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In the last ten years of international discussions about mathematics education, making reflection 
and metacognition a central component of mathematics teaching has been increasingly 
advocated. When analysing the components of metacognition, one usually starts out from 
situations in which a mathematical problem has to be solved. In this paper we will analyse 
components of metacognition that are employed during understanding of mathematical 
concepts and procedures. We will develop a theoretical model and apply it to the analysis of 
four teaching scenes. These scenes all have in common that, within a mutually shared discursive 
lesson culture, pupils discuss the interplay of external and internal mental representations of the 
things being said and those being meant. 

In the last ten years of international debate about mathematics education, it has 
increasingly been proposed to make reflection and metacognition a central component of 
mathematics teaching. An overview of early approaches to research in mathematics education 
concerning metacognition can be found in Schoenfeld (1992). In the field of educational 
psychology, Boekaerts emphasised (1996, 1999) which role metacognition plays regarding 
self-regulated learning. Whereas there are various examinations of the benefit of 
metacognition in other fields (comments in Boekaerts, 1996), there are only few studies 
regarding successful approaches when considering metacognition in mathematics teaching 
(see De Corte, 1995; De Corte et al., 2000). Occasional reports about the effectiveness of a 
use of metacognition are available rather than having concepts at one’s disposal about how to 
use metacognition generally in mathematics teaching.  

The cognitive science approach of two school experiments in classes 7 to 10 at grammar 
schools in the years 1987 to 1995 (see Cohors-Fresenborg, 2001; Cohors-Fresenborg et al., 
2002), which were scientifically guided by us, led, right from the beginning, to changes in the 
teaching-learning processes. Here the promotion of metacognitive activities plays an 
important role (Cohors-Fresenborg & Kaune, 1993; Kaune, 1999). A different teaching 
culture is therefore necessary (Kaune, 2001a), which uses a different curriculum with different 
kinds of books (Cohors-Fresenborg, 2001) and problems (Kaune, 2001b; Sjuts, 2001). The 
current project “Analysis of teaching situations for the training of reflection and 
metacognition in mathematics teaching in forms 7 to 10 at grammar schools”1 deals with the 
development of a typical teaching scenario, the central idea of which is the solving of 
problems which are in a special way suitable for the promotion of reflective and 
metacognitive activities. Its objective is to analyse more exactly metacognitive activities by 
means of video-documented teaching examples and to reveal, in detail, the mechanisms which 
illustrate their effectiveness. 

Schoenfeld’s (1992) and De Corte’s et al. (2000) analyses of the components of 
metacognition are based on situations in which a mathematical problem is to be solved. 
Reflection refers to the choice of suitable tools. It can, however, also refer to the choice of a 
suitable order of use of the tools when a certain set of tools is available. Therefore an analysis, 
for example of the latest state of what has been achieved, is necessary. A comparison with the 

                                                 
1 The project is supported by the Deutsche Forschungsgemeinschaft under reference Co96/5-1. 
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goals set needs to be made and the administration of this comparison is called monitoring or 
controlling. 

Our analysis of components of metacognition is restricted to the aspect of describing 
thinking processes, which occur when understanding mathematical concepts. All the 
following dialogues, involving pupils from mathematics lessons at grammar school chosen by 
us for analysis, have in common the fact that the discussion centres on whether a given 
representation refers to mentioned or supposed ideas. The objective of metacognition is to 
judge the adequacy of the production of representations from ideas or to carry out the steps 
backwards from representation to the presumed ideas of classmates.  

The thought that the controlling of the choice of tools and the strategic meaningfulness of 
the combination of tools is the subject matter of metacognition goes along with the aspects of 
metacognition found in the literature. In contrast to the examples from the field of problem 
solving, the tools here are “precision” and “analysis of the interplay of different (colloquial or 
formal) representations of concepts”. 

