set K ⊂ X. A continu-

ous function u on X is called a U -function if, for every open relatively compact

subset D of X, the function

u+

∫
D

GD(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ)

is harmonic on D. If moreover |u| ≤ h for some h ∈ H+
r (X), we say that u is

moderate. We denote by U(X) the set of all U -functions on X and by Ur(X) the

set of all moderate functions in U(X). First, we establish the following existence

result:

1



Introduction 2

Proposition 1.2. For every moderate U-function u on X, there exists a unique

measure ν ∈M(Y ), which will be denoted by tr(u) and called the trace of u on Y ,

such that

u(x) +

∫
X

GX(x, ζ)Ψ(ζ, u(ζ)) dγ(ζ) = Pν(x) (x ∈ X). (1.2)

Moreover, for all u, v ∈ Ur(X), u ≥ v if and only if tr(u) ≥ tr(v).

We then extend the first part of Theorem 1.1 to the perturbed semilinear

structure (X,U) (observe that for γ = 0, Ur(X) = Hr(X) and ν = tr(u) means

that u = Pν). Furthermore, although it may happen that (1.2) is not solvable

for a given ν ∈ M(Y ) (see [26]), the last part of the above proposition assures

that (1.2) admits at most one solution u ∈ Ur(X). This function u is interpreted

as the solution of the (boundary value) problem

u ∈ Ur(X) and u = ν on Y. (1.3)

In other words, (1.3) is considered to be equivalent to the integral equation (1.2).

The main purpose of this work is to investigate the set QΨ(Y ) consisting of

all ν ∈M(Y ) for which (1.3) possesses a solution u ∈ Ur(X).

Remark 1.3. [Details are in Subsection 6] Let γ ∈ K+
loc(R

d), Ψ ∈ Y(Rd), and

consider Example 1 where X = B is the unit open ball of Rd. Then Y = ∂B and

a continuous function u on B is a solution of (1.3) if and only if it is a solution

of the boundary value problem

∆u = Ψ(·, u)γ in B,
u = ν on ∂B.

(1.4)

In particular, (1.4) is solvable for every ν = fσ where f is a continuous function

on ∂B and σ is the surface area measure on ∂B. Furthermore, the boundary

condition u = ν means, in this case, that limx→y u(x) = f(y) for all y ∈ ∂B.

By means of minimal thin subsets of X, we established in [25] necessary and

sufficient conditions under which a given positive finite measure ν on Y is a trace

of some moderate U -function on X. In the present work, we discuss the solvability

of problem (1.3) by investigating some exceptional subsets of Y .

Definitions. A Borel set E ⊂ Y is called removable if for every ν ∈ M+(E)

(i.e., ν ∈M+(Y ) such that ν(Y \E) = 0) the following holds:

u ∈ U(X) and 0 ≤ u ≤ Pν ⇒ u ≡ 0 on X.

We say that E is cΨ-polar if for every ν ∈M+(E) the following holds:∫
X

∫
X

GX(x, ζ)Ψ(ζ, Pν(ζ)) dγ(ζ) dr(x) <∞ ⇒ ν = 0.
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In the situation of Example 1 and assuming that X is bounded and Lipschitz,

it will be shown (see Subsection 6.4) that a Borel subset E of ∂X (Y = ∂X) is

removable if and only if for every u ∈ U+
r (X),

u = 0 on ∂X\E ⇒ u ≡ 0 on X.

A tool of vital importance in our study (especially in the proof of Theorem 1.5

below) is the Martin-Orlicz capacity cΨ defined for every Borel subset E ⊂ Y by

cΨ(E) = sup
{
ν(E) : ν ∈M+(E) and ‖Pν‖Ψ ≤ 1

}
where ‖ · ‖Ψ is the Orlicz norm in the Orlicz type space LΨ(X) consisting of all

(classes of equivalent) Borel measurable functions f on X such that∫
X

∫
X

GX(x, ζ)Ψ(ζ, |f(ζ)|) dγ(ζ) dr(x) <∞

(for this characterization of LΨ(X) the doubling property of Ψ is used).

Notice that cΨ-polar sets are subsets E of Y such that cΨ(E) = 0.

Among the important properties of QΨ(Y ), we shall prove that ν ∈ QΨ(Y ) if

and only if |ν| ∈ QΨ(Y ). This allows us to restrict our study of the solvability of

problem (1.3) to the case when ν is positive. In particular, it will be not difficult

to prove:

Theorem 1.4. If ν ∈ QΨ(Y ) then all removable subsets of Y are ν-null sets.

Imposing some additional assumptions on γ, we give sufficient conditions

for (1.3) to be solvable. More precisely, we obtain the following result:

Theorem 1.5. If all cΨ-polar subsets of Y are ν-null sets then ν ∈ QΨ(Y ).

Consider once again Example 1 where X is assumed to be bounded and suf-

ficiently smooth. Then, for r = δx0 (x0 ∈ X), Y can be identified with the

Euclidean boundary ∂X of X, and P is the normalized (P (x0, ·) ≡ 1) Martin

kernel on X (here a possible choice for γ is the restriction of the d-dimensional

Lebesgue measure λ to X, but γ might as well be singular with respect to λ).

Let γ = λ|X and Ψ(x, t) = t|t|α−1, α > 1. Then, for every ν ∈M+(∂X), (1.3)

is equivalent to the boundary value problem

∆u = uα in X,
u = ν on ∂X,

(1.5)

which has been investigated by various techniques (see [26, 37, 23, 22, 42]). In

this setting, LΨ(X) is a classical Lebesgue space and cΨ coincides with the Martin
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capacity cα introduced in [22]. It is shown (Le Gall [37] for α = 2, Dynkin and

Kuznetsov [23] for α ≤ 2, Marcus and Véron [42] for α > 2) that for every Borel

subset E of ∂X, E is removable if and only if cα(E) = 0. Consequently, (1.5)

has a solution if and only if ν does not charge cα-polar subsets of ∂X. It will be

shown that, in general, this condition does not characterize the class QΨ(Y ). In

fact, we shall give an example (see Remark 6.5) for which the converse statement

in Theorem 1.5 does not hold.

After recalling in Section 2 the basic notions and facts on harmonic spaces,

we study in Section 3 semilinear perturbations of harmonic spaces. In Section 4,

we introduce the trace of a moderate U -function and give its first properties.

In the last part of the same section, we investigate removable sets and prove

Theorem 1.4 (Proposition 4.4). Section 5 deals with the Martin-Orlicz capacity cΨ

and the proof of Theorem 1.5 (Theorem 5.7). Finally, as application of our work,

Section 6 is devoted to a study of semilinear problems of the type (1.4).



2 Preliminaries

In the following (X,H) will always denote a harmonic space in the sense of

H. Bauer [7] such that the constant functions are harmonic on X. We shall

recall in this section the basic notions and facts on harmonic spaces that we need

(for more details see [5, 7, 11, 14, 18, 20, 29]). The reader who is not familiar

with these notions and is mainly interested in boundary value problems of the

kind (1.4) may simply restrict himself to Example 1 already mentioned in the

introduction. Section 6 will deal explicitly with this situation.

2.1 Basic notations

Given a set F of numerical functions, Fb (F+ resp.) will denote the set of all

functions in F which are bounded (positive resp.). For every open subset Ω of X

let B(Ω) (C(Ω) resp.) be the set of all Borel measurable numerical (continuous

real resp.) functions on Ω. By Bbc(Ω) we shall denote the set of all functions

in Bb(Ω) with compact support in Ω.

For A ⊂ X we denote by Ac the complement of A in X and define 1A to be

the characteristic function of A: 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ∈ Ac.
Given a topological space T , M(T ) will denote the set of all signed Borel

measures µ on T such that ‖µ‖ = |µ|(T ) is finite. Recall that |µ| = µ+ + µ−

where µ+ = sup(µ, 0) and µ− = sup(−µ, 0). For any Borel set E ⊂ T , we denote

by µE the restriction of µ to E and byM(E) the set of all µ ∈M(T ) which are

supported by E (i.e., µ(T\E) = 0). Finally, by a kernel on T we shall mean a

family (k(τ, ·))τ∈T of Borel measures on T such that
∫
f(t)k(·, dt) =: kf ∈ B+(T )

for every f ∈ B+(T ).

2.2 Harmonic kernels

Let O be the set of all open relatively compact subsets of X and let Ω ∈ O. A

Borel measurable function f on ∂Ω is resolutive if and only if f is µΩ
x−integrable

for all x ∈ Ω where µΩ
x is the harmonic measure of x with respect to Ω (see [7]).

To each resolutive function f ∈ B(∂Ω) we associate the harmonic function HΩf

on Ω given by

HΩf(x) =

∫
∂Ω

f(y) dµΩ
x (y).

If f ∈ B(X) such that the restriction of f to ∂Ω is resolutive we define

HΩf(x) =

{
HΩ(f |∂Ω)(x) if x ∈ Ω,
f(x) if x ∈ X\Ω.

5



Preliminaries 6

We call HΩ the harmonic kernel associated to Ω. A point z ∈ ∂Ω is called regular

provided

f(z) = lim
x∈Ω,x→z

HΩf(x)

for every f ∈ C(∂Ω), and we say that Ω is regular if all points z ∈ ∂Ω are regular.

2.3 Superharmonic functions, potentials

For every open subset Ω of X let S(Ω) be the set of all lower semicontinuous

(l.s.c) functions s > −∞ on Ω such that for every D ∈ O with D ⊂ Ω,

HDs ∈ H(D) and HDs ≤ s.

