PART 1.
ON NONSTABLE K; OF
QUADRATIC MODULES

No shortage of explanations for life’s mysteries. Explanations are
two a penny these days. The truth, however, is altogether harder to find...

Section 1. INTRODUCTION

The concepts of A-quadratic form, quadratic module, and general quadratic
group over a form ring (A, A) were introduced by A. Bak who studied their K-
theory (See [2],[5] and [10]). Although the quadratic setting is much more compli-
cated than the linear one, it is being gradually established that most results con-
cerning the K-theory of general linear groups can be carried over to the K-theory
of general quadratic groups. In the linear situation, there have been extensive
studies of normal subgroups of general linear groups and of non-stable K; of these
groups. Suslin showed using his localization-patching method, that the elemen-
tary subgroup F,,(A) of the general linear group GL,,(A) is normal providing A is
module finite and Bak [3] used localization-completion methods to establish that
non-stable Ky ,(A) := GL,(A)/E,(A) is a nilpotent by abelian group (and thus
solvable) when the Bass-Serre dimension of A is finite. In the quadratic situation,
the normality of the elementary subgroup is proved in Bak-Vavilov [4] by general-
izing methods used in [3] and again in Bak-Vavilov [5] by developing a quadratic
analog of the transvection procedure used in Stepanov-Vavilov [12]. A partial state-
ment without proof of the normality result above is found earlier in Hahn-O’Meara
[10]. In the current part we prove the quadratic analog of Bak’s result, namely
that non-stable K; of a general quadratic group is a nilpotent by abelian group
(and thus solvable) when the Bass-Serre dimension of the ground ring is finite. The
presence of both short and long roots in the elementary quadratic subgroup makes
the proof of the quadratic analog considerably more complicated than that of the
linear result.

The rest of this part is organized as follows. In section 2 we briefly recall the
basic concepts of quadratic module and general quadratic group over form rings.
The elementary subgroup of the general quadratic group is defined. We then re-
call the sum and product of form ideals in form rings and state the first of several
conjugation results. Its proof gives an indication of the flavor of the long computa-
tions to come in section 4 and how to deal with short and long roots in elementary
quadratic groups.
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In section 3 we give a self contained account of a portion of Bak’s dimension
theory, which is tailored to the needs of our purpose. Dimension theory provides for
any good pair G, £ of group valued functors on a category with dimension, a normal
filtration ¢ D G° D G' D ..+ D & such that G/G° is abelian and G° D G D --.
is a descending central series with the property that G#m(4)(A) = £(A) whenever
dim(A) is finite. We then describe the category of form rings as a category with
dimension whose dimension function is Bass-Serre dimension and show that the pair
of functors Gay,, Fay,,n > 3 satisfies all, except possibly one of the conditions for
being good. Section 4 consists of several long computations whose goal is verifying
that the one missing condition above is satisfied.

We fix some notation for the rest of the paper. If a and b are elements of
some group, let *b = aba~! and [a,b] = aba=1b~!. It is easy to see that following
commutator formulas hold.

C(1) [a, be] = [a, 5 [a, d
C(2) [ab,c] = *[b, cl[a, ]

Let A be an associative ring with identity 1. For any n € N, let GL,,(A) denote
the general linear group over A, i.e., the group of all invertible n X n matrices
and F,(A) its elementary subgroup, i.e., the subgroup of GL,,(A) generated by all
elementary matrices e;;(a).
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Section 2. GENERAL QUADRATIC GROUPS
AND THEIR ELEMENTARY SUBGROUPS

The purpose of this section is to establish notation and recall some basic results,
as well as get started developing a conjugation calculus which will be required in
84.

We begin by recalling the basic concepts of quadratic module over a form ring
and of general quadratic group.

Let A be a ring with an involution denoted by a +— @, and let A € Center(4)
such that A\ = 1. Let Ay = {a — Aa@la € A} and Ay = {0 € Ala = —)a}.
Clearly A,,;n and Ay, are additive subgroups of A such that A, € Ajes and
satisfy the closure property alA,,;n@ C Apin and al 0.0 C Aypgs for all elements
a € A. Let A be an additive subgroup of A such that

(]-) Amzn g A g Amaa:
(2) aAa C A for all a € A.
A is called a form parameter and the pair (A, A) is called a form ring.

Remark. There is a generalization of the notion of form ring in [2,§13] for which
the conclusions of the current paper are valid. Checking details is straight forward
and is left to the reader. The generalization replaces the notion of involution by
that of A-involution. A A-involution consists by definition of an element A € A and
an anti-automorphism a +— @ of A such that A\@\ = a for all a € A. Setting a = 1,
we obtain that A\ = 1. One defines A, = {a —@\|a € A} and Ay, = {a €
Ala = —aA}. A form parameter is by definition an additive subgroup A of A such
that Ayin € A C Ayez and @Aa C A for all @ € A. The reason that A is appearing
on the right instead of on the left is that A is not necessarily in Center(A) and we
use right A-modules below in the definition of quadratic module.

Let (A,A) and (A’, A’) be form rings relative, respectively, to A and \'. A ring
homomorphism s : A — A’ such that for any a € A, (@) = p(a), p(N) = X and
u(A) C A’ is called a morphism of form rings. A morphism p : (A,A) — (A’,\)
of form rings is called surjective if y : A — A’ is a surjective ring homomorphism
and p(A) = A'.

In order to construct later relative groups for the general quadratic group, we
introduce now the notion of form ideal in a form ring, due to Bak. Let J be an ideal
of A which is invariant under the involution of A4, i.e, 3 = J. Let I'y0e = INA
and 'y = {2 — AZ|z € T} + (zaZ|z € T, € A). Clearly I',;,, and I'yy, depend
only on the form parameter A and the ideal J and satisfy the closure property
al'min@ C Iiin and al'yez@ C Tipee for all a € A, A relative form parameter of 3
is an additive subgroup I' of J such that

(1) I‘min - r c 1—‘maw
(2) al'a CT for all a € A.

The pair (J,T) is called a form ideal in (A, A).
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Let V be a right A-module and f a sesquilinear form on V, i.e., a biadditive
map f:V xV — A such that f(ua,vb) = af(u,v)b for all u,v € V and a,b € A.
Define the maps h: VxV — A and ¢: V — A/A by h(u,v) = f(u,v)+Af(v,u)
and q(v) = f(v,v) + A. The function q is called a A-quadratic form on V and h its
associated A-Hermitian form. The triple (V, h, q) is called a quadratic module over
(A, A). Tt is called nonsingular, if V is finitely generated and projective over A and
the map V' — Homa(V, A),v — h(v,—) is bijective, i.e. the Hermitian form h is
nonsingular. A morphism (V,h,q) — (V',h/,q") of quadratic modules over (A, A)
is an A-linear map V — V' which preserves the Hermitian and A-quadratic forms.

Define the general quadratic group G(V,h,q) to be the group of all automor-
phisms of (V, h,q). Thus

G(V,h,q) = {0 € GL(V)|h(ou,ov) = h(u,v),q(ov) = q(v) for all u,v € V'}

where GL(V') denotes as usual the group of all A-linear automorphisms of V. Sup-
pose h and ¢ are defined by the sesquilinear form f. If (3,T) is a form ideal in
(A, A), define the relative general quadratic group

G(V,h,q,(3,T)) ={o € G(V,h,q)|loc = 1 mod3, f(ov,ov)—f(v,v) €T for allv € V'}

Theorem 2.1 (Bak). If (V,h,q) is nonsingular then the group G(V, h,q,(3,T))
is well defined, i.e. does not depend on the choice of f, and is normal in G(V, h,q).

The theorem is proved in Bak’s thesis (unpublished). Published proofs for the
special case Ga2,(A,A) which is defined below and is all we need in the current
paper, are found in section 5.2 of the book [10] of Hahn-O’Meara or in the recent
paper [5] of Bak and Vavilov.

We recall now the group Ga,(A4,A). Let V denote a free right A-module with
ordered basis e1, e, -+ ,en,6_p, + ,e—1. fu eV, let uy, -+ ,up,Uep, + ,u_1 €
A such that u = Y7 eu;. Let f:V xV — A denote the sesquilinear map

i=—n
defined by
U1 U1
u v _ _
(2']‘) f(U”U)_f( un ’ ,Un ):ulv—l+"'+unv—n-
-n -n
U—1 V-1

It is easy to see that if A and ¢ are the Hermitian and A-quadratic forms defined
by f then

h(u,v) =Uv_q + -+ + UpV—p + NU_p vy + -+ + ANU_113
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and
q(u) =uju_1 + -+ + Upu_p.

Using the basis above, we can identify G(V, h,q) with a subgroup of the general
linear group GLa, (A) of rank 2n. This subgroup will be denoted by G, (A, A) and
is called the general quadratic group over (A,A) of rank n. Using the basis, we
can identify the relative subgroup G(V, h,q,(3,T)) C G(V,h,q) with a subgroup
denoted by Ga,,(3,T) of Gap (A4, A).

