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Abstract: One of the most recently observed stylised facts in the field of economic growth
is the persistent bimodal shape of the world income distribution.. Of course, some theoretical
explanations for this new stylised fact already have been provided by neoclassical growth
theory within a maximising framework. Although innovation and technology are recognised as
being the driving forces behind growth processes, these models maintain the restrictive
assumption of a rational acting representative agent. In this paper we draw on a synergetic
approach of evolutionary economics. In the model, the countries’ productivity development is
depicted as a sequence of relative technological levels and the movement from one level to the
next higher one is governed by stochastic transition rates. The motivation for these transition
rates is based on the knowledge-based approach of evolutionary economics, thereby taking
into account depleting technological opportunities, the effects of technological infrastructure
and permanent technological obsolescence due to an ubiquitous scientific progress. With this
model we are able to show how a persistent bimodal distribution - the twin peaks -
endogenously emerges via self-organisation. This simulated distribution matches well with the
kernel density plot, calculated for GDP per worker data relative to the GDP per worker in the
USA over the period 1960-90 for a sample of 104 countries. Both the empirical and theoretical
results show an evolution of the density function toward bimodality with a decreasing number
of countries with low relative productivity levels and an increasing number of countries with
high relative productivity levels, indicating a prevalent catching-up during the period of
investigation. However, the separation of both groups of countries is getting more significant
over time and therefore further catching-up is expected to become increasingly difficult in the
future.
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1.  Introduction

Nicholas Kaldor introduced in 1961 so-called stylised facts into growth theory which represent

qualitative characteristics of time series of economic variables, such as per-capita production,

capital coefficient, capital intensity, etc. The trend in those data series and the correlation

among them are described as a pattern of empirical regularities which should be the main focus

of any growth theories and their ability to provide an explanation for these facts is considered

as a performance test.

Among Kaldor’s list of stylised facts there is one of particular interest for this paper: the

growth rate of labour productivity is widely dispersed geographically. Only recently, out of

new growth theory another stylised fact has been added which is quite related. Romer (1989)

adds that the growth of production cannot be solely explained by an increase in labour and

capital input. For both of these stylised facts it is by no means far-fetched to regard

technological progress as a main determinant.

Into this discussion only recently a new stylised fact of economic growth has been introduced,

the bimodal shape of the distribution of per capita income or the twin-peaked nature of that

distribution. This observation suggests that the economies of the world can be divided into two

groups: a group with high income – especially the industrialised countries –, and one with low

income – among others especially the African countries. These groups are quite sharply

separated from each other and catching up of low income per capita countries to the world

income frontier is rarely observed and, thus, seems to be a task to be accomplished not easily.

Exceptions are well known such as the Japan and the Asian Tigers (see e.g. World Bank

(1993), Pack/Page (1994), Nelson/Pack (1999), Krüger/Cantner/Hanusch (2000)). Thus, per

capita income or labour productivity is not only dispersed geographically, but this dispersion

exhibits a rather stable structure. However, a look at the development of this structure shows

that the bimodal shape has appeared only during the past 20 years or so, and is therefore only a

recent phenomenon.

A number of studies have been concerned with these sharp and persistent differences in per

capita income. It is observed in terms of bi-modal per capita income distributions by Quah

(1993a,b; 1996a,b; 1997), Bianchi (1997), Jones (1997), and Paap and van Dijk (1998). It
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shows also up in other work, where in a dynamic context an explanation for internationally

different growth rates of countries is searched for such as in as Abramovitz (1986, 1988),

Baumol (1986), Fagerberg (1988), and Verspagen (1991, 1992); differences in the respective

technological levels seem to be responsible for differences in growth rates and thus for

different per capita incomes.

Based on this work, our paper suggests a theoretical explanation for this observation by

pointing out the different abilities of various countries in mastering and furthering

technological progress. This focus on know-how and technological capabilities as main forces

of growth (instead of capital accumulation etc.) is crucial to the knowledge-based approach in

innovation theory. Within this theoretical framework we introduce a synergetic model in which

countries develop according to their abilities to innovate and their abilities to learn and absorb

from others. As these processes are characterised by non-linearities, a bimodal performance

structure can be shown to emerge during time. The development and the shape of these

structures show a striking similarity to the respective empirical observations.

We proceed as follows: In section 2 we present empirical results on the distribution of per

capita income in the world economy, and we briefly discuss attempts to explain these

observations. Building on the knowledge-based approach in chapter 3 we develop a self-

organising model capable of coping with emerging knowledge and income structures. Chapter

4 concludes the paper.

2. The Twin Peaks: A New Stylized Fact of Economic Growth

2.1 Kernel Density Estimation

The traditional nonparametric method to visualise a frequency distribution is the histogram.

