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Abstract

Technological progress in the biological sciences is now advancing across such a wide range

and at such a pace, that, irrespective of size, no firm can hope to keep up in all the different

areas. Participating in innovation networks, bundling of competencies and capabilities,

therefore, offers an alternative to extremely expensive go-it-alone strategies, whether carried

out by acquisition and mergers or by isolated R&D. This imbalance between the rate of

growth of the biotechnology knowledge base and the capability of individual firms to access it

can explain the persistence of cooperative R&D in the biotechnology-based sectors at the end

of the 90s. Such imbalance is not due any more only to the lack of absorptive capacity of

existing firms, because the large pharmaceutical firms have meanwhile developed

considerable competencies in that field. This previous competence-gap was considered to be

the reason for cooperative behaviour in the early phases of these industries in the end of the

70s and early 80s. To the extent that this was considered to be the only knowledge gap

innovation networks were considered as a temporary phenomenon, which could not persist

beyond the period required by large firms to catch up with the new technology. We are then

proposing that a new role, that of explorers scanning parts of the knowledge space that LDFs

(Large Diversified Firms) are capable of exploring but unwilling to commit themselves in an

irreversible way, can be played by DBFs (Dedicated Biotechnology Firms) in innovation

networks. Our simulation approach attempts to represent the emergence of these two roles as

endogenous changes in the motivation for participating in innovation networks, allowing them

to become an important and long-lasting organizational device for industrial R&D. Drawing

on a history friendly modeling approach the decisive mechanisms responsible for the

emergence of innovation networks in these industries are figured out and compared to real

developments.
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1. Introduction

Innovation networks are a relatively new phenomenon which emerged in a significant way

only since the beginning of the 1980s.  Not only this new phenomenon was not predicted by

economic theories, but its existence was considered to be an exception. The market and

hierarchical organizations were considered to be the only stable and efficient forms of

industrial organization. Networks were expected to have only a temporary existence or to

survive in special niches. As it often happens, reality has taken science by surprise and the

number of collaborative inter-institutional networks has steadily grown since the 1980s (EU

Indicators Report, 1997). There is then a need to modify existing theories of industrial

organization in order to explain the existence and the features of collaboration networks. The

expression inter-institutional collaboration networks has been used before because the typical

members of these networks are not only firms. Public research institutes or government

departments participate quite often in these networks. Furthermore, in this paper we are only

going to be concerned with innovation networks, that is with networks whose main objective

is to create and adopt innovations. This is no the only type of network, but it is the dominant

one.

In most of the research about networks the increased rate of creation of new knowledge and

the shortening of the life cycles of products are two of the main factors associated with the

existence of networks. Thus mechanisms of knowledge creation and utilization seem to be

playing a very important role in the creation of networks. Networks can be considered a

component of the emerging knowledge based society, in which knowledge is expected to
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become the crucial factor leading to economic growth and to competitiveness. In a knowledge

based society not only the quantity of knowledge used will be greater but its mechanisms of

creation and utilization will change. According to Gibbons et al (1994) a new mode of

knowledge generation and  utilization, called Mode 2, is emerging in addition to the

traditional one called Mode1. While in the latter the creation and utilization are clearly

separated both chronologically and institutionally, in the former there is a continuous

interaction between the two processes, which leads to the need for different institutional and

organizational forms. Networks could then be a form of industrial organization appropriate to

a knowledge based society.

Biotechnology is one of the fields that is at the forefront of the creation of a knowledge based

society. This seems somewhat paradoxical, since it could be maintained that biotechnology is

one of the oldest technologies used by mankind. Beer and yogurt making constitute two

typical examples. However, modern biotechnology has been substantially changed by the

advent of molecular biology, a new discipline which was founded in the 1930s based on the

attempt to apply to biology the methods of physics. In the mid 1970s two discoveries,

recombinant DNA and monoclonal antibodies, transformed a scientific discipline with a

brilliant if distant future into a seedbed of industrial applications. Accordingly some authors

now call this latest vintage of biotechnology third generation, to distinguish it from the

completely empirical first generation and from the second generation, which began with the

production of antibiotics. Second generation biotechnology used scientific methods but it did

not have the knowledge required to change the genetic make-up of organisms. Such

knowledge was only provided in a systematic way by molecular biology. In the mid 1970s

very few research institutions did research in molecular biology and they were mostly in the

USA. The industrial firms that in principle could have exploited molecular biology did not

have a knowledge base or an absorptive capacity for it. Their competencies and knowledge

bases were concentrated in more traditional disciplines such as organic chemistry or

microbiology. In fact, this lack of  knowledge hampered firms’ recognition of the

opportunities that could have been offered by molecular biology.

Biotechnology is not an industrial sector but a scientific field underlying a number of

industrial sectors (pharmaceutical, agriculture, food, environment etc.), here called the

biotechnology based sectors. Industrial applications of biotechnology are highly dependent on
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new scientific developments, even on those that are the result of basic research. Although the

lead times between the discovery of new knowledge and its final embodiment in new products

may be very long, the time between the creation of new knowledge and the funding of

industrial research aimed at its applications is in general very short. Basic research is not

exclusively confined to public research institutions, but it is also carried out by firms. Thus,

both for what concerns its intensity of knowledge utilization and for the mechanisms

employed, biotechnology seems to be a very good example of industrial organization in a

knowledge based society. Of course, the conclusions reached in this paper will depend on the

specificity of biotechnology, but they will also have some general significance for the analysis

of a knowledge based society.

The earliest analyses of networks of collaboration pointed to the possibility that they are only

a temporary form of industrial organization. Such temporary character could be the result of

discontinuities in knowledge generation, for example of the emergence of a new technological

paradigm. It was argued that large diversified firms (LDFs) were committed to the old

paradigm, in which all their competencies were concentrated, and that they could not easily

internalise the new knowledge. Alternatively, LDFs did not have the absorptive capacity

required to internalize the new paradigm and they were not capable of constructing it rapidly.

A new type of industrial actor, small high technology firms, arose to bridge the institutional

gap between public research institutions and LDFs. In the specific case of biotechnology such

firms were called dedicated biotechnology firms (DBFs). DBFs were expected to act as

intermediaries between LDFs and public research institutions. In the rest of the paper the

DBFs performing this role will be called translators. In the course of time by collaborating

with DBFs and with public research institutions, LDFs could construct a knowledge base and

an absorptive capacity in biotechnology.  Once this happened the role of DBFs would have

become redundant and industrial organization would return to the traditional dichotomy

between the market and hierarchical organizations.