Functions in S(Ω) (−S(Ω) resp.) are called superharmonic (subharmonic resp.)

on Ω. A potential on Ω is a function p ∈ S+(Ω) such that the constant zero is the

greatest harmonic minorant of p on Ω. Let P(Ω) denote the set of all potentials

on Ω.

We suppose that P(X) contains a strictly positive function on X.

2.4 Potential kernels

Throughout this work we fix a potential kernel VX on X, that is, VX is a kernel

on X such that for every f ∈ B+
bc(X)

VXf ∈ P(X) ∩ Cb(X) ∩H
(
X\{f 6= 0}

)
. (2.1)

If moreover VX(1D) 6≡ 0 on X for every nonempty open subset D of X we shall

say that the potential kernel VX is strictly positive. For each Ω ∈ O (open and

relatively compact) we define

VΩ := VX −HΩVX . (2.2)

Then VΩ is a potential kernel on Ω and VΩ(B+
b (Ω)) ⊂ P(Ω)∩Cb(Ω). Furthermore,

it is not hard to verify that the family (VΩ)Ω∈O is compatible, in the sense that

for any Ω1,Ω2 ∈ O and any f ∈ Bb(Ω1 ∪ Ω2)

VΩ1f − VΩ2f ∈ H(Ω1 ∩ Ω2).

Remark 2.1. Suppose that for every Ω ∈ O, WΩ is a potential kernel on Ω so

that (WΩ)Ω∈O is compatible. Then, in view of [7, Satz 5.3.6] there exists a unique

potential kernel WX on X such that WΩ = WX −HΩWX for every Ω ∈ O. More

on potential kernels (also for balayage spaces) can be found in [28, Sect.2].
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Assuming that X has a (continuous) Green function GX (see [13] for the

definition of GX), a positive Radon measure γ on X is called a local Kato measure

on X if V γ
X defined by

V γ
Xf :=

∫
X

GX(·, ζ)f(ζ) dγ(ζ) (2.3)

is a potential kernel on X. Notice that V γ
X is strictly positive if and only

if γ charges every nonempty subset of X.

2.5 Admissible pairs

A closed subset A of X is called an absorbing set if it contains the support of every

harmonic measure µDx for any x ∈ A and any regular open relatively compact

set D containing x. We say that a probability measure on X is a reference

measure if the only absorbing set containing its support is the whole space X. A

pair (V, r) of a potential kernel V on X and a reference measure r on X will be

said to be admissible if the following conditions are fulfilled:

(AP1) V is strictly positive.

(AP2) For every compact subset K ⊂ X, there are Ω ∈ O and c > 0 such

that K ⊂ Ω and the inequality

sup
x∈K
|h(x)| ≤ c

∫
Ω

VΩ|h| dr (2.4)

holds for all h ∈ Hb(Ω).

We say that (γ, r) is an admissible pair provided γ is a local Kato measure

on X and conditions (AP1)-(AP2) hold for V = V γ
X given by (2.3). See Section 6

for some examples of admissible pairs.

2.6 Young functions

An odd strictly increasing function Y : R→ R will be called a Young function if

it is convex on R+, limt→0 Y (t)/t = 0 and limt→∞ Y (t)/t =∞. Let Y0 be the set

of all Young functions and define Y(X) to be the class of all Borel measurable

functions Ψ : X × R→ R satisfying the following properties:

(i) The functions Ψ(x, ·) are in Y0 for all x ∈ X.

(ii) For every compact subset K of X there exist MK , NK ∈ Y0 such that

MK(t) ≤ Ψ(x, t) ≤ NK(t) for all (x, t) ∈ K × R+.
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Clearly Y0 ⊂ Y(X) and for any Ψ ∈ Y(X) the following holds:

(A1) For every x ∈ X, Ψ(x, ·) is continuous, odd, and increasing on R.

(A2) The function Ψ is locally bounded on X × R.

(A3) Ψ(x, t+ s) ≥ Ψ(x, t) + Ψ(x, s) for all x ∈ X and all t, s ≥ 0.

(A4) For every x ∈ X, Ψ(x, ·) is convex on R+.

To each Ψ ∈ Y(X) we associate the function Ψ∗ defined on X × R by

Ψ∗(x, t) = sgn(t) sup
s≥0

(s|t| −Ψ(x, s)) . (2.5)

It is well known (see, e.g., [33, 34]) that Ψ∗ ∈ Y0 for any Ψ ∈ Y0. Analogously,

it is easy to remark that Ψ∗ ∈ Y(X) and (Ψ∗)∗ = Ψ if Ψ ∈ Y(X).

We shall say that a real function Ψ on X × R has the doubling property if

there exists a constant κ > 0 such that

Ψ(x, 2t) ≤ κΨ(x, t) for all (x, t) ∈ X × R+. (2.6)

In the theory of Orlicz spaces, this property is known as ∆2-condition.

If Ψ ∈ Y(X), it can be shown that Ψ∗ possesses the doubling property if and

only if the function Ψ satisfies the ∇2-condition: There exists ` > 1 such that

Ψ(x, `t) ≥ 2`Ψ(x, t) for all (x, t) ∈ X × R+. (2.7)



3 First tools

Assumptions of this section: Ψ is a Borel measurable real function on X × R
which satisfies (A1) and (A2).

3.1 Semilinear perturbations

For every Ω ∈ O (or Ω = X) we define

V Ψ
Ω f := VΩΨ(·, f) (3.1)

whenever the right side in (3.1) has a sense. Then, for any open set D such

that D ⊂ Ω we easily see, in view of (2.2), that

V Ψ
Ω = V Ψ

D +HDV
Ψ

Ω . (3.2)

Notice that for Ω = X we may write V instead of VX and V Ψ instead of V Ψ
X .

Proposition 3.1. (Comparison principle) Let Ω ∈ O ∪ {X} and let f, g be two

real Borel measurable functions on Ω such that V Ψ
Ω |f | and V Ψ

Ω |g| are finite poten-

tials on Ω and the function f − g + V Ψ
Ω f − V Ψ

Ω g is superharmonic on Ω. Then

f ≥ g if and only if f + V Ψ
Ω f ≥ g + V Ψ

Ω g.

Proof. Since Ψ(x, ·) is increasing for any x ∈ X we easily see that

f + V Ψ
Ω f ≥ g + V Ψ

Ω g

whenever f ≥ g on Ω. To prove the converse statement let

φ = Ψ(·, f)−Ψ(·, g)

and suppose that f +V Ψ
Ω f ≥ g+V Ψ

Ω g on Ω. Then s := f −g+VΩφ
+ is a positive

superharmonic function on Ω and

s ≥ VΩφ
+ on {φ+ > 0}. (3.3)

Therefore, by the same arguments as in the proof of Proposition 2.4 of [13], it

follows from (3.3) that s dominates VΩφ
+ on Ω. Thus f ≥ g on Ω. 2

Corollary 3.2. Let Ω ∈ O, f, g as in the previous proposition and assume more-

over that lim infx→z[f(x)− g(x)] ≥ 0 for all z ∈ ∂Ω. Then f ≥ g on Ω.

9
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Proof. We only need to prove that s = f + V Ψ
Ω f − g− V Ψ

Ω g is positive on Ω. Let

again φ = Ψ(·, f)−Ψ(·, g) then

s+ VΩφ
− = f − g + VΩφ

+.

Since s+ VΩφ
− is superharmonic on Ω and lim infx→z s(x) ≥ 0 for every z ∈ ∂Ω,

the minimum principle relative to the harmonic space (X,H) implies that

s+ VΩφ
− ≥ 0 on Ω.

This in turn yields that s ≥ 0 on Ω. 2

The following theorem is recently shown in [6] for a general setting. We give

here the proof for the sake of completeness.

Theorem 3.3. For every Ω ∈ O and every f ∈ Bb(∂Ω), there exists a unique

bounded continuous function u on Ω, which will be denoted by UΩf , satisfying

u+ V Ψ
Ω u = HΩf. (3.4)

Proof. We only have to prove the existence of u. In fact, the uniqueness of u

satisfying (3.4) is assured by the comparison principle.

Take Ω ∈ O, f ∈ Bb(Ω) and let a = sup∂Ω |f |. The function Ψa defined

on X × R by

Ψa(x, t) = sgn(t)Ψ(x,min(|t|, a))

satisfies the assumptions (A1) and (A2). For every v ∈ Bb(Ω) consider

Λ(v) := HΩf − V Ψa
Ω v.

It is easy verified that V Ψa
Ω (Bb(Ω)) is a bounded subset of Bb(Ω). So, since VΩ is a

compact operator on Bb(Ω) (see [27, Proposition 3.1]), it follows from Schauder’s

fixed point theorem that Λ(u) = u for some u ∈ Bb(Ω). Remark now that |u| ≤ a

by Proposition 3.1, which yields that V Ψa
Ω u = V Ψ

Ω u. Consequently, (3.4) holds

and the proof is finished. 2

If Ω ∈ O and f is a Borel measurable function on a set containing Ω such that f

is bounded on ∂Ω we shall denote by UΩf the function which equals UΩ(f |∂Ω)

on Ω and equals f elsewhere. Clearly, the mapping UΩ is odd and increasing.

