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Computer Algebra Systems (CAS) have become indispensable tools in pure and applied 
mathematics. Due to continuous improvement in terms of application and program handling, as 
well as availability, CAS are increasingly used in the classroom. Initial experience has been 
gathered by now in various school projects. One example is the MAPLE project “Mobile 
Classroom” in the German state of Baden-Wuerttemberg. I will report on my experience as a 
teacher involved. It stands to reason that the traditional goals of mathematics teaching are still 
valid when introducing a CAS, but there have been shifts in emphasis. Of course, CAS cannot 
improve mathematics teaching ‘per se’. Some examples will be given which actually prove the 
contrary. Other examples will demonstrate how a CAS can promote concentration on content-
related aspects.  

The Old and the New Wine 

In the King James Version of the Bible we read in Matthew 9,17 : 

Neither man put new wine into old bottles: else the bottles break, and 
the wine runneth out, and the bottles perish: but they put new wine 
into new bottles, and both are preserved.  

Computer Algebra Systems (CAS) have become indispensable tools in pure and applied 
mathematics. Due to continuous improvement in terms of application and program handling, 
as well as availability, CAS are increasingly used in the classroom. Are they as well the new 
bottles in which the old wine, i.e. conventional mathematics, can improve in quality? Or do 
they bring new wine, i.e. new mathematics, into school? Let me begin describing the aims of 
mathematics teaching: 

In an expert’s report for the German  Conference of the Ministries of Education for 
teaching at upper secondary level (Borneleit, Danckwerts, Henn, & Weigand, 2001) we took 
as a basis the three fundamental experiences that, according to Heinrich Winter (Winter, 
1995), can help creating stronger links between mathematics education and general education 
in that they open up specific ways of  

 
1. perceiving and understanding phenomena in the world around us (this principle 

recognizes the role of mathematics in acquiring important knowledge of our 
world), 

2. learning about and understanding mathematical issues represented in language, 
symbols, pictures, and formulas as an intellectual, creative act recognizing 
mathematics as a deductively ordered world of its own (this principle recognizes 
mathematics as a rigorous science), 

3. acquiring problem-solving (heuristic) skills in dealing with tasks extending 
beyond the domain of mathematics (this principle recognizes mathematics as a 
school of thought). 

 
The three fundamental experiences are closely related. Deep insight into pure mathema-

tics results comes from application-oriented problems. Conversely, abstract results and 
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methods of pure mathematics prove to be keys for understanding our world. Creative research 
both in pure and applied mathematics is unthinkable without heuristic competence.  

The use of new technologies is important and helpful for all three fundamental experien-
ces: Firstly, CAS are an effective tool to supporting development of modelling and simulation 
skills, which is the first fundamental experience. Secondly, CAS can positively influence the 
development of adequate basic concepts of mathematical ideas and results, mainly through 
dynamic visualisations, which is part of the second fundamental experience. And finally, the 
computer lends wings to activities for the third basic experience, by possibilities widening the 
range of heuristic and experimental problem solving.  

Hopes, promises and lofty words are many in connection with the use of new media. Bill 
Gates once said: The most important use of technology is to improve education. But 
sometimes, the euphoria accompanying the accelerated introduction of new media in schools, 
reminds me of the naivity  observed at the time when ‘new maths’ was praised, in the 
seventies. The millions of money now spend by ministries for the installation of internet 
hardware in schools are by no means justified by the results of the few impirical studies 
which investigated and analysed in detail computer-aided learning of students. There is little 
information or evidence yet about the beneficial impacts of computer-aided learning on 
concept formation, so that very subtle approaches are required. Many observations and school 
experiments judicate that rushing things now may finally not yield the expected results, rather 
preventing than fostering good and inspiring fundamental experiences, as compared with 
traditional teaching.    