Modelling with αβγ−automata processes of understanding 

Up to now, there exist great difficulties in decomposing metacognition. In this paper we 
want to take single components of how persons imagine other people’s ideas. As a metaphor 
(according to Lakoff, 1980), we choose the theory of αβγ−automata, through which Rödding 
(1977) modelled mechanisms of social behaviour. An individual modelled by an 
αβγ−automaton receives, with the help of the function α, a piece of information i from its 
environment in state s, in which the person’s knowledge has been coded. The α-transition 
produces an idea i.e. an inner representation while the β-transition describes inner mental 
processes in the individual. By means of a γ-transition the individual carries out an action, e.g. 
passing on a piece of information to the outside or producing a (written or oral) description – 
in essence presenting an outward representation of their idea. We are now going to look at a 
network of two αβγ-automata. 
 

 
An external representation i is given which serves as an input for person 1 as well as for 

person 2. Person 1 in state s1 forms an idea of information i with the help of α1, which leads to 
a new state, and processes it with β1. With the help of γ1, the person passes a representation of 
β1(α1(s1, i)) on to the outside. Person 2 perceives this representation in state s2 and forms an 
idea of it by means of α2. Moreover person 2 has – like person 1 – realized the external 
representation i and has formed an idea α2(s2′, i) of it with different knowledge s2′. He/she 
compares it with  α2(s2, γ1(β1(α1(s1, i)))). Let us presume that these two do not fit together and 
that person 2 assumes that the reasons for that do not lie in his/her own thinking processes α2. 
Person 2 can now suppose that person 1 has made a mistake in the representation [mistake 
regarding γ1] or a mistake in his/her logic when processing α1(s1, i) by β1 or that he/she has 
formed a misinterpretation of i [mistake regarding α1(s1, i)]. The thinking about which of the 
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cases mentioned above is plausible belongs to the field of metacognition.  
The process mentioned above describing the analysis of ideas and their representations 

will be illustrated with a hypothetical example. As an input we choose a subject matter which 
– speaking in terms of set theory – deals with the situation where two sets are to be joined 
together. Person 1 gives the representation A∩B. Person 2 can, on one hand, suppose that a 
representation or writing error [γ1] has occurred or, on the other hand, that person 1 has got a 
false idea [a combination of β1 and α1] of how the word “together” has to be expressed. 
Person 2 supposes in both cases that his/her own mental constructions [α2(s2′, i) and 
α2(s2, γ1(β1(α1(s1, i))))] have worked correctly. By means of a question from person 2 
addressed to person 1, person 2 can exclude the possibility that a representation mistake has 
been made. Person 2 presumes by means of his/her own knowledge that person 1 has become 
a victim of the misconception that the mutual contemplation of the sets A and B has to be 
expressed by the logical composition term “and” (instead of “or”). 

Analysis of Metacognition in Teaching Situations 

We now want to show the explanation value of this model in order to understand teaching 
situations.  We do this with the help of several examples taken from mathematics teaching to 
classes that have been taught according to the Osnabrück Curriculum. In the first example, a 
pupil reveals one of his classmates’ misconceptions. In the second example some pupils 
anticipate possible misconceptions of their classmates, which could have been caused by 
certain representations. The third example shows the difference between things being said and 
actually meant. In comparison to the previous examples, the fourth example furthermore 
shows that cognition about metamathematical questions is interwoven with metacognition.  

Example 1: 

Within a teaching sequence, the reflection of parabolas was to be expressed by the 
manipulation of the terms describing them as functions with several variables. A grade 9 class 
had to deal with the following problem:  

The graph of a function defined according to the scheme p(a, b, c, x) = a(x-b)2 + c with 
a ≠ 0 is a parabola. Such a parabola is reflected in its origin. State the corresponding scheme 
for the reflected parabola. 

The pupil, Judith, makes comments on her classmate’s solution 
p(a, b, c, x) = - a(x + b)² - c    written on the board. 
Judith: Well, I agree. Because when it is reflected in its origin, the opening has to be upside down and he 

has achieved this with the -a. It has been reflected at the axis of argument, and then there has to be 
+b, as the b has to be in the minus area and then there has to be  -c as well,   -c ... ?  

 Yes, sure. Yes, it is then reflected at the axis of function values and this has to be the case in the 
minus area, too, so there has to be a minus-sign. 

