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Abstract

Within this series of papers we plan to exhibit to any noncooperative game
in strategic or normal form a ‘canonical’ representation in extensive form that
preserves all symmetries of the game. The operation defined this way will
respect the restriction of games to subgames and yield a minimal total rank
of the tree involved. Moreover, by the above requirements the ‘canonical
extensive game form’ will be uniquely defined.

Part I is dealing with isomorphisms of game forms and games. An auto-
morphism of the game is called motion. A symmetry of a game is a permuta-
tion which can be augmented to a motion. Some results on the existence of
symmetry groups are presented. The context to the notion of symmetry for
coalitional games is exhibited.
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0 Introduction

This paper is the first part of an investigation which is devoted to the study of the
relationship between a game in strategic form and its possible representations by extensive
games. (A representation of a strategic game G is an extensive game I" whose normal
form is G.) We should emphasize that our starting point is a game in strategic form. The
transition from the extensive form to the strategic form as defined by VON NEUMANN
and MORGENSTERN (1944) has already been investigated extensively (see KOHLBERG
and MERTENS (1986) for a recent treatment of this topic). The transition in the opposite
direction is considered ‘trivial’ and conceptually straightforward. It is the purpose of
our work to show that this is not true: The choice of a method of representation of
strategic games by extensive games which respects symmetries of strategic games leads to
difficult conceptual problems and deep mathematical results. Some of the problems will
be illustrated by the well known example of the Battle of the Sexes.

Example 0.1 Consider the following version of the Battle of Sexes

(see, e.g., MYERSON (1991, p.98) for a verbal description of the game). Here C is going
to a concert and S is going to a soccer game. Player 1 is the wife and player 2 is the
husband. There are two potential focal equilibria in this game: (C,C) and (S,S) (see the
beautiful discussion in MYERSON (1991, Section 3.5)). Now, according to the present
standard convention of game theory one can represent G by an extensive game in the
following two different ways (see Figure 0.1).

(2,1) (0,0) (0,0) (1,2) (2,1) (0,0) (0,0) (1,2)
Figure 0.1: Two representations

The foregoing convention which leads to multiple representations has the following two
problematic aspects.



(1) The transition to the extensive form might influence focality. Consider the extensive
game I';. It is common knowledge in this game that player 1 moves first. Therefore
she has the option to choose C before player two makes his choice. Thus, it seems
to us that in I'; the pair (C, C) of strategies is more likely to be played than (S, S).
Our feeling is supported by the experimental work of RAPOPORT (1994). Clearly,
in 'y the pair (S,.S) may be the dominant focal equilibrium rather than (C,C).

(2) The transition to the extensive form may destroy symmetry. The game G is ‘sym-
metric’ in the following sense: It has an automorphism which permutes players 1
and 2 (for a definition of automorphism, i.e. an isomorphism of G to itself, see
HARSANYT and SELTEN (1988, Section 3.4)). This automorphism is given ex-
plicitly in our Example 3.6 (1). However, I'; and I'y are totally asymmetric; more
precisely, if I' = T'; or I' = I'y, then there is no non-trivial automorphism of I' that
respects the temporal ordering of moves in I'.

The discussion in the last paragraph leads naturally to the following basic question:

Let G be a game in strategic form. When is G ‘symmetric’? (In particular, is the Battle
of Sexes a symmetric game?)

Quite surprisingly there is no satisfactory answer available to this question. If we follow
our mathematical intuition and define a strategic game G to be symmetric if all possible
joint renamings of players and strategies are automorphisms of G (see HARSANYT and
SELTEN (1988, P.71) for the precise definition of renaming), then the class of symmetric
games reduces to the trivial class of all games whose payoff functions are constant and
equal. Also, this definition is incompatible with the definition of symmetric bimatrix
games (see van DAMME (1987, p.211)).

Our answer to the basic question is indirect. A symmetry of G, according to our definition,
is a permutation 7 of the players for which there exists an automorphism o = (7, ¢) of G
(here ¢ is a renaming of strategies which is compatible with 7). Thus, our definition of
symmetries (of strategic games) is different from that of HARSANYT and SELTEN (1988,
p.73). The game G is symmetric if every permutation of the players is a symmetry of
G. Thus, in particular, the Battle of Sexes is symmetric according to our definition. Our
definition has the following desirable properties.

(1) The class of symmetric games is a nontrivial interesting class.

(2) It is possible to use similar ideas to define symmetries of extensive games (see
Definition 3.16).