For every open subset Ω ⊂ X we define U∗(Ω) to be the set of all l.s.c locally

bounded functions u on Ω such that

UDu ≤ u for all D ∈ O with D ⊂ Ω.
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We also define

U∗(Ω) := −U∗(Ω), U(Ω) := U∗(Ω) ∩ U∗(Ω),

and we call U-function (U∗-function, U∗-function resp.) on Ω every element

of U(Ω) (U∗(Ω), U∗(Ω) resp.).

Remark 3.4. Using (3.2) and (3.4) it is easy verified that for all D,Ω ∈ O such

that D ⊂ Ω we have

UD ◦ UΩ = UΩ. (3.5)

Therefore, UΩf is a U-function on Ω for every Ω ∈ O and every f ∈ Bb(∂Ω).

If, moreover, Ω is regular and f is continuous on ∂Ω then UΩf is the unique

continuous extension of f to Ω which is a U-function on Ω.

Theorem 3.5. If Ω ∈ O and u ∈ Bb(Ω) then u ∈ U(Ω) (U∗(Ω) resp.) if and only

if u + V Ψ
Ω u ∈ H(Ω) (S(Ω) resp.). In particular, if u ∈ B(Ω) is locally bounded

on Ω where Ω is an arbitrary open subset of X, then u ∈ U(Ω) (U∗(Ω) resp.) if

and only if u+ V Ψ
D u ∈ H(D) (S(D) resp.) for every D ∈ O such that D ⊂ Ω.

Proof. Let u ∈ Bb(Ω) and let D ∈ O such that D ⊂ Ω. From (3.2) and (3.4) we

get that

u+ V Ψ
Ω u−HDV

Ψ
Ω u = u+ V Ψ

D u,

HD(u+ V Ψ
Ω u)−HDV

Ψ
Ω u = UDu+ V Ψ

D UDu.

Therefore Proposition 3.1 completes the proof. 2

Combining the above theorem and Corollary 3.2 we obtain:

Corollary 3.6. Let Ω ∈ O and let u, v ∈ Bb(Ω) such that lim infx→z[u(x) −
v(x)] ≥ 0 for all z ∈ ∂Ω . If u ∈ U∗(Ω) and v ∈ U∗(Ω) then u ≥ v on Ω.

We deduce from Theorem 3.5 that U(Ω) is closed under uniform convergence

on compact subsets of Ω. Note also that all positive U∗-function on Ω are sub-

harmonic on Ω.

Theorem 3.7. Let Ω ⊂ X be an open subset and let (un) be a sequence of U-

functions on Ω which are locally uniformly bounded on Ω. The following holds:

(a) If (un) increases to u then u is a U-function on Ω.

(b) There exists a subsequence of (un) which converges locally uniformly on Ω.

In particular, if (un) converges pointwise to a function u then u ∈ U(Ω) and (un)

converges uniformly to u on every compact subset of Ω.
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Proof. Take D ∈ O such that D ⊂ Ω. For every n ≥ 1 let

hn = un + V Ψ
D un.

(a) Since (hn) is an increasing sequence of harmonic functions on D and is

uniformly bounded, we conclude that h = supn≥1 hn is harmonic on D. Passing to

the limit in the above formula we obtain that u+V Ψ
D u = h. So, by Theorem 2.3,

statement (a) is proved.

(b) Let K ⊂ D be a compact subset and choose a subsequence (hnk) of (hn)

which converges uniformly on K. Since the family{
V Ψ
D unk : k ≥ 1

}
is equicontinuous [27, Proposition 3.1], by Ascoli’s theorem there exists a sub-

sequence (vk) of (unk) such that (V Ψ
D vk) converges uniformly on K. Conse-

quently, (vk) is uniformly convergent on K. Now, in order to show the first

statement of (b) it will be enough to use an exhaustion (Ωn) of X and apply the

diagonal procedure. The second statement in (b) is obvious. 2

To finish this subsection, let us note that various kinds of perturbations of

harmonic spaces were investigated by serval authors. The reader is refereed to [13,

32] for the linear setting and to [39, 45, 9, 10, 12, 6] for nonlinear cases.

3.2 Operators L and Q

In the following, we fix an exhaustion (Ωn) of X, that is, Ωn ∈ O, Ωn ⊂ Ωn+1 for

every n ≥ 1, and X = ∪n≥1Ωn. Clearly, for every f ∈ B+(X)

V f = lim
n→∞

VΩnf.

The following convergence lemma follows easily from the fact that V and VΩn are

kernels.

Lemma 3.8. Let f, fn ∈ B(X) and let g, gn ∈ B+(X). The following holds:

(a) V (lim infn→∞ gn) ≤ lim infn→∞ VΩngn.

(b) Assume that |fn| ≤ gn for all n ≥ 1, and (fn), (gn), (VΩngn) converge

pointwise to f, g, V g respectively. If V g <∞ then limn→∞ VΩnfn = V f .

We shall use the operators L and Q which are introduced in [25] in order to

study a Liouville property related to equations of the type ∆u = Ψ(·, u)γ. For

every positive harmonic function h on X we consider

Lh := inf
Ω∈O

UΩh and Qh := sup
Ω∈O

HΩLh.
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Lemma 3.9. Let Ω, D ∈ O such that D ⊂ Ω and let s be a positive, locally

bounded, superharmonic function on a neighborhood of Ω. Then UDs ≥ UΩs.

Proof. From the formula UΩs + V Ψ
Ω s = HΩs we have 0 ≤ UΩs ≤ HΩs and

consequently 0 ≤ UΩs ≤ s. So the monotonicity of UD and (3.5) imply that

UΩs ≤ UDs. 2

Theorem 3.10. Let h ∈ H+(X). The following holds:

(a) Lh ∈ U+(X), Qh ∈ H+(X), and we have

Lh ≤ Qh ≤ h, (3.6)

Lh+ V ΨLh = Qh. (3.7)

(b) If V Ψh <∞ then Qh = h.

(c) L and Q are monotone increasing on H+(X).

(d) Lh and Qh can be characterized as follows:

Lh = max{u ∈ U+(X) : u ≤ h} (3.8)

= max{u ∈ U(X) : |u| ≤ h}. (3.9)

Qh = min{g ∈ H+(X) : g ≥ Lh} (3.10)

= max{g ∈ H+(X) : g ≤ h; Qg = g}. (3.11)

(e) L ◦Q = L and Q ◦Q = Q.

Proof. (a) By Lemma 3.9, the sequence (UΩnh) is decreasing and

Lh = lim
n→∞

UΩnh. (3.12)

Because 0 ≤ UΩnh ≤ h for every n ≥ 1, Theorem 3.7.b assures that Lh is a U -

function on X. Now, since 0 ≤ Lh ≤ h and Lh is subharmonic on X we conclude

that the sequence (HΩnLh) is increasing and

Qh = lim
n→∞

HΩnLh. (3.13)

Whence, the fact that Lh ≤ HΩnLh ≤ h yields that Qh ∈ H+(X) and the

inequality (3.6) holds. To get (3.7) it suffices to pass to the limit in the formula

Lh+ V Ψ
ΩnLh = HΩnLh.

(b) Since 0 ≤ UΩnh ≤ h and

UΩnh+ V Ψ
ΩnUΩnh = h, (3.14)
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by Lemma 3.8 we obtain that Lh + V ΨLh = h. Therefore, h = Qh in virtue

of (3.7).

(c) Trivial.

(d) To justify (3.8) and (3.9) it is enough to show that Lh ≥ |u| for every

u ∈ U(X) satisfying |u| ≤ h. So, if u is a such function then for all n ≥ 1

|u| = |UΩnu| ≤ UΩnh,

and therefore |u| ≤ Lh.

The equality (3.10) is a consequence of (3.6) and the monotonicity of the

harmonic kernel HΩ for any Ω ∈ O. To obtain (3.11) it suffices to use the fact

that Q(Qh) = Qh which is given by the statement (e).

(e) Since Lh ≤ Qh ∈ H+(X), we conclude by (3.8) that Lh ≤ LQh and

therefore

Qh = Lh+ V ΨLh ≤ LQh+ V ΨLQh = Q(Qh) ≤ Qh.

Thus Q(Qh) = h and, by comparison principle, L(Qh) = Lh. 2

Lemma 3.11. Let Ω ∈ O, and let α, β ≥ 0 such that

Ψ(x, αt + βs) ≥ αΨ(x, t) + βΨ(x, s) for all x ∈ X, t, s ≥ 0. (3.15)

Then

UΩ(αf + βg) ≤ αUΩf + βUΩg for all f, g ∈ B+
b (∂Ω). (3.16)

Furthermore, the converse inequality in (3.15) implies the converse one in (3.16).

Proof. Let f, g ∈ B+
b (∂Ω) and denote by u = UΩf , v = UΩg and w = UΩ(αf+βg).

Then

φ := Ψ(·, αu + βv)− αΨ(·, u)− βΨ(·, v) ∈ B+
b (Ω)

which implies that

V Ψ
Ω (αu + βv)− αV Ψ

Ω u− βV Ψ
Ω v = VΩφ ∈ P(Ω) ∩ Cb(Ω).

From (3.4) it follows that

αu + βv + V Ψ
Ω (αu + βv) = HΩ(αf + βg) + VΩφ,

w + V Ψ
Ω w = HΩ(αf + βg).

Therefore, applying Proposition 3.1 we get that αu + βv ≥ w which finishes the

proof. Clearly the second statement can be proved in a similar way. 2
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Corollary 3.12. (a) If (A3) holds then L and Q are subadditive on H+(X).

(b) If (A4) holds then L and Q are concave (and also subadditive) on H+(X).