Unfortunately histograms have two main defects as estimators of a density function. First, the

shape of a histogram depends on the positions of the bin edges, since data points near the bin

edges do not exert any influence on the density estimate in the neighbouring bins. Second,

histograms often appear to be quite jagged and therefore make the discrimination between

sampling errors and the real structure in the data sample difficult (see Silverman 1986, pp. 7ff.;
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Wand/Jones 1995, pp. 5ff.). Because of these defects of the histogram frequently so-called

kernel density estimators are employed in applied statistics and data analysis to smooth the

histogram and to eliminate the dependence on the bin edges.

The kernel density estimator1 estimates the ordinate of a density function f(x) at a point x by a

weighted average of all n data points xi (i  =  1,...,n) of a particular sample, where the weights

decrease with an increasing distance of the data points from x, that is
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as an optimal kernel in an asymptotic mean integrated squared error sense out of the multitude

of possible kernel functions listed for example in Scott (1992, p. 140).

The resulting kernel density estimate is in general hardly affected by the selection of a

particular kernel function. In contrast to that, the - likewise to be determined - bandwidth

parameter h exerts a great influence on the density estimate. A larger h than appropriate leads

to an oversmoothed density with a possible loss of detail contained in the sample data. In face

of the likely data errors when using panel data for a broad sample of heterogeneous countries,

such an oversmoothing may be less dangerous than drawing far reaching conclusions from

spurious details of the density estimate that result only from a too low value for h.

Since we only intend to give a qualitative characterisation of the dynamics of the world income

                                               
1There is a growing number of monographs on this subject. See e.g. Härdle (1991), Scott (1992), Silverman
(1986), Simonoff (1996) and Wand and Jones (1995).
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distribution by the way of an explorative data analysis we do not need the computationally very

demanding procedure of cross validation to determine an optimal value of h. Instead of that, h

is computed here from the following simple rule of thump proposed by Silverman (1986, pp.

47f.)

h=0.9⋅min{standard deviation (xi), interquartile range (xi)/1.34}⋅n-1/5

for the Gaussian (standard normal) kernel and adapted to the Epanechnikov kernel through

multiplying by the adjustment factor 2.214 (Scott 1992, p. 142). Especially in cases where the

data are multimodally distributed this way of bandwidth selection can easily lead to an

oversmoothed kernel density estimate, but we argue below that this is not unfavourable to the

aims of our study. The whole procedure of kernel density estimation is purely nonparametric in

that no assumptions about the characteristics of the distribution density have to be made a

priori. The outcome of such an analysis depends exclusively on the information contained in

the data and is therefore perfectly suited to investigate such uncertain issues as the shape of the

world income distribution and its evolution over time.

2.2 Data and Empirical Results

Subject of the kernel density estimates in this paper are the real GDP per worker data of the

Penn World Table 5.6 (variable RGDPW)2 for 104 countries over the period from 1960 to

1990. For each year we take the real GDP per worker data for the sample countries and divide

them by the real GDP per worker figure of the USA in that year. The USA is in all but four

years the country with the highest GDP per worker and in the remaining years the USA is very

close to the respective leader. This measure of relative labour productivity can also be

interpreted as a measure of the technological gap of a country with respect to the USA

considered as the technologically most advanced country.

Figure 1 shows the density estimates for all years from 1960 to 1990 in one graph and figure 2

gives four single density estimates for the years 1960, 1970, 1980 and 1990.

                                               
2See Summers/Heston (1991) for a description of the data set and the methods used to compile it.
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Fig. 1: Estimated productivity distribution 1960 - 1990
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Fig. 2: Income distribution of selected years

From these figures we can obtain various insights into the evolution of the global trends in the

distribution of relative real GDP per worker or relative labour productivity during the period of

investigation. We are most interested in analysing whether there appears to be a uni- or
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multimodal structure of the distribution of labour productivity and how this structure changes

over time. These objectives stand in a close relation to the work of Bianchi (1997), Jones

(1997), Paap and van Dijk (1998) and above all to the pioneer in this subject Quah (1993a,b;

1996a,b; 1997). In performing this task the possibility of oversmoothing induced by the

bandwidth selection rule is not at all detrimental because it leads to neglecting only weakly

appearing modes of the density function and by that in principal discriminates against the result

of a multimodal density function. If under these circumstances a bi- or multimodal shaped

density function still appears, we can be very sure about its validity.