In her paper at the annual conference of the German Society of Didactics of Mathematics 
in Potsdam in 2000, Michèle Artigue (Artigue, 2000) pointed out that the problems arising 
with integration of complex technology such as CAS are often underestimated. We know far 
too little about how epistemological aspects of learning mathematics are influenced by 
computer-aided learning. In my opinion, the didactical debate on using CAS – promoting 
more than 1000 entries in the ZDM MATHDI database1 – places too much emphasis on 
technical computer hardware and software aspects and on the production of ‘nice’ teaching 
examples showing, what can be done with CAS (with emphasis on the tool). “It is not 
important what and how is served, but what is eaten and digested” Mogens Niss once warned. 
There is only little information from teaching observations and analyses in this regard. It is an 
urgent task to performe studies complementing investigations such as those done by Rudolf 
vom Hofe, on the relations of CAS and calculus teaching. This is a wide area for further 
research (compare vom Hofe, 1998).  

A short history of  CAS 
I became acquainted with the first calculator in 1965. The price was more than the 

monthly salary of an engineer and it was able to do the four rules with an accuracy of 8 digits. 
At ICME 1984 in Adelaide, I saw the first CAS MUMATH,  which is antediluvian from 
today’s perspective. MUMATH was one of the first CAS developed in the sixties and was 
further developed into DERIVE, which is one of the most important CAS for school use today. 
The second generation emerged in 1985, with first versions of MAPLE and MATHEMATICA. 
Today, we have a third generation, represented by AXIOM and MUPAD. Implemented 
algorithms are based on practically all mathematical fields, CAS are used in all mathematical 
fields as well. Modern Computer Algebra (Gathen, 1999) is the standard textbook on 

                                                 
1 Database of the Zentralblatt für Didaktik der Mathematik (International Reviews on Mathematical Education); 

internet-access via the web page http:www.emis.de (restricted access, contact for full access Gerhard König 
via email: gk@fiz-karlsruhe.de)  

mailto:gk@fiz-karlsruhe.de
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algorithms of symbolic mathematics. I think that the authors, Joachim von zur Gathen and 
Jürgen Gerhard, will take away the word ‘Modern’ and thus follow the example of van der 
Waerdens Modern Algebra. Booth books contain so much of best mathematics and should not 
give the impression that they would follow any fashion fads, such as the fata morgana of ‘new 
mathematics’. 

Interesting for schools is the fact that CAS are already available on small pocket 
computers. The best known calculator is the TI-89 by Texas Instruments, the ‘little brother’ of 
the successful TI-92, and the two Casio calculators FX-2.0 and Cassiopeia (refer to Henn, 
2000). The price developments give reason to hope that such calculators will soon be in the 
hands of each student, as formerly was the slide rule. 

PIMOKL: The Mobile Classroom pilot project 
In the meantime, much teaching experience has been obtained and some reliable empirical 

evidence on the use of CAS in mathematics teaching. From among the many DERIVE projects 
now continued mainly as TI-92 projects especially the national projects in Austria are of 
particular interest (ACDCA, 2001). In many federal states in Germany, there were and still 
are pilot projects, and I took part in one of them, the MAPLE project “Mobile Classroom” in 
my home state of Baden-Wuerttemberg (Henn, 2001). In Baden-Wuerttemberg, there are also 
some DERIVE projects. Under both projects, the Abitur papers (final examination at the end of 
upper secondary level) were written using CAS. A review of the situation in Germany is 
given in the report of Wolfram Koepf on our conference Computer Algebra in Vocational and 
Further Education (Koepf, 2000) 

In the pilot project ‘Mobile Classroom’ mentioned above (in German: Pilot-Projekt 
Mobiles Klassenzimmer, abbreviated as PIMOKL) students of 5 classes in different towns of 
Baden-Wuerttemberg were provided with an own laptop with the CAS MAPLE for the three 
years at upper secondary level, and it was used for the Abitur examination, as well, especially 
designed for these project classes. For further information I invite you to read our sourcebook 
of materials (Henn, Jock, Koller, & Reimer, 1998) and reports and data provided on www.fh–
karlsruhe.de/semgym. 

