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Abstract

In this paper, we show that23 is the minimal quota that guarantees the transitivity of a
complete majority relation. We argue that this quota is important for the process of nego-
tiation that may take place when a group has to take a clear-cut decision under a specific
quota-rule.
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1 Introduction

The pairwise majority rule may lead to intransitivities (cycles) which makes it im-
possible to find a straightforward solution to pick up a winner from the set of al-
ternatives. A way out of this problem is to require the support of more than a half
of the population to consider that an alternative is better than another. We enter the
domain ofquota-rules. It is well known (Ferejohn & Grether 1974, Peleg 1978)
that whenn alternatives are in an electoral competition, it is sufficient and neces-
sary to require the support of more than(n− 1)/n of the population to be sure that
no cycle may appear in thequalified majority relation. Unfortunately, this fraction,
that we shall callquotaand denoteλ in the remainder, tends to 1 as the number of
alternatives increases, i.e. to be considered socially better than an alternativey, the
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alternativex must be preferred toy by “almost” all the individuals. The absence of
intransitivities does not help the decision since it leaves the place to a likely empty
binary relation. Indeed, when the quota is not obtained then the two involved alter-
natives should be considered “incomparable”. 3 This conclusion is a pain when a
clear-cut decision has to be taken. Let us give two examples.

For historical reasons, a pope is elected if he casts more than two-thirds of the votes
and it is necessary that a pope is elected. This means that the cardinals have to deal
and negotiate in order to attain the required quota of two-thirds.4

Another example may be found in Sidney Lumet’s movie “Twelve Angry Men”
(1957) of which action takes place on the stage of the jury room. The jurors have
to decide whether a young Spanish-American is guilty or innocent of murdering
his father. For a decision to be taken, the thirteen jurors have to agree (possibly
at the expense of negotiation). After a first vote, the tally is 12:1 in favor of the
condemnation to death. After some (hours of) negotiation, the minority position
—acquittal— turns into a unanimity and the young man released.

In both examples, the negotiation goes on as long as the decision is not taken.5 This
article finds its motivation in this particular framework where the members have to
negotiate until the group is able to perform a clear-cut decision on the basis of a
λ-majority relation. Intuitively, it is clear that if the number of candidates and/or the
quota increase then a decision might be more difficult to achieve. In other words, it
is most likely that negotiation will be necessary to perform a decision.

As far as the quota is concerned, we face the following dilemma. When the quota is
low (one-half) the pairwise majority relation is complete but not necessarily tran-
sitive. When the quota is high (more than(n − 1)/n wheren is the number of
candidates in competition), the pairwisequalified-majority relation is acyclic but
not necessarily complete. Of course, whenλ is intermediate, the relation may be
incomplete and contain some cycles.

We show in this article that when the quotaλ is greater than2
3
, then a complete

λ-majority relation is necessarily transitive. Remarkably, this quota is independent
of the number alternatives in competition. This sharply contrasts with the result of

3 Although each member of the group performs this comparison.
4 This example was reported in Saari (1996).
5 Of course some device may be set up to encourage a quick decision. This is actually
done in a stringent way for the pope election (Fanning 1911)

“When the cardinals found themselves face to face with[the situation where the2
3

has not been obtained]on the death
of Clement IV in 1268, they commissioned six cardinals as plenipotentiaries to decide on a candidate. The vacancy of
the Holy See had lasted for two years and nine months. To prevent a recurrence of this evil, the Second Council of Lyons
under Gregory X (1274) decreed that ten days after the pope’s decease, the cardinals should assemble in the palace in
the city in which the pope died, and there hold their electoral meetings, entirely shut out from all outside influences. If
they did not come to an agreement on a candidate in three days, their victuals were to lessened, and after a further delay
of five days, the food supply was to be still further restricted. This is the origin of conclaves.”
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Ferejohn and Grether (1974).

We believe that this result may offer an interesting framework to negotiation pro-
cesses.