The figures show in principle an unimodal density function in 1960 with only a weak indication

of a second mode. In subsequent years the bimodality of the density function gets more marked

and we can observe a large mode in the range of relatively low labour productivity and a

second substantially smaller mode in the range of relatively high labour productivity. Over time

the position of the first mode shifts somewhat to the right but its shape changes noticeable in

that is gets smaller and wider. The second mode also gets wider and shifts to the right by a

much larger amount than the first. This change of the shape of the distribution is accompanied

by an increasing separation of the two modes. Thus, during the period 1960-90 there have

been much more countries able to catch-up to those countries with high labour productivity

than the other way around i.e. to fall back. But if the tendency towards a separation of the two

modes continues catching up will become increasingly difficult in the future.3

The above description of the general tendencies in the evolution of the world income

distribution during the whole period of investigation mark some interesting differences between

the three decades of our investigation. There has been a substantial reduction of the probability

mass under the first mode at low labour productivity in the sixties and seventies, but during the

eighties this mode gets larger again. Also the second mode at high labour productivity does no

longer shift to the right during the eighties as it has done during the two preceding decades.

This again shows that the productivity slowdown after the two oil price shocks is a world wide

                                               
3By its construction the range of the relative labour productivity measure is bounded in the interval (0,∞ ) for
all years. Despite of that the kernel density estimator calculates positive density values for negative labour
productivities. This phenomenon is caused by the so-called boundary bias of kernel density estimation (see
Simonoff 1996, pp. 49f.). Silverman (1986, pp. 30f.) has proposed a simple boundary reflection procedure to
correct for this bias. The results of the application of this procedure are given in the appendix of this paper.
The figures 10 and 11 there make clear that this modification changes the shape of the first mode but does
neither affect the bimodality of the estimated density function nor any of the conclusion we draw from figures
1 and 2 in the main text.
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phenomenon, as has recently been pointed out by Ben-David and Papell (1998) by determining

the dates of trend breaks in the time series of real GDP per capita for 74 countries.

There exist now several other studies that give support to this new stylised fact. Quah

(1993a,b; 1996a,b; 1997) uses also nonparametric kernel density estimation techniques and

Markov chain methods to investigate the dynamic evolution of the world income distribution.

He was the first who became interested in the issue of looking at the whole distribution of

incomes rather than looking only at first or second moments as is done in the analysis of β- and

σ-convergence in the standard approach of convergence analysis (see Sala-i-Martin 1996). It

was also Quah (1996a) who coined the term Twin Peaks to characterise the bimodal shape of

the world income distribution.4 Other researchers who applied kernel density estimation to

different definitions of relative income per capita or per worker reached similar conclusions

(see Bianchi 1997; Jones 1997). These results are further enforced by Bianchi (1997) who uses

bootstrap multimodality tests to sharpen the conclusions from his kernel density estimates.

With these he is able to test for the number of modes in the world income distribution and he

rejects the null hypothesis of a single mode in favour of bimodality but is not able to reject the

null of bimodality. Paap and van Dijk (1998) depart from the so far used nonparametric

framework and fit parametric mixture densities to approximate the world income distribution.

Their analysis indicates that a mixture of a Weibull and a truncated normal density performs

best and the maximum likelihood estimates of the parameters of this density give also support

to the finding of an increasingly bimodal world income distribution.

2.3 Theoretical Explanations

(i) neo-classical approaches

From a theoretical point of view nearly all neo-classical growth models are in principal able to

explain a bimodal world income distribution function. This applies to the Solow (1956) model

which only predicts conditional convergence as well as to the endogenous growth models (see

Aghion/Howitt (1998) and Barro/Sala-i-Martin (1995) for two recent booklength surveys of

this important class of models) and other models allowing for multiple equilibria (e.g.

Azariadis/Drazen 1990; Greiner/Semmler 1996). In the model of Greiner and Semmler (1996)

                                               
4He summarises his findings succinctly by writing that "[...] there is a group of the rich, collecting together; a
group of the poor, collecting together; and a middle-income class, vanishing" (Quah 1996a, p. 1048).
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the fact that the two modes diverge from each other is also captured by a dependence of the

growth rates on different parameter values.

In heart of neoclassical growth models is an infinitely lived representative household which

maximises lifetime utility subject to a budget constraint. Capital in endogenous growth theory

is broadly defined and encompasses not only physical capital but also human and knowledge

capital components. The rate of technological progress in these models is determined through

the investment decisions of profit maximising firms. Since most of these models are purely

deterministic the firms have access to all information they need to come to an optimal decision.

In most of these models a single country or the interaction between two countries is modelled

but none of them makes an explicit statement about the dynamics of the entire distribution of a

larger group of countries. In criticising empirical work in relation to these theoretical models

Durlauf and Quah (1998, p. 59) state: "'explaining distribution dynamics' needs to go beyond

representative-economy analysis". Quah (1997) cites some examples of models that try to

model distribution dynamics in various fields of economics and using different methods. Quah

(1997) himself contributes a model of endogenous coalition formation among countries

involving the accumulation of human capital to perform this task.