In the following section I would like to discuss some main aspects that have emerged 
during my work with PIMOKL –  chances, but also problems, constraints and risks. This is 
characteristic of all tools – not the tool itself, but how it is used is the decisive factor deter-
ming success or failure. 

Equations and there solutions 
Solving equations is one of the primary tasks of mathematics. Why is it that so much im-

portance is attended especially to formula for solving quadratic equations, and is practiced 
schematically for weeks (in Germany, the formula is called “midnight formula”, because 
students should be so familiar with it that they are able to repeat it when woken up in the 
middle of the night). Students gain the impression that other algebraic equations cannot be 
solved. At least this is what I often hear  – “equations of grade 5 and more cannot be solved at 
all”.  

The transition from linear to quadratic equations has to aspects: 
- For the first time there is more than one solution. 
- There is a solution formula including square roots.   
For the last 2000 years the second aspect was emphasized in school. Solution formulas for 

equations however rarely exist. There is a deep misunderstanding of the difference between 
the existence of solutions and existence of formulae for their solution. This was often also not 
clear in our PIMOKL project. One colleague prepared a MAPLE worksheet for his students on 

http://www.fh�karlsruhe.de/semgym
http://www.fh�karlsruhe.de/semgym
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the MAPLE command “solve”, which solves equations. Main parts of it are provided and 
explained in the following boxes. 

General equations eq2, eq3, and eq4 of grades 2, 3, and 4 are defined (as shown in figure 
1; all input of the user is given in normal format in MAPLE, the answers of the system appear 
in italics).    

 

 
Figure 1. MAPLE-Definition of the equations of degree 2, 3, and 4. 

 
The command “solve(eq,x)” asks MAPLE to solve the equation eq for the variable x. This 

is done in Figure 2: 
 

 
Figure 2. Solutions of the equations of degree 2, and 3. 

 
Solutions of the general equation of grade 2 are given by MAPLE in the usual presentation. 

Commentary of the teacher: “Aha, MAPLE knows the midnight formula.” Solutions of the 
general equation of grade 3 are provided using the Cardano formulae. This is rather confu-
sing. Given here is only the first line with many more to follow. Commentary of the teacher: 
“Do you see now why the general solution of equations of grade 3 was not required up to 
now? – but that will change!” Such a commentary leads to a completely wrong impression of 
mathematics. Firstly, the existence of solution formulae for algebraic equations of grade 4 and 
less is extremely important within mathematics – the underlying reason for the existence up to 
grade 4 and the non-existence from grade 5 up is given by the Galois theory and the theory of 
simple groups. Developing the formulae for grade 3 is not much more difficult than for 
quadratics, for grade 4 it becomes more complicated. But for concrete solutions, these 
formulae are not relevant today or in the future, with or without MAPLE.   

In the next step of the worksheet (shown in Figure 3) we try to solve the equation of grade 
4:  
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Figure 3. Equation of degree 4. 

It makes sense that MAPLE does not respond with even larger root expressions but simply 
says “RootOf(…)”, i.e. “root of the equation …”. Now again, the teacher’s comment is very 
misleading: “In case of an equation of order four even MAPLE seems to be helpless”. Such 
comments inevitably build up wrong concepts of mathematics, such as: this version of MAPLE 
will solve equations of grade 3, the next version will even be able to solve equations of grade 
4, and so on …. 

In fact, RootOf(..) is a MAPLE subroutine which will only provide all solutions of the 
equation when command “Allvalues” is given, and then, if possible, algebraically, but mainly 
numerically. Of course, MAPLE will do it for grade 4 algebraically, too. The solution of our 
equation of grade 4 will fill several screens and is completely confusing and  unfathomable. 
More interesting however is the fact that MAPLE will calculate all solutions of an algebraic 
equation of any grade with concrete numerical coefficients with given accuracy.  

However, the main point from a mathematical perspective is: Are there any solutions at 
all? What are solution formulae? How can you be certain to have found all solutions? Which 
graphical and numerical methods are there to find them? How do I get them with given 
accuracy? Questions like these are often neglected. Exactly for this kind of questions CAS 
provides an ideal tool. It helps to develop the adequate algebraic structure and discuss and 
analyze the solutions.  