T.: Chris! 
Chris: Yes, Judith’s solution is actually almost right, apart from her saying that it has to be opened upside 

down. I would prefer to say “the other way round”. 
T.: Can you explain why there is a difference if you say “opened upside down” or “the other way 

round”? 
Chris: Because a is not necessarily a positive figure; the variable a can also be a negative one. I think 

Judith has imagined that a is only a positive figure and if you put a minus sign in front of it, it is 
negative. 

 
We analyse the dialogue taking three aspects into consideration. In a first analysis we 

leave out lines 3 to 5. We take Judith as person 1, Chris as person 2 and the part term “-a” 
from the pupil’s solution on the board as information i. 
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Chris picks up what Judith said in line 1: “The opening has to be upside down”. He 
supposes that his mental representation [α2] works without problems. He furthermore 
supposes that Judith has correctly expressed her idea of the problem’s solutions so that no 
mistake needs to be looked for in this representation process [γ1]. This leaves Chris with the 
idea that, in an abstract way, there has to be a subject matter (i) from which Judith has formed 
an idea [α1(s1, i)] and from which, on the other hand, Chris has got his own, differing idea 
[α2(s2′, i)]. Chris’s statement “I think Judith has imagined that a is only a positive figure and 
if you put a minus sign in front of it, it is negative” is aimed at the fact that the idea which 
Judith has formed of the subject matter [α1(s1, i)] is a misconception. Starting from this 
misconception, Judith chooses [β1] a matching prototype of a parabola in the first quadrant 
with its opening at the top. 

 
In the second analysis we concentrate on lines 2 to 5. Judith is person 1, the analyst is 

person 2. Judith forms an idea [α1] of the “reflection in the origin” [i] demanded by the 
problem and reduces [β1] it to a concatenation of reflections in two axes. The analyst also 
forms an idea [α2(s2′, i)] together with a suitable decomposition  [β2(α2(s2′, i))], analyses the 
discrepancy first of all supposing that the mental processes [β2(α2(s2′, i)) and 
α2(s2, γ1(β1(α1(s1, i))))] have worked properly. He furthermore assumes that Judith’s mental 
processes [α1 and β1] have also worked properly and that only her talking [γ1] about the two 
axes contains a mistake, i.e. an exchange of the indication of the two axes.  

 
In the third analysis, we concentrate on lines 3 to 5. This paragraph describes Judith’s 

“thinking aloud” when she analyses her own partial solution “-c”. Therefore we take Judith 
not only as person 1, but also as person 2. The first “-c” in line 3 corresponds to a 
concatenation of γ1 and β1. The second “–c?” in line 3 as well as the following “Yes, sure” in 
line 4 give clues about a thinking process β2. This thinking process is metacognitive referred 
to β1. 

Example 2: 

For the analysis of the transcript below the following information is necessary for the 
reader: The teaching scene is taken from a lesson series Introduction into the world of 
computers with registermachines (textbook: Cohors-Fresenborg, Kaune, & Griep, 1995) at the 
beginning of grade 7. A computing network (mentioned in the following), built with counter-
bricks from the didactical material Dynamische Labyrinthe2, can be regarded as a 
mechanically working flow chart whose correct functioning cannot be proved by concrete 
examples but only by general considerations.  

Jasmin and Elfi have drawn their homework (Cohors-Fresenborg, Kaune, & Griep, 1995, 
p. 13, exercise 1.10), a construction of a computing network (containing three counter bricks) 
for the addition of three figures, on a transparency and are presenting their results to the class. 
The transparency is not like a photograph of the computing network, but an abstract 
description of the mathematical idea. In the description of the three counter bricks the 
windows, which in the real bricks show the corresponding storage content, have been kept 
empty. The pupil Herta asks that some figures are written into the empty windows on the 
transparency. Then the following discussion begins:  
Jasmin: We didn’t put any figures in there deliberately. 
Herta: But isn’t that better, because then you can …. 

