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Abstract

Let (X,H) be a harmonic space in the sense of H. Bauer [7] which has a Green
function Gx. It is known [31] that to every reference measure r there corresponds a
suitable integral representation of functions in

H(X) :=HT(X)NLY(X,r).

Let Y be the minimal Martin boundary, P the Martin kernel, and denote by M(Y')
the set of all signed Borel measures on Y with bounded variation. In this work we
consider the perturbed (semilinear) structure (X,U) obtained from (X,H) by means
of (v, ¥) where v is a local Kato measure on X and ¥ belongs to a class of real-valued
functions on X x R containing, in particular,

Uy, (z,t) — t[t]*!

where « is a real > 1.
We show that for every function u belonging to

U (X) :={u €U(X) : |u|] < h for some h € H, (X)}

there corresponds a unique signed measure v € M(Y) such that

u+/XGX('7C)‘I’(C7 /P

Conversely, we prove that this integral equation admits a solution v € U,.(X) when-
ever v does not charge compact sets K C Y of zero Martin-Orlicz capacity, that is,
|v|(K) = 0 for every compact set K C K with the property that the integral

/X/XGX(DC,C)\I/ (C,/YP(C,y) du(y)) dy(¢) dr ()

is equal to 0 or oo for every p € M™(Y) such that u(Y\K) = 0.
In Section 6, we use our approach to investigate the trace of moderate solutions to

some semilinear equations.
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1 Introduction

Let r be a reference measure relative to a given harmonic space (X,H) in
the sense of H. Bauer [7], and let H."(X) be the set of all positive harmonic
functions on X (i.e., which belong to H (X)) which are r-integrable. Developing
an integral representation of functions in H."(X), K. Janssen determined in [31]
a Polish space Y (minimal Martin boundary) and a function P : X x Y — R,
(Martin kernel) such that:

Theorem 1.1 ([31]). Every harmonic function h € H,.(X) = H}(X)—H(X)
has a unique representation

h(z) = Pv(x) := /YP(x,y) dv(y) (z € X) (1.1)

where v belongs to the set M(Y') of all signed Borel measures on'Y with bounded
variation. Conversely, Pv € H,(X) for any v € M(Y).

In this work we are interested in the analogous representation problem in a
non-linear setting. To simplify the presentation of our approach let us suppose
that the harmonic space (X, H) possesses a Green function Gx (see [13, Sect. 4]),
and assume that 1 € H(X). Standard examples of (X, H) are:

1. (Elliptic case) X is a Greenian domain of R? and 7 is the sheaf of classical
harmonic functions (i.e., solutions to the Laplace equation).

2. (Parabolic case) X is a domain of R? x R and H is the sheaf of parabolic
functions in the terminology of [20] (i.e., solutions to the heat equation).

Any probability measure can serve as reference measure in Example 1, while
this is not true in Example 2. However, a probability measure whose support is
the whole space X is always a reference measure relative to (X, H).

Let ¥ be a function in Y(X) having the doubling property (see Subsection 2.6,
for instance W(z,t) = t[t|*! where a > 1), and consider a positive Radon mea-
sure v on X in the local Kato class K} (X), i.e., such that [, Gx(-,¢)dv(¢) is

loc
a bounded continuous potential on X for every compact set K C X. A continu-
ous function v on X is called a U-function if, for every open relatively compact

subset D of X, the function

et /D G OV (C,u(C)) dy(C)

is harmonic on D. If moreover |u| < h for some h € H,}F(X), we say that u is
moderate. We denote by U (X) the set of all U-functions on X and by U, (X) the
set of all moderate functions in U (X). First, we establish the following existence
result:



Introduction 2

Proposition 1.2. For every moderate U-function u on X, there exists a unique
measure v € M(Y'), which will be denoted by tr(u) and called the trace of u on'Y,
such that

u(x) + /X G (2, OU(C, u(Q)) dry(C) = Pu(x) (x € X). (1.2)

Moreover, for all u,v € U.(X), u > v if and only if tr(u) > tr(v).

We then extend the first part of Theorem 1.1 to the perturbed semilinear
structure (X,U) (observe that for v = 0, U,.(X) = H,(X) and v = tr(u) means
that u = Pv). Furthermore, although it may happen that (1.2) is not solvable
for a given v € M(Y") (see [26]), the last part of the above proposition assures
that (1.2) admits at most one solution u € U, (X). This function u is interpreted
as the solution of the (boundary value) problem

uel.(X) and u=v onY. (1.3)

In other words, (1.3) is considered to be equivalent to the integral equation (1.2).
The main purpose of this work is to investigate the set Qg (Y') consisting of
all v € M(Y') for which (1.3) possesses a solution u € U,.(X).

Remark 1.3. [Details are in Subsection 6] Let v € K\ (R?), U € Y(R?), and
consider Example 1 where X = B is the unit open ball of R®. ThenY = 0B and
a continuous function u on B is a solution of (1.3) if and only if it is a solution
of the boundary value problem

Au = VY(-,u)y in B,

u = v on 0B. (1.4)

In particular, (1.4) is solvable for every v = fo where f is a continuous function
on OB and o is the surface area measure on OB. Furthermore, the boundary
condition u = v means, in this case, that lim, ., u(x) = f(y) for all y € 0B.

By means of minimal thin subsets of X, we established in [25] necessary and
sufficient conditions under which a given positive finite measure v on Y is a trace
of some moderate U-function on X. In the present work, we discuss the solvability
of problem (1.3) by investigating some exceptional subsets of Y.

Definitions. A Borel set E C Y is called removable if for every v € MT(E)
(i.e., v € M*(Y) such that v(Y\E) = 0) the following holds:

veUX)and0<u<Pr = wu=0onX.
We say that F is cg-polar if for every v € M*(E) the following holds:

/X/XGX(%C)‘I’(CaPV(C))dv(C) dr(z) <0 = =0
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In the situation of Example 1 and assuming that X is bounded and Lipschitz,
it will be shown (see Subsection 6.4) that a Borel subset E of 0X (Y = 0X) is
removable if and only if for every u € U (X),

u=00n0X\F = wu=0onX.

A tool of vital importance in our study (especially in the proof of Theorem 1.5
below) is the Martin-Orlicz capacity cy defined for every Borel subset £ C Y by

cy(E) = sup {v(E) : v € M*(E) and ||Pv|jy <1}

where || - ||y is the Orlicz norm in the Orlicz type space Ly (X) consisting of all
(classes of equivalent) Borel measurable functions f on X such that

//GXQSC (CAF(O) dy(Q) dr(x) <

(for this characterization of Ly(X) the doubling property of ¥ is used).

Notice that cg-polar sets are subsets F of Y such that cg(E) = 0.

Among the important properties of Qg (Y"), we shall prove that v € Qy(Y') if
and only if |v| € Qu(Y'). This allows us to restrict our study of the solvability of
problem (1.3) to the case when v is positive. In particular, it will be not difficult
to prove:

Theorem 1.4. If v € Qu(Y) then all removable subsets of Y are v-null sets.

Imposing some additional assumptions on =, we give sufficient conditions
for (1.3) to be solvable. More precisely, we obtain the following result:

Theorem 1.5. If all cy-polar subsets of Y are v-null sets then v € Qu(Y).

Consider once again Example 1 where X is assumed to be bounded and suf-
ficiently smooth. Then, for r = §,, (zo € X), Y can be identified with the
Euclidean boundary 0X of X, and P is the normalized (P(xg,-) = 1) Martin
kernel on X (here a possible choice for 7 is the restriction of the d-dimensional
Lebesgue measure A to X, but v might as well be singular with respect to A).

Let v = A x and W(z,t) = t[t|*"!, @ > 1. Then, for every v € MT(9X), (1.3)
is equivalent to the boundary value problem

Au = u® in X,

u = v ondX, (1.5)

which has been investigated by various techniques (see [26, 37, 23, 22, 42]). In
this setting, Ly (X) is a classical Lebesgue space and ¢y coincides with the Martin
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capacity ¢, introduced in [22]. It is shown (Le Gall [37] for a = 2, Dynkin and
Kuznetsov [23] for aw < 2, Marcus and Véron [42] for a > 2) that for every Borel
subset E of 0X, F is removable if and only if ¢,(F) = 0. Consequently, (1.5)
has a solution if and only if v does not charge c,-polar subsets of 0.X. It will be
shown that, in general, this condition does not characterize the class Qg (Y). In
fact, we shall give an example (see Remark 6.5) for which the converse statement
in Theorem 1.5 does not hold.