(3) It is possible to compare the symmetry groups of a strategic game and its coalitional
form (see Theorem 3.11).

As far as we could check, symmetries of games in extensive form which preserve the partial
ordering on the nodes that is induced by the game tree were not considered previously.
Thus, our treatment of symmetry groups of extensive games is entirely new.
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We now present our solution to the problem of representing the Battle of Sexes by an
extensive game.

(2,1) (0,0) (0,0) (1,2) (2,1) (0,0) (0,0) (1,2)
Figure 0.2: The ‘canonical Battle of Sexes’

The above representation is faithful because, according to our definitions, it has the same
symmetry group, namely > ({1,2}), as the Battle of Sexes. Also, it is quite obvious that
it has ‘minimum’ graph in the class of all faithful representations (of the Battle of Sexes).

Our goal in this work is to generalize the foregoing construction to all finite strategic
games. This task turned out to be very difficult. We just mention here two of the highest
hurdles.

(1) Consider a 2 x 3 two-person game. Such a game has no symmetries. Therefore,
there is no hope to find a ‘canonical’ representation just for this game. Thus, we
have to add the requirement that our representations of 2 X 3 games are consistent
with our representations of 2 x 2 games. Formally, the only way to get canonical
representation is to consider mappings from game forms to extensive game forms,
that are defined on rich enough domains.

(2) Given a ‘square’ n-person strategic game form, that is a game form with the property
that all the players have the same number of strategies, it is not clear how to find
for it a minimal and faithful representation. (Observe that a square game form
allows for complete symmetry between the players.) When the number of players
is greater than two, then there is no obvious solution to problem of representing
square game forms. Indeed, we started with the simplest (‘atomic’) representations
of square game forms and built ‘symmetrizations’ of such ‘atoms’ in order to obtain
faithful (i.e., symmetry-preserving) representations.

We now review the contents of the paper. Game trees and their isomorphisms are pre-
sented in Section 1. Isomorphisms respect all partitions as well as the partial ordering
of the tree. Section 2 introduces strategic and extensive preforms. A strategic preform
specifies only the set of players and the strategy sets. Extensive preforms, similarly, spec-
ify only the set of players and the game tree. The definitions of strategic and extensive
games and game forms are also reviewed in Section 2.

Isomorphisms of strategic and extensive preforms, game forms, and games are introduced
in Section 3. Our definition of isomorphisms of extensive games seems to be new. An
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automorphism of a game G is called motion. A symmetry of G is a permutation of the
players that is applied by some motion. After defining formally the symmetry group of a
game we present some results on existence of symmetry groups.

The existence of canonical representations of game forms will be investigated in Part II.

1 Prerequisits

The structure of strategic games and game forms will be discussed in Section 2. As
for extensive games and forms some prerequisites are necessary which we will deal with
presently. Most readers familiar with the topic could just browse or entirely skip this
section.

We start out with a pair (E, <) where E is a finite set (the nodes) and < is a binary
relation on E such that (E, <) is a tree. The root of the tree is denoted by zy, the
generic element is £ and the set of endpoints is OF. A play is a sequence

r = (IE(), L1y -eny IET)

satisfying z; < z;11 (1 =0,...,T — 1), such that z, is the root and zr € OF holds true. A
path is a sequence of consecutive nodes.

The distance of nodes is measured by the rank function defined via r(zy) = 0 and
r(&) =r(€)+1if &€ < &. Then the nodes

{f | T(f) = t} =: 'C(E7'<7t)

constitute the level t; thus L is the level function. In addition we shall employ the
notion of maximal rank

Tmaz(E, <) :=mazx {r(§) | £ € E}

as well as the one of total rank

R(E,<)= > r(&).

ECOFE

An extensive game (form) is also formulated with the aid of partitions; we introduce three
partitions as follows:

P is the player partition (a partition of E — JF). The names of the players will be
assigned later (Section 2); however, we assume that there is a distinguished element
Py € P (which may be the empty set) representing the chance mowves. All other
player sets are assumed to be nonvoid. Let p = (p%)¢cp, be a family of probability
distributions (of chance moves), i.e., let p® be a probability on the successors of &
for every £ € Py. We assume that p¢(¢') is positive for every successor &' of £.
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Q represents the information partition. Q is a refinement of P; thus an element
Q@ €Q, Q C P,is an information set of the player who commands the elements
of P. In particular it is required that Q refines P to singletons, that is,

QeQ,QCP = Q={& for some £€E.