Proof. (a) Assumption (A3) means that (3.15) holds true for α = β = 1.

Hence, by the previous lemma, UΩ is subadditive on B+
b (∂Ω) for every Ω ∈ O.

This, (3.12) and (3.13) prove statement (a).

(b) To see that L and Q are concave it is enough to apply again Lemma 3.11

for all α, β ≥ 0 such that α + β = 1. It is not hard to see that under (A1),

assumption (A4) yields (A3). So, if (A4) holds we conclude by statement (a)

that L and Q are subadditive on H+(X). 2

Corollary 3.13. Suppose that (A3) is satisfied and let (hn) be an increasing

sequence in H+(X) such that h := supn≥1 hn ∈ H+(X). Then

sup
n≥1

Lhn = Lh and sup
n≥1

Qhn = Qh.

Proof. By (3.6) and Corollary 3.12, we obtain for every n ≥ 1 that

0 ≤ Lh− Lhn ≤ h− hn and 0 ≤ Qh−Qhn ≤ h− hn.

This completes the proof. 2

Proposition 3.14. Suppose that (A3) holds and the function Ψ has the doubling

property. Then Q is ”linear” on H+(X), i.e., for all functions g, h ∈ H+(X) and

every α ≥ 0,

Q(αg + h) = αQg +Qh. (3.17)

Proof. Let g, h ∈ H+(X), un = UΩn(Qg), vn = UΩn(Qh) and wn = UΩn(Qg+Qh).

By Lemma 3.11, we have wn ≤ un + vn and hence

0 ≤ Ψ(·, wn) ≤ Ψ(·, un + vn) ≤ κ(Ψ(·, un) + Ψ(·, vn)) := φn

where κ is the constant given in (2.6). On the other hand, the continuity of Ψ(x, ·)
and statement (e) of Theorem 3.10 imply that

limn→∞ φn = κ(Ψ(·, Lg) + Ψ(·, Lh)) := φ, and
limn→∞ VΩnφn = V φ = κ(V ΨLg + V ΨLh) <∞.

Then Lemma 3.8.b shows that (V Ψ
Ωn
wn) converges to V ΨL(Qg+Qh). So, letting n

tend to infinity in the formula wn + V Ψ
Ωn
wn = Qg +Qh we obtain that

L(Qg +Qh) + V ΨL(Qg +Qh) = Qg +Qh.



First tools 16

This means that Q(Qg+Qh) = Qg+Qh and consequently Qg+Qh ≤ Q(g+ h)

by monotonicity of Q on H+(X). Therefore, according to Corollary 3.12.a we get

that

Q(g + h) = Qg +Qh.

Finally, this additivity property of Q, Corollary 3.13 and the density of Q+ in R+

yield that Q is positively homogeneous on H+(X). 2

3.3 Martin type representation

From now on r is a fixed reference measure on X. Define H+
r (X) to be the set of

all positive harmonic functions which are integrable on X with respect to r and

let

Hr(X) := H+
r (X)−H+

r (X).

We know [31] that there exist a Polish space Y and a family (P (·, y))y∈Y of

positive harmonic functions on X such that:

J.1: The map y 7→ P (·, y) is one-to-one from Y to the set of all minimal harmonic

functions h on X satisfying
∫
X
h dr = 1. (Recall that a function h ∈ H+(X)

is called minimal if h 6≡ 0 and if every harmonic function g satisfying the

inequality 0 ≤ g ≤ h is a constant multiple of h.)

J.2: For every x ∈ X, the function P (x, ·) : y 7→ P (x, y) is continuous on Y .

J.3: The formula

h = Pν :=

∫
Y

P (·, y) dν(y) (3.18)

defines a one-to-one correspondence between h ∈ Hr(X) and ν ∈ M(Y ).

Furthermore for any ν ∈M(Y ),

|ν|(Y ) =

∫
X

P |ν| dr;

and ν ≥ 0 if and only if Pν ≥ 0.

Remark 3.15. If X is a Greenian domain of Rd and H is the classical sheaf of

harmonic functions, (Y, P ) can be chosen so that Y is the minimal part of the

Martin boundary and P (·, y) is the Martin function with pole at y ∈ Y .



4 The notion of the trace

Assumptions of this section: Ψ is a Borel measurable real-valued function on

X × R which satisfies (A1), (A2) and (A3).

4.1 An existence lemma

We consider the subset Ur(X) of U(X) given by

Ur(X) := {u ∈ U(X) : |u| ≤ h for some h ∈ H+
r (X)}.

A function u ∈ Ur(X) will be called a moderate U -function on X. It is clear that

a function u ∈ U(X) is moderate if and only if |u| ≤ v for some v ∈ U+
r (X).

Lemma 4.1. If u ∈ Ur(X), then V Ψ|u| ∈ P(X) ∩ C(X) and u+ V Ψu ∈ Hr(X).

Proof. Take u ∈ Ur(X) and choose g ∈ H+
r (X) such that |u| ≤ g. Then |u| ≤ Lg

by (3.9). On the other hand, in view of formula (3.7),

V ΨLg ∈ P(X) ∩ C(X).

Therefore V Ψ|u| is a continuous potential on X. Put h = u + V Ψu. Combin-

ing (3.2) and (3.4) we see that HDh = h for every D ∈ O which implies that h is

harmonic on X. Finally, since

|h| ≤ |u|+ V Ψ|u| ≤ Lg + V ΨLg ≤ g

we conclude that h ∈ Hr(X). 2

From the above lemma it follows that the formula

u+ V Ψu = Pµ (4.1)

assigns to each moderate U -function u on X a unique signed measure µ ∈M(Y ).

Conversely, the comparison principle assures that for each µ ∈M(Y ) there is at

most one function u ∈ Ur(X) which satisfies (4.1). We call the measure µ given

by (4.1) the trace of u on Y and we write

µ = tr(u).

We shall denote by QΨ(Y ) the set of all µ ∈ M(Y ) such that µ is the trace of

some moderate U -function on X. In other words, µ ∈ QΨ(Y ) means that the

equation (4.1) is solvable in Ur(X).

17
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4.2 Properties of the trace

Let µ ∈ M+(Y ) and h = Pµ. Then (3.7) yields that the measure ν ∈ M+(Y )

satisfying Qh = Pν belongs to the class Q+
Ψ(Y ). Defining

Qµ := ν

we obtain an increasing subadditive operator Q from M+(Y ) into Q+
Ψ(Y ). Fur-

thermore,

Q+
Ψ(Y ) = {µ ∈M+(Y ) : Qµ = µ}. (4.2)

In the sequel, we may write Lµ to mean L(Pµ).

Theorem 4.2. Let µ, ν, µ1, µ2, · · · ∈ M(Y ). The following holds:

(a) If |µ| ≤ ν and ν ∈ Q+
Ψ(Y ) then µ ∈ QΨ(Y ).

(b) µ ∈ QΨ(Y ) if and only if |µ| ∈ Q+
Ψ(Y ).

(c) If µn ∈ Q+
Ψ(Y ) for all n ≥ 1 and (µn) increases to µ, then µ ∈ Q+

Ψ(Y ).

(d) If Ψ satisfies (A4) then QΨ(Y ) is convex.

(e) If Ψ has the doubling property then QΨ(Y ) is a linear subspace of M(Y ).

In this case, fµ ∈ QΨ(Y ) whenever µ ∈ Q+
Ψ(Y ) and f ∈ L1(Y, µ).

Proof. (a) Let h = Pµ and g = Pν. For every n ≥ 1 we have

|UΩnh| ≤ UΩng ≤ g.

Then, by Theorem 3.7, there exists a subsequence (uk) of (UΩnh) which is uni-

formly convergent on every compact subset of X. So

u := lim
k→∞

uk

is a moderate U -function on X. Using the monotonicity and the continuity

of Ψ(x, ·), we obtain that

|Ψ(·, uk)| ≤ Ψ(·, UΩkg),

limk→∞Ψ(·, uk) = Ψ(·, u),

limk→∞Ψ(·, UΩkg) = Ψ(·, Lg).

On the other hand, the fact that ν ∈ Q+
Ψ(Y ) implies that

lim
k→∞

V Ψ
Ωk
UΩkg = V ΨLg <∞.

Therefore, by Lemma 3.8 we conclude that

lim
k→∞

V Ψ
Ωk
uk = V Ψu
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and consequently

u+ V Ψu = h.

This means that µ ∈ QΨ(Y ) and tr(µ) = u.

(b) If |µ| ∈ Q+
Ψ(Y ) then µ ∈ QΨ(Y ) by statement (a). Suppose now that

µ ∈ QΨ(Y ) and let u be the moderate U -function on X satisfying µ = tr(u).

Choose ν ∈M+(Y ) such that |u| ≤ Pν. Then |u| ≤ Lν by (3.9) and thereby

|Pµ| ≤ P (Qν).

This yields that |µ| ≤ Qν (recall that P |µ| is the least harmonic majorant

of |Pµ|). So |µ| ∈ Q+
Ψ(Y ) by statement (a).

(c) follows trivially from Corollary 3.13.

(d) Since, by Corollary 3.12, Q is a concave operator on M+(Y ) we easily

deduce from (4.2) that Q+
Ψ(Y ) is a convex subset of M+(Y ). So statement (b)

proves that QΨ(Y ) is also convex.

(e) By Proposition 3.14, Q+
Ψ(Y ) is a cone. In fact, for every µ, ν ∈ M+(Y )

and every α ≥ 0 we have

Q(αµ + ν) = αQµ +Qν.