After recalling in Section 2 the basic notions and facts on harmonic spaces,
we study in Section 3 semilinear perturbations of harmonic spaces. In Section 4,
we introduce the trace of a moderate U-function and give its first properties.
In the last part of the same section, we investigate removable sets and prove
Theorem 1.4 (Proposition 4.4). Section 5 deals with the Martin-Orlicz capacity cy
and the proof of Theorem 1.5 (Theorem 5.7). Finally, as application of our work,
Section 6 is devoted to a study of semilinear problems of the type (1.4).



2 Preliminaries

In the following (X, H) will always denote a harmonic space in the sense of
H. Bauer [7] such that the constant functions are harmonic on X. We shall
recall in this section the basic notions and facts on harmonic spaces that we need
(for more details see [5, 7, 11, 14, 18, 20, 29]). The reader who is not familiar
with these notions and is mainly interested in boundary value problems of the
kind (1.4) may simply restrict himself to Example 1 already mentioned in the
introduction. Section 6 will deal explicitly with this situation.

2.1 Basic notations

Given a set F of numerical functions, F, (F* resp.) will denote the set of all
functions in F which are bounded (positive resp.). For every open subset {2 of X
let B(€2) (C(£2) resp.) be the set of all Borel measurable numerical (continuous
real resp.) functions on Q. By B.(£2) we shall denote the set of all functions
in By(£2) with compact support in 2.

For A C X we denote by A° the complement of A in X and define 14 to be
the characteristic function of A: 14(x) =1if x € Aand 14(z) =0 if z € A“

Given a topological space T, M(T) will denote the set of all signed Borel
measures g on T such that ||u|| = |p|[(T) is finite. Recall that |u] = pu™ + p~
where ™ = sup(p,0) and g~ = sup(—u, 0). For any Borel set E C T, we denote
by pg the restriction of u to E and by M(FE) the set of all 4 € M(T') which are
supported by F (i.e., u(T\E) = 0). Finally, by a kernel on T'" we shall mean a
family (k(r,-)),er of Borel measures on T such that [ f(¢t)k(-,dt) = kf € BT(T)
for every f € BH(T).

2.2 Harmonic kernels

Let O be the set of all open relatively compact subsets of X and let Q2 € O. A
Borel measurable function f on 9 is resolutive if and only if f is puf!—integrable
for all z € 2 where £} is the harmonic measure of x with respect to Q (see [7]).
To each resolutive function f € B(92) we associate the harmonic function Hy, f
on ) given by

Hof(x)= | F(4)diw).
Q
If f € B(X) such that the restriction of f to 0f2 is resolutive we define

Ho(floo)(z) ifz € Q,
HQf(x):{ f&) . if z € X\Q.
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We call Hq the harmonic kernel associated to 2. A point z € 02 is called reqular
provided

f(z)= lim Hqf(z)

reQx—2

for every f € C(092), and we say that 2 is regular if all points z € 0 are regular.

2.3 Superharmonic functions, potentials

For every open subset Q of X let S(€2) be the set of all lower semicontinuous
(Ls.c) functions s > —oco on € such that for every D € O with D C €,

Hps € H(D) and Hps < s.

Functions in S(Q2) (=S(Q2) resp.) are called superharmonic (subharmonic resp.)
on . A potential on € is a function p € ST(Q) such that the constant zero is the
greatest harmonic minorant of p on Q. Let P(Q) denote the set of all potentials
on 2.

We suppose that P(X) contains a strictly positive function on X.

2.4 Potential kernels

Throughout this work we fix a potential kernel Vx on X, that is, Vx is a kernel
on X such that for every f € B;f (X)

Vi f € P(X)NG(X) NH <X\{f 7 0}). (2.1)

If moreover Vx(1p) # 0 on X for every nonempty open subset D of X we shall
say that the potential kernel Vx is strictly positive. For each Q € O (open and
relatively compact) we define

VQ = VX — HQVX (22)

Then Vq, is a potential kernel on © and Vo (B, () € P(Q2)NCy(Q2). Furthermore,
it is not hard to verify that the family (Vq)aeco is compatible, in the sense that
for any Q,Qs € O and any f € By(£2; U )

Vo, f = Vo, f € H(Ql N Qg)

Remark 2.1. Suppose that for every 2 € O, Wg is a potential kernel on €2 so
that (Wq)aeo is compatible. Then, in view of [7, Satz 5.3.6] there exists a unique
potential kernel Wx on X such that W = Wx — HoWx for every 2 € O. More
on potential kernels (also for balayage spaces) can be found in [28, Sect.2].
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Assuming that X has a (continuous) Green function Gx (see [13] for the
definition of Gx), a positive Radon measure v on X is called a local Kato measure

on X if V{ defined by

Vif = /X Gx (- O)F(C) dv(C) (2.3)

is a potential kernel on X. Notice that Vi is strictly positive if and only
if v charges every nonempty subset of X.

2.5 Admissible pairs

A closed subset A of X is called an absorbing set if it contains the support of every
harmonic measure p for any x € A and any regular open relatively compact
set D containing x. We say that a probability measure on X is a reference
measure if the only absorbing set containing its support is the whole space X. A
pair (V,r) of a potential kernel V on X and a reference measure r on X will be
said to be admissible if the following conditions are fulfilled:

(AP1) V is strictly positive.

(AP2) For every compact subset K C X, there are Q € O and ¢ > 0 such
that K C € and the inequality

sup [h(z)| < ¢ / Volh dr (2.4)
zeK Q
holds for all h € H,(£2).

We say that (v,r) is an admissible pair provided v is a local Kato measure
on X and conditions (AP1)-(AP2) hold for V' = V{ given by (2.3). See Section 6
for some examples of admissible pairs.

2.6 Young functions

An odd strictly increasing function Y : R — R will be called a Young function if
it is convex on Ry, lim; o Y (¢)/t = 0 and lim; ., Y (t)/t = co. Let Yy be the set
of all Young functions and define Y(X) to be the class of all Borel measurable
functions ¥ : X x R — R satisfying the following properties:

(i) The functions ¥(z,-) are in Y for all z € X.
(i) For every compact subset K of X there exist My, N € Yo such that

Mg (t) < U(z,t) < Ng(t) for all (z,t) € K x R,.
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Clearly Y, C Y(X) and for any ¥ € Y(X) the following holds:
(A;) For every z € X, U(x,-) is continuous, odd, and increasing on R.
(As) The function ¥ is locally bounded on X x R.
(A3) U(z,t+s) > V(x,t)+ VY(x,s) for all z € X and all ¢, s > 0.
(As)

A,) For every z € X, ¥(x,-) is convex on R,.

To each ¥ € Y(X) we associate the function U* defined on X x R by

U*(z,t) = sgn(t)sup (s|t| — ¥(z,s)). (2.5)
s>0
It is well known (see, e.g., [33, 34]) that U* € Y, for any ¥ € Y,. Analogously,
it is easy to remark that ¥* € Y(X) and (U*)* = U if ¥ € Y(X).
We shall say that a real function ¥ on X x R has the doubling property if
there exists a constant £ > 0 such that

U(x,2t) < kU(z,t) for all (z,t) € X x R,. (2.6)

In the theory of Orlicz spaces, this property is known as As-condition.
If ¥ € Y(X), it can be shown that ¥* possesses the doubling property if and
only if the function W satisfies the Vy-condition: There exists £ > 1 such that

U(z, lt) > 20V (x,t) for all (z,t) € X x R,. (2.7)



3 First tools

Assumptions of this section: ¥ is a Borel measurable real function on X x R

which satisfies (A;) and (Asg).

3.1 Semilinear perturbations
For every 2 € O (or 2 = X) we define
Vo f == Va¥(, f) (3.1)

whenever the right side in (3.1) has a sense. Then, for any open set D such
that D C Q we easily see, in view of (2.2), that

Vo =Vp + HpVy . (3.2)
Notice that for Q = X we may write V instead of Vx and V¥ instead of V.