Also, any two elements £, &' € @@ € Q belonging to the same element @) of Q should
have the same number of successors. Moreover, every information set contains at
most one node of any play.

C is a family of partitions representing choices. This item refers to the above defined
structures (E, <), P, Q. Denote by

C) = {£1&<¢} (1.1)
the successors of £ € E and write for Q € Q
c@ = | . (1.2)
geq

Now we assume that for any @@ € Q we are given a partition C(Q) of C(Q) such
that

S e CQ) = [SNCE) =1 ((€Q).

(We use (£ € Q) to indicate the quantification ‘for all £ € Q’.)
Now C := (C(Q))geq denotes the system of choices.

We will refer to the structure (E,<,P,Q, C,p) as to a game tree. In addition we shall
omit Q or p respectively, if P = Q or Py = () respectively. That is, we simplify the
notation accordingly, if players have but one decision or there are no chance moves.

Now we continue by defining various operations to be performed on game trees. To this
end let (E, <) and (E’, <') be trees and consider a bijective mapping ¢ : E — E'.

We shall say that a bijective mapping ¢ respects (<, <') if

§=n= 8§ < ¢(n) (1.3)
holds true.

Similarly, if P and P’ are partitions of subsets B of F and B’ of E’ respectively, then we
shall say that a bijective mapping ¢ respects (P,P’) if, for all P’ € P’ it follows that
¢~ (P") € P and also ¢~'(B’) = B hold true.

Thus, if we want to consider game trees, it is clear in which way a mapping respects
the player partition and the information structure. To respect the decision structure is a
property defined in a straightforward way.



Definition 1.1 A game tree (E,<,P,Q,C,p) is isomorphic to a game tree
(E', <", P, Q',C'p') if there is a bijective mapping ¢ : E —> E' (an isomorphism
between the game trees) which satisfies the following properties.

(1) The mapping ¢ respects (<,=<"), (P,P’), and (Q,Q’).
(2) $(Po) = Py and p?O(¢(¢")) = p*(€') holds true for £ € Py and €' € C(§).

(8) For Q € Q the mapping ¢ respects (C(Q),C'(Q")), where Q' € Q' is the unique
information set which satisfies $(Q) = Q'.

Note that (2) makes sense in view of (1), the bijectivity of ¢, and the underlying tree
structure.

2 Forms and Games

There is a definite hierarchy within which we want to approach both ‘versions’ of a game,
the strategic one and the extensive one. This hierarchy is characterized by the concepts
of preform, game form, and game.

The preform is the pure underlying structure listing the environment of the players’ ac-
tions.

Definition 2.1 A strategic preform is a pair e = (N, S), where N is a finite set (the
set of players, | N |> 2) and S = [I;cn Si is the product of finite sets S; # 0 (i € N) (the
strategy sets).

Thus, the strategic preform determines just the players and the domain of the payoft
functions to be completed later.

Analogously, the extensive preform is described by an environment as follows.

Definition 2.2 An extensive preform is a tuple
€= (N7E7 _<7P7Q7 C7p; L) (2'1)

where N 1s as in Definition 2.1 and the next six data have been described in Section 1.
Moreover, 1 : P—{Py} = N is a bijective mapping; v assings the nodes of P € P —{ Py}
to t(P) € N, naturally we use 1='(i) = P; to refer to these nodes.

In order to discuss the concept of a game form, we assume that an abstract set of outcomes
A is defined, together with a mapping A which specifies the outcome corresponding to the
choice of every strategy profile by the players.



Figure 2.1: An extensive preform

Definition 2.3 (1) A strategic game form is a quadruple g = (e; A, h) = (N, S; A, h).
Here e is a preform, A a finite set (the outcomes) and h : S — A is a surjective
mapping called outcome function. g is called general if h is a bijection.

(2) An extensive game form is a tuple

v=(An) =(N,E <P,Q,C,p;u; A, ). (2.2)

Here again, € is an extensive preform and A is a finite set while the surjective
n: 0E — A assigns outcomes to endpoints of the graph (E, <).

Figure 2.2: An extensive game form

Thus, we have augmented preforms with ‘outcomes’, ‘results’ of strategic activities, or,
‘alternatives’. All of these do not result in ‘utilities’ for players but constitute a way to
describe the consequences of strategic behavior.

Turning now to games, we want to convey the notion that payoffs are assigned in ‘utils’
- and that expected payoffs may occur as the result of strategic behavior.

Definition 2.4 1. A strategic game is a tuple

G = (e;u) = (N, S;u) (2.3)

such that
U= (ui)iEN 'S = RN (24)

u; 18 player i’s utility function or payoff function.



