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Abstract

By computed tomography data (CT), the individual geometry of
the mandible is quite well reproduced, also the separation of cortical
and trabecular bone. Using anatomical knowledge about the architec-
ture and the functional potential of the masticatory muscles, realistic
situations can be approximated. The solution of the underlying par-
tial differential equations describing linear elastic material behaviour
is provided by an adaptive finite element method. Estimates of the
discretization errors, local grid refinement, and multilevel techniques
guarantee the reliability and efficiency of the method.

1 Introduction

A detailed understanding of the mechanical behaviour of the human mandible
has been an object of medical and biomechanical research for a long time.
Better knowledge of the stress and strain distribution, e.g. concerning stan-
dard biting situations, allows an advanced evaluation of the requirements
for improved osteosynthesis or implant techniques. In the field of biome-
chanics, FEM-Simulation (FEM: finite element method) has become a well
appreciated research tool for the prediction of regional stresses.

The scope of this paper is to demonstrate the impact of adaptive finite ele-
ment techniques in the field of biomechanical simulation. Regarding to their
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reliability, computationally efficient adaptive procedures are nowadays enter-
ing into real-life applications and starting to become a standard feature of
modern simulation tools. Because of its complex geometry and the compli-
cated muscular interplay of the masticatory system, modelling and simulation
of the human mandible are challenging applications.

This research is part of a detailed simulation project concerning the human
mandible. Descriptions of the simulation concept can be found in [11].

Previous FEM studies of the structural behaviour of human mandible have
been reported for instance in Korioth et al. [13, 14] and Hart et al. [9].
Actually, there is a lot of advanced research concerning the interaction of the
human mandible with dental implants, e.g. [19]. Since mainly commercial
FEM tools are used in the field of biomechanics, adaptive finite elements are
not wide spread here.

The paper is organized as follows. In Section 2, we explain the underly-
ing simulation concept, including the mathematical model and the software.
Then, in Section 3, we give a brief description of the theoretical background
and the motivation of adaptive finite element techniques in this context. Af-
terwards, in Section 4, we describe and evaluate the results of our numerical
experiments which consider a lateral bite based on previous biomechanical
tests done by Moog [18]. Finally, in Section 5, we summarize the main fea-
tures of our approach and give directions for future work.

2 The simulation concept

2.1 The model

In general, simulation in structural mechanics requires at least a represen-
tation of the specimen’s geometry, an appropriate material description, and
a definition of the load case. In our field, the inherent material is bone
tissue, which is one of the strongest and stiffest tissues of the body. Bone
itself is a highly complex composite material. Its mechanical properties are
anisotropic, heterogeneous, and visco-elastic. At a macroscopic scale, two
different kinds of bone can be distinguished in the mandible: cortical or
compact bone is present in the outer part of bones, while trabecular, cancel-
lous or spongious bone is situated at the inner, see Figure 1 [16, 19].

Computed tomography data (CT) are the base of the jawbone simulation.
By this, the individual geometry is quite well reproduced, also the separation



cortical bone

trabecular bone

Figure 1: The bone structure of the Figure 2: The separation of cortical
human mandible (from [20, 19]). and cancellous bone as realized in
the simulations.

of cortical and trabecular bone, see Figure 2. The CT data give a density
representation, but the three-dimensional information about the anisotropic
material law is lost. In this note, we restrict ourselves to an isotropic, but
inhomogeneous linear elastic material law. By this, at least in our setting,
the choice of material parameter is of reduced impact. In the case of cortical
bone, we refer to the experiments of [3]. A lot of experimentalists, for instance
[27], postulate for the elastic moduli of trabecular bone about a tenth of the
stiffness of cortical bone. Concerning the elastic coefficients of teeth, we use
an average value of data available in standard literature.

We set

E = 13.3 GPa, v = 0.224 for compact bone,
E = 1.33 GPa, v = 0.224 for cancellous bone,
E = 16.0 GPa, v = 0.224 for teeth.

Concerning anisotropic simulation, we refer to ongoing research activities of
the group [10, 12].

The orientations and values of muscle and joint forces are taken from biome-
chanical experiments of Moog, see [18]. In Moog's setting, lateral biting
consists of a combination of the musc. temporalis, the masseter-pterygoidus
sling and condylar reaction forces, as given in Table 1. The FEM simulation
requires as input a specification of force densities [N/m?| instead of force
values [NV] as provided by Moog. Hence, we divide the given force data by
appropriate muscle areas and set a constant force density for the muscles.



Angle to the | Force value | Force value
alveolar at the at the
plane working balancing
side [N] side [N]
Musc. temporalis 130 80 30
Masseter-pterygoidus sling 65 140 40
Temporo mandibular joint -115 60 20

Table 1: muscular loading according to Moog's experiments [18].

