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Abstract

An important strategic element in the planning process of public trans-
portation is the development of a line concept, i.e. to find a set of paths for
operating lines on them. So far, the models in the literature aim to mini-
mize the costs or to maximize the number of direct travelers. In this paper
we present a new approach minimizing the travel times over all customers
including penalties for the transfers needed. This approach maximizes the
comfort of the passengers and will make the resulting timetable more reli-
able. To tackle our problem we present integer programming models and
suggest a solution approach using Dantzig-Wolfe decomposition for solving
the LP-relaxation. Numerical results of real-world instances are presented.

1 Motivation and related literature

In the strategic planning process of a public transportation company one
important step is to find a suitable line concept, i.e. to define the routes
of the bus or railway lines. Given a public transportation network PTN =
(S,E) with its set of stations S and its set of direct connections E, a line
is defined as a path in this network. The line concept is the set of all
lines offered by the public transportation company, together with their
frequencies, where the frequency fl of a line l contains the number of
vehicles serving line l within the planning period considered. The frequency
of an edge e, on the other hand, is the number of vehicles running along
the edge.

The line planning problem has been well studied in the literature. For
an early contribution we refer to Dienst, see [Die78]. The many mod-
els given after this time can be roughly classified into the following two
types. In a cost-oriented approach the goal is to find a line concept serv-
ing all customers and minimizing the costs for the public transportation
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company. The basic cost model has been suggested in Claessens et al.,
see [CvDZ96], where a binary (linear) programming formulation has been
given. A solution approach by branch and cut has been developed in
[GvHK01]. In [Bus97] an alternative formulation with integer variables
has been proposed. In [BLL04] Bussieck et al. present a fast solution ap-
proach combining nonlinear techniques with integer programming. More
recently, [GvHK02] takes also into account different types of vehicles simul-
taneously. A new approach is to take into account that the behavior of the
customers depends on the design of the lines. A first cost-oriented model
including such demand changes was treated with simulated annealing in
two diploma theses in cooperation with Deutsche Bahn, see [Kli00, Sch01].

On the other hand, in the direct travelers approach by Bussieck et al.
[BKZ96] (see also [Bus97]) the goal is to maximize the number of direct
travellers (i.e. customers that need not change the line to reach their
destination). As constraint, the number of vehicles running along an edge
is restricted for each edge in the PTN, i.e. upper and lower bounds on the
allowed frequencies on each edge are taken into account.

Although the latter model is a customer-oriented approach it maxi-
mizes the amount of one group of customers but without considering the
remaining ones which might have very many transfers during their trips. It
also does not take into account the travel times for the customers: Some-
times it is preferable to have a transfer but reach the destination earlier
instead of sitting in the same line for the whole trip but having a large
detour.

A recent work by Quak [Qua03] treats line planning for buses instead
of trains. He develops a two phase algorithm with the construction of
the lines in the first and setting of frequencies and departure times in the
second phase. In contrary to the other models he is not taking lines out of
a given line pool but constructs them from the scratch, which is the main
part of his work. The two main objectives of this model are ”minimizing
the total drive time of the vehicles” to keep the costs for the company low
and ”minimizing the mean detour time of the passenger requests” to keep
the passengers comfort high since short travel times are requested by the
passengers. As he sets up also a timetable in the second phase, he tries
to keep the changing times low to couple the second objective. But if the
changing times are low, the risk of loosing a connection in case of a small
delay in the network is very high. Also we have to mention that a transfer
is a bigger discomfort than a slightly longer travel time.

In this work we take into account these points. Based on our presen-
tations ([SS03] and [SS04]) we develop a new model which allows to sum
over all travel times over all customers including penalties for the transfers
needed. We also show how different frequencies of the lines can be taken
into account. The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce the new line planning model, discuss its complexity in
Section 3 and then describe an integer programming model in Section 4.
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Our solution approach which is based on a Dantzig-Wolfe decomposition
is given in Section 5. Finally, we present numerical results based on a
real-world application of German Rail (DB).

2 Basic definitions

A public transportation network is a finite, undirected graph PTN = (S,E)
with a node set S representing stops or stations, and an edge set E, where
each edge {u, v} indicates that there exists a direct ride from station u to
station v (i.e., a ride that does not pass any other station in between). For
each edge {u, v} we assume that the driving time tuv is known.