2. Analogously, an extensive game is a tuple

I'=(e¢v)=(N,E,<,P,Q,C,p;;v) (2.5)

such that
v = (Ui)iEN - 0FE — RN, (26)

v; again is player i’s payoff depending on endpoints of the graph (E, <).

Remark 2.5 Of course there is a close relation, between games and game forms. For-
mally, if g and 7y are (strategic and extensive) game forms and

U:A— RY

is a (‘utility’) function defined on outcomes, then

u:=Uoh, v:=Uonp (2.7)

induce games G and I' which we will conveniently denote by U x g and U % v , thus we
have

G=Uxg=Ux(e;Ah)=(e;Uoh) (2.8)

as well as
F=Uxy=Ux(eAn) =(Uon) (2.9)

There are marked differences between games and game forms with respect to symmetries
- even observed at this early stage.

To this end, consider Figure 2.3. Here the first sketch represents a game form with
A = {a,bc}. fweput U: A — R Ula) = (1,1) (a € A), then the resulting
game I' = U * v is represented in the second sketch. It would appear that, whatever our
definition of symmetries will be, this game is completely symmetric.

Now turn to the third sketch. This game in extensive form apparently has lost some of the
symmetries. One can imagine (we haven’t defined the normalized strategic form mapping
as yet) that the strategic version looks exactly like the one of the second sketch - this
fact being due to the possibility of forming expectations with respect to the probabilities
involved. We may perceive that the game of the third sketch stems from the game form of
the fourth sketch. Note however that a possible result of strategic behavior could be a pair
(a, b) resulting from a ‘lottery’ choosing a and b with probability (3,1) - this procedure
would greatly blur the picture of symmetries of a game.



(2.2)(2,2)(2,2)(2,2)0,0)0,00,0X0,0)
Figure 2.3: Extensive game forms and games

3 Isomorphisms, Motions and Symmetries

Isomorphisms are first of all defined for strategic preforms: we want to rename the players
and simultaneously reshuffle the ordering according to which the strategies are listed.

Thus, given strategic preforms e = (N, S) and ¢’ = (N, S’) we consider bijective mappings
m: N — N and @; : S = Sy() (i € N). 7 renames the players and ¢; maps strategies of
player ¢ into strategies of his double.

The pair (7, ) of course induces a simultaneous reshuffling of strategies, i.e., a mapping

" S —= S, (¢"()rw = wi(si) (i€ N). (3.1)

Definition 3.1 An isomorphism between strategic preforms e and €' is a family (m, @)
of bijective mappings

such that

(7, p)e = (1, p)(N, S) := (TN, ¢"(S5)) = (N, ) (32)
holds true.

Now turn to extensive preforms. Here, we want to rename not only the players but also
the nodes of the graph. Clearly, the decision structure as well as the information structure
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should be preserved. But in addition, as we have made it clear in Section 1, the ‘order of
play’ should not be disturbed. Thus we come up with the following

Definition 3.2 Let ¢ = (N, E,<,P,Q,C,p;t) and € = (N,E', <", P',Q,C,p';!) be
extensive preforms. A isomorphism between € and € is a pair of mappings (7, ) such
that 7 is a permutation of N,¢ : E — E' with the following properties.

(1) ¢ is an isomorphism between the underlying game trees (cf. Definition 1.1).
(2) m(«(P)) = ¢(8(P)) (P €P)

Thus, we write

(7T7 ¢)6 = (7T7 ¢)(N7 E7 _<7P7Q7 C7p; L) (3'3)
= (1(N),¢E, <%, ¢P,$Q,¢C,ps-1;m010¢™")
= (N7 E’? _<I7 PI? QI7 Cl,p,; LI)

Now, let us turn to isomorphisms of forms. Next to the structure of the preform we
also want to preserve the nature of the pair (A4, h) or (A, n) respectively. As we consider
outcomes as basically different, we will regard a bijective mapping p : A — A not as
particularly relevant. Thus for example we would like to consider game forms represented

by
ab
ca ba
as to be essentially equal, i.e., they are isomorphic; the appropriate mapping will involve

a bijection p: A - A, a = a, b = ¢ — b. This consideration motivates the following
definition.