After having introduced the necessary definitions and notation (section 2), we give
our main result (section 3) and conclude by discussing of open problems related to
negotiation (section 4).

2 Definitions and notation

We shall always considerX as a finite set ofn alternatives andV a finite set ofv
voters.

A binary relationR overX is a collection of couples(x, y) such that bothx and
y belong toX. When the couple(x, y) belongs to the binary relationR, then we
shall writexRy. A path is a sequence of alternativesx0, . . . , xk ∈ X such that
xjRxj+1 for every j ∈ {0, . . . , k − 1}. The lengthof such a path isk. If there
exists a path encompassing the whole setX and of lengthn − 1, then the relation
is hamiltonian. A cycle is a sequence of alternativesx0, . . . , xk ∈ X describing a
path and such thatxkRx0. A binary relationR is quasi-completeif for every distinct
x, y ∈ X, (¬xRy) =⇒ yRx. It is completeif it is quasi-complete and reflexive. It
is anti-symmetricif for everyx, y ∈ X, we havexRy andyRx if and only if x = y.
It is transitiveif for every x, y, z ∈ X, xRy andyRz impliesxRz. It is acyclic if
it contains no cycle, i.e. if for every distinctx0, x1, . . . , xk such thatxjRxj+1 for
everyj ∈ {0, . . . , k − 1}, we have¬xkRx0. It is connectedif for every x, y ∈ X,
there exists a sequencex = x0, x1, . . . , xk = y ∈ X such thatxjRxj+1 or xj+1Rxj

for everyj ∈ {0, . . . , k − 1}.

We denoteBin(X) the set of binary relations defined overX, Acy(X) the set of
acyclic binary relations,Ord(X) the set of complete, anti-symmetric and transi-
tive binary relations (linear ordering),Tour(X) is the set of complete and anti-
symmetric binary relations (tournaments).

An alternativex ∈ X is amaximal elementof the relationR if there is no alternative
y ∈ X (y 6= x) such thatyRx.

We assume that each individuali ∈ V is endowed with apreferencePi ∈ Ord(X)
and we definea profileπ = (P1, . . . , Pv) as the list of all the individual preferences.

For anyλ ∈ [1
2
, 1[, given a profileπ ∈ Ord(X)V , we define theλ-majority relation

as follows:∀x, y ∈ X : xMλ(π)y ⇐⇒ #{i ∈ V : xPiy} > λ.v where#Y is the
cardinality of the setY .
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We define therange of theλ-majority as the set of binary relations than can be
obtained through theλ-majority rule. Formally,Ran(λ, X) = {R ∈ Bin(X) : ∃V
andπ ∈ Ord(X)V such that for everyx, y ∈ X, xRy ⇐⇒ xMλ(π)y}. Notice
that we don’t restrict the number of voters.

3 A transitive 2
3
-majority relation

McGarvey (1953) has shown that for any finite setX, every tournament could be
obtained from a pairwise (simple) majority voting, i.e.Ran(1

2
, X) = Tour(X)

and allowed the study of tournaments from a voting theoretical point of view.6

Mala (1998) proved that there exists some tournaments that can not be obtained
through pairwiseλ-majority relation, as soon asλ is strictly greater than a1

2
, i.e.

Ran(λ, X) $ Tour(X). This latter result excludes a systematic study of tourna-
ments under the arguments of quota-rules.

Ferejohn and Grether (1974) proved that for any finite setX of n ≤ m elements,
then for everyπ ∈ Acy(X)V and everyλ ∈ [m−1

m
, 1[, we haveMλ(π) ∈ Acy(X).

This means that theλ-majority relation contains no cycle as soon as the quota is
greater than or equal ton−1

n
. This result is the lower bound ofλ that guarantees the

existence of a maximal element in theλ-majority relation, but not its uniqueness.
The next theorem states that if the quotaλ is greater than or equal to2

3
, for any

number of alternatives, if theλ-majority relation is complete, then it is transitive,
that is to say, it contains a unique maximal element.