We assume the PTN as already given and fixed. We further assume
that a line pool L is given, consisting of a set of paths in the PTN. Each
line l ∈ L is specified by a sequence of stations, or, equivalently, by a
sequence of edges. Let E(l) be the set of edges belonging to line l. Given
a station u ∈ S we furthermore define

L(u) = {l ∈ L : u ∈ l}
as the set of all lines passing through u.

Moreover, let R ⊆ S × S denote the set of all origin-destination pairs
(s, t) where wst is the number of customers wishing to travel from station
s to station t.

The line planning problem then is to choose a subset of lines L ∈ L,
together with their frequencies, which

• allows each customer to travel from its origin to its destination,

• is not too costly, and

• minimizes the “inconvenience” for the customers.

In the literature, the only customer-oriented approach dealing with
the inconvenience of the customers is the approach of [Bus97] (see also
[BKZ96]) in which the number of direct travellers is maximized. In our
paper, however, we deal with the sum of all transfers over all customers.
On a first glance, the problem to minimize the number of transfers seems
to be similar to maximizing the number of direct travellers. That is in
general not the case, as the following example demonstrates.

Example 2.1. Given a PTN with 9 nodes and 8 edges as shown in Figure
1 and a line pool L containing 11 lines L = {l1, . . . , l11} shown in Table 1.
In Figure 1 for simplicity only lines l1, l2 and l3 are named. The remaining
lines correspond to the single edges. Let the set of origin-destination pairs
be R := {(1, 3), (2, 8), (7, 9)} with weights w1,3 = w2,8 = w7,9 = 1. Assume
that due to safety rules not more than one vehicle per edge is allowed
within our planning period of e.g. 30 minutes.
Then the optimal solutions for the two objectives are the following line
concepts:
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line stations
l1 1,2,3
l2 7,8,9
l3 2,3,4,5,6,7,8
l4 1,2
l5 2,3
l6 3,4
l7 4,5
l8 5,6
l9 6,7
l10 7,8
l11 8,9

Table 1: The line pool of example 2.1.

• ”maximize number of direct travellers”: L = {l2, l3, l6, . . . , l9}
In this case the two passengers (1, 3) and (7, 9) can travel directly,
but passenger (2, 8) has to change 5 times.

• ”minimize number of transfers”: L = {l1, l4, l11}
In this case only one passenger, namely passenger (2, 8) travels di-
rectly, but the total number of transfers is only two because passen-
gers (1, 3) and (7, 9) have to change once each.

1 3

4 6

7

8

9

2

5

l2

l1

l3

Figure 1: Difference between the objectives ”maximize direct travellers” and ”minimize

transfers”.

Note that considering the number of transfers only would lead to solu-
tions with very long lines, serving all origin-destination pairs directly but
having large detours for the customers. To avoid this we determine not
only a line concept, but also a path for each origin-destination pair and
count the number of transfers and the length of the paths in the objective
function. This is specified next.

Given a set of lines L ⊆ L, a customer can travel from its origin s to its
destination t, if there exists an s-t-path P in the PTN only using edges in
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{E(l) : l ∈ L}. The “inconvenience” of such a path is then approximated
by the weighted sum of the traveling time along the path and the number
of transfers, i.e.

inconvenience(P ) = k1TimeP + k2TransfersP .

On the other hand, the cost of the line concept L ⊆ L is calculated by
adding the costs Cl for each line l ∈ L, assuming that such costs Cl are
known beforehand.

The line planning problem hence is to find a feasible set of lines L ⊆ L
together with a path P for each origin-destination pair, such that the costs
of the line concept do not exceed a given budget B and such that the sum
of all inconveniences over all paths is minimized.

Since the capacity of a vehicle is not arbitrarily large, we have to extend
the basic problem to include frequencies of the lines. This makes sure that
there are enough vehicles along each edge to transport all passengers. If
each origin-destination pair can be served, the line concept is called feasible.
We remark that often, the number of vehicles running along the same edge
is also bounded from above, e.g., for safety reasons.

3 Complexity Results

In this section we first show that the line planning problem as defined
above is NP-hard, even in a very simple case, corresponding to k1 = 0 in
the above definition.

Theorem 3.1. The line planning problem is NP-complete, even if

• we only count the number of transfers in the objective function,

• the PTN is a linear graph.

• all costs Cl are equal to one.