As it was previously pointed out, the rate of creation of inter-institutional collaborative

networks has been steadily increasing all throughout the 1980s and 1990s. Thus either LDFs

have not internalized the new paradigm constituted by biotechnology or a new role for DBFs

has emerged in innovation networks. The analysis of this problem constitutes one of the main

objectives of the present paper. In the paper a second role for DBFs and thus for networks is
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discussed. By the end of the 1980s LDFs in a number of industrial sectors had acquired a

knowledge base in molecular biology (see for example Grabowski, Vernon, 1994) and yet

they continued to enter into collaborative agreements with DBFs. In this paper we hypothesize

a second role for DBFs, linked to the extremely rapid rate of creation of new knowledge. Even

if LDFs have acquired an absorption capacity for it, the sheer rate of advance is such that no

LDF could keep up with it all. LDFs might thus use agreements with DBFs within networks in

order to keep abreast of new developments that could turn out to have important economic

applications. The alternative course of action for an LDF would be to invest in research in the

same fields of biotechnology. However, with a very high rate of growth of knowledge this

strategy would involve a very heavy, irreversible and risky commitment. The collaboration

with DBFs constitutes a more flexible and reversible strategy. It is to be observed that this role

does not involve a qualitative difference in LDFs’ ability to understand molecular biology, but

only the attempt to reach a better trade-off between readiness to action if promising

developments were to emerge in new subsets of the biotechnology knowledge space and the

sunk costs that need to be faced in order to keep these windows open. Furthermore, it must be

remembered hat the competitive advantage of LDFs is not constituted by their ability to

understand new knowledge but by their capacity to combine the different competencies and

complementary assets required to produce a final product. This second role that can be played

by DBFs will be called of explorers.

In what follows we analyze biotechnology innovation networks with special emphasis on two

types of actors, LDFs and DBFs. We compare the advantages and disadvantages for firms of

going alone strategies and of networking strategies, taking into account the environmental

factors influencing the formation of links between actors. Network formation will be shown to

display a dynamics going beyond a first wave of networks and leading to a re-organization of

the partnerships involved.

2. The Simulation Model

Before beginning to explain the basic structure of our model1 some remarks with respect to

the methodological framework we are adopting are order. In particular, we are going to use

the methodology of the so-called history friendly models, recently introduced by Nelson,
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Winter, Malerba and Orsenigo (1999). History friendly models are designed to capture, in a

stylized form, the mechanisms and factors affecting industry evolution, technological advance

and institutional change detected by empirical scholars of industrial economics, technological

change, business organization and strategy, and other social scientists. Thus history friendly

models can be considered the natural extension to modeling of qualitative and appreciative

theories.

Obviously even in an evolutionary approach simulation models have to introduce a certain

degree of abstraction and cannot reflect reality in all its complexity. The mechanisms built in

the formal model have to be transparent enough, so that the analyst can figure out what are the

causes of the observed effects. Therefore, in the first step of our modeling effort we have to

carefully single out the relevant actors, bring together variables which are effective in the

same direction and combine important developments and possibilities of action. Nevertheless,

adopting the approach of evolutionary economics allows us to put emphasis on crucial

features of innovation processes, such as non-linear dynamics, heterogeneity and true

uncertainty, which are beyond the scope of traditional approaches.

In the following the basic building blocks of our modeling conception are introduced. In

particular, we focus on the way we present the different agents in our model, the way we

capture innovation processes, what we consider to be the prerequisites and consequences of

networking as well as the representation of the economic realm in our simulation.

2.1 The Representation of Agents in the Model

Let us begin with the implementation of the agents. The agents we are explicitly considering

in our model are Large Diversified Firms (LDFs) and Dedicated Biotechnology Firms (DBFs).

They are described in terms of their competencies and capabilities. DBFs possess

technological competencies while LDFs possess a mixture of economic and technological

competencies.

                                                                                                                                                        
1 A comprehensive formal description of the simulation model can be found under http://www.uni-
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- Competencies

Technological competencies are considered to be the components of the knowledge base

required for building up production and innovation capabilities in a specific technology. In

other words, before firms are able to develop new marketable outputs they have to develop the

respective bio-technological competencies. Furthermore, technological competencies alone

are not sufficient to achieve economic success with a new product. Economic competencies

are necessary in order to successfully produce and market a new commodity. Examples of

these economic competencies are experience in clinical trials, distribution channels and so on.

Clearly this representation is somewhat simplified. The full range of competencies required by

firms to conceive, develop, produce and market new products is very large and heterogeneous.

However, given that most DBFs at the beginning of their life cycle do not possess any

economic competencies and that LDFs in the 1970s were generally unable to acquire the

knowledge required to use modern biotechnology, the representation in terms of technological

and economic competencies adequately describes the difference between our two main agents.

Moreover, we could consider technological competencies as the core competencies (Prahalad,

Hamel, 1990) of firms and economic competencies as a large part of the complementary assets

(Teece, 1986) required to produce and market a product.

The building up of technological Bi
t and economic competencies ECi

t  is described in

equations (1) and (2) respectively:

(1) 
)exp(1

1
BIOt

i

t
i tNCOPconst

B
⋅−+

=  ,

(2) 
)exp(1

1
ECOt

i

t
i tNCOPconst

EC
⋅−+

= .

Bi
t := technological competencies of firm i at time t

ECi
t := economic competencies of firm i at time t

NCOPi
t := number of cooperations of firm i at time t

tBIO/ECO := time spent in particular activity

Figure 1 shows this function graphically for the case of technological competencies. In the

early phases the building up of the knowledge base is a difficult process and progress is hard

to achieve. However, after having developed a certain knowledge base it becomes easier to

learn even more (threshold effect). Finally, marginal progress becomes progressively more

                                                                                                                                                        
bielefeld.de/iwt/sein/paperno5.pdf
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difficult as the knowledge frontier existing at a given time is approached. A function of this

type implies variable returns to investment in the creation of new knowledge within a given

field: very low at the beginning, positive and growing in the intermediate phase before

diminishing returns set in as the potential of the new field has been exploited. The process of

building up a knowledge base in biotechnology is supported by cooperative arrangements with

firms who are already active in this field - an important part of the respective knowledge base

is transferred by networking.