Definition 3.3 Let g = (e; A, h) and ¢' = (¢/; A, 1) be strategic game forms. An iso-
morphism of g and ¢’ is a triple (7, p; p) such that (7, @) is an isomorphism between e
and €' while p: A — A’ is a bijection satisfying

h'=poho(y)™".
Here, ©™ is the mapping defined in (3.1). That is, we have
(my 03 0)(e;A,h) = ((m,9)e;poho (7)) = (¢54)1)
An isomorphism is outcome preserving if A = A’ and p is the identity.
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Another way of looking at it is suggested by the observation that the following diagram
is commutative.

s g
oy 1w

A 2 A

Analogously a reshuffling of outcomes should not disturb the nature of an extensive form.
Since an isomorphism between extensive preforms carries endpoints into endpoints, the
outcome function 7’ is defined on elements ¢(§) of the image graph, the result should
yield outcomes as previously up to a bijective p, i.e., we should have p(n(£)) = 7' (¢(£))
for £ € OF.

Thus we have

Definition 3.4 An isomorphism of two extensive game forms v = (;A,n) and v' =
(e'; A" n') is a triple (m, ¢; p) such that (w,¢) is an isomorphism between € and € and
p:A— A is a bijective mapping such that n' o ¢ = pon holds true. That is, we have

(7w, ¢, p)(&; A,m) = ((m, §)e; p(A), ponog™t) = (€, A, 7).

!

An isomorphism is outcome preserving if A = A’ and p is the identity.

The reader may benefit from the following diagram.

OE -2 OE'
n 4 L 7
A L o4

Finally let us turn to games. Of course the procedure is now familiar, all we have to do is
to explain the kind of action a permutation (renaming) of the players formally performs
on n-tuples of utility functions, i.e. on u or v respectively.

Clearly, if (7, ) is an isomorphism between the strategic preforms e and e’ and u and
u' are tuples of utilities defined on S and S’ respectively, then the utility of ’s image
7(i) € N should be given by

ui(s) (i € N), (3.4)

Q\
A
=
~
A

3
~
wn
-
-
Il

thus indicating that we rename players and strategies simultaneously.

This defines the action of the pair (7, ) on tuples of utility functions via
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(7, @)y (97 (8)) = wils)- (35)

We have thus explained

(m,p)u: S — RN, (3.6)

Analogously, within the extensive set-up, if we have an isomorphism (7, ¢) of preforms
€ and ¢ , cf. Definition 3.2, and if v : dE — IRN is a utility N-tuple defined on the
endpoints of (E, <), the action of (7, ¢), i.e.

(m,¢)v : OE' — RN (3.7)

is given by

(7, #)0)(i)(#(8)) == vi(€) (€ € OF, i € N). (3.8)

Thus we have

Definition 3.5 (1) Let G = (e;u) and G' = (€¢';u') be strategic games. An isomor-
phism between G and G' is a pair (7, ) such that (7, @) is an isomorphism between
e and €' (see Definition 3.1 and (3.2)) and ug ;) (¢™(s)) = ui(s) (i € N,s € S). That
18, we have
(7, 9)G = (m,9)(e;u) = (7, p)e; (7, Ju) = (¢, ) (3.9)
(see (3.5) and (3.6)).
(2) Let T' = (e,v) and I" = (€/,v") be extensive games. An isomorphism between

I' and I' is a pair (7w, $) such that (7, ) is an isomorphism between € and €' (see
Definition 3.2) and vy ;y(¢(£)) = vi(§) (£ € OE,i € N). That is, we write

(m, §)T' = (m, 9) (6 v) = ((m, P)e, (m, $)v) = (€', V) (3.10)
(see (3.7) and (3.8)).

So far we have finished the presentation describing isomorphisms between preforms, game
forms, and games.

We are now in the position to discuss symmetric games. At first, this notion might seem to
be obvious: one is tempted to argue that a symmetry of a game G is just an automorphism
of G, i.e., an isomorphism (7, ¢),7: N = N,¢; : S; = Sy, such that

(m,9)G =G

holds true. However, this approach will not work appropriately. Keep in mind that we
want to speak about symmetries with respect to players, for good reasons a rearrangement
of the order of the of strategies is irrelevant. The reader is referred to the introduction
for a discussion of this viewpoint.
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Example 3.6 (1) The ‘Baitle of Sexes’ represented by the following pair of matrices

2 0
G = (3.11)

allows for two ‘symmetries’. Consider the automorphism (w,¢) given by 7 =
id, ¢; = id (i = 1,2) as well as the one given by 7 : 1 — 2 — 1 and
QDZ'(SZ') =3—-3s; (Si €5 = {1,2}).

