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Abstract 

In France, for at least 20 years, the Ministry of Education has been actively supporting the integration of 
computer technologies into secondary mathematics teaching. Nevertheless, integration remains up to now 
a marginal phenomenon. Such resistance from the educational system, which is not a French particularity, 
is a matter of concern for didactic research and obliges us to question the research paradigms we have 
been using when investigating in that area. In this text, I would like to introduce and discuss some work 
developed by French didactic research in order to deal with these challenging issues. 
 

Firstly, I will briefly review the current state of integration of computer technologies in sec-
ondary mathematics teaching in France, and articulate some hypotheses about possible 
sources for the observed resistance.  I will then introduce the theoretical framework we have 
developed in order to approach the institutional and instrumental issues that seem to play a 
crucial role in integration, according to these hypotheses. Finally, I will focus on a national 
research project involving the TI92 calculator carried out within this theoretical perspective 
and present its main outcomes as regards instrumentation processes. 

I. The current state of integration of computer technologies 

The current state of integration is characterised by an evident discrepancy between official 
discourse and reality, and by a very poor return on the many institutional and political incen-
tives. Let us mention some of these. Since 1980, the rational use of calculators is an explicit 
aim of the secondary mathematics curriculum and, some years ago, graphic calculators be-
came compulsory at high school level. Every type of calculator, including symbolic calcula-
tors, is allowed in national and regional secondary mathematics examinations. As regards 
computers, the use of spreadsheets, dynamic geometrical software and, to a lesser extent, 
computer algebraic systems (CAS in the following), is explicitly integrated into the syllabus. 
A system of specific licences was developed, many years ago, in order to allow schools to buy 
selected software at a very reduced rate. The Ministry of Education supports innovative and 
research projects and finances the production of software which is then freely distributed to 
schools. It also supports the diffusion of innovative designs and research results through web 
sites, books, regional centres for computer resources, teacher training sessions during working 
time, summer schools… 

However, in spite of these actions, the integration of computer technologies remains marginal 
at secondary level.  At a time when great emphasis is put on new technologies such as Inter-
net, calculators that have been introduced into the educational system more than 20 years ago 
are not yet fully integrated. Some recent surveys show that no more than 20% of secondary 
mathematics teachers fully integrate calculators into their teaching practices, thus helping 
students to develop the competencies necessary for their effective use. Calculators are allowed 
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but they remain students’ private tools. Despite official statements and the content of the 
mathematics syllabus, values and norms of mathematics learning and teaching are still de-
fined with respect to the mathematical needs and practices associated with paper and pencil 
environments. 

II. How to explain such a phenomenon ? 

Reasons for such a state are certainly diverse and linked by complex systems of relations. I 
will focus on four of these which, in my opinion, require more attention from didactic re-
search.  

1. The poor educational legitimacy of computer technologies as opposed to their high social 
and scientific legitimacy 

The resistance of the educational system to computer technologies cannot be analysed without 
addressing more general issues, such as the legitimacy of teaching means. Computer tech-
nologies obviously have a strong scientific and social legitimacy, but this is not sufficient to 
ensure their educational legitimacy. To gain such an educational legitimacy, computer tech-
nologies are mainly asked to prove that they can 

! help teachers to face the recurrent difficulties met by mathematics teaching and learning 
better 

! make teaching and learning easier and better 

! help to disqualify teaching strategies which are too much orientated towards drill and 
practice and promote “conceptual learning”.  

This is not so easy to prove if the values and norms of mathematics teaching remain essen-
tially shaped by the traditional values and norms of mathematical activity. This tends to gen-
erate some kind of vicious circle. Faced with legitimacy difficulties, innovators and promot-
ers of computer technologies tend to minimise the cost of integration and overestimate its 
potential benefits. This does not help to address the complex issues of integration properly 
and, finally, acts against it. As was evidenced by a recent meta-study on the literature involv-
ing more than 600 publications from 1995 to 1998 in that area [1], research does not totally 
escape this general tendency. 

2. The underestimation of issues linked to the computerisation of mathematical knowledge  

Computerisation of mathematical knowledge in calculators and computer software compli-
cates the already complex processes which govern the didactic transposition of mathematical 
knowledge initially described by Y. Chevallard [2]. When working with calculators or com-
puters, teachers and students are faced with two slightly different transpositive worlds : the 
ordinary transpositive world associated with paper and pencil environments and the computer 
one. Research is more and more sensitive to this fact and to its cognitive and didactic effects 
[3]. These effects, as shown by research carried out around dynamic geometrical software, 
spreadsheets and CAS can be highly productive if the characteristics of the computer transpo-
sition of mathematical knowledge are seriously analysed and taken into account in engineer-
ing designs (see for instance [4] and [5]). Nevertheless, in the educational system, discrepan-
cies with the standard mathematical world resulting from computer transpositive processes 
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are often considered as parasitic phenomena which one has to minimise. Such an attitude, 
which certainly meets legitimacy issues, generates a lot of difficulties in the long term.  