Fig. 1 Building up of a knowledge base in biotechnology

- Discrimination between LDFs and DBFs2

The two populations of firms which can be observed in the biotechnology-based industries

can be distinguished on the basis of their relative technological and economic competencies.

The first population of firms is that of LDFs, for example the large established pharmaceutical

firms. Until the end of the 70s their research and development was mainly embedded in the

paradigm of traditional organic chemistry. The coming up of the new bio-technological

paradigm meant a competence-destroying technological progress3 for them, as most of their

competencies were threatened by the new ones. In our simulation this group of firms is

represented in the starting distribution with well developed economic competencies but with

almost no technological competencies in biotechnology.

                                                
2 See e.g. Acharya, R. (1999), pp. 15 ff.
3 Tushman, M. L., Anderson, P. (1986).
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In the second population we find small start-up companies, often university spin-offs

specialized in the biotechnology field. This group of firms, the so-called dedicated-

biotechnology-firms or DBFs, by their very nature have highly developed technological

competencies, but almost no economic competencies. When they start their existence DBFs

depend on external funds for research and development. Accordingly, in our starting

distribution they are represented just as having no economic competencies but highly

developed technological competencies.

- Venture Capital Firms and Universities

In addition to these firms that we are explicitly taking into account, we also consider two

further important groups of actors in our model: public research institutes or university labs

and venture capital firms. In order to keep our model simple their behavior is not explicitly

analyzed, but they are considered as an important component of the external environment of

biotechnology firms. For example, in order to acquire the funds necessary to undertake R&D a

DBF can cooperate either with a LDF or with a venture capital firm; similarly, the cooperation

of a LDF with a DBF or with a public research institute leads almost to the same

consequences for the LDF etc.

- Capabilities

Drawing on their competencies firms can accumulate technological capabilities in specific

fields which allow them to explore the technological opportunity space. The firms in our

model act in an environment which continuously force them to be engaged in such R&D

processes. Not to innovate means to fall behind in the competitive environment of

biotechnology. In order to increase the probability of an innovation firms accumulate

technological capabilities in the course of time according to equation (3):

(3) C ri
t

i
t

t
= .

Ci
t := capabilities of firm i at time t

Ri
t := R&D investment of firm i at time t

Together with the technological competencies Bi
t the technological capabilities determine the

probability of an innovation Pri
t which is described in equation (4):



10

(4) Pr exp( )i
t

i
t

i
tB C= − − ⋅1 .

Pri
t := innovation probability of firm i at time t

To consider the intrinsic uncertainty of innovation processes the innovation probability of a

firm is matched every period with a Poisson-distributed random number whose mean value is

asymptotically reached by Prt
i. A firm is successful in its innovative efforts only if the

innovation probability Prt
i  is above the random number. 4

However, technological capabilities are not sufficient for the successful introduction of a new

product. To do this a firm also needs to acquire economic capabilities Et
i as well as the

economic competencies ECi
t, e.g. in production, legal approval, marketing, distribution etc.

The economic capabilities are accumulated in the same way as the technological capabilities

and are responsible for incremental innovations on new technological trajectories opened up

by a product innovation.

- R&D decision rules

The investment in R&D is no longer guided by an optimization calculus, but by a routinized

behavior, as innovation goes hand in hand with true uncertainty.5 Firms adopt certain rules,

for example, invest x% of your turnover in R&D, retain x% of your financial support in order

to build up an own capital stock etc. In the same way the distribution amongst different

activities (e.g. between investing in the building up of technological or economic capabilities)

is captured by referring to routines.

2.2 Networking

In order to carry out their innovation processes firms can choose different strategies. They can

either decide to go-it-alone, which means not to draw on external knowledge sources and not

to share their own new know-how with potential competitors, or they can decide to cooperate

with other actors and build up collectively the new capabilities necessary for the introduction

of a new commodity. Innovation networks emerge by this mutual cooperation, which gives

                                                
4 In this respect, a major methodological advantage of simulation studies shows up in the construction of the
innovation processes. Whereas in traditional optimization models there is no difference between the modeler and
the modeled agents, simulation analysis allows programming random numbers their statistical distribution is
unknown to the agents in the model (see Pyka, A. (1999, pp. 189 ff.)).
5 E.g. Nelson, R. R., Winter, S. G. (1982), p. 132.
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rise to channels for knowledge flows between the firms participating in the network. In

particular, we are considering the evolution of innovation networks at three levels within the

model: the environmental conditions favoring or inhibiting the growth of networks, the

individual decisions of firms to cooperate or not, and a matching process bringing together

firms willing to cooperate. This process creates a population of networks with its own

dynamics. The formation of any network constitutes an act of birth or entry into the

population. Conversely, the disappearance of a network constitutes an act of death or exit. The

dynamics of birth and death of networks will be determined by the specific features of each

network and by some features of the external environment. Accordingly we can calculate the

probabilities of birth (Pt
B) and of death (Pt

D) that will contribute to the net probability of

network creation (Pt
N).

- Probability of Birth

A number of environmental factors increase the probability of birth innovation networks. The

growing complexity of innovation processes as well as a high degree of technological

uncertainty play the most important role. Every time a firm is successfully introducing an

innovation the number of knowledge fields #KB is assumed to grow. Given the

complementary and combinatorial nature6 of biotechnology, the technological space Ω ,

defined as the number of possible combinations of knowledge fields, increases in a nonlinear

way (equation (5) and Fig. 2).

(5) 
)!2(#!2

!#
−

=Ω
KB
KB

Ω := technological space
#KB := number of different knowledge fields

Fig.2: Increasing technological Space

Ω

#KB
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Especially in the early phases of a technological life cycle (TLC) this increasing complexity is

combined with a high technological uncertainty because specific research techniques or

heuristics – e.g. how to handle this complexity - are not yet developed. In the model the phase

of a technological life cycle is approximated very roughly by the average age of the different

commodities on the product markets.

Additionally, R&D networks are dependent on a number of core technologies or core/central

actors (MN), who play a crucial role for the establishment of the networks.7 In our model the

population of LDFs is supposed to play this role. These factors influence the probability of

birth of innovation networks Pt
B and are summarized in equation (6). The functional form of

Eq 6 implies a sigmoid relationship, shown in fig. 3.

(6) Pt
B

const
TL

M N
t

N N
t

=

+ − ⋅ ⋅

1

1 1exp( )Ω

,

Pt
B := probability of birth of innovation networks

TL := age of technology life cycle
Mt

N := number of core actors
Nt

N := number of networking firms.