(2) If G is indicated by

1 2 3 3 21
1 2 3 3 21 (3.12)
1 2 3 3 21

then we feel that there are absolutely no symmetries with respect to the players.
Nevertheless, there are nontrivial automorphisms of G, e.g. m = id combined with
i+ Si = S, e i {1,2,3} 5 {1,2,3},01: 1 22 —>3—1 and ps =id. Le.,
iof player 1 renames his strategies it does not change the game but this exhibits no
‘symmetry’ of the game.

Thus automorphisms cannot be ‘symmetries’ and ‘symmetries’ should disregard the pure
rearrangement of strategies which does not involve interchanging players. Or more to the
point, if we rename players and strategies, the ‘symmetry’ involved should only reflect
the ‘essential’ similarities of players.

Definition 3.7 A motion of a strategic game G is an automorphism (7, ) of G. A
motion (7, ) is impersonal if 7 is the identity (and ¢; : S; — S;(i € N)).

Remark 3.8 It is not hard to see that motions enjoy the structure of a group. Indeed,
if (m,) and (0,1) are motions of a strategic game G, then define ¢ ® ¢ via

(¥ ® )i := thrs) © s (3.13)

such that

(e ® )i+ Si = Som(iy) = Soonti) (i € I) (3.14)
The product of (w, ) and (0,) is then

(0,9) (7, ) = (om, 9 ® ) (3.15)

Clearly, the unit motion s given by
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(id, id) = (idn, (ids,)ien)

This way the motions of G constitute a group. Clearly, the impersonal motions constitute
a subgroup.

Remark 3.9 The subgroup of impersonal motions of the group of motions of a game is
normal.

The proof of this statement will be left to the reader. However, it now becomes con-
ceivable that ‘disregarding the impersonal part of a motion’ as suggested by Example 3.6
mathematically amounts to introducing the quotient group of motions with respect to
impersonal motions.

Definition 3.10 Let G be a strategic game. M = M(G) denotes the group of motions.
T =7I(G) C M denotes the subgroup of G constituted by the impersonal motions. The
group of symmetries of G is the quotient group

M(G)

§=8(G)=M/T = T (3.16)

A game G is symmetric if its symmetry group is isomorphic to the full group of permu-
tations of N called ©(N), i.e., if

S(G) = £(N) (3.17)

holds true.

We would like to further motivate the definition of symmetries by pointing out that there
is a natural relation between the concept of a symmetry we have developped so far for
noncooperative games and the ’natural’ concept of symmetry used in the framework of
cooperative games represented by the ’coalitional’ or ’characteristic’ function.

To this end, let G = (N, S;u) be a strategic game, and let (7, ¢) be a motion of G. We
consider the coalitional game (N, v) which is derived from G in the standard way (see
,e.8., McKinsey [4] , Chapter 17).

Theorem 3.11 Let (7, ) be a motion of a strategic game G. Then 7 is a symmetry of
(N,v), that is, v(w(T)) = v(T) for all T C N.

Proof: Let T C N,T # O,N. For Q@ € N,Q # 0,N, denote Sy = [[;c9Si- Then
A(ST)(A(Sn\r)) is the set of all correlated strategies of T'(N\T). By definition

T) = max min u;(o, 7).
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Now let : € T, 0 € A(Sr) and 7 € A(Sy\r). Then

= 2. 2 a@)rBuils,1).

SEST tESN\T

Furthermore let us tentatively use the notation (¢;)ier =: ¢7 and (pi)iemr = @7
Then ¢F. : St — Sy(1) and go}{,\T : Smr — S\ are bijections and for each i € T, s €
ST, and t € SN\T

’U,Z(S t) = Ux(i )(QOT( )7 @%\T(t))
holds true.

Hence, for 0 € A(Sr) and 7 € A(Sy\r) we obtain

> 2 2 o@Tuils 1) =

ieT sEST tESN\T

> X2 2 o()TWurp(#7(s), Phnr(t))

ieT sEST teSv\T

> X > o) ()T ((hnr) T (B)uils, B).

ien(T)  $€ESx(r)y tE€ES(W\T)

The mapping ¢F : A(Sr) — A(Sym) given by ¢7.(0)(s) = o((¢F)7'(s)) is an affine
isomorphism between A(Sr) and A(S 7). Similarly we define the affine isomorphism
Prr t AlSwmr) = A(Sxm))- Using these notations we obtain

o> Y o(s)T(t)u(s, t) =D uio, 1)

ieT sEST tESN\T €T
Z > > er(@)(s)Pmr(T) Rui(s,t) = D wi(@T(0), Prnr(7))-
ien(T) $€SxT) ESrw\T) ien(T)

Therefore it follows that

v T = max min Ui 0', T) =
( ) g€A(ST) TEA(SN\T) ZEZT ( )
max min u; (Q5(0), P () =
o€A(ST) TEA(SN\T) ie%(:T) (7(0), SDN\T( )
(gax min Uj 5-7 7)) =v(w(T
GEA(Sn(ry)  FEA(SH(M\T)) ie%(:T) (6,7) (w(T))
holds true in view of the fact that ¢7. and @7, 1 are bijections. q.e.d.