(ii) evolutionary approaches

These neo-classical approaches analyse technological and economic interdependencies in a

decision-theoretic context with exogenous given technological opportunities. Moreover, this

technological opportunity space is taken as homogeneous, symmetric as well as known to all

actors. Consequently, any consideration of problems located in the technological sphere which

are due to weak or undeveloped technological capabilities or technological infrastructure as

well as to technological bottlenecks in situations of decreasing or even depleted technological

opportunities are beyond the analytical scope of such a theory.

With modern or evolutionary innovation theory an alternative to this incentive-based neo-

classical theory exists. Here, an explicit knowledge-orientation takes into account the role

technological capabilities, competencies and infrastructure play in the creation and depletion of

technological opportunities. By drawing on a micro- and meso-perspective meanwhile there

exists a considerable theoretical and empirical literature to these questions showing how firms
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behave in a non-optimising and bounded rational way to cope with technological problems and

intrinsic uncertainty in innovation processes (see e.g. Freeman (1994) for a survey). Out of

this, we draw on three aspects relevant for our purposes of modelling a dispersed productivity

development on a macroeconomic level: technological opportunities, technological

infrastructure and technological obsolescence.

For the description of technological development one of the cornerstones is the concept of

technological opportunities. In modern innovation theory several alternative, largely

overlapping concepts are introduced to analyse and describe innovation to occur as a

punctuated process (Mokyr (1990)) A technological paradigm (Dosi (1982)), a dominant

design (Abernathy/Utterback (1975)) or a technological guidepost (Sahal (1985)) describe the

scientific frame, the methods applied and the materials and processes used. In this framework

the firms in an economy move along technological paths (so-called technological trajectories or

innovation avenues) which represent a certain kind and degree of technological opportunity.

However, this opportunity space is not unrestricted but usually gets depleted over time with

movement along the trajectory. On higher technological levels most often scientific laws are

responsible for boundaries and bottlenecks to occur making further technological

improvements increasingly difficult to achieve. In this case, the specific or intensive

technological opportunities are exploited, or in Machlup’s (1984) words: ”The more there has

been invented the less there is left to be invented.”

However, this does not mean that technological development necessarily comes to a rest with

depleted intensive opportunities. Besides scientific progress, the role and consequences of it

will be discussed below, new technological potentials, so-called extensive technological

opportunities, can come into being by certain technological complementarities of ex-ante

seemingly unrelated technologies. Among others (e.g. Mokyr (1990), Kodama (1986))

Rosenberg (1994) puts emphasis on these effects of technological recombination or cross-

fertilisation: ”Often an innovation from outside will not merely reduce the price of the product

in the receiving industry, but makes possible wholly new or drastically improved products and

processes ... such innovations ... open the door for entirely new economic opportunities and
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become the basis for extensive industrial expansion elsewhere.”5 Or to call in Machlup (1984)

again: ”The more there is invented, the easier it becomes to invent still more.”

Nevertheless, for these effects to be effective an economy has to provide for certain

prerequisites, summarised under the heading of technological infrastructure. First of all, in a

cumulative technological development the potentials out of technological complementarities

cannot be realised without having already reached an advanced technological level. This

means, to integrate and exploit external knowledge certain capabilities are required which are

discussed in the literature under the notion absorptive capacities (Cohen/Levinthal (1989),

Cantner/Pyka (1998a)) or receiver competencies (Eliasson (1990)). On the one hand, these

capabilities are a by-product of R&D on a firm level, on the other hand, an active investment in

technological fields not immediately directed on recent technological strands is necessary. In

this respect one also has to consider the building up of institutions facilitating technology

transfer and the emergence of new start-up high-tech companies in an economy etc. (see

Justman/Teubal (1996)). These measures aiming at either a broadening of the technological

opportunity space or a widening of technological competencies provide for the technological

infrastructure of an economy.

Finally, all economies are confronted with a permanent technological and scientific progress.

One the one hand, due to standardisation processes, increasing education levels and other

positive externalities the lowest technological levels are continuously lifted up. On the other

hand, new insights and breakthroughs in the scientific domain continuously open up new higher

technological levels on the upper end of the technological space pushing ahead the

technological frontier. Both exogenous influences lead to a permanent technological

obsolescence of applied technologies. In other words, in a world characterised by a steady

evolutionary development, an innovative standstill is similar to a falling in behind in the course

of time. Consequently, economies are under a permanent pressure to innovate.

Taking these three aspects together, the incentive-based approach of neo-classical theory is

confronted with a knowledge-based approach of evolutionary economics. With this approach

                                               
5 Such effects on technological opportunities are equivalently found by considering advances in sciences. Basic
science at universities and other research institutes heavily support technical advance and ” ... provide the basis
for the other important forces, that offset diminishing returns to technological opportunity ...” (Klevorick et al.
(1995))
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the processes of productivity development are based on the development of know-how, which

can be described with the creation and exploitation of technological opportunities as a

collective evolutionary process based on adequate technological competencies and

infrastructure. On this basis, one may ask whether these concepts can explain the specific

pattern of productivity development observed in reality, i.e. whether the twin peaks are a

knowledge-driven structure.