So from (b) it follows that

QΨ(Y ) = Q+
Ψ(Y )−Q+

Ψ(Y ) (4.3)

which proves thatQΨ(Y ) is a linear space. The second part of (e) is a consequence

of statements (b) and (c). 2

Studying equations ∆u = u|u|α−1, α > 1, on bounded domains Ω ⊂ R
d,

analogous results as in the previous theorem are obtained in [42]. To see the

interest of introducing the operators L and Q, the reader may compare our proof

to the proof given by M. Marcus and L. Véron [42, Proof of Proposition A] who

used a result of H. Brézis concerning the boundary value problem

∆u = f in Ω and u = φ ∈ L1(∂Ω) on ∂Ω.

We also notice that, using probabilistic tools, E. B. Dynkin and S. E. Kuznetsov

proved a result [24, Theorem 4.3] similar as assertion (c) of the preceding theorem.
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4.3 Removable singularities

Let E be a Borel subset of Y . We shall say that E is removable if the func-

tion ϑE which is defined at every point x ∈ X by

ϑE(x) := sup
µ∈M+(E)

Lµ(x) (4.4)

is identically zero. Since {Lµ : µ ∈ M+(E)} is an upward filtering family of

continuous functions, we may find an increasing sequence (µn) ∈ M+(E) such

that

ϑE = sup
n≥1

Lµn,

which yields, in particular, that ϑE ∈ U+(X) if it is locally bounded on X. In

the following proposition, we have collected basic properties of the map E 7→ ϑE.

Proposition 4.3. Let E,F,E1, E2, · · · ⊂ Y be Borel sets. Then:

(a) If E ⊂ F then ϑE ≤ ϑF .

(b) If (En) increases to E then ϑE = supn≥1 ϑEn.

(c) If E = ∪∞n=1En then ϑE ≤
∑∞

n=1 ϑEn.

Proof. (a) Obvious.

(b) Let u = supn≥1 ϑEn and let µ ∈ M+(E). Seeing that µEn ∈ M+(En) for

all n ≥ 1 and (µEn) increases to µ, we conclude that

Lµ = sup
n≥1

LµEn ≤ u.

Whence ϑE ≤ u. Therefore u = ϑE since u ≤ ϑE by (a).

(c) For every k ≥ 1 let

Fk := ∪kn=1En

and choose µ ∈M+(Fk). Because L is subadditive and µ ≤
∑k

n=1 µEn , it follows

that Lµ ≤
∑k

n=1 Lµn and consequently

Lµ ≤
k∑

n=1

ϑEn .

Thus, for all k ≥ 1

ϑFk ≤
k∑

n=1

ϑEn ,

which yields the desired inequality remarking that ϑE = supk≥1 ϑFk . 2
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As immediate consequences of the previous proposition, we see that every Borel

subset of a removable set of Y is also removable, and ∪∞n=1En is removable when-

ever (En) is a sequence of removable subsets of Y .

Proposition 4.4. Let E be a Borel subset of Y . The following statements are

equivalent:

(a) E is removable.

(b) ν(E) = 0 for all ν ∈ Q+
Ψ(Y ).

(c) Every compact subset K ⊂ E is removable.

Proof. From the fact that Qµ ∈ Q+
Ψ(Y ) and Lµ = L(Qµ) for every µ ∈ M+(Y )

we obtain that

ϑE = sup
ν∈M+(E)∩Q+

Ψ(Y )

Lν. (4.5)

This yields the equivalence between (a) and (b). To finish the proof it suffices to

recall that every µ ∈M+(Y ) is inner regular (see, e.g., [8]). 2



5 Polar sets

Assumption of this section: Ψ ∈ Y(X).

5.1 Orlicz type spaces

For our purpose it will be convenient to identify all Borel measurable functions f, g

on X satisfying ∫
X

V (|f − g|) dr = 0.

We define LΨ(X) (Orlicz class) to be the set of all f ∈ B(X) such that

%Ψ(f) :=

∫
X

V Ψ|f | dr <∞.

Let LΨ(X) (Orlicz space) be the smallest linear space containing LΨ(X), and let

EΨ(X) be the largest linear space contained in LΨ(X). Classical analogous defi-

nitions, for X ⊂ Rd and Ψ ∈ Y0, are well known (see, e.g., [33]). An alternative

approach to the theory of Orlicz spaces can be found in [19]. Notice that if Ψ

has the doubling property then

EΨ(X) = LΨ(X) = LΨ(X).

Notation. Here and in the following, Φ denotes the function Ψ∗ given by (2.5)

(of course Φ ∈ Y(X) and Φ∗ = Ψ).

For every Borel measurable function f on X we consider

‖f‖Ψ = sup

{∫
X

V |fg| dr : g ∈ B(X), %Φ(g) ≤ 1

}
, (5.1)

‖f‖(Ψ) = inf
{
α > 0 : %Ψ

(
α−1f

)
≤ 1
}
. (5.2)

Obviously, ‖ · ‖Ψ and ‖ · ‖(Ψ) are increasing on B+(X). Furthermore,

‖f‖Ψ ≤ 1 ⇒ %Ψ(f) ≤ ‖f‖Ψ, (5.3)

‖f‖(Ψ) ≤ 1 ⇔ %Ψ(f) ≤ 1. (5.4)

We also need the following kind of Hölder inequality which follows from (5.4):∫
X

V |fg| dr ≤ ‖f‖Ψ‖g‖(Φ). (5.5)

From (5.3) and (5.4) we deduce that

‖f‖(Ψ) ≤ ‖f‖Ψ ≤ 2‖f‖(Ψ).

22
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Therefore

LΨ(X) = {f ∈ B(X) : ‖f‖Ψ <∞}

and ‖ · ‖Ψ and ‖ · ‖(Ψ) define two equivalent norms on LΨ(X). Moreover, it is

not difficult to verify that LΨ(X) endowed with ‖ · ‖Ψ is a Banach space. We

call ‖ · ‖Ψ (‖ · ‖(Ψ) resp.) the Orlicz (Luxemburg resp.) norm.

Let f ∈ EΨ(X) and consider the sequence (fn) given for every n ≥ 1 by

fn = 1Ωn inf(sup(f,−n), n). (5.6)

Seeing that

fn ∈ Bbc(X), |fn| ≤ |f |, and lim
n→∞

fn = f,

it follows that for every α > 0

lim
n→∞

%Ψ(α|f − fn|)) = 0.

Therefore, EΨ(X) coincides with the closure (relative to the convergence in norm)

of Bbc(X) in LΨ(X). Define B(Φ) to be the closed unit ball in LΦ(X) with respect

to the Luxemburg norm and let

EB(Φ) := EΦ(X) ∩B(Φ).

Clearly (5.4) means that B(Φ) = {f ∈ B(X) : %Φ(f) ≤ 1}. Using sequences

defined by (5.6) it is not difficult to see that

‖f‖Ψ = sup
g∈EB+

(Φ)

∫
X

V (|f |g) dr. (5.7)

Now, slightly modifying the proof of Theorem 14.2 in [33] we get the following

result which characterizes the topological dual of EΨ(X).

Theorem 5.1. For every continuous linear form T on EΨ(X), endowed with

the Luxemburg norm, there exists a unique function g ∈ LΦ(X) such that for

all f ∈ EΨ(X)

T (f) =

∫
X

V (fg) dr. (5.8)

Moreover:

(a) ‖T‖ := supf∈EB(Ψ)
|T (f)| = ‖g‖Φ.

(b) If T ≥ 0 (i.e., T (f) ≥ 0 for all f ∈ E+
Ψ(X)) then g ∈ L+

Φ(X).
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5.2 The Martin-Orlicz capacity

We call Martin-Orlicz capacity the set function cΨ defined for every Borel sub-

set E of Y by

cΨ(E) := sup
{
ν(Y ) : ν ∈M+(E), ‖Pν‖Ψ ≤ 1

}
and extended to any (arbitrary) subset F of Y by

cΨ(F ) = inf{cΨ(E) : E ⊃ F, E Borel}.

Then cΨ is a capacity in the terminology of N. G. Meyers [44]. In other words,

cΨ(∅) = 0

and for any sequence (Fn) of subsets of Y the following properties hold:

F1 ⊂ F2 ⇒ cΨ(F1) ≤ cΨ(F2), (5.9)

cΨ(
⋃∞
n=1 Fn) ≤

∑∞
n=1 cΨ(Fn). (5.10)

A set F ⊂ Y will be called cΨ-polar if cΨ(F ) = 0, and we shall say that a

property P holds cΨ-quasi-everywhere (abb., cΨ-q.e) provided P is valid on Y \F
for some cΨ-polar subset F ⊂ Y .

From (5.9) it follows that every subset of a cΨ-polar set is also cΨ-polar, and

by (5.10) it is clear that the union of any countable family of cΨ-polar sets of Y

is again cΨ-polar.

Using the fact that

µ(E) = sup{µ(K) : K ⊂ E,K compact}

for any Borel subset E of Y and any µ ∈M+(Y ), we easily obtain the following

proposition.