In order to describe the matrices in G2,(A,A), we need some notation. Let
M,,(A) denote the ring of n x n matrices over A. if @ € M,,(A), let o;; denote the
(7,7)’th entry of a. For @ € M,,(A) define the conjugate transpose a* € M, (A) by
a;; = 0. Let

0 --- 1
p=1|: "
1 .-~ 0
denote the matrix in M, (A), which has 1’s along the second diagonal and zero
elsewhere. If « € M, (A), the matrix pap amounts to rotating the matrix a by 180
degrees. Let

Ay, ={a € M,(A)|a=—-Aa" and a;; € A, for 1 <i < n}.
If (3,T) is a form ideal in (A4, A), let
Iy ={ae M,(A)|a=-Xa",a;; € Tforalli # j,a; €T for 1 <i<n}.

Ifg = (é b € GLy,(A) then it is straightforward to check that it preserves h

d
if and only if
a b\ ' [ pd*p Apb*p
c d ~ \Apc*p  pa*p
and it preserves ¢ if and only if a*pc and b*pd € A,,. Using the above, one establishes

easily that

(2.2) Gan(A,A) = { ((é 2) € GL2n(A)‘d*pa+Xb*pc =p and a*pc,b*pd € An}.

Similarly

b * *
Gan(3.T) = {g = (‘; d) € Gan(A,A)|9 € GLa (3) and a*pe, b'pd € T, }

where GLy,(J) = {0 € GL2,(A)|o;; = 0 mod J for all i # j and 0;; = 1 mod J}.
Note that the description above of Ga,(J,T') proves that its definition does not
depend on the choice of f.
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Let k < n. Then there is a standard embedding of Gax (A4, A) into G2, (A, A) as

follows. If é g) is an element of Gor (A, A) then using (2.2), it is easy to see
that the rule
1.4k n -n —k---—1
L
A B
1.k —keee—1
1 k
. A B 1
k n
- 2 _ — _ - L _ _
—k -n
¢ D : 1
1 e
C D
-1

induces an injective homomorphism G, (A, A) — G2, (A, A). We shall frequently
use this standard embedding to identify Gax(A4,A) with its image in Gan(A4,A).
Note that the above embedding depends on the choice of the basis. With the basis
which is used in the book of Bak [1], the standard embedding has the form
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1 k n 1---k n
1
A B
1---k 1---k
1 k
A B 1
k n
_ Z _ — _ _ _ _ _
1 1
C D C D
k k
1
n

Next we recall the definition of the elementary quadratic subgroup. Fori € A =
{1,--- ,n,—n,--- ,—1}, let (i) denote the sign of 4, i.e., e(i) = 1 if 4 > 0 and
e(i) = —1ifi < 0. Let 4,5 € A such that ¢ # j. The elementary transvection T;;(a)
is defined as follows:

e+ ae;; — /\(E(j)_s(i))/2ae_j,_i where a € A, if i # —j
etae; where a € A\"EOHD/2A i § = —j.

Tij(a) = {
It is easy to check that Tj;(a) € G2, (A, A). The symbol T;; where i # —j is called
a short root whereas T; _; is called a long root.

The subgroup generated by all elementary transvections is called the elementary
quadratic group and is denoted by FEs, (A, A). This group is the quadratic version
of the elementary group in the theory of general linear group. Note that elementary
transvections corresponding to long roots are elementary matrices in Fs,(A4) and
elementary transvections corresponding to short roots are a product of two elemen-
tary matrices in Fy,(A). Let (J,T') be a form ideal of (A, A). The subgroup which
is generated by all (J,T')-elementary transvections is denoted by F5,(J,T), i.e.,

F2n (jar) = <T'”(£L'),T1’_Z(y)|-’13 € jay € /\—(e(i)+1)/21-\>.

The normal closure Z2»(4-Y Fy (3 T) of Fp, (3,T) in Ey, (A, A) is denoted by Es, (3,T)
and is called the relative (or principal) elementary quadratic subgroup of Ga, (A, A)
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of level (3,T). In this note we sometimes do not distinguish between short and long
roots and simply write Tj;(z), assuming that 2 € A~()+1)/2A whenever i = —j.

There are standard relations among the elementary transvections, which are
analogous to those for the elementary matrices in the general linear group. In
section 4, we shall repeatedly use these relations. We list them now for future
reference.

(R1) T(a) = T ;(ACO)=c()/2q),

(R2) Ti;(a)Ti;(b) = Tij(a+b).

(R3) [T;;(a), Thi(b)] = 1 where h # j,—i and k # i, —j.

(R4) [T;;(a), Tjn(b)] = Tin(ab) where i,h # £j and i # +h.

(R5) [Tij(a), Tj—i(b)] = T;,—i(ab — A=*(Vba) where i # +j.

(R6) [T;,—i(a), T—; ;(b)] = Tyj(ab)T—j,; (~AEU)I=(=D/%pab) where i # +j

We need the following theorem which determines the form of the generators of
E5,(3,T) (See [5] for the proof).

Theorem 2.2. Let (3,T') be a form ideal and suppose n > 3. Then the group
Eon(AMFy, (3,T) ds generated by all elements of the form Tji(a)Tij(z)Tji(—a),
where a € A and x € 1.

Again note that we didn’t distinguish between the short and long roots. If in
the above theorem i = —j then a and z are in A~(E@W+D/2A and A~ (E@+1)/2D,
respectively.

The above theorem is the quadratic version of an analogous result by A. Suslin
and L. Vaserstein for the general linear group. Using the latter result, it is easy to
show that E~(A E, (33) C E, (3 +3J), where J and J are two sided ideals of A. We
need a quadratic version of this observation. For this purpose we recall the sum
and product of form ideals in a form ring. Let (J,T) and (J,Q) be form ideals.
We write (J,I') C (3,Q) if 3 C Jand I' C Q. It is clear if (J,T') C (J,9) then
ng(ﬁ,I‘) g ng(‘/}, Q),an (3,F) Q F2n(3; Q) and Egn(j,r) g E2n(3; Q) The sum
and product of arbitrary form ideals (J,T) and (J,Q2) in (A, A) is defined by

(3,1—‘)4—(3,(2) = (§+3,P+Q),

(3,1)(3,92) = (33,I'Q)

where I'Q = T',,,;,,(33) + (WIyly € J) + (zQz|z € TF). In the above definition,
(yI'yly € J) is the subgroup generated by all elements of the form yyy where y € T
and y € J. Now we are able to give the quadratic result.

Theorem 2.3. Let (3,T) and (J,Q) be form ideals of (A,A). Then
(1) G(AN R, ((j, ) (3, Q)) C Fon(3+3,T +Q), providing n > 2.
(2) En(AM R, ((j’r)(ﬁ, Q)) C Fo,(3+3,T +Q), providing n > 3.
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Remark. We can write the first statement of the above Theorem under a weaker
condition. Namely if (J,T') C (J,9Q) and T' C (zQz|z € J), then a modification of
the proof of (1) shows that G2(AMFy (3,T) C Fapn (3, 9Q).

Proof. (1) First note that each element of G3(A4, A) in G2, (A, A) has the following
form:

1 n -n -1
1 a b \
1
n 1
—n 1
1
-1 c d

Let 0 € G2(A,A) and T;j(z) € Fo,((3,T)(J,2)). We shall show that 7T;;(z) €
F5,(3+ 3, T + Q). Suppose i # —j, i.e. Tj; is a short root. We shall prove a
stronger statement that for any form ideal (901, ®) and element z € M, 7T;;(z)
is in Fy, (M, ®). This will be required in the proof of the long root case later. If
i # +1 and j # %1, then clearly o commutes with T;;(z) and we are done. Suppose
that 7 = 1. The argument for the case j = —1 is the same and will be skipped.
Furthermore the relation (R1) shows that the case i = %1, follows from the case
j = £1. Thus it suffices to treat just the case j = 1. Since T;; is a short root,
i # +1. Furthermore since o € G, (A4, A), it follows by (2.2) that bd € A. Direct
matrix calculation shows that

(231) O'Til (.’L‘)O'_l = T1z',—1 (X.’L‘E)Tll (LIIE)T'Z,_l(X.T(Ed)E)
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For example if 7 > 1, the calculation above takes the form

1 -
zd 1 \zb
O'Tzl(w)o'_lz ....................... =
1
—dT 1
(1 © bz 1 : 1
1 Azb xd 1 1 Az (bd)T
1 1 1
1)\ Codz 1

The above decomposition can be better understood if we write elementary transvec-
tions T;;(z) as a special case of ESD-transvections and use the calculus of the latter
which is spelled out in [5,86] to make the computation above. The translation of
elementary transvections into ESD-transvections is done in [5,6.5]. For a short root
T;; where j = 1 we get Ti;(z) = T, ._,(Az,0). Using the conjugation property
[5,6.2] of ESD-transvections, we have

0T (z)o" = 0Te, e, (Az,0)07" = The, ve_, (Az, —bd).
But oe; = e;. Now a direct calculation shows that
Toes o0 (AT, —bd) = Te, ¢,5(Az, 0)Te, o, a(Az, —bd),
which leads to the above decomposition (2.3.1) thanks to [5,6.4]. )

Now suppose that i = —j, i.e. T;; is a long root. If ¢ # £1 then oT; _;(z)o™" =
T;,—i(x). So assume that 7 = 1. The argument for ¢ = —1 is the same. Let z = Ay
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where v € I'QQ. Therefore v = a + f + § for some «a € '), (37), 8 € (yI'yly € J)
and § € (2QZz|z € J). We shall show that °T; _;(A),°T; _;(AB) and °T; _;(\6) are
all in Fy, (3 + J,T + Q). For T; _;(A\J), it is enough by R(2) to prove this when
§ = Zwz where z € I and w € Q. The argument for T; _;(A3) is the same. So let