Fig.3: Probability of birth of innovation networks

In other words, the probability of birth of innovation networks increases with the complexity

of the technological space and with the number of core actors, and it decreases with the age of

the technological life cycle.

                                                                                                                                                        
6 Staropoli, C. (1998), p. 15.
7 See e.g. Saviotti (1996), pp. 36-37.

PB

      1

MN/NN

Ω

TL
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- Probability of death of innovation networks

In addition to the previous network supporting effects, other influences decrease the

probability of network formation, thus leading to network death. First, the degree of

competition is crucial in this respect. In our model we use as an economic framework a

heterogeneous oligopoly. We consider the degree of substitutability of the final products as a

measure for the intensity of competition. We use the variance σa
t of the variables describing a

firm’s relative product quality aij
t as a measure of the product heterogeneity: the higher this

variance, the lower is the competitive threat between the firms. Furthermore, we can expect

demand saturation  to decrease the rate of growth of the respective markets and thus the scope

of cooperative R&D. In this phase of the industry life cycle minor improvements of the

technology could lead to considerable advantages for a single firm. To capture this influence,

we draw again on the life cycle TLC and assume that on later stages of this life cycle the rate

of growth of demand is likely to decrease. Finally, the techno-economic performance of the k

network members, again approximated by the relative quality ak
t

k
compared to the average

performance of all firms a t , is itself an indicator for the attractiveness of joining a network.

In cases where the performance of network members is below average performance of the

whole firm population, the networking strategy significantly loses attractiveness. These factors

are summarized in equation (7) in the probability of network death Pt
D:

(7) P a a TLD
t t

k
t

k a
t= ⋅ −�� �� ⋅ ⋅α

σ
1 ,

Pt
D := probability of network death.

a t  := average quality at time t

ak
t

k
:= average quality of cooperating firms

σ a
t  := heterogeneity on product markets.

The net probability Pt
N  of network creation at any given time is determined by the balance of

births and deaths. The value of Pt
N in our firm population determines the decision of firms to

engage or not to engage in cooperation:

(8)
2

1 t
D

t
Bt

N
PPP −+

= ;

Pt
N := net probability of innovation networks.
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In cases where Pt
N is below 0.5, 2⋅(0.5- Pt

N)⋅100% of firms previously engaged in cooperation

turn away from cooperation, if Pt
N is above 0.5, 2⋅(Pt

N-0.5)⋅100% of firms engage in further

networking. Accordingly, the probability Pt
N determines the number of firms who decide to

cooperate or not in every period t.

- Networking Decisions

Next, the firms have to decide whether they want to cooperate or not. Generally two forms of

cooperation are possible:

i) cooperation focussing on complementary assets, i.e. firms are induced to cooperate to

acquire technological or economic competencies that they do not posses but that they

judge crucial for their economic success.

ii) cooperation focussing on general complementarities (i.e. the bundling of R&D efforts

in a specific direction) and synergies (i.e. detecting potentials for cross-fertilization by

the combination of different technological capabilities). It is to be noted that in this

case cooperating firms can have competencies with a degree of overlap than in case i).

For example, it is possible to conceive a division of labour in which firms pursue

similar objectives using similar competencies, but they collaborate in order to speed up

the innovation process and to spread the relative uncertainty over the network.

In the form of cooperation i) DBFs play the role of translators, while in form ii) they play the

role of explorers. Consequently, the networking decision depends on the respective

competencies and capabilities that firms have accumulated. For example, a small start-up

DBF in its early phases is not able alone to raise funds for R&D and necessarily has to look

for a partner in order to obtain funding. In the same way established LDFs which want to

become active in the promising fields of biotechnology but have no internal technological

competencies  need collaboration partners experienced in these fields. On the other hand,

firms with highly developed capabilities would not run the risk and share their knowledge

with potential competitors in the stages immediately preceding the introduction of an

innovation. The networking decisions are summarized in figure 4.
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- Matching Process

Finally, we have to decide on the mechanism which brings together different firms willing to

cooperate. Although different mechanisms are conceivably we think that a mechanism which

could be labeled success-breeds-success8 is best suitable for our purposes. Success-breeds-

success means that firms would tend to pick collaborators with the highest technological

and/or economic capabilities. We are here assuming that firms are in able to advertise their

own capabilities and to value those of potential cooperating partners. This seems to be a

realistic assumption, especially in the biotech industry, where firms are ranked on the basis of

their technological performance, which is advertised by press announcements, publications,

patents and even  by the professional standing of the scientists hired by firms, including the

Nobel prize winners present in their scientific committee.

2.3 Networking Consequences

After having introduced the way firms get together in innovation networks we now have to

focus on the consequences of networking. By entering into a collaboration firms are

exchanging their know-how. This means that firms can benefit from the efforts of other firms

in order to build up their own capabilities.

- Absorptive Capacities

The extent to which a firm can benefit from the knowledge flow available by cooperation

depends on its absorptive capacity9. In turn, absorptive capacity is expected to increase with

the firm's previous experience in cooperation. This is represented by the experience term t
iδ ,

which describes the amount of external competencies a firm is able to integrate – a kind of

absorptive capacity in networking. This means that external knowledge is not easily integrated

within the own knowledge stock, but certain prerequisites have to be fulfilled and a minimum

amount of experience is necessary. This also means that the amount of knowledge which

flows within the network is severely limited. The building up of the absorptive capacity is

given in equation (9) where we draw on a firm's experience in cooperation as an

approximation:

                                                
8 Phillips, A. (1971).
9 See Cohen/Levinthal (1989) and Cantner/Pyka (1998).
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(9) t
i

t
i NCOP⋅= αδ ,

δi
t := absorptive capacities of firm i at time t.

- Coordination Costs

Cooperation also involves costs, which reduce R&D investments. If it were not for these costs

we would get the unrealistic situation where everybody cooperates with everybody else. These

costs together with the prevailing environmental conditions determine the potential number of

collaborations in the industry while the decision rule described above determine the form of

cooperation chosen. However, as in reality not all firms are engaged in cooperative

relationships with all other firms, there also have to be certain limits to a cooperative strategy.

An important factor limiting the growth of networks are the coordination costs, crt
i , which

immediately appear together with cooperative R&D. We assume these coordination costs to

be constant and equal for every form of cooperation.10 These costs of cooperating with other

firms decrease the budget for direct research rt
i, since there is a trade-off between engagement

in acquiring internal and external knowledge. Equation (10) shows this constraint:

(10) Rt
i = rt

i + NCOPi
t ⋅ crt

i;
Rt

i := gross R&D budget of firm i at time t
cri

t := coordination costs.