                                                 
2 The mentioned textbook unfortunately only exists in German. The didactical approach used is also developed in 

Cohors-Fresenborg (1993). 
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T:  She says she didn’t put in any figures deliberately. May I just ask her why not? 
Jasmin: Yes, because some people always say that machines only run with certain figures. And if we had put 

in for example one, two, three, everybody could have said, perhaps they only run with these figures. 
Herta: I think it is better, Elfi, if you can put some figures in there! 

Jasmin and Elfi suppose that putting in figures is a metaphor for concreteness. They are 
quite aware of the problem that with definite figures one cannot prove the functioning of an 
algorithm in general. We know from individual examinations that it is significant for pupils 
who think in a predicative way (Schwank, 1993) to associate the question of general 
workability of a computing network only with the question of whether a computing network 
works for the given example with specific figures without considering the arbitrary, general 
case. After having checked several numerical examples, these pupils quickly assume the 
attitude that a further examination is not necessary and trust that there will not be a counter 
example. In the end, they do not really understand the general ability of a computing network 
to function. Pupils thinking functionally (Schwank, 1993), however, are capable of analysing 
the functionality of computing networks in a prototypical way.  

The difficulty of modelling the pupil’s text lies in the fact that Jasmin’s argumentation is 
indirect. We therefore first analyse the implied, direct (part-) argumentation: Elfi and Jasmin 
describe “some” of their classmates’ imaginations which arise when they “put figures in” the 
transparency. Such classmates then associate that the computing network “perhaps only works 
with these figures”. In order to avoid this misconception they "didn't put any figures in there 
deliberately”. We know from examinations (according to those of Schwank, 2002) that Elfi 
prefers a functional way of thinking, whereas Herta prefers a predicative way of thinking. 
Herta’s repeated objection reveals her dilemma - without figures she cannot analyse the 
effectiveness of the computing network, even with the help of a definite example, while with 
figures she becomes a victim of exactly that misconception mentioned by Jasmin and Elfi.  

This direct argumentation shown above can be interpreted as pre-knowledge which led to 
the statement: “We didn’t put in any figures deliberately”. When modelling, person 1 stands 
for the prototype which is described as “some” by Jasmin. Elfi/Jasmin are person 2 and i 
stands for a drawn computing network, which has figures in the counters. s1 describes the 
disposition for the misconception of person 1, α1(s1, i) describes the misconception of person 
1 and β1 represents the misjudgement about the functioning of the computing network, which 
is mentioned by γ1, “perhaps they only run with these figures”. α2(s2, γ1(β1(α1(s1, i)))) 
describes Elfi’s and Jasmin’s idea of person 1’s misconception and β2 their knowledge of its 
reasons and causes. γ2 describes the subsequent removal of the figures. The complexity of the 
formula β2(α2(s2, γ1(β1(α1(s1, i))))) is a metaphor for the complexity of this metacognitive 
thinking process described by β2. This shows that modelling with αβγ−automata, which in the 
first instance seems to be impractical, is able to make the complexity of the thinking processes 
involved transparent. 

Example 3: 

This example shows two representations of one pupil with the same subject matter, i.e. 
something said about the subject matter and something formally represented. In an advanced 
mathematics course at grade 13 the question is discussed as to how a function can be 
differentiated which has been defined as the absolute value of another function. 
Soren: That is the question: Do absolute values stay unchanged during differentiation? 

 Actually this should be the case, shouldn’t it? Because otherwise it would be something else. 
T Soren has asked: Does an absolute value stay unchanged during differentiation? Whatever this 

might mean to him. 



 34

Soren: Well, you could, if you write it down mathematically  | f(x) | = | f′(x) | (he dictates) Question mark. 
This would basically be what it means. The bar signs of absolute value round the function or within 
the function are to be kept (4 seconds). 

T: So, are there any more questions? 

Benno: I think it is a completely different question when we put it down than what Soren is now (...) 
Soren: Yes. 
T: Yes, he has dictated it himself. 
Benno: This is not what he wanted to ask (laughs). 
T: A moment please. Do you mean he has dictated something that he didn’t want to ask, something 

that doesn’t really interest him? 