0 = zZwz. Using (R6) and the fact that n > 2, we can write
T —i(A6) = Ti —i(M2wz) = Ty —i(w2) [Th,—k (—w), T, —i(2)]
where k # +i and k < 0. Therefore
7T;,-i(M) = T Ty, —i(w2) " The,—k (~w), " T, ~i(2)]-

Since k # £1, o0 commutes with T} _(—w). On the other hand, by the proof of
the short root case above, °Tj _;(wz) and “T_j _;(2z) are in F5, (3 + J, T + Q).
Therefore

gT’i,_i(X(S) € F2n(3 +J, '+ Q)

Now let a € T'yin(IJ). So @ = 7+ v for some 7 € {x — AZ|z € JJ} and v €
(znz|z € 3J,n € A). Let 7 = z1y1 — A\y1Z1 where z1 € I,y; € J. Using R(5), we
have T; _;(A1) = [Ti;(—71), Tj,—i(Z1)], for any j # +i. Therefore

TTy,—i(A7) = ["Tij(—71), " Tj,—i(T1)]-

By the short root case, °T;;(—71) and T} _;(Z71) are in F5,(3 + J,[' + Q). This
shows that °T; _;(AT) C Fb, (3 + J,T + Q). We are left with 7_; ;(\v). But it is
easy to see that v can be written as the sum of elements from the sets {z — \Z|z €
33}, {yTyly € J} and {zQZ|z € J}. Therefore the argument for 7_; ;(Av) reduces
to the cases above and the first part of the theorem is complete.

(2) By Theorem 2.2, Z2n(AMF, ((3,T)(3,9)) is generated by elements of the
form Ti(8)T;;(z) where a € A and = € 33, if i # %4, and by elements of the form
Ti*i(“)T_i,i(a:) where a € A~EWHD/2A and z € A~CEOHV2PQ if § = —j. Let’s
deal first with the short roots. We shall show that 7+ (“)Tji(ac) wherei # +j,a€ A
and z € JJ is in F5,(3 4+ J,T + Q). Since z € JJ, we can write z = >, 1y
where z; € J,y; € J. By R(2), it suffices to prove the theorem for x = z,y; where
z1 € J,y1 € J. Since n > 3, there is an h # +i,+j. By (R4),

Tis (a)Tji(xlyl) = Tij(a)[Tjh(-Tl)aThi(yl)] = [ (a)Tjh(ﬂfl)aT” @, (y1))-

Applying now (R4) to the left and right hand entries of the last commutator, we
obtain that this commutator equals

[Tin(az1)Tin(z1), Thi(y1)Thi(—y1a)] € E2n(3+ 3, T + Q),
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since J and J are two sided ideals in A. Next we turn to the case of long roots.
Suppose i = —j. Therefore we are dealing with elements of the form Z&—(T_, ;(v)
where o € A=CEOTD/2\ and vy € A\~ EEDTD/2PQ. Let v = v + B + 6 for some v €
AT, (33 B e A-ECDRD/2(Tgly € 3) and 6 € A-ECITD/2 (4071 ¢
J). We shall show that o=@ T, ;(v), T (AT, (B) and T (T, ;(§) are all
in Fo,(3+3,T 4+ Q). Let p = A~ E=D+D/2] For T_;(6), it is enough to prove it
when § = pzZwz where z € I and w € Q. The argument for 7_; ;(3) is the same.
Let h # %1 such that e(h) = —&(4) . Then by (R6), we have

p="Tom 1O (pzwz) = Tom O Ty (pwz) [ Ty p (—pw), T OT 5 (2).

Since h # +1, T; _;(«) commutes with T}, _p(—pw). Therefore we obtain

p =T, —i()Thi(pwz)T;,—i(—a) [Th,—h(_,uw)a Ti’_i(a)T—h,i(z)]

= Thi(pwz) ?hi(_:uwz)Ti,—i(a)Thi(Nwz)Ti,—i(_a)J [Th,—h(—ﬂw), Ti”"(a)T—h,z’(Z)]

~~

R(6)

= Thi (4w2) Ty, —i(—pwza) Ty, -p (AEO =020 20077) [Th,—h(—uw),Ti""(a)T—h,z'(Z)] -

On the other hand,

[T, —n (—pew), o= Ty, 4(2)] =
= [Th,—n(—pw), T;,— () T_p s (2)T;,—i(— )]
= [Th,—n(=pw), T-pi(2) T-p,i(=2)Ti,—i(Q)Tp,i(2) T, ~i(— )]
R(6)
= [Th,—n(—pw), T—pi(2)T—p,—i(—20)T—p n(zaZ)).

Now a quick inspection shows that p € F5,(J+ J,T + Q).

Next, we consider the long root case Tifi(o‘)T_M(u) where v € pl',(3J) and
p=A"EEDTN/2 86 1y = 1 v for some T € p{z — \T|r € 3} and v € plrnT|z €
J3,m € A). Let 7 = p(z1y1 — Ayzz1) where z1 € I,y; € J. Depending on sign of
i, two cases may occur. Suppose first €(i) = 1. Thus u = 1. Using R(5), we have
T_;i(1) = [T—; ;(x1),Tj,i(y1)], where j # +i. Therefore

Tt T () = [T (), T Ty (y1)]

J J/

R(6) R(6)
= [Tij(ax1)T—j ;(—AED =N 2q700 )T, i(21),
Ti(y2) Ty, —i(—y20) Ty, s (AEO ==y, )]
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But 7} (ax), T—j,; (=AW= 27702,) =
Tji(y1), Tj—i(—y1er) and Ty, (A~ E(J))/Zylayl)

(= DD 2gramy), T (1),
appear in the above equatlon are in Fo, (J+ 3,0 +

A~
Tj,— j()\ (()+1)/24, a777) which

). -
_ Now consider the case (i) = —1. Therefore p = X. Thus 7 = (—y1)7T7 —
X(@1)(~g1). Using R(5), we have Tii(r) = [Tq;(~72), Ty(z1)], where j # i.
Therefore

L l(a)T—z (T )_[Tl -l T_i;(— yl) Tim (a)T (‘IQ]

R(6) R(6)

and one completes the proof as in the case £(i) = 1 above.

We are left with T_; ;(v). But it is easy to see that elements of the form znz
where 7 € A can be written as a sum of elements from the sets {z — \Z|z €
I1J},{yI'yly € J} and {zQx|z € T}. Therefore the argument for 7_; ;(v) reduces
to the cases above and the proof is complete. O

Corollary 2.4. Let (A,A) be a form ring and let s € Center(A) such that s =5
and sA C A, e.g. s =tt where t € Center(A). Then

(1) G2(ANE, (53 A, 3 A) C Fy,(sFA, s*A), providing n > 2.
2) Ean(AMEy (536 A 3k A) C Fy,(sF A, sFA), providing n > 3.
(2) , ;8" A), p g

Proof. The corollary follows from Theorem 2.3, by letting (3,I') = (J, ) = (s4, sA)
and recognizing that (s3¥A, s3¥A) C (s* A, s¥A)(s¥ A, s¥A). O

Corollary 2.5. If (A, A) is a form ring then G2(A, A) normalizes Es, (A, A), pro-
viding n > 2.

Proof. Let s =1 in Theorem 2.4 (1). O
The next result is due to Bak and if A = A,,,4,, independently also to Vaserstein.

Theorem 2.6. Let (A,A) be a form ring such that A is semilocal. If n > 1 then
Gan(A,A) = G2(A,A)E2n (A, A) = Bz (A, A)G2(4,A),
E5, (A, A) is normal in Gay, (A, A) and the quotient Ga, (A, N)/Ea, (A, A) is abelian.
Proof. If o is a 2n x 2n matrix with coefficients in A, let
t(O'l, e Op, O, ’0-_1)

denote the (n + 1)’st column of o where o1, -+ ,04,0_p, - ,0_1 € A and t
denoted the transpose operator taking row vectors to column vectors. Suppose
o € Ga,(A,N). By [9, 81V, (3.11)], there is an € € Es,(A, A) such that

((€0)=n, -+, (e0)-1)
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is a unimodular vector, i.e. there exist a_,,--- ,a_; € A such that
~1
Z ai(aa)i =1.
=N
It follows from [8, §V, (3.3)(1) and (3.4)(a)] that there is a product 7 of elements
of the kind Tj;(a) where i,j € {—n,--- ,—1} such that ((1e0)_p,--- ,(1€0)_1) =

(1,0,---,0). Now it is straightforward to find an element p € F5, (A, A) such that
((pEU)la Ty (pEO’)n, (pEU)—na Ty (pEO’)_l) = (07 e aOa 17 U 50)

This says that the matrix preo fixes the basis element e_,,. A standard argument
(see the Proof of [9,81V,(3.4)]) shows that there is an § € Fs, (A, A) such that dpreo
fixes not only e_,, but also e,. Thus dpTeo leaves invariant the hyperbolic plane
H generated by e,,e_,. Since dpreo preserves the Hermitian form h, it follows
that it leaves the orthogonal complement of H invariant. But this is the subspace
generated by e1,--+ ,en_1,6_(n_1),"*+ ,e_1. Thus éprec € Gapn—1)(A,A). Thus
o € E(A,A)Gyn-1)(A,A). Repeating the argument for each m such that 2 <
m < n, we get
0 € Ean (A4, M)G2(A4;A) = (by (2.5)) G2(A4; A)Ezn (4, A).
This shows that
Gan (Aa A) = G2 (Aa A)E2n (A, A)

and Es, (A, A) is normal in G, (A, A). If 7 denotes the permutation matrix

(0 -1

1 0

: 0 1
\ : -1 0

then obviously m € Ga,(A4,A) (because it satisfies the defining equations in
(2.2)), # normalizes Ea, (A, A)(because conjugation by 7 leaves the set of elementary
transvections invariant), and

G2(A,N)E2, (A, A) = Gan(A,A) = "Gan(A,A) ="G2(A,A)Esn (A, A).
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Since G2(A,A) and "G2(A,A) commute, it follows that Ga,(A,A)/E2,(A4,A) is
abelian. [

We close this section by recalling a lemma which will be used in Section 4.