Let us think about solution formulae: If writing down 2  as the one solution to x2 = 2, 
we invent a new name for a number. We are convinced that this number exists, we know 
where to draw it on the number line, but we cannot describe it any better, because it is 
irrational. This es exactly the aspect of letters or variables described by Malle as the “Gegen-
standsaspekt” (aspect of a concrete object) (Malle, 1993). Expressions such as 2  can easily 
be manipulated. But we cannot write it down as concrete decimal number because it has 
infinitilly many digits. We use similar ‘tricks’ when we call other important numbers e or π. 
Also, when we denote the five existing, unique and real roots of the equation x5 -5x3+4x+1 = 
0 by a1, a2, a3, a4, a5 according to size we do the same thing. All these numbers are actually 
‘unknown’, have been given a name, and now we can use them for calculations (which is 
exactly what is done in algebraic number theory). But if we need 2  or any other of these 
numbers in a concrete application, for example for building a bridge, it has to be suitably 
approximated. In any case, numerical aspects are very important when solving equations. 
From the point of view of numerical analysis a number “a” possesses indefinitely many digits 
which are hidden behind a curtain. By using our appropriate algorithm we can withdraw that 
curtain in order to see an arbitrary number of digits.  

In pre-computer times extremely artificial methods have been invented which were all di-
rected towards a more or less special type of equation. For example, differential equations 
resulting from modelling a concrete problem were not discussed generally, but reality was 
forced into the ‘Procrustean bed’ of one of the few types of differential equations (linear, 
separable, etc.) for which there was an explicit solution formula. “A process of self-selection 
started, whereby equations which could not be solved explicitely were of less interest than 
those which could. Naturally, textbooks for the new generation contained only methods for 
solvable problems.” (Steffen, 1994).  
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Half as good is not on the mark 
Numerical aspects deserve to be discussed in detail. Many years ago Arthur Engel urged 

already to put more emphasis on numerical and algorithmic aspects in mathematics teaching. 
Unfortunately, even in new curricula the analytic-algebraic perspective of mathematics domi-
nates, and numerical aspects are hardly mentioned. Mathematicians are to be blamed for the 
fact that fundamental mathematical ideas like iteration are written on the banner of computer 
scientists, that numerical aspects have been dreadfully neglected and have done their bit to 
building a one-sided picture of mathematics. Numerical methods are not a poor substitute, as 
many mathematicians still see it today, but normal practise in all applications of mathematics. 
Numerical methods have not yet found their way into school. New technologies without 
numerical methods are not possible. Using a CAS these aspects have to be emphasized, but on 
the other hand, it is easy to introduce the basic concepts already at lower secondary level.  

The aim is not to indulge in detailed calculations of error but to develop a principle 
understandig of the limits of modelling. First of all this involves a sensible use of numbers.  
We have the ‘ideal’ numbers of mathematics, where 2 = 2.0 = 2.00 is naturally true, and the 
‘real’ numbers of daily life, which often mean intervals and where 2 is certainly not equal 2.0. 
Mostly, i.e. when measuring, intervals, not exact numbers are an adequate model of the 
situation. Intervals, however, lead to error proliferation in continued model calculations. If 
this is not kept in mind, results become arbitrary. In addition we have today the ‘computer’ 
numbers which follow their own rules, too. The speed of processors has been rapidly 
increased, but the error analysis of the implemented floating-point arithmetic has been 
neglected in an irresponsible way. A CAS can help to demonstrate the hidden error 
proliferation of recursive calculations. Following a suggestion of the Karlsruhe mathematician 
Ulrich Kulisch (Kulisch, 1998) 2000 elements of the point sequence Pn(xn/yn) with P0(0/0) 
and  

 
xn+1 = yn – sgn(xn) ⋅ n3 x 36⋅ − ,   yn+1 = 11 – xn  for n ≥ 0, 

were calculated with the help of MAPLE. Using the ‘Digits = m’ command the number of 
digits can be chosen in MAPLE. The results are given in Figure 4 for accuracy m = 5, 10, 15, 
and 20. The result speaks volumes, the relation with the beautiful, computer-generated 
pictures of chaos theory is obvious. The presentation is even more convincing when the 
colour of the points is changed after every 500 points. 
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Figure 4. The point sequence with accuracy digits = 5, 10, 15, and 20. 
 