Theorem 1 For any finite setX of n ≥ 3 alternatives.

i. ∀λ ∈ [1
2
, 2

3
[, Ran(λ, X) ∩ Comp(X) % Ord(X)

ii. ∀λ ∈ [2
3
, 1[, Ran(λ, X) ∩ Comp(X) = Ord(X)

Proof. First, we need to show that for any finite setX and any quotaλ ∈ [1
2
, 1[,

Ord(X) ⊆ Ran(λ, X). In that purpose, consider any binary relationP ∈ Ord(X)
and the unanimous profileπ = (P, . . . , P ) ∈ Ord(X)V . For anyλ ∈ [1

2
, 1[ and

everyx, y ∈ X : #{i ∈ V : xPiy} = v > λv. Theλ-majority relation is identical
to P so thatP ∈ Ran(λ, X) ⊇ Ord(X). Then, becauseOrd(X) ⊂ Comp(X), it
is clear that∀λ ∈ [1

2
, 1[, Ord(X) ⊆ Ran(λ, X) ∩ Comp(X).

To provei., we show that for any setX of n ≥ 3 alternatives and anyλ ∈ [1
2
, 2

3
[

there exists a profileπ such that theλ−majority relation is complete but not transi-
tive.

6 See Laslier (1997) for an extensive exposition on the topic.
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Let X = {x1, . . . , xn} be the set of alternatives and consider a setV = {1, 2, 3} of
three individuals. Letπ = (P1, P2, P3) be the following profile :

Individual Preference

1 x1P1x2P1x3P1x4P1 . . . P1xn

2 x2P2x3P2x1P2x4P2 . . . P2xn

3 x3P3x1P3x2P3x4P3 . . . P3xn

We observe that#{i ∈ V : x1Pix2} = #{i ∈ V : x2Pix3} = #{i ∈ V :
x3Pix1} = 2 and for every other pair, we have#{i ∈ V : xPiy} = 3 or #{i ∈ V :
yPix} = 3. This implies that for anyλ ∈ [1

2
, 2

3
[, we havex1Mλ(π)x2, x2Mλ(π)x3,

x3Mλ(π)x1 and for every other pairxMλ(π)y or yMλ(π)x. The relationMλ(π) ∈
Comp(X)\Ord(X). This provesi.

To proveii. , we consider any non-transitive and completeλ-majority relationT and
suppose thatλ > 2

3
. Hence, there must exist a set of votersV = {1, . . . , v} and a

profileπ = (P1, . . . , Pv) ∈ Ord(X)V that lead toMλ(π) = T for aλ > 2
3
.

Harary and Moser (1966) have shown that such a relationT must contain a3−cycle,
i.e. a cycle involving three alternatives. Without loss of generality, we suppose that
this3-cycle can be writtenx1Tx2Tx3Tx1.

Let us denoteC1 = {i ∈ V : x1Pix2}, C2 = {i ∈ V : x2Pix3} andC3 = {i ∈ V :
x3Pix1}.

By assumption,#C1 > 2
3
v, #C2 > 2

3
v and#C3 > 2

3
v. By basic set theoretical

properties, we find that#C1 + #C2 − #(C1 ∩ C2) = #(C1 ∪ C2) ≤ v, which
implies#(C1 ∩C2) > 1

3
v. By the same arguments, we have#(C1 ∩C3) > 1

3
v and

#(C2 ∩ C3) > 1
3
v.

Finally, v ≥ #((C1∩C2)∪ (C2∩C3)∪ (C1∩C3)) = #(C1∩C2)+#(C1∩C3)+
#(C2 ∩ C3)−#(C1 ∩ C2 ∩ C3). It must be that#(C1 ∩ C2 ∩ C3) > 0.