Lemma 2.7. Let A be module finite over a Noetherian ring R. Then for any s in
R, there is a nonnegative integer k such that the map s*A — (s)~1A induced by
the canonical homomorphism A — (s)~1A is injective.

The verification is easy and can be found in the proof of Lemma 4.10 in [3].
The above lemma shows that if A is a Noetherian ring, then there is an in-
teger k, such that the relative congruence subgroup Ga,(s*A,s*A) embeds in
Gan({s)71A,(s)71A). This result will be used in proving Theorem 4.6.
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Section 3. ON BAK’S DIMENSION THEORY

In this section we give a self contained account of a portion of Bak’s dimension
theory and show how to apply it to general quadratic groups.

Recall that a relation < on a set is called a quasi-ordering, if it is reflexive and
transitive. If in addition, it is anti-symmetric, then it is called a partial ordering.
A quasi-ordering < is directed, if given elements a and b, there is an element ¢ such
that @ < ¢ and b < ¢. Following Bak [6], we define a category with structure as
follows.

Definition 3.1. A category with structure is a category C together with a class S(C)
of commutative squares in C called structure squares and a class of Z(C) of functors
from directed quasi-ordered sets to C called infrastructure functors, satisfying the
following conditions.

(1) S(C) is closed under isomorphism of commutative squares.
(2) For each object A of C, the trivial square i.e.,

is in S(C),

(3) Z(C) is closed under isomorphism of functors.

(4) For each object A of C, the trivial functor Fy : {x} — C,x — A, is in Z(C),
where {x} denotes the directed quasi-ordered set with precisely one element
*.

(5) For each F': I — C in Z(C), the direct limit lim, F' exists in C.

Next we define a category with dimension.

Definition 3.2. Let (C,S(C),Z(C)) be a category with structure. Let d : Obj(C) —
72U oo be a function which is constant on isomorphism classes of objects. Let
A € 0bj(C) such that 0 < d(A) < co. A d-reduction of A is a set

—>B’L

A
e

C;——D;

of structure squares where I is a directed quasi-ordered set and B : I — C,i — B;,
is an infrastructure functor such that the following holds.

(1) If i < j € I then the triangle
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A
B; —— B;
commutes.

(2) d(lim, B) = 0.

(3) d(C;) < d(A) for all i € I.

A function d is called a dimension function on (C,S(C),Z(C)) if for any object
A of C, such that 0 < d(A) < 0o, A has a d-reduction. In this case, the quadruple
(C,8(C),Z(C),d) is called a category with dimension.

For the rest of this section (C,S(C),Z(C), d) will denote a category with dimension
and

G,£:C— Group

a pair of group valued functors on C such that £ C G.
Definition-Lemma 3.3. Let n > 0. Define the functor
G"™ : C — Group,
by
g (4)= () Ker(G(4) — G(B)/E(B)).

A—B

d(B)<n
In general G"(A) is not a normal subgroup of G(A). Clearly £(A) C G"(A) for any
object A of C and if d(A) is finite then G"(A4) = £(A) for all n > d(A), because the
identity morphism A — A is now one of those occurring in the definition of G"(A).
The filtration

G(4) 26°(4) 2GH(4) D ---

is called the dimension filtration on G with respect to €. For a fixed object A, a set
S of morphisms A — B such that for any A — B € S, d(B) < n, and such that

g (4)= [ Ker(9(4) — G(B)/E(B)),

is called a defining set for G"(A). It is easy to check that defining sets exist,
although they are not as a rule unique. However, for any defining set S, the map

(3.3.1) Ga)/g"A4) — [[ 9B)/eB)
A— BES

of coset spaces is injective. Clearly if d(A) < n then G"(A) = £(A), because one
can enlarge if necessary any defining set S for G" (A) to a defining set S’ by adding
the identity morphism id: A — A.
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Definition 3.4. A pair G,& of group valued functors on C is called good if the
following holds.
(1) € and G preserve direct limits of infrastructure functors.
(2) For any A of C, £(A) is a perfect group.
(3) For any zero dimensional object A, Ki(A) := G(A)/E(A) is an abelian
group.
(4) For any structure square

II T
C D
let H = Ker(G(A) — G(B)/E(B)) and L = Ker(G(A) — G(C)/E(C)).
Then the mixed commutator [H, L] C £(A).

—_—

The following theorem plays a crucial role in this note and is a central result in
Bak’s dimension theory.

Theorem 3.5. Let C = (C,S5(C),Z(C),d) be a category with dimension and (G,E)
be a good pair of group valued functors on C. Then the dimension filtration

GDoG°>G'o---

of G with respect to € is a normal filtration of G such that the quotient functor G/ Ggo
takes its values in abelian groups and the filtration G° O G D --- is a descending
central series such that if d(A) is finite then G"(A) = E(A) whenever n > d(A). In
particular, if d(A) is finite then E(A) is normal in G(A).

Proof. If A is an object of C, let S,,(A) denote a set of defining morphisms for
Gg"(A).
By Lemma 3.3, the map

gA)/6°a)—~ ] 9B)/EB)

A—+BE€Sy(A)

is injective. Since each G(B)/&E(B) is abelian by (3) of Definition 3.4, it follows that
G°(A) is normal in G(A) and the quotient G(A)/G°(A) is abelian.

Let n > 0. We shall show that for any object A, [G°(A),G"(A)] C G"t1(A).
Since for any object B such that d(B) < n + 1, we have that G"t!(B) = £(B) and
since the map

G(A)°/G" T (A) — II G°(B)/£(B)

A—)B€5"+1 (A)
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is injective, we can reduce to the case d(A) < n + 1. Suppose d(A) < n + 1. Let
o€ G°(A) and p € G"(A). Let

-

B.
J{(iel)

(3

BN

-

Q<=——

~

; ——>
be a d-reduction of A. Since d(lim; B;) = 0 and since G and £ commute with
ling;, there is an 4 € I such that o € Ker(G(A) — G(B;)/E(B;)). Since d(C;) <
n+1,G"(C;) = E(C;). Thus p € Ker(G(A) = G(C;)/E(C;))- Now by property (4)
of Definition 3.4, [0, p] € E(A) = G"T1(A).

We show finally that for any n, G™ is normal in G. The proof is by induction on
n. The case n = 0 has been done above. Suppose n > 0. By induction on n, we
can assume for all 0 < m < n that G™ is normal in G. Since the map

Gg/ema) - Il 9B)ye®)

A—BeS,(A)

E

is injective, it suffices to show that each £(B) above is normal in G(B). This allows
us to reduce to the case that d(A) < n and G"(A) = £(A). We have shown already
that [G°(A),G"1(A)] C G"(A) = £(A). Since £(A) is perfect by property (3) of
Definition 3.4, and £(A) C G"~1(A) C G°(A), it follows that [G°(A),G""1(A)] =
G"(A). But G°(A) and G""1(A) are normal in G(A), by the induction assumption.
Thus G"(A) is normal in G(A4). O

Remark. Bak has also an alternative version of the theorem above in which a good
pair (G, &) is replaced by a natural transformation S — G of group valued functors
such that
(1) S and G preserve direct limits of infrastructure functors.
(2) S(A) is perfect for any A.
(3) G(A)/image(S(A) — G(A)) is abelian for any zero dimensional object A.
(4) Ker(S(A) = G(A)) C Center(S(A)) for any finite dimensional object A.
(5) The extension S — G satisfies excision on any structure square.
The conclusion of the alternative version is the same as that above. The alternative
approach is used in [11], where it is applied to general linear groups and in [7] where
it is applied to net general linear groups.

There are many ways to make the category of form rings into a category with
dimension such that G,,, £, is a good pair of group valued functors. We describe
next a way based on quasi-finite localization-completion squares and Bass-Serre
dimension.

Let Ar denote a pair consisting of an associative ring A with identity and a
commutative ring R C Center(A). Thus Ag is an algebra over R. A morphism
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Ar — A%, of algebras is a ring homomorphism f : A — A’ such that f(R) C R'.
Next we recall the Bass-Serre dimension of Ag.

Let X be a topological space. The dimension of X is the length n of the longest
chain Xo & X; G - G X, of nonempty closed irreducible subsets X; of X, [8,
§IIT]. Define §(X) to be the smallest nonnegative integer d such that X is a finite
union of irreducible Noetherian subspaces of dimension < d. If there is no such d,
then by definition 6(X) = co. Let R be a commutative ring. Let Spec(R) denote
the topological space consisting of the set of all prime ideals of R, under the Zariski
topology and let Maz(R) denote the subspace consisting of all maximal ideals of
R. Then the Bass-Serre dimension of R is 6(Maz(R)) and is denoted by J(R).
Define the Bass-Serre dimension §(Agr) of Agr by

d(R) if A is quasi finite over R

00 otherwise.