3. The dominant opposition between the technical and conceptual dimensions of mathemati-
cal activity 

This opposition is not a recent one and can be seen as a consequence of a naïve vision of con-
structivism. However computer technologies tend to reinforce it. By freeing students from a 
lot of the technical burden, they a priori leave time for more reflective and conceptual work, 
and thus are generally considered as an ideal means for renewing teaching practices perceived 
as too narrow and technical. Such a fact certainly increases the educational legitimacy of 
computer technologies but it does not help us to consider and understand the dialectic interac-
tion between the fundamental conceptual and technical facets of mathematical activity and the 
subtle ways by which technology modifies this dialectic by changing the means and economy 
of the mathematical work.  

4. The underestimation of the complexity of instrumentation processes 

Mathematics teaching and learning processes have been used to develop environments with 
reduced technological complexity. This does not make it easy to integrate the fact that by in-
troducing complex technological tools, one introduces at the same time new mathematical and 
technological needs, which have to be fulfilled even if they go beyond ordinary mathematical 
needs. Once more, we meet legitimacy issues here: if mathematics legitimacy still remains 
attached to what is done and produced with standard tools, how can the price which needs to 
be paid in order to transform complex objects into efficient mathematical instruments be justi-
fied?  

Within a few pages, it is not possible to elaborate more on these different points, but I hope to 
have made clear that the integration of computer technologies into mathematics education is 
far from being easy to achieve. Various characteristics of the mathematical culture and vari-
ous constraints act as obstacles to integration and the strategies spontaneously developed by 
the educational system are not necessarily the most adequate. A better understanding of the 
way these characteristics and constraints shape teaching and learning processes in technologi-
cal environments and the way they mutually intertwine, is today more than ever a necessity 
for research.  

III. A theoretical approach based on anthropology and ergonomy 

In order to approach integration issues as researchers, we need theoretical frameworks that 
allow us to approach the institutional and cultural dimensions of learning and teaching proc-
esses. At the same time we recognise the fact that teaching and learning mathematics in com-
puter environments introduces a strong instrumental dimension to the corresponding proc-
esses. This is the reason why French researchers working in that area often rely both on the 
anthropological approach developed by Chevallard [6] and on approaches coming from cog-
nitive ergonomy [7], [8]1. The anthropological approach offers us a perspective where 

                                                 
1 There is no doubt that these theoretical approaches were not the only ones offering support for such research 

perspectives. Our choices have been influenced by the didactic culture we are living in, the theoretical frame-
works established within this culture, and the connections French didactic research has developed with cogni-
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mathematical activity is conceived as human work strongly shaped by the cultural characteris-
tics, constraints and norms of the institutions where it develops. Mathematical objects are thus 
conceived not as absolute entities but as cultural objects emerging from systems of practices. 
These practices or praxeologies, as they are called by Chevallard, are described in terms of: 

• tasks in which the objects are embedded,  
• techniques used to solve these tasks,  
• technology, this term labelling here a discourse which explains and justifies the tech-

niques, according to its etymology, and finally 
• theory seen as a discourse justifying the technological discourse.  

This approach leads to a more balanced vision between the conceptual and technical dimen-
sions of mathematical activity, and to a strong sensitivity towards its semiotic and instrumen-
tal tools [9]. It is important to stress that the word technique has to be understood here in a 
very broad sense. A technique is a way of solving a task and techniques involved in the solv-
ing of mathematical tasks, except for routine ones, are a complex mixture of reasoning parts 
and routinised sub-techniques.  

Within this perspective, the understanding of teaching and learning processes, and their mu-
tual relationships, requires the understanding of the associated mathematical praxeologies in 
their institutional and personal dimensions. In addition, reflecting on integration issues re-
quires the analysis of the changes that computer technologies introduce or could introduce in 
these praxeologies. There is no doubt that computer technologies deeply modify the technical 
and technological level of praxeologies and, through these, the traditional balance which ex-
isted between conceptual and technical work.   