Benno: Yes. 
Soren: Yes. 
T: Tell me then, Benno. What does interest Soren? Benno is now going to interpret what Soren is 

interested in. 
Benno: (...) interested in whether, when you differentiate function f, if, hm, | f | is differentiated, if the bar 

signs of absolute value of the derivative are also kept around it, and here he has, here is the 
question if | f(x) | is the same as | f′(x) |. 

 
As input i we have the problem if, when a function which has been defined as the absolute 

value of another function is differentiated, the bar signs of absolute value in the representation 
of the result are to be kept round the derivative of the inner function. We have not put down 
the subject matter precisely, i.e. formally, as this would not correspond to the mutually-shared 
knowledge in this form at the beginning of the discussion. Soren is person 1, Benno person 2. 
Soren’s idea of the problem [i] is described by α1(s1, i). His remarks [lines 1/2] “Do absolute 
values stay unchanged during differentiation? Actually this should be the case, shouldn’t it? 
Because otherwise it would be something else.” are described by γ1(α1(s1, i)). The teacher’s 
remark [lines 3/4] causes Soren [at that moment he is in state s1′] to think about a formal 
representation of his question. These considerations are described by β1(s1′). His formal 
representation “| f(x) | = | f ′(x) | ?” describes γ1(β1(s1′)). Benno has his own idea 
[α2(s2, γ1(β1(s1′)))] of what Soren has said [lines 1/2, (α2(s2′′, γ1(α1(s1, i)))] and compares it 
with the idea [α2(s2′, i)], which he produced by himself. 
 

Benno supposes that what Soren said at first refers appropriately to what was meant and 
also to what his idea of the subject matter corresponds. Neither does he imply any mistakes as 
regards his idea of the formal representation. His explanation of the discrepancy between 
γ1(α1(s1, i)) and γ1(β1(s1′)) [line 12] is that Soren has not put down formally in writing what he 
wanted to express verbally. Soren’s “yes” in line 16 and Benno’s remarks in lines 19 to 21 
prove that our analysis is correct. 

Example 4: 

The acceptance of the validity of the equation 0.9  = 1, or in words, that both terms are names 
for the same figure, keeps causing problems to pupils of all age groups (see e. g. Tall, 1977). 
The following extract from a transcript shows the struggle of a group of pupils to bring their 
ideas into line with the representation. 
Jens: ... but Peter says that zero point nine is the same as one and that there always has to be a figure in 

between ... I mean that there has to be at least one figure between two decimal numbers. And in this 
case, it is different and therefore it is logical that this should actually be correct. 

Mona: Well, I think that there is a figure. It may, however, only be zero point infinite zero and then a one, 
which means sometime or other (she laughs) ... 

T: Can you please write it on the board, how you imagine it? 
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Mona: No, not really, you can’t  ... as a figure  ... you can’t write it down. But logically it would be 
possible. Because if you have a periodic continued zero and then a one this is as if … I mean ... (she 
laughs). 

 You cannot write it down as a figure, but logically you can imagine it. 
T: I would like to know if it is at all clear to everybody what Mona wants to say and about what figure 

she has been talking. She said: “I cannot write it down.”  
Mona: Well, I meant, hm, the figure that you would need in order to make zero point periodic continued 

nine a one is the figure I have been talking about. 
 If there are many, many zeroes and then at some time or other a one, but this doesn’t really exist. 
Suse: This is what I also wanted to say. There is an infinite number of nines behind the zero, hm, periodic 

continued nine, ... and she thinks that, that there should be a figure which has exactly as many 
zeroes, which means an infinite number of zeroes, ... well there is a one in the end so that what you 
add is one. She is looking for that figure. But you cannot write it down because there would have to 
be an infinite number of zeroes.  

Suse: ... If you take for example five and two instead of zero point periodic continued nine and one, you 
know that they are not the same, as there is a three between them. And regarding zero point period 
continued nine and one there is no figure between them. You know you cannot write a figure down. 
Mona, however, thinks that there should be this figure “zero point period continued zero one”, but 
you cannot write it down. Thus this figure doesn’t really exist. And therefore this could be right, 
Mona. 