6(Ar) = {

Recall that an R-algebra A is called quasi-finite over R if there is a direct system
of finite R-subalgebras A; of A such that lim; A; = A.

A form algebra over a commutative ring R is a form ring (Ag,A) where the
involution leaves R invariant. A morphism (Ag,A) — (A’z, A’) of form algebras is
a morphism of form rings which defines an algebra morphism Ar — A%,. A form
algebra (Ag,A) is called module finite, if A is module finite over R and is called
quasi-finite, if Ap is quasi-finite. If (Ag,A) is a form algebra, let Ry denote the
subring of R generated by all aa such that a € R. Define the Bass-Serre dimension
Of (ARaA) by

0(Ry) if (Ag,A) is quasi-finite

00 otherwise.

§(Ag, A) = {

The next task is to put structure on the category Form algebras, which makes
it a category with dimension under Bass-Serre dimension.

Let Mod(R) denote the category of all modules over the commutative ring R
and Noeth(R) C Mod(R) the full subcategory of all Noetherian modules over R.
If s € Rand M € Mod(R), let M, = im, , M/Ms" denote the completion of M
at s. Let (s)~'M denote the module of (s)-fractions of M where (s) denotes the
multiplicative set {1,s,s2,---} generated by s. The square

M—— ()M
Mgy — (s)" M)

is called the localization-completion square of M at s. Whereas the functor M —
M,y is exact on Noeth(R) (in particular if N C M, there is a canonical embedding
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N(s) C M(s)) and whereas the localization-completion square above is a pullback
square if M € Noeth(R), these facts fail to hold over Mod(R). To rectify this
problem Bak [ | has defined for any R-module M, its finite completion at s by
M(s) = ling ; (M. )(s) where {R;|j € J} is any directed system of subrings R; C R
such that each R; is finitely generated as a Z-algebra, contains s, and lim ; R =R
and {M;|j € J} is any directed system of abelian subgroups M; C M such that
each Mj; is a finitely generated Rj-module and lim; M; = M. It is easy to check
that M(s) does not depend on the choice of the directed system above. Clearly
M(s) = M, if M € Noeth(R) and R is finitely generated as a Z-algebra. The
square

M (s)7*M

A

M) — (s) 1M,

is called the localization-finite-completion square of M at s. The exactness of finite
completion on Mod(R) and the pullback property for localization-finite-completion
squares on Mod(R) follow from the analogous properties, respectively, of ordinary
completion and of ordinary localization-completion squares on Noeth(R).

Let M € Mod(R) Whereas ordinary completion M(s) does not depend on R,

finite completion M( y does. If confusion can arise, we shall write (M(s)) e )) in
place of M(s).

Definition-Lemma 3.6 (Bak). Let Ar be an R-algebra. Let s € R and let
{Ra|a € J} and {Aq|a € J} be directed systems in R and A, respectlvely, used to
construct (A(s)) . Let z,y € A(s) Choose a, 8 € J and elements z’ € (A )(s)
and y' € (A/g)(s) such that 2’ and 3’ represent z and y, respectively. Neither
Aq nor Ag is necessarily closed under multiplication in A. However, since A, is
module finite over R, and Ag is module finite over Rg, there is a v € J such
that « < v,8 < v, and A,Ag C Ay. Let [[,5o%i € [][;50 A represent 2’ and
[Li>ovi € Il;>0 Ap represent 3. Define z o y to be the class in Av(s) of the element
of (fl,y)(s) defined by [],5,#iyi € [[;59 Ay- Then the product z oy is independent
of all the choices made and makes g(s) into an }~2( s)-algebra.

Proof. Straightforward.

The result above paves the way for defining finite completions of form algebras.
Let (Agr,A) be a form algebra and let s € Ry. Define the finite completion of
(Ag,A) at s by

(Ar; AJs) = (AR, A Ry, = ((A(s))ﬁg(s)a (A(s))ﬁg(s)>-
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Define the ordinary completion of (Ar,A) at s by (Ar,A)(s) = (A(s),[\(s)).

Lemma 3.7. Let (Ag,A) be a module finite form algebra such that R is finitely
generated as a Z-algebra. If s € Ry then (Ar,A)(s) = (AR, A)(s)-

Proof. It suffices to show that R is finitely generated as an Ryp-module and that Ry is
finitely generated as a Z-algebra. Let ag, - - - € Rsuchthatay, - ,an,a1, - ,0,
generate R as a Z-algebra. Clearly each aZ and a; satisfies the monic polyno-
mial X? + (a; + @;)X + a;a; whose coefficients lie in Ry. Thus R is finitely
generated as an Ryp-module. It is an easy exercise to show that Ry is gener-
ated as a Z-algebra by all elements a;a; such that 1 < ¢ < n and all elements

(:L'l Tt 3719)@1 o yl)+(y1 Tt yl)(fl o Tk) where {mla Tt a:L'k} and {yla T ’yl} Tange
over all disjoint, possibly empty subsets of {a1,--- ,a,}. O

The following corollary is an easy consequence of the lemma above and its proof.

Corollary 3.8. Let (Ag,A) be a quasi-finite form algebra. Then there is a directed
system of module finite form subalgebras ((Aa)r,,Na) C (AR, A), (o € J) such that
each R, is finitely generated as a Z-algebra and

(Ag, A) = lm((Aa) R, Aa)-
J
Furthermore if s € Ry, we can assume that s € (Rgy)o, for all « € J. Thus

(Ar, A(s) 1_H}(AaaA Jis) = 1_11}(( )(S)Ea(s)a(Aa)(s))'

In particular (Ag, AJ(s) is quasi-finite.
Reduction Lemma 3.9. Let (Ag,A) be a form algebra such that 0 < §(Ag,A) <
00. Then there is a multiplicative subset S C Ry such that

5((S_IAR)S—1R, S_IA) =0

and for all s € S, 6((Ar, A)(s)) < 0(Ar,A).

Proof. Let X1U---UX, be a decomposition of Maz(R,) into irreducible Noetherian
subspaces such that §(X;) < §(Ag,A) forall 1 < ¢ <7 and 6(X;,) = 0(Ag,A) for
some %g. For each 1 <1 <7, let M; € X;. Let

S=Ry—M U---UM,.
Since (S™1Ag-1,S71A) is obviously quasi-finite and S~! Ry is semilocal, it follows

that
6(S7'Ag-1g,S7IA) = 6(STIRy) =0



PART 1. NONSTABLE K-THEORY 23

By the corollary above, (Ag, AJ(,) is quasi-finite and by [3,4.17], 5(1%6(3)) < 0(Ryp).
Thus ~
5(ARaAﬂs) = 5(R0(s)) < 5(R0) = (5(AR,A) O

We can now make the category C = Form algebras into a category with dimen-
sion. As structure squares, we take all localization-finite-completion squares

(Ag,A) —— ((s)_1A<s>71R, (s)71A)

| |

(AR, A)(s) —— (s) 7 (AR, A)s)

where s € Ry. If S C Ry is a multiplicative set, give S a quasi-ordering by defining
s < t if and only if there is a u € S such that su = ¢. As infrastructure functors,
we take all functors of the kind

F:58— C,S — (<3)_1A(s)—1R’ <3>_1A)'

Clearly limg F' = (S~1Ag-1r,S~A). From the Reduction Lemma above, it follows
immediately that (C,S(C),Z(C),J) is a category with dimension.

Main Theorem 3.10. Let n > 3. Let Ga, denote the general quadratic group
functor on C = Form algebras and let Es, denote its elementary subgroup. Let
Gop O ng D) G%n D --- denote the dimension filtration on Ga, with respect to Foy,.
Then this filtration is normal, the quotient functor Ga,/GY, is abelian, and the
filtration GY,, D G, D --- is a descending central series such that G%,(Ag,A) =
E5, (ARr,A) whenever i > §(Agr, ).

Proof. Tt suffices to show by Theorem 3.5 that the pair (Ga,, Fo,) is good on
(C,8(C),Z(C),0). Property (1) for being good is obvious. Property (2) follows
from R(1)-R(6) in §2, because n > 3. We shall prove property (3) next. Property
(4) is the subject of the next section.

Suppose 6(Ag,A) = 0. By definition §(Ry) = 0. Thus Ry is semilocal. Since
(AR, A) is quasi-finite, it follows that it is a direct limit lim;((4;)r,,A;) of a
directed system of form subalgebras ((A;)r;,A;) C (Ag,A) such that each A; is
module finite over R;, Ry C R; and R; is finitely generated as an Ry-module. It
follows (cf. proof of Lemma 3.7) that A; is finitely generated as an Ry-module. Thus
A; is semilocal, by [8,I1I(2.5),2.11]. It follows by Theorem 2.6 that E5,(A;,A;) is
normal in G2, (A4;, A;) and the quotient G2, (A, Aj)/E2,(A;, A;) is abelian. Taking
direct limits, we obtain that the same is true for Ga,(A4,A) and E»,(A,A). O
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Section 4. COMPUTATION

The goal of this section is to complete the proof of Theorem 3.10 by showing that
(Gan, Eoy,) satisfies property (4) in Definition 3.4 of a good pair of group valued
functors on a category with dimension. This is achieved in Theorem 4.6 below.
Throughout the section it will be assumed that n > 3. We follow closely Bak’s
method in section 4 of [3], with an obvious complication due to the existence of
long and short roots in elementary quadratic groups. In passing, we also prove that
E5, (A, A) is a normal subgroup of Ga,, (4, A).