Cognitive ergonomy, which also relies on anthropological perspectives, offers us complemen-
tary tools for approaching instrumentation issues. Indeed, contrasting with researchers in the 
didactic field, researchers in cognitive ergonomy are used to analysing learning processes in 
technologically complex environments, namely the workplace. Within this approach, artefacts 
(technical objects) are carefully distinguished from the instruments they can become through 
instrumental genesis. An instrument is thus seen as a mixed entity, constituted on the one 
hand of an artefact and, on the other hand, of the schemes that make it an instrument for a 
specific person. These schemes result from personal constructions but also from the appro-
priation of socially pre-existing schemes. Instrumental genesis works in two directions. In the 
first direction, instrumental genesis is directed towards the artefact, loading it progressively 
with potentialities, and eventually transforming it for specific uses; this is called by Verillon 
and Rabardel the instrumentalisation of the artefact. In the second direction, instrumental 
genesis is directed towards the subject, and leads to the development or appropriation of 
schemes of instrumented action which progressively constitute into techniques which allow us 
to solve given tasks efficiently. This is what is properly called instrumentation. In order to 
understand and eventually pilot this instrumental genesis, it is necessary to identify the con-
straints induced by the instrument and, especially for the type of instrument with which we 
are concerned here, two kinds of constraints: command constraints and organisational con-

                                                                                                                                                         
tive ergonomy for many years through joint research projects founded by the CNRS (National Centre for Sci-
entific Research). 
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straints2. These result from internal and interface constraints. It is also necessary, of course, 
to identify the new potentials offered by instrumented work. Research in ergonomy attests to 
the complexity of instrumental genesis when it deals with technologically complex environ-
ments as is the case with computer technologies.  

I cannot expand more on this theoretical framework in this text but the reader can find exten-
sive descriptions of it in the course on instrumentation given at the 10th Summer School in 
the Didactics of Mathematics in 1999 by J.B. Lagrange, L. Trouche and P. Rabardel, which is 
published in the proceedings of this Summer School [10].  

IV. The national TI92 research project 

This two-year project started in 1996.  It aimed to: 

1. Understand the potential of symbolic and geometric calculators such as the TI92 for high 
school mathematics education. 

2. Reflect on viability conditions for an integration of such calculators at high school level 
through the conception and experimentation of didactic engineering products. 

Four research teams were involved: Grenoble, Lyon, Montpellier and Paris-Rennes each deal-
ing with specific aims and also with different levels of schooling. Grenoble worked with 
grade 10 students, mainly on geometry;  Lyon with grade 11 and 12 scientific students, 
mainly on engineering designs organised around the solving of complex open problems (see 
for instance [11] for the philosophy of such engineering designs); Montpellier worked with 
grade 10 and 12 students, mainly on algebra, calculus and the ways the calculators could help 
to connect the different semiotic registers and frames at play in mathematical work; Paris-
Rennes, finally, worked with grade 11 scientific students, mainly on instrumentation issues 
and calculus. In the following, I will focus on this last project as I was personally involved in 
it [12]. More information about the others can be found in the proceedings of the European 
conference we organised in 1998 [13].   

The specific aims of our research project were the following: 
- Understanding instrumentation processes in algebra and calculus and their relationships 

with mathematical teaching practices. 
- Analysing the mathematical needs of an effective instrumentation of the TI92 in that area, 

and how these needs could be fulfilled. 
- Investigating potential discrepancies and conflicts with institutional standards and norms, 

and how these were managed by teachers. 
- Developing, and experimenting with, a first course in calculus fully integrating the TI92.  

Two classes were involved with each student being given a TI92 for the whole academic year. 

The research methodology was a qualitative one, based on the triangulation of multiple 
sources of data : students’ attitudinal questionnaires (one each term), regular classroom ob-
servations, a selection of students’ written productions including specific assessments with the 
TI92, and following about 12 students, selected according to their sex, mathematical and 

                                                 
2 Command constraints are those generated by the commands available, their range of efficiency…, organisa-

tional constraints are linked to the fact that working with a specific instrument influences the way we plan and 
organise our mathematical work, taking into account its specific ergonomy and ways of functioning. 
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technological profiles, through regular interviews and specific observation in classroom ses-
sions. 