Proposition 3.1. (Comparison principle) Let Q € O U{X} and let f,g be two
real Borel measurable functions on Q such that VY| f| and VY |g| are finite poten-
tials on Q0 and the function f — g+ VY f — VY g is superharmonic on 2. Then

f =g if and only if f+ VIS > g+ V.
Proof. Since ¥(z,-) is increasing for any = € X we easily see that
FHVRf =g+ Vg
whenever f > g on ). To prove the converse statement let
¢=V(,f)—¥(9)

and suppose that f+Vy f > g+ VYgon Q. Then s := f— g+ Vod™ is a positive
superharmonic function on 2 and

s > Voot on {¢* > 0}. (3.3)

Therefore, by the same arguments as in the proof of Proposition 2.4 of [13], it
follows from (3.3) that s dominates V¢t on Q. Thus f > g on Q. O

Corollary 3.2. LetQ € O, f, g as in the previous proposition and assume more-
over that iminf, .. [f(z) — g(z)] > 0 for all z € OQ. Then f > g on Q.
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Proof. We only need to prove that s = f + VY f — g — VY g is positive on . Let
again ¢ = \Ij(a f) - qj(u‘]) then

S+VQ¢_:f—g+VQ¢+.

Since s + Voo~ is superharmonic on  and liminf, ., s(x) > 0 for every z € 01,
the minimum principle relative to the harmonic space (X, H) implies that

s+ Vap~ >0 on (.

This in turn yields that s > 0 on . O

The following theorem is recently shown in [6] for a general setting. We give
here the proof for the sake of completeness.

Theorem 3.3. For every Q2 € O and every f € By(0N), there exists a unique
bounded continuous function uw on ), which will be denoted by Uq f, satisfying

u+ Vyu= Hqf. (3.4)

Proof. We only have to prove the existence of u. In fact, the uniqueness of u
satisfying (3.4) is assured by the comparison principle.
Take Q € O, f € B,(2) and let a = supyq |f|. The function ¥, defined
on X X R by
U, (z,t) = sgn(t)¥(x, min(|t|, a))

satisfies the assumptions (A;) and (As). For every v € B,(£2) consider
A() i= Hof — V¥

It is easy verified that Vi, *(B,(2)) is a bounded subset of B,(€2). So, since Vg is a
compact operator on By(€2) (see [27, Proposition 3.1}), it follows from Schauder’s
fixed point theorem that A(u) = u for some u € By(2). Remark now that |u| < a
by Proposition 3.1, which yields that Vy*u = Vyu. Consequently, (3.4) holds
and the proof is finished. O

If Q € O and f is a Borel measurable function on a set containing Q such that f
is bounded on 9N we shall denote by Uqf the function which equals Uq/(f|aq)
on () and equals f elsewhere. Clearly, the mapping Ug, is odd and increasing.

For every open subset 2 C X we define U*(2) to be the set of all 1.s.c locally
bounded functions v on €2 such that

Upu < u for all D € © with D C Q.
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We also define
U () = =U (), UQ) :=U"(2) NU(Q),

and we call U-function (U*-function, U,-function resp.) on € every element
of U(Q) (U*(R2), U () resp.).

Remark 3.4. Using (3.2) and (3.4) it is easy verified that for all D, € O such
that D C Q we have

Up o Uq = Us. (3.5)

Therefore, Uqf is a U-function on Q for every Q € O and every f € By(052).
If, moreover, ) is reqular and f is continuous on OS2 then Uqf is the unique
continuous extension of f to Q0 which is a U-function on €.

Theorem 3.5. IfQ € O and u € By(Q2) thenu € U(QY) (U*(R2) resp.) if and only
if u+ VYu € H(Q) (S(Q) resp.). In particular, if u € B(Q) is locally bounded
on  where 2 is an arbitrary open subset of X, then u € U(Q2) (U*(QY) resp.) if
and only if u + Viu € H(D) (S(D) resp.) for every D € O such that D C Q.

Proof. Let u € B,(Q) and let D € O such that D C Q. From (3.2) and (3.4) we
get that

u+Vou—HpVou = u+Vyu,
Hp(u+Vou) — HpVyu = Upu+ VyUpu.

Therefore Proposition 3.1 completes the proof. O
Combining the above theorem and Corollary 3.2 we obtain:

Corollary 3.6. Let Q € O and let u,v € By(2) such that liminf, ., [u(z) —
v(x)] >0 forall z € 0 . If u e U*(Q) and v € U(2) then u > v on S.

We deduce from Theorem 3.5 that U(€2) is closed under uniform convergence
on compact subsets of (). Note also that all positive U,-function on 2 are sub-
harmonic on €.

Theorem 3.7. Let Q@ C X be an open subset and let (u,) be a sequence of U-
functions on ) which are locally uniformly bounded on 2. The following holds:
(a) If (u,) increases to u then w is a U-function on Q.
(b) There exists a subsequence of (u,) which converges locally uniformly on €.
In particular, if (u,) converges pointwise to a function u then u € U(Q) and (uy,)
converges uniformly to u on every compact subset of §2.
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Proof. Take D € O such that D c Q. For every n > 1 let
h, = u, + Vg’ Uny-

(a) Since (h,) is an increasing sequence of harmonic functions on D and is
uniformly bounded, we conclude that i = sup,,>; h,, is harmonic on D. Passing to
the limit in the above formula we obtain that u + V5 u = h. So, by Theorem 2.3,
statement (a) is proved.

(b) Let K C D be a compact subset and choose a subsequence (hy,, ) of (hy)
which converges uniformly on K. Since the family

{Vgunk k> 1}

is equicontinuous [27, Proposition 3.1], by Ascoli’s theorem there exists a sub-
sequence (vy) of (uy,) such that (Vywv;) converges uniformly on K. Conse-
quently, (vg) is uniformly convergent on K. Now, in order to show the first
statement of (b) it will be enough to use an exhaustion (£2,,) of X and apply the
diagonal procedure. The second statement in (b) is obvious. |

To finish this subsection, let us note that various kinds of perturbations of
harmonic spaces were investigated by serval authors. The reader is refereed to [13,
32] for the linear setting and to [39, 45, 9, 10, 12, 6] for nonlinear cases.

3.2 Operators L and (@)

In the following, we fix an exhaustion (£,) of X, that is, Q, € O, Q, C Q,,4; for
every n > 1, and X = U,>19,. Clearly, for every f € BT(X)

The following convergence lemma follows easily from the fact that V and Vg, are
kernels.

Lemma 3.8. Let f, f, € B(X) and let g, g, € BT (X). The following holds:

(a) V(liminf, . g,) < liminf, . Vo, gn-

(b) Assume that |f,| < gn for all m > 1, and (f,),(gn), (Va,gn) converge
pointwise to f, g,V g respectively. If Vg < oo then lim, . Vo, fn =V f.

We shall use the operators L and () which are introduced in [25] in order to
study a Liouville property related to equations of the type Au = W(-,u)y. For
every positive harmonic function h on X we consider

Lh = inf Ugh and Qh := sup HqLh.
Qeo Q€0
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Lemma 3.9. Let Q. D € O such that D C Q and let s be a positive, locally
bounded, superharmonic function on a neighborhood of Q. Then Ups > Ugs.

Proof. From the formula Ugs + VQ‘I’S = Hqs we have 0 < Ugps < Hgs and
consequently 0 < Unps < s. So the monotonicity of Up and (3.5) imply that
Uqgs < Ups. O

Theorem 3.10. Let h € H"(X). The following holds:
(a) Lh e U (X), Qh € HT(X), and we have

Lh < Qh < h,
Lh+VYLh = Qh.

(b) If V¥h < oo then Qh = h.
(¢) L and Q are monotone increasing on H*(X).
(d) Lh and Qh can be characterized as follows:

Lh = max{ueU"(X):u<h} (3.8)
= max{u € U(X) : |u| < h}. (3.9)
Qh = min{g e H"(X):g> Lh} (3.10)
= max{g € H"(X):g <h; Qg =g} (3.11)
() Lo@Q@ =L and QoQ = Q.
Proof. (a) By Lemma 3.9, the sequence (Ug,h) is decreasing and
Lh = lim Uq, h. (3.12)

n—oo

Because 0 < Uq, h < h for every n > 1, Theorem 3.7.b assures that Lh is a U-
function on X. Now, since 0 < Lh < h and Lh is subharmonic on X we conclude
that the sequence (Hg, Lh) is increasing and

Qh = lim Hq, Lh. (3.13)

n—oo

Whence, the fact that Lh < Hq Lh < h yields that Qh € HT(X) and the
inequality (3.6) holds. To get (3.7) it suffices to pass to the limit in the formula

Lh+ VY Lh = Hq, Lh.
(b) Since 0 < Ug, h < h and

Ua,h+ V. U, h = h, (3.14)
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by Lemma 3.8 we obtain that Lh + VYLh = h. Therefore, h = Qh in virtue
of (3.7).