In daily life the calculation-oriented treatment of numbers plays a dominating role, nume-

rical aspects are neglected. Of course, pocket calculator or CAS alone do not provide a better 
understanding. Absence of clear teaching concepts will lead to incorrect basic concepts being 
built in various ways:   

On the one hand, expressions such as 1
3

, ( 3 )2, 2 3
2 4
π π

+ + ⋅  or  cos(arcsin(0)) are not 

seen as well defined numbers which can be simplified, but rather as recipes or algorithms to 
be followed. Even among future teachers who have studied mathematics, I have encountered 
this misunderstanding: They sincerely discussed whether 4 + 3  was one or two numbers! 

On the other hand, fundamental numbers such as 2 , e and π are reduced to finite 
decimal numbers. In replay to my question of whether 2  was rational, a glimpse on the 
calculator, I prompted the answer “no”, because the calculator did not show a number period. 

The “two-facedness” is always important: Result as well as process, for example 2 as a 
number and as the process of numerical aproximation.  

“How much manipulation of expressions is necessary” is the well-known question 
formulated by Wilfried Herget in the GDM-workshop “mathematics teaching and computer 
science” (Hischer, 1993, p 128), which still is unresolved. I am convinced that computional 
skills help in the sensible handling of numbers and terms. Manipulating expressions should 
not serve as a ritualized end in itself. Here, a CAS can help to build up sensible standards. 
Often, expressions should be transformed into a simpler final form. But what is “as simple as 
possible”? For rational numbers a standardized final form, for instance as reduced fraction, 
makes sense. However, it is a mere convention to look at the equivalent expressions  

1
2

 = 2
2

 

and pick out the right hand expression to be the “better” one, or even, to give less points for 
the left hand expression. Making the denominator to a rational number becomes a senseless 

ritual. Why then can 1
π

 be left as it is? Both terms above are equivalent and acceptable as an 

end result. When approximate values are to be calculated mentally, the right-hand term is 
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better. If you want to find an approximate value using a computer, the left term is often 
superior. Hans Humenberger and Hans-Christian Reichel describe a very convincing example 
(Humenberger &  Reichel, 1995, p 107). The issue becomes very delicate when the simplify 
command, which is provided by every CAS, is used to simplify expressions. It is often very 
surprising to see what for CAS is a “simple” solution. The problem is very deep-rooted: There 
is no algorithm which can decide if two given expressions are algebraically equivalent. We 
will always have to accept this “shortcoming” of a CAS! The more important it is therefore to 
make students familiar with this problem. 

A very interesting and well-known example showing many aspects is the approximation 
of the circle by inscribed regular polygons, a topic, which is covered at grade 5 pre-formally 
and then again at grade 10. The idea to approximate the unit circle by inscribed polygons with 
n = 3⋅2, 3⋅22, 3⋅23, ... sides (is it clear for all students why we do not use 3-, 4-, 5-, … sided 
polygons?) leads through elementary geometrical argumentation as shown in figure 5 to a 
simple recursion formula for the side length sn of the n-sided polygon. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The side length of the inscribed n-sided polygon. 
 From this well-known formula s2n = f(sn) we can easily deduct an analogous recursion 

formula for half the circumference pn of the polygon in consideration, which leads to an 
approximation of π. We use this less well-known recursion formula for pn here, because it 
makes the numercal problems very obvious. Starting with n = 6 for the unit circle the side 
length s6 = 1 and the first approximation for π becomes p6 = 3. The easily verified result for 
the recursion is 

 

p2n  =  
2

npn 2 2 1
n

⎛ ⎞− − ⎜ ⎟
⎝ ⎠

. 

