PROBLEMS WITH THE LIMIT CONCEPT
ON A CASE STUDY OF A CALCULUS LESSON WITHIN A COMPUTER-BASED LEARNING ENVIRONMENT

Abstract:
Based on a paradigmatic case study of a classroom situation in which two students deal with the limit concept within a computer-aided learning environment, problems of concept development which are based on epistemological obstacles are investigated. The analysis of these problems stresses the importance of a genetic concept development especially in calculus lessons. At the same time it will be advocated for the need and the importance of descriptive working methods in research of advanced mathematical thinking.

1. Calculus lessons and qualitative teaching research
Within the last decade qualitative research methods have become increasingly established even in the field of mathematics education, and are today accepted to a great extent in addition to conventional quantitative methods. Their operational field lies where research interest is directed to an area that cannot be described by directly readable metric data. This is particularly the case if the task is to reconstruct, as detailed as possible, the learner's individual strategies and subjective ideas (compare Mayrink [1985]), or to document, to grasp and to explain processes of individual conceptual development.

For the purpose of teaching and learning in all school stages questions that deal with individual conceptual development are in the center of interest, even and especially for calculus lessons. Nevertheless qualitative methods have hardly penetrated this area, on the whole their representatives have been working thus far on elementary questions of primary school and the intermediate stage2.

In presenting the following case study I would like to plead for an increasing use of prescriptive methods even in calculus lessons. For this purpose I chose a classroom scene in which the students deal with one of the central concepts of calculus. It concerns problems with the limit concept and illustrates central questions of calculus lessons:

• How important is a genetic development of the limit concept, taking historical preliminary stages into account?
• Which role does the clearing of epistemological obstacles - in the sense of Brousseau [1983] and Sierpinska [1992] - play?
• Is it necessary for students independently to think through the factual problems that are linked with the limit concept, or is a clever didactic processing able to relieve the students of this effort?

1 This paper is a short version of vom Hofe 1998b
From a descriptive point of view the results of the following case study will back up to a great extent Sierpinska's [1992] theories about the importance of the clearing of epistemological obstacles for the learning of mathematics.

2. Software and teaching context

The case study is based on the documentation of a teaching project which was realized for several months in a regular calculus beginner's course. In this classroom project half of the time at the students' disposal was used for problem-orientated working phases which were carried out in small groups in a computer-based learning environment. Throughout this situation the students used the interactive computer algebra-system (CAS) called MathView. This system enables an extensively intuitive handling and does not require any long introduction time.

Already at the beginning of this set of teaching units serious deficits in the understanding of limit concept came up in a repeatedly phase. Even though these units had been taught one year ago students had problems in distinguishing between the quotient \(\frac{f(x+h) - f(x)}{h} \) and the derivative \(f'(x) \). Almost completely unknown was even any kind of conceptual interpretation or use meaning of these notions.

Therefore a training phase was inserted in order to illustrate the term \(\frac{f(x+h) - f(x)}{h} \) once again, this time using the example of an exponential function. In order to make transparent the meaning of a variation of the difference \(h \) in algebraic as well as in graphic terms the computer algebra-system was used. For this purpose the following task was posed (see figure 1):

Create a graph of the function: \(y_1 = 2^x \).

Let's take a look at the term \(m = \frac{f(x+h) - f(x)}{h} \) for the function \(f(x) = y_1 = 2^x \) and let \(x = 0 \). Enter the term and choose an initial value for \(h \), e.g. \(h = 2 \).

Now take a look at the straight line that goes through the point \((0,1) \) and which has gradient \(m \).

Create a graph of this straight line in the same graphics window.

3 In the sense of Usiskin 1991
Figure 1: MathView screen graph, h = 2

Helped by the interactive connection, which is realized by CAS MathView, h is linked with the secant - over m and y_2. If one changes the value of h (by overwriting), m will be accordingly calculated again, the secant will then move accordingly around the fixed point (0;1). In addition the following questions were asked:

Enter some numerical values for h and observe the effects thereof.

a) How does the changing of h influence the other terms, i.e. the graph?

b) Which straight line will be created if the value of h is 2? How steep is gradient m then?

c) Function y_1 = 2^x illustrates the expansion of a bacterial colony, with a present surface doubling its size (in cm^2) every day. What does h = 2 in this case mean and what meaning can be ascerted to the of m?

During the working phase all pupils answered these questions in writing. Their interpretation gives evidence for a productive role of the computer. Some pupils may well have come to grasp the connection of the structure of the term \(\frac{f(x + h) - f(x)}{h} \) and the corresponding graphical presentation for the first time. Finally the last question on the worksheet deals with the starting point of the following transcript:

d) Find an approximative solution for the tangent gradient at the point (0;1) as precisely as possible. What does this value mean if one comprehends the function y_1 = 2^x as a growth process as in question c)?