Proof. In the decision version, the line planning problem in the above case
can be written as follows:

Given a graph PTN =(S,E) with weights ce for each e ∈ E, origin-
destination pairs R, and a budget B, does there exist a feasible set of B
lines with less than K transfers?

We reduce the set covering problem to the line planning problem: Given
a set covering problem in its integer programming formulation

min{1x : Ax ≥ 1, x ∈ {0, 1}n}

with an 0-1 m × n matrix A, we construct a line planning problem as
follows:
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We define the PTN as a linear graph with 2m nodes S = {s1, t1, s2, t2 . . . , sm, tm}
and edges E = {(s1, t1), (t1, s2), (s2, t2), (t2, s3), . . . , (sm, tm)}. We define
an origin-destination pair for each row of A,

R = {(si, ti) : i = 1, . . . ,m}.

For column j of A we construct a line lj passing through nodes si and ti if
aij = 1.

As an example, Figure 2 shows the line planning problem obtained from
a set covering problem with

A =




1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 1 0




s1 t1 s2 t2 s3 t3 s4 t4 s5 t5 s6 t6

l1 l2

l3

l4

Figure 2: Construction of the line planning problem in the proof of Theorem 3.1.

Setting K = 0 we hence have to show that a cover with less than B
elements exists if and only if the line planning problem has a solution
in which all passengers can travel without changing lines. Due to our
construction this is true and hence the theorem holds. �

A question that might arise in this context, is what happens if the lines
need not be chosen from a given line pool, but can be constructed as any
path. Some of the basic cost models become very easy in this case, but
unfortunately, the complexity status of the line planning problem treated
in this paper does not change.

Theorem 3.2. The line planning problem in which all possible simple
paths are allowed is NP-complete, even if we only count the number of
transfers in the objective function.

Proof. We reduce the Hamiltonian path problem to our problem.
Let G = (V, E) be the graph in which we want to check the existence of

a Hamiltonian path from a given node s to a given node t. We construct
the line planning problem as follows:
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We define the PTN as the given graph G and construct

R = {(s, v), (v, t) : v ∈ V \ {s, t}}

as the set of origin-destination pairs. Furthermore, we set the budget
B = 1. The line planning problem with K = 0 hence is to find one
line serving all origin-destination pairs. Such a line must start in s, pass
through all nodes and end in t (otherwise at least one element of R would
have to change for its trip), and hence constitutes a Hamiltonian path. Vice
versa, any Hamiltonian path is a solution of the line planning problem with
a total of zero transfers. �

4 A model for the line planning problem

To model the line planning problem as integer program we use the PTN to
construct a directed graph, the so-called change&go network GCG = (V, E)
as follows:

We extend the set S of stations to a set V of nodes with nodes repre-
senting either station-line-pairs (change&go nodes: VCG) or the start and
end points of the customers (origin-destination nodes: VOD), i.e. V :=
VCG ∪ VOD with

• VCG := {(s, l) ∈ S ×L : l ∈ L(s)} (set of all station-line-pairs)

• VOD := {(s, 0) : (s, t) ∈ R or (t, s) ∈ R} (origin-destination nodes)

The new set of edges E consists of directed edges between nodes of the
same stations (representing that customers board or unboard a vehicle or
change lines) and edges between nodes of the same line (representing the
driving activities):

E := Echange ∪ EOD ∪ Ego
with

• Echange := {((s, l1), (s, l2)) ∈ VCG × VCG} (changing edges)

• El := {((s, l), (s′, l) ∈ VCG × VCG : (s, s′) ∈ E} (driving edges of line
l ∈ L)

• Ego :=
⋃
l∈L El (driving edges)

• EOD := {((s, 0), (s, l)) ∈ VOD × VCG and ((t, l), (t, 0)) ∈ VCG ×VOD :
(s, t) ∈ R} (origin-destination edges)

We define weights on all edges e ∈ E of the change&go network representing
the inconvenience customers have when using edge e. Given a set of lines
L ⊆ L we then can determine the lines the customers are likely to use
by calculating a shortest path in the change&go network for each single
origin-destination pair. Therefore the choice of the edge costs ce is very
important. Some examples:
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1. Customers only count transfers:

ce =

{
1 : e ∈ Echange
0 : else

Note that in this case, it is possible to shrink the change&go network
to a network with |L|+ |S| nodes and |Echange|+ |EOD| edges.