Therefore, in deciding whether to engage in cooperative R&D or not firms also consider these

coordination costs crt
i. For a firm i engaged in several cooperative relationships, coordination

costs amount to NCOPi
t ⋅ crt

i . They should not exceed a certain percentage η of the gross

R&D-budget t
iR . Accordingly, the following decision rule (11) has to be considered by a firm

additionally to the decision which specific form of cooperation it prefers:

(11) if NCOP cr R then no further cooperation is intended
else NCOP cr R then new cooperations are possible

i
t

i
t

i
t

i
t

i
t

i
t

⋅ ≥ ⋅
⋅ < ⋅

η
η

- Financial Flows

Start-up DBFs with missing economic competencies cannot finance their own R&D and are

obliged to find a cooperation partner. In this case an LDF cooperating with a DBF is supposed
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to provide the required research funding. For a DBF i cooperating with an LDF j this means

that its gross R&D budget Ri
t is financed in a part by the other firm's R&D budget. Of course,

the DBF i will also retain a certain percentage κ of the funds as profits ((1-κ)Ri
t =rj

t) thereby

acquiring means which in future allow it to undertake R&D more independently. In the case

of a successful innovation, the intellectual property rights belong to the LDF j which can start

with the production on the final good markets.

Another possibility for DBFs to acquire R&D funds is to apply for venture capital, for which

we assume an exogenous supply VCt VC= ⋅ +0 1( )α growing with the rate α. Accordingly the

number of firms which can be financed by venture capital is nVC
t VCt

R
= ( R := constant

periodically paid amount of money). Also, we assume a constant period tVC  , so that the

overall credit for a firm is tVC R⋅ . Access to venture capital is competitive. Amongst the firms

applying only those which show the best record in bio-technological capabilities Ci
t as well as

in previous cooperations NCOPi
t are funded.

- Knowledge Flows

One of the most important advantages of participating in an innovation network is the access

to channels of knowledge flow. External knowledge exerts an impact on the innovation

probability function and depends on the amount of absorptive capacities, as well as on the

technological capabilities of the cooperating firms. For a firm participating in an innovation

network and collaborating with k other firms the innovation probability function gets

modified:

(12) Pr expi
t

i
t

i
t

i
t

k
t

k
B C C= − − ⋅ + ⋅�� ��1 δ ,

Ck
t

k
:= capabilities of k cooperation partners.

Thus, participating in an innovation network exerts a threefold influence: first, the research

budget of a firm is reduced due to coordination costs and, in the case of a cooperation with a

DBF, by the financial support of this firm. Second, absorptive capacities are positively

influenced by entering into a new collaboration as the experience with integrating external

                                                                                                                                                        
10 One also can consider the coordination costs to depend on the number of cooperations i.e. first they are
decreasing (economies of scale in cooperating) and then they are increasing again after having passed a certain
threshold.
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knowledge is increasing. Finally, external knowledge becomes available via knowledge flows

between the collaborating firms.

2.4 Competition Processes

The innovative activities of firms are undertaken in an economic environment which is

characterized by a certain degree of competition. On the one hand, the firms offering products

on the final market compete with each other in attracting demand. Also, those firms whose

aim is to offer new technological knowledge compete in a particular way with other firms in

acquiring the respective funds. Finally, firms who want to buy the respective knowledge also

compete for the cooperation with the most attractive research laboratories.

The two levels of competition take place in two different market: the market for final products

and the market for knowledge. Of course, we know that markets for knowledge cannot exist

due to their imperfections. However, the existence of DBFs, which very often though not

always function as contract research organizations, implies that within particular

circumstances such imperfections can be reduced to a level where a market for knowledge,

although very imperfect, can exist. In fact, cooperation often exists between firms operating in

different markets (e.g. for final goods and for knowledge) and thus being in a complementary

relationship. Of course, this does not exclude that firms operating in the same market can

cooperate.

On the final markets firms compete in terms of prices and quality which are, in a dynamic

context, determined by their innovative success. Generally, one would expect that a successful

innovator will be able to attract demand away from its competitors because consumers can

choose between several goods. These substitution effects are due to price and quality changes

which are the results of the following actions and reactions:

• Introducing a new product with improved quality characteristics creates additional demand

allowing the innovator to charge higher prices.

• In the case of an introduction of a new product by two or more vertically integrated firms

who cooperated in the R&D stages the increase in demand is divided between the involved

firms.
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• As a reaction to this quality-induced substitution effect, non-innovators in related markets

lower their prices in order to keep the loss in demand as small as possible.

• Exploitation of technological opportunities of an already existing technology allows the

respective innovator to reduce its price, thereby increasing the demand for his product;

• As a reaction, non-innovators could fight their loss in demand by also lowering their prices,

thereby, however, reducing their profit margin.

Another form of competition takes place in finding the most attractive network partner which

is described with the help of the notion success-breeds-success (see above). Firms engaged in

the search for a cooperation partner will match with those which show either the most

developed technological or the most developed economic competencies.

By choosing a heterogeneous multi-product oligopoly11 we allow for the relationships

described above. Firms are offering their goods on a heterogeneous product market. By an

innovation and the introduction of a new commodity on these markets the relative market

share of the already existing goods gets eroded. By this, we also generate the endogenous

incentives of the firms to engage in innovation, as they cannot survive in the long run by

relying on their original established positions which are continuously threatened by the

innovative actions of their competitors.

2.5 The Basic Structure of the Model

The following flow chart summarizes the basic structure of our model.12 Starting with firms

and industry characteristics of the previous round firms have to decide whether to go-it-alone

or to cooperate. They are influenced by environmental conditions either favoring or inhibiting

the growth of networks. After having found a cooperation partner in the matching process the

firms enter the innovation stages which on the one hand influence the industry and firm

characteristics, and on the other hand the market outcomes of the next round.

                                                
11 See Kuenne (1992) and for an application in a simulation model Cantner/Pyka (1998).
12 In the appendix a comprehensive description of the simulation model following the different stages of the flow
chart can be found.
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Fig. 5: Flow chart

3. The models results

The first simulation experiments are dealing with a purely theoretical case where we are

considering a population of 12 firms, four of them being LDFs and eight DBFs. This step

seems to be necessary to introduce to the model’s results. Therefore, these first simulation

results have to be seen as interim results demonstrating the basic functioning of our model as

well as the plausibility of the implemented relationships and dynamics. In section 4 the

network related results are then compared to real figures in a history friendly manner.