 
This nice, simple formula can be “made worse” by   
 

p2n =  n

2
n

2p

p2 2 1
n

⎛ ⎞+ − ⎜ ⎟
⎝ ⎠

. 

 
Both formulae are absolutely equivalent and should therefore, theoretically, lead to an 

increasingly better and better approximation of π. The approximation is possible only numeri-
cally, which is usually not done at school. But with a CAS it is as simple as a child’s play. 
The computional accuracy used for the results in figure 6 was five digits.   
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1th recursion formula 2d recursion formula 
n = 1, π = 3.0 

n = 2, π = 3.1055 
n = 3, π = 3.1315 
n = 4, π= 3.1385 
n = 5, π = 3.1476 
n = 6, π = 3.1839 
n = 7, π= 3.3256 
n = 8, π= 3.8400 

n = 9, π = 0 
n = 10, π = 0 

n = 1, π = 3.0 
n = 2, π = 3.1058 
n = 3, π = 3.1326 
n = 4, π = 3.1394 
n = 5, π = 3.1412 
n = 6, π = 3.1416 
n = 7, π = 3.1418 
n = 8, π = 3.1418 
n = 9, π = 3.1418 
n = 10, π = 3.1418 

Figure 6. Results of the two recursion formulae. 
The left column shows the results of the “nice”, the first formula. At first, the approxima-

tion of π improves, but from step 7 on the approximation declines and from step 9 on the 
approximation value is always zero! A higher accuracy only defers the catastrophy by a few 
steps. Using the second formula, π is continuously better approximated, from step 7 on the 
recursion stabilizes.  

Looking at both formulae helps to understand what happens (figure 7): 
 

p2n  =  
2

n

0

pn 2 2 1
n→∞

→

⎛ ⎞− − ⎜ ⎟
⎝ ⎠

 

 
“catastrophy for large n” 

p2n =  n

2
n

1

2p

p2 2 1
n

→

⎛ ⎞+ − ⎜ ⎟
⎝ ⎠

. 

“p2n ≈ pn for large n“ 
Figure 7. Analysis of the two recursion formulae. 

Because computers can only compute with finite accuracy, very small values become 
zero, therefore the first recursion must fail. The root of the problem lies much deeper: 
Unfortunately, there is no possibility to decide for an arbitrary number whether it is zero or 
not; Luitzen Egbertus Jan Brouwer has constructed such numbers. However, if we use the 
second formula which is termed the bad formula, the problem is solved, the recursion is 
stable, and the approximation is much better. Archimedes has principally used this second 
recursion formula to calculate his famous approximate values 

10 13 3
71 7

< π < . 

 

The case of Geometry 
For years, we have been observing a decline of geometry in school curricula; at the upper 
secondary level geometry is often twisted into some basics of linear algebra. In our already 
mentioned expertise of mathematics teaching at upper secondary level you will not find the 
word “linear algebra”. This was a purposeful political decision to which I answer with my 
own head. As my mathematical background is in algebraic number theory and algebraic 
geometry I know very well the value of linear algebra. At upper secondary level, the students 
choose in mathematics (and in other subjects) between advanced-level courses 
(Leistungskurse) and basic-level courses (Grundkurse). Referring to this, we write in our 
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expertise (Borneleit, Danckwerts, Henn, & Weigand, 2001): “There is no other topic 
revealing as plainly as geometry at upper secondary level does that it is completely off the 
subject to conceive basic-level courses as ‘light versions’ of advanced-level courses, which 
themselves are ‘light versions’ of lectures in pure mathematics at the beginning of university 
level”. I have come to know linear algebra in school as words without meaning, as “general 
abstract nonsens”. Out of pure enthusiasm for abstract terms, the really thrilling ideas of 
geometry are often forgotten. One uses puffed-up methods only for boring objects such as 
straight lines and planes, methods which are not really needed there. Instead, the richness of 
solid geometry can bring valuable insights for students by emphasizing content and not mere 
calculations, as for example Hans Schupp has proved in many articles (Schupp, 2000). 