Proposition 5.2. For every Borel set E ⊂ X we have

cΨ(E) = sup{cΨ(K) : K ⊂ E, K compact}. (5.11)

For f ∈ B(X) we consider the function P̌ f defined at every y ∈ Y by

P̌ f(y) =

∫
X

V (Pyf) dr

provided the integral makes sense. Recall that Py = P (·, y) is the (Martin)

function given by (J.1). If f ∈ B+(X) and ν ∈M+(Y ), it is obvious that∫
Y

P̌ f dν =

∫
X

V (fPν) dr. (5.12)
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Proposition 5.3. For every compact subset K of Y we have

cΨ(K) = inf
{
‖f‖(Φ) : f ∈ E+

Φ (X) and P̌ f ≥ 1 on K
}
. (5.13)

Moreover, (5.13) holds also true if E+
Φ (X) is replaced by L+

Φ(X).

Proof. Let K be a compact subset of Y and denote by α the right side in (5.13)(1).

Let

W :=
{
ν ∈M+(K) : ν(Y ) = 1

}
and endow it with the weak* topology. Then W is a compact Hausdorff space.

On the other hand, by (J.2) the mapping

ν 7→ Pν(x)

is continuous on W for any fixed x ∈ X. Consequently the function

ν 7→
∫
Y

P̌ f dν

is lower semicontinuous on W for every fixed function f ∈ EB+
(Φ). Then, in view

of (5.7) and (5.12), the minimax theorem (see, e.g., [1]) yields that

inf
ν∈W
‖Pν‖Ψ = sup

f∈EB+
(Φ)

inf
ν∈W

∫
Y

P̌ f dν = sup
f∈EB+

(Φ)

inf
y∈K

P̌ f(y). (5.14)

Remark first that by the definition of cΨ(K) it is not difficult to obtain (5.13) in

the case of

{α, cΨ(K)} ∩ {0,∞} 6= ∅.

So suppose that 0 < cΨ(K), α <∞. Then

1

cΨ(K)
= inf

{
1

ν(K)
: ν ∈M+(K), ν 6= 0, ‖Pν‖Ψ ≤ 1

}
= inf

{
‖Pν‖Ψ

ν(K)
: ν ∈M+(K), ν 6= 0

}
= inf

ν∈W
‖Pν‖Ψ,

and

1

α
= sup

{
1

‖f‖(Φ)

: f ∈ E+
Φ (X), f 6≡ 0, P̌ f ≥ 1 on K

}
= sup

{
infy∈K P̌ f(y)

‖f‖(Φ)

: f ∈ E+
Φ (X), f 6≡ 0

}
= sup

f∈EB+
(Φ)

inf
y∈K

P̌ f(y).

1If there is no f ∈ E+
Φ (X) such that P̌ f ≥ 1 on K then, by convention, α =∞.
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So the proof of equality (5.13) is finished in view of (5.14). Finally, using (5.1)

instead of (5.7), the second statement of the proposition can be shown by the

same reasoning. 2

5.3 Sufficient conditions for ν to be in QΨ(Y )

In addition to the fact that Ψ is a function in Y(X), we also suppose in the

present subsection that:

(†) Ψ has the doubling property, and

(‡) (V, r) is an admissible pair (see subsection 2.5).

Let us consider the duality 〈· , ·〉 between EΦ(X) and LΨ(X) given by

〈f, g〉 =

∫
X

V (fg) dr

for every f ∈ EΦ(X) and g ∈ LΨ(X). If F ⊂ EΦ(X), we denote by F⊥ the

(closed) subspace of LΨ(X) consisting of all g ∈ LΨ(X) such that 〈f, g〉 = 0 for

all f ∈ F . For a set G ⊂ LΨ(X), G⊥ is the subspace of EΦ(X) defined in the

same way.

We define

H+
Ψ(X) := H+

r (X) ∩ LΨ(X),

HΨ(X) := H+
Ψ(X)−H+

Ψ(X),

MΨ(Y ) := {ν ∈M(Y ) : Pν ∈ HΨ(X)}.
By Theorems 4.2.b and 3.10.b we have MΨ(Y ) ⊂ QΨ(Y ). (Notice that assump-

tion (†) above implies that EΨ(X) = LΨ(X) = LΨ(X))

Lemma 5.4. Let E ⊂ Y be a Borel set. The following holds:

(a) E is cΨ-polar if and only if ν(E) = 0 for all ν ∈M+
Ψ(Y ).

(b) HΨ(X)⊥ = {f ∈ EΦ(X) : P̌ f = 0 cΨ − q.e on Y }
(c) H(X) ∩ LΨ(X) is a closed subspace of LΨ(X).

Proof. (a) Trivial.

(b) This follows from (5.12) and assertion (a).

(c) Let K be a compact subset of X and choose Ω ∈ O, c > 0 as in (2.4).

Applying the Hölder inequality we obtain that

sup
K
|h| ≤ c

∫
X

V |h1Ω| dr ≤ c‖1Ω‖(Φ)‖h‖Ψ

for every h ∈ H(X). Therefore, any sequence in H(X)∩LΨ(X) converges locally

uniformly on X whenever it converges in LΨ(X) relative to the Orlicz norm. This

finishes the proof of (c). 2
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Remark 5.5. From the first part of Lemma A.2 (see Appendix) we conclude

that the set

{y ∈ Y : P̌ |f |(y) =∞}

is cΨ-polar for every f ∈ EΦ(X). The second statement of the same lemma yields

that every sequence (fn) ⊂ EΦ(X) convergent (in norm) to some function f

admits a subsequence (gn) with the property that (P̌ gn) converges cΨ-q.e to P̌ f .

Remark 5.6. If f ∈ C(X) such that for all g ∈ B+
bc(X)∫

X

V (fg) dr ≥ 0,

then f(x) ≥ 0 for all x ∈ X. In fact, it suffices to remark that the measure m

defined for every Borel subset A ⊂ X by

m(A) =

∫
X

V 1A dr

charges all open nonempty subsets of X. To see this, let D ∈ O and suppose

that m(D) = 0. Seeing that

{x ∈ X : V 1D(x) = 0}

is an absorbing set (see, [7, Satz 1.4.1]) and recalling the definition of a reference

measure (see Subsection 2.5) we conclude that V 1D is identically zero on X.

Consequently, D = ∅ by (AP1).

Theorem 5.7. Every ν ∈ M(Y ) which does not charge any compact cΨ-polar

subset of Y is a trace of some moderate U-function on X.

Proof. In virtue of Theorem 4.2.b we consider only the case when ν is positive.

Let ν ∈ M+(Y ) not charging compact cΨ-polar subsets of Y and define for

every f ∈ EΦ(X)

Λ(f) :=

∫
Y

[P̌ f ]+ dν.

Then Λ is a positively homogeneous subadditive map from EΦ(X) into R+. Fur-

thermore, Λ is lower semicontinuous on EΦ(X) (see Remark 5.5) and thereby

epi Λ := {(f, t) ∈ EΦ(X)× R : Λ(f) ≤ t}

is a closed convex cone ofEΦ(X)×R (see, e.g., [15]). Considering ϕ :=
∑∞

n=1 αn1Ωn ,

where

αn =
2−n

(1 + 〈1Ωn , Pν〉)(1 + ‖1Ωn‖Φ)
,
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it is not difficult to see that

ϕ ≥ αn > 0 on Ωn, ϕ ∈ E+
Φ (X), and Λ(ϕ) <∞.

Then Theorem 5.1 and the Hahn-Banach theorem (see, e.g., [15, Théorème I.7])

imply that there exist gn ∈ LΨ(X) and an ∈ R such that

〈ϕ, gn〉 > an(Λ(ϕ)− 1/n) (5.15)

and

〈f, gn〉 ≤ ant for all (f, t) ∈ epi Λ. (5.16)

Taking f = 0 and t = 1 in (5.16) we get that an ≥ 0. Assuming that an = 0

we obtain that 〈ϕ, gn〉 > 0 by (5.15), and 〈ϕ, gn〉 ≤ 0 by (5.16), which yields a

contradiction. So we suppose without loss of generality that an = 1 (otherwise

we replace gn by a−1
n gn).

We claim that gn ∈ H+(X). In fact, using the characterization of HΨ(X)⊥

given by Lemma 5.4.b, we deduce from (5.16) that

gn ∈ (HΨ(X)⊥)⊥.

On the other hand, Lemma 5.4.c and [15, Proposition II.12] prove that

(HΨ(X)⊥)⊥ ⊂ LΨ(X) ∩H(X).

Now, applying (5.16) to (−f, 0) we get that 〈f, gn〉 ≥ 0 for every f ∈ B+
bc(X),

which implies that gn(x) ≥ 0 for all x ∈ X (see Remark 5.6 above). The claim is

proved.

Put h = Pν and apply again (5.16) for f ∈ B+
bc(X) and t = Λ(f), we obtain

in view of (5.12) that ∫
X

V (f(h− gn)) dr ≥ 0

for every f ∈ B+
bc(X), which yields that h ≥ gn on X. Define now

hn = lim
k→∞

HΩk sup
1≤i≤n

gi,

i.e., hn is the least harmonic majorant of {gi : 1 ≤ i ≤ n}. Then (hn) is an

increasing sequence of positive harmonic functions on X satisfying∫
X

V (ϕ(h− hn)) dr ≤ 1

n
(n ≥ 1). (5.17)
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Recalling that ϕ > 0 on X we conclude from (5.17) that h = supn≥1 hn, and

consequently

ν = sup
n≥1

νn

where νn ∈M+(Y ) satisfying Pνn = hn for all n ≥ 1. The fact that

hn ≤
n∑
i=1

gi

and gi ∈ H+
Ψ(X) for all i ≥ 1, proves that all measures νn belong to the

class Q+
Ψ(Y ). Whence, ν ∈ Q+

Ψ(Y ) by Theorem 4.2.c. 2

We notice that, in general, the converse statement in the above theorem does

not hold. A counterexample will be given in subsection 6.6.