Corollary 3.12 The symmetry group of G is contained in the symmetry group of (N,v).

Example 3.13 Let G be given by (0,0)(0,0). Then the symmetry group of G is trivial
(|S1] # |S2|), and (N,v) is symmetric. Thus, the Corollary is sharp.
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Remark 3.14 One obtains similar results by considering the o or B NTU coalitional
games which are derived from G.

Example 3.15 Neuxt, let G be described as follows. There are 3 players, each of them
having 2 strategies. Player 1 chooses strategies from S; = {small, BIG}. His payoff is
always —1, and does not depend on the choice of strategy triples. The payoffs of players
2 and 8 in the two situations player 1 may choose are represented as follows; player 2
chooses t(op) or b(ottom) and player 3 chooses l(eft) or r(ight).

I r I r
0 30

small
b 0 2 0 6

(3.18)
[l r [l r
t (6 0\ (20
BIG 1 5) 01

The symmetries of the Battle of Sexes are to some extend revived within this example:
player 2 may play his role in the ‘small’ version of a modified Battle of Sexes as well as
player 1 in the ‘BIG’ version.

More precisely, there is a (personal) motion (7, ¢) givenby 7 : 1 51,253 22, ¢;:
BIG — small - BIG; @ :t —>r,b—>1; ¢3:7r =1, 1 — b, which leaves G
untouched. This motion involves player 1’s exchange of strategies. It can be seen that
the only further motion is (id,id) (one cannot exchange player 1 with any of the others
and exchanging the others, while player 1 remains fixed requires the above ¢).

Thus, the quotient group is {id, 7} or, loosely speaking, ‘players 2 and 3 are symmet-
ric’. Thus, motions have to be incorporated in the definition of symmetries but, as the
next example shows, this is not a sufficiently comprehensive definition depending on the
context.

On the other hand consider the following example where a strategic game G for 2 players
is indicated by

1 2 1 2
1 0 1 1 1 0
2 1 0 2 0 1

G admits of exactly four motions (7, ¢). Indeed, if we denote the nontrivial permutation
of two indices by 7 : 1 — 2 — 1 and the trivial permutation by id, then we can list
these motions to be (id, (id,id)), (id, (1,7)), (7, (id,T)), and (7, (7, id)).
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Thus, we have four motions, but G enjoys only two symmetries (the first and second pair
of motions coincide on the player set). It should be pointed out that, contrary to the
‘Battle of Sexes’ example (cf. Example 3.6 ), both the nontrivial motions (7, (id, 7)) and
(1, (1, id)) are noncyclic, i.e. TF = id for some k € IN does notimply that (¢7)*(s) = s
holds true for all s € S.

Within the framework of extensive structures, the definition of symmetries is now rather
analogous to those given in the context of strategic structures.

Definition 3.16 Let I' = (e,v) be an extensive game. A motion (m,¢) of T' is an
automorphism of T and M = M(T") denotes the group of motions. T =1I(T) is the
normal subgroup of impersonal motions, i.e., automorphisms of shape (id,$). The
group of symmetries is the quotient group

S=8I)=M/T = % (3.19)

and T is symmetric if S(T') =2 S(N) holds true.

In the remainder of this section we will shortly indicate a characterization of all possible
groups of motions. Let G = (N, S;u) be a strategic game and let M be the set of motions
of G. We define an equivalence relation ~,; on B = N X S in the following way:

(4, 8)~ (7, t) if there exists (m, ) € M such that (7(:), ¢"(s)) = (4,t) (3.20)

~a is an equivalence relation because M is a group.

Theorem 3.17 M is covering, that is, if (7, ) is an (n+1)-tuple of bijections, 7 : N —
N, @i : S; = Syi)(i € N), such that

(7 (7), " (s))~m(i,8) for all (i,s) € B (3.21)
then (m,p) € M. (Here and in the sequel we use n =| N | .)