(c) Trivial.

(d) To justify (3.8) and (3.9) it is enough to show that Lh > |u] for every
u € U(X) satistying |u| < h. So, if u is a such function then for all n > 1

jul = U, ul < Ua,h,

and therefore |u| < Lh.

The equality (3.10) is a consequence of (3.6) and the monotonicity of the
harmonic kernel Hg for any Q € O. To obtain (3.11) it suffices to use the fact
that Q(Qh) = Qh which is given by the statement (e).

(e) Since Lh < Qh € HT(X), we conclude by (3.8) that Lh < LQh and
therefore

Qh=Lh+VYLh < LQh + VYLQh = Q(Qh) < Qh.

Thus Q(Qh) = h and, by comparison principle, L(Qh) = Lh. O
Lemma 3.11. Let Q € O, and let o, 6 > 0 such that
U(x,at + 0s) > a¥(z,t) + fV(x,s) forallze X, t,s>0. (3.15)
Then
Ua(af + Bg) < aUqaf + BUqg  for all f,g € B, (09). (3.16)
Furthermore, the converse inequality in (3.15) implies the converse one in (3.16).

Proof. Let f, g € B, (0Q) and denote by u = Uq f, v = Ugg and w = Ug(af+0g).
Then
¢ :=V(,au+ fv) — a¥(,u) — fY(-,v) € B ()

which implies that
Vo (qu + Bo) — aVy'u — BVY v = Voo € P(Q) NCy().
From (3.4) it follows that

au+ v+ VY (au+ Bv) = Holaf + Bg) + Vao,
w+Vyw = Ho(af + Bg).

Therefore, applying Proposition 3.1 we get that au + fv > w which finishes the
proof. Clearly the second statement can be proved in a similar way. O
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Corollary 3.12. (a) If (A3) holds then L and Q are subadditive on H*(X).
(b) If (Ay) holds then L and Q are concave (and also subadditive) on H™(X).

Proof. (a) Assumption (As) means that (3.15) holds true for o = g = 1.
Hence, by the previous lemma, Uy, is subadditive on B (992) for every Q € O.
This, (3.12) and (3.13) prove statement (a).

(b) To see that L and @ are concave it is enough to apply again Lemma 3.11
for all o, 3 > 0 such that o + 8 = 1. It is not hard to see that under (A;),
assumption (Ay) yields (As). So, if (A4) holds we conclude by statement (a)
that L and @ are subadditive on H*(X). O

Corollary 3.13. Suppose that (As) is satisfied and let (h,) be an increasing
sequence in H*(X) such that h := sup,5; h, € H*(X). Then

sup Lh, = Lh and sup Qh, = Qh.

n>1 n>1

Proof. By (3.6) and Corollary 3.12, we obtain for every n > 1 that
0<Lh—Lh,<h—h, and 0 < Qh — Qh, <h— h,.

This completes the proof. O

Proposition 3.14. Suppose that (As3) holds and the function VU has the doubling
property. Then Q is "linear” on H*(X), i.e., for all functions g,h € H(X) and
every a > 0,

Q(ag+ h) = aQqg + Qh. (3.17)

P?"OOf. Let g, h e H+(X)7 Up = UQn(Qg)7 Un = UQn(Qh) and Wy, = UQn (Q9+Qh)
By Lemma 3.11, we have w,, < u,, + v, and hence

0 <U(wy) <UL up+v,) < KU uy) + P>, 0,)) = oy

where £ is the constant given in (2.6). On the other hand, the continuity of ¥(z, -)
and statement (e) of Theorem 3.10 imply that

lim, .o ¢y = &(V(,Lg)+¥(:,Lh)):=¢, and
lim, oo Va,0n = Vé=r(VVLg+VYLh) < occ.

Then Lemma 3.8.b shows that (V) w,) converges to VY L(Qg+Qh). So, letting n
tend to infinity in the formula w, + Vi w,, = Qg + Qh we obtain that

L(Qg + Qh) + VYL(Qg + Qh) = Qg + Qh.
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This means that Q(Qg + Qh) = Qg + Qh and consequently Qg+ Qh < Q(g+ h)
by monotonicity of @ on H(X). Therefore, according to Corollary 3.12.a we get
that

Qg +h) =Qg+ Qh.

Finally, this additivity property of ), Corollary 3.13 and the density of Q4 in R,
yield that @ is positively homogeneous on H*(X). O

3.3 Martin type representation

From now on r is a fixed reference measure on X. Define H," (X)) to be the set of
all positive harmonic functions which are integrable on X with respect to r and
let

Hp(X) =R (X) = H(X).

We know [31] that there exist a Polish space Y and a family (P(-,y))yey of
positive harmonic functions on X such that:

J.1: The map y — P(-,y) is one-to-one from Y to the set of all minimal harmonic
functions h on X satisfying [ hdr = 1. (Recall that a function h € H*(X)
is called minimal if h # 0 and if every harmonic function g satisfying the
inequality 0 < g < h is a constant multiple of h.)

J.2: For every x € X, the function P(z,-):y +— P(z,y) is continuous on Y.

J.3: The formula
h= Py— / Ply) du(y) (3.18)
Y

defines a one-to-one correspondence between h € H,.(X) and v € M(Y).
Furthermore for any v € M(Y),

() = [ Plvlar
X
and v > 0 if and only if Pv > 0.

Remark 3.15. If X is a Greenian domain of R? and H is the classical sheaf of
harmonic functions, (Y, P) can be chosen so that Y is the minimal part of the
Martin boundary and P(-,y) is the Martin function with pole at y € Y.



4 The notion of the trace

Assumptions of this section: W is a Borel measurable real-valued function on
X X R which satisfies (A1), (Az) and (Aj).

4.1 An existence lemma
We consider the subset U,.(X) of U(X) given by
U(X) :={uelU(X):|u| <h for some h € H}(X)}.

A function u € U,.(X) will be called a moderate U-function on X. It is clear that
a function v € U(X) is moderate if and only if |u| < v for some v € U (X).

Lemma 4.1. Ifu € U.(X), then V¥|u| € P(X)NC(X) and u+ VYu € H,(X).

Proof. Take u € U,(X) and choose g € H,' (X) such that |u| < g. Then |u| < Lg
by (3.9). On the other hand, in view of formula (3.7),

VYLg € P(X)NC(X).

Therefore V¥|u| is a continuous potential on X. Put h = u + V¥u. Combin-
ing (3.2) and (3.4) we see that Hph = h for every D € O which implies that h is
harmonic on X. Finally, since

|h| < |Ju| + V¥ u| < Lg+VYLg<yg

we conclude that h € H,(X). O

From the above lemma it follows that the formula
u+ V¥ = Ppu (4.1)

assigns to each moderate U-function v on X a unique signed measure u € M(Y).
Conversely, the comparison principle assures that for each € M(Y) there is at
most one function u € U,.(X) which satisfies (4.1). We call the measure p given
by (4.1) the trace of w on Y and we write

= tr(u).

We shall denote by Qg (Y') the set of all p € M(Y') such that u is the trace of
some moderate U-function on X. In other words, u € Qu(Y) means that the
equation (4.1) is solvable in U, (X).

17



The notion of the trace 18

4.2 Properties of the trace

Let 4 € M*(Y) and h = Pu. Then (3.7) yields that the measure v € M (Y)
satisfying Qh = Pv belongs to the class Q§(Y). Defining
Qui=v

we obtain an increasing subadditive operator @ from M™(Y) into Q4 (Y). Fur-
thermore,

QYY) = {j € MH(Y): Qu = ). (12)
In the sequel, we may write Ly to mean L(Ppu).

Theorem 4.2. Let u, v, py, pio,--- € M(Y). The following holds:
(a) If |p| < v and v € Q4(Y) then p € Qu(Y).
(b) € Qu(Y) if and only if |u| € Qy(Y).
(c) If pn € Q3 (Y) for alln > 1 and (u,) increases to p, then p € Qg (Y).
(d) If ¥ satisfies (Ay) then Qu(Y') is convex.
(e) If U has the doubling property then Qu(Y') is a linear subspace of M(Y').
In this case, fu € Qu(Y) whenever u € QL(Y) and f € LYY, ).