Let's observe - in the following scenes two students, Anka and Julia, tackling this task.

4 Here I would like to refrain from a connected analysis of the mathematical content of the following scenes. Instead, these points will be discussed where they obtain importance according to the transcript material. As for the rest, I would like to refer to standard literature; e.g. Blum & Törner 1983, Knoche & Wippermann 1986, Hischer & Scheid 1995, or Tietze, Klika & Wolpers 1997.
First scene

11 Julia: What does this mean? I have no idea what limit...
12 Anka: Limit means limit point. And if h moves towards zero, that means if h gets smaller...
13 Julia: Like we did it right now, one millionth?
14 Anka: Then we will get the limit, if you type that in like this.
15 Julia: But what actually is the limit?
16 Anka: This is the limit. Points at m
17 Julia: m!?
18 Anka: Yes.
19 Julia: The limit to what?
20 Anka: The limit to the tangent,... actually, from secant to tangent.
21 Julia: What exactly is the limit now?
22 Anka: It will always remain a secant. It is just an approach to the tangent. The limit is a most...
23 Julia: You know, that is, right, we had that before.
24 Okay...

Already in this small passage two different basic attitudes can be noticed which influence the students' thinking:

• Julia, as the questioning person, would like to know what the limit is.
• Anka on the other hand explains in her comments mainly how to get to the limit. She tries to answer Julia's question about the limit by describing the limit process, at the same time her explanations are not always free of contradiction and partly ambivalent.

There are conceptual problems developing in the relationship between limit point and limit process, namely on the mathematical plane:

"If h moves towards zero, that means if h gets smaller... then we will get the limit, if we type that in like this" (13-17);

as well as on the geometrical plane:

"The limit to the tangent, actually, from secant to tangent..." (23-24)

In the students' thoughts two fundamental problem fields of mathematical thinking are reflected: The contrast, i.e. the interplay between

(1) geometric and calculating-algebraic world;

(2) object- and process-character, i.e. between static and dynamic approach.

Behind this object-process-differentiation there is a more serious problem to be seen: The connection between the links of a convergent sequence and the sequence limit, and thus the relationship between intuitive basis of comprehension and formal-mathematical specification.
The factual basis of this strained relationship can be illustrated by the following tabulated comparison:

<table>
<thead>
<tr>
<th></th>
<th>intuitive comprehensive basis</th>
<th>formal-math. specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>lining up of elements, as a rule according to a regularity</td>
<td>function: $N \rightarrow \mathbb{R}$</td>
</tr>
<tr>
<td>sequence convergence</td>
<td>aiming for an objective, condensing more and more</td>
<td>convergence criteria</td>
</tr>
<tr>
<td>sequence limit</td>
<td>the aim of the process, which maybe will never be reached, yet is thought of as an ideal completion; it symbolizes the locality of the thickest condensing</td>
<td>definition of the limit</td>
</tr>
</tbody>
</table>

To the learner of mathematics a difficult intellectual challenge lies in the following facts: As a rule the limit is not part of the sequence, but rather the ideal supplement (the existence of which is guaranteed by the completeness of the real numbers). This new element proves to be “ideal” in two senses: On one hand it satisfies the intuitive requirements mentioned above to an optimum, on the other hand on a formal plane it can be described as a theoretically well determined object.

As to the sequence limit, there are different mathematical activities which are more or less well known to the pupils:

- *Proof of existence.* As common practice in beginners’ courses, in the girls’ previous lesson existential considerations have hardly been made the subject of discussion.

- *Determination of the limit.* Necessary experiences concerning differential calculus as well as integral calculus are present to an usual extent.

- *Approximative determination of the limit.* Corresponding experiences are also present here. They were obtained in connection with the introduction of the derivation and the integral, in arithmetical as well as in geometrical terms.

The process of the approximate determination of limit points - e.g. by calculus of sequence links with a place numeral which is high enough - is based on the optimal adaptation of the limit to the development process of the sequence. This can provide the misconception of the idea to “get to” the limit once and for all in this way. However, a theoretically precise determination is possible only by refraining from the examination of separate sequence links.

In Anka’s argumentation some of these aspects and problems become obvious: She overlooks the development of the sequence (13) and the possibility to determine the limit approximately (16). Furthermore she knows that the limit which has to be calculated in this present case “belongs to the tangent” and thus “in fact” concerns the transition “from secant to tangent” (23-24). At least she seems to know in addition that the approximating process does not “actually” create the tangent, as it will “always remain a secant” (26). It is not clear at this point how far, or if, Anka has understood the difference between the approximative and the precise limit determination. We will have a closer look at these connections later on.
We take a look at another scene. One after the other Anka and Julia assigned the values for h: 1/10, 1/100 and finally 1/1000 (see figure 2). Their conversation now concentrates on the question: what will happen with gradient m, i.e. with the secant, if h becomes smaller and smaller. Will m become “smaller and smaller” as well, so that the corresponding secants will approach a horizontal? Julia expresses her presumption of such a connection, Anka argues against it.