Firm & Industry
Characteristics at time
t-1

Decision to
Cooperate or
not at time t &
R&D budget

Environmental
conditions for
networking at
time t-1

Matching
process at
time t

Innovation
process:
stage I

Innovation
process:
stage II

Final
product
markets

Innovation
consequences
 at time t
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Before analyzing the development of the network structure we begin with the environmental

conditions and some figures describing the typical course of single firms. In figure 6 we see

how the number of successful innovations develop.

0

50

100

150

1 21 41 61 81 101 121

number of innovations

time

Fig. 6: Number of innovations

The first 50 periods are characterized by a slow introduction of innovations. During these

periods firms are mainly occupied with building up the prerequisites to cope with the

technological progress. The rate of creation of innovations starts accelerating only after period

45. During this period firms build up the required technological competencies and experience

in networking (absorptive capacities). The introduction of innovations accelerates even

further around period 55, where nearly after every second period a new commodity appears on

the markets.

In figure 7 we find the development of the average age of the industry life cycle. The average

age of the population of innovations introduced increases at a faster pace during the first 40

periods due to the slow rate of introduction of novelties. However, as innovative activity starts

accelerating at the end of this period, the average age of innovations starts oscillating around a

mean of 40. The aging process is thus reduced and with it the negative impacts on the

incentives to collaborate. Later on, around period 165 the average age is increasing again

which is caused by the co-existence of a larger variety of commodities introduced at different

times. Here we find again the alternating sequence of low, growing and diminishing returns

already found for the probability of network creation.



23

0

25

50

75

1 21 41 61 81 101 121 141 161 181 time

industry life cycle

Fig. 7: Average age of the industry life cycle

Both effects determine the environmental conditions for networking. During the first 40

periods the combination of an increasing age of the industry life cycle and a relatively low rate

of introduction of innovations worsens the environmental conditions for networking. After

period 60 the increasing rate of creation of innovations favors the growth of networks, which

can mainly be traced back to an increasing technological space. This effect even outweighs the

further aging of the industry life cycle in later periods.
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Fig. 8: Environmental conditions

Figure 9 shows the corresponding development of the network density. After a first increase in

the density the dynamics of network growth come to a rest after around 10 periods, and even

starts slightly decreasing until period 45. However, after that period network density starts

increasing again, until it begins to oscillate around a value which is twice the average at the

beginning. This can already be interpreted as evidence for the changed role of DBFs, which in

the first periods find temporary collaboration partners in the population of LDFs. These

collaborations are mainly oriented towards bridging the gap between the new bio-technologies
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and the established industry. Later on, however, the DBFs are finally considered as an

extension of internal R&D facilities, allowing LDFs to explore a wider opportunity space.

Therefore, collaborations become more frequent and lasting in more advanced states of the

industry evolution.
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1 46 91 136

network density (moving averages)

time

Fig. 9: Network density

This interpretation of the changed role of DBFs is supported when we analyze the

developments at the firm level. Fig. 10 shows the process of building up of technological

competencies by four LDFs. All of them begin with no technological competencies in

biotechnology, but have to build them up by collaborating with firms specialized in these

fields, namely DBFs. Two of the firms engage early in collaboration (thin curves) while the

other two (bold curves) start only at a later stage. The two firms engaging early in

collaboration improve more rapidly their competencies and accordingly reach sooner the

second branch of the learning curve, with positive but decreasing rates. These firms develop

considerable competencies in biotechnology more than 20 periods earlier than the two slow

ones. We can observe that both for the fast and slow collaborating LDFs the shape of the

learning curve is sigmoid and that the saturation level seems to be the same. From these

results it seems that no penalty needs to be paid for  late entry. While this result my depend on

some features of our model that deserve further investigation, they are limited to learning and

they do not take into account possible barriers of other types that might be created during the

technological life cycle.
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Fig. 10: The building up of technological competencies by LDFs

This building up of competencies has an immediate effect on the innovation probability,

which is guided by the exponential relationship of equation (12) with positive but decreasing

rates. Figure 11 shows the development of innovation probabilities of three DBFs (thin lines)

and three LDFs (bold lines) in the starting periods.
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Fig. 11: Accumulation of innovation probabilities

The DBFs are able to accumulate quickly their innovation probabilities depending on their

success in acquiring resources for R&D through. One of the three firms is even able to

introduce a first innovation and to begin developing a second one go within the period shown

in figure 11. Compared to DBFs, the population of LDFs is confronted with severe difficulties

in exploiting their first trajectories. They need a considerably longer time to build up their

technological competencies to the level required to innovate. Of course, this varies depending

on the LDFs networking strategy. However, in general LDFs need more time to reach

promising innovation capabilities. In the early period of biotechnology they depend on

collaborations with firms from the population of DBFs in order to access the technological

space offered by this new field.
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In section 2 we argued that the persistence of innovation networks in the biotechnology-based

industries could not be explained by means of only one role played by DBFs. Whereas in early

stages the small technology-oriented firms play the role of translators, facilitating the

absorption of the new technologies by LDFs, in later stages they become more emancipated as

collaboration partners. This means that they do no longer serve solely as institutions

transferring knowledge between academic and industrial research, but become explorers,

allowing LDFs to investigate a broader technological portfolio in an increasing complex

technological opportunity space. This changed role of the DBFs accordingly has to be

observed also in the simulation as a development which endogenously takes place within our

model’s specification. In figure 12 we therefore plot the specific composition of collaborative

agreements.