Specific modifications are necessary to model the biting point, here the first
premolar, see Figure 5. At genuine biting, some food (usually a highly non-
linear material law) is crunched between the mandible and the maxilla. The
chewing action itself is caused by muscles’ activity and interactions going
on in the temporo mandibular joint. Without any simplification, we would
have to model a complex dynamic contact problem taking the lower part
of the skull into account. The first simplification, also used by Moog, is a
restriction to static situations. If we assume, as a worst case test, a very hard
undeformable test specimen to be masticated, the upper and lower jaw rest
immobile. By this, the restriction to a static situation, also used by Moog, is
justified. In our setting, the teeth do only have the task of transferring the
specimen’s resistance to masticatory forces. Our purpose is the simulation of
the jaw bone, not of the teeth. Therefore, we admit the test specimen to be a
little cube perfectly adapted to the top of the tooth’s shape. By this, we set
approximately zero deformation at the biting point, leading to homogeneous
Dirichlet boundary conditions there. Otherwise, a classical static signorini
problem has to be considered, e.g. [22, 28, 15].

2.2 Algorithms and software

The main ingredients of the software concept are the visualization package
Amira™ [25] for pre- and postprocessing including volumetric grid genera-
tion, and the adaptive FEM-code Kaskade [1], both developed at the Zuse
Institute Berlin.

Fully or even partially automated preprocessing of medical data is still a
challenge. After semiautomatic segmentation of the CT data, the algorithm
for generation of non-manifold surfaces provided by Amira gives a quite sat-
isfying reconstruction of the individual geometry, see Figure 4 (top left).
Volumetric mesh generation based on these surface grids would exceed the ca-



pacities of commonly available simulation tools and still allows obtuse angles
which are disadvantageous in the finite element approximation. Therefore,
the next steps are successive grid coarsening, smoothing, and interactive grid
editing in order to improve mesh quality. A simplification algorithm from
computer graphics [8] has been adapted for this purpose, specially avoid-
ing intersections and assuring a high quality (i.e. small aspect ratio) of the
surface triangles. Finally, volumetric tetrahedral meshes suitable for FEM-
simulation can be generated using an advancing front algorithm. For the
theoretical background, we refer to [24, 26, 21].

As mentioned above, the FEM-—simulation itself is done by means of Kaskade
([6], [4]). This adaptive finite element code provides automatic grid refine-
ment during the calculation in order to compute solutions with high accuracy.
After successfull FEM—calculation, the results are again transferred to Amira
for visualization, see also Section 4.2.

3 Adaptive finite element methods

In the study of human mandible, the governing physical laws are the three—
dimensional equations of linear elasticity. We are using linear finite element
methods with tetrahedral meshes for the numerical solution of these sta-
tionary partial differential equations. Tetrahedral meshes allow us to get a
faithful representation of the complicated tissue boundaries. Linear finite el-
ements are suffiently accurate due to the roughness of the deformation caused
by mixed boundary conditions.

Typically, for a given application, we seek to obtain a desired result via an ef-
ficient reliable simulation. Therefore, our finite element algorithms are based
on adaptive mesh refinement [6], i.e. the finite element grid is automatically
improved in regions where the numerical solution does not have the required
accuracy. Adaptive techniques are driven by error estimators, which yield
an estimate of the local discretization error in the calculated displacements.
Efficient implementation of adaptive mesh refinement requires particular at-
tention to the supporting data structures and algorithm complexity [7].

Adaptive techniques are playing an increasingly important role in the area
of computational science. Numerical and modelling errors can be clearly
distinguished with the effect that reliability of the modelling process can be
assessed. Compared to uniform methods, successful adaptive methods lead
to substantial savings in computational work for a given error tolerance. We
consider these procedures of crucial importance, as the user is released from



constructing problem-specific discretizations and checking the reliability of
the numerical solution.

4 Results

The simulation examples in this section are based on the generally available
CT data set of the female visible human project, see [2].

4.1 Successive grid coarsening and refinement

The surface representation provided by the algorithm of Amira, see Figure
4 (top left), consists of 48,558 points, resp. 97,247 faces. The result of some
coarsening steps is shown in Figure 4 (bottom left). The corresponding tetra-
hedral grid has 11,395 tetrahedra resp. 2,632 points and is used as a starting
(level 0) grid in the adaptive calculation. According to the requirements of
the selected load case, here the lateral biting situation, the volumetric grid
is successively refined from level 0 up to level 4, see Figure 4.