Mona: Well, I only meant: the figure doesn’t exist, but logically you could imagine  (laughter) that it could 
exist. Therefore ... (murmuring) .... but this figure doesn’t exist. Hm, that is clear. It won’t work. 

T: Will you please make your comments so that everybody can hear them, Judith, Juli? 
Juli: Yes, Judith and I are just trying to imagine the figure zero point periodic continued one, but this is 

somehow funny. 
Jens: I think that there cannot be a further figure behind a periodic continued figure. 
Suse: Yes, that is right, yes, that is true, because the zero, hm, because the periodic line is above it, which 

means, it is the zero that always repeats.  Thus there cannot suddenly be a one behind it. Which 
means this figure doesn’t exist. If it did, the periodic line would have to be above both figures, and 
then it would be continued in that way: zero point zero one zero one zero one. This would not be the 
figure Mona meant. 

 
The starting point of the transcribed discussion mentioned above is Jens’ statement that 

there is no figure between 0.9  and 1. In our analysis, this is taken as input i. Mona is person 1, 
who picks up Peter’s and Jens’ idea [α1(s1, i)] with the help of her pre-knowledge s1, and 
thinks about: “the figure that you would need in order to make zero point periodic continued 
nine a one” [She only explains this in lines 13/14]. Presumably, she thinks this figure is 

bigger than zero and infers that there is another figure between 0.9  and 1. These ideas are 
described by β1(α1(s1, i)). She then says:  “It may, however, only be zero point infinite zero 
and then a one.”  [γ1 in lines 4/5]. Our representation suggests, as well as the sequence of 
Mona’s remarks, that the given figure is supposed to be the figure which should exist. This 
may, however, not be the case. Even Suse does not note any difference [lines 24/25]. Her first 
remark [a proof would be the first laughter in line 5] or the teacher’s request [line 6] causes 
Mona [here we take her also as person 2, but in state s2′], to once more sort out in her mind 
what she said [β2(α2(s2′, γ1(β1(α1(s1, i)))))]. Her laughter in line 5 and her comments in lines 7 
and 10 respectively are interpreted as an expression of having found a mistake in her long 
process of thinking. β2 describes a metacognitive thinking process referred to her own 
cognition. In the formula this is expressed by β1.  

The teacher [line 11] causes Mona to repeat her remarks once more. In this new situation 
(represented by the state s1′) Mona replies with a different formulation [γ1(s1′)]  “... If there 
are many, many zeroes and then at some time or other a one ...” [line 15]. The process of the 
discussion, however, shows that she has changed her formulation, but not her opinion. We 
therefore take this change as a mistake in representation, [“many, many” is different to “an 



 36

infinite number”] or as a variation in the representation [“many, many” with the meaning of 
“unlimited”, i.e. “an infinite number”]. The reactions of her classmates [Suse, Juli] show that 
they also take Mona’s statement as a variation in representation.  

For further analysis, Suse is person 3. In lines 21 to 26, she again refers to what Mona said 
initially [γ1(β1(α1(s1, i))) in lines 4/5]. This forms, together with the pre-knowledge, state s3, in 
which Suse notices [γ3(s3) in lines 23 to 25] that this number does not really exist as you 
cannot put it down in writing since there is no formal representation. If there is no formal 
representation of the things having been said, it cannot be of any meaning, i.e. you cannot talk 
about something existing.  

The pupil Juli refers to what Mona has said and gives a formal representation “0. 0 1” and 
tries to imagine the figure represented in that way. The pupil Jens gets into the discussion on 
this level of representation and criticises that this way of representation is not allowed as there 
cannot be another figure after a periodic number. This means Jens picks up the form of 
representation, checks its syntactic correctness and finds a syntactic error. Suse picks up Jens’ 
idea using the semantics of the representation: The periodic line means that there is an infinite 
number of zeroes, and there cannot suddenly be a one. 