Figure 2: MathView screen graph, h = 1/1000

Second scene

094 Anka: Well, we have still got these two points that
095 move towards each other.
096 Julia: But if we make h into zero, then there won’t be
097 any point any more, will there? You see, there
098 won’t be any difference left...
099 Anka: The gradient, we’re only talking about the...
100 Julia: No, we’re talking about h. But m is the
101 gradient, h is not the gradient.
102 Anka: That’s right, but we make this so small that the
103 distance will become so small, and this cannot
104 She holds a pen in front of the screen to create
105 a horizontal. You see, this will never become
106 zero. The gradient will never become zero, or
107 otherwise it would cut right through there. This
108 always has to be a little bit diagonal next to
109 it.
110 Julia: But why? I really don’t understand it.
111 Anka: Points with the mouse at the secant. This thingy
Already in the first scene different basic attitudes were presented in the interpretation of what "limit converging towards 0" means. They can be found also at the beginning of this scene. Yet the main problem the students are fighting with is situated on a more intense plane: Their thoughts circle around a basic insight for which mathematicians have been struggling throughout history for a long time. Its articulation sounds as follows:

- **Geometrically**: Two points moving towards each other can determine a well determined limit direction, i.e. a corresponding limit straight line.

- **Arithmetically**: A quotient sequence with denominators converging towards zero can converge towards a well determined finite value.

With a pen that Anka holds in front of the screen graph, she illustrates how a straight line with the gradient zero would go through the examined point, and explains: "You see, this can never become zero" (106-108). The thought of two converging points determines her intuition. The "thingy" - meaning the secant - can never lay straight, "because it still has to keep the outer contact with that minipoint over there" (111-116).

What is a minipoint to Anka? There are signs in Anka's argumentation for the assumption that in her idea of the process of h becoming "smaller and smaller" there is a kind of in between world of the infinitely small, namely when h is smaller than any imaginable number, but still bigger than zero. The "minipoint" seems to be an element out of this world of the "infinitely small". Points can normally be marked, yet the minipoint can not be grasped. Nevertheless it has got an important function: It stabilizes the secant in the sense of an outer contact and thus makes the limit position of the secant, that means the tangent, calculable. At the same time the attachment to the minipoint prevents the degeneration of the tangent, that it e.g., in form of a horizontal, "cuts entirely through here" (106-107).

Anka's minipoint-argumentation is not understandable for Julia. Her comprehension requires the idea of a process of two converging points. Julia on the other hand thinks about one point and pursues her thought:

Third scene

136 Julia: But if I make h into zero...
137 Anka: Well, if I make h into zero, that's completely different then.
139 Julia: Well, that's not possible then. You're not allowed to make h into zero.
142 Julia: You're not allowed to make h into zero, because right down over there you can... points at the
quotient on the computer screen ...well, I think it's therefore that I'm not allowed to divide by zero.

What do the two students mean when they say "make h into zero"? Do they want to express that h is supposed to approach zero more and more or that one should give h the value zero? A lot is in favor of the second interpretation: For a long time Julia has been showing a tendency to connect the object "tangent" with the insertion $h = 0$. Up to now Anka has consistently stuck with her process-idea. Now she seems to carry out a change in the dominant explanation model: Up to this point her argumentation has given the impression that she understands the tangent as a limit position of the secant. Later on she possibly assumes that the tangent may have an existence beyond this limit process, namely that h does not move towards zero, but rather that h is zero. This being the case, she believes that something "completely different" (137) may happen, but what?

Julia sees a problem if one "makes h into zero", and refers to the fact that one can't divide by zero (142-146). Anka does not contradict and nods in approval. The more astonishing is the further course of events:

Fourth scene

150 Anka: *Moves cursor to 'declarations'. Now, let's close this window. So, and now let's make h into 0...*
152 *Inserts 0 for h and the secant disappears*
153 Julia: What is happening now?
154 Anka: Well, it doesn't exist any more!
155 Julia: Why?
156 Anka: Because...
157 Julia: You said it would be straight if h were zero!
158 Anka: I did not say that! I didn't even know it myself!
160 That's right, and as this... right, that's not there any more. Now we even haven't got a distance between the two points left. There we still had a minidistance, and so it could go right through it, couldn't it, at these two points. And as h is zero now, there's only x left.
Now the computer is used in order to get closer to the mysteries of the limit - but the experiment proves to be a failure. Anka enters the assignment zero for h and the students eagerly wait for the result. Disappointed they discover that for the insertion $h = 0$ the computer does not create a graph. On the screen the previously shown secant disappears. Anka admits that she did not know herself what would happen.