level Points | x-Deformation y-Deformation z—Deformation
0 2632 |-9.70e-5 — 3.81e-4 | -1.49e-4 — 1.99e-4 | -1.37e-5 — 6.43e-4
1 0767 | -1.71e-4 — 5.05e-4 | -2.90e-4 — 2.87e-4 | -1.85e-5 — 1.06e-3
2 13714 | -2.33e-4 — 6.14e-4 | -4.20e-4 — 3.68e-4 | -2.17e-5 — 1.40e-3
3 32236 | -2.63e-4 — 6.63e-4 | -4.82e-4 — 4.08e-4 | -2.22e-5 — 1.56e-3
4 78394 | -2.75e-4 — 6.81e-4 | -5.22e-4 — 4.31e-4 | -2.37e-5 — 1.64e-3

Table 2: Range of deformation during adaptive refinement.

level Points | x-Deformation y—Deformation z—Deformation
0 2632 | -9.70e-5 — 3.81e-4 | -1.49e-4 — 1.99e-4 | -1.37e-5 — 6.43e-4
1 17974 | -1.75e-4 — 5.40e-4 | -2.85e-4 — 2.94e-4 | -1.90e-5 — 1.08e-3
2 132371 | -2.38e-4 — 6.45e-4 | -4.32e-4 — 3.7Te-4 | -2.21e-5 — 1.43e-3

Table 3: Range of deformation during uniform refinement.

A more detailed convergence history is listed in Table 2. The corresponding
results for some steps based on uniform refinement are shown in Table 3. In
Figure 3, we present the maximum absolute values of deformation (occuring
in the processus coronoidus) for both adaptive and uniform refinement of the
grid. The comparison makes it comprehensible that the adaptive method is
much more efficient if high accuracy is required.

6
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Figure 3: Adaptive versus uniform mesh refinement:
comparative maximum deformation results.

Figure 5 gives a combined presentation of the deformed mandible (100-times
exaggerated) and the original undeformed geometry.

4.2 Appropriate postprocessing

Kaskade computes the three—dimensional deformation and also the six com-
ponents of the stress and the strain tensor. In general, the choice of the
postprocessing variables to be plotted and examined is highly decisive. In
the following, the results after adaptive calculation of some common post
processing variables are discussed. Because of the only auxiliary meaning of
the teeth in our simulation, they are omitted in the visualization.

The von Mises equivalent stress represents the distortional part of the strain
energy density for isotropic materials. It has been used to predict the yield
of isotropic, ductile materials with good empirical agreement. Numerous ex-
periments, e.g. [5], show that cortical and also trabecular bone exhibit creep
behaviour somehow associated to metals or ceramics. So, the calculation of
the von Mises equivalent stress is of a certain — but because of its restric-
tion on isotropic media limited — impact. Figure 6 and 7 show a comparison
between the results of a calculation of level 0 versus level 4. In both calcu-
lations, the stress maximum occurs around the processus coronoidus of the
working side whereas the condyles are nearly at the minimum level in spite
of the condylar reaction forces according to Moog's experiments [18]. In the
level 0 calculation, the observed stress maximum of 2.81 MPa is about 65 %
less than the maximal stress of 4.34 MPa achieved in the level 4 calculation.

Experiments and simulations done in [23] suggest that measurements of bone
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Figure 5: Level 3 of adaptive refinement, together with
a 100-times exaggerated visualization of the deformed
geometry in the course of lateral biting. The original
geometry is shown transparently.

strain are more relevant to predict local fracture than those of bone stress.
Therefore, we additionally test the impact of adaptive grid refinement on
volumetric strain, see Figure 8 and 9. The comparison of the level 0 and
level 4 results confirms the previous observation concerning the von Mises
equivalent stress. Both calculations show qualitatively similar results, but a
significant quantitative deviance which is dimished in the case of compressive
strain, e.g. near the biting point and also in the incisura mandibulae. Spe-
cially, for anisotropic media, Hart et al. propose in [9] a mechanical intensity
scalar, defined as the product of the sign of volumetric strain and square root
of the strain energy density. These postprocessing variables are visualized in
Figure 10 and 11.
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Figure 8: Volumetric strain, after
level O—calculation.

Figure 9: Volumetric strain, after
level 4—calculation.
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Figure 10: Strain energy density, Figure 11: Mechanical intensity,
after level 4—calculation. after level 4—calculation.

5 Conclusion and outlook

The purpose of this paper is to demonstrate the impact of adaptive finite
element techniques in biomechanical simulation. A lateral biting situation
serves as an application example. By successive grid refinement, the defor-
mation shows good convergence from the third level of refinement.

Concerning some widely used postprocessing variables, like von Mises equiv-
alent stress, volumetric strain or elastic energy density, we observed qualita-
tively similar results of the level 0 and the level 4 calculations, but quantita-
tively large deviances which justify the use of more sophisticated numerical
concepts as presented here.

After careful evaluation, the authors will combine adaptive finite element
methods with anisotropic material simulation based on ongoing research
studies of the group [12]. Furthermore, the simplified test setting of the
masticatory system will be replaced by more realistic models, e.g. [17].
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