The following notation will be used. Suppose (J,I") C (4, A) is a form ideal and

1 1
s € Ry. Let ;3 (resp. ;P) denote the additive subgroup of (s)~14 (resp. (s)7'I")

consisting of all elements —a such that ¢ € J (resp. @ € I'). For any natural
S

1.1
number N, let EV (=3, -T) denote the subset of Ga,({s)"1A,(s)~*A) consisting
s s
1
of all products of N elementary transvections T;;(a) such that a € -3 if T;;
s
, 1
is a short root and @ € A\~(E@+D/221 jf T;; is a long root. If t € Ry, we let

1.1
EN (t3,tT") denote the subset of EV (=3, ~T') consisting all products of N elemen-
s s
tary transvections Tj;(a) such that a € Im(tJ — (s)~'3) if T;; is short and such
that a € A\=CEOTD2m(T — (s)~'T) if Tj; is long. Note that if the canonical
map tJ — (s) "' A is injective then E™ (¢J,¢T) is identified under the injective map
Gon(t3,tT) = Gon({s)71A4, (s)~1A) with its preimage in G, (tJ,tI') consisting of
all products of N elementary transvections T;;(a) such that a € tJ if Tj; is short
. 1 1
and a € \~EOFD/ZT if T, is long. We also use the notation E(=(J),—(T)) for
s s
1 1
Uy B¥((3),5 (D).

Lemma 4.1. Let s,t € Ry. If K,L and m are given, there are ¥ and M, e.g.
t=(m+1)4% 1451 4 ...+ 4 and M = 14X L, such that

EK((t/s)A’(t/s)A)EL(sEtA, s'tA) C EM(s™tA, s™tA).

Proof. Once the lemma is proved for K = 1,L = 1, then by an easy induction
procedure we can establish the lemma, for any pair of K and L. Therefore we shall
first show that

El((t/s)A,(t/s)A)El (S(m+1)4tA, s(m+1)4tA) C E14(SmtA, SmtA).

Let p = Trx(@)T;:(b). We must show that p € E**(s™tA, s™tA). The proof breaks
into 4 cases depending on the length of the roots T} and T;;. It will be seen that
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the most complicated situations are when we have either two short roots such that
Thiy =T—;—j and p = T*iv*f(“)Tij(b) or two long roots such that Tj, _, = T_;; and
p =T-0:OT; _(b).

Case I. Ty and T;; are short roots, namely h # £k and 7 # £j. This case
is handled by dividing further into 4 subcases: (1) h # j,k # i (2) h = j,k # i
(3) h # 4,k =1 (4) h = j,k = i. We shall prove (1) and leave it to the reader to
reduce cases (2)-(4) to the case (1). Our proof of (1) breaks again into 4 subcases:
() h# —ik # —j (i) h=—i,k £ —j (iii) h # —i,k = —j (iv) h = —i,k = —j.
Thus consider p = Tr+(0)T;;(b) where h # £k, i # +5, h # j,k # i and a € (t/s)A,
be smHigA,

(i). In this case Thr(a) commutes with T;;(b). Therefore p = Tj;(b) and we are
done.

(ii). In this case p = Thi(a)T—p, ;(b)Thi(—a). Two cases can occur. If k # j use
(R1) to write T_p ;(b) = T_;n(AEW=(=)/2p). By definition, b = s(M+4c for
some ¢ € A. Since s,t € Ry

AW —e(=h))/2y — \(e(G)—e(=h))/25(m+1)447 = S(m+1)dy 4
To simplify notation, we denote A(€()—¢(=))/2p by b. This done, we have

p = Thr(a)T_jn(b)Thr(—a)
= T—jn(0) T—jn(=b)Thr(a)T—j,n (0)Thr(—a)
R(1)
=T_;n(b)T-; x(—ba) (But a=tda /s, b= 3(m+1)4tb'>

= T_j (s VYN 1 (s(™HD41420 o) € E?(s™tA, s™tA).

On the other hand if £ = j then

p = Thi(a)T—kn(b)Thr(—a)
= Tk,h(0) T, h (=) Thk () T—g,1(6) Thi(—a)
R(5)
= T_. 1 (D) T_g x(—ba + X*®)ab)
= T p (sFOVYT_ (s D412 (' + X Ba'h)) € B> (s™tA, s™tA)

for some a’,b' € A.

(iii) The argument is similar to that in the previous case and is omitted.

(iv) In this case p = Thi(a)T—p,—k(b)Thr(—a). By (R1) we can rewrite p as
Thi (0)Tin (D) Thi(—a) where a = ta'/s,b = s(™TD4H. Choose i # +h,+k and set
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z = s(MtD2 and y = s(M+D2¢y . Thus b = zy. Now the computation goes as follow,

p = Thi(a)Trn(b)The(—a)
= Thi(a) [Tri(z), Tin(y)] Thi(—a)
= Thr(0)Tri(2)Thi (=) Thi (=) Tri (2) Thr () Tin (y) Tri (—2) Tin (—y) Thi(—a)
R(3)
= Thi(az)Ti () Tin(y) Tin(—y) Thi (@) Tin(y) Thir(—a) X

~~

R(3)

Thi(@)Tri(—2)Tin (—y) Thi(—a)
= Thi(az)Tyi(x) Tin(y) Tir (—ya) Thi (@) Thi(—2) Thi (—a) Tri(x) X

. 7\ J

commutes R(3)
Thi(—2)Thi (@) Tin(—y) Thr(—a)

= Thi(az)Tyi(z)Tik (—ya) Tin(y) Thi(—az) Tii(—2) Tin(—y) ¥
Tin(y)Thr (a)Tin(—y)Thr(—a)

7

-~

R(3)
= Thi(az) Tri(2) Tir(—ya) Tri(—2) Tri(€) Tin (y) Thi(—az) Tri(—z) X
T T,
Tin(—y)Tix(ya)-
Clearly —ya = —s(MtD2=1¢2p/g/ Let ¢ = —s™t and d = s™t'tb'a’. Therefore

—ya = cd. Thus,
Ty = Tyi(@) [Tin(c), Thr(d)] Tri(—x) = [Trn(zc)Tin(c), Thr(d)Tri(—dx)] ,

and
Ty = Tyi(2) Tin (Y) Thi(—az)Tri(—x) = Tin(zy) Tin(y) Thi(—ax).

A quick inspection shows that ax, zc, ¢, d, dz, ry, ya € s™tA. Therefore,

p=Thi(ax) Tv To Tin(—y)Tix(ya) € E*(s™tA, s™tA).

8terms 3terms 2terms

Case II. Ty is a long root and T;; a short one. Thus k¥ = —h and a €
A=(EMFD/2(1/5)A whereas @ # +j and b € s(M+tD4 A, This case is handled by
dividing further into 3 possible subcases: (1) j # h,i # —h (2) j = h,i # —h (3)
j# h,i=—h.

(1) By R(3), Th,—n(a) commutes with T;;(b). Therefore p = T;;(b) and we are
done.
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(2) We have

p =Th,—n(a)Tin(b)Th,—n(—a)
=Tin(b) Tin(=0)Th,~n(a)Tin(0)Th,—n(—0a)

J

R(6)
=Tin (D) T _n(—ba)T;,_; NEW =@/ 2pgh) € E3(s™tA, s™tA).

(3) This case is similar to the above argument in (2).

Case III. T}, and T;; are long roots. Thus h = —k,7 = —janda € AT éA,
b e AT gmnap Suppose h # —i. Then T;_; commutes with T}
and we are done. The only case which remains is when h = —i, ie. p =
Th,~n(a)T_p n(b)Th,—n(—a) where a € P LA and b € ATESEEE gma gy
Choose p # +h such that p < 0. Let ¢ = s(™+tD and d = s(MT12p/ | where b’ € A
and therefore d € s™tA. Since s € Ry, ¢ = ¢. Set p = A~ (E(=P)+1)/2_ For a suitable
b', b = pede. By R(6), we can write T_p, p(pcde) = Tpp(—ped)[Tp,—p(d), T—p n(c)]-
Thus
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p = Th,—n(a)Tpn(—pcd)[Tp,—p(d), T_p,n ()] Th,~n(—0a)
= Th,—n(0)Tpn(—pcd)Th,—n(—a)Tpn(ped) Ton (—ped)Th,—n(a) X

-~

R(6)

[Tp,~p(d), T—p 1 ()| Th,—n(—a)
= Th,—p(A(E(h)_s(p))/%M)Tp,—p(Cdaa)Tph(_ﬁwd) Th,—n(a)Tp,—p(d) T_p,n(c) %

7

WV W
T commutes

Tp,—p(=d)T—pn(=€)Th,~n(~a)
= T1Tp,—p(d) Tn,—n(a)T—p,n () Th,—n(=a)Tp n(—¢) Tp,n(c)
R(6)