2. Real travel time:

ce =





0 : e ∈ EOD
travel time in minutes : e ∈ Ego
time needed for changing platform : e ∈ Echange

More specific, to model the line planning problem as defined in Sec-
tion 2, we set

ce =





0 if e ∈ EOD
k1tuv if e = ((u, l), (v, l)) ∈ Ego
k2 if e ∈ Echange

3. Many other extensions are possible.

Since we assume that customers behave selfish we need an implicit calcu-
lation of shortest paths (with respect to the weights ce) within our model.
This is obtained by solving the following network flow problem for each
origin-destination pair (s, t) ∈ R.

θxst = bst,

where

• θ ∈ ZZ|V|×|E| is the node-arc-incidence matrix of GCG,

• bst ∈ ZZ|V| is defined by

bist =





1 : i = (s, 0)
−1 : i = (t, 0)

0 : else

• and xest ∈ {0, 1} are the variables, where xest = 1 if and only if edge e
is used on a shortest dipath from node (s, 0) to (t, 0) in GCG.

To specify the lines in the line concept we introduce variables yl ∈ {0, 1}
for each line l ∈ L, which are set to 1 if and only if line l is chosen to be
in the line concept. Our model, Line Planning with Minimal Travel Times
(LPMT) can now be presented.

(LPMT)

min
∑

(s,t)∈R

∑

e∈E
wst ce x

e
st
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s.t.
∑

(s,t)∈R

∑

e∈El
xest ≤ ylMl ∀ l ∈ L (1)

θxst = bst ∀ (s, t) ∈ R (2)
∑

l∈L
Clyl ≤ B (3)

xest, yl ∈ {0, 1} ∀ (s, t) ∈ R, e ∈ E , l ∈ L (4)

Constraint (1) makes sure that a line must be included in the line concept
if the line is used by some origin-dastination pair, where Ml is a sufficiently
large number, at least bigger than the number of edges of line l times the
number of origin-destination pairs: Ml ≥ |El| · |R|. Constraint (2) models
the selfish behavior of the customers, i.e., that customers use shortest paths
according to the weights ce.

Having only constraints (1) and (2), the best line concept from a
customer-oriented point of view would be to introduce all lines of the line
pool. This is certainly no option for a public transportation company, since
running a line is costly. Let Cl be an estimation of the costs for running
line l and let B be the budget the public transportation company is willing
to spend. Then the budget constraint (3) takes the economic aspects into
account.

The objective function we use is customer-oriented: We sum up the
costs

∑
e∈E wst ce xest of a shortest path from s to t for each origin-

destination pair (s, t) ∈ R, i.e., we minimize the average costs of the
customers.

In (LPMT) we implicitly assume that all customers traveling from sta-
tion s to station t choose the same path in the change&go network, i.e.,
the same set of lines. This can be done if edge capacities are neglected in
(LPMT). In practice, this is usually not the case, since each vehicle only
can transport a limited number of customers and usually there is only a
limited number of vehicles possible along each line (e.g. due to safety rules).
In the following, we therefore present an extension of (LPMT) taking into
account the number of vehicles on each line in a given time period. Con-
sequently, this formulation allows to split customers along different paths
from s to t in the change&go network GCG.

Let N denote the capacity of a vehicle and let the new variables fl ∈ IN
contain the frequency of line l, i.e., the number of vehicles running along
line l within a given time period. Furthermore we choose variables xest ∈ IN
and change the vector bst to

bist =





wst if i = (s, 0)
−wst if i = (t, 0)

0 else

Then the Line Planning Model with minimal transfers and frequencies
(LPMTF) is the following:
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(LPMTF)

min
∑

(s,t)∈R

∑

e∈E
ce x

e
st

s.t.
1

N

∑

(s,t)∈R
xest ≤ fl ∀ l ∈ L, e ∈ El (1)

θxst = bst ∀ (s, t) ∈ R (2)
∑

l∈L
Clfl ≤ B (3)

∑

l∈L:k∈El
fl ≤ fmaxk ∀ k ∈ E (4)

xest, fl ∈ IN ∀ (s, t) ∈ R, e ∈ E , l ∈ L (5)

Constraints (1) make sure that the frequency of a line is high enough
to transport the passengers. If fl = 0, the line l is not chosen in the
line concept. Constraints (2) are flow conservation constraints routing
the passengers on the shortest possible paths. Note that the xest variables
can take integer values, such that passengers may choose different paths
for the same origin-destination pair. Constraint (3) is again the budget
constraint but with costs for each vehicle of a line (which are multiplied
by the frequency to get the costs of the line).The capacity constraint (4)
may be included if upper bounds for the frequencies are present.