Unfortunately, the new draft curriculum for my home state of Baden-Wuerttemberg 
includes the words like “linear dependent” and “linear independent”, but teaching of the 
obligatory geometrical content ends with planes, even spheres are not part of future 
mathematics courses. A speciality of geometry teaching at lower secondary level is the 
exploration of certain convex plane figures, such as triangles and quadriangles. The natural 
generalisation to convex solid figures is out of scope, the only convex figure in our 
curriculum is the point. 

The geometry of the space around us should be one focus of mathematics teaching, which 
is supported by the powerful methods of analytic geometry at secondary level. A CAS is 
extremely well suited for visualization, and as a calculation tool. However, to use the 
advantages of a CAS depends on well-founded 3D-experiences of students with real objects, 
starting, for example, with a systematic exploration of the cube in grade 5. Rightly, Michael 
Schmitz (2000) points out that the visualizations of 3D-objects with a CAS, which are so 
clear for us, are only understandable for students if they have well-founded basic concepts of 
space and its analytic description. It is necessary that students possess the ability to choose a 
coordinate system which is adequate with respect to the situation and therefore to support the 
development of the fundamental idea of coordinatization. Through the use of an adequate 
coordinate system objects are described by equations as simple as possible, geometric 
transformations by matrices. This situation then calls for a CAS to solve the equations and to 
present their solutions in three dimensions. This in fact means not to treat calculus and 
analytic geometry as disjunct topics any more, but to discuss their interrelations. Then 
functions in several variables are not treated as functions in one variable with parameters 
giving rise to much computation, but describe – introduced and discussed qualitatively – 
graphs as surfaces and curves, and thus help also to better understand scientific modelling 
(Klika, 2000). Especially the beautiful old conics can experience a rebirth with the help of a 
CAS. The following example (figure 8) explicitely shows the interrelations between calculus 
and analytic geometry, showing two ways leading to saddle surfaces. Figure 9 shows two real 
examples of saddle surfaces, the left one is a work of art in the port of Lausanne/Switzerland, 
the right one is a bus stop in Offenburg/Germany.   

A concrete and very nice starting point for the case of the family of curves is paper 
folding. For further suggestions compare Henn (1998) and Meyer (2000). 
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Calculus Analytic geometry 

Families of curves Metric issues 
Discuss the family of curves f(x,t) = tx + 

t2 (parameter t ∈ R) 
Describe all points in the plane having the 

same distance to two straight lines 

Discuss the family of parabolas f(x,t) = tx 
+ t2 (parameter x ∈ R) 

Same question in spatial geometry  

Discuss f(x,t) = tx + t2  as a function ot 
two variables 

Investigate the new case of skew straight 
lines (suitable coordinate system) 

Saddle surfaces 
are be found often in the real world! The tomography of saddle surfaces leads  
to straight lines, parabolas, hyperbolas, and many interesting questions! 

Figure 8. Two ways to saddle surfaces. 

 

 
 

 

Figure 9. Two examples of saddle surfaces. 

CAS – challenge and chance 

Important is the wine, not the barrel or the skin in which it is stored. Our barrel is a CAS, 
be it MAPLE, DERIVE or any other. It is a further supplement for the traditional media but 
cannot substitute them. Most of the work for design of a problem has to be done with head, 
paper, and pencil. The MAPLE-publicity slogan “You can forget paper and pencil” is non-
sense. Many student’s comments such as “You cannot think in front of a computer screen” 
confirm this. In detail, we have learned in our PIMOKL project that the sensible handling of a 
computer, which is such a fast tool with respect to calculations, needs the contrary, namely a 
culture of slowness. The time and leasure which is needed for thinking, the determined 
inductive search and experimenting has nothing to do with losing or wasting time. Taking 
your time means that you will progress faster in the end. Let your students discover this 
creative slowness!  
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