But soon she manages to overcome her helplessness. She returns to her previous conceptual model and soon understands why the computer cannot produce a secant for $h = 0$: "There we still had a minidistance, and so it could go right through it, couldn't it, at these two points. And as h is now zero, there's only x left." (162-166). Anka saved herself by entering into an intellectual area that provides her with safety: With her process understanding she is able to explain the reaction of the computer.

The minidistance may be - like the minipoint - an obscure element of the in between world of the infinitely small. It is interesting that for Anka the idea of the minidistance nevertheless contains a supporting function: One is not able to directly see or perceive it. Yet its existence is well shown in the secant which can only exist if there is at least a minidistance. If the distance becomes zero, the entire construction will collapse.

3. Summary of examination and conclusion

The fullness of higher problems and phenomena, which are based on epistemological aspects of the mathematical contents, occurring in these short transcript extracts is amazing. They circle around the intuition of the infinity and their mathematical specification. Main problem fields occur in the contrast respectively in the relationships between

- graphic and arithmetical representation of mathematical content,
- process and object,
- static and dynamic interpretation,
- intuitive idea and mathematical specification.

In normal lessons there is often not enough scope for the active attempt to come to terms with these kind of topics. More often the attitude is present that a reflecting attempt at dealing with problems of this kind does not play any role in basic course students' thoughts. On the other hand the dialog of this case study gives a different impression. Some students' thoughts remind of early comments of famous mathematicians during the original phase of infinitesimal calculus; e.g. the characterization of the differential quotient by Leibniz:

"Δx does not approach zero. It is more likely the case that the 'final value' of Δx is not 0, but an 'infinite small value', a 'differential', called dx, and thus Δy has a 'final' infinite small value dy. The quotient of this infinite small differential is finally a common number again, $f'(x) = dy / dx$" (Courant & Robbins [1973], p. 330)
The minipoint and the minidistance in Anka's thinking could well correspond to these "final" infinite small values. In this example it becomes very clear that the confrontation with the infinitesimal gives new experiences concerning the dealing with mathematics. This is connected with changes concerning the intuitive level and requires the generation of new basic ideas (compare vom Hofe [1998a]).

Furthermore it is impressive to see the two students act in the critical field of these problems with such intensity and energy. The dialog gives an example of a learner's attitude as it is described as characteristic for productive learning by Sierpinska [1991]: This attitude is backed by joy of discovery, as well as characterized by intellectual and emotional tension. One has to take into consideration that the girls had already gone through a long school day: seven lessons in the morning, a short break of half an hour, and then on top of that a double lesson of mathematics in the computer room. The presented teaching passage takes place shortly before three o'clock, and therefore near the end of their school day.

The computer-aided learning environment plays a fundamental role: it plays a major part in the making of these scenes, in fact this new attempt to arrive at a conceptual clarification of the limit concept is much provided by the special learning environment. The computer may not be able to solve the substantial problems; yet it is by this inability that it helps to discover their true nature. The computer is of central significance in the development of communication: it creates a common field of experience in which students can discover a new contact with mathematics.

I would like to conclude by presenting three short theses; they concern the areas of (1) mathematical concept development, (2) the use of computers in mathematics lessons and (3) case studies as a research method and thus reflect three different levels of this paper:

(1) Genetic concept development and epistemological obstacles. Learning in the sense of the genetic principle requires provocation, processing and clearing of epistemological obstacles. It still remains an important responsibility of mathematics education to develop and to test learning and exercise forms for this purpose.

(2) Interactive analysis-software. Interactive analysis-software can provide even the inner mathematical concept development - apart from various application topics. Yet the possibilities of visualization linked with the software are not able to replace the power of productive ideas.

(3) Interpretative case studies and analysis lessons. Interpretative case studies are a worthwhile means of analyzing and understanding even for calculus lessons. They may contribute to the improving of our knowledge of students' thought strategies. With the liveliness and authenticity of descriptive studies we are able to complete, extend and enrich the didactics of calculus, which is usually characterized by prescriptive efforts.

References:
WITTMANN, E. Ch. (1991): Mathematikunterricht zwischen Skylla und Charybdies. In: Mitteilungen der mathematischen Gesellschaft in Hamburg; Band XII, Heft 3; Festschrift zum 300-jährigen Bestehen der Gesellschaft; Dritter Teil; p. 663 - 679

Dr. Rudolf vom Hofe
University Augsburg
Fakultät - Didaktik der Mathematik
Universitätsstr. 10
D-86135 Augsburg,