5 Dantzig-Wolfe Decomposition

The line planning problem introduced in Section 4 is NP-hard, and, more-
over in real-world instances, gets huge (see Section 6). But fortunately
(LPMT) as well as (LPMTF) have a block structure with only a few cou-
pling constraints. Moreover, in both models, all blocks (except the one
containing the single budget constraint) are totally unimodular since they
are network flow problems. We take advantage of this structure by using a
Dantzig-Wolfe decomposition. In this section we present our approach for
(LPMT). The method can also be applied for solving (LPMTF) since the
model structure is very similar. However, the numerical results deal with
(LPMT).

We now present the formulation of the master LP and of the corre-
sponding subproblems. For further details on the algorithm the reader is
referred to Dantzig and Wolfe [DW60].

The block structure of the model is shown in the following reformula-
tion.

min
∑

(s,t)∈R
∑

e∈E wstcex
e
st
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∑
(s,t)∈R

∑
e∈l x

e
st ≤ ylM coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr ,tr

Y

with |R|+ 1 blocks:
Xst := {xst ∈ ZZ|E| : θxst = bst, 0 ≤ xest ≤ 1, ∀ e ∈ E}

Y := {y ∈ ZZ|L| : CTy ≤ B, 0 ≤ yl ≤ 1, ∀ l ∈ L}
and |L| coupling constraints:

∑

(s,t)∈R
AX xst −AY y ≤ 0.

The coefficient matrix (AX | . . . |AX | − AY ) of the coupling constraints
looks as follows:

• AX is an |L| × |E| matrix given by elements ale = 1, if e ∈ El, zero
otherwise. It is equal for each OD-pair

• AY is an |L| × |L| diagonal matrix containing Ml as its lth diagonal
element.

With the weight-cost-constants cest := wstce and the |L|-vector v as slack
variable we get the following master LP:

(Master 1)

z = min
∑

(s,t)∈R

∑

i

(cst x
(i)
st )αist

s.t.
∑

(s,t)∈R
∑

i(AX x
(i)
st )αist −

∑
i(AY y(i))βi + Iv = 0 (1)∑

i α
i
st = 1 ∀ (s, t) ∈ R (2)∑

i β
i = 1 (3)

vl, α
i
st, β

i ≥ 0

where x
(i)
st and y(i) are the extreme points of Xst, and of Y , respectively.

This problem has |L| coupling constraints and |R| + 1 convexity con-
straints.
For each (s, t) ∈ R we obtain the following subproblem

zst = min(cst − πAX)xst − µst

s.t. xst ∈ Xst
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and the subproblem of the Y -block is

z = min(−πAY )y − µ00

s.t. yl ∈ Y,

where {πi}i∈L are the dual variables of the coupling constraints, {µst}(s,t)∈R
are the dual variables of the alpha convexity constraints and µ00 is the dual
variable of the beta convexity constraint.

It is also possible to add the budget constraint to the set of coupling
constraints and keep the shortest-path constraints in one block. Note that
computing the subproblem in this second formulation is as easy as before
since it decomposes into |R| independent smaller problems. However, the
number of constraints in the master problem changes to |L| + 1 coupling
constraints but only one convexity constraint.

(Master 2)

z = min
∑

i

(cst x
(i))αi

s.t.
∑

(s,t)∈R
∑

i(AX x(i))αi −AY yl + Iv = 0 (1)∑
i α

i = 1 (2)
vl, α

i, yl ≥ 0

The subproblem is

z =
∑

(s,t)∈R
min(cst − πAX)xst − µ

s.t. xst ∈ Xst ∀ (s, t) ∈ R

Note that in this case the xi are not {0, 1} any more since we sum up over
all shortest path solutions in the subproblem.