Proof. (a) Let h = Pu and g = Pv. For every n > 1 we have
|Ua,h| <Uq,g <g.

Then, by Theorem 3.7, there exists a subsequence (uy) of (Ug,h) which is uni-
formly convergent on every compact subset of X. So
w = lim wuy

k—o0

is a moderate U-function on X. Using the monotonicity and the continuity
of U(z,-), we obtain that

(W ue)| < V(- Uq,9),
oo U, up) = W(-,u),
limy_oo ¥(-, Uq,g) = ¥(-, Lg).

On the other hand, the fact that v € Q(Y") implies that
Jim Vo Ug,g=VVLg < co.
Therefore, by Lemma 3.8 we conclude that

lim Vyu, = VV%u
k—o0 k
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and consequently
u+V¥u=h.

This means that p € Qu(Y) and tr(u) = u.

(b) If |u| € Q4(Y) then u € Qu(Y) by statement (a). Suppose now that
w € Qu(Y) and let u be the moderate U-function on X satisfying u = tr(u).
Choose v € M™(Y) such that |u| < Pv. Then |u| < Lv by (3.9) and thereby

|Pul < P(Qv).

This yields that |u| < Qv (recall that P|u| is the least harmonic majorant
of |Pul). So |u| € Q4 (Y) by statement (a).

(c) follows trivially from Corollary 3.13.

(d) Since, by Corollary 3.12, @) is a concave operator on M™T(Y") we easily
deduce from (4.2) that Qg (Y) is a convex subset of MT(Y). So statement (b)
proves that Qy(Y) is also convex.

(e) By Proposition 3.14, Q4 (Y) is a cone. In fact, for every u,v € MT(Y)
and every a > 0 we have

Qlap +v) = aQu+ Qu.

So from (b) it follows that
Qu(Y) = Qy(Y) — Qy(Y) (4.3)

which proves that Qy (Y) is a linear space. The second part of (e) is a consequence
of statements (b) and (c). O

Studying equations Au = ulu/*!, @ > 1, on bounded domains Q C R?
analogous results as in the previous theorem are obtained in [42]. To see the
interest of introducing the operators L and (), the reader may compare our proof
to the proof given by M. Marcus and L. Véron [42, Proof of Proposition A] who
used a result of H. Brézis concerning the boundary value problem

Au=finQ and u=¢ € L'(09) on .

We also notice that, using probabilistic tools, E. B. Dynkin and S. E. Kuznetsov
proved a result [24, Theorem 4.3] similar as assertion (c) of the preceding theorem.



The notion of the trace 20

4.3 Removable singularities

Let E be a Borel subset of Y. We shall say that E is removable if the func-
tion ¥ which is defined at every point x € X by

Vg(x):= sup Lu(x) (4.4)
HeEM*(E)

is identically zero. Since {Lu : p € M™(E)} is an upward filtering family of
continuous functions, we may find an increasing sequence (u,) € M*(E) such

that
Vg = sup Ly,

n>1

which yields, in particular, that ¥z € UT(X) if it is locally bounded on X. In
the following proposition, we have collected basic properties of the map £ +— .

Proposition 4.3. Let E, F, E,FEs,--- CY be Borel sets. Then:
(a) If E C F then 9 < Up.
(b) If (E,) increases to E then Vg = sup,», Vg, .
(¢) If E = U2, E, then ¥ <> .7 Ug,.

Proof. (a) Obvious.
(b) Let w = sup,,>; Vg, and let p € M*(E). Seeing that pug, € M*(E,) for

n

all n > 1 and (ug,) increases to p, we conclude that

Ly =sup Lpg, < u.

n>1

Whence 95 < u. Therefore u = ¥ since u < Vg by (a).
(c) For every k > 1 let
B, =U'_E,

and choose u € M (F},). Because L is subadditive and pu < Zﬁzl KE,, it follows
that Ly < ZI;L:1 L, and consequently

k
n=1
Thus, for all £ > 1

k
Up, < Z Vg, ,
n=1

which yields the desired inequality remarking that Jg = supys; Vg, - O
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As immediate consequences of the previous proposition, we see that every Borel
subset of a removable set of Y is also removable, and U;° | E, is removable when-
ever (E,) is a sequence of removable subsets of Y.

Proposition 4.4. Let E be a Borel subset of Y. The following statements are
equivalent:

(a) E is removable.

(b) v(E) =0 for allv € Q4(Y).

(c) Every compact subset K C E is removable.

Proof. From the fact that Qu € Q (V) and Ly = L(Qu) for every p € M*(Y)
we obtain that

Vg = sup Lv. (4.5)
vEMF(E)NQL(Y)

This yields the equivalence between (a) and (b). To finish the proof it suffices to
recall that every u € M™*(Y) is inner regular (see, e.g., [8]). O



5 Polar sets

Assumption of this section: U € Y(X).

5.1 Orlicz type spaces

For our purpose it will be convenient to identify all Borel measurable functions f, g
on X satisfying

[ vis=ghar=o
X
We define Ly (X) (Orlicz class) to be the set of all f € B(X) such that

ou(f) = /Xvﬂf\ dr < .

Let Ly (X) (Orlicz space) be the smallest linear space containing Ly (X), and let
Eg(X) be the largest linear space contained in Lg(X). Classical analogous defi-
nitions, for X C R? and ¥ € Yy, are well known (see, e.g., [33]). An alternative
approach to the theory of Orlicz spaces can be found in [19]. Notice that if ¥
has the doubling property then

Ey(X) = Lo(X) = Ly(X).

Notation. Here and in the following, ® denotes the function ¥* given by (2.5)
(of course @ € Y(X) and &* = V).

For every Borel measurable function f on X we consider

e = sw{ [ Vifdlarige Bt <1}, )
[fllwy = inf{a>0:04(a"'f) <1}. (5.2)
Obviously, || - [[¢ and || - ||(w) are increasing on B*(X). Furthermore,
Iflle <1 = ouw(f) < Ifllw, (5.3)
[fllw <1 = ou(f) <1 54

We also need the following kind of Hélder inequality which follows from (5.4):

[ Visslar < sl (5.5)
From (5.3) and (5.4) we deduce that
[ fllewy < [[flle < 2[[f]l(w)-

22
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Therefore

Ly(X) = {f € B(X) : [[fllw < oo}
and || - ||y and || - ||(w) define two equivalent norms on Ly (X). Moreover, it is
not difficult to verify that Ly (X) endowed with || - ||¢ is a Banach space. We
call || - ||w (|| - ||(w) resp.) the Orlicz (Luxemburg resp.) norm.

Let f € Fy(X) and consider the sequence (f,) given for every n > 1 by

fn = lq, inf(sup(f, —n),n). (5.6)
Seeing that
fn € Bbc(X)a |fn‘ < |f|7 and nlggofn = fa

it follows that for every o > 0
Tim oy (alf = ful)) = 0.

Therefore, Fy(X) coincides with the closure (relative to the convergence in norm)
of Bye(X) in Ly(X). Define B to be the closed unit ball in L (X) with respect

to the Luxemburg norm and let
EB(@) = E@(X) N B(@).

Clearly (5.4) means that By = {f € B(X) : 0a(f) < 1}. Using sequences
defined by (5.6) it is not difficult to see that

Ifle = sup /X V(flg) dr. (5.7)

ER+
ge B@)

Now, slightly modifying the proof of Theorem 14.2 in [33] we get the following
result which characterizes the topological dual of Ey(X).

Theorem 5.1. For every continuous linear form T on Ey(X), endowed with
the Luxzemburg norm, there exists a unique function g € Le(X) such that for

T(f) = /X V(fg)dr. (5.8)

Moreover:

(@) |7 := supserp,, IT()] = llglle-
(b) If T >0 (i.e., T(f) > 0 for all f € EL(X)) then g € LE(X).
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5.2 The Martin-Orlicz capacity

We call Martin-Orlicz capacity the set function cg defined for every Borel sub-
set £ of Y by

ca(E) i=sup {v(Y) : v € M*(E), |Polly < 1)
and extended to any (arbitrary) subset F' of Y by
cy(F) =inf{cy(F) : E D F, E Borel}.