3. Self-emerging Twin Peaks

We are going now to introduce a self-organisation model, originally developed by

Cantner/Pyka (1998b) in an industrial economics context, which attempts to analyse the

occurrence of knowledge determined structures as discussed in the preceding chapter. For this

purpose first the basic structure of the model is presented, then so-called individual transition

rates are introduced responsible for success and failure of the economies in improving their

productivity levels. Finally, the results of a numerical simulation are compared with the kernel

densities calculated in section 2.2.

3.1 Basic Structure of the Model

For our model of productivity development we consider a sample of economies in which firms

in different sectors are engaged in R&D, thereby pushing forward average productivity levels

of economies. At the centre of interest of the model are the self-organising features of

technological dynamics; this means that we are abstracting from country specific

considerations and strategies with respect to economic growth and choose a so-called

population perspective (Saviotti/Metcalfe (1991), which allows to single out pure knowledge

effects.

Following the discussion in 2.3 we assume for the productivity development (1) that intensive

technological opportunities are offered by a technological paradigm, and that (2) the

technological development proceeds cumulatively thereby increasingly exhausting this

opportunity space. Furthermore, (3) the technological infrastructure, i.e. absorptive capacities,

transfer mechanisms etc. is growing with higher technological levels.
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To describe the productivity levels of the different countries we draw on the following

representation of a relative technological scale in fig. 3.

Fig. 3: Relative technological scale

We apply a scale with n different states or technological levels xi = i/n where i ∈  {1, ... , n}.

Each technological state is characterised by the level of accumulated knowledge and a certain

degree of technological infrastructure. The assumptions are represented as follows:

Productivity levels are cumulatively increasing within this interval. The lowest level x1

represents the productivity level going hand in hand with a common available knowledge stock

and is considered as a minimum productivity level always achievable. The most sophisticated

technological level, the world technological frontier is xn representing the highest productivity

level. Technological infrastructure is also assumed to improve along the technological scale,

thereby assuming that with higher technological levels also the technological competencies

within the economy increase. This means that for realising lower productivity levels drawing

on the common available knowledge stock is more or less sufficient, whereas for higher

productivity levels specific capabilities become necessary due to a higher degree of complexity

of the respective technologies.

In order to investigate long-run productivity developments we interpret the scale as a relative

one. Consequently, xn is considered as the best practice productivity level at a certain point in

time t and the other states xi (i≠n) are to be seen relative to xn (which corresponds to

normalising the labour productivity figures of the respective countries by the labour

productivity of the USA in each year). Due to scientific progress the technological knowledge

of this level will be rated with a lower value in following periods. Equivalently, the common

x1 xi-1 xi xi+1 xn
common
available
knowledge stock

technological
frontier

knowledge accumulation (+)
productivity (+)
technological infrastructure (+)

intensive techn. opportunities (-)

Relative Technological Scale

... ...
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available knowledge stock x1 is always the lowest productivity level observed. Although in

absolute terms the underlying knowledge stock is growing over time, in relative terms it is

supposed to stay in a constant distance from xn. Again, this matches with the empirical design

where not an absolute but a relative measure of labour productivity is considered. Thus the

scale can be considered as shifting to the right over time, thereby allowing the investigation of

a long time-horizon.

This technological scale allows to model productivity improvements of an economy as

movements from state xi to its adjacent neighbour xi+1. Taking into account the intrinsic

uncertainty of innovation processes, the probability of an economy to move along the relative

technological scale is affected by three determinants:

(i)  the degree of exploitation of intensive technological opportunities

(ii)  the effectiveness of the underlying technological infrastructure and

(iii)  technological obsolescence.

These determinants are formalised by means of transition rates. However, before we introduce

these main determinants of the model, a few remarks with respect to the synergetic modelling

approach applied are necessary.

The introduced relative technological scale can be interpreted as a discrete state-space on

which the economies’ productivity levels evolve in time. It is analytically tractable with the so-

called master-equation approach. This formalism is usually applied to the description of

systems composed of many elements whose behaviour cannot be described deterministically.

Applying this, the productivity improvement and the respective productivity level achieved by

an economy are stochastic. Consequently, the probability to meet a certain productivity level in

time t also is a measure for the relative shares of the economies on this productivity level

within the whole population.6

Which factors affect these shares/probabilities and how do they change? A master equation

computes for every single state of the state space the probability to meet this state at a certain

point in time t. The basic mechanism of this equation is illustrated in fig. 4.