6 Applications to semilinear PDEs

We call Greenian domain every open and connected set D ⊂ Rd which has

a Green function GD (−∆GD(·, ζ) = δζ for every ζ ∈ D). As usual, ∆ denotes

the Laplace operator on Rd, d ≥ 2. Let X be a Greenian domain of Rd and

let H be the classical sheaf of harmonic functions on X. Fix a point x0 in X and

consider, as reference measure on X, the Dirac measure r = δx0 concentrated at

the point x0 (here X and the empty set are the only absorbing subsets of X;

see, e.g., [7]). So, trivially

Hr(X) = H+(X)−H+(X).

We choose Y and P so that Y is the set of all minimal Martin boundary points

of X and P is the Martin kernel satisfying P (x0, y) = 1 for every y ∈ Y .

Let Ψ ∈ Y(X) and denote by Φ the function Ψ∗. Consider also a local Kato

measure γ on X, i.e., V = V γ
X given by (2.3) is a potential kernel on X. Then it

is not difficult to see that, for every D ∈ O, the kernel VD is given by the formula

VDf =

∫
D

GD(·, ζ)f(ζ) dγ(ζ).

Our goal here is to apply the general study presented in the preceeding sections

in order to investigate the boundary value problem:

∆u = Ψ(·, u)γ in X,
u = ν on Y,

(6.1)

where ν is a signed Borel measure with bounded variation on Y .

6.1 Continuous solutions to (6.2)

A solution to the equation

∆u = Ψ(·, u)γ (6.2)

on an open subset Ω ⊂ X has to be understood as a continuous function u on Ω

which satisfies (6.2) in the distributional sense, i.e.,∫
Ω

u(x)∆ϕ(x) dx =

∫
Ω

Ψ(x, u(x))ϕ(x) dγ(x) (6.3)

for every ϕ in the space C∞c (Ω) of all infinitely differentiable functions on Ω with

compact support in Ω.

30
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Proposition 6.1. Let Ω be an open subset of X and let u ∈ C(Ω). Then u is a

solution to (6.2) in Ω if and only if u is a U-function on Ω.

Proof. Suppose first that u is a U -function on Ω. Let ϕ ∈ C∞c (Ω) and choose

D ∈ O such that supp(ϕ) ⊂ D ⊂ Ω. By Theorem 3.5, the function

h := u+

∫
D

GD(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ) (6.4)

is harmonic and bounded on D. Therefore, multiplying (6.4) by ∆ϕ and inte-

grating, we obtain (6.3) which means that u is a solution to (6.2) in Ω.

Conversely, assume that (6.3) holds true for every ϕ ∈ C∞c (Ω). A similar

computation proves that for any D ∈ O with D ⊂ Ω, the function h given

by (6.4) is harmonic on D. So, again by Theorem 3.5, this yields that

UDu = u

for all D ∈ O such that D ⊂ Ω. Whence u ∈ U(Ω). 2

6.2 Examples of Ψ

The class Y(X) contains every function of the form

Ψ(x, t) = ξ(x)M(t)

where M is a Young function (see Subsection 2.6) and ξ is a Borel measurable

positive function on X such that ξ and 1/ξ are bounded on X. Furthermore, Ψ

has the doubling property if and only if M possesses the same property.

We quote as first example the function

Ψ(x, t) = t|t|α−1, x ∈ X, t ∈ R, (6.5)

where α is a real> 1. In this case, LΨ(X) is the classical Lebesgue space Lα(X,m)

where

m = GX(x0, ·)γ,

hence trivially

LΦ(X) = Lα
′
(X,m) (α′ := α/(α− 1)) .

In this example, clearly both functions Ψ and Φ possess the doubling property.

As second example of Ψ, we consider

Ψ(x, t) = sgn(t)[−|t|+ (1 + |t|) ln(1 + |t|)], x ∈ X, t ∈ R. (6.6)
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In this example, the function Ψ has the doubling property but it is not the case

for Φ. In fact, by elementary calculations we may show that

Φ(x, t) = sgn(t)[−1− |t|+ exp |t|].

The reader has certainly noticed that our results (especially Theorem 5.7)

hold without assuming that Φ possesses the doubling property.

6.3 Examples of γ

Obviously the d-dimensional Lebesgue measure λ and any Radon measure on X

with a locally bounded density with respect to λ are local Kato measures on X.

A further example of γ can be constructed as follows: Suppose that

X = B := B(0, 1)

is the open unit ball of Rd and let x0 = 0. From the definition of the Green

function GB (see [20]) we know that for every 0 < ρ < 1 there exists aρ > 0 such

that

{ζ ∈ B : GB(0, ζ) > aρ} = Bρ := B(0, ρ).

Denote by σρ the normalized surface area measure on ∂Bρ and let I be the set of

all rational numbers 0 < ρ < 1. For each ρ ∈ I choose ηρ > 0 so that∑
ρ∈I

ηρaρ <∞,

and define

γ :=
∑
ρ∈I

ηρ σρ. (6.7)

Then γ is a (local) Kato measure on B which is singular with respect to λ and it

charges all nonempty open subsets of B.

Proposition 6.2. For r = δx0, the pair (γ, r) is admissible in each of the follow-

ing cases:

(a) γ is the restriction of the Lebesgue measure λ to X.

(b) γ is given by (6.7) (where X = B and x0 = 0).

Proof. In both cases the measure γ charges all nonempty open subsets of X. So

it only remains to prove that (AP2) is satisfied. Let K be a compact subset of X.
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(a) Take Ω, D ∈ O such that K ∪ {x0} ⊂ D ⊂ D ⊂ Ω and let h ∈ Hb(Ω).

From the mean-value property of h it follows that

sup
K
|h| ≤ a

∫
D

|h|dλ

where a is a strictly positive constant not depending on h. Consequently, remark-

ing that

inf
ζ∈D

GΩ(x0, ζ) := α > 0

we obtain that

VΩ|h|(x0) ≥
∫
D

GΩ(x0, ζ)|h(ζ)| dλ(ζ) ≥ α

∫
D

|h| dλ ≥ α

a
sup
K
|h|.

This finishes the proof in the case of γ = λ|X .

(b) Let ρ ∈ I such that K ∪ {0} ⊂ Bρ. Seeing that σρ = µ
Bρ
0 , it follows from

the Harnack inequality that there exists a constant a > 0 such that the inequality

µBρx ≤ a σρ

is valid for all x ∈ K. Choose τ ∈ I such that τ > ρ and put

α := inf
ζ∈∂Bρ

GBτ (0, ζ).

Since α > 0 we get that

|h(x)| ≤
∫
∂Bρ

|h| dµBρx ≤ a

∫
∂Bρ

|h| dσρ ≤
a

αηρ
VBτ |h|(0)

for every x ∈ K and every h ∈ Hb(Bτ ). Thus, the proof is complete. 2

6.4 Removable singularities

We suppose in this subsection that X is a bounded Lipschitz domain. Conse-

quently, the boundary Harnack principle holds for X and we may choose Y to be

the Euclidean boundary ∂X of X (see, e.g., [5, Sect. 8.7]).

Given u ∈ B+(X), u = 0 on Γ ⊂ ∂X will mean that for all z ∈ Γ

lim
x∈X,x→z

u(x) = 0.

Proposition 6.3. Let E ⊂ ∂X be a Borel set. The following statements are

equivalent:

(a) E is a removable set.

(b) Equation (6.2) has no nontrivial continuous solution u in X such that

u = 0 on ∂X\E and 0 ≤ u ≤ g for some g ∈ H+(X).
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Proof. Take u as in (b). By Lemma 4.1,

h := u+

∫
X

GX(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ)

is a harmonic function on X. Moreover, u = Lµ where µ is the measure in

M+(∂X) satisfying h = Pµ. We claim that µ is supported by E. Indeed, let O

be a relatively open subset of ∂X such that E ⊂ O and let ν be the restriction

of µ to ∂X\O. Then, in view of the boundary Harnack principle, we see that Pν

vanishes on O and thereby Lν = 0 on O. On the other hand, since

Lν ≤ Lµ = u

it follows that Lν = 0 on ∂X\E. Therefore, Lν ≡ 0 on X which in turn implies

that

ν = Qν = 0.

Notice that ν ∈ Q+
Ψ(∂X) by Theorem 4.2.a. We then conclude that

µ(O) = µ(∂X)

for every open subset O of ∂X containing E which means that µ ∈M+(E).

(a)⇒(b) If E is removable then u = Lµ = 0 on X by definition (see (4.4)).

(b)⇒(a) Suppose that E is not removable. By Proposition 4.4, there exists

a compact subset K ⊂ E which is not removable. Therefore, we may find a

measure τ ∈M+(K) such that

u := Lτ

is not identically zero on X. This contradicts (b). 2

Remark 6.4. Assume that all positive solutions to the equation (6.2) are locally

uniformly bounded. (For instance, in the case of γ = λX and Ψ(x, t) ≥ tα for

some α > 1; see [12].) Then, a compact set K ⊂ ∂X is removable if and only if

every positive solution to (6.2) vanishing on ∂X\K belongs to LΨ(X). In fact,

in this setting, ϑK is a non-moderate solution to (6.2) in X satisfying ϑK = 0

on ∂X\K.