Then cy is a capacity in the terminology of N. G. Meyers [44]. In other words,

Cy ((Z)) =0
and for any sequence (F,) of subsets of Y the following properties hold:
F, C Fy, = C\I/(Fl) < C\I](FQ)7 (59)
co(Unty Fn) < 2200 cu(Fh). (5.10)

A set F C Y will be called cyg-polar if cy(F) = 0, and we shall say that a
property P holds cy-quasi-everywhere (abb., cy-q.€) provided P is valid on Y\ F
for some cg-polar subset F' C Y.

From (5.9) it follows that every subset of a cy-polar set is also cg-polar, and
by (5.10) it is clear that the union of any countable family of cg-polar sets of Y
is again cy-polar.

Using the fact that

p(E) =sup{u(K): K C E, K compact}

for any Borel subset F of Y and any u € M™(Y'), we easily obtain the following
proposition.

Proposition 5.2. For every Borel set E C X we have

cy(E) =sup{cy(K) : K C E, K compact}. (5.11)
For f € B(X) we consider the function Pf defined at every y € Y by

Piy) = /X V(P,f)dr

provided the integral makes sense. Recall that P, = P(-,y) is the (Martin)
function given by (J.1). If f € BT (X) and v € M*(Y), it is obvious that

/Ypfdu:/XV(fPu)dr. (5.12)
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Proposition 5.3. For every compact subset K of Y we have

co(K) =1inf {|| fll@) : f € EL(X) and Pf > 1 on K} . (5.13)
Moreover, (5.13) holds also true if Ef(X) is replaced by Li(X).
Proof. Let K be a compact subset of Y and denote by « the right side in (5.13)().

Let
W= {v e MHEK)  v(Y) =1}
and endow it with the weak™ topology. Then W is a compact Hausdorff space.
On the other hand, by (J.2) the mapping
v — Pu(x)

is continuous on W for any fixed x € X. Consequently the function
Vi / Pfdv
Y

is lower semicontinuous on W for every fixed function f € ¥ B(fb). Then, in view
of (5.7) and (5.12), the minimax theorem (see, e.g., [1]) yields that

inf ||Pr|ly = su mf/P dv = su inf P . 5.14
IIEW” H‘lj feEé)(-‘-)VGW Y f feE;+)y€K f(y) ( )

Remark first that by the definition of ¢y (K) it is not difficult to obtain (5.13) in
the case of

foea (K} 01{0, 00} £ 0.
So suppose that 0 < cg(K), @ < co. Then

1 . 1
o () = mf{m.I/G./\/ﬁ(K),V?éOaHPVH‘PSl}
1Pv]w
inf { (K VEMJF(K),U#O}
= Inf [|Pvy,
and
L. sup{ﬁ:feE;(X),f,:éo,szmﬂK}
a (®)

sup { infyer Pf(y)
/1l
= sup inf Pf( ).

fe EB+ yeK

:fGEaX%fio}

Uf there is no f € Ef (X) such that Pf > 1 on K then, by convention, o = oc.
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So the proof of equality (5.13) is finished in view of (5.14). Finally, using (5.1)
instead of (5.7), the second statement of the proposition can be shown by the
same reasoning. O

5.3 Sufficient conditions for v to be in Qy(Y)

In addition to the fact that ¥ is a function in Y(X), we also suppose in the
present subsection that:

() ¥ has the doubling property, and

(1) (V,r) is an admissible pair (see subsection 2.5).

Let us consider the duality (-,-) between Eg(X) and Ly (X) given by

(f.g) = /X V(fg)dr

for every f € FEp(X) and g € Ly(X). If F C Egp(X), we denote by FL the
(closed) subspace of Ly(X) consisting of all g € Lg(X) such that (f,g) = 0 for
all f € F. For aset G C Ly(X), G is the subspace of Fg(X) defined in the
same way.
We define
Hy(X) :=H(X) N Ly(X),
M (X) = Hy (X) = Hy (X)),
M\p( ) = {V S M(Y) Pv e H\p( )}

By Theorems 4.2.b and 3.10.b we have My (Y) C Qu(Y). (Notice that assump-
tion (T) above implies that Ey(X) = Ly (X) = Lg(X))

Lemma 5.4. Let E CY be a Borel set. The following holds:
(a) E is cy-polar if and only if v(E) =0 for allv € ML(Y).
(D) He(X) ={f € Es(X): Pf=0cy —qe onY}
(¢) H(X) N Ly(X) is a closed subspace of Ly(X).

Proof. (a) Trivial.
(b) This follows from (5.12) and assertion (a).

(c) Let K be a compact subset of X and choose © € O, ¢ > 0 as in (2.4).
Applying the Holder inequality we obtain that

sup | < ¢ [ Vibaldr < ellto]a s
K X

for every h € H(X). Therefore, any sequence in H(X)N Ly (X) converges locally
uniformly on X whenever it converges in Ly (X) relative to the Orlicz norm. This
finishes the proof of (c). O
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Remark 5.5. From the first part of Lemma A.2 (see Appendix) we conclude
that the set

{y e Y : P|f|(y) = o0}

is cg-polar for every f € Eg(X). The second statement of the same lemma yields
that every sequence (f,) C FEg¢(X) convergent (in norm) to some function f
admits a subsequence (g,) with the property that (Pg,) converges cy-q.e to Pf.

Remark 5.6. If f € C(X) such that for all g € B (X)

/ V(fg)dr >0,
X

then f(z) > 0 for all z € X. In fact, it suffices to remark that the measure m
defined for every Borel subset A C X by

m(A) = /X Viadr

charges all open nonempty subsets of X. To see this, let D € O and suppose
that m(D) = 0. Seeing that

{z€X:Vip(x)=0}

is an absorbing set (see, [7, Satz 1.4.1]) and recalling the definition of a reference

measure (see Subsection 2.5) we conclude that V1p is identically zero on X.
Consequently, D = by (AP1).

Theorem 5.7. Every v € M(Y) which does not charge any compact cg-polar
subset of Y is a trace of some moderate U-function on X.

Proof. In virtue of Theorem 4.2.b we consider only the case when v is positive.
Let v € M™(Y) not charging compact cg-polar subsets of ¥ and define for
every f € Eg(X)

M) = [ 1Ps17 av

Then A is a positively homogeneous subadditive map from Fg(X) into R,. Fur-
thermore, A is lower semicontinuous on Eg(X) (see Remark 5.5) and thereby

epi A= {(f,£) € Ea(X) x R: A(f) <t}

is a closed convex cone of Eg(X) xR (see, e.g., [15]). Considering ¢ := > > a,lq,,

where

an Y
(1+ (1o, Pr))(1 +[1a,]le)
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it is not difficult to see that
o>a,>00nQ, ¢e€FE;X), and A(p) < co.

Then Theorem 5.1 and the Hahn-Banach theorem (see, e.g., [15, Théoreme 1.7])
imply that there exist g, € Ly(X) and a,, € R such that

(o gn) > an(A(p) —1/n) (5.15)

and
(fygn) < apt forall (f,t) €epiA. (5.16)

Taking f =0 and ¢t = 1 in (5.16) we get that a,, > 0. Assuming that a, =0
we obtain that (¢, g,) > 0 by (5.15), and (¢, g,) < 0 by (5.16), which yields a
contradiction. So we suppose without loss of generality that a,, = 1 (otherwise
we replace g, by a,'g,).

We claim that g, € HT(X). In fact, using the characterization of Hg(X)*
given by Lemma 5.4.b, we deduce from (5.16) that

gn € (Hu(X)H)*.
On the other hand, Lemma 5.4.c and [15, Proposition I1.12] prove that
(Ho(X)5)*t € Ly(X) NH(X).

Now, applying (5.16) to (—f,0) we get that (f,g,) > 0 for every f € B, (X),
which implies that g,(x) > 0 for all z € X (see Remark 5.6 above). The claim is
proved.