                                               
6 See e.g. Honerkamp (1989).
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Fig. 4: Basic mechanism of a master-equation

A specific productivity state xi can be left in every infinitesimal small time interval due to two

reasons: on the one hand, economies successfully improved their productivity and reach the

higher level xi+1, on the other hand, technological obsolescence can be responsible for an

economy to find itself on a lower productivity level xi-1. These movements, indicated by the

arrows below the scale, out of the respective state xi decrease its probability. In the same way

economies on the lower productivity level xi-1 could increase their productivity and find

themselves in the state xi, or firms on the higher level xi+1 fall back on xi because of

technological obsolescence. These movements, indicated by the above arrows into state xi,

increase its probability. In other words, a master equation can be interpreted as a kind of profit

and loss account of the probabilities to meet a certain state. The dotted arrows for the

respective border states indicate that these states could be either reached or left only from one

direction.

3.2 Transition Rates and Master-Equation

With the above remarks we are now able to introduce the various factors which influence

relative productivity improvement and relative deterioration of productivity levels of an

economy. These influences are represented by transition rates between two neighboured states

i and j.

(i)  Exploitation of intensive technological opportunities

To formalise the effects of a cumulative exploitation of the intensive opportunity space we

draw on the technological experience and capabilities going hand in hand with growing

productivity levels along the state space. First, with higher productivity levels, economies have

a higher chance to accomplish further productivity improvements due to accumulated

experiences. However, due to limited intensive technological opportunities, the degree of

exhaustion of these opportunities increases with increasing productivity levels, thereby

x1 x2 ..... xi-1 xi xi+1 ..... xn-1 xn
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decreasing the chance of further success. The interplay of these effects is modelled by applying

an exponential formulation and taking into account the cumulative effect. So the probability of

productivity improvement at each technological level is given by the following function:

(1) p ei 1 i
d x i

+ ←
− ⋅= ⋅ ⋅α xi  ;   α,d > 0,

which describes the probability p of improving from technological level xi to the adjacent level

xi+1 (i+1← i) by exploiting the intensive opportunity space. This function is illustrated in fig. 5.

x

p

Fig. 5: Exploitation of intensive opportunities

Supposing this distribution, we see that because of accumulated technological competencies at

higher productivity levels, the probability for further productivity improvement also increases

at the beginning. At a certain level, the impact of a decreased intensive opportunity space

begins to dominate with the consequence of decreasing probabilities for further productivity

improvements when already higher productivity levels where reached. The size of this effect is

determined by the parameter d. With higher d, the decreasing part of the curve becomes

steeper indicating stronger technological boundaries and bottlenecks. α is a weighting

parameter.

(ii)  Technological infrastructure

Economies build up technological infrastructure with improving their productivity levels. On

the one hand, firms accumulate absorptive capacities (‘learning-by-innovating’) like other

knowledge during the course of time (‘learning-by-doing’, ‘learning-by-using’), on the other

hand, institutions of technology transfer are installed, aiming to facilitate the immediate

integration and use of new external knowledge (technological spillovers). The probability of
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productivity improvements ri+1← i with respect to technological infrastructure formally is as

follows:

(2) r x e b gi i i
b g xi

+ ←
−= ⋅ + ≥1 1 0γ γ/ ( ), , ,( ) , f∈{0,1}.

This sigmoid function is given in fig. 6.

x

r

Fig. 6: Technological infrastructure

Parameter b represents the difficulty of building up technological infrastructure. The lower this

parameter, the sooner and consequently on lower productivity levels positive effects of

drawing on external knowledge thereby realising cross-fertilisation effects i.e. exploring new

technological opportunities become possible. With a large b the function becomes rather steep

in the middle part and sharply separates productivity levels with a developed technological

infrastructure from those without. The parameter g ∈  [0, 1] is a kind of sensitivity parameter

which determines the minimum amount of technological competencies for the exploration of

extensive opportunities. For relatively small values of g a relative low amount of competencies

is necessary to build up technological infrastructure. Parameter γ again is a weight.

(iii)  Technological obsolescence

Economies already on high productivity levels face an almost depleted intensive opportunity

space. Nevertheless, they potentially can explore extensive opportunities offered by the

sciences. Thus, the consequences of a limitation of intensive opportunities are confronted with

these new extensive potentials. Besides this, new opportunities provide for the obsolescence of

applied technologies. If an economy is not successful, it necessarily will fall behind: in

evolution stagnation is equal to come in behindhand. Additionally, this process bears the

consequence that ageing technologies become more and more generally available.
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This directly leads to the development of the common available knowledge stock. Because of a

generally increasing level of education and certain other externalities (standards etc.), a kind of

minimum technological level exists which is a public good and can be used by everybody

without additional efforts. On our technological scale this level is represented by the left border

x1 which continuously moves right because of exogenous scientific progress.