Proof: By 3.20 and 3.21 for each (i, s) € B there exists (7, p) € M such that (7(2), p"(s)) =
(m(2), ¢ (s))-
Hence

Un(i) (¥7(8)) = ur(i) (07(s)) = wils)
that is, (7, ¢) is a motion of G. q.e.d.
We now prove the converse result. Let e = (N, S) be a strategic preform. A transfor-

mation of e is an (n 4 1)-tuple (7, ¢) of bijections, 7 : N = N, ¢; : S; = Sy;(i € N),
that is, it is an automorphism of e. Denote by Aut(e) the group of all transformations.
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For H C Aut(e) we define ~y by 3.20 (with M replaced by H). Similarly, H is covering
if each (7, ) € Aut(e) that satisfies

(7(3), ¢"(s))~gu(i, s) for all (i,s) € B, (3.22)

is a member of H.

Theorem 3.18 If a subgroup H C Aut(e) is covering, then there exists a vector ul of
payoff functions for e, u? : S — RN, such that M(N, S; uH) =H.

Proof: Let I, ..., I; be the equivalence classes of ~p. Choose real numbers ¢; < ... < ¢
and define u” : S — RN by u;(s) = ¢ if (3, 8) € I;.

Claim 1: If (7,¢) € H then (7, ) € M(N,S;u). Indeed, let ¢ € N and s € S. Then
(7(2), ¢™()) ~m (¢,5). Hence ur;)(¢™(s)) = u;(s) by the definition of u”.
Claim 2: If (1,4) € M(N, S;u™) then (7,1) € H. Indeed, for every (i,s) € B we have

ur(5)(¥7(8)) = ui(s). By the choice of u, (7(z),¢7(s))~u(i, s). Because H is covering,
(1,9) € H. q.e.d.

Given a strategic preform e = (N, S) some subgroups of Aut(e) may not be the group of
motions of (N, S;ufl) for any uf : S — RN,

Example 3.19 Let N = {1,..,n}, and S, = ... = S, = {1,...,1} where2 <1 <n-—2.
Denote by A, the group of even permutations of N. Then

H = {(r, (id, ...,id)) | = € A}

is a subgroup of Aut(e) which is not covering. Indeed, if m is an odd permutation, then
(m, (id, ..., id)) is not in H. However, for each (i,s) € B there exists T € A, such that

(w(é),id"(s)) = (7(d),1d" (s)), that is, (7 (3),id"(s))~nu (i, 5).
The following result is a corollary of Theorems 3.17 and 3.18.

Corollary 3.20 Let e = (N, S) be a strateige preform and let H C Y (N) be a group
of permutations. Then there exists a vector of payoff functions v : S — RN such that
H = 8(N, S;ul) if and only if there is a covering group H* of automorphisms of e such
that H = H* /T(H*), where Z(H*) is the (normal) subgroup of impersonal automorphisms
in H*.

Proof: Necessity. If H = S(N,S;ufl) then H = M(N, S;uf)/Z(N, S;u’) and
M(N, S;u™) is covering by Theorem 3.17.

Sufficiency. If H = H*/Z(H*) and H* is covering then, by Theorem 3.18, there exists
a vector of payoff functions u” : S — RY such that H* = M(N, S;u’’). Because
H = H*/I(H*), H = 8(N, S;u™) by definition. q.e.d.
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Example 3.21 Let, again, N = {1,..,n} and S; =--- =S, = {1,...,1} withl >n— 1.
We claim that for every subgroup H of S.(N) there exists a vector u : S — RN such
that H = S(N, S;ul). Indeed, let H C Y(N) be a group. Consider the following group
H* of automorphisms of e

H* = {(r, (id, ..., id)) | = € H}

We shall prove that H* is covering. Indeed, let (7, (@1, ..., pn)) satisfy (7, " (8))~m(i,s)
for all (i,s) € B. Consider a pair (i,8y) where i € N and sy, = (m,..,m) . By
assumption

(ﬂ—(i)7 @W(Sm)) = (ﬂ—(i)7 (@w—l(l)(m% -y Pr—1(n) (m)) ~H* (i7 Sm)

for all i € N . Therefore pr-14(m) = m for alli € N and 1 < m < 1. Thus ¢ =
«+» =, =id. Now choose (i,s) = (n,(1,2,.....,n — 1,n — 1)). By our assumption there

1s T € H such that )
((n),id"(s)) = (&(n), id"(s))

Therefore, 1 = . Thus H* is the group of motions of some game (N, S;u'l) whose group
of symmetries is clearly H.
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