The complete dialogue repeatedly deals with representations and ideas, with the 
presumptions of classmates and with those ideas which other classmates might have [in the 
case of Mona it is herself] when they have offered a representation. Then the classmates 
compare them with their own ideas. The pupils have a feeling for the fact that talking, as long 
as no gradual meaning can be related to the verbal constructions used, sounds meaningful, but 
does not really have a meaning 

The question as to what extent verbal constructions can constitute meaning plays a role 
when terms [as name replacements] are introduced by denomination operators3. Mona 
introduces the figure that she means by a denomination term. “Well, I meant, hm, the figure 
that you would need in order to make zero point periodic continued nine a one” [lines 13/14]. 
Now the question arises as to whether the use of a denomination operator is allowed. If the 
things said were actually the things meant, the figure would be unambiguously defined, i.e. it 
would be the figure zero. Everything would be in order and the use of the denomination term 
would be a name replacement of the figure zero. That is, however, not what is meant, as 
mentioned above. Mona also talks about the past in lines 13/14 before she understands “…but 
this doesn’t really exist.” When she says in lines 27/28: “but logically you could imagine that 
it could exist”, she presumably means “… it could verbally be formulated in that way”. As the 
figure does not exist, this verbal construction is not allowed “…that is clear.  It won’t work”. 
[line 28]. 

The intervention of the teacher in lines 6 and 11/12 has to be understood in such a way 
that she foresees that the request to create a formal representation, where syntax and semantics 
are clearly defined, causes a gradual construction of meaning and mere talking becomes 
obvious. Suse’s statements in lines 33 to 37 prove her to be right. 

Summary and Consequences 

The four teaching scenes analysed by us have understanding processes of mathematical 
concepts and procedures in common. Persons create an idea of these and give written or oral 
representations of these ideas which in turn give rise to new ideas. The discovery of 

                                                 
3 The concept “denomination operator” has been introduced by Whitehead & Russel (1910, pp. 173-186) 

together with an analysis of its ambiguity. As the pupils have been taught according to the Osnabrück 
Curriculum they are familiar with the thoughts about denomination operators  (“definite article”)  (Cohors-
Fresenborg, Griep, & Kaune, 1992, pp. 39-40). 
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discrepancies gives cause for analyzing the different processes of representation. This leads to 
the assessment of a difference between things being said or meant. It can be mistakes in 
representation (examples 1 and 3) or misconceptions (examples 1 and 2). An interesting 
aspect was discussed in example 4, in which the idea was analyzed as to whether something 
said can have a meaning. Moreover examples 3 and 4 show that formalization under the 
obligation of precision can considerably help to uncover mistakes in the corresponding 
representation processes. 

In our analysis with a theoretical model, the formal representation by αβγ−automata 
helped with the clarification. It enabled, in particular, working out more easily that the 
mistakes in the four examples lie at different places in the representation processes. 
Furthermore, the modelling elucidates the complexity of the cognitive and metacognitive 
processes involved. 

The mutually-shared discursive teaching culture (Cohors-Fresenborg & Kaune, 2003) of 
the teachers and pupils is evident in each of these four scenes (which originated from lessons 
given by three teachers). The metaphor (in the sense of Lakoff, 1980) “To what extent do the 
things said express the things meant?” could be taken as significant for this thinking culture. 
Metacognition (as shown here with respect to the stated aspects) and discursiveness (as shown 
here in the analysed teaching situations) are mutually dependent and support each other.  

 
The consequences for the structuring of mathematics lessons are clear. Apart from the 

previous objectives of making mathematical concepts and procedures a topic in the thinking, 
learning and teaching processes, and starting from a cognitive-theoretically orientated point of 
view, cognition of pupils about transformations of representation forms should also be the 
subject of mathematics lessons. Sjuts (2002) reports on the benefit of implementing different 
aspects of metacognition into mathematics lessons. An objective of such an enlargement by 
metacognitive activities is the analysis of thinking processes, ideas and misconceptions in the 
lessons by classmates. This makes training in discursiveness and flexibility possible, which 
subsequently offers scope for enhancing the individual thinking processes of the learner.  
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