LDF/DBF DBF/DBF
t

# Cooperations: LDF/DBF and DBF/DBF

Fig. 12: Composition of collaborations

In the first part of the period investigated only cooperative arrangements between LDFs and

DBFs are found: DBFs are supposed to support LDFs in building up their biotechnology

competencies; and, as a compensation for their R&D efforts, they are funded by LDFs. As

soon as some DBFs start to earn their own money they also initiate further collaborations in

which they are no longer playing the role of translators but that of explorers. In the simulation

we find that these collaborations between DBFs to become of increasing importance in later

stages of the simulated time horizon. Now, the cooperative agreements aim at bundling know-

how and joint exploration of the technological opportunities. At the end of the period studied

the number of agreements between DBFs is becoming comparable to that of agreements

between LDFs and DBFs.
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This changed role played by DBFs is also mirrored in the decisions made by firms with

respect to their collaboration policy. In the model we differ between three strategies: the go-it-

alone strategy chosen by firms who are either at the technological frontier and don’t want to

share know-how with followers or by firms which already are engaged in several

cooperations. The second strategy aims at attracting research funds; this strategy is adopted by

the DBFs in their early phases, when they enter the scene with highly developed technological

competencies but they have no economic competencies. Finally, the third strategy aims at the

integration of external knowledge in order to build up jointly in a network the capabilities

necessary for the introduction of an innovation.

no cooperation translator explorer

w illingness to start a new  collaboration and strategy choice

t

%

Fig. 13: Strategy choices

Fig. 13 shows the share of strategy choices the firms (LDFs and DBFs) make with respect to

the specific form of cooperation they want to initiate. This decision, of course is always

influenced by the position of the firm, in particular depending on whether the firm is already

engaged in one or more cooperations. Therefore, the white area representing the proportion of

firms who don’t want to start a new cooperations has to grow with the number of already

existing networks because of the increasing coordination costs. In the early stages almost all

firms wish to start new cooperative relationships according to the translator’s type (black

shaded area). With the growing diffusion of technological competencies within the population

of LDFs and as some successful DBFs become vertically integrated producers, this decision

shifts nearly exclusively to collaborative relationships following the explorer’s type (grey

shaded area). This also means, that the new collaborative agreements to be started in later

periods will almost only be of this latter type which is in line with the results shown in figure

12.
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4. Comparing artifical and real networks

We can compare our artifical world with developments of the real world. In order to get a first

idea of the respective artifical data, four selected periods are freeze framed in figure 14.

3 DBF1 DBF2 DBF3 DBF4 DBF5 DBF6 DBF7 DBF8

LDF1 1 0 1 0 0 0 0 0
LDF2 0 1 0 1 0 0 0 0
LDF3 1 0 0 0 0 0 0 0
LDF4 0 1 0 0 0 0 0 0
DBF1 0 0 0 0 0 0 0 0
DBF2 0 0 0 0 0 0 0 0
DBF3 0 0 0 0 0 0 0 0
DBF4 0 0 0 0 0 0 0 0
DBF5 0 0 0 0 0 0 0 0
DBF6 0 0 0 0 0 0 0 0
DBF7 0 0 0 0 0 0 0 0
DBF8 0 0 0 0 0 0 0 0

a)
48 DBF1 DBF2 DBF3 DBF4 DBF5 DBF6 DBF7 DBF8

LDF1 0 0 0 1 0 0 0 0
LDF2 0 0 1 1 0 0 0 0
LDF3 0 1 1 0 0 0 0 0
LDF4 0 0 0 0 0 0 0 0
DBF1 0 1 1 1 0 0 0 0
DBF2 1 0 0 0 0 0 0 0
DBF3 1 0 0 0 0 0 0 0
DBF4 1 0 0 0 0 0 0 0
DBF5 0 0 0 0 0 0 0 0
DBF6 0 0 0 0 0 0 0 0
DBF7 0 0 0 0 0 0 0 0
DBF8 0 0 0 0 0 0 0 0

b)

75 DBF1 DBF2 DBF3 DBF4 DBF5 DBF6 DBF7 DBF8

LDF1 0 0 0 0 0 0 0 0
LDF2 0 1 0 0 0 0 0 0
LDF3 0 0 0 0 0 0 0 0
LDF4 0 1 0 1 0 0 0 0
DBF1 0 0 0 0 0 0 0 0
DBF2 0 0 0 0 0 0 0 0
DBF3 0 0 0 0 1 0 0 0
DBF4 0 0 0 0 0 0 0 0
DBF5 0 0 0 0 0 0 0 0
DBF6 0 0 0 0 0 0 0 0
DBF7 0 0 0 0 0 0 0 0
DBF8 0 0 0 0 0 0 0 0

c)
95 DBF1 DBF2 DBF3 DBF4 DBF5 DBF6 DBF7 DBF8

LDF1 0 0 0 0 0 1 0 0
LDF2 0 0 0 0 1 0 1 0
LDF3 0 0 0 0 1 1 1 0
LDF4 0 1 0 1 0 0 1 0
DBF1 0 1 0 0 0 0 0 0
DBF2 1 0 1 0 0 0 0 0
DBF3 0 1 0 0 1 0 1 1
DBF4 0 0 0 0 0 0 0 0
DBF5 0 0 1 0 0 0 0 0
DBF6 0 0 0 0 0 0 0 0
DBF7 1 0 1 0 0 0 0 0
DBF8 0 0 1 0 0 0 0 0

d)

Fig. 14: Network structure for selected periods. Each gray box represents the collaboration of
the firms corresponding to it on the horizontal and vertical axes.

Ad 14a) In the starting periods cooperations are focused on acquiring complementary assets,

i.e. DBFs are looking for financial powerful partners whereas LDFs are looking for

technologically interesting partners with core competencies in biotechnology. In this

situation we end up with all firms in the population of DBFs collaborating with one or

two partners out of the population of LDFs.

Ad 14b) In this period most of the early cooperations are terminated. This is caused mainly by

two effects. On the one hand, a decreased network probability caused by an advanced

age of the first technology life cycle leads to a canceling of less successful

collaborations. On the other hand, some collaborations have led to an innovation and

are terminated afterwards. As there are new collaborations, a re-orientation with
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respect to the selection of partners has taken place. LDF2 still participates a network

with two DBFs and also LDF3 has increased his cooperative engagement by now

cooperating with two DBFs. The most significant change has taken place with respect

to DBF1 which obviously was successful in becoming a vertically integrated supplier.

This firm no longer collaborates with any LDF but instead has built up a network with

three other DBFs (DBF2, DBF3, DBF4).

Ad 14c) When we look at the networking table of period 75 the situation has changed once

more. Now we only find 4 collaborative agreements and none of the early cooperations

is still in existence, however LDF4 and DBF2 are again collaborating in a network.

This change is mainly caused by successful innovations as well as a still slow

improvement of the environmental conditions for networking.

Ad 14d) In later stages (period 95) most of the indicators support the emergence of innovation

networks and accordingly we find a dense network between LDFs and DBFs and

between those DBFs who were successful in becoming vertically integrated producers

(DBF1, DBF2, DBF3). Also, all of our four LDFs are engaged again in eight different

collaborations supporting our hypothesis that the role of DBFs is changing from

translators to explorers in the course of time making innovation networks a persistent

phenomenon.