Formally we assume a constant obsolescence o representing these exogenous determinants.

Their impact increases on higher technological levels. Because of smaller distances to science

higher productivity levels bear a higher technological uncertainty. On our technology-scale the

rate of obsolescence oi-1← i is modelled by:

(3) oi-1← i = o⋅xi, 0<o<1.

Thus, technological obsolescence is represented here as a permanent move to the left of the

scale: On the right side higher productivity levels enter the opportunity space of economies, on

the left side the common available knowledge stock grows and with it the lowest productivity

level x1. This provides for that economies will perform at least this productivity level.

With these above introduced transition rates (1), (2) and (3) we are now able to formulate the

master-equation describing the technological dynamics in our model. The transition-rates only

depend on the different states xi and are time-independent. Therefore, we are dealing with a

non-stationary Markov-model which looks as follows:7

(4)
dP x t

dt
i( ) =  p x P x t p x P x ti i i i i i i i← − − − + ←−1 1 1 1( ) ( ) ( ) ( )

+ −← − − − + ←r x P x t r x P x ti i i i i i i i1 1 1 1( ) ( ) ( ) ( )

+ −← + + + − ←o x P x t o x P x ti i i i i i i i1 1 1 1( ) ( ) ( ) ( )

The r.h.s. of equation (4) contains all changes of state xi. With positive sign we find the

probability increasing, with negative sign the probability decreasing changes. The respective

transition rates are multiplied by the probability to meet a specific state xi. This is to be

interpreted as follows: First, the larger P(xit) the higher is the probability of a certain
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transition, i.e. success or failure. Second, with respect to the technological infrastructure

effects, the P(xit) can also be interpreted as a measure for technological interaction between

economies corresponding to international spillovers effects (Coe/Helpman (1995),

Coe/Helpman/Hoffmaister (1998)). Here, the specific self-organisational context of the master-

equation shows up. The P(xit) are to be seen as collective phenomena stating the probability

or share of xi. This collective magnitude influences the economy-specific transition rates. The

reverse influence is given by these transition rates which determine the collective phenomenon.

To close the system, the border equations for state x1 and xn have to be formulated separately,

because they can be reached from and left in only one direction (‘reflecting barriers’). For the

lowest productivity level we get:

(5) 
dP x t

dt
o x P x t p x P x t r x P x t

( )
( ) ( ) ( ) ( ) ( ) ( )1

1 2 2 2 2 1 1 1 2 1 1 1= − −← ← ← .

With this equation countries on the lowest productivity level are always lifted on the state of

common knowledge. The equation for the right border

(6)
dP x t

dt
o x P x t p x P x t r x P x tn n n n n n n n n n n n

( )
( ) ( ) ( ) ( ) ( ) ( )1

1 1 1 1 1 1 1= − −− ← ← − − − ← − − − .

reflects the opening up of new opportunities offered by science. With these two equations our

model is specified for the numerical simulation.

For the solution of such a system as a first approximation mean-value equations are used in the

literature. They have the advantage of being analytically solvable and quite well approximate

the solution in the case of uni-modal distributions. But in the case of phase-transitions,

meaning that structures bifurcate, the mean-value could describe unlikely solutions. Therefore,

we use a numerical simulation analysis to investigate the behaviour of our model.

3.3 Simulation of the Model

Before we start with simulation experiments we have to specify the applied parameters and to

introduce relative weights for the different determinants of productivity development. The

                                                                                                                                                  
7 For a detailed formal description of the model see Cantner/Pyka (1998).
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probability to reach higher productivity levels of the economies is an aggregate of two different

elements. The potentials out of intensive technological opportunities which are given in

equation (1) are certainly most important. Because of their outstanding importance these

efforts are weighted with α = 0.775 (around 80% share in success probability). Decreasing

intensive opportunities are reflected by the benching parameter d = 3.5.

e technological scale.

The impacts of technological infrastructure are the second determinant, given in equation (2).

They are most relevant on the second half of the technological scale which is reflected by g =

0.5. Countries have to build up technological infrastructure if they want to realise cross-

fertilisation effects by exploiting the extensive technological opportunity space. Parameter b =

15 is responsible for a likewise easy accumulation of technological infrastructure and already in

the second quarter of the scale allows some positive effects. These effects are weighted with γ
= 0.225.

Finally, for the rate of obsolescence (3) we suppose a high impact of the sciences on

technological development (o = 0.27) with the consequence that on average a new state is

potentially reachable on the right side of the technological scale after five periods.