This latter inequality implies that there exists at least one individual that belongs
simultaneously toC1, C2 et C3, which is impossible since this individual would
exhibit non-transitive preferences. The profileV supposed to have induced the re-
lation T through theλ-majority rule does not exists. We conclude that any intran-
sitivity in the λ-majority relation is impossible whenλ ∈ [2

3
, 1[ as soon as one

assumes it is complete.�

This result is of course in no contradiction with Ferejohn and Grether (1974).
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4 The problems related to negotiation

Let us now consider the problem of a clear-cut decision to be taken by a committee.
We consider a setV of v voters and a setX of n alternatives. Each voter is endowed
with a complete linear ordering overX. The decision rule consists in choosing the
maximal (non dominated) element of aλ-majority relation. If such an element does
not exist or is not unique, then the voters have to negotiate in order to obtain a
unique maximal element. Of course, we consider that the quotaλ is givena priori
and should not be changed during the negotiation.

The most important arising question is to know whether there exists a quota that
guarantees the absence of negotiation. The answer is clearly negative except in the
trivial and particular case where only two alternatives are in competition and an
odd number of voters have to decide under majority rule. When more than three
alternatives are in competition, it can be the case that no Condorcet’s winner exists
under the majority rule. A Condorcet’s winner is an alternative that defeats any
other alternative in pairwiseλ-majority7 . For any number of alternatives, theλ-
majority relation may not be complete which implies that several maximal elements
may coexist.

Negotiation is intrinsically a dynamic process and should then be treated as such.
We believe that game theory may constitute a fruitful approach to this problem.
Many authors, see for instance Ellison (1993), Kandori et al. (1993), Young (1993),
Blume et al. (1993) or Blume (1998), have studied global or local interactions be-
tween the members of a group. The general context is that of a group of agents hav-
ing to play repeatedly a2× 2 symmetric game against a random opponent. At each
period, the strategy of a player is chosen according to its current relative success.
In order to depart from the deterministic evolution, a random “noise” is introduced
so that, on rare occasions, a player may not follow the deterministic rule. Under
various assumptions, they study the way the system converges to a state where the
game is played at some equilibrium.

The question is to know whether is is possible to define a similar setting that may
converge towards a situation in which a clear-cutλ-majority decision can be taken.
One may expect that different settings lead to different profiles of strategies and
hence describe different negotiation processes. An important question, raised in El-
lison (1993), deals with the rate at which the system converges. Does the system
converge more rapidly towards a clear-cut decision when the quota is2

3
or n−1

n
? In

other word, is it true that a complete binary relation obtained through a quota of
two-thirds is easier to obtain through a negotiation process than an acyclic hamil-
tonian binary relation obtained through a quota ofn−1

n
?

7 The original definition of a Condorcet’s winner (Condorcet (1785)) was given for
λ = 1

2 , but we think that it would have been splitting-hairs and misleading to define a
λ-Condorcet’s winner.
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We believe that the problem of rate of convergence is related to the “distance”
between the preference profile (before any negotiation) and the profile of strategies
adopted (after the negotiation process is over) when the clear cut-decision can be
taken. Letπ = (P1, . . . , Pv) be a profile of preferences andDλ ⊂ Ord(X)N be
the set of profiles such that a clear-cut decision can be taken through theλ-majority
relation. For anyR,R′ ∈ Ord(X), let δ(R,R′) = #{(a, b) ∈ X ×X : aRb ⇐⇒
bR′a} be the Kemeny-Young (Kemeny 1959, Young 1988) distance betweenR
andR′. We define the distance8 ∆(π, S) =

∑
i∈V δ(Pi, Si) between the profile

of preferencesπ and the profile of strategies adopted after the negotiation process
S ∈ Dλ.

Several questions arise : does there exist some negotiation process converging
rapidly toward a profile of strategies that is at a minimal distance form the pref-
erence profile? Does the choice obtained from a negotiation process depend on the
quota? Is the criterion of minimal distance a good criterion from an axiomatic point
of view? In the light of these considerations, is there a best quota?
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