Th,—n(a)Ty,—p(—d), T—p n(—¢)Th,—n(—a)
=T1Tp,—p (d)Thp(_A(E(h)H)/ZaE)T—p,p (Acat) T—p,n(c) X

J

1>
T, —n(a)Tp,—p(—d) T—p,n(—¢)Th,~n(~0a)

WV
commutes

=TTy n(c)Tp,—p(—d)T—p n(—c) ?—p,h(C)Th,—h(G)T—p,h(—C)Th,—h(—az
R(6)
= Tszpr—P(_d) Tp,—p(d)T_p,h(C)Tp,—p(_d)T_p,h(_C)lT—p’_h(Ca/)T_p,p(XcaE)l
R(6) Ty
= Ty Ty Tp_p(—d)Ton(de)Topp(—A"CEEPMT/2540) Ty € B (s™tA, s™A).
1 2 4p, p( )ph( C) h,h( (& C) 3 (3 § )

~—
3 3 2

Case IV. T}y is a short root and Tj; is a long one. All the possibilities which
may occur here reduce to the one of the cases above.
Therefore we have shown that
El((t/s)A,(t/s)A)El (S(m+1)4tA, s(m+1)4tA) C E14(SmtA, SmtA).
Now suppose that K > 0 and L > 0. Since

EK((t/s)A,(t/s)A)EL (s(“‘+1)4tA, s(“‘+1)4tA)

is the set of all products of L or fewer elements of

EK((t/s)A,(t/s)A)El (s(m+1)4tA, s(m+1)4tA),
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we will be done if we can prove the assertion of the lemma for arbitrary K and
L = 1. We proceed by induction on K. The case K = 1 is proved above. Let
K > 1. We shall show that

EK((t/s)A,(t/s)A)El(s(m+1)4K_1+4K_2+---+1)4tA, S(m+1)4K—1+4K—2+---+1)4tA)

C EK—l((t/s)A,(t/s)A)Em(s(m+1)4‘<—1+4K—2+...+4)tA,s(m+1)4K—1+4K—2+...+4)tA)_

To prove this, it suffices to show that Z' ((¢/9)A:(t/)8) g1 (g(m'+ 144 o(m'+1)44A) C
E(s™tA, s™tA), where m’ = (m+1)4%~144K-2 ...+ 4 But this is just a special
case of the first step of the induction which we have already proved. Therefore the
proof is complete. [

If U and V are subsets of a group, let |U, V[ denote the set of all commutators
[u,v] such that w € U and v € V.

Lemma 4.2. Let s,t € Ry. If K > 1 and | > 0, let EX(t'/sA,t"/sA) de-
note the subset of Ga, ({st)™, ((st)1A) consisting all products of K or fewer ele-
mentary transvections T;;(a) such that a € t'/sA(C (st)~1A) if Ti; is short and
a € ATE@FVN/2sA(C (st)IA) if Ty is long. If L > 1 and & > 0, define
EL(st/tA, st /tA) similarly. If M > 1 and p,q > 0, let EM(sPt1A,sPt9A) de-
note the subset of Ga, ((st)"1A, (st)~1A) consisting of all products of M or fewer
elementary transvections T;j(a) such that a € sPt9A(C (st)~1A) if T;; is short and
a € \=EO+D/2gp1a A (C (st)1A) if Ty; is long. If K, L,p and q are given, there are
tland M, e.g. 8= (p+1)4EF2 4148+ 4.4 4 1= (q+ 1)4LH2 40+ o4 4,
and M = 145X+EH3K L such that

w(t, t (st st M
E —A, —A ,E YA, TA g E (Spth, Spth).
S S

Proof. If U is a subset of a group and N a nonnegative integer, let Prod™ (U)
denote the set of all products of N or fewer elements of U. Using commutator
formulas, it is easy to see that

(4.2.1) | Prod™(Uy), Prod"(Us)[ C Prod** (PTOdK?l(Ul)PTodL*I(UZ)]UI, U2[) )

Let Uy = EY (£ A, L A) and Uy = E*(5° A, - A). Since EX(L A, L A) = ProdX (Uy)

and EL(2° A, £ A) = Prod®(Us), it follows from (4.2.1) that

x b, p,8t, s KL ( ProdX—1(U;)Prod"~1(U,)
JBX (=4, =), B (-4, ZA)[C Prod®" ( : 0L, Uaf) -
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By Lemma 4.1, it suffices to show that
Loyl e e

(4.2.2) ]El (t—A, t—A) B (%A, %A) [ C EYW (sP'17 A, 579 A),
s s

where p’ = (p+1)45-1 4+ 4K=2 ... 4t 4and q' = (q+ 1)4F" 1 + 452 ... + 4.
Let p = [Thi((t'/s)a), T;;((s*/t)b)]. The proof breaks into 4 cases depending on the
length of the roots Thy and Tj;.

Case I. Ty, and T;; are short roots, namely h # +k and 7 # £j. This case
is handled by dividing further into 4 subcases: (1) h # 7,k # 1 (2) h = 5,k # i
(3) h # 4,k =1 (4) h = j,k = i. We shall prove (1) and leave it to the reader to
reduce cases (2)-(4) to the case (1). Our proof of (1) breaks again into 4 subcases:
() h# —ik # —j (ii) h=—i,k # —j (iii) h # —i,k = —j (iv) h = —i,k = —j.

(i) By R(1), T ((t"/s)a) commutes with T;;((s*/t)b) and therefore p = 1. Thus
we are done.

(ii) In this case p = [Thi ((t'/8)a), T—n;((s*/t)b)]. Two cases can occur. If k # j
then use R(1) to write

Toa((t/5)) = T, _a(AEEI=I2(41 /5y
Set ' = A(E(k)==(h))/2G Then
p = [T (1/5)), Tong (81/0)0)] = (by R(4) ) Ty (¢="st1a'b).

If kK = j then using R(5) we obtain

p=[T—p_n((t'/s)a"), T_pi((s4/1)D)] = T_p (£~ 1s*"1a'b — A=®)3I= 15t~ 15g").

(iii) This case is similar to what we have just shown.
(iv) In this case p = [Thx((t'/s)a), T—p,—x((s*/t)b)]. Choose p # +h,+k. Write
T h_1((s4/t)b) = Tin ((s¥/1)8') where b’ = N(E(=k)=e(=1))/2p Then

p = [Tui((t'/5)a), Ten((s° /1))
= [The((t'/8)a), [Tip((s*/2/6)8"), Tpn (s*/%)]].

Using the commutator formula [z, [y, z]] = [w,y]y[a:,z]yz[:c,y_l]yzyil[x,z_l], we
have

p = |Tok((t'/5)a), [Tip (s /1)0'), Ty (1))
= [Thr ((£'/5)a), Trp((s4/2/1)b')] x
T (21O T, ((#/5)a), Tyn (s°2)] x
Ten (2 O Ton G Ty (8 5) ), Tip (— (52 /8] ¢
T (™2 /0 ) Ton (") T (= (*/* /OO0 [y, (£ 5) ), Tyn(—st/2)].
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Applying R(4) repeatedly, we obtain
p = Tnp(t™ 127 1ab') x ( € BE(s"'t7 A, sp’tq'A))
Tkp((sE/Q/t)b,)Tpk(tISB/2_laI) X (by Lemma 4.1 € EY¥ (st A, sp'tq,A))
Tkp((sw/t)b')Tph(st/Z)Thp(—t[_lsé/z_lab') X (by L.4.1 € B™ (s*'t9 4, sp,thA)>
o (o O T o/ e (e 2080, (41381271 0), (by 4.1 € B (945 A, 707 ) ).
Therefore p € B (sP'19' A, 57 t9' A).

Case II. Ty, is long and Tj; is short. Thus p = [Ty, _#((t'/s)a), Ti; ((s*/)b)]
where i # 437, a € A~EMHTD/2A and b € A. This case is handled by dividing further
into 3 possible subcases: (1) j # h,i# —h (2) j=h,i # —h (3) j # h,i = —h.

J J J

(1) In this case p = 1 and we are done.
(2) In this case

p = [Tn,-n((t'/)a), Tin((s*/1)b)]
—_——
R(1)
= [Th,—n((t"/5)a), T_p,—i((s"/t)b)]( where b’ = AEM==(D)/2)
= (by R(6) )T, —i(t'" 1t 1ab) T} _ i (—p1 5%~ '~ 20 all) € E%(sP 19 A, sP 19 A)
where Q1= )\(s(—i)—s(—h))/2.

(3) Here the argument is the same as in the previous case.
Case IIL. Ty, and T, are long roots. Thus p = [Th, —»((t'/s)a), T;,—i((s*/t)b)].