V. Some results about instrumentation processes 

Research clearly showed that the instrumentation of the TI92 is a very complex process, even 
if some first level of instrumentation seems easily accessible. It also showed that instrumenta-
tion requires specific mathematical knowledge, especially in order to: 

• master the complex game between the exact and approximate modes offered by the 
TI92,  

• efficiently deal with the diversity of algebraic forms provided by the calculator and re-
late these with the standard institutional forms,  

• master semantic and formal equivalence between such expressions, 
• correctly interpret the graphical productions of the calculator and the different percep-

tive phenomena induced by discretisation processes,  
• efficiently manage the interplay between applications and commands when solving 

mathematical tasks. 
It also becomes clear that the mathematical knowledge needed to instrument the calculator 
goes beyond what is considered as being taught by teachers and learnt by students at secon-
dary level, according to the norms and values of usual mathematics teaching. 

The analysis of collected data also confirmed our initial hypothesis that, due to legitimacy and 
cultural constraints, an efficient institutional treatment of these mathematical needs as well as 
of instrumented techniques is not easy to achieve, even for expert teachers. Moreover, it re-
quires substantial changes in the content and management of the tasks given to students. Fi-
nally, research showed that instrumental genesis depends on students’ profiles and that 
mathematical and technological competencies strongly intertwine in it. 

These are general results. I will use a specific example in order to illustrate them, namely  
“variation tasks”, which are prototypical of the first contact with calculus in France and have 
been extensively analysed by B. Defouad in the framework of a PhD related to this research 
project [14]. This analysis took place through the regular observation of classroom sessions 
but also through regular interviews with the selected students. During these interviews, the 
students were given a variation problem involving a function that was not yet familiar to 
them. They were asked to formulate conjectures about the variations of the function, and then 
to try to prove these. They could use their calculator freely and this calculator was connected 
to a computer thus allowing the interviewer to have access to their interaction with the calcu-
lator without disturbing them. The mathematical work was organised in two phases: a first 
phase of autonomous work, and a second phase where the interviewer tried to figure out what 
was accessible to the student through appropriate discussions. The specific characteristics of 
this situation, i.e. a familiar task, but dealing with non-familiar objects, which is solved indi-
vidually and outside the classroom, thus having less pressure from the didactic contract, al-
lowed us to understand the complexity of instrumental genesis better and observe phenomena 
which tended to remain nearly invisible in the classroom observations. 

For this kind of task, we observed a global evolution at three levels: 
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1. The pre-calculus level where numerical and graphical approaches to variation, initially 
introduced at grade 10 without calculus resources, are still predominant since the symbolic 
application is poorly understood. 

2. The intermediate level where symbolic manipulations begin to enter the mathematical 
scene and be connected with the dominant numerical and graphical approaches. 

3. The calculus level, where symbolic manipulations become predominant tools for proof 
with the numerical and graphical approaches now being engaged essentially in heuristic 
and control phases. 

This global evolution generally took a very long time to stabilise and, even at the end of the 
first experimental year, most students could still be easily destabilised by rather small pertur-
bations. 

Let us give an example namely the case of Frederic, a student with a standard mathematics 
level and a positive relationship to technology. At the first interview, about two months after 
the introduction of the derivative, he is asked to graph the function f(x)=x(x+7)+9/x, stop 
when satisfied, make conjectures about variation and try to prove these. It is the first time that 
Frederic has met a function with a critical point. He firstly defines the function in the sym-
bolic application (called HOME on this calculator), then enters it in the Y= application and 
asks for the graph in the standard window: [-10,10]x[-10,10]. This strategy leads to a very 
partial picture (see below). Of course, the function was chosen because it produces such a 
phenomenon.  

His interpretation is that the graph is included in the half plane corresponding to negative x. 
Without checking this interpretation by looking at the algebraic expression, he decides to re-
duce the window to negative x and then tries to adjust the vertical interval in order to make at 
least one extremum point visible. This is done by a pure trial and error strategy, guided by 
some idea of reasonable form, without any connection with the algebraic expression of the 
function. The graph obtained in the standard window, the graph he finds adequate, and the 
two graphs he could obtain from the first one by simply using the command zoomout or the 
command zoomfit are shown in figure 1.  
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Figure 1 

Frederic then jumps to the symbolic application, asks for the derivative and for its factorisa-
tion but is apparently unable to use it. He is visibly puzzled by the complexity of the expres-
sion he obtains and does not understand that the factorisation gives him the sign of the deriva-
tive. Hence he quickly comes back to the graph application, graphs the derivative and uses 
both the information given by the two graphs, and the table application, in order to conclude 
about variation. He then checks his conjecture by using the math-menu of the graph applica-
tion for finding the extremum and, by zooming on the apparently flat part of the graph, this  
looks satisfactory (see figure 2). 