Since the original and the master formulation may differ in their linear
programming relaxations, we will now discuss the strength of the linear
programming master (Master 2). The bounds provided by the LP relax-
ation of the original program (P) and the Master (M) are respectively

zLP (P ) = min{cx : Ax ≥ b,Dx ≥ d, x ≥ 0}

and

zLP (M) = min{cx : Ax ≥ b, x ∈ conv({x ∈ INn : Dx ≥ d})}.
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From integer programming theory (see e.g. [Wol98]), we know that

zLP (P ) ≤ zLP (M) ≤ zIP

where zIP is the integer solution value (zIP = zIP (P ) = zIP (M)).

When conv({x ∈ INn : Dx ≥ d}) = {x ∈ IRn
+ : Dx ≥ d} (i.e. when the

current formulation of the subsystem already has the integrality property),
zLP (P ) = zLP (M).

As we have mentioned, the shortest path blocks X st in (LPMT) as
well as the corresponding network flow blocks in (LPMTF) are totally
unimodular and thus have the integrality property. We hence get

zLP (LPMT ) = zLP (Master 2)

The same result holds for (LPMTF) with the corresponding (Master 2).
As we will see in Section 6 the LP relaxation is not solvable for real world
instances due to the size of the resulting change&go network. Therefore
a decomposition makes sense even if the provided bound is not better. In
our case the LP relaxation is only solvable for small instances, see Table 2
in Section 6.

6 Real-world application and computa-

tional results

Our approach is currently tested on instances of the long distance trains
of the German railway network. The line pool we use was generated by
German railway (DB). The given PTN consists of a line pool of 423 lines,
35322 origin-destination pairs, 233 stations and 319 edges.

This leads to a change&go network with 6705 nodes, 343271 edges
and a model with 2.42 · 1010 variables and 236834434 constraints. We
implemented the Dantzig-Wolfe decomposition of our model using Xpress
MP 2004 and Microsoft Visual C++ 6.0. The CPU times are based on a
3.06 GB Intel4 processor with 512 MB RAM.

Our computational experience shows that the second variation of the
Dantzig-Wolfe decomposition (solving the subproblem with Dijkstra’s short-
est path algorithm) finds an optimal solution of the LP relaxation within
minutes. Even for the largest instances a solution was found in less than
two hours. Note that line planning is part of the strategic planning and so
even longer computation times of some hours are acceptable. In general
only few iterations are needed.

6.1 Solving the LP relaxation

The size of (LPMT) depends on two criteria:
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|L| |R|=2 |R|=10 |R|=50 |R|=100 |R|=150 |R|=200 |R|=1476
10 0.187 0.860 4.219 8.563 12.469 16.453 154.281
50 4.875 23.610 118.844 239.782 361.063 M M
100 25.172 124.359 626.640 M M M M
132 52.047 257.906 M M M M M
150 M M M M M M M

Table 2: CPU times for the LP relaxation of (LPMT) for different line pool sizes and

origin-destination pairs.

1. the size of the line pool: the change&go network is constructed out
of the line pool and thus the size of the node-arc incidence matrix θ
increases with a bigger line pool

2. the number of origin-destination pairs: we solve a shortest path prob-
lem for each origin-destination pair and so the number of constraints
increases if we treat more origin-destination pairs

In Section 5 we mentioned that the bound provided by the decomposition
using (Master 2) is equal to the LP relaxation of (LPMT). But as the LP
relaxation of (LPMT) is only solvable for small instances, a decomposition
still makes sense. Table 2 shows the CPU times for the LP relaxation
of (LPMT) for instances with different sizes of line pools |L| and origin-
destination pairs |R|, using the software Xpress MP. If the problem was
not solvable due to lack of memory, this is indicated by “M”1.

6.2 Variations of the Decomposition

We implemented four different possibilities of a Dantzig-Wolfe decomposi-
tion:

1. The budget constraint does not belong to the coupling constraints
and we treat the Xst-blocks as independent blocks (previously called
(Master 1)).

2. The budget constraint belongs to the coupling constraints and we
treat the Xst-blocks as independent blocks.

3. The budget constraint does not belong to the coupling constraints
and we treat the Xst-blocks as one big block.

4. The budget constraint belongs to the coupling constraints and we
treat the Xst-blocks as one big block (previously called (Master 2)).