6.5 A semilinear Dirichlet problem

Suppose that Ψ ∈ Y(Rd) and γ is a local Kato measure on Rd. Consider the case

when X = B is an open ball of Rd, Y is the sphere ∂B and the formula (3.18)

is the Poisson integral. According to Theorem 3.3, for every f ∈ C(∂B) the

semilinear Dirichlet problem

∆u = Ψ(·, u)γ in B,
u = f on ∂B

(6.8)
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has a unique continuous solution u. It is the only continuous extension of f to B̄

which belongs to U(B). Furthermore, u is a solution to (6.8) if and only if u

solves the following integral equation:

u+

∫
B

GB(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ) =

∫
∂B

P (·, y)f(y) dσ(y), (6.9)

where σ denotes the surface area measure on ∂B. Here, P is chosen so that

Pσ ≡ 1.

6.6 Solutions to problem (6.1)

The boundary value problem (6.1) is interpreted as the natural generalization

of (6.8). In other words, a continuous function u on X is a solution to (6.1)

means that |u| is dominated by some harmonic function on X and that

u+

∫
X

GX(·, ζ)Ψ(ζ, u(ζ)) dγ(ζ) =

∫
Y

P (·, y) dν(y). (6.10)

So the class QΨ(Y ) is the set of all ν ∈M(Y ) for which (6.1) has a solution. In

particular, by Proposition 4.4,

(NC) |ν|(E) = 0 for every removable set E ⊂ Y

whenever (6.1) has a solution, and if Ψ possesses the doubling property then

Theorem 5.7 assures that the condition

(SC) |ν|(Γ) = 0 for every compact cΨ-polar set Γ ⊂ Y

is sufficient for (6.1) to be solvable.

Let γ = λ and Ψ as in (6.5). For 1 < α ≤ 2 and if X is bounded and

sufficiently smooth, Dynkin and Kuznetsov [23, 22] (see also Le Gall [37] for

α = 2) showed using probabilistic methods that removable sets are the cΨ-polar

sets (which claims a conjecture of Dynkin [21]). Consequently, (6.1) is solvable

if and only if ν does not charge any cΨ-polar set. Similar results are given by

Marcus and Véron [41, 42] for α > 2.

Analogous parabolic problems were also investigated by similar techniques

in [38, 36, 35, 43, 40].

Remark 6.5. In virtue of Theorem 3.10.b, if Ψ has the doubling property then

all removable sets are cΨ-polar. However, in general a cΨ-polar subset of Y is

not necessarily removable. In fact, let again X, Y, P be as in Subsection 6.5 and

suppose that γ = λX . Take a ball B′ internally tangent to ∂B at a point z ∈ ∂B.

Then

A := B\B′



Applications to semilinear PDEs 36

is minimal thin at z (see, e.g., [20]). Put h = Pδz. Choose

1 < α < (d+ 1)/(d− 1)

and a locally bounded Borel measurable function θ ≥ 1 on B such that∫
A

GB(x0, ζ)[h(ζ)]αθ(ζ) dζ =∞ (6.11)

where x0 is a fixed point of B (here r := δx0). Let

Ψ(x, t) = [1B′(x) + θ(x)1A(x)] t|t|α−1, (x, t) ∈ B × R.

Seeing that ∫
B′
GB(x0, ζ)Ψ(ζ, h(ζ)) dζ <∞

and applying [25, Theorem 5.1] we conclude that the problem (6.1) is solvable

for ν = δz. This implies that the set {z} is not removable. However, by (6.11) it

is clear that {z} is a cΨ-polar subset of ∂B.

Remark 6.6. Let X0 be an open subset of Rd, d ≥ 3, and consider a uniformly

elliptic second order differential operator of the kind

Lu =
d∑
i=1

∂

∂xi

(
d∑
j=1

aij
∂u

∂xj

)
+

d∑
i=1

bi
∂u

∂xi
(6.12)

where aij are Borel measurable bounded functions on X0 and bi are in the

Lebesgue space Lp(X0, λ) for some p > d. If X is an L-adapted domain of X0

in the sense of R. M. and M. Hervé [30], we get the same results replacing the

Laplacian by the operator L.

6.7 Parabolic setting

As application of our abstract study we may suppose that the harmonic space (X,H)

is given by a domain X of Rd×R, d ≥ 1, endowed with the sheafH of the solutions

to the heat equation on X(2). Consider the semilinear problem

∆u− ∂u

∂t
= Ψ(·, u)γ in X, (6.13)

u = ν on Y, (6.14)

2Since in this case there are nontrivial absorbing subsets of X, we cannot choose r to be a
Dirac measure.
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where ν ∈ M(Y ), (γ, r) is an admissible pair, and Ψ ∈ Y(X) admitting the

doubling property. Similar to the previous elliptic case, U(X) coincides with the

set of all continuous solutions (in the distributional sense) to (6.13). Therefore,

for any ν ∈M(Y )

(SC) ⇒ (6.13)-(6.14) has a solution in Ur(X) ⇒ (NC).
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Let Ψ ∈ Y(X) and put Φ = Ψ∗. For every subset F of Y we define

CΦ(F ) := inf
{
‖f‖(Φ) : f ∈ L+

Φ(X), P̌ f(y) ≥ 1 for all y ∈ F
}
, (6.15)

and C ′Φ(F ) by the same formula where L+
Φ(X) is replaced by E+

Φ (X). It is not

difficult to see that for any arbitrary subset F of Y

cΨ(F ) ≤ CΦ(F ) ≤ C ′Φ(F ). (6.16)

We have already proved in Proposition 5.3 that cΨ, CΦ, and C ′Φ coincide on

compact subsets of Y . So, according to Choquet’s Theorem [17], one immediately

concludes that

cΨ(E) = CΦ(E) = C ′Φ(E)

for every K-Suslin subset E of Y (see [16]) provided C ′Φ defines a capacity in the

sense of G. Choquet [17] (see also [2] and [11, p. 27]).

Assumption: We suppose that both functions Ψ and Φ possess the doubling

property (so that CΦ = C ′Φ by assumption).

Using the same techniques as in Chapter 2 of [1] (see also [4]) we obtain the

following properties of CΦ:

1. CΦ is a capacity on Y (in the sense of Section 5).

2. CΦ is an outer capacity, that is, for every F ⊂ Y , CΦ(F ) = inf CΦ(O) where

the infimum is taken over all open subsets O containing E.

3. CΦ(∩∞n=1Γn) = infn≥1 CΦ(Γn) for every decreasing sequence (Γn) of compact

subsets of Y . (This is a consequence of the previous property.)

We notice that properties (1)-(3) hold, for every function Φ ∈ Y(X), even if both

functions Φ and Ψ do not satisfy the ∆2-condition.

Proposition A.1. CΦ is a Choquet capacity.

To prove the proposition we shall proceed as in the proof of [3, Théorème 2].

Let us first note that for every subset E ⊂ Y ,

CΦ(E) = inf
f∈FE

‖f‖(Φ) where FE := {f ∈ L+
Φ(X) : P̌ f ≥ 1 CΦ − q.e on E}.

38
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Lemma A.2. Let f, fn ∈ LΦ(X) such that (fn) converges (in norm) to f .

(a) The set {P̌ |f | =∞} is CΦ-polar.

(b) There exists a subsequence (gn) of (fn) such that (P̌ gn) converges CΦ-q.e

to P̌ f .

Proof. (a) For every j ≥ 1,

CΦ{P̌ |f | =∞} ≤ CΦ{P̌ |f | ≥ j} ≤ j−1‖f‖(Φ).

(b) Choose a subsequence (gj) of (fn) such that ‖f − gj‖Φ ≤ 2−j/j for ev-

ery j ≥ 1, and let

Ej = {jP̌ |f − gj| > 1}, Fj = ∪n≥jEn, and E = ∩j≥1Fj.

Then

CΦ(E) ≤ CΦ(Fj) ≤
∞∑
n=j

CΦ(En) ≤ 21−j

which yields thatE is CΦ-polar. Thus the proof of (b) is finished seeing that P̌ gj(y)

converges to P̌ f(y) for every y ∈ Y \E. 2

Proof of Proposition A.1. By Theorem 5.1,

LΦ(X)∗ = LΨ(X) and LΨ(X)∗ = LΦ(X)

which implies, in particular, that LΦ(X) is reflexive. Let (En) be an increasing

sequence of subsets of Y and let E = ∪∞n=1En. We claim that

CΦ(E) = sup
n≥1

CΦ(En).

To prove this fact it is sufficient to check that

α := sup
n≥1

CΦ(En) ≥ CΦ(E).

So, without loss of generality we assume that α < ∞. Fix ε > 0. Then the

convex subset

An := {f ∈ FEn : ‖f‖(Φ) ≤ α + ε}

is nonempty for every n ≥ 1. Besides, by statement (b) of the above lemma, An is

closed in LΦ(X). So,An is compact with respect to the topology σ(LΦ(X), LΨ(X))

(see, e.g., [15]). Therefore, since (An) is decreasing we deduce that there exists

f ∈ ∩∞n=1An.

Now, seeing that f ∈ FE and ‖f‖(Φ) ≤ α + ε it follows that CΦ(E) ≤ α + ε for

every ε > 0. Whence CΦ(E) ≤ α. 2
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Corollary A.3. CΦ and cΨ coincide on K-Suslin subsets of Y . In particular,

if the Borel subsets of Y are K-Suslin (for instance, if Y is locally compact)

then cΨ(F ) = CΦ(F ) for every subset F of Y .
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