Put h = Pv and apply again (5.16) for f € B, (X) and ¢ = A(f), we obtain
in view of (5.12) that

/X V(f(h— g))dr > 0

for every f € B/ (X), which yields that A > g, on X. Define now

hy, = lim Hq, sup g;,
k—o0 1<i<n
i.e., h, is the least harmonic majorant of {g; : 1 < ¢ < n}. Then (h,) is an
increasing sequence of positive harmonic functions on X satisfying

% (n>1). (5.17)

/X V(g(h — hy)) dr <
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Recalling that ¢ > 0 on X we conclude from (5.17) that h = sup,; h,, and
consequently

V =8upvyy,
n>1

where v, € M*(Y) satisfying Pv,, = h,, for all n > 1. The fact that

=1

and g; € Hy(X) for all 4« > 1, proves that all measures v, belong to the
class Q4 (Y). Whence, v € QF(Y) by Theorem 4.2.c. O

We notice that, in general, the converse statement in the above theorem does
not hold. A counterexample will be given in subsection 6.6.



6 Applications to semilinear PDEs

We call Greenian domain every open and connected set D C RY which has
a Green function Gp (—AGp(-, () = d; for every ( € D). As usual, A denotes
the Laplace operator on R?, d > 2. Let X be a Greenian domain of R? and
let ‘H be the classical sheaf of harmonic functions on X. Fix a point xy in X and
consider, as reference measure on X, the Dirac measure r = ¢,,, concentrated at
the point zy (here X and the empty set are the only absorbing subsets of X;
see, e.g., [7]). So, trivially

Ho(X) = HH(X) — HT(X).

We choose Y and P so that Y is the set of all minimal Martin boundary points
of X and P is the Martin kernel satisfying P(xq,y) = 1 for every y € Y.

Let ¥ € Y(X) and denote by ® the function ¥*. Consider also a local Kato
measure v on X, i.e.,, V =V given by (2.3) is a potential kernel on X. Then it
is not difficult to see that, for every D € O, the kernel Vp, is given by the formula

Vpf = /D G (- O f(Q) dv(C).

Our goal here is to apply the general study presented in the preceeding sections
in order to investigate the boundary value problem:

Au = U(-,u)y in X,

u = v on Y, (6.1)
where v is a signed Borel measure with bounded variation on Y.
6.1 Continuous solutions to (6.2)
A solution to the equation
Au = V(- u)y (6.2)

on an open subset 2 C X has to be understood as a continuous function u on €2
which satisfies (6.2) in the distributional sense, i.e.,

/Q u(z)Ap(z) dz = / (i, u(x))plx) dr () (6.3)

Q

for every ¢ in the space C2°(Q2) of all infinitely differentiable functions on Q with
compact support in €.

30
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Proposition 6.1. Let Q be an open subset of X and let uw € C(2). Then u is a
solution to (6.2) in Q if and only if u is a U-function on 2.

Proof. Suppose first that u is a U-function on . Let ¢ € C°(Q2) and choose
D € O such that supp(p) C D C Q. By Theorem 3.5, the function

homu+t /D G (- V(¢ u(Q)) dv(Q) (6.4)

is harmonic and bounded on D. Therefore, multiplying (6.4) by A¢ and inte-
grating, we obtain (6.3) which means that u is a solution to (6.2) in €.

Conversely, assume that (6.3) holds true for every ¢ € CX(f2). A similar
computation proves that for any D € O with D C €, the function h given
by (6.4) is harmonic on D. So, again by Theorem 3.5, this yields that

Upu=u

for all D € O such that D C Q. Whence u € U(RQ). O

6.2 Examples of ¥

The class Y(X) contains every function of the form
U(z,t) = §(x)M(t)

where M is a Young function (see Subsection 2.6) and ¢ is a Borel measurable
positive function on X such that £ and 1/£ are bounded on X. Furthermore, ¥
has the doubling property if and only if M possesses the same property.

We quote as first example the function

U(x,t) =tt|*!, v € X, teR, (6.5)

where ais areal > 1. In this case, Ly (X) is the classical Lebesgue space L*(X, m)
where

m = GX(*T07 )’77
hence trivially

Lo(X)=LY(X,m) (¢ =af(a—1)).

In this example, clearly both functions ¥ and ® possess the doubling property.
As second example of ¥, we consider

U(z,t) = sgn(t)[— |t + (1 +[¢)) In(1 + [¢])], z € X, t € R. (6.6)
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In this example, the function ¥ has the doubling property but it is not the case
for ®. In fact, by elementary calculations we may show that

O (z,t) = sgn(t)[—1 — |t| + exp |t]].

The reader has certainly noticed that our results (especially Theorem 5.7)
hold without assuming that ® possesses the doubling property.

6.3 Examples of ~

Obviously the d-dimensional Lebesgue measure A and any Radon measure on X
with a locally bounded density with respect to A are local Kato measures on X.
A further example of v can be constructed as follows: Suppose that

X = B:= B(0,1)

is the open unit ball of R? and let g = 0. From the definition of the Green
function G (see [20]) we know that for every 0 < p < 1 there exists a, > 0 such
that

{¢e B:GE(0,¢) >a,} =B, :=B(0,p).

Denote by o, the normalized surface area measure on 0B, and let I be the set of
all rational numbers 0 < p < 1. For each p € I choose 1, > 0 so that

Z Npa, < 00,

pel

and define

V= an Tp- (6.7)

pel

Then v is a (local) Kato measure on B which is singular with respect to A and it
charges all nonempty open subsets of B.

Proposition 6.2. Forr = d,,, the pair (v, 7) is admissible in each of the follow-
Mg CASes:

(a) v is the restriction of the Lebesque measure X to X .

(b) 7 is given by (6.7) (where X = B and xy = 0).

Proof. In both cases the measure v charges all nonempty open subsets of X. So
it only remains to prove that (AP2) is satisfied. Let K be a compact subset of X.
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(a) Take Q,D € O such that K U {zy} C D C D C Q and let h € H,(Q).
From the mean-value property of h it follows that

sup |h| < a/ |h|dA
K D

where a is a strictly positive constant not depending on h. Consequently, remark-
ing that

inf G =a>0

inf (7o, () =«

we obtain that

Valbl(an) = [ Galen OIOIANO = a [ [Hlar =2 suph.

This finishes the proof in the case of v = A|x.
(b) Let p € I such that K U {0} C B,. Seeing that o, = ufp, it follows from
the Harnack inequality that there exists a constant a > 0 such that the inequality

Nf’o <aop,
is valid for all z € K. Choose 7 € I such that 7 > p and put
a:= inf G5, (0,0).

Since a > 0 we get that

) < [ bl <a [ fildo, < Vi)
dB, dB, an

P

for every x € K and every h € Hy(B,). Thus, the proof is complete. O

6.4 Removable singularities

We suppose in this subsection that X is a bounded Lipschitz domain. Conse-
quently, the boundary Harnack principle holds for X and we may choose Y to be
the Euclidean boundary 0X of X (see, e.g., [5, Sect. 8.7]).

Given v € BY(X), u =0 on I' C 90X will mean that for all z €T

lim w(z) =0.

zeX,x—z

Proposition 6.3. Let E C 0X be a Borel set. The following statements are
equivalent:

(a) E is a removable set.

(b) Equation (6.2) has no nontrivial continuous solution u in X such that

u=0 ondX\E and 0 <u<g for somege H"(X).
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Proof. Take u as in (b). By Lemma 4.1,

I /X Gx (- O (¢, u(C)) dy(C)

is a harmonic function on X. Moreover, u = Lpu where p is the measure in
MT(0X) satisfying h = Pu. We claim that p is supported by E. Indeed, let O
be a relatively open subset of X such that £ C O and let v be the restriction
of u to 9X\O. Then, in view of the boundary Harnack principle, we see that Pv
vanishes on O and thereby Lv = 0 on O. On the other hand, since

Lv < Lpu=u

it follows that Ly = 0 on X\ E. Therefore, Lv = 0 on X which in turn implies
that
v=Quv=0.

Notice that v € Q4 (0X) by Theorem 4.2.a. We then conclude that

#(0) = p(0X)

for every open subset O of X containing £ which means that u € M*(E).
(a)=-(b) If £ is removable then u = Ly = 0 on X by definition (see (4.4)).
(b)=(a) Suppose that E is not removable. By Proposition 4.4, there exists

a compact subset K C FE which is not removable. Therefore, we may find a

measure 7 € MT(K) such that

u:= Lt

is not identically zero on X. This contradicts (b). O

Remark 6.4. Assume that all positive solutions to the equation (6.2) are locally
uniformly bounded. (For instance, in the case of v = Ax and ¥(z,t) > t* for
some « > 1; see [12].) Then, a compact set K C 0X is removable if and only if
every positive solution to (6.2) vanishing on 0X\ K belongs to Lg(X). In fact,
in this setting, ¥ is a non-moderate solution to (6.2) in X satisfying Jx = 0

on 0X\K.