The results on the network dynamics of our artifical biotechnology industries are at a first

glance difficult to compare with data from the real world. In figure 15 we find for a single

period (1998) a small selection of collaborations between LDFs and DBFs. However, graph

theory13 offers some measures to compare different networks from a structural perspective.14

These measures describe, for example, the adjacency, the reachability and the connectivity of

a network as well as the centrality of single actors.15 By comparing these figures we will get

some first insights whether we have caught the basic mechanisms of networking in our

industries, or where we have to modify specific components of our model in order to improve

our understanding.

                                                
13 See e.g. Burt, R. S. (1980).
14 An interesting application of graph theory on biotechnology innovation networks is in: Pammolli, F.,
Riccaboni, M. (1999).
15 See e.g. Freeman, L. C. (1979).
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LDF/DBF
AHP Bayer Boeh.

Ingel.
Dupont
Merck

Eli
Lilly

Glaxo
Wellc.

Hoechst Ro-
che

Merck
&Co

Novar-
tis

Pfi-
zer

SKB Warn.
Lamb.

Ze-
neca

Affymax 2 1 1 1 2
Affymetrix 1 2 1
ArQule 2 1
Britisch Biotech. 1 2 1 1 2
Celltech 1 2 2
Chiron 1 1 1 1
CoCensys 1 1 1
Human Genom Sci. 1 3
Incyte Pharma. 1 1 1 1 1 1 1
Millenium Bio Therap. 1 2 1
Neurogen 1 3
Onyx 1 1 2
Repligen 1 1 2 1 2
Scios 1 1 1 1 1
Sequana Therap. 1 1 1 1
SIBIA 1 1 1
Xenova 2

Fig. 15: Collaborations in the biotechnology-based industries16 (own datasources)

In the following we have applied three concepts, in particular the average distance, a network

centralization index and the degree of centrality in order to compare time series of artifical

networks with real networks. The computations are done with Ucinet17, a software tool

designed for network analysis.

Fig. 16 shows the development of the average distance, a measure for the average shortest

path between two nodes for our artifical network as well as for our empirical database. This

measure can be interpreted as an indicator for the diffusion of information in a network.

artificial world average distance
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Fig. 16a: Average distance in the artifical world

                                                
16 In total this is 113x704 matrix with around 1350 entries which exists for the years 1977 - 1999.
17 Bogatti, S. P. et al. (1999).
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real world average distance
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Fig. 16b: Average distance in the real world

First it is obvious that the scale of this measure is significantly larger for the real world

compared to the simulated world. However, this measure is an absolute one and depends also

on the size of a network. Therefore, the difference in scale can mainly be traced back to the

difference in network sizes. Nevertheless, both figures show a structural similarity in a

sequence of peaks which indicate a qualitative change in the network structure. Whereas these

peaks grow in magnitude in the real world, their artifical counterpart stays almost on the same

level and also the second peak is unimodal in the real world compared to the bimodal peak in

the artifical world.
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Fig. 16a: Network centralization index of the artifical world
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real world network centralization index
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Fig. 16b: Network centralization index of the real world

To rule out the influence of network size, index oriented measures exist. In figure 17 we apply

the so-called network centralization index which can be interpreted as a measure for the

influence of core actors in a network. Again we find a sequence of peaks for both worlds

which now are higher in magnitude in the artifical world. This difference in the impact can

still be traced back to the different sample size: in the artifical world we consider for the

moment only four LDFs which very likely play the role of core actors. Accordingly their

relative impact in a population of 12 firms is likewise higher compared to a real world firm

population of almost 1000 firms.

Finally we measured and calculated the degree centrality for both of our worlds. The degree

centrality measures the asymmetry in the roles played by various actors in a network.

artificial world degree of centrality
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Fig. 18a: Degree of centrality in the artifical world
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real world degree of centrality
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Fig. 18b: Degree of centrality in the real world

Also for this aspect of network activity we find a broad correspondence of our artifical and

real worlds. The sequence of three peaks can be interpreted as a consequence of the changing

role of DBFs in the networking processes. The first peak is caused by DBFs playing the role

of translators supporting the LDFs in their efforts to overcome the gap between their dominant

knowledge orientation and the upcoming new knowledge base in biotechnology. The second

peak has to be characterized as an intermediate phase, with some DBFs who have already

become vertically integrated producers and LDFs still mainly concerned with building up

competencies in the new field. The third wave in networking then is caused by a tremendous

growth in the technological opportunity space, where networking is considered to be a strategy

to cope with the speed and complexity of technological development. In this phase DBFs play

the role of explorers allowing the large and established firms to explore a wider range of

technological approaches within biotechnology.

5. Conclusions

This paper provides a simulation analysis of the evolution of innovation networks in the

biotechnology based industries. Since this is an applied simulation exercise, a great emphasis

is placed on the characteristic features of this industry. Obviously the implementation of the

model in the sense of a history friendly model is not an easy endeavor. The first step therefore

was to analyze a prototypical case which allows to detect the interactions of the numerous

mechanisms and interactions.

In a second step the results of the simulations are compared to developments of the real world

by applying concepts of graph theory which provide us with some measurements of the

overall network dynamics. Although there are still some significant differences between the
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artifical evolution of network structures and the real world networks, the results look

promising as they are able to reproduce at least qualitatively some developments which are

observed in reality. The next steps have to be to balance the different mechanisms and to find

relative weights in accordance to their specific impacts. Once such weights were attributed,

different scenarios could be analyzed, showing the influence of different environments as well

as of policy measures aiming at the establishment of these new biotechnology-based

industries.

One final remark with respect to the stochastic influence of innovation processes on results

seems to be necessary. By repeating the simulation experiment several times the Poisson-

distributed random number, responsible for the innovation event leads to varying relationships

between the firms in our sample. However, although collaboration partners change the overall

network dynamics do not depend on stochastic influences, but remain rather stable over a

large number of simulation experiments performed in a Monte-Carlo-method fashion..

To summarize, in our research we started from the empirical literature and from the existing

case studies on the biotechnology-based sectors and developed a formal representation of

innovation networks that, while abstract, matched a number of the observed features of

innovation in these sectors. Going through this analytical exercise has significantly sharpened

our theoretical understanding of the key factors behind the development of networking in the

biotechnology-based sectors and contributed to a more general understanding of innovation

networks in other sectors.
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