Our computational experience shows that it is better for solving the com-
plete problem if the budget constraint belongs to the coupling constraints

1For Table 2 we used a computer with 2 GB RAM instead of 512MB which was used for all
other computations.
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Decomposition No. 0 No. 1 No. 13
LP relax 0.01 M M
DW 1 0.19 M M
DW 2 0.15 M M
DW 3 0.12 4 17318
DW 4 0.1 1 8715

Table 3: CPU times for different decompositions explained in Section 6.2. ”M” indi-

cates that the memory was not sufficient.

since it is only one constraint and its variables do not appear in the ob-
jective function. Solving the corresponding subproblem takes unnecessary
computation time.

Normally it is known to be better to split the remaining constraints into
as many blocks as possible in order to reduce the number of iterations and
thus the computation time. Of course, the number of convexity constraints
in the master problem increases but since the structure of the convex-
ity constraints is very simple, modern optimization software can manage
them easily. In our case, the number of convexity constraints increases
enourmeously if we treat the Xst-blocks individually and so memory prob-
lems arise even for small instances. On the other hand, we figured out that
even if we treat the shortest path problems as one subproblem and thus
only have one convexity constraint, we only need very few iterations such
that there is no need for further decomposition.

Table 3 shows computation times of the different decompositions and
of the LP-relaxation of (LPMT) for three different instances 0, 1, and 13
explained in Table 4.

6.3 Variations of the line pool

The CPU time depends mainly on the size of the line pool and on the
number of origin-destination pairs. We calculated 14 instances of different
sizes to show the dependency between the running time and the line pool
size. We always used the same origin-destination matrix, but to avoid in-
feasibility we deleted such origin-destination pairs that could not be served
even if all lines of the line pool were used. The remaining number of ele-
ments of R is shown in Table 5 in column ”|R|”.
In column ”CPU”, we show the CPU time of an implementation of the
4th variation of the master problem (i.e., the budget constraint belongs to
the coupling constraints and the Xst-blocks are treated as one big block,
previously called (Master 2)), in which we used Dijkstra’s algorithm for
solving the subproblem. Since we only need very few iterations, we can
save a lot of running time by checking whether the π change in comparison
to the last iteration or not after solving the subproblems. If not, there
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No. |L| |R| Budget Stations Nodes (ext.) Edges (ext.)
0 3 2 2 3 10 32
1 10 2602 8 220 419 1212
2 50 4766 45 220 1015 11152
3 100 11219 80 242 1716 32080
4 132 18238 100 319 2487 48788
5 200 10126 150 305 3590 138616
6 250 13246 200 307 4716 223034
7 275 14071 250 309 5303 268696
8 300 17507 250 316 5931 316742
9 330 18433 300 318 6706 382906
10 350 17095 300 317 6503 467500
11 375 18350 300 320 7101 544828
12 400 22191 300 325 7682 600348
13 423 22756 400 325 8268 679382

Table 4: Instances for different line pool sizes.

is no need to recalculate the shortest paths in the next iteration since no
distances will change. In this case, we just have to adjust the objective
value by −µ. The CPU times of this variation are shown in Table 5 in
column ”CPU check”.

6.4 Preprocessing

As we have seen, the main problem of our approach is the size of the
change&go network depending mainly on the size of the line pool. A wise
choice of a possibly small line pool is therefore advisable. On the other
hand it makes sense to analyze the underlying PTN. For example if two
lines go parallel for a long time, it is sufficient to add changing edges only at
the first and the last station. Also arcs between stations without changing
possibility can be shrinked to decrease the size of the network.

7 Conclusions

We developed an integer programming model for the line planning problem
that minimizes the travel times over all customers including penalties for
the tranfers needed and proposed an extension that includes frequencies.
We showed that the problem is NP-hard even if lines are constructed and
not chosen from a given line pool. Since the problem gets so huge that a
straightforward solution of the LP relaxation is not possible we developed a
solution approach based on Dantzig-Wolfe decomposition. Computational

16



No. |L| |R| CPU CPU check
0 3 2 0.1 0.05
1 10 2602 2 1
2 50 4766 10 3
3 100 11219 52 16
4 132 18238 92 48
5 200 10126 155 78
6 250 13246 689 329
7 275 14071 1193 691
8 300 17507 2167 1171
9 330 18433 3246 1911
10 350 17095 2769 1814
11 375 18350 5150 2727
12 400 22191 6525 4789
13 423 22756 15243 8715

Table 5: CPU times for different line pool sizes.

results for various real world instances and different decompositions were
presented. We are currently working on a branch&price algorithm and
heuristics to get an integer solution.
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