6.5 A semilinear Dirichlet problem

Suppose that ¥ € Y(R?) and 7 is a local Kato measure on R?. Consider the case
when X = B is an open ball of R? Y is the sphere 9B and the formula (3.18)
is the Poisson integral. According to Theorem 3.3, for every f € C(OB) the
semilinear Dirichlet problem
Au U(-,u)y in B,
u = f on 0B

(6.8)
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has a unique continuous solution w. It is the only continuous extension of f to B
which belongs to U(B). Furthermore, u is a solution to (6.8) if and only if u
solves the following integral equation:

u+¢;h@owxm@»m«»—/‘Puwﬂwddw, (6.9)

oB

where o denotes the surface area measure on 0B. Here, P is chosen so that
Po=1.

6.6 Solutions to problem (6.1)

The boundary value problem (6.1) is interpreted as the natural generalization
of (6.8). In other words, a continuous function u on X is a solution to (6.1)
means that |u| is dominated by some harmonic function on X and that

ﬁé@@mmwmmszmwww. (6.10)

So the class Qg(Y) is the set of all v € M(Y') for which (6.1) has a solution. In
particular, by Proposition 4.4,

(NC) |v|(F) = 0 for every removable set £ C Y

whenever (6.1) has a solution, and if U possesses the doubling property then
Theorem 5.7 assures that the condition

(SC) |v|(I") = 0 for every compact cg-polar set I' C Y
is sufficient for (6.1) to be solvable.

Let v = A and ¥ as in (6.5). For 1 < o < 2 and if X is bounded and
sufficiently smooth, Dynkin and Kuznetsov [23, 22] (see also Le Gall [37] for
a = 2) showed using probabilistic methods that removable sets are the cg-polar
sets (which claims a conjecture of Dynkin [21]). Consequently, (6.1) is solvable
if and only if v does not charge any cy-polar set. Similar results are given by
Marcus and Véron [41, 42] for o > 2.

Analogous parabolic problems were also investigated by similar techniques
in [38, 36, 35, 43, 40].

Remark 6.5. In virtue of Theorem 3.10.b, if ¥ has the doubling property then
all removable sets are cg-polar. However, in general a cg-polar subset of Y is
not necessarily removable. In fact, let again X, Y, P be as in Subsection 6.5 and
suppose that v = Ax. Take a ball B’ internally tangent to B at a point z € 0B.
Then

A:= B\B
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is minimal thin at z (see, e.g., [20]). Put h = P§,. Choose
l<a<(d+1)/(d-1)

and a locally bounded Borel measurable function # > 1 on B such that

| Gaten OBEI00) a6 = o0 (6.11)
where xg is a fixed point of B (here r :=§,,). Let
U(x,t) = [1p(x) +0(x)1a(2)] t|t|*", (x,t) € BxR.

Seeing that

Gp(x0,¢)¥ (¢, h(¢)) d¢ < o0
B/
and applying [25, Theorem 5.1] we conclude that the problem (6.1) is solvable
for v = §,. This implies that the set {z} is not removable. However, by (6.11) it
is clear that {z} is a cy-polar subset of 0B.

Remark 6.6. Let X, be an open subset of R?, d > 3, and consider a uniformly
elliptic second order differential operator of the kind

Lu= d O ; b, O 6.12
u—; Zaija—xj +;Za—:€l (6.12)

j=1
where a;; are Borel measurable bounded functions on X, and b; are in the
Lebesgue space LP(Xy, \) for some p > d. If X is an L-adapted domain of X
in the sense of R. M. and M. Hervé [30], we get the same results replacing the

0
8:61-

Laplacian by the operator L.

6.7 Parabolic setting

As application of our abstract study we may suppose that the harmonic space (X, H)
is given by a domain X of R?xR, d > 1, endowed with the sheaf H of the solutions
to the heat equation on X (). Consider the semilinear problem

ou

AU_E = V(,u)y in X, (6.13)

u = v on Y, (6.14)

2Since in this case there are nontrivial absorbing subsets of X, we cannot choose 7 to be a
Dirac measure.
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where v € M(Y), (v,7) is an admissible pair, and ¥ € Y(X) admitting the
doubling property. Similar to the previous elliptic case, U(X) coincides with the
set of all continuous solutions (in the distributional sense) to (6.13). Therefore,
for any v € M(Y')

(SC) = (6.13)-(6.14) has a solution in U,.(X) = (NC).



Appendix
Let ¥ € Y(X) and put & = ¥*. For every subset I’ of Y we define
Co(F) :=inf {| fll@) : f € L3(X), Pf(y) > 1forally € F}, (6.15)

and C}4(F') by the same formula where L (X) is replaced by Ej(X). It is not
difficult to see that for any arbitrary subset F' of Y

cy(F) < Co(F) < Cy(F). (6.16)

We have already proved in Proposition 5.3 that cy,Ce, and C} coincide on
compact subsets of Y. So, according to Choquet’s Theorem [17], one immediately
concludes that

cy(E) = Co(E) = Cy(E)

for every KC-Suslin subset E of Y (see [16]) provided C}, defines a capacity in the
sense of G. Choquet [17] (see also [2] and [11, p. 27]).

Assumption: We suppose that both functions ¥ and ® possess the doubling
property (so that C's = C}, by assumption).

Using the same techniques as in Chapter 2 of [1] (see also [4]) we obtain the
following properties of C:

1. Cg is a capacity on Y (in the sense of Section 5).

2. Cg is an outer capacity, that is, for every F' C Y, Cy(F') = inf Cs(O) where
the infimum is taken over all open subsets O containing F.

3. Co(NMe,I'y) = inf,,>1 Ce(T',) for every decreasing sequence (I',,) of compact
subsets of Y. (This is a consequence of the previous property.)

We notice that properties (1)-(3) hold, for every function ® € Y(X), even if both
functions ® and ¥ do not satisfy the Ay-condition.

Proposition A.1. Cgs is a Choquet capacity.
To prove the proposition we shall proceed as in the proof of [3, Théoreme 2].
Let us first note that for every subset £ C Y,

Co(E) = fleriffE Ifll@ where Fpg:={f¢cLH(X):Pf>1Cs—q.eonFE}.

38
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Lemma A.2. Let f, f, € Lo(X) such that (f,) converges (in norm) to f.

(a) The set {P|f| = oo} is Cy-polar.

(b) There exists a subsequence (gn) of (f.) such that (Pg,) converges Cg-q.e
to Pf.

Proof. (a) For every j > 1,
Ca{ PIf| = 0o} < Co{PIf| = j} < 57| £ll(a)-

(b) Choose a subsequence (g;) of (f,) such that ||f — g;lle < 277/j for ev-
ery 7 > 1, and let

E; = {jP|f = g;| > 1}, Fj = Upx;En, and E = N5, F}.

Then -
Co(E) < Ca(Fy) < ) Co(B,) < 2"
n=j
which yields that E is Cy-polar. Thus the proof of (b) is finished seeing that Pg;(y)
converges to Pf(y) for every y € Y\ E. O

Proof of Proposition A.1. By Theorem 5.1,

which implies, in particular, that Le(X) is reflexive. Let (F,) be an increasing
sequence of subsets of Y and let £ = U | E,,. We claim that

Co(E) = sup Co(E,).

n>1

To prove this fact it is sufficient to check that
a = sup Cp(Ey) 2 Co(E).

n>1

So, without loss of generality we assume that o < co. Fix € > 0. Then the
convex subset

A, ={fe€Fp,: Iflle) <a+e}

is nonempty for every n > 1. Besides, by statement (b) of the above lemma, A, is
closed in Lg(X). So, A, is compact with respect to the topology o(Le(X), Ly (X))
(see, e.g., [15]). Therefore, since (A,) is decreasing we deduce that there exists

fen A,

Now, seeing that f € Fg and || f||) < a + € it follows that Cy(E) < o + € for
every € > 0. Whence Cs(F) < a. O
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Corollary A.3. C3 and cy coincide on K-Suslin subsets of Y. In particular,
if the Borel subsets of Y are K-Suslin (for instance, if Y is locally compact)
then cg(F) = Co(F) for every subset F' of Y.
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