 

  
Figure 2 

At the second interview, two months later, there is an evident evolution but Frederic is still in 
the intermediate phase and does not easily make sense of the graphical phenomena associated 
with vertical asymptotes. At the actual assessment, in June, he is clearly in the calculus phase 
and has developed specific and efficient instrumented schemes for framing and variation 
analysis, by connecting the symbolic and graphical applications of the calculator. However, 
soon after, at the third interview, he is faced with a new type of function which mixes square 
roots and trigonometric functions hence generating new phenomena linked to discretisation 
processes. This perturbation is a bit too much for him. He spends a lot of time trying to pro-
duce a graph that exactly touches the x-axis (see figure 3), doubts about the periodicity of the 
function, and when he gets the formal expression of the derivative, he is completely stuck. He 
asks for particular values of this derivative but needs help in order to prove the conjecture he 
has made about its sign from the graph. 
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Figure 3 

The detailed observation of students’ instrumented work in the non-familiar situations al-
lowed by these interviews helped us to identify some specific phenomena arising in the in-
strumental genesis. 

The first one was the succession between what B. Defouad called bursting and condensation 
phases in the instrumental genesis. Bursting phases seemed to result from the great number of 
possible actions offered by the TI92 at a very low cost, and from the difficulties students had 
in fixing a strategy when they were not mathematically able to structure their choices. This 
led to what we called zapping (quick change between commands and applications similar to 
the behaviour they often have with TV channels). Trying to make sense of this zapping 
behaviour, we became more sensitive to the institutional life of instrumented techniques in the 
classroom, and to the characteristics of this institutional life which could contribute to rein-
force zapping. By coming back to the data, we thus noticed that during the first experimental 
year, instrumented techniques had not been managed by teachers as paper / pencil techniques 
were. Technological and theoretical discourse did not really integrate them. They mostly es-
caped the routinisation and institutionalisation processes attached to official paper / pencil 
techniques. Selection within their diversity and technical training in their use was left to the 
individual responsibility of students. The first analysis carried out made teachers sensitive to 
these differences. The second year, they tried to correct the observed discrepancies and help 
the teachers involved in the experiment to give a more adequate status to the instrumented 
techniques. This resulted in an obvious gain in the development of instrumentation. 

The second point I would like to make deals with the changes we observed in the relation-
ships to proof. In this environment, students, if the pressure of the didactic contract is not too 
strong (as for instance during the interviews), tend firstly to search for coherence between the 
information provided by the different applications at the expense of more decisive proofs. 
Frederic’s behaviour in the first interview is symptomatic of such a tendency. Obviously, 
there is a change in the economy of validation processes. Such a change, certainly, has posi-
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tive effects: students, by learning to connect data coming from different frameworks and ex-
pressed in different semiotic registers, develop essential forms of cognitive flexibility. Never-
theless, this tendency has to be controlled by teachers as, if not, it can seriously affect stu-
dents’ relationships to mathematical rationality.  

In such a short paper I cannot enter into the details of the engineering we developed and ex-
perimented with during the three years for a first calculus course, fully integrating the TI92. 
We tried to avoid the formal trap evidenced by several researchers i.e. using the calculator as 
a source of phenomena (numeric, algebraic and graphic) and mathematics knowledge as a 
means for understanding, foreseeing, reproducing and controlling such phenomena [12], [15]. 
The results we obtained showed some nice achievements. At the end of the second experi-
mental year, tests showed that about 75% of students had reached the main aims we had set in 
terms of mathematical and instrumental achievements.  

VI. Conclusion 

The results obtained through this national research project are internally coherent and also 
coherent with those obtained by different researchers (see for instance [16], [17], [18], [19]). 
They clearly prove the complexity of instrumental genesis and the necessity to take it into 
consideration in teaching processes. They show not only the positive outcomes of such an 
integration if adequately managed but also illustrate the fact that such an efficient manage-
ment requires specific didactical knowledge on the part of the teachers and may necessitate 
some substantial changes. Coming back to our initial concerns about the poor state of integra-
tion of computer technologies into secondary mathematics teaching, we are once more faced 
with the recurrent issue of relationships between research and practice. How can we make our 
results useful outside the community of educational researchers and experimental settings? 
How can we induce the necessary questioning of standard norms and values of mathematics 
teaching? How can we make engineering products i.e. resources that mathematics teachers 
would be able to adapt efficiently to their teaching style and to the specific constraints they 
meet, without losing their essence? We are well aware of the difficulties of the task and of the 
poor efficiency of the training strategies developed up to now. Developing and evaluating pre-
service and in-service teacher training designs, taking into account the present culture of the 
educational system and the economy of changes, is certainly now the key issue we have to 
face. 
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