If h # —i then p = 1 and we are done. The only case which remains is when A = —i.
Then

p = [Tn—n((t"/s)a), T—pn((s*/t)b)]

where a € A=EM+D/2A and b € A=(E(=M+1D/2A, Choose p # +h. By R(6), we can
decompose

T ((82/8)) = Tyn (= (8%72/)(s8/4) ) [Ty, -p (1(s*/ 1)8), Tp (58]
where p = M(=e(h)=e(®))/2_ Therefore
p = [Tnn((t'/)0), Tyn (= (/2 /0B ) ) [Ty, - (1s(s*/2/1)0), Ty ()]
Now using the commutator formula

[z, uly, 2]] = [z, ][z, 41" [z, 242 [z, y PV (2,277,
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we have
p= Th,—p (tI_133E/4_1u1ab)Tp7_p (ultr—236t/4—1baz) x
Ton (8244 /£)b) T, —p (/2 /1)b) (Th,p (#st/4-1 M2a)T_p,p(pst/2_1tla)> x

Ty (5542 1)) Ty, (842 [)DYT_p, (8% )T, (= (5°/2 /2)D) (Th,p(t‘s‘*/‘*—l 115a) X

T—p,p(—ﬂ23é/2_1tla))

where B = )\(s(h)—s(p))/? and Ho = /\(s(h)—s(—p))/2.
Now the same argument as in the case II, shows that p € E% (P49 A, s 19 A).
Case IV T}, is short and Tj; is long. This case is handled in the same spirit as
the others above. [

Lemma 4.3. Let (Agr,A) be a quasi-finite form algebra. Let (s™A,s™A) be the
subgroup of ((s) 1A, (s)71A). Let""G" (st A, s*A) denote the image of Ga, (st A, stA)
in Gon({s)71A,(s)7*A). Given K and m, there is a ¥, e.g, € = 9((m + 1)45+3 4
48+2 ... 4 4), such that

[EK(EA, La)arsta, sEA)] C B(s™A, s™A).
S S

Proof. Since (Ag, A) is quasi-finite, the proof reduces to the case A is module finite
over R and R is finitely generated as a Z-algebra. This implies (cf. proof of 3.7)
that A is module finite over Ry and Ry is also finitely generated as a Z-algebra. In
particular A is a Noetherian Ry-module. We shall show that

[El(lA, 1A)," G (s%A, sEA)] C E(s™ A, s™ A)
S S

where m’ = (m + 1)4%-1 + 4K=2 4 ... 4 4. The conclusion of the lemma follows
from this result, the commutator formulas C(1) and C(2) of the introduction, and
Lemma 4.1.

Let T;;(a/s) € B*(tA,1A) and "o” €” G"(s*A, s'A). We do not treat the short
and long roots separately. We use the standard localization-patching method to
prove our result. We shall show that for any maximal ideal 9t of Ry, there is an
element tgn € Ry — 9 and a nonnegative integer lgy such that for any a € A,

tlon ) )
(4.3.1) [T;;(2a)," 0"] € B(s™+D14, s(m DY),
S

Suppose this is done. Since the set {t;%|9 € Max(Ro)} is not contained in
any maximal ideal of R, there is a finite set {tg):ll oo ,tg?:} such that the ideal
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(tlg?;ll e ,tlﬁ:) is the whole ring Ry. Choose z1, - ,z, € Ry such that wlt;?;ll +
Iom
st Tty T =1 Then

Lom, Lo,
tm1 a:la) T .(tsmr z,a
]

S S

a

)’II O_II] —

(by (4.3.1) and C(2) ) B (/)4,0/)N) pgm'+1)4 4 o(m'+1)47) ¢
( by Lemma 4.1 ) C E(s™ A4, s™ A).

|:T1/]( :I‘lz ( )’II 0_// E

S

This finishes the proof.
It remains to prove (4.3.1). Let 9 be a maximal ideal of Ry. Then Agy is a
semilocal ring. By Theorem 2.6 (cf. also [10, 9.1.4]) and Corollary 2.4 we have

(4.3.2) G2n(SEA§m, SBAgm) g an(se/sAgm, SE/3Agm)G2(SEAgm, SBAm).

Therefore the image of o in Agy can be decomposed as a product of elements of
G (st Agn, s Agn) and Fo, (s%/3Agy, s*/3Agy). Thus we can find an element ¢ €
Ry — 9 such that over ((t)~'A,(t)"'A), o can be factored as &6, where & €
Go(s8{t) 1A, st (t)~1A) and & € Fy, (s¥/3(t) 71 A, s*/3(t)=1A). By Lemma 2.7, there
is a q such that the canonical homomorphism

(4.3.3) Gon (tq<s)_1A,t°’<s)_1A) 5 Gon (<st>—1A, <st>—1A)

is injective. Let I > g. Since Tj;(t'a/s) € Ga, (tq<s)_1A, tq<s)_1A), we have by
Theorem 2.1 that

p=[Ti;(t'a/s),” 0" € Gan (tq<s)_1A,tq<s)_1A>.
Let p denote the image of p in Gy, ((st)_lA, (st)_lA). If we can show that

p € E(sPt9A, sPtA)

where p = (m’ 4+ 1)4 then because of the injectivity of the map in (4.3.3) we obtain
that
p € E(sPA,sPA).

Let T;;(t'a/s),,6 and & denote respectively the images of T;;(t'a/s), 0,6 and £ in
Gan((st)™1A, (st)71A). Then

4 I S I S
p = [T(Za),0) = [T(=0), 8] = (by C(1) = [T (=), 8T (), 3]
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If {+i,+j} N {£1} = 0 then [T;;(La),d] = 1. If {+i,+5} N {1} # 0 then we
choose k ¢ {+i,+;j} and change the embedding of G2 in Ga,, to that corresponding
to {£k}, without sacrificing the validity of Corollary 2.4, Theorem 2.6 and (4.3.2).
This done, we obtain again that [f'j(ga),g] = 1. Thus, in either case, we achieve
that 5 = [T3; (L a), €.

Since € € B(£2A4,520), £ > (p+1)43 + 42 + 4 and K = 1, it follows from
Lemma 4.2 that there is a [ such that [T;;(t'a/s),€] € E(sPt9A,sPt7A). This
completes the proof. [

If s = 1 then the above lemma implies the result of Bak-Vavilov [4,5], that
E5, (A, A) is a normal subgroup of Gy, (A, A) when n > 3.

Theorem 4.4. Let (Ag,A) be a quasi-finite form algebra. Then Fs,(A,A) is a
normal subgroup of Gon(A,A). O

Definition 4.5. Let (Ag,A) be a quasi-finite form algebra. Let s € Ry. Define
G5, 4) = Ker (Gon(A,8) — Gon((s)™ A, ()7 0)/ Bon ()7 4, ()71 ) ),

and

G(3,4) = Ker(Gan(4, ) — Gon(Ar, AYis)/Bon(Ar, AYiy))-

Theorem 4.6. Let (Ag,A) be a quasi-finite form algebra. Then

[G(s_la A)a G(§7 A)] - E2n(Aa A)

Proof. As in Lemma 4.3, the proof reduces to the case A is module finite over Ry
and R, is Noetherian. We first show that

(4.6.1) Eon((s)7 A, ( =U EK( )

K>0

Let m > 1 and Tj;(a/s™) € Ea,({s)71A4,(s)*A). Suppose first that T;; is a short
root, namely i # +j. Choose h # +i,+j. By R(4), we have that

Tl ) = [Tl i) Tas ()]

By induction on m, we conclude that there is a K such that Tj;(;%) € EK ( A, %A)

Suppose now that T;; = T; _; is a long root. If m is odd decompose & =
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ﬁ%ﬁ and if m is even then decompose & = 1 _a_1_  Suppose m

sm/2 1 gm/2
is odd. Then by R(6), we have
a a [ —a 1
Ti-i( ) = Tii aye) ﬂ,—j(?),T—j,i(W)] ;
where j # +i. Suppose m is even. Then by R(6), we have
a a —a 1
Tz—z(s_m) :Tji(w) Tj—i (= 1 ), T—j.i( m/2):| :

Since the short roots are in

U BX((1/9)4,(1/9)1),
K>0
we conclude that there is a K such that T; _;(%) € E¥((1/s)4,(1/s)A). This
completes the proof of (4.6.1).
By Lemma 2.7 there is an m such that the canonical homomorphism,

P Gop(s™A, s™A) — Gan((s) 1A, (s)7A)

is injective. Since A is module finite over Ry and Ry is Noetherian, the Artin-Rees
Lemma [1,10.10] tells us that given an integer n > 0, there is an integer [ > 0 such
that

s"TMANA C s"A.
Let 0 € G(s71, A) and p € G(3, A). We must show that [0, p] € Ea, (A, A). Choose
K such that "o" € EX((1/s)A, (1/s)A). Let € = 9((m + 1)45+3 4 45+2 ... 1 4)
(see Lemma 4.3) and choose p = ¢+ [. Using the Artin-Rees Lemma

(4.6.2) Gon((sPA,sPANA) C Gon((s°4, sA).

Let 4 A
0 : Gzn(A,A) — Gzn(sp—A, 78"140]\)

denote the canonical map. Thus Kerf = Ga,(sPA,s?PA N A). Since 0(p) €
Ezn(sz, spAnA) there is an element ¢! € Ey,(A,A) such that 8(¢671) = 0(p).
This and (4.6.2) imply that p¢ € Gan(stA,stA). By Theorem 4.4, Ey,(A,A) is a
normal subgroup of Ga,(A4,A). Thus by C(1), [o,p] € Ea,(A,A) if and only if
[0, p€] € Ean(A,A). Because Ga,(s™A, s™A) is normal in G, (4, A), it follows that
[0,p€] € Gan(s™A, s™A). Since the image 0" of o is in EX((1/s)A, (1/s)A) and
the image " p&" of p¢ is in "G4, (st A, stA), it follows from Lemma 4.3 that

[II 1" II pgli] e E( mA SmA)

Since 1) is injective and takes an(s‘"A, s™A) bijectively onto E(s™A, s™A), it fol-
lows thats

and the proof is complete. [
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