Based on this calibration8, equation 7 is the so-called drift-coefficients K(x) = pi+1← i(xi) +

ri+1← i(xi) - oi-1← i(xi): 9

(7) ( )( )K x x e f e oi i
dx b g xi i( ) [ / ]= ⋅ ⋅ + ⋅ + −− −α γ 1 .

For this setting of parameter values we find a drift-coefficient intersecting the x-axis three

times indicating a multi-modal distribution as solution for our system (fig. 7). Therefore, we

have to expect a phase transition of the system. In this case, the mean value equation is not

helpful for describing the system, instead a simulation analysis becomes necessary.

                                               
8 For a sensitivity analysis of the parameter ranges within which results remain unchanged see Cantner/Pyka
(1998b).
9 See Weidlich, W., Haag, G. (1983), p. 43.
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x

K

Fig. 7: Drift-coefficients

The simulation of our model is performed for a technological scale with n=100 different

productivity levels. This choice of n is sufficient to track interesting developmental aspects. All

simulation runs are composed of 10,000 iterations. Furthermore, in the simulation all

economies start on the lowest productivity level x1 (common available knowledge stock)

( P x( )1 0 1= ). The distributions of productivity levels over time are shown in fig. 8.

  x

t

Fig. 8: Simulated productivity distribution over time

All countries start on the technological level x1 and therefore no differential technological

infrastructures exist. In this phase the intensive opportunity space is not yet exhausted and

therefore, fast productivity improvements can be realised in all economies. However, the

depletion of intensive technological opportunities soon leads to a slowdown of development
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and first a unimodal structure becomes visible. In the figure we withdraw these early processes,

one the one hand for clearness of this graph, on the other hand, to take account of possible

distortions due to the chosen starting configuration.

Already at this state of development, some countries have built up considerable technological

infrastructure which allows them to draw on extensive opportunities by technological

recombination. In this situation, the bulk of lagging countries is confronted with increasingly

depleted opportunities; this can already be interpreted as the foundation of the emerging

bimodality of the productivity distribution. The impacts of technological infrastructure become

even more significant in the course of time leading to the characteristic twin peaked shape.

Finally, we find a clear separation of two groups of countries: a likewise larger group staying

continuously on smaller productivity levels, and a small group of leading countries, which are

successfully maintaining their high productivity levels.

4000 6000 8000 10000 iterations

x

Fig. 9: Productivity distributions for selected iterations (phase portrait)

Fig. 9 shows for selected periods the phase portraits of productivity distribution corresponding

to fig. 2 above. By comparing these two figures a striking similarity becomes obvious. Drawing

on the knowledge-based approach of evolutionary economics and the theory of self-

organisation allows the modelling of the characteristic twin peaks very close to distribution

found in reality.



22

4. Conclusions

This paper deals with the bimodal distribution of per-capita income in the world economy and

puts forward an explanation based on the countries’ (persistently) different abilities to further

and master technological progress. Theoretically, a synergetic model based on the master

equation approach has been introduced to show that for certain parameter constellations a

bimodal structure of knowledge distribution emerges. The development as well as the shape of

this distribution shows a remarkable similarity to the empirically observed one. The latter has

been traced for 104 countries for the period between 1960 and 1990 observing drawn from the

Summers/Hestons data in the Penn World Table 5.6.

The theoretical approach relies entirely on the accumulation of know-how and the ability to

absorb know-how from others. Thus, any kind of capital accumulation or labour force growth

is not explicitly taken into account. And therefore the knowledge-based approach is entirely

directed to the residual and thus to total factor productivity, although this is not modelled

explicitly. Looking at the empirical part of the paper, it is per-capita income and thus labour

productivity which is investigated. Quite obviously, there is yet a difference in focus which

should deserve some more attention in the future. Moreover, although the similarity of

simulation result and empirical observation is striking, in order to test whether the theory

holds, requires some more investigation.10

Especially the fact of the separation of the two modes needs some more empirical analysis

asking for example for the probability of a member in ‘club 1’ to become a member of ‘club 2’

in the next period etc. By this, it might be possible to get some empirically determined values

for the transition rates applied in the theoretical model. What will happen if those empirical

transition rates are included in the simulation? This will be work for the future.

                                               
10 It will be very valuable in future work to try to estimate the parameters of the master equation directly by
applying the GMM-based method of simulation estimation proposed by Lee and Ingram (1991) (notice that
GMM is the abbreviation for the generalized method of moments estimator put forward by Hansen (1982)).
Because this method is related to GMM there is no need to specify the complete likelihood function before
estimation which would be very difficult in the case of the master equation. Lee and Ingram also give a
goodness-of-fit test to judge the overall quality of the estimates.
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Appendix
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Fig. 10: Estimated productivity distribution 1960 - 1990 with correction for boundary bias
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Fig. 11: Income distribution of selected years with correction for boundary bias
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